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A B S T R A C T

The shallow water equations (SWEs) can be used to model the spatio-temporal evolution of free
surface flows. The numerical resolution of realistic problems based on the 2D SWEs by means
of augmented Roe-based (ARoe) methods requires the inclusion of certain numerical corrections
to avoid non-physical results in presence of irregular topography and wet dry fronts. Besides
that, their complex and transient nature involves high computational costs. In this direction,
intrusive reduced-order models (ROMs) based on the proper orthogonal decomposition (POD)
are presented as alternative to speed up computational calculations without compromising the
accuracy of the solutions. The main objective of this article is to study whether the inclusion of
numerical corrections in the ROM strategy of the 2D SWEs for non trivial situations is necessary
to obtain accurate solutions or not, and, if necessary, to present their reduced version. In
addition to this, it is proposed to solve problems with Dirichlet-type boundary conditions (BCs)
by means of ROMs using a technique whereby the BCs are directly integrated into the on-line
phase of ROM solving. The efficiency of the ARoe-based ROM has been tested with respect to
the full-order model by comparing their computational cost and the accuracy of their solutions
in different numerical cases.

1. Introduction

Shallow water models are mathematically defined as those in which the horizontal scale is much larger than the depth of the
layer of fluid [1]. They can be modelled by means of the shallow water equations (SWE) in which the dimensionality of the problem
is reduced with respect to the Navier–Stokes equations by averaging the variables in the vertical direction and assuming hydrostatic
pressure. They are formulated as a system of hyperbolic partial differential equations [2] of mass and momentum and they govern
the spatio-temporal evolution of the water depth and depth averaged velocity of the fluid.

There is no analytical solution for the SWE, so it is necessary to solve them numerically. The Finite Volume (FV) method,
independently introduced by McDonald in 1971 [3] and MacCormack and Paullay in 1972 [4] and extended by Rizzi and Inouye
in 1973 [5], is based on the direct discretization of the integral form of the conservation laws and this form does not require the
fluxes to be continuous. The FV method being closer to the physical flow conservation laws is the reason why it is very useful when
solving Fluid Mechanics equations and, in particular, the SWEs.
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Godunov-type FV methods discretize the information of the hyperbolic conservation systems by assuming a piecewise constant
distribution of the conserved variables within computational cells [1,6,7]. The variables are updated in the computational cells
based on the calculation of numerical fluxes at the walls of each cell. In order to calculate these fluxes, so-called Riemann problems
(RP) consist of the hyperbolic equation together with special initial data defined by a piecewise constant function with a single
jump discontinuity at some point [1]. Approximate Riemann solvers, such as the Roe solver, are used to solve these RPs [1,8].

The source terms that model the effects of variable bed level and friction need to be included in the SWE to capture the dynamics
of realistic shallow flows. The use of the numerical flux as defined for homogeneous equations is not adequate to solve situations
involving source terms, as indicated by several works [9–11]. In this way, the augmented Roe method [10] has been chosen since it
represents the complete eigenstructure of the Jacobian matrix of the flux, i.e., all waves, and it has been reported to produce robust
and stable solutions in many situations. It is designed to preserve the well-balanced property, i.e., the equilibrium in presence of
source terms with machine precision [12,13]. In addition to that, it includes some numerical corrections to fix unphysical numerical
olutions that may appear under certain circumstances, such as the entropy and the wet-dry front problems [1,8,14,15].

The numerical resolution of the SWE using augmented Roe methods may involve large computational resources. It is therefore
orth exploring alternatives to speed up the calculations. There has been a huge development in recent years of a wide range
f mathematical strategies and tools in the scientific literature to facilitate, improve and increase the calculation capacity of the
lassical methods used in the framework of Fluid Mechanics. The main examples of these are the (discrete) empirical interpolation
ethod [16,17], dynamic mode decomposition [18–21], Krylov subspaces method [22,23] and artificial neural networks [18,24,25].

Among all of them, intrusive reduced-order models (ROMs) based on the proper orthogonal decomposition (POD, [26]) are
particularly suitable for application to the SWE, as they speed up computational times with respect to classical schemes while
maintaining the accuracy of the solutions. In addition, they allow a detailed and well understood development to emulate the
ugmented solvers due to their intrusive character.

The intrusive POD-based ROM strategy consists of two phases: the off-line phase, in which the ROM is trained; and the on-
line phase, in which the ROM is numerically solved. The training of the ROM starts by computing a set of high-fidelity reference
olutions with a classic numerical scheme, also called full-order models (FOMs), following the snapshot method [27]. The solutions
alculated by the FOM are called training snapshots and they are used to train the ROM by means of the singular value decomposition
SVD) [27].

In short, ROMs act as faster alternative numerical schemes to replace the calculations performed by FOMs. They reside in a
educed dimensional space much smaller than the physical space, which is the reason why they are more efficient than FOMs.
his is done by means of the Galerkin method [28], according to which the numerical solution is projected orthogonally from

the physical space to the reduced space defined by the POD method. Thanks to the proper interval decomposition (PID) [29–31],
nonlinear problems such as the SWEs can be successfully and efficiently approximated by linearized ROMs, as proposed in this
paper.

Because of their intrusive condition, ROMs should be able to preserve the good features since they arise as transformations of
already known numerical schemes. The main objective of this paper is to study the necessity of including the numerical corrections
that are necessary to the ROM to obtain accurate solutions. This study can be framed within the concept of ROM consistency as
proposed by Ingimarson, Rebholz and Iliescu in a very recent work [32,33], in which they investigate theoretically and numerically
how the performance of the ROM is affected by the discretization model used with respect to the FOM.

Dirichlet-type boundary conditions (BCs), depending on the time or not, require special treatment when integrated into ROM
solving. There are different ways to deal with it in the literature, such as the lifting functions used to homogenize the snapshots so
that they become independent of the BCs [34] or the explicit-boundary POD method proposed in [35,36], according to which part
f the ROM is replaced by equations for the original BCs. In this paper, it is proposed to solve problems with Dirichlet-type BCs by
eans of ROMs using a technique whereby the BCs are directly integrated into the on-line phase of ROM solving.

The study proposed in this paper is illustrated by means of several 2D numerical results that provide examples of the inclusion
of the aforementioned numerical corrections and the resolution of Dirichlet-type BCs with ROMs.

The remainder of the paper is organized as follows. Section 2 introduces the 2D SWE, their discretization using the FV method
and the numerical corrections. Section 3 outlines the POD-based ROM applied to the SWE and the reduced version of the numerical
corrections. Section 4 presents several numerical test cases to prove the inclusion of the numerical corrections in the ROM; Section 5
presents three problems to test the efficiency of the ROM in realistic scenarios. Finally, concluding remarks are drawn in Section 6.

2. Governing equations and full-order model

The 2D version of the SWE with source terms reads
𝜕𝑡ℎ + 𝜕𝑥𝑞𝑥 + 𝜕𝑦𝑞𝑦 = 0,

𝜕𝑡𝑞𝑥 + 𝜕𝑥
(

𝑞2𝑥∕ℎ + 𝑔 ℎ2∕2) + 𝜕𝑦
(

𝑞𝑥𝑞𝑦∕ℎ
)

= 𝑔 ℎ
(

𝑆𝑧𝑥 − 𝑆𝑓𝑥
)

,

𝜕𝑡𝑞𝑦 + 𝜕𝑥
(

𝑞𝑥𝑞𝑦∕ℎ
)

+ 𝜕𝑦
(

𝑞2𝑦∕ℎ + 𝑔 ℎ2∕2
)

= 𝑔 ℎ
(

𝑆𝑧𝑦 − 𝑆𝑓𝑦
)

,

(1)

where ℎ = ℎ(𝑥, 𝑦, 𝑡) is the depth and 𝑞𝑥 = 𝑞𝑥(𝑥, 𝑦, 𝑡) and 𝑞𝑦 = 𝑞𝑦(𝑥, 𝑦, 𝑡) are the discharges in the 𝑥- and 𝑦-directions, with 𝑞𝑥 = ℎ𝑢𝑥 and
𝑞𝑦 = ℎ𝑢𝑦, and 𝑢𝑥 = 𝑢𝑥(𝑥, 𝑦, 𝑡) and 𝑢𝑦 = 𝑢𝑦(𝑥, 𝑦, 𝑡), the depth averaged velocities in the 𝑥- and 𝑦-directions; 𝑔 is the gravity acceleration;
𝑆𝑧𝑥 and 𝑆𝑧𝑦 are the source terms due to the gradient of the bed elevation 𝑧 = 𝑧(𝑥, 𝑦)
𝑆𝑧𝑥 = −𝜕𝑥𝑧, 𝑆𝑧𝑦 = −𝜕𝑦𝑧,
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and 𝑆𝑓𝑥 and 𝑆𝑓𝑦 are the source terms due to the channel friction

𝑆𝑓𝑥 =
𝑛2𝑏𝑢𝑥

√

𝑢2𝑥 + 𝑢2𝑦
ℎ4∕3

, 𝑆𝑓𝑦 =
𝑛2𝑏𝑢𝑦

√

𝑢2𝑥 + 𝑢2𝑦
ℎ4∕3

,

where 𝑛𝑏 is the Manning coefficient. The problem is posed in the domain (𝑥, 𝑦, 𝑡) ∈ [

0, 𝐿𝑥
]

×
[

0, 𝐿𝑦
]

× [0, 𝑇 ] and the initial condition
IC) and the boundary conditions (BCs) for ℎ, 𝑞𝑥 and 𝑞𝑦 will be defined in each numerical case in Section 4.

All the physical variables that appear in this paper are in units of the International System. They have been omitted in all cases
for the sake of simplicity.

2.1. Finite volume method

The spatial domain
[

0, 𝐿𝑥
]

×
[

0, 𝐿𝑦
]

is discretized using the FV method by means of 𝐼𝑐 cells of volume 𝑆𝑖 whose centre positions
re 𝐱𝑖 =

(

𝑥𝑖, 𝑦𝑖
)

, with 𝑖 = 1,… , 𝐼𝑐 . In general, the volume cells can be defined as triangles or rectangles with 𝐼𝑓 = 3 or 4 polygonal
aces, respectively, of length 𝑙𝑖,𝑒 and with outward-pointing normal vector 𝐧𝑖,𝑒 =

(

𝑛𝑥, 𝑛𝑦
)

𝑖,𝑒. The index 𝑒 denotes the 𝑒th edge of the
ell 𝑖th cell, with 𝑒 = 1,… , 𝐼𝑓 .

The boundary of the domain 𝛤 is split into

𝛤 = 𝛤𝐷 ∪ 𝛤𝑁 , 𝛤𝐷 ∩ 𝛤𝑁 = ∅,
where Dirichlet BCs are specified on 𝛤𝐷 and Neumann BCs are specified on 𝛤𝑁 , which include free and wall type conditions,
.e. transmissive and non-transmissive. The vertices are numbered with index sets 𝐽 𝐼 , 𝐽𝐷 and 𝐽𝑁 such that 𝑖 ∈ 𝐽 𝐼 if (𝑥𝑖, 𝑦𝑖) ∈
(0, 𝐿𝑥) × (0, 𝐿𝑦), 𝑖 ∈ 𝐽𝐷 if (𝑥𝑖, 𝑦𝑖) ∈ 𝛤𝐷 and 𝑖 ∈ 𝐽𝑁 if (𝑥𝑖, 𝑦𝑖) ∈ 𝛤𝑁 ; and 𝐽 = 𝐽 𝐼 ∪ 𝐽𝐷 ∪ 𝐽𝑁 .

The conserved variables are

𝐔𝑛𝑖 =
(

ℎ𝑛𝑖 ,
(

𝑞𝑥
)𝑛
𝑖 ,

(

𝑞𝑦
)𝑛
𝑖

)𝑇 ,

where ℎ𝑛𝑖 ≈ ℎ(𝑥𝑖, 𝑦𝑖, 𝑡𝑛),
(

𝑞𝑥
)𝑛
𝑖 ≈ 𝑞𝑥(𝑥𝑖, 𝑦𝑖, 𝑡𝑛) and

(

𝑞𝑦
)𝑛
𝑖 ≈ 𝑞𝑦(𝑥𝑖, 𝑦𝑖, 𝑡𝑛) are the cell-averaged values of the water depth and the discharges

n the 𝑥- and 𝑦-directions, respectively.
The FOM is obtained by discretizing (1) with the Godunov-type scheme based on the Roe method as a sum of waves [37]

𝐔𝑛+1𝑖 = 𝐔𝑛𝑖 −
𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1

3
∑

𝑚=1

(

𝜆̃−𝑚𝛾̃
−
𝑚𝐞𝑚

)𝑛
𝑖,𝑒 𝑙𝑖,𝑒, 𝑖 = 1,… , 𝐼𝑐 , (2)

where
(

𝜆̃±𝑚
)𝑛
𝑖,𝑒 =

(

𝜆̃𝑚 ± |𝜆̃𝑚|
)𝑛
𝑖,𝑒 ∕2, with 𝑚 = 1, 2, 3. The numerical eigenvalues and eigenvectors of the Jacobian matrix of a

ransformation of (2) [9] are
(

𝜆̃1
)𝑛
𝑖,𝑒 = (𝐮̃ ⋅ 𝐧 − 𝑐)𝑛𝑖,𝑒 ,

(

𝜆̃2
)𝑛
𝑖,𝑒 = (𝐮̃ ⋅ 𝐧)𝑛𝑖,𝑒 ,

(

𝜆̃3
)𝑛
𝑖,𝑒 = (𝐮̃ ⋅ 𝐧 + 𝑐)𝑛𝑖,𝑒 ,

(

𝐞̃1
)𝑛
𝑖,𝑒 =

⎛

⎜

⎜

⎜

⎝

1

𝑢̃𝑥 − 𝑐 𝑛𝑥
𝑢̃𝑦 − 𝑐 𝑛𝑦

⎞

⎟

⎟

⎟

⎠

𝑛

𝑖,𝑒

,
(

𝐞̃2
)𝑛
𝑖,𝑒 =

⎛

⎜

⎜

⎜

⎝

0

−𝑐 𝑛𝑦
𝑐 𝑛𝑥

⎞

⎟

⎟

⎟

⎠

𝑛

𝑖,𝑒

,
(

𝐞̃3
)𝑛
𝑖,𝑒 =

⎛

⎜

⎜

⎜

⎝

1

𝑢̃𝑥 + 𝑐 𝑛𝑥
𝑢̃𝑦 + 𝑐 𝑛𝑦

⎞

⎟

⎟

⎟

⎠

𝑛

𝑖,𝑒

,

with the following numerical velocities 𝐮̃𝑛𝑖,𝑒 =
(

𝑢̃𝑥, ̃𝑢𝑦
)𝑛
𝑖,𝑒

(

𝑢̃𝑥
)𝑛
𝑖,𝑒 =

(

𝑢𝑥
)𝑛
𝑖
√

ℎ𝑛𝑖 +
(

𝑢𝑥
)𝑛
𝑗

√

ℎ𝑛𝑗
√

ℎ𝑛𝑖 +
√

ℎ𝑛𝑗
,

(

𝑢̃𝑦
)𝑛
𝑖,𝑒 =

(

𝑢𝑦
)𝑛
𝑖
√

ℎ𝑛𝑖 +
(

𝑢𝑦
)𝑛
𝑗

√

ℎ𝑛𝑗
√

ℎ𝑛𝑖 +
√

ℎ𝑛𝑗
, 𝑐𝑛𝑖,𝑒 =

√

𝑔ℎ̃𝑛𝑖,𝑒,

where the 𝑖th and the 𝑗th are the adjacent cells separated by the 𝑒th edge; ℎ̃𝑛𝑖,𝑒 =
(

