
The Electronic Library

FUKG:
Answering Flexible Queries over Knowledge Graphs

José Félix Yagüe1, Ignacio Huitzil2, Carlos Bobed13, and Fernando Bobillo13

1 University of Zaragoza, Zaragoza, Spain
2 IKR3 Lab, University of Milano-Bicocca, Milano, Italy

3 Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
{cbobed,fbobillo}@unizar.es

Abstract.

Purpose. The increasing interest in Knowledge Graphs to represent real-world
knowledge and the common need to manage imprecise knowledge in many
real-world applications demand the study of approaches to solve flexible
queries over Knowledge Graphs.
Design/methodology/approach. By introducing Fuzzy Logic in the query
answering process, we are able to obtain a novel algorithm to solve flexible
queries over Knowledge Graphs. Our approach is implemented in the FUKG
system, a software tool with an intuitive user graphical interface.
Findings. Our approach makes it possible to reuse Semantic Web standards
(RDF, SPARQL, and OWL 2) and builds a fuzzy layer on top of them. The
application to a use case shows that the system can aggregate information
in different ways by selecting different fusion operators, adapting to different
user needs.
Originality. Our approach is more general than similar previous works in
the literature and provides a specific way to represent the flexible restrictions
(using Fuzzy OWL 2 datatypes).

Keywords: Knowledge Graphs, Fuzzy Logic, Flexible Querying
Article classification: Article, Research paper.

1 Introduction

Knowledge is essential in Artificial Intelligence applications, which need to represent a
domain and reason with it in a proper way. In this century, the most popular options to
represent the knowledge in many domains and applications are SemanticWeb technolo-
gies. Such technologies include ontologies, or formal and shared specifications of the
vocabulary of a domain of interest Staab and Studer (2004), Knowledge Graphs Hogan
et al. (2021), a graph-based model to capture data at large scale, and Linked Data, a
set of best practices for publishing and connecting data on the Web Bizer et al. (2009).
In a typical situation, there is a Knowledge Graph representing the relevant knowledge
in RDF language, as a set of subject-predicate-object triples, where some of the nodes
of the Knowledge Graph are described using an OWL ontology, and there are some
relationships linking the nodes of the local knowledge graph to other external nodes.

Page 1 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

Another important problem to address in intelligent applications is managing
different types of uncertainty. Among the many existing types of imperfect knowledge,
we are interested in vagueness and imprecision. They happen very often in many
real-world applications for several reasons, such as the natural vagueness of natural
language or the intrinsic imprecision of source data (e.g. sensors or machine learning
approaches). To represent such kind of knowledge and reason with it, Fuzzy Set
Theory and Fuzzy Logic have been applied to many successful use cases Zadeh (1965).
Fuzzy sets allow to represent the partial membership of an element to a set, and Fuzzy
Logic allows to manage propositions which are partially true and make deductions
through approximate reasoning.

In order to support imprecise knowledge, the idea of extending different models
with ideas from Fuzzy Logic seems very natural, and there are examples of fuzzy
databases, fuzzy neural networks, fuzzy modeling languages, etc. Klir and Yuan (1995).
Semantic Web technologies are not an exception, and many fuzzy extensions have
been proposed, but the literature has mainly focused on fuzzy ontologies Lukasiewicz
and Straccia (2008), Zhang et al. (2016) or fuzzy Description Logics Bobillo et al.
(2015), as the main formalism behind fuzzy ontologies. Unfortunately, the combination
of Fuzzy Logic and Knowledge Graphs has not received a similar attention, although
it would be crucial to support flexible queries, including imprecise terms such as
“cheap”, “fast”, or “recent” when, for example, looking for means of transportation.

In the field of fuzzy ontologies, a family of reasoning algorithms (crisp represen-
tation algorithms) is based on a reduction to classical ontologies Bobillo et al. (2012),
Bobillo (2016). This makes it possible to reuse classical semantic reasoners (such
as Pellet Sirin et al. (2007)) and other existing resources. More recently, minimalist
reasoning algorithms solve some flexible queries (restricted from an expressivity point
of view) over classical ontologies by reusing classical semantic reasoners and building
a fuzzy layer on top of them as a series of additional steps Huitzil et al. (2020, 2021).

In this paper, we will propose a novel approach to answer flexible queries over
classical Knowledge Graphs. While previous work focuses on the support of fuzzy
axioms (using non-standard RDF), we instead focus on fuzzy datatypes. In particular,
our flexible queries will be described using fuzzy sets to constrain the values of the
numerical data properties. Furthermore, inspired by minimalist reasoning algorithms
for fuzzy ontologies, our approach is able to stick to the Semantic Web standards, using
standard RDF and SPARQL query endpoints, and performing a series of additional
steps on top of them to do the necessary computations to deal with the fuzzy part.

This paper is a revised and extended version of Yagüe et al. (2022) with the follow-
ing main differences: a more general definition of the flexible queries (including both
conjunctive and disjunctive interpretations, several hedges rather than a single one,
and top-k results), a more general algorithm to solve the queries, a description of an im-
plementation in the FUKG tool, and a discussion of a real use case involving DBpedia.

