000148922 001__ 148922
000148922 005__ 20250124145431.0
000148922 0247_ $$2doi$$a10.1093/cercor/bhaa283
000148922 0248_ $$2sideral$$a133955
000148922 037__ $$aART-2021-133955
000148922 041__ $$aeng
000148922 100__ $$0(orcid)0000-0002-0873-5357$$aSalillas, Elena$$uUniversidad de Zaragoza
000148922 245__ $$aNeurofunctional components of simple calculation: A magnetoencephalography study (*) corresponding author)
000148922 260__ $$c2021
000148922 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148922 5203_ $$aOur ability to calculate implies more than the sole retrieval of the correct solution. Essential processes for simple calculation are related to the spreading of activation through arithmetic memory networks. There is behavioral and electrophysiological evidence for these mechanisms. Their brain location is, however, still uncertain. Here, we measured magnetoencephalographic brain activity during the verification of simple multiplication problems. Following the operands, the solutions to verify could be preactivated correct solutions, preactivated table-related incorrect solutions, or unrelated incorrect solutions. Brain source estimation, based on these event-related fields, revealed 3 main brain networks involved in simple calculation: 1) bilateral inferior frontal areas mainly activated in response to correct, matching solutions; 2) a left-lateralized frontoparietal network activated in response to incorrect table-related solutions; and (3) a strikingly similar frontoparietal network in the opposite hemisphere activated in response to unrelated solutions. Directional functional connectivity analyses revealed a bidirectional causal loop between left parietal and frontal areas for table-related solutions, with frontal areas explaining the resolution of arithmetic competition behaviorally. Hence, this study isolated at least 3 neurofunctional networks orchestrated between hemispheres during calculation.
000148922 536__ $$9info:eu-repo/grantAgreement/EC/H2020/793071/EU/Re-Mapping the Numerical Brain/Re-MAPMATH$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 793071-Re-MAPMATH
000148922 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000148922 590__ $$a4.861$$b2021
000148922 591__ $$aNEUROSCIENCES$$b96 / 275 = 0.349$$c2021$$dQ2$$eT2
000148922 592__ $$a2.07$$b2021
000148922 593__ $$aCognitive Neuroscience$$c2021$$dQ1
000148922 593__ $$aCellular and Molecular Neuroscience$$c2021$$dQ1
000148922 594__ $$a8.7$$b2021
000148922 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000148922 700__ $$aPiccione, Francesco
000148922 700__ $$aDi Tomaso, Silvia
000148922 700__ $$aZago, Sara
000148922 700__ $$aArcara, Giorgio
000148922 700__ $$aSemenza, Carlo
000148922 7102_ $$14009$$2730$$aUniversidad de Zaragoza$$bDpto. Psicología y Sociología$$cÁrea Psicología Básica
000148922 773__ $$g31, 2 (2021), 1162 - 1162$$pCereb. cortex$$tCEREBRAL CORTEX$$x1047-3211
000148922 8564_ $$s1439563$$uhttps://zaguan.unizar.es/record/148922/files/texto_completo.pdf$$yPostprint
000148922 8564_ $$s708571$$uhttps://zaguan.unizar.es/record/148922/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000148922 909CO $$ooai:zaguan.unizar.es:148922$$particulos$$pdriver
000148922 951__ $$a2025-01-24-14:51:15
000148922 980__ $$aARTICLE