ℎ𝑛𝑖 + ℎ
𝑛
𝑗

)

∕2; and
(

𝛾̃−𝑚
)𝑛
𝑖,𝑒 =

(

𝛼̃𝑚 − 𝛽−𝑚∕𝜆̃
−
𝑚
)𝑛
𝑖,𝑒. The

wave strengths are defined as
(

𝛼̃1,3
)𝑛
𝑖,𝑒 =

𝛿 ℎ𝑛𝑖,𝑒
2

∓ 1
2𝑐𝑛𝑖,𝑒

(𝛿𝐪 − 𝐮̃𝛿 ℎ)𝑛𝑖,𝑒 𝐧𝑖,𝑒,
(

𝛼̃2
)𝑛
𝑖,𝑒 =

1
𝑐𝑛𝑖,𝑒

[(

𝛿 𝑞𝑦 − 𝑢̃𝑦𝛿 ℎ
)

𝑛𝑥 −
(

𝛿 𝑞𝑥 − 𝑢̃𝑥𝛿 ℎ
)

𝑛𝑦
]𝑛
𝑖,𝑒 ,

and the source terms
(

𝛽−𝑚
)𝑛
𝑖,𝑒 =

(

𝛽𝑚𝜆̃−𝑚∕𝜆̃𝑚
)𝑛
𝑖,𝑒, with

(

𝛽1
)𝑛
𝑖,𝑒 = − (

𝛽3
)𝑛
𝑖,𝑒 =

(

𝛽𝑓 + 𝛽𝑧
)𝑛
𝑖,𝑒 ,

(

𝛽2
)𝑛
𝑖,𝑒 = 0.

The discrete friction and bed source terms are

(

𝛽𝑓
)𝑛
𝑖,𝑒 =

1
2

𝑔ℎ̃𝑛𝑖,𝑒
𝑐𝑛𝑖,𝑒

(

𝑑𝑛
)

𝑖,𝑒

(

𝑛̃𝑏
)2
𝑖,𝑒 𝐮̃

𝑛
𝑖,𝑒 ⋅ 𝐧𝑖,𝑒|𝐮̃

𝑛
|𝑖,𝑒

max
(

ℎ𝑛𝑖 , ℎ𝑛𝑗
)4∕3

,
(

𝛽𝑧
)𝑛
𝑖,𝑒 =

1
2

𝑔ℎ̃𝑛𝑖,𝑒
𝑐𝑛𝑖,𝑒

(𝛿 𝑧)𝑖,𝑒 , (3)

where
(

𝑑𝑛
)

𝑖,𝑒 = ‖𝐱𝑖 − 𝐱𝑗‖2 is the distance between the centres of the 𝑖th and the 𝑗th cells,
(

𝑛̃𝑏
)

𝑖,𝑒 =
[

(

𝑛𝑏
)

𝑖 +
(

𝑛𝑏
)

𝑗

]

∕2, and

𝛿 ℎ𝑛𝑖,𝑒 = ℎ𝑛𝑗 − ℎ
𝑛
𝑖 , 𝛿 𝑧𝑖,𝑒 = 𝑧𝑗 − 𝑧𝑖, 𝛿

(

𝑞𝑥
)𝑛
𝑖,𝑒 =

(

𝑞𝑥
)𝑛
𝑗 −

(

𝑞𝑥
)𝑛
𝑖 , 𝛿

(

𝑞𝑦
)𝑛
𝑖,𝑒 =

(

𝑞𝑦
)𝑛
𝑗 −

(

𝑞𝑦
)𝑛
𝑖 .
3 
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The time step 𝛥𝑡 = 𝑡𝑛+1−𝑡𝑛 of the explicit schemes is selected dynamically using the Courant–Friedrichs–Lewy (CFL) condition [38]

𝛥𝑡 = 𝐶 𝐹 𝐿 min
{

𝑆𝑖
}

max
{

(

𝜆̃1
)𝑛
𝑖,𝑒 ,

(

𝜆2
)𝑛
𝑖,𝑒 ,

(

𝜆3
)𝑛
𝑖,𝑒

} , (4)

where the CFL number satisfies 0 < 𝐶 𝐹 𝐿 ≤ 0.5.
The ARoe-based FOM is shown in Appendix A.

2.2. Numerical corrections

In the augmented Roe, it is necessary to take into account a series of numerical corrections that are applied to the scheme to
ensure its robustness and avoid the appearance of results of unphysical nature [9,14,15,39–42].

The friction correction to avoid reverse flow, the entropy fix and the wet/dry treatment are based on a thorough understanding
of Riemann problems and thus arise as results of the superposition of travelling waves whose velocities are the eigenvalues of the
problem. They are explained in detail below.

2.2.1. Friction correction to avoid reverse flow
The numerical friction force may reverse the sign of the flow velocity, which is not physically admissible, so it has to be restricted.

With this purpose, define the water discharge intermediate
(

𝑞∗
)𝑛
𝑖,𝑒 = 𝐪𝑛𝑖 ⋅ 𝐧𝑖,𝑒 +

(

𝛼̃1𝜆̃1
)𝑛
𝑖,𝑒 −

(

𝛽𝑧
)𝑛
𝑖,𝑒 −

(

𝛽𝑓
)𝑛
𝑖,𝑒 ,

(

𝑞∗∗
)𝑛
𝑖,𝑒 = 𝐪𝑛𝑖 ⋅ 𝐧𝑖,𝑒 +

(

𝛼̃1𝜆̃1
)𝑛
𝑖,𝑒 −

(

𝛽𝑧
)𝑛
𝑖,𝑒 .

(5)

If (𝑞∗∗)𝑛𝑖,𝑒 < 0 and (𝑞∗)𝑛𝑖,𝑒 > 0, then (𝑞∗)𝑛𝑖,𝑒 (𝑞
∗∗)𝑛𝑖,𝑒 < 0, which means that the numerical friction might reverse the flow. In this case,

the friction contribution of the source term is redefined as
(

𝛽𝑓
)𝑛
𝑖,𝑒 =

(

𝑞∗∗
)𝑛
𝑖,𝑒 . (6)

For example, suppose that at the first wall (𝑒 = 1) of the 𝑖th cell the condition indicated in (6) is fulfilled, then the friction term
𝛽𝑓

)𝑛
𝑖,1 from (A.1) is replaced by the intermediate state (𝑞∗∗)𝑛𝑖,1 defined in (5). In this way, the water depth is updated as follows

ℎ𝑛+1𝑖 = ℎ𝑛𝑖 +⋯ + 𝛥𝑡
𝑆𝑖

⎡

⎢

⎢

⎣

(

𝛽𝑓
)𝑛
𝑖,1

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑛

𝑖,1

𝑙𝑖,1 +
𝐼𝑓
∑

𝑒=2

(

𝛽𝑓
)𝑛
𝑖,𝑒

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑛

𝑖,𝑒

𝑙𝑖,𝑒
⎤

⎥

⎥

⎦

= ℎ𝑛𝑖 +⋯ + 𝛥𝑡
𝑆𝑖

⎡

⎢

⎢

⎣

(

𝑞∗∗
)𝑛
𝑖,1

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑛

𝑖,1

𝑙𝑖,1 +
𝐼𝑓
∑

𝑒=2

(

𝛽𝑓
)𝑛
𝑖,𝑒

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑛

𝑖,𝑒

𝑙𝑖,𝑒
⎤

⎥

⎥

⎦

. (7)

The other two Eqs. (A.2) and (A.3) associated to with the discharges 𝑞𝑥 and 𝑞𝑦 are modified correspondingly. For more details,
ee [9,15].

2.2.2. Entropy fix
Augmented Riemann solvers, such as the ARoe solver used here, may lead to physically meaningless solutions due to the entropy

problem [8,43]. The regime of the flow can be sub- or supercritical depending on the relative sign of the eigenvalues, 𝜆̃1 and 𝜆̃2,
uch that, if 𝜆̃1𝜆̃2 < 0, it is subcritical and, if 𝜆̃1𝜆̃2 > 0, supercritical. It can also be possible that one of the eigenvalues might be zero
or some values of (ℎ, 𝑞). In transcritical rarefactions the continuous fan of intermediate states is represented using a Roe eigenvalue
ith approximately zero velocity [44] and this would imply numerical problems to properly update the variables.

To solve this problem, a numerical correction, known as entropy fix, have to be included in the numerical scheme [37,44]. The
ntropy fix is implemented under the following conditions: if (𝜆𝑚

)𝑛
𝑖 < 0 <

(

𝜆𝑚
)𝑛
𝑗 , then the eigenvalues

(

𝜆̃−𝑚
)𝑛
𝑖,𝑒 and

(

𝜆̃+𝑚
)𝑛
𝑖,𝑒 have to be

replaced by the following left and right states, respectively
(

𝜆̃←𝑚
)𝑛
𝑖,𝑒 =

(

𝜆𝑚
)𝑛
𝑖

(

𝜆𝑚
)𝑛
𝑗 −

(

𝜆̃𝑚
)𝑛
𝑖,𝑒

(

𝜆𝑚
)𝑛
𝑗 −

(

𝜆𝑚
)𝑛
𝑖

,
(

𝜆̃→𝑚
)𝑛
𝑖,𝑒 =

(

𝜆𝑚
)𝑛
𝑗

(

𝜆̃𝑚
)𝑛
𝑖,𝑒 −

(

𝜆𝑚
)𝑛
𝑖

(

𝜆𝑚
)𝑛
𝑗 −

(

𝜆𝑚
)𝑛
𝑖

, (8)

with 𝑚 = 1, 2, 3. The eigenvalues are evaluated in the cells as follows
(

𝜆1
)𝑛
𝑖 =

(√

𝑢2𝑥 + 𝑢2𝑦 − 𝑐
)𝑛

𝑖
,

(

𝜆2
)𝑛
𝑖 =

(√

𝑢2𝑥 + 𝑢2𝑦
)𝑛

𝑖
,

(

𝜆3
)𝑛
𝑖 =

(√

𝑢2𝑥 + 𝑢2𝑦 + 𝑐
)𝑛

𝑖
,

with
(

𝑢𝑥
)𝑛
𝑖 =

(

𝑞𝑥∕ℎ
)𝑛
𝑖 ,

(

𝑢𝑦
)𝑛
𝑖 =

(

𝑞𝑦∕ℎ
)𝑛
𝑖 and (𝑐)𝑛𝑖 =

√

𝑔 ℎ𝑛𝑖 . Some of the source terms have to be cancelled as follows
(

𝛽→1
)𝑛
𝑖,𝑒 = 0, (

𝛽←3
)𝑛
𝑖,𝑒 = 0. (9)
4 
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2.2.3. Wet/dry treatment
Realistic scenarios may involve cases in which the water elevation in the 𝑖th cell may be smaller than the bed elevation of the

neighbouring 𝑗th cell, i.e., ℎ𝑖 + 𝑧𝑖 < ℎ𝑗 . This needs a special treatment to avoid unphysical solutions that may lead to the wetting of
areas that must not be wet. This treatment consists of two steps embedded in the resolution of the FOM.

First, it is necessary to bounce the information that updates the variables back to the wet cell and not to the dry cell. For this
purpose, the following intermediate states are defined for the water depth [9,15]

(ℎ∗)𝑛𝑖,𝑒 = ℎ𝑛𝑖 +
(

𝛼̃1
)𝑛
𝑖,𝑒 −

(

𝛽1
𝜆̃1

)𝑛

𝑖,𝑒
, (ℎ∗∗)𝑛𝑖,𝑒 = ℎ𝑛𝑗 −

(

𝛼̃3
)𝑛
𝑖,𝑒 +

(

𝛽3
𝜆̃3

)𝑛

𝑖,𝑒
. (10)

The general wet/dry treatment is written as follows:

• If ℎ𝑛𝑗 = 0 and (ℎ∗∗)𝑛𝑖,𝑒 < 0, then the contribution of neighbouring 𝑗th cell is cancelled in the equation associated to the 𝑖th cell
in (2)

3
∑

𝑚=1

(

𝜆̃−𝑚𝛾̃
−𝐞𝑚

)𝑛
𝑗 ,𝑒 = 0.

• If ℎ𝑛𝑖 = 0 and (ℎ∗)𝑛𝑖,𝑒 < 0, then the contribution of neighbouring 𝑖th cell is cancelled in the equation associated to the 𝑗th cell
in (2)

3
∑

𝑚=1

(

𝜆̃−𝑚𝛾̃
−𝐞𝑚

)𝑛
𝑖,𝑒 = 0.

