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Abstract: Energy harvesting technologies are becoming increasingly popular as potential
sources of energy for Internet of Things (IoT) devices. Magnetic field energy harvesting
(MFEH) from current-carrying components, such as power cables, represents a particu-
larly promising technology for smart grid, infrastructure, and environmental monitoring
applications. This paper presents a single-stage AC/DC power converter, a control archi-
tecture, and an energy harvester design applicable to MFEH devices. The power converter
consists of a MOSFET full bridge that is used to actively rectify the induced voltage at the
transceiver while providing a regulated output voltage. The approach is suitable for a
broad range of grid power lines, offering a compact power stage that achieves a reduction
in component count while active rectification minimizes energy losses, thereby improving
thermal management in power electronics compared with the previous research. The
experimental results demonstrate that the power converter provides a stable energy source
and offers an alternative to self-powering smart grid IoT devices.

Keywords: single-stage AC/DC converter; magnetic field energy harvesting (MFEH);
self-powered IoT sensors; smart grid IoT

1. Introduction
The electrical power grid is encouraging the transition to more sustainable energy

sources and processes, with the objective of reducing the consumption of fossil fuels and
expanding the integration of renewable energy sources [1]. The electrical system is con-
fronted with significant challenges that have emerged from the integration of distributed
energy resources, electric vehicles, and energy storage, while conventional thermal plants
are being decommissioned, resulting in a more complex power grid [2,3]. This new ap-
proach presents challenges to distribution networks that were originally designed under
different conditions, including the management of congestion and the maintenance of a
consistent balance between supply and demand. Furthermore, there is a gradual increase
in the number of electronic devices being used as inverters, power supplies, or battery
chargers based on power electronics that produce the harmonic distortion of either voltage
or current waveforms as a result of the inherent nonlinearity of technology [4,5]. More-
over, the deployment of additional distribution and transmission lines to increase power
capacity will require additional efforts [6], including more frequent maintenance and more
rigorous inspection procedures to guarantee the resilience of the grid [7]. As a result, there
is a growing interest in more sophisticated grid monitoring techniques [8,9] and more
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effective assessment methods to ensure the reliability of electrical networks [10,11] and to
maintain the continuity of supply and the quality of service, thereby strengthening grid
resilience [12,13].

With the increasing number of connected devices, the Internet of Things (IoT) is
becoming a global phenomenon that is transforming the industry [14]. The IoT is gradu-
ally developing a vast network of interconnecting devices that can provide data through
sensors [15]. This expansion is driven by a number of technological developments, includ-
ing upgraded connectivity features that enable advanced communication networks [16],
ultra-low power microprocessors that equip edge computing capabilities [17], and the
evolution of sophisticated algorithms powered by AI that analyze and compute large
volumes of data [11]. On the other hand, edge computing offers a solution by distributing
the computational load across different elements connected to the network, facilitating its
scalability [18]. As a result, the IoT is fostering new opportunities to increase reliability and
efficiency in the industry and the electrical sector [19].

The deployment of monitoring devices for smart grids in distribution or transmission
power lines necessitates the provision of an energy source, such as batteries. However,
this is often impractical for a multitude of applications, primarily due to the considerable
number of devices and the challenging accessibility of their locations [20,21]. It is therefore
evident that energy harvesting represents a crucial element in ensuring the uninterrupted
operation of maintenance-free smart grid devices [22–27]. Magnetic field energy harvesting
(MFEH) is a technology that enables the capture and conversion of the magnetic field
present around power lines into a form of energy that can be used to power IoT devices.
MFEH enables the utilization of the AC current-carrying components of the power grid,
such as overhead and underground power cables, as an energy source without the neces-
sity for voltage transformation [28–32]. In comparison with alternative energy harvesting
techniques that capture ambient energy, including solar, wind, thermal, mechanical vibra-
tions, radio frequency, or electric fields, MFEH from power cables is not contingent on the
intermittent nature of the source [33–36]. Furthermore, it has high energy density, which
makes it a promising technology for smart grids to provide energy from the current flows
present in the conductor in a non-intrusive way [30,37,38].

