
On Optimal Resource Allocation in Virtual Sensor
Networks

Carmen Delgadoa, José Ramón Gállegoa,∗, Marı́a Canalesa, Jorge Ortı́nb, Sonda
Bousninac, Matteo Cesanac

aAragón Institute of Engineering Research, Universidad de Zaragoza, Spain
bCentro Universitario de la Defensa, Zaragoza, Spain

cDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.

Abstract

Sensor network virtualization is a promising paradigm to move away from highly-

customized, application-specific wireless sensor networks deployment by opening up

to the possibility of dynamically assigning general purpose physical resources to multi-

ple stakeholder applications. In this field, this paper introduces an optimization frame-

work to perform the allocation of physical shared resources of wireless sensor net-

works to multiple requesting applications. The proposed optimization framework aims

at maximizing the total number of applications which can share a common physical

network, while accounting for the distinguishing characteristics and limitations of the

wireless sensor environment (limited storage, limited processing power, limited band-

width, tight energy consumption requirements). Due to the complexity of the optimiza-

tion problem, a heuristic algorithm is also proposed. The proposed framework is finally

applied to realistic network topologies to provide a detailed performance evaluation and

to assess the gain involved in letting multiple applications share a common physical

network with respect to one-application, one-network vertical design approaches.

Keywords: Wireless Sensor Networks; Virtualization; Resource Allocation; Internet

of Things; Optimization

∗Corresponding author
Email address: jrgalleg@unizar.es (José Ramón Gállego)

Preprint submitted to Ad Hoc Networks February 14, 2024

1. Introduction

In the Internet of Things (IoT) vision, the Internet is “pushed down” to everyday

objects which are equipped with sensing capabilities to gather information on the envi-

ronment they are immersed in, processing/storage capabilities to locally filter and store

date, and communication peripherals to deliver the collected/processed data remotely

either directly, or through multi-hop paths leveraging the cooperation of other smart

objects for traffic relaying. In this last case, network of smart objects, often referred

to as Wireless Sensor Networks, are set up to collect and deliver data in specific areas.

WSNs can be deployed in diverse scenarios and environments to support diverse appli-

cation/services ranging from smart home or environmental monitoring based on scalar

sensed data to more demanding applications based on multimedia sensors.

Usually, WSNs are designed and deployed in a “vertical”, application-specific way,

in which the hardware and network resources are customized to the specific application

requirements. On one hand, such design paradigm allows to have “optimal” perfor-

mance on the specific application, but, on the other hand, it precludes resources (hard-

ware and software) reuse when other applications and services must be contemplated.

In the end, this has led in the past to the proliferation of redundant WSNs deployments

[1].

In this context, novel approaches are recently being investigated targeting the smart

reuse of general purpose wireless sensor networks to dynamically support multiple

applications and services. The key idea behind these approaches, which often go

under the names of Virtual Sensor Networks (VSN) [2] or Software Defined Sensor

Networks (SDSN) [3], is to decouple the physical infrastructure and resources from

application ownerships which leads to more efficient resource utilization, lower cost

and increased flexibility and manageability in WSN deployments [4]. Network virtu-

alization technologies are used to abstract away “physical resources” including node

processing/storage capabilities, available communication bandwidth and routing pro-

tocols, which can then be “composed” at a logical level to support usage by multiple

independent users and even by multiple concurrent applications [5]. While network

virtualization and software defined networks are already a reality in many communica-

2

tion networks [6, 7], research on sensor network virtualization is still in its infancy and

comprehensive solutions still need to be found to cope with the specific characteristics

of WSNs in terms of limited node capabilities and communication bandwidth.

In this work, we focus on the design of a virtualization engine for WSNs. Namely,

we consider a general purpose WSN which can be used to support multiple applica-

tions and we propose a mathematical programming framework to optimally allocate

shared physical resources to the requesting applications. In more details, the proposed

framework allocates the physical resources of the general purpose WSN to multiple

concurrent applications while accounting for the network- and hardware-specific con-

straints (processing, storage, available bandwidth, limited communication range) and

the specific application requirements. Due to the high computational complexity of the

resulting optimization model, a heuristic algorithm is also proposed. Numerical results

are then obtained by applying the proposed framework to realistic WSN instances to

assess the efficiency of the virtualization process.

The paper is organized as follows: Section 2 overviews the related work in the field

of sensor network virtualization. Section 3 describes the proposed system model and

the optimization problem for resource allocation in virtual sensor networks, including

a complexity analysis of this problem. Section 4 explains the proposed heuristic al-

gorithm. In Section 5, the proposed optimization model and heuristic algorithm are

evaluated by simulation for a set of scalar and multimedia applications also with dif-

ferent types of sensor nodes. Finally, some conclusions are provided in Section 6.

2. Related Work

The emergence of shared sensor networks has stimulated research efforts in the field

of novel programming abstractions at the node level and management framework at

the network level to support multiple applications over a shared physical infrastructure

[8],[9], [10], [11].

At the node level, architectures based on virtual machines are proposed to en-

able virtualization and re-programmability. As an example, Maté [12], ASVM [13],

Melete [14] and VMStar [15] are frameworks for building application-specific virtual

3

machines over constrained sensor platforms.

At the network level, several virtualization management platforms have been in-

troduced. SenSHare [16] creates multiple overlay sensor networks which are “owned”

by different applications on top of a shared physical infrastructure. UMADE [17] is

an integrated system for allocating and deploying applications in shared sensor net-

works based on the concept of Quality of Monitoring (QoM). Fok et al. [18] introduce

middleware abstractions to represent multiple QoM requirements from multiple appli-

cations, whereas a service-oriented middleware is presented in [19] to address the chal-

lenges faced by running multiple applications onto heterogeneous WSNs. A prototype

of Software Defined Wireless Sensor Network is proposed in [20] where a centralized

control plane dynamically manages communication routes in the network with the goal

of augmenting the energy efficiency.

Generally speaking, the aforementioned work provides “practical” building blocks

to build up virtual sensor networks. Differently, we focus in this paper on the “intel-

ligence” to properly allocate physical resources to virtual applications, which can be

cast as a general resource allocation problem. Even if radio/network resource alloca-

tion is a widely debated topic in the literature, still very few works have appeared on

the optimal resource allocation in the field of Virtual or Shared Sensor Networks.

In [21] the authors propose an optimization framework to maximize the Quality of

Monitoring (QoM) in shared sensor networks. The proposed framework focuses on

environmental monitoring applications whose reference “quality” can be modeled as

dependent on the variance in the sensed data, and derives the application-to-sensors

assignment which minimizes such variance. The same authors address in a later work

the case where the application assignment problem is no longer centralized but rather

distributed by resorting to game-theoretic tools [22]. Ajmal et al. leverage the concept

of QoM and propose an admission control scheme to dynamically “admit” applications

to be deployed on physical sensor networks. The authors of [23] focus on the problem

of scheduling applications to shared sensor nodes with the ultimate goal of maximizing

the sensor network lifetime. Along the same lines, Zeng et al. propose in [24] an

optimization framework to prolong network lifetime by properly scheduling the tasks

in a shared/virtual sensor network.

4

The problem of allocating physical resources to multiple application is also often

also cast as an auction. In [25], the authors propose a reverse combinatorial auction, in

which the sensor nodes act as bidders and bid cost values (according to their available

resources) for accomplishing the subset of the applications’ tasks. Optimal bidding

strategies are then studied to make the auction effective and truthful.