Secondly, it is important to impose a zero value on the velocities normal to the walls in cases where the flux is not crossing the
cell wall. In 2D problems, when working with meshes that are not aligned with the 𝑥- and 𝑦 axes (i.e. is unstructured), such as in
the example presented in Fig. 1, this second step is not trivial. It is necessary to carefully cancel the perpendicular component to
the wet/dry wall and keep the parallel component. Once the water discharges in both directions have been calculated using the
numerical scheme, they are redirected to cancel the components perpendicular to the walls that meet the wet/dry conditions. For
this purpose, as many intermediate update steps are necessary as the number of walls in each cell

(

𝑞𝑥
)𝑛+1,𝑚
𝑖 = 𝑎𝑊 𝐷

𝑖,𝑚
(

𝑞𝑥
)𝑛+1,𝑚−1
𝑖 + 𝑏𝑊 𝐷

𝑖,𝑚
(

𝑞𝑦
)𝑛+1,𝑚−1
𝑖 ,

(

𝑞𝑦
)𝑛+1,𝑚
𝑖 = 𝑐𝑊 𝐷

𝑖,𝑚
(

𝑞𝑥
)𝑛+1,𝑚−1
𝑖 + 𝑑𝑊 𝐷

𝑖,𝑚
(

𝑞𝑦
)𝑛+1,𝑚−1
𝑖 ,

(11)

where 𝑚 = 1,… , 𝐼𝑓 and 𝑖 = 1,… , 𝐼𝑐 ; with
(

𝑞𝑥
)𝑛+1,0
𝑖 and

(

𝑞𝑦
)𝑛+1,0
𝑖 are the update states given by the numerical scheme (A.2) and

(A.3). The coefficients are computed as follows

𝑎𝑊 𝐷
𝑖,𝑚 =

⎧

⎪

⎨

⎪

⎩

sin2
(

𝛼′𝑖,𝑚
)

, if treated,

1, otherwise,
𝑏𝑊 𝐷
𝑖,𝑚 =

⎧

⎪

⎨

⎪

⎩

sin
(

𝛼′𝑖,𝑚
)

cos
(

𝛼′𝑖,𝑚
)

, if treated,

0, otherwise,

𝑐𝑊 𝐷
𝑖,𝑚 =

⎧

⎪

⎨

⎪

⎩

cos
(

𝛼′𝑖,𝑚
)

sin
(

𝛼′𝑖,𝑚
)

, if treated,

0, otherwise,
𝑑𝑊 𝐷
𝑖,𝑚 =

⎧

⎪

⎨

⎪

⎩

cos2
(

𝛼′𝑖,𝑚
)

, if treated

1, otherwise.

(12)

where the 𝛼′ angle is

𝛼′𝑖,𝑚 =

⎧

⎪

⎨

⎪

⎩

𝛼𝑖,𝑚, if 𝛼𝑖,𝑚 = 𝑛
2
𝜋 , with 𝑛 = 0, 1, 2, 3, 4,

𝛼𝑖,𝑚 + 𝜋
2
, otherwise.

and

𝛼𝑖,𝑚 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ar ct an
( 𝑛𝑦
𝑛𝑥

)

𝑖,𝑚
, if

(

𝑛𝑦
)

𝑖,𝑚 ≥ 0,

𝜋 + ar ct an
( 𝑛𝑦
𝑛𝑥

)

𝑖,𝑚
, if

(

𝑛𝑦
)

𝑖,𝑚 < 0.

3. Reduced-order model

The POD-based ROM strategy consists of two phases: (I) the off-line phase, in which the ROM is trained using solutions computed
ith the FOM; and (II) the on-line phase, in which the ROM is solved.

The set of 𝑁𝑇 time numerical solutions computed by the FOM, or training solutions, are assembled in the so-called snapshot
atrices
5 



P. Solán-Fustero et al. Computer Methods in Applied Mechanics and Engineering 436 (2025) 117702 
Fig. 1. Wet/dry treatment: angle 𝛼 between water discharge 𝑞 and normal vector 𝑛 to the 𝑒th wall of the 𝑖th cell.

𝑀ℎ =

⎛

⎜

⎜

⎜

⎜

⎝

ℎ11 … ℎ𝑁𝑇1

⋮ ⋮ ⋮

ℎ1𝐼𝑐 … ℎ𝑁𝑇𝐼𝑐

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑀𝑞𝑥 =

⎛

⎜

⎜

⎜

⎜

⎝

(

𝑞𝑥
)1
1 …

(

𝑞𝑥
)𝑁𝑇
1

⋮ ⋮ ⋮
(

𝑞𝑥
)1
𝐼𝑐

…
(

𝑞𝑥
)𝑁𝑇
𝐼𝑐

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑀𝑞𝑦 =

⎛

⎜

⎜

⎜

⎜

⎝

(

𝑞𝑦
)1
1 …

(

𝑞𝑦
)𝑁𝑇
1

⋮ ⋮ ⋮
(

𝑞𝑦
)1
𝐼𝑐

…
(

𝑞𝑦
)𝑁𝑇
𝐼𝑐

⎞

⎟

⎟

⎟

⎟

⎠

.

The POD [27] of these matrices decomposes them into orthogonal components, also called POD modes, by means of the singular
value decomposition (SVD, [45])

𝑀ℎ = ΦΣΨ𝑇 ,

where Σ ∈ R𝐼𝑐×𝑁𝑇 is a diagonal matrix whose entries of the main diagonal are the singular values of 𝑀ℎ and represent the magnitude
of each POD mode; Φ ∈ R𝐼𝑐×𝐼𝑐 and Ψ ∈ R𝑁𝑇 ×𝑁𝑇 are orthogonal matrices. Matrix Φ = (𝜙1,… , 𝜙𝐼𝑐 ) with 𝜙𝑘 = (𝜙1,𝑘,… , 𝜙𝐼𝑐 ,𝑘)𝑇 consists
of the orthogonal eigenvectors of 𝑀ℎ𝑀𝑇

ℎ which are used to define the reduced space. The snapshot matrices related to the water
discharges 𝑞𝑥 and 𝑞𝑦 are decomposed in a similar way.

Due to the accumulation of most of the energy/information in the principal POD modes (sorted in descending order), it is feasible
to truncate the dimension of the reduced space without losing much precision with respect to the snapshot matrix. Let 𝑀POD be a
positive integer such that 𝑀POD ≪ min

(

𝑁𝑇 , 𝐼𝑐
)

and it will be chosen as small as possible without significantly affecting the accuracy
of the computed solution with the reduced-order method [46–50].

The intrusive POD-based ROM is an alternative numerical scheme that needs to be developed from a standard numerical scheme
by projecting the numerical variables from the physical space to the reduced space. The Galerkin method [28] acts as the projection
between these two spaces

ℎ𝑛𝑖 ≈
𝑀POD
∑

𝑘=1
ℎ̂𝑛𝑘𝜙𝑖,𝑘,

(

𝑞𝑥
)𝑛
𝑖 ≈

𝑀POD
∑

𝑘=1

(

𝑞𝑥
)𝑛
𝑘 𝜑𝑖,𝑘,

(

𝑞𝑦
)𝑛
𝑖 ≈

𝑀POD
∑

𝑘=1

(

𝑞𝑦
)𝑛
𝑘 𝜓𝑖,𝑘, (13)

where {𝜙𝑖,𝑘}, {𝜑𝑖,𝑘}, {𝜓𝑖,𝑘} are the reduced space basis functions provided by the POD/SVD; and ℎ̂𝑛𝑘,
(

𝑞𝑥
)𝑛
𝑘 and

(

𝑞𝑦
)𝑛
𝑘 are the reduced

coefficients that depend on time. If the maximum number of POD modes is used, the reconstruction of the Galerkin method recovers
the solution in the physical space exactly, i.e., (13) it is an equality.

As explained in the previous work [51], the Galerkin decomposition method cannot be applied directly to the ARoe-based FOM
given in (A.1), (A.2) and (A.3), because of the presence of the conserved variables in denominators and within square roots. The
proper interval decomposition (PID, [29–31]) allows the development of the linearized ARoe-based ROM to speed-up computational
times at the same time that enables the generation of shocks and rarefaction waves in the solutions computed by the ROM. According
to the PID, the snapshot matrix is divided into different time windows from each of which a different reduced space is defined. Once
the ROM completes a time window, it is projected back to the physical space and then projected to the following reduced space.
For more information, see [51].

3.1. Dirichlet BCs

When considering Dirichlet-type BCs, whether or not they are time dependent, the development of the ROM is not directly
feasible. The combination of time and space dependence makes it impossible to model it only during the training phase: it is
necessary that the ROM receives information about the time evolution of the boundary instantaneously. There are some proposals
in the literature for dealing with this type of BCs [35,36]. However, in this paper, it is proposed a resolution of the Dirichlet BCs
integrated in the ROM that allows to solve it in time.

For example, if Dirichlet BCs are considered for ℎ such that ℎ = ℎ0 on 𝛤𝐷 and the rest of the cells of the boundary 𝑖 ∈ 𝐽𝑁 are
imposed free BCs, the following approximation is used in (A.1)

∑

(𝑀POD
∑

ℎ̂𝑛𝑘𝜙𝑖,𝑘

)

𝜙𝑖,𝑝 =
∑

(𝑀POD
∑

ℎ̂𝑛𝑘𝜙𝑖,𝑘

)

𝜙𝑖,𝑝 +
∑

(𝑀POD
∑

ℎ̂𝑛𝑘𝜙𝑖,𝑘

)

𝜙𝑖,𝑝

𝑖∈𝐽 𝑘=1 𝑖∈𝐽𝐷 𝑘=1 𝑖∈𝐽𝐼∪𝐽𝑁 𝑘=1

6 
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≈
∑

𝑖∈𝐽𝐷

(

ℎ𝑛0
)𝑛
𝑖 𝜙𝑖,𝑝 +

∑

𝑖∈𝐽𝐼∪𝐽𝑁

(𝑀POD
∑

𝑘=1
ℎ̂𝑛𝑘𝜙𝑖,𝑘

)

𝜙𝑖,𝑝. (14)

The same splitting procedure applies to the water discharges 𝑞𝑥 and 𝑞𝑦 in case Dirichlet BCs are imposed on them. Eqs. (15), (16)
and (17) show how these BCs are integrated into the ROM.

The Neumann BCs are implemented in the ROM as indicated in Appendix B.

3.2. Augmented Roe-based reduced-order model

The ROM is developed from the numerical expression (A.1), (A.2) and (A.3) of the FOM by applying the Galerkin method (13) to
the variables of interest and projecting it to the reduced space (first by multiplying it by a basis function 𝜙𝑖,𝑝 and then by integrating
t to the whole physical space).

Conversely, the velocities
(

𝑢𝑥
)𝑛
𝑖 and

(

𝑢𝑦
)𝑛
𝑖 are not reduced, so that computational time is saved by not projecting back to the

hysical space to update its values from those of the conserved variables. Instead, they are time-averaged following the PID method.
The 2D ARoe-based ROM is obtained by applying the Galerkin decomposition (13) to the 2D ARoe-based FOM given in (A.1),

(A.2) and (A.3)

ℎ̂𝑛+1𝑝 =
∑

𝑖∈𝐽𝐷

(

ℎ0
)𝑛
𝑖 𝜙𝑖,𝑝 +

𝑀POD
∑

𝑘=1
𝐴ℎ𝑝𝑘ℎ̂

𝑛
𝑘 + 𝛥𝑡

𝑀POD
∑

𝑘=1
𝐵ℎ𝑝𝑘ℎ̂

𝑛
𝑘

+ 𝛥𝑡
𝑀POD
∑

𝑘=1
𝐶ℎ𝑝𝑘

(

𝑞𝑥
)𝑛
𝑘 + 𝛥𝑡

𝑀POD
∑

𝑘=1
𝐷ℎ
𝑝𝑘

(

𝑞𝑦
)𝑛
𝑘 , (15)

(

𝑞𝑥
)𝑛+1
𝑝 =

∑

𝑖∈𝐽𝐷

(

𝑞𝑥,0
)𝑛
𝑖 𝜑𝑖,𝑝 +

𝑀POD
∑

𝑘=1
𝐴𝑞𝑥𝑝𝑘

(

𝑞𝑥
)𝑛
𝑘 + 𝛥𝑡

𝑀POD
∑

𝑘=1
𝐵𝑞𝑥𝑝𝑘ℎ̂

𝑛
𝑘

+ 𝛥𝑡
𝑀POD
∑

𝑘=1
𝐶𝑞𝑥𝑝𝑘

(

𝑞𝑥
)𝑛
𝑘 + 𝛥𝑡

𝑀POD
∑

𝑘=1
𝐷𝑞𝑥
𝑝𝑘

(

𝑞𝑦
)𝑛
𝑘 , (16)

(

𝑞𝑦
)𝑛+1
𝑝 =

∑

𝑖∈𝐽𝐷

(

𝑞𝑦,0
)𝑛
𝑖 𝜓𝑖,𝑝 +

𝑀POD
∑

𝑘=1
𝐴
𝑞𝑦
𝑝𝑘

(

𝑞𝑦
)𝑛
𝑘 + 𝛥𝑡

𝑀POD
∑

𝑘=1
𝐵
𝑞𝑦
𝑝𝑘ℎ̂

𝑛
𝑘

+ 𝛥𝑡
𝑀POD
∑

𝑘=1
𝐶
𝑞𝑦
𝑝𝑘

(

𝑞𝑥
)𝑛
𝑘 + 𝛥𝑡

𝑀POD
∑

𝑘=1
𝐷
𝑞𝑦
𝑝𝑘

(

𝑞𝑦
)𝑛
𝑘 , (17)

where ℎ0, 𝑞𝑥,0, 𝑞𝑦,0 are the functions defining the Dirichlet BCs and the rest of the coefficients 𝐴ℎ𝑝𝑘, 𝐵ℎ𝑝𝑘,… are given in Appendix B.
Note that these reduced coefficients are time independent within each time window and also independent of the Dirichlet BCs.

The accuracy obtained by the solutions calculated by the ROM will be evaluated. This is measured by means of the differences
ith respect to the solutions calculated by the FOM at each time step using the weighted 𝐿1 norm defined as

‖𝑑ℎ‖1 =
1

𝐿𝑥 × 𝐿𝑦

∑

𝑖∈𝐽
𝑆𝑖|ℎ

FOM
𝑖 − ℎROM

𝑖 |. (18)

The differences of the water discharges ‖𝑑𝑞𝑥‖1 and ‖𝑑𝑞𝑦‖1 are computed in a similar way.
It will be also possible to study the speed-up achieved by the ROM by dividing the CPU time required by the FOM, 𝜏FOM

CPU , by that
f the ROM, 𝜏ROM

CPU , both measured in seconds.

3.3. Numerical corrections in the reduced space

The ARoe-based ROM in (15), (16) and (17) requires the inclusion of the numerical corrections explained in Section 2.2, as
videnced in the test cases in Section 4. For a detailed discussion of this, see [52]. The other three numerical corrections need a

specialized treatment during the ROM off-line phase and even in its on-line phase in the case of the wet/dry treatment, as shown
below.

3.3.1. Friction correction to avoid reverse flow
The modification proposed by the friction correction to avoid reverse flows in (7) replaces 𝛽𝑓 by 𝑞∗∗. While 𝛽𝑓 depends only

on ℎ, the intermediate state 𝑞∗∗ depends on all variables ℎ, 𝑞𝑥 and 𝑞𝑦. Because of this multiple dependence, the contribution of the
reduced version of 𝑞∗∗ has to be split into the corresponding ROM coefficients of (B.1), as indicated in Appendix C. In addition to
this, the contribution of

(

𝛽𝑓
)𝑛
𝑖,𝑒 has to be removed from the corresponding ROM coefficient.