The energy consumption of an IoT device may vary depending on several factors,
including the number and type of sensors, the frequency of data refresh, the complexity of
processing algorithms, the nature of data transmission and reception, and the activation
of power-saving features. MFEH technology represents a viable alternative that can serve
as an energy source, while simultaneously extending the lifespan of sensors and reducing
maintenance downtime and operational expenses [39–41]. An IoT device based on MFEH
technology typically comprises the following essential components [42–44]:

• Transducer: A device that harvests energy from magnetic fields by utilizing a ferro-
magnetic core which concentrates the magnetic flux and induces the secondary coil
from the AC current-carrying component. Consequently, the MFEH is also referred to
as inductive energy harvesting.

• Power converter: A power electronic stage that converts the induced voltage in the
transducer into a suitable form of electricity for electronic devices.

• Energy storage: Stores harvested energy to provide a regulated DC bus. A superca-
pacitor or battery can be used to decouple the energy source from the load.

• Sensors and microcontroller: For data collection and information management. This
involves edge computing, connectivity, data storage, and user interfaces.

Extensive research has been conducted in the field of MFEH, addressing various critical
aspects. In [21], a magnetic energy harvester device and multistage power supply based
on a rectifier and a voltage regulation stage output circuit are proposed. Nevertheless,
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the experimental results are not presented. In [32], the design optimization of energy
harvesting devices is analyzed, with a particular focus on magnetic devices. In [28], a
multistage power converter based on a diode rectifier and two active MOSFET controllers
is proposed as a means of applying a desaturation technique with a view to enhance the
energy harvested. Additionally, in [29], a diode rectifier, a voltage regulator, and an active
MOSFET control are employed to maintain the core in the non-saturation operation region
via a control coil. Furthermore, an alternative approach is proposed in [31], employing
a two-stage power supply based on a diode rectifier and a buck converter. In [38], the
high-efficiency implementation of a two-stage battery charger that utilizes an active bridge
rectifier and a synchronous buck converter is also presented.

Despite these advancements, the current state of the art predominantly relies on
multistage converters to manage harvested energy. In contrast, a single-stage converter
would entail a reduction in components, leading to a reduction in device cost and size.
Furthermore, active rectification contributes to the minimizing of losses in power electronics,
improving thermal management and positively impacting key factors. Thus, this study
seeks to address this limitation by exploring the implementation of an MFEH integrated
with a single-stage power converter and a control strategy. The key contributions of this
research include the following:

• Development of a single-stage AC-to-DC power converter designed to reduce compo-
nents and thermal losses in power electronics in the energy conversion process;

• Design and implementation of a control architecture for voltage regulation and active
rectification, enhancing the performance of the proposed power stage;

• Design of the energy harvesting system tailored to achieve an extended and
efficient range.

To achieve these objectives, the theoretical framework was analyzed to detail the
operating principle of MFEH, which involves capturing the magnetic field generated by
a power line and converting it into electrical energy to power electronic devices. The
unregulated induced AC voltage from the magnetic field must be managed by a power
converter. Typically, this process involves a stage that rectifies the AC voltage into a variable
DC voltage, which then requires an additional regulation stage to adapt it to the desired
range. This article proposes a single-stage approach that integrates active rectification and a
control mechanism to regulate the DC voltage within the required operating range, thereby
eliminating the need for multiple conversion stages. Circuit simulations were conducted
to validate the design and assess its performance. Finally, the proposed power stage was
experimentally validated in the laboratory using a prototype.

The document is structured as follows: Section 2 introduces the operating principle
of the MFEH. Then, in Section 3, the approach for the single-stage power converter is
explained and the functions are outlined. In Section 4, the proposed design for the energy
harvesting is described. Section 5 presents the laboratory mock-up and the results for
the operation at various points of interest. Finally, Section 6 provides a discussion of the
findings presented in the paper.