This work extends our previous work in [26], where the preliminary optimization

framework to allocate resources in virtual sensor networks is introduced; building on

the aforementioned work, we further provide here a complexity analysis of the pro-

posed optimization problem which is proven to be NP-hard, and we propose a heuristic

iterative algorithm to obtain sub-optimal solutions of this resource allocation problem

in reduced computation time. Finally, we provide here a comprehensive performance

evaluation of the proposed approach: we analyze the impact of varying the main model

parameters (number of scalar and multimedia nodes; number of sinks; lifetime; type

of routing) in the system performance and we also evaluate the performance of the

proposed heuristic algorithm.

3. System model and optimization framework

Let S = {s1, s2, . . . , sl} be a set of sensor nodes, A = {a1, a2, . . . , am} a set of

applications which are to be deployed in the reference area, and T = {t1, . . . , tn} a set

of test points in the reference network scenario. To simplify notation, in the following

we will use the subscript index i (or h) to refer to a sensor node si (or sh), the subscript

index j to refer to an application aj and the subscript index k to refer to a test point tk.

Each application j requires to cover a given set of test points Tj ⊆ T . Formally,

the application j has to be deployed on a subset of S such that all the test points in Tj

are covered. A test point is covered by a sensor node i if it is within its sensing range,

Rs
i . It is convenient to introduce as well the set Sjk defined as the set of sensor nodes

which physically cover the test point k, with k ∈ Tj . In other words, if the application

j is deployed on any of the sensors in set Sjk, then the target test point k is covered for

this application. A necessary condition for an application j to be successfully deployed

is that all the test points in its target set Tj must be covered.

5

Each application j in A is further characterized by a requirement vector rj =

{cj ,mj , lj} which specifies the required source rate [bit/s], memory [bits] and pro-

cessing load [MIPS] consumed by the application when it is deployed on a sensor

node. The requirement vector can be interpreted as the amount of resources needed

to accomplish the specific tasks required by the application (e.g., acquire, process and

transmit 10 temperature samples, or acquire process and transmit one JPEG image,

etc.). Additionally, each sensor node i in S is characterized by a given resource vector

oi = {Ci,Mi, Li, Ei}, which specifies its available bandwidth, storage capabilities,

processing power and energy store.

A protocol interference model with power control [27] is used to characterize the

wireless communications among the sensor nodes. The maximum transmission power

is Pmax. With this power, there are a maximum transmission range RT
max and a maxi-

mum interference range RI
max. Given a directional link between a pair of nodes (i, h),

the channel gain from transmitter i to receiver h is defined as gih = g0 · d−γ
ih , be-

ing dih the distance from i to h, γ the path loss index and g0 a constant dependent

on antenna parameters. A transmission is successful if the received power exceeds a

threshold α. Additionally, all the nodes under the interference range of a sensor node

share the same transmission channel and therefore, the transmission time must be di-

vided between them. If pi is the transmission power assigned to node i, a transmission

towards h is successful if pi · dih > α. Thus, the transmission range for node i with

transmission power pi can be obtained as RT
i (pi) = (pi · g0/α)−γ . Similarly, the in-

terference resulting from node i with power pi is non-negligible only if it exceeds a

certain threshold β. Then, the interference range is RI
i (pi) = (pi · g0/β)−γ .

Qualitatively, the application assignment problem for virtual sensor networks can

be defined as follows: to maximize the weighted number of deployed applications sub-

ject to coverage constraints (the set of test points of each application must be covered)

and application requirements (each application should be assigned enough bandwidth,

and processing and storage resources to operate successfully). In addition, due to the

multihop nature of WSNs, routing and link capacity constraints must be considered

when the data generated by the application has to be delivered remotely.

Further, let us assume that a preference vector across all the m applications is de-

6

fined Q = [q1, q2, . . . , qm]
T where qj represents the revenue for the network provider

for having application j successfully deployed in the network. Let zj be a binary vari-

able indicating if application j is successfully deployed in the network. Let yijk be

a binary variable indicating if test point k of application j is deployed at sensor node

i. Let xi be a binary variable indicating if sensor node i is active in the network. Let

hjk be a binary variable which indicates if test point k belonging to set Tj is actually

covered by a sensor node which runs application j.

The objective function aims at maximizing the overall revenue out of the applica-

tion deployment process while minimizing the cost related to activating sensor nodes:

max

∑
j∈A

qjzj −
∑
i∈S

δixi

 (1)

where δi is the cost incurred in activating sensor node i.

3.1. Constraints on coverage and on resources of the sensors

Constraints (2)-(5) require that all the applications which are actually deployed do

fulfill the coverage constraints, that is, they cover all the required test points. Specifi-

cally, Eq. (2) indicates if test point k of an application j is effectively covered. If so,

it ensures that it is covered by only one sensor node i. Eq. (3) ensures that if a sensor

i does not cover a test point k of an application j, then it will not sense that test point.

Depending on the application, it can be possible that the same sensor node can cover

several of its test points (e.g., visual applications). If we define Nij as the maximum

number of test points of the same application j that a sensor i is able to cover, Eq. (4)

guarantees that this threshold is not exceeded. Eq. (5) indicates that if an application j

is successfully deployed, i.e., if zj = 1, then all the test points of application j must be

covered. In addition, it guarantees that if the application cannot be deployed, none of

its test points are covered so that no resources are wasted.

7

∑
i∈Sjk

yijk = hjk ∀j ∈ A,∀k ∈ Tj (2)

yijk = 0 ∀i /∈ Sjk,∀j ∈ A,∀k ∈ Tj (3)∑
k∈Tj

yijk ≤ Nij ∀i ∈ S, ∀j ∈ A (4)

zj =

∑
k∈Tj

hjk

|Tj |
∀j ∈ A (5)

Constraints (6) and (7) are budget-type constraints for the available storage and

processing load of the sensor nodes.

∑
j∈A

∑
k∈Tj

mjyijk ≤ Mi ∀i ∈ S (6)

∑
j∈A

∑
k∈Tj

ljyijk ≤ Li ∀i ∈ S (7)

3.2. Routing constraints

The deployed applications will require most likely that the information generated

locally is delivered remotely to collection points (sink nodes) through multihop paths.

Note that these sensor nodes may run deployed applications or not. By resorting to

a fluid model, it should be ensured that all the data produced by the sensors running

applications are received by the sink nodes. This fact can be conveniently expressed

using the following constraints:

∑
h∈S
i ̸=h

fhi −
∑
h∈S
h̸=i

fih +
∑
j∈A

∑
k∈Tj

cjyijk = 0 ∀i ∈ S \ SINK (8)

∑
j∈A

|Tj |cjzj =
∑

h∈SINK

∑
i∈S
i ̸=h

fih +
∑
j∈A

∑
k∈Tj

cjyhjk

 (9)

where SINK is the set of sink nodes (a subset of S) and fih is a variable representing

the flow of data in bps transmitted from node i to node h. Constraints (8) enforce flow

conservation at sensor nodes. Constraint (9) imposes that all the generated data are

8

delivered to the set of sinks. The last term of this expression allows the sinks to be

running applications as well.

The following constraint set enforces that if a sensor node is either running an

application or receiving data, then it must be active in the network:

∑
h∈S
h ̸=i

fhi +
∑
j∈A

∑
k∈Tj

cjyijk ≤ Kxi ∀i ∈ S (10)

where K is a constant high enough (higher than the maximum transmission rate of a

node). Finally, constraints

fih ≤ Klih ∀i, h ∈ S (11)

where lih is a constant that indicates if there is a viable link between i and h, i.e., if the

distance between both nodes is less than the maximum transmission range RT
max, then

lih = 1 and lih = 0 otherwise. Therefore, these constraints ensure that data must be

transmitted exclusively along neighboring nodes.