All these modifications of the reduced coefficients are applied to them during the off-line phase and after they have been
computed as indicated in (B.1). If, for example, the friction source term needs to be corrected on the first wall of the 𝑖th cell,
the reduced coefficients of the reduced water depth ℎ̂ in (15) are modified as follows

𝐵ℎ𝑝𝑘 ↦ 𝐵ℎ𝑝𝑘 +
𝑙𝑖,1
𝑆

(

𝜆̃−1
̃ −

𝜆̃−3
̃

)𝑤
(

𝛽RF
ℎ̂

)𝑤

𝑖,1
𝜙𝑖,𝑝 −

𝑙𝑖,1
𝑆

(

𝜆̃−1
̃ −

𝜆̃−3
̃

)𝑤
(

𝛽𝑓
)𝑤
𝑖,1 𝜙𝑖,𝑝,
𝑖 𝜆1 𝜆3 𝑖,1 𝑖 𝜆1 𝜆3 𝑖,1

7 
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𝐶ℎ𝑝𝑘 ↦ 𝐶ℎ𝑝𝑘 +
𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

(

𝛽RF
𝑞𝑥

)𝑤

𝑖,1
𝜙𝑖,𝑝,

𝐷ℎ
𝑝𝑘 ↦ 𝐷ℎ

𝑝𝑘 +
𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

(

𝛽RF
𝑞𝑦

)𝑤

𝑖,1
𝜙𝑖,𝑝,

with
(

𝛽RF
ℎ̂

)𝑤

𝑖,1
= 1

2

[

𝛿 𝜙𝑖,1,𝑘
(

𝜆1 +
𝐮̃𝐧
𝑐

)𝑤

𝑖,1
− 𝜙̃𝑖,1,𝑘

𝑔 𝛿 𝑧𝑖,1
𝑐𝑤𝑖,1

]

,
(

𝛽RF
𝑞𝑥

)𝑤

𝑖,1
=

[

𝜑𝑖,𝑘 − 𝛿 𝜑𝑖,1,𝑘 12
(

𝜆̃1
𝑐

)𝑤

𝑖,1

]

(

𝑛𝑥
)

𝑖,1 ,

(

𝛽RF
𝑞𝑦

)𝑤

𝑖,1
=

[

𝜓𝑖,𝑘 − 𝛿 𝜓𝑖,1,𝑘 12
(

𝜆̃1
𝑐

)𝑤

𝑖,1

]

(

𝑛𝑦
)

𝑖,1 ,
(

𝛽𝑓
)𝑤
𝑖,1 = 𝜙̃𝑖,1,𝑘

𝐮̃𝑤𝑖,1 ⋅ 𝐧𝑖,1|𝐮̃
𝑤
𝑖,1|

(

𝑛̃2𝑏𝑑𝑛
)

𝑖,1

𝑐𝑤𝑖,1 max
(

ℎ𝑤𝑖 , ℎ𝑤𝑗
)4∕3

.

The reduced coefficients of the reduced water discharges 𝑞𝑥 and 𝑞𝑦 in (16) and (17), respectively, are modified as indicated in (C.1).

3.3.2. Entropy fix
The entropy fix in the reduced domain consists of a redefinition of the numerical eigenvalues during the off-line phase following

(8). Furthermore, it is necessary to cancel the contribution of 𝛽−3 to the ROM coefficients (B.1) according to (9).
Again, these two modifications of the reduced coefficients are applied to them during the off-line phase and after they have been

computed as indicated in (B.1). If, for example, the entropy needs to be fixed for the third component of the eigenvectors 𝜆̃3 on the
irst wall of the 𝑖th cell, the reduced coefficients of the reduced water depth ℎ̂ in (15) are modified as follows

𝐵ℎ𝑝𝑘 ↦ 𝐵ℎ𝑝𝑘 +
𝑙𝑖,1
2𝑆𝑖

𝛿 𝜙𝑖,1,𝑘
[

𝜆̃−3
(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)]𝑤

𝑖,1
𝜙𝑖,𝑝 −

𝑙𝑖,1
2𝑆𝑖

𝛿 𝜙𝑖,1,𝑘
[

𝜆̃←3
(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)]𝑤

𝑖,1
𝜙𝑖,𝑝 −

𝑔
2
𝑙𝑖,1
𝑆𝑖

(

𝛽3
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

𝜙𝑖,𝑝,

𝐶ℎ𝑝𝑘 ↦ 𝐶ℎ𝑝𝑘 +
𝑙𝑖,1
2𝑆𝑖

𝛿 𝜑𝑖,1,𝑘
(

𝜆̃−3
𝑐

)𝑤

𝑖,1

(

𝑛𝑥
)

𝑖,1 𝜙𝑖,𝑝 −
𝑙𝑖,1
2𝑆𝑖

𝛿 𝜑𝑖,1,𝑘
(

𝜆̃←3
𝑐

)𝑤

𝑖,1

(

𝑛𝑥
)

𝑖,1 𝜙𝑖,𝑝,

𝐷ℎ
𝑝𝑘 ↦ 𝐷ℎ

𝑝𝑘 +
𝑙𝑖,1
2𝑆𝑖

𝛿 𝜓𝑖,1,𝑘
(

𝜆̃−3
𝑐

)𝑤

𝑖,1

(

𝑛𝑦
)

𝑖,1 𝜙𝑖,𝑝 −
𝑙𝑖,1
2𝑆𝑖

𝛿 𝜓𝑖,1,𝑘
(

𝜆̃←3
𝑐

)𝑤

𝑖,1

(

𝑛𝑦
)

𝑖,1 𝜙𝑖,𝑝.

The reduced coefficients of the reduced water discharges 𝑞𝑥 and 𝑞𝑦 in (16) and (17), respectively, are modified as indicated in (C.2).

3.3.3. Wet/dry treatment
The wet/dry treatment, as explained in Section 2, is applied to the ARoe-based FOM given in (A.1), (A.2) and (A.3) to avoid

unphysical solutions in which volume cells that should stay dry get wet.
Let consider the reduced coefficients of the ARoe-based ROM (15) and assume that at the first wall of the 𝑖th cell that connects

it to the 𝑗th cell the wet/dry condition is met, i.e. ℎ𝑗 + 𝑧𝑗 < 𝑧𝑖. In that case, all information that would be sent to the 𝑖th cell is
returned to the 𝑗th cell. This is translated in the ROM in such a way that in the construction of its coefficients the component that

ould be projected on the 𝑖th cell is projected on the 𝑗th cell; so that, the reduced coefficients of the reduced water depth ℎ̂ in (15)
are modified as follows

𝐵ℎ𝑝𝑘 ↦ 𝐵ℎ𝑝𝑘 +
1
2
𝑙𝑖,1
𝑆𝑖
𝛿 𝜙𝑖,1,𝑘

[

𝜆̃−1
(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

+ 𝜆̃−3
(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)]𝑤

𝑖,1
𝜙𝑖,𝑝

− 1
2
𝑙𝑖,1
𝑆𝑖
𝛿 𝜙𝑖,1,𝑘

[

𝜆̃−1
(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

+ 𝜆̃−3
(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)]𝑤

𝑖,1
𝜙𝑗 ,𝑝

−
𝑔
2
𝑙𝑖,1
𝑆𝑖

(

𝛽1
𝜆̃−1
𝜆̃1

+ 𝛽3
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

𝜙𝑖,𝑝 +
𝑔
2
𝑙𝑖,1
𝑆𝑖

(

𝛽1
𝜆̃−1
𝜆̃1

+ 𝛽3
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

𝜙𝑗 ,𝑝

𝐶ℎ𝑝𝑘 ↦ 𝐶ℎ𝑝𝑘 −
1
2
𝑙𝑖,1
𝑆𝑖
𝛿 𝜑𝑖,1,𝑘

(

𝜆̃−1 − 𝜆̃−3
𝑐

)𝑤

𝑖,1

(

𝑛𝑥
)

𝑖,1 𝜙𝑖,𝑝 +
1
2
𝑙𝑖,1
𝑆𝑖
𝛿 𝜑𝑖,1,𝑘

(

𝜆̃−1 − 𝜆̃−3
𝑐

)𝑤

𝑖,1

(

𝑛𝑥
)

𝑖,1 𝜙𝑗 ,𝑝,

𝐷ℎ
𝑝𝑘 ↦ 𝐷ℎ

𝑝𝑘 −
1
2
𝑙𝑖,1
𝑆𝑖
𝛿 𝜓𝑖,1,𝑘

(

𝜆̃−1 − 𝜆̃−3
𝑐

)𝑤

𝑖,1

(

𝑛𝑦
)

𝑖,1 𝜙𝑖,𝑝 +
1
2
𝑙𝑖,1
𝑆𝑖
𝛿 𝜓𝑖,1,𝑘

(

𝜆̃−1 − 𝜆̃−3
𝑐

)𝑤

𝑖,1

(

𝑛𝑦
)

𝑖,1 𝜙𝑗 ,𝑝.

This is evaluated during the off-line phase and is extended to the rest of the coefficients of the ARoe-based FOM to complete the
first wet/dry step as indicated in (C.3).

As explained in Section 2.2, once the updating of the numerical scheme has been completed, it is necessary to correct both com-
ponents of the water discharge in the 𝑥 and 𝑦 directions to cancel the component perpendicular to the wall involved in the wet/dry.
Since this is done by two additional Eqs. (11) that are solved in each time step, it is necessary to obtain a reduced version as follows

(

𝑞𝑥
)𝑛+1
𝑝 =

𝑀POD
∑

𝑎̂𝑊 𝐷
𝑝𝑘

(

𝑞𝑥
)𝑛+1
𝑝 𝜑𝑖,𝑘𝜑𝑖,𝑝 +

𝑀POD
∑

𝑏̂𝑊 𝐷
𝑝𝑘

(

𝑞𝑦
)𝑛+1
𝑝 𝜓𝑖,𝑘𝜑𝑖,𝑝,
𝑘=1 𝑘=1

8 
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Fig. 2. Case 1. 2D mesh with initial water depth.

(

𝑞𝑦
)𝑛+1
𝑝 =

𝑀POD
∑

𝑘=1
𝑐𝑊 𝐷
𝑝𝑘

(

𝑞𝑥
)𝑛+1
𝑝 𝜑𝑖,𝑘𝜓𝑖,𝑝 +

𝑀POD
∑

𝑘=1
𝑑𝑊 𝐷
𝑝𝑘

(

𝑞𝑦
)𝑛+1
𝑝 𝜓𝑖,𝑘𝜓𝑖,𝑝. (19)

where
(

𝑎̂𝑊 𝐷
𝑝𝑘 𝑏̂𝑊 𝐷

𝑝𝑘

𝑐𝑊 𝐷
𝑝𝑘 𝑑𝑊 𝐷

𝑝𝑘

)

=
𝐼𝑓
∏

𝑚=1

(

𝑎𝑊 𝐷
𝑖,𝑚 𝑏𝑊 𝐷

𝑖,𝑚

𝑐𝑊 𝐷
𝑖,𝑚 𝑑𝑊 𝐷

𝑖,𝑚

)

, (20)

with the coefficients 𝑎𝑊 𝐷
𝑖,𝑚 , 𝑎𝑊 𝐷

𝑖,𝑚 , 𝑎𝑊 𝐷
𝑖,𝑚 and 𝑎𝑊 𝐷

𝑖,𝑚 given in (12) that depend only on space. This is evaluated during the on-line phase,
after the updating of the reduced water discharges according to (16) and (17).

4. Test cases to evaluate each of the numerical corrections

These numerical cases serve to test whether numerical corrections need to be taken into account in the ROM. They have been
designed to be studied individually without the other corrections intervening at the same time.

The objective is to recover the training solution that has been previously corrected in the three scenarios previously described
during the computation of the FOM. To do this, two first solutions are obtained, one with and one without correction in the ROM. In
addition, it is necessary to use the maximum number of POD modes and as many time windows as time steps to obtain the training
solution with machine accuracy.

An additional solution has also been included in each case to evaluate the effect of including the correction while using small
values of the ROM parameters. In this way, it is intended to check whether the error introduced by the ROM completely screens
out those of the corrections and, therefore, whether they are worth taking into account or not.

Case 1. Friction correction to avoid reverse flow

A 2D dam-break problem is to be solved, where the initial conditions are defined as follows

ℎ(𝑥, 𝑦, 0) =
⎧

⎪

⎨

⎪

⎩

0.05, if 𝑥 + 𝑦 ≤ 20,

0, if 20 < 𝑥 + 𝑦,
𝑞𝑥(𝑥, 𝑦, 0) = 0, 𝑞𝑦(𝑥, 𝑦, 0) = 0. (21)

There is no bed slope (i.e., 𝑧 ≡ 0) and the Manning coefficient is 𝑛𝑏 = 0.03. The time–space domain (𝑥, 𝑦, 𝑡) ∈ [0, 20]×[0, 20]×[0, 20] is
divided into 𝐼𝑐 = 8 triangular cells, as shown in Fig. 2, where the initial water depth is represented in greyscale according to (21).
All boundaries are considered as solid walls.

The three different results presented in this test case are used to illustrate the need to include the correction of the friction term.
As shown in Table 1, in Case 1.1 the ROM is solved without the friction correction; while in the rest of them, it is corrected.

Apart from that, Cases 1.2 and 1.3 are used to study the effect of the setting parameters of the ROM, namely the number of
POD modes 𝑀POD and the number of time windows 𝑀𝑊 . While in Case 1.2 the ROM uses the maximum number of POD modes, 8,
and one time window per time step, so that the training solution can be recovered with machine precision; in Case 1.3 only 3 POD
modes are used, and the number of time windows is reduced from 11 to 4.

Errors introduced by not including the friction correction in the ROM (Case 1.1) grow immediately, as it can be seen in Fig. 3(a).
The ROM solution computed in Case 1.2, on the contrary, matches with machine precision the FOM solution, as indicated by the
differences shown in Fig. 3(b).

If the number of POD modes and the number of time windows are decreased to 3 and 4, respectively, as in Case 1.3, the error
remains in the same order of magnitude (Fig. 3(c)), still smaller than that of Case 1.1, as indicated in Table 2. In all these figures,
the vertical grey lines represent the limits of the time windows. On the one hand, the ROM in Cases 1.1 and 1.2 is much slower
9 
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Table 1
Case 1. Problem subcases and settings.
Case 𝑀POD 𝑀𝑊 Friction correction

1.1 8 11 No
1.2 8 11 Yes
1.3 3 4 Yes

𝐿𝑥 × 𝐿𝑦 = 20 × 20, 𝑇 = 20, IC: Eq. (21), BCs: Wall
𝑧: 0, 𝑛𝑏 = 0.03, CFL = 0.4, 𝐼𝑐 = 8, 𝑁𝑇 = 11

Fig. 3. Case 1. Differences ‖𝑑‖1 between the FOM and the ROM solutions.