2. Operating Principle
The MFEH of current-carrying components is the method of converting the energy

present in the magnetic field created when an alternating current flows through a conductor
into electrical energy. As shown in Figure 1, it is based on a current transformer that clamps
a current-carrying component as a power line and comprises a ferromagnetic core, the
power line with an AC current that constitutes the primary winding, and the secondary
winding. The ferromagnetic core is composed of magnetic materials with high permeability,
which create a low-reluctance pathway for the magnetic field to induce a voltage in the
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secondary winding. The parameters Np and Ns represent the number of turns in the
primary and secondary windings, while D, d, and h represent the outer diameter, inner
diameter, and height, respectively.
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Figure 1. Magnetic field energy harvester comprising a ferromagnetic core and secondary coil situated
within a power line.

The secondary coil’s induced voltage is derived from Faraday’s law of electromagnetic
induction. This law states that the electromotive force induced in a closed loop is directly
proportional to the rate of change of magnetic flux through the loop. In mathematical form,
Faraday’s law is expressed as follows:

ε(t) = −Ns
dΦ(t)

dt
(1)

where E (t) represents the induced electromotive force, Φ(t) denotes the magnetic flux, and
Ns signifies the number of turns on the secondary coil. The negative sign indicates that
the induced electromotive force creates a voltage that opposes the change in magnetic flux
in accordance with Lenz’s law as a consequence of the law of conservation of energy. In
order to establish the induced electromotive force, it is necessary to determine the magnetic
flux in the ferromagnetic core passing through a differential area (dS) perpendicular to the
magnetic field direction. This can be calculated as follows:

Φ(t) =
∫

B(t)·dS (2)

The magnetic flux is dependent on the magnetic flux density B(t), which is determined
by the magnetic permeability µ of a material in function of the magnetic field strength H(t)
applied by the power line. This relationship is expressed in the following equation:

B(t) = µ·H(t) (3)

The permeability is a measure of the magnetization that is produced in a material
in response to an applied magnetic field. There is no simple relationship between H
and B because these materials have non-linear magnetic behavior and exhibit significant
magnetic hysteresis, so there is not even a single-valued functional relationship. The
approximate magnetic field strength H(t) applied by the power line to the ferromagnetic
core is determined by means of the effective magnetomotive force MMF(t), expressed in
ampere-turn, divided by the effective core length Le.

H(t) =
MMF(t)

Le
(4)
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The effective magnetomotive force is a function of the primary current ip(t) and a
secondary side current is(t) in a coil with Ns.

MMF(t) = ip(t)− Nsis(t) (5)

In the case of an AC power line, the primary current can be simplified by assuming a
sinusoidal waveform. On the other hand, the secondary current is(t) has the same frequency
as the primary current while the waveform is dependent on the active rectification and the
impedance of the load.

MMF(t) = Ip maxsin(wt)− Nsis(t) (6)

In the case of a toroid, the effective core length, which is equivalent to the mean
distance traversed by the magnetic flux lines within the magnetic circuit, is given by the
following expression:

Le =
π(D − d)

ln
D
d

(7)

where d determines the inner radius and D refers to the outer radius. Then, the approximate
magnetic field strength H(t) for a toroid installed on an AC power line is given by the
following expression:

H(t) =
MMF(t)

Le
=

Ip maxsin(wt)− Nsis

π(D − d)

ln
D
d

(8)

Consequently, the magnitude of the voltage induced in the MFEH is determined by the
primary current magnitude, the load impedance, and the material properties and physical
design of the ferromagnetic core. Since the energy harvester generates a variable induced
voltage, a power converter is necessary to ensure a stable output voltage, effectively manage
the harvested energy, and protect the connected electronic device.