These expressions allow flow splitting and multipath routing. In the sequel, we will

denote this kind of routing as multipath routing.

However, in WSNs routes from each sensor node to a sink node follow typically

a single path, such as the Destination Oriented Directed Acyclic Graph (DODAG) of

RPL [28]. Therefore, we introduce the following restrictions to ensure that all the

traffic flowing out of a sensor has only one possible route to a sink:

gih ≤ lih ∀i, h ∈ S (12)∑
hϵS

gih ≤ 1 ∀i ∈ S (13)

fih ≤ Kgih ∀i, h ∈ S (14)

where gih is a binary variable which indicates if data are transmitted from node i to

node h. Constraints (13) and (14) impose that only one link from sensor node i to any

of its neighbors transports all the data that i must forward. In the sequel, we will denote

this kind of routing as singlepath routing.

9

Including the route creation in the optimization framework may not be always fea-

sible. In addition, since all the traffic in WSN is forwarded to a single or a limited

number of sinks, the main bottleneck will be mainly the last hop to these sinks. For

these reasons, we also consider the possibility of excluding the routing from the op-

timization process and assuming a predefined set of routes from each node to a sink.

To that purpose, we build DODAGs using the number of hops as a metric (i.e., when

there are several sinks, each node belongs to the DODAG that reaches a sink with the

minimum number of hops). This implies that equations (12)-(14) must be excluded

from the model and that for each node i, the constant lih is 1 just for a single h (the

father node in the routing tree towards the sink) and therefore fih′ = 0 for all h′ ̸= h.

In the sequel, we will denote this kind of routing as static routing.

3.3. Bandwidth constraints

The available bandwidth in the network is limited and must be shared among sensor

nodes. We assume that a fair medium access control schemes orchestrate the access to

the shared medium. Given a directional link between a pair of nodes (i, h), let the

capacity of the link be defined as Cih = min (Ci, Ch). This aims to model that the

transmission rate is limited by the most restrictive node in the link. Transmissions of

other links where i or h are either transmitter or receiver cannot be simultaneously

active with (i, h) (note that some combinations are not possible in this particular case

due to routing constraints, i.e., another link with i as a transmitter).

According to the considered protocol interference model, the interfering links for

link (i, h) are those whose receiver is within the interference range of node i or the links

where j is within the interference range of its transmitter. Although none of these links

can be simultaneously active with (i, h), some of them (depending on their relative

positions) could be simultaneously active with each other. Therefore, if we define IFih

as the fraction of time that other links interfere the link (i, h), we have that:

10

IFih =
∑
g∈S
g ̸=h

fig
Cig

+
∑
g∈S

fgi
Cgi

+
∑
g∈S
g ̸=i

fhg
Chg

+
∑
g∈S
g ̸=i

fgh
Cgh

+

∑
g,t∈S

dit<RI
i (pi)

fgt
Cgt

+
∑
g,t∈S

dgh<RI
g(pg)

fgt
Cgt

(15)

Then, for each link (i, h) in the network it must be ensured that the fraction of time

used by the link plus all its interferences is less or equal to 1:

fih
Cih

+ IFih ≤ 1 ∀i, h ∈ S (16)

Constraints (16) are the equivalent budget-type constraints for the available wire-

less capacity to the storage and processing load constraints given in (6) and (7).

3.4. Energy constraints

Finally, energy constraints are included to ensure that the application deployment

pattern guarantees a minimum lifetime L for the virtual sensor network. Typically,

energy consumption due to wireless communication (i.e., transmitting and receiving)

has been considered the dominant factor in power consumption for WSNs [29]. While

this is the case for traditional scalar applications, where processing is limited to simple

operations, in multimedia applications the energy required to process data can not be

neglected [30].

Regarding wireless transceiver, the power dissipation at the radio transmitter P t
i or

at the radio receiver P r
i of each node i can be modeled as [31]:

P t
i =

∑
h∈S,h ̸=i

(β1 + β2d
γ
ih) fih ∀i ∈ S (17)

P r
i = ρ

∑
h∈S,h ̸=i

fhi ∀i ∈ S (18)

Typical values for β1, β2 and ρ are β1 = ρ = 50 nJ/bit and β2 = 0.0013pJ/bit/m4,

with γ = 4 the path loss index.

11

The estimation of the power dissipation due to the processing load is not so straight-

forward, since it depends on several factors such as the hardware architecture of the

nodes or the specific implementation of the algorithm for each application. In the

lifetime constraints set in (19), this power dissipation is left as a function f of the

processing loads lj of the applications. In Section 5, further details about the specific

evaluated multimedia applications are given.

P t
i + P r

i + f

∑
j∈A

∑
k∈Tj

yijklj

 ≤ Ei

L
∀i ∈ S (19)

3.5. Complexity analysis

Theorem 1. The application deployment problem is NP-complete.

PROOF. The NP-completeness can be proved by restriction, that is by showing that

an NP-complete problem reduces to our application deployment problem. The refer-

ence problem we use in the proof is the multiple Knapsack Problem which is known to

be NP-complete. Let’s consider the particular instance of the application deployment

problem characterized by the following setting: δi =0,∀i ∈ S (negligible sensor acti-

vation cost), and Sjk = S, ∀j ∈ A, Tj = {1}, ∀j ∈ A (all the applications need to

cover one single test point which is reachable from all the sensor nodes). Let’s further

assume that routing is not needed, that is, formally SINK = S, and that sensor nodes

do not have processing capability limitation, Li = ∞, ∀i ∈ S. In such setting, since

all the applications need to cover one single test point which is ”reachable” from all

the sensor nodes (from Tj = {1} and Sjk = S), the index k can be safely dropped

from variables yikj and hjk. The application deployment problem can be re-written as

follows:

max
∑
j∈A

qjzj

12

s.t. ∑
i∈S

yij = hj ∀j ∈ A

yij ≤ 1 ∀i ∈ S, ∀j ∈ A

zj = hj ∀j ∈ A∑
j∈A

mjyij ≤ Mi ∀i ∈ S

which can be further simplified as:

max
∑
j∈A

∑
i∈S

yijqj

∑
i∈S

yij ≤ 1 ∀j ∈ A

∑
j∈A

mjyij ≤ Mi ∀i ∈ S

This last formulation is a multi-knapsack problem which is known to be NP-complete.

By restriction, also the application deployment problem must be NP-complete [32].□

4. Heuristic algorithm

In order to obtain sub-optimal solutions of the resource allocation problem in re-

duced computation time, we introduce here a heuristic iterative algorithm which is

based on LP relaxation the original problem. In short, we drop the integrality con-

straints on variables zj , xi, yijk and hjk and focus on the static routing strategy defined

in section 3.2, and iteratively solve simplified problems further checking feasibility of

the obtained solution in the original problem at each iteration step. Fig. 1 shows the

diagram block of the algorithm, whose steps are explained next.

First, the relaxed LP problem is solved (problem1). If all the variables in the ob-

tained solution are integers, then the solution is also valid for the original MILP prob-

lem and the algorithm terminates. If not, we see if there is any application that is not

active at all (zj = 0) in the solution of the relaxed problem and we add new restrictions

to problem1 forcing this application to be inactive (if there are more than one inactive

13

yes

Solve problem1

Solution (zj, hjk,
yijk i,j,k) in ?

