000148978 001__ 148978
000148978 005__ 20251113150205.0
000148978 0247_ $$2doi$$a10.1021/acsaem.2c02123
000148978 0248_ $$2sideral$$a142115
000148978 037__ $$aART-2022-142115
000148978 041__ $$aeng
000148978 100__ $$0(orcid)0000-0001-9942-9322$$aVillanueva, Nicolás
000148978 245__ $$aIron Electrodes Based on Sulfur-Modified Iron Oxides with Enhanced Stability for Iron–Air Batteries
000148978 260__ $$c2022
000148978 5060_ $$aAccess copy available to the general public$$fUnrestricted
000148978 5203_ $$aIron–air systems are a very promising technology with the potential to become one of the cheapest and safest energy storage solutions of the future. However, iron anodes still face some challenges like passivation, resulting in loss of capacity, due to the formation of nonconductive species during cycling as well as the hydrogen evolution reaction, a parasitic reaction interfering with the charging of the electrode. In the present work these two issues are addressed: Sulfur-modified mesoporous iron oxides are obtained and used as hot-pressed negative electrodes for alkaline iron–air batteries. Iron electrodes present average capacity values between 400 and 500 mA h g Fe–1 for ∼100 h of operation, the S-modified iron oxides being the most stable ones. An exponential deactivation model fitting the discharge capacity of the different electrodes compared to the number of cycles was proposed. According to the model, the best of the electrodes loses less than 0.5% of its capacity per cycle. Furthermore, doubling the charge and discharge rates allows increasing both the discharge capacity and the Coulumbic efficiency, though at the expense of stability. This manuscript proves that the proper distribution of sulfur on the surface of the iron oxide is fundamental to suppress the HER and passivation, enhancing the stability of the electrode. These properties were further corroborated in long test-runs which comprised more than 400 h of charging and discharging.
000148978 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T06-20R Grupo de Conversión de Combustibles$$9info:eu-repo/grantAgreement/ES/AEI/IJCI-2017-32354
000148978 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000148978 590__ $$a6.4$$b2022
000148978 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b86 / 343 = 0.251$$c2022$$dQ2$$eT1
000148978 591__ $$aCHEMISTRY, PHYSICAL$$b43 / 161 = 0.267$$c2022$$dQ2$$eT1
000148978 591__ $$aENERGY & FUELS$$b40 / 119 = 0.336$$c2022$$dQ2$$eT2
000148978 592__ $$a1.588$$b2022
000148978 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000148978 593__ $$aElectrical and Electronic Engineering$$c2022$$dQ1
000148978 593__ $$aMaterials Chemistry$$c2022$$dQ1
000148978 593__ $$aEnergy Engineering and Power Technology$$c2022$$dQ1
000148978 593__ $$aElectrochemistry$$c2022$$dQ1
000148978 594__ $$a9.5$$b2022
000148978 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000148978 700__ $$aAlegre, Cinthia
000148978 700__ $$0(orcid)0000-0003-1029-3751$$aRubin, Javier$$uUniversidad de Zaragoza
000148978 700__ $$aFigueredo-Rodríguez, Horacio A.
000148978 700__ $$aMcKerracher, Rachel D.
000148978 700__ $$ade León, Carlos Ponce
000148978 700__ $$aLázaro, María Jesús
000148978 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000148978 773__ $$g5, 11 (2022), 13439-13451$$pACS app. energy mater.$$tACS applied energy materials$$x2574-0962
000148978 8564_ $$s12916883$$uhttps://zaguan.unizar.es/record/148978/files/texto_completo.pdf$$yVersión publicada
000148978 8564_ $$s3131441$$uhttps://zaguan.unizar.es/record/148978/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000148978 909CO $$ooai:zaguan.unizar.es:148978$$particulos$$pdriver
000148978 951__ $$a2025-11-13-15:00:48
000148978 980__ $$aARTICLE