3. Power Converter
The frequency of the AC voltage induced in the transducer depends on the grid

frequency, which is generally 50 Hz or 60 Hz worldwide. The amplitude of the secondary
voltage and current varies with the primary current and depends, among other parameters,
on the ferromagnetic properties of the core material, the number of turns in the secondary
winding, and the load consumption.

As shown in Figure 2, a single-stage MOSFET H-bridge is proposed to rectify the
alternative current and manage the wide and variable voltages induced. The N-channel
MOSFET bridge provides full-wave active rectification with low power losses. This topol-
ogy also simplifies the thermal design, eliminates the need for heat sinks, and reduces the
size of the PCB, increasing power density. To mitigate the effects of voltage spikes, the
following two TVS diodes are integrated into the circuit: one bidirectional (D1) for the AC
side and another unidirectional (D2) for the DC bus. A ceramic bypass capacitor (C1) is in
conjunction with a large electrolytic smoothing capacitor (C2) to mitigate voltage ripple
and enhance DC bus stability. The shunt resistors (R1) and (R2) are used to determine the
current flowing through each H-bridge leg, while the AC voltage in the MFEH and the
voltage in the DC bus are measured for control purposes.

The control unit manages the DC voltage acting over the four switches of the H-bridge.
Figure 3 illustrates the high-level controller that generates the enable/disable order for the
active rectifier control. For this purpose, DC voltage is measured (VDC) and compared with
the voltage reference (VDCRe f ), and the error signal (eV) is generated. Then, the hysteresis
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regulator [45] enables the active rectifier if the error signal falls below the hysteresis lower
limit or disables it if error rises above the upper limit. When active rectification control is
disabled, as Figure 4 shows, both bottom switches (S3 and S4) are closed to short-circuit
the secondary coil. This mechanism halts additional energy harvesting, regulating the
voltage in the DC bus and thus preventing the occurrence of hazardous voltage levels
for the electronic components. Switches S3 and S4 are activated instead of S1 and S2 to
maintain the current measurement by shunt sensors R1 and R2 (IR1 and IR2, respectively).
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Figure 4. DC voltage regulator forces a secondary coil short-circuit in the energy harvester to impede
any further energy harvesting and prevent overvoltage in DC bus.

On the other hand, when an error signal falls below the hysteresis lower limit, the
active rectifier control is enabled. In this case, all the switches are opened and IR1 and
IR2 are measured to monitor the current direction, depending on whether the half-cycle is
positive or negative. If IR1 takes a positive value, the AC voltage (VAC) is higher than VDC

and S2 and S3 are activated (Figure 5a) to force current flow through the MOSFET channel
instead of the body diode, minimizing power losses. On the contrary, if IR2 becomes
positive, then −VAC is higher than VDC and S1 and S4 are closed (Figure 5b). Both states
end when the activation condition becomes false (|VAC| < VDC), measured as a direction
change in IR1 and IR2, and all the switches remain open until a new activation condition
is satisfied.
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The control algorithm is implemented with a loop frequency of 20 kHz, which is
substantially higher than the operating frequency of the active rectifier (50–60 Hz). This high
frequency enables the MOSFETs to be efficiently controlled via GPIOs. In this application,
the control loop delay of 50 µs is negligible, allowing for the rapid response and precise
regulation of the output voltage.
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Power Electronic Stage Simulation