New Restriction to problem1:
For that j: zj = 0

hjk = 0 k
yijk = 0 k, i

Any zj = 0 ?

no

yes

no

problem2 = problem1
New Restriction to problem2:

For that j: zj = 1
hjk = 1 k

Solve problem2

Valid solution?

k without yijk added,
choose k and i with highest yijk .
New Restriction to problem2:

For that k and i, yijk = 1
For that k and other i, yijk = 0

k, are all yijk added as
restrictions to problem2?

no

yes

no

yes

Find j with highest qj zj :

INITIAL
CONDITIONS

New Restriction to problem1:
For that j: zj = 1

hjk = 1 k
Choosen yijk = 1

Remaining yijk = 0

New Restrictions
to problem1:

If xi > 0 : xi = 1
Else : xi = 0

END

Figure 1: Diagram of the heuristic algorithm

14

applications, we choose one at random). We follow this procedure of solving problem1

and adding these restrictions until zj > 0 for all the remaining applications.

Then, we choose the application j with maximum value of qjzj and we try to acti-

vate it when solving the optimization problem. To that purpose, we define a new tem-

porary problem (problem2) equal to problem1, but with additional restrictions to force

application j to be active. If problem2 does not have a feasible solution, we dismiss

application j and we add permanent restrictions to problem1 forcing this application to

be inactive. On the other hand, if problem2 has a valid solution, then the values of yijk

still have to be obtained: The feasibility of the solution guarantees that application j is

active (zj = 1) and therefore that all its test points are covered (hjk = 1). However, it

does not guarantee that each test point k is covered by a single node i (yijk = 1) as the

variables yijk are still relaxed.

To solve this problem we proceed as follows: for each test point k we choose the

node i with the highest value of yijk and we add to problem2 the restriction yijk = 1 to

force node i to cover completely test point k. If problem2 with these new restrictions is

feasible, then we add all the restrictions to problem1 to guarantee that application j is

active. On the contrary, if problem2 does not have a valid solution, then application j

is dismissed. Once the solution of problem1 fulfills the integrality of variables zj , hjk

and yijk, then we set xi = 1 if xi > 0 and 0 otherwise.

5. Performance evaluation

The proposed model leads to a mixed integer linear programming (MILP) problem,

which has been solved using the CPLEX software [33]. To evaluate the model we

have considered a scenario with two different types of sensor nodes and four different

applications (two scalar and two multimedia). Next we define the main features of

both sensor nodes and applications and the simulation parameters. Then, results are

presented.

5.1. Sensor nodes

We have considered TelosB sensor motes [34] and BeagleBone nodes [35]. The

energy budget for both nodes is 32400 J assuming that a node runs at 3 V with 3

15

Ah of battery supply (2 AA batteries). Each TelosB mote has integrated a tempera-

ture and a light sensor, an IEEE 802.15.4 radio with integrated antenna and a 8 MHz

TI MSP430 microcontroller which can operate at 8 MIPS and with 10 KB RAM, al-

though only 7 KB are available for applications [17]. Therefore, their resource vec-

tor is oi = {Ci,Mi, Li, Ei} = {250 kbps, 7 KB, 8 MIPS, 32400 J}. These motes

are suitable for supporting scalar applications. BeagleBone is a low-power platform

based on a Linux Computer that includes 720 MHz super-scalar ARM Cortex-A8

processor (up to 720 MIPS) and 256 MB of RAM. BeagleBone nodes should in-

clude a Shimmer Span IEEE 802.15.4-compliant transceiver, a low-power USB cam-

era for multimedia applications and also scalar sensors. Their resource vector is oi =

{250 kbps, 256 MB, 720 MIPS, 32400 J}.

5.2. Applications

For the scalar applications, we have considered temperature and light monitoring.

Temperature monitoring applications require 4462 bytes of RAM, while light monitor-

ing applications require 1006 bytes [17]. This kind of applications has a low sample

rate (0.017-1 Hz according to [36]). We have chosen a sample rate of 0.5 Hz for temper-

ature monitoring and 1 Hz for light monitoring. Considering a packet size of 127 bytes

per sample, the temperature application has a source rate of 0.5 kbps, whereas for the

light application is 1 kbps. Given these parameters, we can assume that the processing

load lj is negligible in the application requirement vector, (i.e. memory usage, trans-

mission rate or the energy consumed by the transmission will be more limiting factors

than the processing load or the energy consumed by the processing). Thus, the require-

ment vector for temperature monitoring is rj = {cj ,mj , lj} = { 0.5 kbps, 4462 B, -}

whereas for light monitoring is rj = {1 kbps, 1006 B, -}

For multimedia applications we focus on visual sensor networks, i.e. WSNs de-

signed to perform visual analysis (e.g. object recognition) [30]. We consider two

paradigms, the classic Compress-Then-Analyze (CTA) and the opposite approach, Analyze-

Then-Compress (ATC) [30], [37]. CTA applications are those where images acquired

from camera nodes are compressed and sent to a central controller for further analy-

sis. On the other hand, ATC applications are those where camera nodes perform vi-

16

sual feature extraction and transmit a compressed version of these features to a central

controller. In [37] a detailed characterization of transmission rates and energy con-

sumption for both approaches is provided. In order to evaluate the model with some

realistic parameters, we have chosen some specific values for both cases based on the

aforementioned study. It is assumed that different techniques for the extraction of local

visual features are used: CTA will use the SIFT (Scale Invariant Feature Transform)

algorithm while ATC will use BRISK (Binary Robust Invariant Scalable Keypoints)

algorithm. Assuming a desired Mean of Average Precision (MAP) of 0.6, the use of

Zurich Building Database (ZuBuD) [38] and an application frame rate of λ = 1 query

per second for both CTA and ATC paradigms, the needed capacity will be 20 kbps for

CTA-SIFT and 12 kbps for ATC-BRISK [37].

For this kind of applications, the energy consumed to process the data is not neg-

ligible. In [37] a characterization of this energy on a BeagleBone-based visual sensor

node is provided. The processing energy for the CTA paradigm can be computed as:

ECTA
cpu (ρ) = Pcpu · tCTA

cpu (ρ) (20)

where Pcpu is the power dissipated by the processor of the visual sensor node and has

a value of 2.1 W for BeagleBone sensor nodes; and tCTA
cpu (ρ) is the time required to

process an image, which depends on ρ, the amount of sent information per query (20

kbs in our scenario). According to the results in [37], the processing energy for an

image for the CTA application in our scenario is 0.05 J. Therefore, assuming a frame

rate of λ = 1 query per second, the power dissipation (function f in eq. (19)) is 0.05

W. In addition, we can estimate the required processing load lj for a BeagleBone as the

fraction of time used by the application (tCTA
cpu · λ) multiplied by the processing power

of the sensor node, Li. In this case, 24.5 · 1 · 720 = 17.64 MIPS.

Similarly, the processing energy for the ATC paradigm can be computed as:

EATC
cpu (ρ) = Pcpu · [τoff +M(ρ) · (τdet + τdesc)] (21)

where τoff is the time spent for initializing the detector and has a value of 1.6 · 10−4

ms/pixel. With an image size of 640×480 pixels, τoff is 49.152 ms. τdet and τdesc are

the time spent for detecting and describing one BRISK feature of the image and their

17

values are 0.31 ms and 0.16 ms respectively. M(ρ) is the optimal number of features

that depends on the rate ρ. For ρ = 12 kb/query, the minimum value of M to provide a

MAP of 0.6 is M = 100 features. Thus the processing energy for an image for the ATC

application in our scenario is 0.2 J, and the power dissipation is 0.2 W. The processing

load in this case is 69.23 MIPS.

Regarding memory requirements, specific values have not been obtained for these

applications. However, given the great difference in the amount of available memory

in TelosB (10 KB) and BeagleBone (256 MB), we are assuming that due to mem-

ory constraints, multimedia applications could not be implemented in TelosB nodes

and memory will not be a limiting factor in BeagleBone nodes, since processing or

transmission rate will limit long before these applications rather than memory. Sum-

ming up, the requirements vector for CTA and ATC applications are respectively rj =

{20 kbps, 10 KB < mj << 256 MB,17.64 MIPS} rj = {12 kbps, 10KB < mj << 256 MB, 69.23 MIPS}.