Table 2
Case 1. Results of efficiency.
Case 1.1 1.2 1.3

‖𝑑ℎ‖1 4.30 ⋅ 10−3 2.25 ⋅ 10−15 2.45 ⋅ 10−4

‖𝑑𝑞𝑥‖1 5.40 ⋅ 10−4 2.62 ⋅ 10−16 1.44 ⋅ 10−5

‖𝑑𝑞𝑦‖1 5.40 ⋅ 10−4 2.88 ⋅ 10−16 1.43 ⋅ 10−5

𝜏FOM
CPU 3.00 ⋅ 10−4 3.00 ⋅ 10−4 3.00 ⋅ 10−4

𝜏ROM
CPU 3.00 ⋅ 10−3 2.00 ⋅ 10−3 4.00 ⋅ 10−6

Speed-up ×0 ×0 ×75

than the FOM, because it is solved using the maximum number of POD modes, just as it were the FOM itself, but with the addition
f the change between time windows. On the other hand, in Case 1.3 the ROM is 75 times faster than the FOM (see Table 2).

Taking into account these results and the fact that the inclusion of the friction correction is only involved in the off-line phase,
it is advisable to take it into account in order to avoid possible erroneous solutions.

Case 2. Entropy fix.

A 2D dam-break problem is to be solved, where the initial conditions are defined as follows

ℎ(𝑥, 𝑦, 0) =
⎧

⎪

⎨

⎪

⎩

2, if 𝑥 ≤ 10,

0.1, if 10 < 𝑥,
𝑞𝑥(𝑥, 𝑦, 0) = 0, 𝑞𝑦(𝑥, 𝑦, 0) = 0. (22)

There is no bed slope (i.e., 𝑧 ≡ 0) and the Manning coefficient is 𝑛𝑏 = 0. The time–space domain (𝑥, 𝑦, 𝑡) ∈ [0, 20] × [0, 20] × [0, 5]
s divided into 𝐼𝑐 = 36 cells, as shown in Fig. 4, where the initial water depth is represented in greyscale according to (22). All
oundaries are considered as solid walls.

In Case 2.1 the ROM does not include the entropy fix, whereas in the rest of the cases it does, as shown in Table 3. Again, Case
2.3 is used to check how this correction interacts with the error introduced by the ROM using small values of its setting parameters.

The inclusion of the entropy fix in the resolution of the ROM allows the obtention of the training solution with machine accuracy,
as shown in the results of Case 2.2 in Fig. 5(b).

Similarly to Case 1, the error of the ROM in Case 2.3 is smaller than in Case 2.1, as indicated in Table 4. It can be therefore
concluded that this correction should be included in the resolution of the ROM as it does not involve loss of time calculation and
improves the results.
10 
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Fig. 4. Case 2. 2D mesh with initial water depth.

Table 3
Case 2. Problem subcases and settings.
Case 𝑀POD 𝑀𝑊 Entropy fix
2.1 36 21 No
2.2 36 21 Yes
2.3 3 7 Yes

𝐿𝑥 × 𝐿𝑦 = 20 × 20, 𝑇 = 5, IC: Eq. (22), BCs: Wall
𝑧: 0, 𝑛𝑏 = 0, CFL = 0.4, 𝐼𝑐 = 36, 𝑁𝑇 = 21

Fig. 5. Case 2. Differences ‖𝑑‖1 between the FOM and the ROM solutions.

Table 4
Case 2. Results of efficiency.
Case 2.1 2.2 2.3

‖𝑑ℎ‖1 1.67 ⋅ 10−2 8.36 ⋅ 10−14 7.80 ⋅ 10−3

‖𝑑𝑞𝑥‖1 2.03 ⋅ 10−2 9.85 ⋅ 10−14 8.26 ⋅ 10−3

‖𝑑𝑞𝑦‖1 3.56 ⋅ 10−14 4.53 ⋅ 10−14 2.35 ⋅ 10−15

𝜏FOM
CPU 2.50 ⋅ 10−3 2.50 ⋅ 10−3 2.50 ⋅ 10−3

𝜏ROM
CPU 7.44 ⋅ 10−4 7.51 ⋅ 10−4 1.20 ⋅ 10−5

Speed-up ×3 ×3 ×208

Case 3. Wet/dry treatment.

A 2D dambreak is proposed to study how the inclusion of the wet/dry treatment affects the solution of the ARoe-based ROM.
The time–space domain is defined as (𝑥, 𝑦, 𝑡) ∈ [0, 6] × [0, 6] × [0, 10]. The initial condition is defined as

ℎ(𝑥, 𝑦, 0) =
⎧

⎪

⎨

⎪

⎩

1, if 𝑥 ≤ 3,

0, if 3 < 𝑥,
𝑞𝑥(𝑥, 𝑦, 0) = 0, 𝑞𝑦(𝑥, 𝑦, 0) = 0, (23)

with the following bed level

𝑧(𝑥, 𝑦) =
{

0, if 𝑥 ≤ 3,
(24)
2, if 3 < 𝑥.

11 
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Fig. 6. Case 3. 2D mesh with the two subregions of the bed elevation.

Table 5
Case 3. Problem subcases and settings.
Case 𝑀POD 𝑀𝑊 Wet/dry treatment

3.1 16 31 No
3.2 16 31 Yes
3.3 3 11 Yes

𝐿𝑥 × 𝐿𝑦 = 6 × 6, 𝑇 = 510, IC: Eq. (23), BCs: Eq. (25)
𝑧: Eq. (24), 𝑛𝑏 = 0, CFL = 0.4, 𝐼𝑐 = 16, 𝑁𝑇 = 31

Fig. 7. Case 3. Differences ‖𝑑‖1 between the FOM and the ROM solutions.

A constant water discharge is imposed along the west boundary (𝑥 = 0)

𝑞𝑥(0, 𝑦, 𝑡) = 4, (25)

with 0 < 𝑦 < 6 and 𝑡 > 0; and free boundary conditions on the rest of the boundary.
The west boundary of the spatial domain is filled up until the water level rises above the obstacle and continues to flow freely

through the east boundary. In the process of filling, the wet/dry treatment acts so that the cells to the right of the obstacle do not
get wet, as the water level has not yet reached its height.

The spatial domain has been discretized using 16 rectangular cells, as shown in Fig. 6. The black volume cells indicate the
obstacle that water must overtop.

Cases 3.1 and 3.2 are used to study the consequences if the wet/dry treatment is not included in the ROM. It is worth remembering
that this correction, in addition to the off-line phase, is also involved in the on-line phase when resolving the ROM. On the other
hand, Case 3.3 is used to test whether it is worth including or not. All the settings of the problem are shown in Table 5.

As indicated by the differences shown in Fig. 7 for Cases 3.1 and 3.2, the ARoe-based ROM in (15), (16) and (17) is able to
recover the training solution with machine precision only in the case the wet/dry treatment is applied. Due to the special treatment
proposed in (14), the Dirichlet BCs are also reconstructed with machine precision.

Even though the error at the final time is smaller in Case 3.1 than in Case 3.3, the solution may be wetting areas that should
not be wetted. So it can be concluded that, due to the inclusion of the wet/dry treatment, ROMs can obtain physically satisfactory
results. In addition, this correction, far from what it might seem, does not add a significant overhead to the on-line ROM calculation.
Table 6 shows that the speed-ups reach two orders of magnitude in Case 3.3.
12 
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Table 6
Case 3. Results of efficiency.
Case 3.1 3.2 3.3

‖𝑑ℎ‖1 1.79 ⋅ 10−3 2.09 ⋅ 10−13 1.96 ⋅ 10−2

‖𝑑𝑞𝑥‖1 2.46 ⋅ 10−3 4.89 ⋅ 10−13 8.18 ⋅ 10−3

‖𝑑𝑞𝑦‖1 2.45 ⋅ 10−13 2.62 ⋅ 10−13 8.08 ⋅ 10−15

𝜏FOM
CPU 2.40 ⋅ 10−3 2.40 ⋅ 10−3 2.40 ⋅ 10−3

𝜏ROM
CPU 1.00 ⋅ 10−4 1.00 ⋅ 10−4 1.00 ⋅ 10−5

Speed-up ×24 ×24 ×240

Fig. 8. Case 4. 2D bed elevation (left) and numerical mesh (right). Coloured dots represent the position of the probes. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 7
Case 4. Problem settings.
𝐿𝑥 × 𝐿𝑦 𝑇 IC BC 𝑧 𝑛𝑏 CFL 𝐼𝑐 𝑁𝑇 𝑀POD 𝑀𝑊

2 × 2 0.15 Eq. (26) Wall Eq. (27) 0 0.6 6195 709 Eq. (28) Eq. (28)

5. Application cases

In this section, four numerical application cases set in realistic scenarios are presented in which the aforementioned numerical
corrections are applied both to the FOM and the ROM when necessary.

Case 4. 2D circular dam-break on a non-flat bed.

This case, designed as a 2D circular dam break on a non-flat bottom, is inspired by the one solved in [53–56]. The position of the
discontinuity in the water depth and the bottom hump have been centred to evaluate the symmetry of the problem. The time–space
domain of the case is defined as (𝑥, 𝑦, 𝑡) ∈ [0, 2] × [0, 2] × [0, 0.15]. Initially, the water depth is defined as a circular discontinuity at
rest

ℎ(𝑥, 𝑦, 0) =
{

1.1 − 𝑧(𝑥, 𝑦), if (𝑥 − 1)2 + (𝑦 − 1)2 ≤ 0.01,

0.6 − 𝑧(𝑥, 𝑦), otherwise,
𝑞𝑥(𝑥, 𝑦, 0) = 0, 𝑞𝑦(𝑥, 𝑦, 0) = 0, (26)

where the bed is

𝑧(𝑥, 𝑦) =
{

𝑧1(𝑥, 𝑦), if (𝑥 − 1)2 + (𝑦 − 1)2 ≤ 0.25,

0, otherwise,
(27)

with

𝑧1(𝑥, 𝑦) = 1
8
[1 + cos (2𝜋 (𝑥 − 1))] [cos (2𝜋 (𝑦 − 1))] .

The bed elevation is shown in Fig. 8(a) and the IC in Fig. 10(a). Closed walls in all boundaries and no friction are considered. The
spatial domain is discretized using 𝐼𝑐 = 6195 unstructured elements, as shown in Fig. 8(b). All these settings are shown in Table 7.

The ROM has been solved using the values indicated in (28) for the number of POD modes 𝑀POD and time windows 𝑀𝑊 . From
the combination of all the values of 𝑀 and 𝑀 , 64 different results have been obtained for this problem. In this way, the optimal
POD 𝑊

13 
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Table 8
Case 4. Differences between FOM and ROM solutions and CPU times required.
Case 𝑀POD 𝑀𝑊 ‖𝑑ℎ‖1 ‖𝑑𝑞𝑥‖1 ‖𝑑𝑞𝑦‖1 𝜏FOM

CPU 𝜏ROM
CPU Speed-up

4a 1 7 2.85 ⋅ 10−3 5.00 ⋅ 10−3 4.98 ⋅ 10−3 2.20 ⋅ 101 5.00 ⋅ 10−4 ×43 946
4b 3 7 1.88 ⋅ 10−4 4.51 ⋅ 10−4 4.16 ⋅ 10−4 2.20 ⋅ 101 1.50 ⋅ 10−3 ×14 649

Fig. 9. Case 4. Differences between FOM and ROM solutions and speed-ups.

values of these ROM parameters are studied in terms of the accuracy of the solution measured using the differences (18) between
the FOM and the ROM solutions, and speed-up achieved by the ROM.

𝑀POD ∈ {1, 2, 3, 4, 5, 6, 7, 8}

𝑀𝑊 ∈ {354, 141, 70, 35, 17, 8, 7, 5} (28)

Figs. 9(a), 9(b) and 9(c) show the differences of ℎ, 𝑞𝑥 and 𝑞𝑦 at the final time, respectively. These figures indicate that the
accuracy of the solution computed by the ROM is adequate when using at least 3 POD modes and at least 7 time windows. As
for the speed-up, as can be seen in Fig. 9(d), it achieves very large values, reaching up to four orders of magnitude when 7 time
windows and 4 or less POD modes are used. From this it can be concluded that the optimal values of the parameters defining
the ROM resolution are 3 POD modes and 7 time windows. The total number of time steps 𝑁𝑇 may change from one problem to
another, so the number of time windows, which depends on the first, is not directly generalizable. In this sense, it is useful to know
the number of snapshots per time window, which in this particular case is 100. Therefore, in all other numerical cases, 3 POD modes
and around 100 snapshots per time window will be used.

Four probes have been set at the points

𝑃1 = (0.9, 0.9), 𝑃2 = (1.1, 0.9), 𝑃3 = (1.1, 1.1), 𝑃4 = (0.9, 1.1), (29)

to study how the ROM performs the symmetry of the problem. The position of these probes is indicated with black, red, blue and
green dots within the spatial domain in Fig. 8(b). Fig. 11 shows the results of Cases 4a (1 POD modes and 7 time windows) and 4b
(3 POD modes and 7 time windows) at these probes, where it can be seen that there are large differences between using a single
POD mode, with which non-smooth solutions are obtained, and using 3 POD modes, with which the ROM reproduces the solution
of the FOM very accurately. The differences and the speed-ups obtained for these two cases are shown in Table 8. The solution of
the water depth ℎ computed by the ROM with the optimal values of its settings (Case 4b) is shown in Fig. 10 at different time steps.
14 
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Fig. 10. Case 4b. ROM solutions of ℎ at different time steps.

Fig. 11. Case 4. Water depth at probes.

Table 9
Case 5. Problem settings.
𝐿𝑥 × 𝐿𝑦 𝑇 IC BC 𝑧 𝑛𝑏 CFL 𝐼𝑐 𝑁𝑇 𝑀POD 𝑀𝑊

6 × 6 5 Eq. (30) Eq. (32) + wall Eq. (31) 0.01 0.5 3763 3346 3 34

Case 5. 2D water depth source.

This test case is designed to prove that ROMs are very useful to reproduce solutions with injections at inner-domain points, such
as point sources of water depth. The time–space domain of the case is defined as (𝑥, 𝑦, 𝑡) ∈ [0, 6] × [0, 6] × [0, 5]. Initially, all the
domain is dry

ℎ(𝑥, 𝑦, 0) = 0, 𝑞𝑥(𝑥, 𝑦, 0) = 0, 𝑞𝑦(𝑥, 𝑦, 0) = 0, (30)

and the bed is flat

𝑧(𝑥, 𝑦) = 0, (31)

with 0 ≤ 𝑥, 𝑦 ≤ 6. From 𝑡 > 0.1, water starts to enter according to the following function

ℎ(𝑥, 𝑦) =
⎧

⎪

⎨

⎪

⎩

0, if 𝑡 < 0.1,

0.5 − 0.56(1 − 𝑡), if 0.1 ≤ 𝑡 < 1,

0.5, if 1 ≥ 𝑡,

(32)

and (𝑥, 𝑦) ∈ 𝛺𝑆 , with 𝛺𝑆 =
{

(𝑥, 𝑦), (𝑥 − 3)2 + (𝑦 − 3)2 ≤ 4
}

, as shown in Fig. 12(a). This injection in the centre of the domain is
considered as Dirichlet points when solving the ROM. Closed walls are considered in all boundaries and the Manning coefficient is
𝑛𝑏 = 0.01. All these settings are shown in Table 9.