To validate the proposed power electronic converter and its control architecture, a
detailed simulation was conducted using Simba simulation software V 24.11. The simu-
lation model incorporates the key components of the system, including the transducer,
the single-stage converter, and the control algorithm for active rectification and voltage
regulation, as illustrated in Figure 6. COMP1 and COMP2 are employed to control active
rectification by comparing the voltage across shunt resistors R1 and R2 with the voltage
thresholds of registers C1 and C2, respectively. COMP3 is utilized for voltage regulation by
comparing the output voltage with the setpoint defined by register C3. To account for a
control loop delay of 50 µs, delay blocks are incorporated following each comparator. The
primary objective of the simulation is to evaluate the performance of the system in both the
initial transient and steady state conditions.
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Figure 7 presents the simulation results for the initial transient response of the pro-
posed power electronic stage and control architecture. During this phase, the control
algorithm first performs active rectification to charge the DC bus capacitor. Once the target
voltage setpoint is reached, the voltage regulator stabilizes the output voltage. The system’s
rapid response ensures that the output voltage remains within the desired range, even
under dynamic variations in harvested energy.
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The steady state behavior of the system is detailed in Figure 8, showcasing a stable
output voltage of 15 V on the DC bus with minimal ripple. The simulation demonstrates
the effectiveness of the short-circuiting mechanism in preventing overvoltage conditions.
During periods of surplus energy harvesting, the control loop activates the short-circuiting
transducer, ensuring the DC bus voltage remains within safe limits. These findings confirm
that the proposed design satisfies the operational requirements of self-powered smart grid
IoT devices, providing stable, efficient, and reliable performance.
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4. Magnetic Field Energy Harvesting
The design of the MFEH transducer requires the careful consideration of its electrical

characteristics to ensure compatibility with the power stage. Key elements, such as the
ferromagnetic core and winding, must be optimized to achieve an appropriate output
voltage range and adequate power delivery across the full spectrum of power line current
variations. The objective is to establish the design for an efficient and reliable energy
harvester. This will be achieved by optimizing the key parameters that define the MFEH
transducer, such as the material, geometry, and number of turns. These parameters will be
based on the previous studies [46] to ensure that the harvester meets the requirements of
the targeted application.

The current range within power lines can vary significantly depending on the intended
application. In this work, we have considered a maximum current of 600 A and a target
power consumption of 1.5 W for the load, which can operate with a minimum of 10% of
the maximum current (60 A) on the power line. A ferromagnetic toroid made of silicon
steel was selected due to its high permeability and cost-effectiveness. To mitigate eddy
currents, a laminated silicon steel core was used. Table 1 provides the design constraints
and specifications for the MFEH transducer. The dimensions were chosen to accommodate
high-diameter power lines while ensuring sufficient energy harvesting capability to power
the load under the minimum specified conditions.

Table 1. Magnetic field energy harvesting specifications and power line characteristics.

Power line (N1) Value Unit

current range 0–600 A (ac)
frequency 50 Hz

Ferromagnetic core Value Unit

weight 178 g
outer diameter (D) 57 mm
inner diameter (d) 41 mm

height (h) 15.6 mm
material grain oriented silicon steel

Secondary coil (N2) Value Unit

turns 360
material tinned copper

area 0.26 mm2

The relationship between voltage and current output is modified by selecting the
number of turns of the secondary coil. The secondary coil was wound with 360 turns in
order to achieve the desired voltage of 15 V DC after the rectification stage at the maximum
power point (MPP), with a minimum primary current of 60 A.

4.1. Magnetic Field Simulations

To validate the proposed approach for the MFEH transducer, a magnetic field sim-
ulation was carried out using FEMM simulation software V 4.2. The simulation model
includes the ferromagnetic core, as well as the primary and secondary coils, accurately
representing the physical characteristics of the system. The performance of the system was
simulated at three significant operating points, representing various conditions to evaluate
its effectiveness and reliability under diverse scenarios.

• Short-circuit current: A short-circuit output current is defined as occurring when the
output terminals are shorted, resulting in a zero-voltage output and the secondary
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current being equal to the primary current divided by the number of turns in the
secondary winding. In this instance, the opposed magnetic field induced in the
secondary is at its maximum, as illustrated in Figure 9a. Consequently, the effective
magnetic field in the ferromagnetic core is negligible, as the magnetic field generated
by the power line is cancelled by the magnetic field induced in the secondary.