5.3. Simulation Environment

Sensor nodes are deployed in a 200 × 200 m scenario. We consider a default

sensing range of Rs
i = 30 m for all of the sensors [39]. A two-ray ground path loss

model with γ = 4 and g0 = 8.1 ·10−3 [40] is considered. Pmax is set to 0 dBm and the

receiver sensitivity α is −92 dBm [41], which implies a maximum transmission range

RT
max of 59 m. Analogously the interference sensitivity is −104 dBm, which implies

a maximum interference range RI
max of 118 m.

5.4. Benefits of virtualization

As a reference example to evaluate the validity of the model and the benefits of vir-

tualization, we have considered a scenario with two different and overlapped WSNs: a

scalar network, formed by 36 TelosB nodes and oriented to scalar applications (tem-

perature and light monitoring), and a multimedia network, formed by 36 BeagleBone

nodes and oriented to visual applications (CTA and ATC). The number of test points is

5 for the scalar applications and 3 for the visual ones. We assume that each sensor is

able to cover Ni,j = 1 test points of the same application and that each network has a

18

1 2 3 4 5 6 7 8
0

4

8

12

16

20

Applications per type

A
ct

iv
e

ap
pl

ic
at

io
ns

Joint P1
Joint P2
Scalar+Visual

(a)

1 2 3 4 5 6 7 8
0

4

8

12

16

Applications per type

A
ct

iv
e

sc
al

ar
 a

pp
lic

at
io

ns

Joint P1
Joint P2
Scalar

(b)

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Applications per type

A
ct

iv
e

vi
su

al
 a

pp
lic

at
io

ns

Joint P1
Joint P2
Visual

(c)

Figure 2: Number of active applications vs. offered applications per type. a) Total b) Scalar c) Visual

19

1 2 3 4 5 6 7 8
10

14

18

22

26

30

Applications per type

A
ct

iv
e

no
de

s

Joint P1
Joint P2
Scalar+Visual

(a)

1 2 3 4 5 6 7 8
2

6

10

14

18

22

Applications per type

A
ct

iv
e

sc
al

ar
 n

od
es

Joint P1
Joint P2
Scalar

(b)

1 2 3 4 5 6 7 8

6

8

10

12

14

16

Applications per type

A
ct

iv
e

vi
su

al
 n

od
es

Joint P1
Joint P2
Visual

(c)

Figure 3: Number of active nodes vs. offered applications per type. a) Total b) Scalar c) Visual

20

sink node (one of the 36 nodes). The minimum lifetime for the virtual sensor network

is L = 1 day.

Figs. 2 and 3 show the performance of both networks in terms of the number of

active applications and the number of active nodes when the WSNs work isolated and

also when the 72 nodes cooperate as a single network that gives support to all the

applications. For each point in the curves, the same number of applications of each type

(temperature, light, CTA and ATC) is generated, which is the value shown in the x-axis.

For example, a 2 value in the x-axis represents a scenario where 2 temperature, 2 light,

2 CTA and 2 ATC applications try to be deployed. “Scalar” refers to the single scalar

network, “Visual” to the single visual network and “Joint” to the cooperative whole

network. In this latter case, two different preference vectors Q are included: P1 (all

the applications have the same preference), and P2 (the preference vector depends on

the application parameters). Since the main limiting factor for visual applications with

regard to scalar ones is the bandwidth, preference values are approximately adjusted

according to the demanded bandwidth: preference for scalar applications is 1 (they

need 2.5 or 5 kbps = 0.5 or 1 kbps per test point × 5 test points); preference for ATC

applications is 8 (they require 36 kbps = 12 kbps × 3 test points); and preference for

CTA applications is 12 (they 60 kbps = 20 kbps × 3 test points).

Fig. 2(a) shows that the total number of active applications increases in the joint

scenario, when compared to the sum of the independent networks (specially for the

preference vector P1). As can be seen in Figs. 2(b) and 2(c), the main increase is due

to the scalar applications. In fact, when visual applications are not prioritized (P1), the

increase in the number of scalar applications eventually leads to an starvation of the

visual applications (Fig. 2(c)). However, with the preference vector P2 both scalar and

visual applications experience a more balanced improvement.

The reasons for this improvement are different in each case: according to our mea-

surements, the probability of a test point not being covered with 36 nodes is about

0.15. Since an active application requires all its test points to be effectively covered,

the probability of a scalar application with 5 test points not being fully covered (only as

topology concerns) is about 0.55. As multimedia nodes can support scalar applications

as well, in the joint scenario the 72 nodes can be used to sense scalar applications, re-

21

ducing these probabilities to 0.015 and 0.07 respectively. On the contrary, since scalar

nodes do not support multimedia applications, this kind of gain cannot be obtained for

visual applications. Nevertheless, as one of the main limitations in multimedia net-

works is bandwidth (specifically the bottleneck in the transmission to the sink node),

the possibility of using two sink nodes in the joint scenario leads also to an improve-

ment for this case. Since the resources consumed by scalar applications is much lower

than by visual ones, prioritizing the latter (P2) in the objective function is useful to

balance the amount of resources used by each of them.

Finally, Fig. 3(a) shows that the total number of active nodes when both networks

works jointly is lower than when they work isolated. Additionally, as the number of

active applications is also higher, the active nodes per active application are quite lower

when the networks work jointly. Regarding the type of active nodes, Fig. 3(c) shows

that the amount of active multimedia nodes increases for the joint scenario. The reasons

for this effect are two: (1) multimedia nodes can support scalar applications in the joint

scenario and (2) we have assumed that the cost for activating sensor nodes, δi, is the

same for both kind of nodes. We have set δi = 0.01 to ensure that in any case the cost

of activating the 72 nodes is higher than the revenue of activating an application.

Once the main benefits of virtualization in the network performance have been

shown, next sections present the impact of varying the most relevant model parameters.

We take as basis the scenario with 36 scalar nodes and 36 visual nodes, preference

vector P2, and 1 sink for each type of application (reference scenario).

5.5. Number of scalar and multimedia nodes

First, we vary the number of scalar and multimedia motes, maintaining the total

number of nodes to 72. Fig. 4 and Fig. 5 show the number of active applications and

the number of active nodes respectively. As can be seen, the probability of a visual

application being fully covered increases with the number of multimedia motes since

visual applications can only be deployed on multimedia motes. Therefore, the number

of active visual applications grows from 0 (when there are not multimedia motes) un-

til its maximum value (when the 72 motes are multimedia) (Fig. 4(b)). However, the

growth rate of active visual applications decreases as the number of multimedia motes

22

grows due to the bandwidth bottleneck at the sinks. The number of active scalar ap-

plications (fig. 4(a)) is not impacted by the number of scalar motes, since they can be

deployed on any mote and are less limited by bandwidth constraints.

5.6. Number of sinks

Since the number of active multimedia applications depends on the bottleneck ac-

cess to the sink, we analyze next the impact of the number of sinks in the reference

scenario. Figs. 6 and 7, that show the network performance as a function of the number

of sinks, confirm that assumption. As can be seen, there is a great improvement in

the number of active visual applications when the number of sinks is increased. Addi-

tionally, there is also an increase in the number of active scalar applications, which is

not so relevant due to their lower bandwidth requirements. Consequently, the number

of active scalar nodes (Fig. 7(a)) does not depend on the number of sinks, whereas the

number of active multimedia nodes (Fig. 7(b)) increases with the number of sinks since

the number of active visual applications grows.