The spatial domain is discretized using 𝐼𝑐 = 3763 unstructured elements, as shown in Fig. 12(b), where the injection points in
which the water depth is imposed are plotted in blue.

The numerical results obtained with the ROM can be seen in Fig. 14 for different times. The quasi-stationary regime at the
beginning of the simulation is solved by the ARoe-based ROM (15), (16) and (17) with a wide time window and then 34 time
windows with a fixed number of 100 snapshots per window. There are no significant differences between its solutions and those of
15 
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Fig. 12. Case 5. Water depth injected in the centre of the domain (left) and 2D numerical mesh (right) with injection volume cells indicated in blue. Coloured
dots represent the position of the probes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 13. Case 5. Differences ‖𝑑‖1 between FOM and ROM solutions and time evolution of water depth at probes (33).

Table 10
Case 5. Differences between FOM and ROM solutions and CPU times required.
‖𝑑ℎ‖1 ‖𝑑𝑞𝑥‖1 ‖𝑑𝑞𝑦‖1 𝜏FOM

CPU 𝜏ROM
CPU Speed-up

4.15 ⋅ 10−4 6.19 ⋅ 10−2 1.09 ⋅ 10−1 3.29 ⋅ 101 7.50 ⋅ 10−3 ×4382

the FOM. Furthermore, the differences between the solutions of the FOM and the ROM have been computed to test the accuracy of the
latter. Fig. 13(a) shows the time evolution of the differences, alongside the limits of time windows depicted by the vertical grey lines.

Four probes have been set at the points

𝑃1 = (1.5, 1.5), 𝑃2 = (4.5, 1.5), 𝑃3 = (1.5, 4.5), 𝑃4 = (4.5, 4.5), (33)

to study how the ROM performs the symmetry of the problem. The position of these probes is indicated with black, red, blue and
green dots within the spatial domain in Fig. 12(b). Fig. 13(b) shows strong agreement between the solutions of the FOM (solid lines)
and the ROM (dashed lines) in all probes.

Finally, the CPU times required by the FOM and the ROM are shown in the Table 10, as well as the speed-up achieved in this
case, which reaches 3 orders of magnitude. That table also shows the differences between the FOM and the ROM solutions computed
at the final time.
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Fig. 14. Case 5. ROM solutions of ℎ at different time steps.

Case 6. 2D filling of floodplain depressions.

This numerical case is the second benchmark proposed in [57], where a floodplain with multiple depressions is filled by a water
depth hydrograph entering a region in the western boundary (0, 𝑦) with 𝑦 ∈ (1900, 2000).

The time–space domain of the case is defined as (𝑥, 𝑦, 𝑡) ∈ [0, 2000] × [0, 2000] × [0, 6000]. The bed elevation of the case is shown
in Fig. 15(a) with the space discretization. The BCs are defined as the following water discharge hydrograph

𝑞(0, 𝑦, 𝑡) =
⎧

⎪

⎨

⎪

⎩

0, if 0 < 𝑡 ≤ 300,

20, if 300 < 𝑡 ≤ 5100,

0, if 5100 < 𝑡 ≤ 6000,

(34)

with 𝑦 ∈ (1900, 2000), shown in Fig. 16(a); and wall BCs are imposed on the rest of the domain. The entire domain is dry at the
beginning

ℎ(𝑥, 𝑦, 0) = 0, 𝑞𝑥(𝑥, 𝑦, 0) = 0, 𝑞𝑦(𝑥, 𝑦, 0) = 0, (35)

and the Manning coefficient is 𝑛𝑏 = 0.03.
The spatial domain is discretized using an unstructured mesh 𝐼𝑐 = 6243 volume cells, as shown in Fig. 16(b). In Fig. 16(c) the

boundary points in which the water depth is imposed are plotted in blue.
The ROM is solved using 3 POD modes and 53 time windows. These data and the rest of the settings are shown in Table 11.
Fig. 17 shows the time evolution of ℎ at different times by the ROM. The water enters the domain from the north-west corner

and fills the floodplain depressions as it advances. At 𝑡 = 5100, the discharge inflow is cut off and the water is properly distributed
until it stops.
17 
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Fig. 15. Case 6. Bed elevation.

Fig. 16. Case 6. Water depth injected in the western boundary (left) and 2D numerical mesh (centre and right) with injection volume cells indicated in blue.
Coloured dots represent the position of the probes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Table 11
Case 6. Problem settings.
𝐿𝑥 × 𝐿𝑦 𝑇 IC BC 𝑧 𝑛𝑏 CFL 𝐼𝑐 𝑁𝑇 𝑀POD 𝑀𝑊

2000 × 2000 6000 Eq. (35) Eq. (34) + wall Fig. 15(a) 0.03 0.4 6243 10 570 3 53

Table 12
Case 6. Differences between FOM and ROM solutions and CPU times required.
‖𝑑ℎ‖1 ‖𝑑𝑞𝑥‖1 ‖𝑑𝑞𝑦‖1 𝜏FOM

CPU 𝜏ROM
CPU Speed-up

1.80 ⋅ 10−3 7.68 ⋅ 10−4 4.69 ⋅ 10−3 2.25 ⋅ 101 1.45 ⋅ 10−2 ×1555

The differences between the solutions computed with the FOM and the ROM are shown in Fig. 18(a). It is shown that they
present a good agreement between the solutions computed with the FOM and the ROM and, moreover, the ROM is 1555 times
faster than the FOM, as it is shown in Table 12.

Four probes have been set at the points

𝑃1 = (200, 1800), 𝑃2 = (200, 1400), 𝑃3 = (800, 1800), 𝑃4 = (400, 1500), (36)

to study how the ROM performs with respect to the FOM. The position of these probes is indicated with black, red, blue and green
dots within the spatial domain in Fig. 16(c), respectively. Fig. 18(b) shows a strong agreement between the solutions of the FOM
and the ROM in all probes.

Case 7. 2D tsunami laboratory test case.

In this final case, the method presented in this work is tested in a 1/400 scale laboratory tsunami test case done by [58], and
included in many other works [59–61]. The time–space domain of the case is defined as (𝑥, 𝑦, 𝑡) ∈ 0, 5.488 × 0, 3.388 × 0, 22.5 .
[ ] [ ] [ ]
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Fig. 17. Case 6. ROM solutions of ℎ at different time steps and differences ‖𝑑‖1 between FOM and ROM solutions.

Fig. 18. Case 6. Differences ‖𝑑‖1 between FOM and ROM solutions and time evolution of water depth at probes (36).
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Fig. 19. Case 7. Bed elevation with numerical mesh.

Table 13
Case 7. POD setting, ROM CPU time and speed-ups achieved of each subcase.
𝐿𝑥 × 𝐿𝑦 𝑇 IC BC 𝑧 𝑛𝑏 CFL 𝐼𝑐 𝑁𝑇 𝑀POD 𝑀𝑊

5.488 × 3.388 22.5 Eq. (37) Fig. 20(a) + wall Fig. 19 0.01 0.5 5863 5447 3 36

Table 14
Case 7. Differences ‖𝑑‖1 between FOM and ROM solutions and CPU times required.
‖𝑑‖ℎ1 ‖𝑑‖𝑞𝑥1 ‖𝑑‖𝑞𝑦1 𝜏FOM

CPU 𝜏ROM
CPU Speed-up

3.86 ⋅ 10−4 1.78 ⋅ 10−3 2.68 ⋅ 10−4 1.46 ⋅ 101 1.05 ⋅ 10−2 ×1388

The bed elevation of the case is shown in Fig. 19. The boundary conditions are defined as walls in the north, south and east
boundaries and as the water depth hydrograph shown in Fig. 20(a). The ICs are set as water at rest

ℎ(𝑥, 𝑦, 0) + 𝑧(𝑥, 𝑦) = 0, 0 ≤ 𝑥 ≤ 5.488, 0 ≤ 𝑦 ≤ 3.388, (37)

as shown in Fig. 23(a), and the Manning coefficient is 𝑛𝑏 = 0.01.
The spatial domain is discretized using an unstructured mesh that consists of 𝐼𝑐 = 5863 volume cells, as shown in Fig. 20(b),

where the boundary points in which the water depth is imposed are plotted in blue. The volume cells represented in grey are
those in which the bed level is positive, i.e., 𝑧 > 0 m; and the red dots indicate the position of the three gauging points where the
experimental data were measured, given by these coordinates

𝑃1 = (4.52, 1.196), 𝑃2 = (4.52, 1.696), 𝑃3 = (4.52, 2.196).

The ARoe-based ROM has been solved using 3 POD modes and 36 time windows, as shown in Table 13 with the rest of the
settings of the problem.

The time evolution of the numerical solutions computed by the ARoe-based ROM (15), (16) and (17) for the water depth is
shown in Fig. 23, represented in blue. From time instant 𝑡 = 10.81 s (Fig. 23(b)) to 𝑡 = 14.98 s (Fig. 23(c)), the water wave enters
the left domain and advances towards the coast. At 𝑡 = 16.51 s (Fig. 23(g)) it can be seen that the water rises along the dry coastal
land. And then, once the wave has bounced, it returns to the inner sea (Figs. 23(h) and 23(i)).

Fig. 21 shows the good agreement between the FOM and the ROM solutions and the experimental data measured in the three
gauging points. Mass is conserved as shown in Fig. 22(a), where some discrepancies between the solutions of the FOM and the ROM
are observed. Using a non-maximum number of POD modes when solving the ROM can imply losses or gains in mass that have no
physical significance. However, when comparing both numerical solutions with experimental data in Fig. 21, it can be seen that the
general trend is well achieved.

The time windows have been homogeneously defined starting from the instant at which the hydrograph of the water depth
varies. Until then, as can be seen in Fig. 22(b), a single wide window is defined that covers all the time in which the state of the
problem does not change significantly. The differences, as can be seen here, show good levels of accuracy. Finally, as indicated in
Table 14, the ARoe-based ROM is 1388 times faster than the ARoe-based FOM.
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Fig. 20. Case 7. Water depth injected in the western boundary (left) and 2D numerical mesh (right) with injection volume cells indicated in blue. Coloured
dots represent the position of the probes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 21. Case 7. Time evolution of water depth at 3 different probes.

Fig. 22. Case 7. Time evolution of mass conservation and solution differences.
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Fig. 23. Case 7. Time evolution of water depth. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

6. Concluding remarks

In this paper, the application of intrusive POD-based ROMs to the 2D SWE has been carried out. The ARoe-based ROM has been
developed in a linearized formulation by means of the PID method.

The necessity of including some numerical corrections in the ROM strategy to obtain proper solutions has been demonstrated. In
particular, the friction source term correction to avoid reverse flow, the entropy fix and the wet/dry treatment. All of them operate
in the off-line phase when solving 2D problems, except for the wet/dry treatment that is also included in the on-line phase, so it
does contribute to the ROM efficiency computation.

The numerical results proposed (Cases 1, 2 and 3) for each of these corrections isolated show that they allow the recovery
of the training solutions with machine accuracy when using the maximum number of POD modes and time windows. However,
their inclusion in the ROM does not improve the accuracy of the solutions when using few POD modes, but it does ensure physics
fulfilment. The three last numerical results (Cases 4, 5, 6 and 7) show large speed-ups achieved by the ROM in 2D problems with
respect to the FOM.

In addition to this, it has been proposed a direct treatment of the Dirichlet-type BCs that allows the satisfactory resolution of
ROMs while imposing time dependent BCs. These have been properly validated by means of Cases 3, 4, 5 and 6.
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Appendix A. ARoe-based FOM

The ARoe-based FOM of the 2D SWEs is

ℎ𝑛+1𝑖 = ℎ𝑛𝑖 −
𝛥𝑡
𝑆𝑖

1
2

𝐼𝑓
∑

𝑒=1
𝛿 ℎ𝑛𝑖,𝑒
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+ 𝛥𝑡
𝑆𝑖

1
2

𝐼𝑓
∑

𝑒=1

(

𝜆̃−1 − 𝜆̃−3
𝑐

)𝑛

𝑖,𝑒

[

(

𝛿 𝑞𝑥
)𝑛
𝑖,𝑒
(

𝑛𝑥
)

𝑖,𝑒 +
(

𝛿 𝑞𝑦
)𝑛
𝑖,𝑒

(

𝑛𝑦
)

𝑖,𝑒

]

𝑙𝑖,𝑒

+ 𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1

(

𝛽𝑧 + 𝛽𝑓
)𝑛
𝑖,𝑒

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑛

𝑖,𝑒

𝑙𝑖,𝑒, (A.1)

(

𝑞𝑥
)𝑛+1
𝑖 =

(

𝑞𝑥
)𝑛
𝑖 −

𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 ℎ𝑛𝑖,𝑒

[

𝜆̃−1
𝑢̃𝑥 − 𝑐 𝑛𝑥

2

(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

+𝜆̃−2
(

𝑢̃𝑦𝑛𝑥 − 𝑢̃𝑥𝑛𝑦
)

𝑛𝑦 + 𝜆̃−3
𝑢̃𝑥 + 𝑐 𝑛𝑥

2

(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)

]𝑛

𝑖,𝑒
𝑙𝑖,𝑒

+ 𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1

(

𝛿 𝑞𝑥
)𝑛
𝑖,𝑒

[

𝜆̃−1
𝑢̃𝑥 − 𝑐 𝑛𝑥

2𝑐
𝑛𝑥 − 𝜆̃−2 𝑛𝑦𝑛𝑦 − 𝜆̃

−
3
𝑢̃𝑥 + 𝑐 𝑛𝑥

2𝑐
𝑛𝑥

]𝑛

𝑖,𝑒
𝑙𝑖,𝑒

+ 𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1

(

𝛿 𝑞𝑦
)𝑛
𝑖,𝑒

[

𝜆̃−1
𝑢̃𝑥 − 𝑐 𝑛𝑥

2𝑐
𝑛𝑦 + 𝜆̃−2 𝑛𝑥𝑛𝑦 − 𝜆̃

−
3
𝑢̃𝑥 + 𝑐 𝑛𝑥

2𝑐
𝑛𝑦

]𝑛

𝑖,𝑒
𝑙𝑖,𝑒

+ 𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1

(

𝛽𝑧 + 𝛽𝑓
)𝑛
𝑖,𝑒

[

𝜆̃−1
𝜆̃1

(

𝑢̃𝑥 − 𝑐 𝑛𝑥
)