• Open-circuit voltage: An open-circuit voltage is generated when the secondary coils
are not connected to any load, resulting in the maximum induced voltage without
current flowing in the secondary winding. At this point, no magnetic field opposes
the primary in the secondary, validating that the geometry selected is able to guide
effectively the magnetic field, reaching saturation levels of 1.6 T, as can be observed in
Figure 9b.

• Maximum Power Point: The MPP is defined as the point at which the relationship
between the voltage induced and the secondary current is at its maximum, resulting
in the highest possible output power for a determined current in the primary coils.
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4.2. MFEH Prototype

The electrical behavior of the MFEH prototype in function of the primary current
is shown in Figure 10, which is based on Table 2. As illustrated in Figure 10a, when the
primary current is 60 A, more than 1.5 W can be harvested when 15 V DC are supplied to
the load. As the primary current increases, more and more energy can be harvested for
the target voltage, ensuring proper operation with a load of 1.5 W. The characterization of
the MFEH reveals a direct relationship between the MPP and the primary current. This
relationship is demonstrated in Figure 10b by a linear regression equation, with a coefficient
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of determination (R2) close to one, indicating that the data points closely align with the
trend line. This correlation is observed over the range of power line currents from 30 to
600 A. In contrast, the potential energy that can be harvested with a primary current of less
than 30 A is negligible. It should be noted that the MFEH is capable of operating at lower
primary currents than 60 A, reaching 15 V on the DC bus. However, this does not provide
sufficient energy for the continuous operation at 1.5 W.

Table 2. Power harvested with MFEH transducer and voltage on DC bus after rectification stage
with multiple primary line currents with different loads. Measured using a diode rectifier and a
programable DC electronic load.

Primary Current (A) MPP

30 W 0.000 0.095 0.669 0.653 0.906 0.776 0.457
V 0.000 1.247 8.500 9.800 16.380 17.500 20.400

60 W 0.000 0.190 0.677 1.240 1.980 1.752 1.530
V 0.000 1.307 3.600 8.130 14.300 18.390 20.550

120 W 0.000 0.401 2.875 4.094 4.190 3.632 2.804
V 0.000 1.337 8.890 13.830 17.860 20.850 23.590

200 W 0.000 0.700 3.608 5.700 6.948 6.234 6.096
V 0.000 1.141 6.070 10.490 15.410 19.600 21.790

300 W 0.000 1.108 9.060 10.208 10.420 9.906 8.900
V 0.000 1.465 10.920 12.890 14.190 19.660 22.820

400 W 0.000 1.500 12.960 13.409 13.540 13.240 12.340
V 0.000 1.514 11.960 13.010 16.230 19.760 22.200

500 W 0.000 1.990 15.210 16.310 16.714 15.952 14.400
V 0.000 1.585 11.140 13.260 15.090 18.470 22.560

600 W 0.000 2.456 18.730 18.923 19.892 19.120 17.950
V 0.000 1.599 11.830 13.000 14.560 17.570 20.980
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Figure 11 illustrates the specific B-H curve extracted from the ferromagnetic core
selected for the proposal. This curve is defined by the following two notable parameters: the
permeability which quantifies the ease with which a material is magnetized when exposed
to an external magnetic field; and the saturation flux density (Bsat), which represents the
maximum amount of magnetic flux that causes the magnetic domains to be fully oriented.
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5. Results
In order to implement and test the proposed approach, the control loop and data acqui-

sition were programmed within a reference board based on an STM32G4 microcontroller.
The power electronic and signal conditioning components associated with the full-bridge
were implemented with an expansion board based on N-channel MOSFETs (STL220N6F7)
that were modified to meet the requirement of working at 50–60 Hz and provide the current
and voltage measurements within the specified range for this application.

In accordance with the specified design parameters, the maximum permissible current
in the power line is 600 A, while the transducer turn ratio in the coil limits the current to
1.67 A on the power converter. The low switching frequency and the turn-on soft-switching
operation have a negligible impact on power losses, thereby promoting energy efficiency.
The MOSFETs selected offer a typical Ron resistance of 1.4 mΩ. In a worst-case scenario
where the H-bridge is constantly short-circuiting the transducer, power loss is concentrated
on the two bottom MOSFETs, each of which has a loss of 3.89 mW. This can be readily
dissipated to the PCB thanks to these losses accounting for 0.5% of the rated power.

