000148938 001__ 148938
000148938 005__ 20250123152145.0
000148938 0247_ $$2doi$$a10.1016/j.combustflame.2024.113956
000148938 0248_ $$2sideral$$a142097
000148938 037__ $$aART-2025-142097
000148938 041__ $$aeng
000148938 100__ $$0(orcid)0000-0003-1337-0310$$aMuelas, Álvaro$$uUniversidad de Zaragoza
000148938 245__ $$aEffect of additional heat transfer modes on measured evaporation and combustion rates of isolated hydrocarbon droplets
000148938 260__ $$c2025
000148938 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148938 5203_ $$aThis work addresses the impact of different additional heat transfer modes on the evaporation behaviors extracted from single droplet experiments. Conduction of heat through the support filaments, absorption of radiation and external convective effects can induce significant deviations from the targeted canonical problem, where the only heat transfer mode is usually assumed to be conduction through the droplet-gas interface. When these additional modes are not duly accounted for, those deviations should be considered as experimental artifacts. This work is an extension of a previous study describing a theoretical framework to estimate the magnitude of each experimental artifact by means of dimensionless numbers. Whereas the method had been validated with high-temperature evaporation data obtained for alcohols droplets, this assessment is now extended to cover situations of practical relevance including hydrocarbon fuels (dodecane and Jet A) vaporizing under both oxygen-free and oxidizing atmospheres. Results from a total of 352 tests support the use of the proposed method also for hydrocarbons and droplet combustion scenarios, allowing for an inexpensive estimation of the different experimental artifacts in single droplet tests, as required for the correct interpretation of droplet evaporation/combustion experimental data.
000148938 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-140620OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN PRE2020-094620
000148938 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000148938 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000148938 700__ $$0(orcid)0000-0001-6663-0740$$aPoonawala, Taha$$uUniversidad de Zaragoza
000148938 700__ $$0(orcid)0000-0003-2863-4681$$aBallester, Javier$$uUniversidad de Zaragoza
000148938 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000148938 773__ $$g273 (2025), 113956 [5 pp.]$$pCombust. flame$$tCombustion and Flame$$x0010-2180
000148938 8564_ $$s1370834$$uhttps://zaguan.unizar.es/record/148938/files/texto_completo.pdf$$yVersión publicada
000148938 8564_ $$s2694191$$uhttps://zaguan.unizar.es/record/148938/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000148938 909CO $$ooai:zaguan.unizar.es:148938$$particulos$$pdriver
000148938 951__ $$a2025-01-23-14:47:25
000148938 980__ $$aARTICLE