−
𝜆̃−3
𝜆̃3

(

𝑢̃𝑥 + 𝑐 𝑛𝑥
)

]𝑛

𝑖,𝑒

𝑙𝑖,𝑒, (A.2)

(

𝑞𝑦
)𝑛+1
𝑖 =

(

𝑞𝑦
)𝑛
𝑖 −

𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 ℎ𝑛𝑖,𝑒

[

𝜆̃−1
𝑢̃𝑦 − 𝑐 𝑛𝑦

2

(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

−𝜆̃−2
(

𝑢̃𝑦𝑛𝑥 − 𝑢̃𝑥𝑛𝑦
)

𝑛𝑥 + 𝜆̃−3
𝑢̃𝑦 + 𝑐 𝑛𝑦

2

(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)

]𝑛

𝑖,𝑒
𝑙𝑖,𝑒

+ 𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1

(

𝛿 𝑞𝑥
)𝑛
𝑖,𝑒

[

𝜆̃−1
𝑢̃𝑦 − 𝑐 𝑛𝑦

2𝑐
𝑛𝑥 + 𝜆̃−2 𝑛𝑥𝑛𝑦 − 𝜆̃

−
3

𝑢̃𝑦 + 𝑐 𝑛𝑦
2𝑐

𝑛𝑥

]𝑛

𝑖,𝑒
𝑙𝑖,𝑒

+ 𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1

(

𝛿 𝑞𝑦
)𝑛
𝑖,𝑒

[

𝜆̃−1
𝑢̃𝑦 − 𝑐 𝑛𝑦

2𝑐
𝑛𝑦 − 𝜆̃−2 𝑛𝑥𝑛𝑥 − 𝜆̃

−
3

𝑢̃𝑦 + 𝑐 𝑛𝑦
2𝑐

𝑛𝑦

]𝑛

𝑖,𝑒
𝑙𝑖,𝑒

+ 𝛥𝑡
𝑆𝑖

𝐼𝑓
∑

𝑒=1

(

𝛽𝑧 + 𝛽𝑓
)𝑛
𝑖,𝑒

[

𝜆̃−1
𝜆̃1

(

𝑢̃𝑦 − 𝑐 𝑛𝑦
)

−
𝜆̃−3
𝜆̃3

(

𝑢̃𝑦 + 𝑐 𝑛𝑦
)

]𝑛

𝑖,𝑒

𝑙𝑖,𝑒, (A.3)

with 𝑖 ∈ 𝐽 𝐼 and where the source terms
(

𝛽𝑓
)𝑛
𝑖,𝑒 and

(

𝛽𝑓
)𝑛
𝑖,𝑒 are given in (3).

Appendix B. Coefficients of the ARoe-based ROM

The coefficients of the ARoe-based ROM (15), (16) and (17) are the following

𝐴ℎ𝑝𝑘 =
∑

𝜙𝑖,𝑘𝜙𝑖,𝑝, 𝐴𝑞𝑥𝑝𝑘 =
∑

𝜑𝑖,𝑘𝜑𝑖,𝑝, 𝐴
𝑞𝑦
𝑝𝑘 =

∑

𝜓𝑖,𝑘𝜓𝑖,𝑝,

𝑖∈𝐽 𝐼∪𝐽𝑁 𝑖∈𝐽𝐼∪𝐽𝑁 𝑖∈𝐽𝐼∪𝐽𝑁
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𝐵ℎ𝑝𝑘 =
∑

𝑖∈𝐽𝑁
𝑏ℎ𝑖 𝜙𝑖,𝑝 −

1
2

∑

𝑖∈𝐽𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 𝜙𝑖,𝑒,𝑘

[

𝜆̃−1
(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

+ 𝜆̃−3
(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)]𝑤

𝑖,𝑒
𝑙𝑖,𝑒𝜙𝑖,𝑝

+
𝑔
2

∑

𝑖∈𝐽 𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1

(

𝛽1
𝜆̃−1
𝜆̃1

+ 𝛽3
𝜆̃−3
𝜆̃3

)𝑤

𝑖,𝑒

𝑙𝑖,𝑒𝜙𝑖,𝑝,

𝐶ℎ𝑝𝑘 =
∑

𝑖∈𝐽𝑁
𝑐ℎ𝑖 𝜙𝑖,𝑝 +

1
2

∑

𝑖∈𝐽𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 𝜑𝑖,𝑒,𝑘

(

𝜆̃−1 − 𝜆̃−3
𝑐

)𝑤

𝑖,𝑒

(

𝑛𝑥
)

𝑖,𝑒 𝑙𝑖,𝑒𝜙𝑖,𝑝,

𝐷ℎ
𝑝𝑘 =

∑

𝑖∈𝐽𝑁
𝑑ℎ𝑖 𝜙𝑖,𝑝 +

1
2

∑

𝑖∈𝐽𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 𝜓𝑖,𝑒,𝑘

(

𝜆̃−1 − 𝜆̃−3
𝑐

)𝑤

𝑖,𝑒

(

𝑛𝑦
)

𝑖,𝑒 𝑙𝑖,𝑒𝜙𝑖,𝑝,

𝐵𝑞𝑥𝑝𝑘 =
∑

𝑖∈𝐽𝑁
𝑏𝑞𝑥𝑖 𝜑𝑖,𝑝 −

∑

𝑖∈𝐽𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 𝜙𝑖,𝑒,𝑘

[

𝜆̃−1
𝑢̃𝑥 − 𝑐 𝑛𝑥

2

(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

+ 𝜆̃−2
(

𝑢̃𝑦𝑛𝑥 − 𝑢̃𝑥𝑛𝑦
)

𝑛𝑦 + 𝜆̃−3
𝑢̃𝑥 + 𝑐 𝑛𝑥

2

(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)

]𝑤

𝑖,𝑒

𝑙𝑖,𝑒𝜑𝑖,𝑝

+
𝑔
2

∑

𝑖∈𝐽 𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1

[

𝛽1
𝜆̃−1
𝜆̃1

(

𝑢̃𝑥 − 𝑐 𝑛𝑥
)

+ 𝛽3
𝜆̃−3
𝜆̃3

(

𝑢̃𝑥 + 𝑐 𝑛𝑥
)

]𝑤

𝑖,𝑒

𝑙𝑖,𝑒𝜑𝑖,𝑝,

𝐶𝑞𝑥𝑝𝑘 =
∑

𝑖∈𝐽𝑁
𝑐𝑞𝑥𝑖 𝜑𝑖,𝑝 +

∑

𝑖∈𝐽 𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 𝜑𝑖,𝑒,𝑘

[

𝜆̃−1
𝑢̃𝑥 − 𝑐 𝑛𝑥

2𝑐
𝑛𝑥 − 𝜆̃−2 𝑛𝑦𝑛𝑦 − 𝜆̃

−
3
𝑢̃𝑥 + 𝑐 𝑛𝑥

2𝑐
𝑛𝑥

]𝑤

𝑖,𝑒

𝑙𝑖,𝑒𝜑𝑖,𝑝,

𝐷𝑞𝑥
𝑝𝑘 =

∑

𝑖∈𝐽𝑁
𝑑𝑞𝑥𝑖 𝜑𝑖,𝑝 +

∑

𝑖∈𝐽𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 𝜓𝑖,𝑒,𝑘

[

𝜆̃−1
𝑢̃𝑥 − 𝑐 𝑛𝑥

2𝑐
𝑛𝑦 + 𝜆̃−2 𝑛𝑥𝑛𝑦 − 𝜆̃

−
3
𝑢̃𝑥 + 𝑐 𝑛𝑥

2𝑐
𝑛𝑦

]𝑤

𝑖,𝑒

𝑙𝑖,𝑒𝜑𝑖,𝑝,

𝐵
𝑞𝑦
𝑝𝑘 =

∑

𝑖∈𝐽𝑁
𝑏
𝑞𝑦
𝑖 𝜓𝑖,𝑝 −

∑

𝑖∈𝐽 𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 𝜙𝑖,𝑒,𝑘

[

𝜆̃−1
𝑢̃𝑦 − 𝑐 𝑛𝑦

2

(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

− 𝜆̃−2
(

𝑢̃𝑦𝑛𝑥 − 𝑢̃𝑥𝑛𝑦
)

𝑛𝑥 + 𝜆̃−3
𝑢̃𝑦 + 𝑐 𝑛𝑦

2

(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)

]𝑤

𝑖,𝑒

𝑙𝑖,𝑒𝜓𝑖,𝑝

+
𝑔
2

∑

𝑖∈𝐽 𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1

[

𝛽1
𝜆̃−1
𝜆̃1

(

𝑢̃𝑦 − 𝑐 𝑛𝑦
)

+ 𝛽3
𝜆̃−3
𝜆̃3

(

𝑢̃𝑦 + 𝑐 𝑛𝑦
)

]𝑤

𝑖,𝑒

𝑙𝑖,𝑒𝜓𝑖,𝑝,

𝐶
𝑞𝑦
𝑝𝑘 =

∑

𝑖∈𝐽𝑁
𝑐
𝑞𝑦
𝑖 𝜓𝑖,𝑝 +

∑

𝑖∈𝐽𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 𝜑𝑖,𝑒,𝑘

[

𝜆̃−1
𝑢̃𝑦 − 𝑐 𝑛𝑦

2𝑐
𝑛𝑥 + 𝜆̃−2 𝑛𝑥𝑛𝑦 − 𝜆̃

−
3

𝑢̃𝑦 + 𝑐 𝑛𝑦
2𝑐

𝑛𝑥

]𝑤

𝑖,𝑒

𝑙𝑖,𝑒𝜓𝑖,𝑝,

𝐷
𝑞𝑦
𝑝𝑘 =

∑

𝑖∈𝐽𝑁
𝑑
𝑞𝑦
𝑖 𝜓𝑖,𝑝 +

∑

𝑖∈𝐽𝐼

1
𝑆𝑖

𝐼𝑓
∑

𝑒=1
𝛿 𝜓𝑖,𝑒,𝑘

[

𝜆̃−1
𝑢̃𝑦 − 𝑐 𝑛𝑦

2𝑐
𝑛𝑦 − 𝜆̃−2 𝑛𝑥𝑛𝑥 − 𝜆̃

−
3

𝑢̃𝑦 + 𝑐 𝑛𝑦
2𝑐

𝑛𝑦

]𝑤

𝑖,𝑒

𝑙𝑖,𝑒𝜓𝑖,𝑝, (B.1)

where 𝛿 𝜙𝑖,𝑒,𝑘 = 𝜙𝑗 ,𝑘 − 𝜙𝑖,𝑘, 𝛿 𝜑𝑖,𝑒,𝑘 = 𝜑𝑗 ,𝑘 − 𝜑𝑖,𝑘, 𝛿 𝜓𝑖,𝑒,𝑘 = 𝜓𝑗 ,𝑘 − 𝜓𝑖,𝑘; and
(

𝛽1
)𝑤
𝑖,𝑒 = − (

𝛽3
)𝑤
𝑖,𝑒 =

(

𝛽𝑧 + 𝛽𝑓
)𝑤
𝑖,𝑒, with

(

𝛽𝑧
)𝑤
𝑖,𝑒 = 𝜙̃𝑖,𝑒,𝑘

𝛿 𝑧𝑖,𝑒
𝑐𝑤𝑖,𝑒

,
(

𝛽𝑓
)𝑤
𝑖,𝑒 = 𝜙̃𝑖,𝑒,𝑘

𝐮̃𝑤𝑖,𝑒 ⋅ 𝐧𝑖,𝑒|𝐮̃
𝑤
𝑖,𝑒|

(

𝑛̃2𝑏𝑑𝑛
)

𝑖,𝑒

𝑐𝑤𝑖,𝑒max
(

ℎ𝑤𝑖 , ℎ𝑤𝑗
)4∕3

,

and 𝜙̃𝑖,𝑒,𝑘 =
(

𝜙𝑗 ,𝑘 + 𝜙𝑖,𝑘
)

∕2. The index 𝑤 indicates that the variable is averaged in the 𝑤th time window and the coefficients
𝑏ℎ, 𝑐ℎ, 𝑑ℎ, 𝑏𝑞𝑥 , 𝑐𝑞𝑥 , 𝑑𝑞𝑥 , 𝑏𝑞𝑦 , 𝑐𝑞𝑦 , 𝑑𝑞𝑦 depend on the BCs imposed. For example, if free BCs are imposed at the first wall of the 𝑖th cell,
then

𝑏ℎ𝑖 = −1
2

1
𝑆𝑖

𝐼𝑓
∑

𝑒=2
𝛿 𝜙𝑖,𝑒,𝑘

[

𝜆̃−1
(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

+ 𝜆̃−3
(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)]𝑤

𝑖,𝑒
𝑙𝑖,𝑒𝜙𝑖,𝑝

+ 1
𝑆𝑖

𝐼𝑓
∑

𝑒=2

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑤

𝑖,𝑒

(

𝛽𝑧 + 𝛽𝑓
)𝑤
𝑖,𝑒 𝑙𝑖,𝑒𝜙𝑖,𝑝.