Figure 12 illustrates the prototype installed on the test bench, which is equipped to
emulate a power line environment. A 50 Hz alternating magnetic field analogue to a
European power line is generated in the primary coil. This magnetic field is manually
controlled by an autotransformer to regulate the voltage in the current injector. The energy
harvester prototype is connected to the power converter, which is managed by the control
algorithm coded into the microcontroller. The transducer harvests energy from the magnetic
field and the power stage rectifies the induced AC voltage to convert it to fixed 15 V DC
voltage. Finally, a configurable electronic load is added to control the power consumption.

In order to determine the functionality and performance of the single-stage AC/DC
converter with the proposed energy harvester, a series of tests were conducted. To evaluate
the functionality, the induced voltage on the transducer, DC bus voltage output, ripple,
and MOSFET switching control signals were monitored. Taking the maximum current
line under consideration to be 600 A and a fixed 1.5 W load in the DC side, the following
notable tests were carried out:

• The primary current is 5% of the maximum power line current (30 A).
• The primary current is 10% of the maximum power line current (60 A).
• The primary current is 50% of the maximum power line current (300 A).
• The primary current is the maximum power line current (600 A).
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During the first test, the primary current is 5% of the maximum power line current,
equivalent to 30 A. As shown in Figure 13, the voltage achieved on the DC bus at this
specific point is around 10 V, as the harvested power is insufficient to reach 15 V and
continuously provide 1.5 W to the load.
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Figure 13. Laboratory measurements of the induced voltage on the MFEH transducer (yellow), the
DC bus voltage (blue) and the MOSFET switching signals of the bottom MOSFETs (red and green,
active at 0 V) emulating a current of 5% of the maximum power line current (30 A).

The second test is conducted when the DC bus voltage stabilizes at 15 V, which
is observed at a primary coil current of approximately 60 A, equivalent to 10% of the
maximum power line current. Under these conditions, the energy harvested from the
power line equals the power consumed, enabling a continuous supply of 1.5 W to the load.
As shown in Figure 14, the DC bus maintains a stable output of 15 V with minimal ripple,
demonstrating the system’s stability.
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Figure 14. Laboratory measurements of the induced voltage on the MFEH transducer (yellow), the
DC bus voltage (blue) and the MOSFET switching signals of the bottom MOSFETs (red and green,
active at 0 V) emulating a current of 10% of the maximum power line current (60 A).

In the third test, the primary current is defined as 50% of the maximum power line
current, which is equivalent to 300 A. In scenarios where the harvested power exceeds the
load demand, the DC bus voltage regulator plays a critical role in preventing overvoltage
conditions by managing the short-circuiting of the transducer. As illustrated in Figure 15,
during each half-cycle of the AC-induced voltage, the smoothing capacitor on the DC
bus reaches the upper voltage limit within the hysteresis control loop. At this point, a
short-circuit is applied to the transducer by activating both bottom MOSFETs. Once the
capacitor discharges to the lower voltage limit due to load consumption, the short-circuit is
released, restoring normal operation. This mechanism ensures reliable voltage regulation
and protects the system from overvoltage conditions.
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The final test is conducted at the maximum power line current of 600 A. At this
current, the harvested power reaches its maximum surplus, significantly exceeding the
load requirements. As a result, the DC voltage regulator takes over to manage the short-
circuiting of the transducer. In this scenario, the DC bus capacitor charges more rapidly
due to the increased power output from the transducer. It is observed that, for the majority
of the period during which an alternative voltage is induced on the MFEH, the DC voltage
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regulator actively short-circuits the transducer. This behavior is depicted in Figure 16,
highlighting the regulator’s role in maintaining system stability under these conditions.
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the period during which an alternative voltage is induced on the MFEH, the DC voltage 
regulator actively short-circuits the transducer. This behavior is depicted in Figure 16, 
highlighting the regulator’s role in maintaining system stability under these conditions. 