5.7. Lifetime

In the reference scenario, the minimum lifetime of the virtual sensor network is set

to L = 1 day. Next, we vary this parameter from L = 1 hour to L = 8 days. The results

are shown in Figs. 8 and 9. Fig. 8(b) shows that with L = 8 days, visual applications

cannot be activated since multimedia motes do not have enough energy to support any

visual application. Logically, multimedia motes (fig. 9(b)) are still activated because

they can be used by the scalar applications. In addition, there is a remarkable decrease

in the number of active visual applications from L = 1.75 to L = 2 days. The reason is

that ATC visual applications, which demand more energy, cannot be activated with L =

2 days and the only active visual applications are the CTA ones. It is also interesting to

observe that from L = 1 to L = 1.75 days there is a slight decrease in the number of

active visual applications whereas the number of active multimedia motes rises. This

is due to the fact that nodes that were simultaneously sensing several test points when

L = 1, do not have now enough energy when L = 1.75 and therefore, additional nodes

must be activated.

23

1 2 3 4 5 6 7 8
0

4

8

12

16

Applications per type

A
ct

iv
e

sc
al

ar
 a

pp
lic

at
io

ns

0SN − 72VN
24SN − 48 VN
36SN − 36VN
48SN − 24VN
72SN − 0VN

(a)

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Applications per type

A
ct

iv
e

vi
su

al
 a

pp
lic

at
io

ns

0SN − 72VN
24SN − 48 VN
36SN − 36VN
48SN − 24VN
72SN − 0VN

(b)

Figure 4: Number of active applications vs. offered applications per type varying the type of nodes. a) Scalar

b) Visual

24

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Applications per type

A
ct

iv
e

sc
al

ar
 n

od
es

0SN − 72VN
24SN − 48 VN
36SN − 36VN
48SN − 24VN
72SN − 0VN

(a)

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Applications per type

A
ct

iv
e

vi
su

al
 n

od
es

0SN − 72VN
24SN − 48 VN
36SN − 36VN
48SN − 24VN
72SN − 0VN

(b)

Figure 5: Number of active nodes vs. offered applications per type varying the type of nodes. a) Scalar b)

Visual

25

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

Applications per type

A
ct

iv
e

sc
al

ar
 a

pp
lic

at
io

ns

1SINK
2SINK
4SINK
8SINK

(a)

1 2 3 4 5 6 7 8
0

2

4

6

8

Applications per type

A
ct

iv
e

vi
su

al
 a

pp
lic

at
io

ns

1SINK
2SINK
4SINK
8SINK

(b)

Figure 6: Number of active applications vs. offered applications per type varying the number of sinks. a)

Scalar b) Visual

26

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

Applications per type

A
ct

iv
e

sc
al

ar
 n

od
es

1SINK
2SINK
4SINK
8SINK

(a)

1 2 3 4 5 6 7 8
0

5

10

15

20

Applications per type

A
ct

iv
e

vi
su

al
 n

od
es

1SINK
2SINK
4SINK
8SINK

(b)

Figure 7: Number of active nodes vs. offered applications per type varying the number of sinks. a) Scalar b)

Visual

27

1 2 3 4 5 6 7 8
0

4

8

12

16

Applications per type

A
ct

iv
e

sc
al

ar
 a

pp
lic

at
io

ns

8days
2days
1.75days
1day
1hour

(a)

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Applications per type

A
ct

iv
e

vi
su

al
 a

pp
lic

at
io

ns

8days
2days
1.75days
1day
1hour

(b)

Figure 8: Number of active applications vs. offered applications per type varying the network lifetime. a)

Scalar b) Visual

28

1 2 3 4 5 6 7 8
2

4

6

8

10

Applications per type

A
ct

iv
e

sc
al

ar
 n

od
es

8days
2days
1.75days
1day
1hour

(a)

1 2 3 4 5 6 7 8
0

5

10

15

20

Applications per type

A
ct

iv
e

vi
su

al
 n

od
es

8days
2days
1.75days
1day
1hour

(b)

Figure 9: Number of active nodes vs. offered applications per type varying the network lifetime. a) Scalar

b) Visual

29

1 2 3 4 5 6 7 8

2

4

6

8

10

Applications per type

A
ct

iv
e

sc
al

ar
 a

pp
lic

at
io

ns

Static
Singlepath
Multipath

(a)

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Applications per type

A
ct

iv
e

vi
su

al
 a

pp
lic

at
io

ns

Static
Singlepath
Multipath

(b)

Figure 10: Number of active applications vs. offered applications per type varying the routing schemes.

Pmax = 0dBm. a) Scalar b) Visual

30

1 2 3 4 5 6 7 8
3

4

5

6

7

8

9

Applications per type

A
ct

iv
e

sc
al

ar
 n

od
es

Static
Singlepath
Multipath

(a)

1 2 3 4 5 6 7 8
6

8

10

12

14

16

Applications per type

A
ct

iv
e

vi
su

al
 n

od
es

Static
Singlepath
Multipath

(b)

Figure 11: Number of active nodes vs. offered applications per type varying the routing schemes. Pmax =

0dBm. a) Scalar b) Visual

31

1 2 3 4 5 6
0

2

4

6

8

Applications per type

A
ct

iv
e

sc
al

ar
 a

pp
lic

at
io

ns

Static
Singlepath
Multipath

(a)

1 2 3 4 5 6
0

1

2

3

4

Applications per type

A
ct

iv
e

vi
su

al
 a

pp
lic

at
io

ns

Static
Singlepath
Multipath

(b)

Figure 12: Number of active applications vs. offered applications per type varying the routing schemes.

Pmax = −10dBm. a) Scalar b) Visual

32

1 2 3 4 5 6
4

6

8

10

12

14

Applications per type

A
ct

iv
e

sc
al

ar
 n

od
es

Static
Singlepath
Multipath

(a)

1 2 3 4 5 6
0

5

10

15

20

25

Applications per type

A
ct

iv
e

vi
su

al
 n

od
es

Static
Singlepath
Multipath

(b)

Figure 13: Number of active nodes vs. offered applications per type varying the routing schemes. Pmax =

−10dBm. a) Scalar b) Visual

33

5.8. Type of routing

Finally, the three different types of routing described in section 3.2 are analyzed:

multipath, singlepath and static routing. Figs. 10 and 11 show the number of active

applications and the number of active nodes for the three different routing schemes in

the reference scenario. As can be seen, the impact of the routing in the results seems

very limited. Nevertheless, the reason behind this is that most of the routes only have

one or two hops (with Pmax = 0 dBm, the maximum transmission range is 59 m). To

increase the number of hops of the routes, we decrease Pmax to −10 dBm (maximum

transmission range of 33 m). Figs. 12 and 13 show these new results. In this case, it

can be observed that the singlepath routing achieves a performance very close to the

upper bound provided by the ideal non-constrained multipath routing. In addition, the

much simpler static routing is also close to the singlepath, which suggests its utilization

in the proposed heuristic algorithm, whose performance is shown next. It can also be

noted that the number of active nodes (Fig. 13) rises due to the increase in the number

of hops.

5.9. Performance of heuristic algorithm

In this section, the heuristic algorithm is evaluated in the reference scenario with

Pmax = −10 dBm to see the impact of the use of the static routing in the heuristic.

Fig. 14 compares the performance of the proposed heuristic algorithm with the opti-

mum solutions achieved with the singlepath routing and with the static routing. As can

be seen in Fig. 14(a), the degradation of the heuristic algorithm is about a 10% from

the optimum value. A similar decrease is observed in the number of active scalar and

visual applications (Figs. 14(b) and 14(c)). These results suggest the potential of this

algorithm as a centralized resource allocation tool for virtual sensor networks.