The rest of the coefficients related to the BCs are determined similarly.
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Appendix C. Modifications of ROM coefficients due to numerical corrections

Friction correction to avoid reverse flow

If, for example, the friction source term is corrected in the FOM on the first wall of the 𝑖th cell, the reduced coefficients presented
in (B.1) need to include the following additional terms

𝐵ℎ𝑝𝑘 ↦ 𝐵ℎ𝑝𝑘 +
𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

(

𝛽RF
ℎ̂

− 𝛽𝑓
)𝑤

𝑖,1
𝜙𝑖,𝑝,

𝐶ℎ𝑝𝑘 ↦ 𝐶ℎ𝑝𝑘 +
𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

(

𝛽RF
𝑞𝑥

)𝑤

𝑖,1
𝜙𝑖,𝑝, 𝐷ℎ

𝑝𝑘 ↦ 𝐷ℎ
𝑝𝑘 +

𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1
𝜆̃1

−
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

(

𝛽RF
𝑞𝑦

)𝑤

𝑖,1
𝜙𝑖,𝑝,

𝐵𝑞𝑥𝑝𝑘 ↦ 𝐵𝑞𝑥𝑝𝑘 +
𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1 − 𝜆̃−2
)𝑤
𝑖,1

(

𝛽RF
ℎ̂

− 𝛽𝑓
)𝑤

𝑖,1
𝜑𝑖,𝑝,

𝐶𝑞𝑥𝑝𝑘 ↦ 𝐶𝑞𝑥𝑝𝑘 +
𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1 − 𝜆̃−2
)𝑤
𝑖,1

(

𝛽RF
𝑞𝑥

)𝑤

𝑖,1
𝜑𝑖,𝑝, 𝐷𝑞𝑥

𝑝𝑘 ↦ 𝐷𝑞𝑥
𝑝𝑘 +

𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1 − 𝜆̃−2
)𝑤
𝑖,1

(

𝛽RF
𝑞𝑦

)𝑤

𝑖,1
𝜑𝑖,𝑝,

𝐵
𝑞𝑦
𝑝𝑘 ↦ 𝐵

𝑞𝑦
𝑝𝑘 +

𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1 − 𝜆̃−2
)𝑤
𝑖,1

(

𝛽RF
ℎ̂

− 𝛽𝑓
)𝑤

𝑖,1
𝜓𝑖,𝑝,

𝐶
𝑞𝑦
𝑝𝑘 ↦ 𝐶

𝑞𝑦
𝑝𝑘 +

𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1 − 𝜆̃−2
)𝑤
𝑖,1

(

𝛽RF
𝑞𝑥

)𝑤

𝑖,1
𝜓𝑖,𝑝, 𝐷

𝑞𝑦
𝑝𝑘 ↦ 𝐷

𝑞𝑦
𝑝𝑘 +

𝑙𝑖,1
𝑆𝑖

(

𝜆̃−1 − 𝜆̃−2
)𝑤
𝑖,1

(

𝛽RF
𝑞𝑦

)𝑤

𝑖,1
𝜓𝑖,𝑝, (C.1)

with
(

𝛽RF
ℎ̂

)𝑤

𝑖,1
= 1

2

[

𝛿 𝜙𝑖,1,𝑘
(

𝜆1 +
𝐮̃𝐧
𝑐

)𝑤

𝑖,1
− 𝜙̃𝑖,1,𝑘

𝑔 𝛿 𝑧𝑖,1
𝑐𝑤𝑖,1

]

,
(

𝛽RF
𝑞𝑥

)𝑤

𝑖,1
=

[

𝜑𝑖,𝑘 − 𝛿 𝜑𝑖,1,𝑘 12
(

𝜆̃1
𝑐

)𝑤

𝑖,1

]

(

𝑛𝑥
)

𝑖,1 ,

(

𝛽RF
𝑞𝑦

)𝑤

𝑖,1
=

[

𝜓𝑖,𝑘 − 𝛿 𝜓𝑖,1,𝑘 12
(

𝜆̃1
𝑐

)𝑤

𝑖,1

]

(

𝑛𝑦
)

𝑖,1 .

Entropy fix

If, for example, the entropy needs to be fixed for the third component of the eigenvectors 𝜆̃3 on the first wall of the 𝑖th cell, the
reduced coefficients presented in (B.1) need to include the following additional terms

𝐵ℎ𝑝𝑘 ↦ 𝐵ℎ𝑝𝑘 +
𝑙𝑖,1
2𝑆𝑖

𝛿 𝜙𝑖,1,𝑘
[

(

𝜆̃−3 − 𝜆̃←3
)

(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)]𝑤

𝑖,1
𝜙𝑖,𝑝 −

𝑔
2
𝑙𝑖,1
𝑆𝑖

(

𝛽3
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

𝜙𝑖,𝑝,

𝐶ℎ𝑝𝑘 ↦ 𝐶ℎ𝑝𝑘 +
𝑙𝑖,1
2𝑆𝑖

𝛿 𝜑𝑖,1,𝑘
(

𝜆̃−3 − 𝜆̃←3
𝑐

)𝑤

𝑖,1

(

𝑛𝑥
)

𝑖,1 𝜙𝑖,𝑝, 𝐷ℎ
𝑝𝑘 ↦ 𝐷ℎ

𝑝𝑘 +
𝑙𝑖,1
2𝑆𝑖

𝛿 𝜓𝑖,1,𝑘
(

𝜆̃−3 − 𝜆̃←3
𝑐

)𝑤

𝑖,1

(

𝑛𝑦
)

𝑖,1 𝜙𝑖,𝑝,

𝐵𝑞𝑥𝑝𝑘 ↦ 𝐵𝑞𝑥𝑝𝑘 +
𝑙𝑖,1
𝑆𝑖
𝛿 𝜙𝑖,1,𝑘

[

(

𝜆̃−3 − 𝜆̃←3
) 𝑢̃𝑥 + 𝑐 𝑛𝑥

2

(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)

]𝑤

𝑖,1

𝜑𝑖,𝑝 −
𝑔
2
𝑙𝑖,1
𝑆𝑖

[

𝛽3
𝜆̃−3
𝜆̃3

(

𝑢̃𝑥 + 𝑐 𝑛𝑥
)

]𝑤

𝑖,1

𝜑𝑖,𝑝,

𝐶𝑞𝑥𝑝𝑘 ↦ 𝐶𝑞𝑥𝑝𝑘 +
𝑙𝑖,1
𝑆𝑖
𝛿 𝜑𝑖,1,𝑘

[

(

𝜆̃−3 − 𝜆̃←3
) 𝑢̃𝑥 + 𝑐 𝑛𝑥

2𝑐
𝑛𝑥

]𝑤

𝑖,1

𝜑𝑖,𝑝,

𝐷𝑞𝑥
𝑝𝑘 ↦ 𝐷𝑞𝑥

𝑝𝑘 +
𝑙𝑖,1
𝑆𝑖
𝛿 𝜓𝑖,1,𝑘

[

(

𝜆̃−3 − 𝜆̃←3
) 𝑢̃𝑥 + 𝑐 𝑛𝑥

2𝑐
𝑛𝑦

]𝑤

𝑖,1

𝜑𝑖,𝑝,

𝐵
𝑞𝑦
𝑝𝑘 ↦ 𝐵

𝑞𝑦
𝑝𝑘 +

𝑙𝑖,1
𝑆𝑖
𝛿 𝜙𝑖,1,𝑘

[

(

𝜆̃−3 − 𝜆̃←3
)
𝑢̃𝑦 + 𝑐 𝑛𝑦

2

(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)

]𝑤

𝑖,1

𝜓𝑖,𝑝 −
𝑔
2
𝑙𝑖,1
𝑆𝑖

[

𝛽3
𝜆̃−3
𝜆̃3

(

𝑢̃𝑦 + 𝑐 𝑛𝑦
)

]𝑤

𝑖,1

𝜓𝑖,𝑝,

𝐶
𝑞𝑦
𝑝𝑘 ↦ 𝐶

𝑞𝑦
𝑝𝑘 +

𝑙𝑖,𝑒
𝑆𝑖
𝛿 𝜑𝑖,1,𝑘

[

(

𝜆̃−3 − 𝜆̃←3
)
𝑢̃𝑦 + 𝑐 𝑛𝑦

2𝑐
𝑛𝑥

]𝑤

𝑖,1

𝜓𝑖,𝑝,

𝐷
𝑞𝑦
𝑝𝑘 ↦ 𝐷

𝑞𝑦
𝑝𝑘 +

𝑙𝑖,𝑒
𝑆𝑖
𝛿 𝜓𝑖,1,𝑘

[

(

𝜆̃−3 − 𝜆̃←3
)
𝑢̃𝑦 + 𝑐 𝑛𝑦

2𝑐
𝑛𝑦

]𝑤

𝑖,1

𝜓𝑖,𝑝. (C.2)

Wet/dry treatment

Let consider the reduced coefficients of the ARoe-based ROM (15) and assume that at the first wall of the 𝑖th cell that connects
it to the 𝑗th cell the wet/dry condition is met, i.e., ℎ𝑗 + 𝑧𝑗 < 𝑧𝑖. In that case, the reduced coefficients presented in (B.1) need to
include the following additional terms
25 
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𝐵ℎ𝑝𝑘 ↦ 𝐵ℎ𝑝𝑘 +
1
2
𝑙𝑖,1
𝑆𝑖
𝛿 𝜙𝑖,1,𝑘

[

𝜆̃−1
(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

+ 𝜆̃−3
(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)]𝑤

𝑖,1

(

𝜙𝑖,𝑝 − 𝜙𝑗 ,𝑝
)

−
𝑔
2
𝑙𝑖,1
𝑆𝑖

(

𝛽1
𝜆̃−1
𝜆̃1

+ 𝛽3
𝜆̃−3
𝜆̃3

)𝑤

𝑖,1

(

𝜙𝑖,𝑝 − 𝜙𝑗 ,𝑝
)

,

𝐶ℎ𝑝𝑘 ↦ 𝐶ℎ𝑝𝑘 −
1
2
𝑙𝑖,1
𝑆𝑖
𝛿 𝜑𝑖,1,𝑘

(

𝜆̃−1 − 𝜆̃−3
𝑐

)𝑤

𝑖,1

(

𝑛𝑥
)

𝑖,1
(

𝜙𝑖,𝑝 − 𝜙𝑗 ,𝑝
)

,

𝐷ℎ
𝑝𝑘 ↦ 𝐷ℎ

𝑝𝑘 −
1
2
𝑙𝑖,1
𝑆𝑖
𝛿 𝜓𝑖,1,𝑘

(

𝜆̃−1 − 𝜆̃−3
𝑐

)𝑤

𝑖,1

(

𝑛𝑦
)

𝑖,1
(

𝜙𝑖,𝑝 − 𝜙𝑗 ,𝑝
)

,

𝐵𝑞𝑥𝑝𝑘 ↦ 𝐵𝑞𝑥𝑝𝑘 −
𝑔
2
𝑙𝑖,1
𝑆𝑖

[

𝛽1
𝜆̃−1
𝜆̃1

(

𝑢̃𝑥 − 𝑐 𝑛𝑥
)

+ 𝛽3
𝜆̃−3
𝜆̃3

(

𝑢̃𝑥 + 𝑐 𝑛𝑥
)

]𝑤

𝑖,1

(

𝜑𝑖,𝑝 − 𝜑𝑗 ,𝑝
)

+
𝑙𝑖,1
𝑆𝑖
𝛿 𝜙𝑖,1,𝑘

[

𝜆̃−1
𝑢̃𝑥 − 𝑐 𝑛𝑥

2

(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

+ 𝜆̃−2
(

𝑢̃𝑦𝑛𝑥 − 𝑢̃𝑥𝑛𝑦
)

𝑛𝑦 + 𝜆̃−3
𝑢̃𝑥 + 𝑐 𝑛𝑥

2

(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)

]𝑤

𝑖,1

(

𝜑𝑖,𝑝 − 𝜑𝑗 ,𝑝
)

,

𝐶𝑞𝑥𝑝𝑘 ↦ 𝐶𝑞𝑥𝑝𝑘 −
𝑙𝑖,1
𝑆𝑖
𝛿 𝜑𝑖,1,𝑘

[

𝜆̃−1
𝑢̃𝑥 − 𝑐 𝑛𝑥

2𝑐
𝑛𝑥 − 𝜆̃−2 𝑛𝑦𝑛𝑦 − 𝜆̃

−
3
𝑢̃𝑥 + 𝑐 𝑛𝑥

2𝑐
𝑛𝑥

]𝑤

𝑖,1

(

𝜑𝑖,𝑝 − 𝜑𝑗 ,𝑝
)

,

𝐷𝑞𝑥
𝑝𝑘 ↦ 𝐷𝑞𝑥

𝑝𝑘 −
𝑙𝑖,1
𝑆𝑖
𝛿 𝜓𝑖,1,𝑘

[

𝜆̃−1
𝑢̃𝑥 − 𝑐 𝑛𝑥

2𝑐
𝑛𝑦 + 𝜆̃−2 𝑛𝑥𝑛𝑦 − 𝜆̃

−
3
𝑢̃𝑥 + 𝑐 𝑛𝑥

2𝑐
𝑛𝑦

]𝑤

𝑖,1

(

𝜑𝑖,𝑝 − 𝜑𝑗 ,𝑝
)

,

𝐵
𝑞𝑦
𝑝𝑘 ↦ 𝐵

𝑞𝑦
𝑝𝑘 −

𝑔
2
𝑙𝑖,1
𝑆𝑖

[

𝛽1
𝜆̃−1
𝜆̃1

(

𝑢̃𝑦 − 𝑐 𝑛𝑦
)

+ 𝛽3
𝜆̃−3
𝜆̃3

(

𝑢̃𝑦 + 𝑐 𝑛𝑦
)

]𝑤

𝑖,1

(

𝜓𝑖,𝑝 − 𝜓𝑗 ,𝑝
)

+
𝑙𝑖,1
𝑆𝑖
𝛿 𝜙𝑖,1,𝑘

[

𝜆̃−1
𝑢̃𝑦 − 𝑐 𝑛𝑦

2

(

1 + 𝐮̃ ⋅ 𝐧
𝑐

)

− 𝜆̃−2
(

𝑢̃𝑦𝑛𝑥 − 𝑢̃𝑥𝑛𝑦
)

𝑛𝑥 + 𝜆̃−3
𝑢̃𝑦 + 𝑐 𝑛𝑦

2

(

1 − 𝐮̃ ⋅ 𝐧
𝑐

)

]𝑤

𝑖,1

(

𝜓𝑖,𝑝 − 𝜓𝑗 ,𝑝
)

,

𝐶
𝑞𝑦
𝑝𝑘 ↦ 𝐶

𝑞𝑦
𝑝𝑘 −

𝑙𝑖,1
𝑆𝑖
𝛿 𝜑𝑖,1,𝑘

[

𝜆̃−1
𝑢̃𝑦 − 𝑐 𝑛𝑦

2𝑐
𝑛𝑥 + 𝜆̃−2 𝑛𝑥𝑛𝑦 − 𝜆̃

−
3

𝑢̃𝑦 + 𝑐 𝑛𝑦
2𝑐

𝑛𝑥

]𝑤

𝑖,1

(

𝜓𝑖,𝑝 − 𝜓𝑗 ,𝑝
)

,

𝐷
𝑞𝑦
𝑝𝑘 ↦ 𝐷

𝑞𝑦
𝑝𝑘 −

𝑙𝑖,1
𝑆𝑖
𝛿 𝜓𝑖,1,𝑘

[

𝜆̃−1
𝑢̃𝑦 − 𝑐 𝑛𝑦

2𝑐
𝑛𝑦 − 𝜆̃−2 𝑛𝑥𝑛𝑥 − 𝜆̃

−
3

𝑢̃𝑦 + 𝑐 𝑛𝑦
2𝑐

𝑛𝑦

]𝑤

𝑖,1

(

𝜓𝑖,𝑝 − 𝜓𝑗 ,𝑝
)

. (C.3)

Data availability

Data will be made available on request.
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