 
Figure 16. Laboratory measurements of the induced voltage on the MFEH transducer (yellow), the
DC bus voltage (blue) and the MOSFET switching signals of the bottom MOSFETs (red and green,
active at 0 V) emulating the maximum power line current (600 A).

The spectral purity of the output signal in each test is approximately 99.99%, with
the dominant frequency being 0 Hz and a negligible component of 100 Hz and multiples,
attributable to grid frequency rectification. This indicates that the majority of the signal’s
energy is concentrated at the DC component.

6. Discussion
This paper presents a single-stage AC/DC power converter and control architecture

designed for a non-intrusive MFEH. This power converter is composed of a full-bridge
MOSFET stage that provides active rectification while regulating the output voltage. The
energy harvester is based on a current transformer that uses alternating current-carrying
components to support the operation of self-powered smart grid IoT devices.

This research introduces a new approach that contributes to the development of
compact energy harvesters suitable for self-powered smart grid IoT devices. The key
contributions of this research include the development of a single-stage AC-to-DC power
electronic converter designed to reduce components and losses in energy conversion
process. Additionally, the design and implementation of a control architecture for voltage
regulation and active rectification has been proposed, enhancing the performance of the
proposed power stage and the design of the energy harvesting system tailored to achieve
an extended and efficient range.

In order to provide further validation of the advantages of the proposed single-stage
power converter, Table 3 provides a comparison between the present design and existing
multistage converter topologies discussed in the state of the art. This comparison highlights
the differences in the number of stages and component count in multistage designs that
typically require separate rectification and regulation stages, generally resulting in greater
complexity and lower energy density in power conversion. The proposed single-stage
approach integrates active rectification that minimizes energy losses, thereby improving
thermal management in power electronics and voltage regulation in a compact power stage.
On the other hand, in contrast to battery-powered devices, the proposed solution requires
a minimum current on the line to power the load.
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Table 3. Comparative comparison of the number of stages, semiconductor and passive elements in
the proposed single-stage converter and existing multistage designs.

Ref Topology Stage 1 Stage 2 Stage 3 Power Elec. Additional

[21] 2 stages rectifier V regulator unknow unknow
[28] cascaded cores clampable core ungapped core diode bridge 6 mosfet + 4 diodes core
[29] 2 stages + control diode bridge DC/DC control coil + mosfet unknow unknow
[31] 2 stages diode bridge buck converter 5 diodes + 1 mosfet inductance
[32] wireless power AC/DC DC/AC AC/DC unknow unknow
[38] 2 stages active rectifier synch. buck 6 mosfet inductance
[42] 2 stages diode bridge DC/DC unknow unknow

Proposed single-stage active bridge 4 mosfet

The results of this research indicate that MFEH technology is an effective method
for powering IoT sensors for integration into smart grids, providing an alternative to the
use of conventional batteries. Further research is required to integrate the MFEH and
power electronics into a field device. In addition, a long-term demonstrator in a real-world
environment is necessary to gather further insights into potential contingencies affecting
electrical infrastructure. These include overcurrent events, unexpected disconnections,
lightning strikes, extremes of temperature, and high humidity. Other challenges that
must be addressed include integrating with existing infrastructure to ensure compatibility,
designing for electromagnetic interference and harmonic distortions, and ensuring easy
deployment in remote locations. Finally, a cost–benefit analysis for scalability and long-
term durability must be conducted. These scenarios would help evaluate the resilience
and reliability of the proposed system under diverse operating conditions. Despite the
negligible influence of a single device on additional impedance and harmonics due to
converter switching in the power line, further research is required to assess the impact of
MFEH in a large-scale deployment of these technologies.
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