000148960 001__ 148960
000148960 005__ 20250123152146.0
000148960 0247_ $$2doi$$a10.3390/ijms252313048
000148960 0248_ $$2sideral$$a142105
000148960 037__ $$aART-2024-142105
000148960 041__ $$aeng
000148960 100__ $$aBidooki, Seyed Hesamoddin
000148960 245__ $$aSqualene in Nanoparticles Improves Antiproliferative Effect on Human Colon Carcinoma Cells Through Apoptosis by Disturbances in Redox Balance
000148960 260__ $$c2024
000148960 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148960 5203_ $$aSqualene, a triterpene found in extra virgin olive oil, has therapeutic properties in diseases related to oxidative stress, such as cancer. However, its hydrophobic nature and susceptibility to oxidation limit its bioavailability outside of olive oil. To expand its applications, alternative delivery methods are necessary. The objective of the present study was to examine the impact of squalene encapsulated in PLGA (poly(lactic-co-glycolic) acid) nanoparticles (PLGA + Sq) on the proliferation of human colon carcinoma Caco-2 cells, as well as its underlying mechanism of action. The findings demonstrated that PLGA + Sq exert no influence on differentiated cells; however, it is capable of reducing the proliferation of undifferentiated Caco-2 cells through apoptosis and cell cycle arrest in the G1 phase. This effect was initiated by the release of cytochrome c into the cytoplasm and the subsequent activation of caspase-3. Furthermore, squalene exhibited pro-oxidant activity, as evidenced by an increase in intracellular ROS (reactive oxygen species) levels. The results of the squalene effect on genes associated with cell death, inflammation, and the cell cycle indicate that its antiproliferative effect may be post-transcriptional. In conclusion, PLGA + Sq demonstrate an antiproliferative effect on Caco-2 cells through apoptosis by altering redox balance, suggesting squalene’s potential as a functional food ingredient for colorectal cancer prevention.
000148960 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B16-23R$$9info:eu-repo/grantAgreement/ES/ISCIII-CIBERObn/CB06-03-1012$$9info:eu-repo/grantAgreement/ES/MICINN AEI/PID2022-1364140B- I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1$$9info:eu-repo/grantAgreement/EUR/SUDOE/INTERREG/NEWPOWER-S1-1.1-E01116
000148960 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000148960 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000148960 700__ $$0(orcid)0009-0001-5345-6947$$aQuero, Javier$$uUniversidad de Zaragoza
000148960 700__ $$0(orcid)0000-0002-9023-741X$$aSánchez-Marco, Javier
000148960 700__ $$aHerrero-Continente, Tania
000148960 700__ $$aMarmol, Inés
000148960 700__ $$aLasheras, Roberto
000148960 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, Victor$$uUniversidad de Zaragoza
000148960 700__ $$0(orcid)0000-0003-3165-0156$$aArruebo, Manuel$$uUniversidad de Zaragoza
000148960 700__ $$0(orcid)0000-0002-8251-8457$$aOsada, Jesús$$uUniversidad de Zaragoza
000148960 700__ $$0(orcid)0000-0002-3595-7668$$aRodriguez-Yoldi, María Jesús$$uUniversidad de Zaragoza
000148960 7102_ $$11012$$2410$$aUniversidad de Zaragoza$$bDpto. Farmac.Fisiol.y Med.L.F.$$cÁrea Fisiología
000148960 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000148960 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000148960 773__ $$g25, 23 (2024), 13048 [17 pp.]$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000148960 8564_ $$s3719484$$uhttps://zaguan.unizar.es/record/148960/files/texto_completo.pdf$$yVersión publicada
000148960 8564_ $$s2747267$$uhttps://zaguan.unizar.es/record/148960/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000148960 909CO $$ooai:zaguan.unizar.es:148960$$particulos$$pdriver
000148960 951__ $$a2025-01-23-14:47:53
000148960 980__ $$aARTICLE