6. Conclusion

In this paper we have analyzed a virtual sensor network where different kinds of

applications and sensor nodes coexist and cooperate. We have formulated mathemati-

cally the optimization problem of maximizing the overall revenue out of the application

34

1 2 3 4 5 6
10

15

20

25

30

35

40

Applications per type

O
bj

ec
tiv

e
Fu

nc
tio

n

Static
Singlepath
Heuristic

(a)

1 2 3 4 5 6
0

2

4

6

8

Applications per type

A
ct

iv
e

sc
al

ar
 a

pp
lic

at
io

ns

Static
Singlepath
Heuristic

(b)

1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

3.5

Applications per type

A
ct

iv
e

vi
su

al
 a

pp
lic

at
io

ns

Static
Singlepath
Heuristic

(c)

Figure 14: Performance of heuristic algorithm vs the optimum scheme with singlepath and static routing.

Number of active applications vs. offered applications per type. a) Objective function b) Active scalar

applications c) Active visual applications

35

deployment process while minimizing the cost related to activating sensor nodes and

we have analyzed its computational complexity. Constraints regarding sensor nodes

capabilities (memory, computation, energy) and network limitations (topology, shared

bandwidth) have been included. A heuristic algorithm has been proposed to reduce the

computation time of the resource allocation pattern. Realistic parameters for both the

sensor nodes and the supported applications have been considered in the evaluation of

the model. Simulation results are further derived to assess the potential performance

gains that the resource reuse achieved by virtualization can obtain: coverage enhance-

ments, since there is a higher density of sensor nodes capable of supporting a given

application, and capacity increase, due to the possibility of reusing several sink nodes

to reduce congestion on bottleneck links.

Acknowledgment

This work has been supported by the Spanish Government through the grants TEC2011-

23037 and TEC2014-52969-R from the Ministerio de Ciencia e Innovación (MICINN),

Gobierno de Aragón (research group T98), the European Social Fund (ESF) and Centro

Universitario de la Defensa through project CUD2013-05.

This work has also been partially supported by the Italian Ministry for Education,

University and Research (MIUR) through the national cluster project SHELL, Smart

Living technologies (grant number: CTN01 00128 111357).

References

References

[1] A. Jayasumana, H. Qi, T. Illangasekare, Virtual sensor networks - a resource effi-

cient approach for concurrent applications, in: Proc. 4th International Conference

on Information Technology (ITNG’07), Las Vegas, 2007, pp. 111–115.

[2] M. M. Islam, E.-N. Huh, Virtualization in wireless sensor network: Challenges

and opportunities, Journal of Networks 7 (3) (2012) 412 – 418.

36

[3] T. Luo, H.-P. Tan, T. Quek, Sensor openflow: Enabling software-defined wire-

less sensor networks, Communications Letters, IEEE 16 (11) (2012) 1896–1899.

doi:10.1109/LCOMM.2012.092812.121712.

[4] L. Sarakis, T. Zahariadis, H.-C. Leligou, M. Dohler, A framework for service

provisioning in virtual sensor networks, EURASIP Journal on Wireless Commu-

nications and Networking (2012).

[5] A. Merentitis, F. Zeiger, M. Huber, N. Frangiadakis, K. Mathioudakis,

K. Sasloglo, G. Mazarakis, V. Gazis, Z. Boufidis, Wsn trends: Sensor infras-

tructure virtualization as a driver towards the evolution of the internet of things,

in: Proc. Seventh International Conference on Mobile Ubiquitous Computing,

Systems, Services and Technologies UBICOMM 2013, 2013, pp. 113–118.

[6] M. K. Chowdhury, R. Boutaba, A survey of network virtualization, Computer

Networks 54 (5) (2010) 862 – 876.

[7] Z. Xiao, W. Song, Q. Chen, Dynamic resource allocation using virtual machines

for cloud computing environment, IEEE Transactions on Parallel and Distributed

Systems 24 (6) (2013) 1107 – 1117.

[8] A. Fischer, J. Botero, M. T. Beck, H. de Meer, Virtual network embedding: A

survey, IEEE Communications Surveys and Tutorials 15 (4) (2013) 1888 – 1906.

[9] M. M. Islam, M. M. Hassan, G.-W. Lee, E.-N. Huh, A survey on virtualization of

wireless sensor networks, Sensors 12 (2012) 2175 – 2207.

[10] S. Madria, V. Kumar, R. Dalvi, Sensor cloud: A cloud of virtual sensors, IEEE

Software 31 (2) (2014) 70 – 77. doi:doi:10.1109/MS.2013.141.

[11] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, P. Polakos, Wireless

sensor network virtualization: Early architecture and research perspectives, IEEE

Network 29 (2015) 104 – 112.

[12] P. Levis, D. Culler, Mate: A tiny virtual machine for sensor networks, SIGARCH

Comput. Archit. News 30 (5) (2002) 85–95. doi:10.1145/635506.

37

https://doi.org/10.1109/LCOMM.2012.092812.121712
https://doi.org/doi:10.1109/MS.2013.141
http://doi.acm.org/10.1145/635506.605407
https://doi.org/10.1145/635506.605407
https://doi.org/10.1145/635506.605407

605407.

URL http://doi.acm.org/10.1145/635506.605407

[13] P. Levis, D. Gay, D. Culler, Active sensor networks, in: Proceedings of the 2Nd

Conference on Symposium on Networked Systems Design & Implementation -

Volume 2, NSDI’05, USENIX Association, Berkeley, CA, USA, 2005, pp. 343–

356.

URL http://dl.acm.org/citation.cfm?id=1251203.1251228

[14] Y. Yu, L. J. Rittle, V. Bhandari, J. B. LeBrun, Supporting concurrent applications

in wireless sensor networks, in: Proceedings of the 4th International Conference

on Embedded Networked Sensor Systems, SenSys ’06, ACM, New York, NY,

USA, 2006, pp. 139–152. doi:10.1145/1182807.1182822.

URL http://doi.acm.org/10.1145/1182807.1182822

[15] J. Koshy, R. Pandey, Vmstar: Synthesizing scalable runtime environments for

sensor networks, in: Proceedings of the 3rd International Conference on Embed-

ded Networked Sensor Systems, SenSys ’05, ACM, New York, NY, USA, 2005,

pp. 243–254. doi:10.1145/1098918.1098945.

URL http://doi.acm.org/10.1145/1098918.1098945

[16] I. Leontiadis, C. Efstratiou, C. Mascolo, J. Crowcroft, Senshare: Transforming

sensor networks into multi-application sensing infrastructures, in: Proceedings of

the 9th European Conference on Wireless Sensor Networks, EWSN’12, 2012, pp.

65–81.

[17] S. Bhattacharya, A. Saifullah, C. Lu, G. Roman, Multi-application deployment

in shared sensor networks based on quality of monitoring, in: Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2010 16th IEEE,

2010, pp. 259–268. doi:10.1109/RTAS.2010.20.

[18] C.-L. Fok, C. Julien, G.-C. Roman, C. Lu, Challenges of satisfying multiple stake-

holders: Quality of service in the internet of things, in: Proceedings of the 2Nd

Workshop on Software Engineering for Sensor Network Applications, SESENA

38

https://doi.org/10.1145/635506.605407
https://doi.org/10.1145/635506.605407
http://doi.acm.org/10.1145/635506.605407
http://dl.acm.org/citation.cfm?id=1251203.1251228
http://dl.acm.org/citation.cfm?id=1251203.1251228
http://doi.acm.org/10.1145/1182807.1182822
http://doi.acm.org/10.1145/1182807.1182822
https://doi.org/10.1145/1182807.1182822
http://doi.acm.org/10.1145/1182807.1182822
http://doi.acm.org/10.1145/1098918.1098945
http://doi.acm.org/10.1145/1098918.1098945
https://doi.org/10.1145/1098918.1098945
http://doi.acm.org/10.1145/1098918.1098945
https://doi.org/10.1109/RTAS.2010.20
http://doi.acm.org/10.1145/1988051.1988062
http://doi.acm.org/10.1145/1988051.1988062

’11, ACM, New York, NY, USA, 2011, pp. 55–60. doi:10.1145/1988051.

1988062.

URL http://doi.acm.org/10.1145/1988051.1988062

[19] W. Li, F. C. Delicato, P. F. Pires, Y. C. Lee, A. Y. Zomaya, C. Miceli, L. Pirmez,

Efficient allocation of resources in multiple heterogeneous wireless sensor

networks, Journal of Parallel and Distributed Computing 74 (1) (2014) 1775 –

1788.

URL http://www.sciencedirect.com/science/article/pii/

S0743731513002104

[20] R. Huang, X. Chu, J. Zhang, Y. H. Hu, Energy-efficient monitoring in soft-

ware defined wireless sensor networks using reinforcement learning: A proto-

type, International Journal of Distributed Sensor Networks 2015 (Nov 2015).

doi:10.1155/2015/360428.

[21] Y. Xu, A. Saifullah, Y. Chen, C. Lu, S. Bhattacharya, Near optimal multi-

application allocation in shared sensor networks, in: Proceedings of the Eleventh

ACM International Symposium on Mobile Ad Hoc Networking and Comput-

ing, MobiHoc ’10, ACM, New York, NY, USA, 2010, pp. 181–190. doi:

10.1145/1860093.1860118.

URL http://doi.acm.org/10.1145/1860093.1860118

[22] C. Wu, Y. Xu, Y. Chen, C. Lu, Submodular game for distributed application allo-

cation in shared sensor networks, in: INFOCOM, 2012 Proceedings IEEE, 2012,

pp. 127–135. doi:10.1109/INFCOM.2012.6195490.

[23] C. de Farias, L. Pirmez, F. Delicato, W. Li, A. Zomaya, J. De Souza, A schedul-

ing algorithm for shared sensor and actuator networks, in: Information Net-

working (ICOIN), 2013 International Conference on, 2013, pp. 648–653. doi:

10.1109/ICOIN.2013.6496703.

[24] D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu, Y. Xiang, Energy minimization in

multi-task software-defined sensor networks, Computers, IEEE Transactions on

64 (11) (2015) 3128–3139. doi:10.1109/TC.2015.2389802.

39

https://doi.org/10.1145/1988051.1988062
https://doi.org/10.1145/1988051.1988062
http://doi.acm.org/10.1145/1988051.1988062
http://www.sciencedirect.com/science/article/pii/S0743731513002104
http://www.sciencedirect.com/science/article/pii/S0743731513002104
http://www.sciencedirect.com/science/article/pii/S0743731513002104
http://www.sciencedirect.com/science/article/pii/S0743731513002104
https://doi.org/10.1155/2015/360428
http://doi.acm.org/10.1145/1860093.1860118
http://doi.acm.org/10.1145/1860093.1860118
https://doi.org/10.1145/1860093.1860118
https://doi.org/10.1145/1860093.1860118
http://doi.acm.org/10.1145/1860093.1860118
https://doi.org/10.1109/INFCOM.2012.6195490
https://doi.org/10.1109/ICOIN.2013.6496703
https://doi.org/10.1109/ICOIN.2013.6496703
https://doi.org/10.1109/TC.2015.2389802

[25] N. Edalat, W. Xiao, M. Motani, N. Roy, S. K. Das, Auction-based task allocation

with trust management for shared sensor networks, Security and Communication

Networks 5 (11) (2012) 1223–1234. doi:10.1002/sec.631.

URL http://dx.doi.org/10.1002/sec.631

[26] C. Delgado, J. R. Gállego, M. Canales, J. Ortı́n, S. Bousnina, M. Cesana, An

optimization framework for resource allocation in virtual sensor networks, in:

Proceedings of IEEE Global Communications Conference, Globecom ’15, IEEE,

2015.

[27] Y. Shi, T. Hou, J. Liu, S. Kompella, Bridging the gap between protocol and physi-

cal models for wireless networks, IEEE Transactions on Mobile Computing 12 (7)

(2013) 1404 – 1416.

[28] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,

J. Vasseur, R. Alexander, RPL: IPv6 Routing Protocol for Low-Power and Lossy

Networks, RFC 6550 (Proposed Standard) (Mar. 2012).

[29] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor net-

works: A survey, Computer Networks 38 (4) (2002) 393 – 422.

[30] A. Redondi, M. Tagliasacchi, M. Cesana, Rate-accuracy optimization in visual

wireless sensor networks, in: IEEE International Conference on Image Processing

(ICIP2012), Orlando, Florida, 2012, pp. 1105–1108.

[31] T. Hou, Y. Shi, H. Sherali, Rate allocation and network lifetime problems for

wireless sensor networks, IEEE/ACM Transactions on Networking 16 (2) (2008)

321 – 334.

[32] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the Theory

of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1990.

[33] ILOG CPLEX, http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/ (2015).

[34] MEMSIC Inc., TelosB Mote Platform Datasheet.

40

http://dx.doi.org/10.1002/sec.631
http://dx.doi.org/10.1002/sec.631
https://doi.org/10.1002/sec.631
http://dx.doi.org/10.1002/sec.631
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

[35] G. Coley, Beaglebone rev a6 system reference manual (2012).

[36] J. B. Javier Molina, Javier M. Mora-merchan, C. Leon, Wireless Sensor Net-

works: Application, InTech, 2010, Ch. Multimedia Data Processing and Delivery

in Wireless Sensor Networks. doi:10.5772/13398.

[37] A. E. Redondi, Energy-aware visual analysis for wireless multimedia sensor net-

works, Ph.D. thesis, Politecnico Di Milano (2014).

[38] H. Shao, T. Svoboda, L. V. Gool, Zubud — zurich buildings database for image

based recognition, Tech. Rep. 260Computer Vision Laboratory, Swiss Federal

Institute of Technology (March 2003).

[39] A. Chen, S. Kumar, T. H. Lai, Designing localized algorithms for barrier cov-

erage, in: Proceedings of the 13th Annual ACM International Conference on

Mobile Computing and Networking, MobiCom ’07, ACM, New York, NY, USA,

2007, pp. 63–74.

[40] C. Suh, J.-E. Joung, Y.-B. Ko, New rf models of the tinyos simulator for ieee

802.15.4 standard, in: Proc. IEEE WCNC 2007, Hong Kong, 2007, pp. 2238–

2242.

[41] CC2420: ”Datasheet for Chipcon (TI) CC2420 2.4 GHz IEEE 802.15.4/ZigBee

RF Transceiver”.

41

https://doi.org/10.5772/13398

	Introduction
	Related Work
	System model and optimization framework
	Constraints on coverage and on resources of the sensors
	Routing constraints
	Bandwidth constraints
	Energy constraints
	Complexity analysis

	Heuristic algorithm
	Performance evaluation
	Sensor nodes
	Applications
	Simulation Environment
	Benefits of virtualization
	Number of scalar and multimedia nodes
	Number of sinks
	Lifetime
	Type of routing
	Performance of heuristic algorithm

	Conclusion