The remainder of this paper is structured as follows. In Section 2 we overview
some essential background knowledge needed to follow the rest of the paper. Then,
Section 3 discusses our novel approach to represent and answer flexible queries over
Knowledge Graphs, while Section 4 discusses the implementation of a prototype.
Section 5 illustrates the usefulness of our approach by addressing a practical use case.

2

Page 2 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

Finally, Section 6 overviews some related work, and Section 7 summarizes the main
conclusions and identifies some ideas for future research.

2 Background

This section will firstly provide some background on Knowledge Graphs (Section 2.1)
and then on Fuzzy Logic (Section 2.2).

2.1 Knowledge Graphs

Knowledge Graphs have been there for quite a long time under different names (e.g.,
Semantic Networks), but they have lately received a lot of attention since Google
adopted the term in 2012. There is not a unique definition of what a Knowledge Graph
is, but they are most of the times viewed as labeled directed graphs, i.e., a Knowledge
Graph is a labeled directed graph (E, R, L), where E are entities, R are relations
between such entities, and L is a labeling function mapping each element in the graph
to its name/type. Influenced indeed by the RDF data model, this definition derives
into regarding them as sets of triples subject-predicate-object (SPO) triples. However,
the general notion of Knowledge Graph is broader than that. Without binding the
definition to any particular data model, Hogan et al. Hogan et al. (2021) adopt the
following definition: a Knowledge Graph is a graph of data intended to accumulate
and convey knowledge of the real world, whose nodes represent entities of interest
and whose edges represent relations between these entities4. Note how this definition
emphasizes the identity dimension of the nodes in the graph: each node must represent
an entity of interest. In fact, we can find different levels of abstraction depending on
how identity is dealt with and the kind of entities to be represented. Table 1 contains
a comparison depending of these aspects, including (lightweight) KG and ontologies.

Table 1: Comparison among lightweight knowledge graphs, knowledge graphs, and
ontologies

Feature Lightweight KGs KGs Ontologies

Identity String comparison URI URI
Entities Instances Instances Instances, concepts, and properties
Schema None Inexpressive Expressive

Reasoning None Limited Powerful

The lower expressivity level would correspond to Lightweight KGs, where the nodes
and relationships are just tagged with raw strings and the identity matching would be
reduced to string matching. An example of these KGs could be the result of an Open
Information Extraction procedure, where the main goal is to shallow parse text and

4 The interested reader can find pointers to alternative definitions in Hogan et al. (2021).

3

Page 3 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

structure it using triples, e.g., (“Obama”, “was born in”, “Honolulu”). When we move
to a shared representation with global identifiers (e.g., URIs), we would be considering
the KGs of the above definition. Following with the previous example, we could con-
sider the DBpedia Lehmann et al. (2015), and see that the same triple can be stated
using a shared vocabulary ⟨dbr :Barack Obama, dbo : birthPlace, dbr :Honolulu⟩,
where instead of representing the elements just with the strings we have found in the
text, we are using URIs that are unique globally for the entities we are describing.
Finally, KGs usually come along with ontologies, which in turn are KGs themselves
but they contain schema knowledge to share and represent the domain that the KG is
about. In the example, the ontology could contain URIs for concepts such as Person

or Place to state that ⟨dbr :Barack Obama, isA, dbo :Person⟩.
The previous classification and definition of KGs is heavily influenced by RDF

graphs, which are labeled directed graphs. RDF is the W3C standard language for
representing information in the Web Schreiber and Raimond (2014). It is based on
triples of the form ⟨s,p,o⟩, where s is the subject, p is the property, and o is the
object (or value), stating that s is related to o via the property p. In general, such
relationships are not symmetrical.

To define the schema that the RDF graph follows, different languages with differ-
ent expressivities can be used, ranging from RDF-Schema, also called RDF-S Brickley
and Guha (2014), to OWL Cuenca-Grau et al. (2008) and their profiles. While using
RDF-S one can only define hierarchies of concepts and properties, domain and ranges
of properties, and the classes that individuals belongs to, OWL-2 provides a much
richer language to model expressive ontologies in different fragments of Description
Logics Baader et al. (2003).

SPARQL is RDF standard query language Pérez et al. (2006). It supports four
different types of queries (namely, SELECT, ASK, CONSTRUCT, and DESCRIBE)
whose body is described in terms of basic graph patterns (BGPs) composed using
free variables. Such BGPs are to be matched crisply to the underlying graph in order
to provide possible mappings that fulfill the query conditions.

2.2 Fuzzy Logic

Fuzzy Logic is widely used to manage imprecise and vague knowledge. It is a gen-
eralization of classical logic proposed by Zadeh where statements are not necessarily
either true or false, but hold to some degree of truth Zadeh (1965).

The cornerstone of Fuzzy Logic is the concept of fuzzy set, which is a generalization
of a classical set where elements can have a partial membership. A fuzzy set A is
characterized by a membership function µA(x) which associates with each object x
a real number in [0,1] representing the membership degree of x in A. As in classical
sets, 0 means no-membership and 1 full membership, but now an intermediate value
between 0 and 1 denotes partial membership to F .

To specify fuzzy membership functions, common options are the trapezoidal
(Figure 1 (a)), triangular (Figure 1 (b)), left-shoulder (Figure 1 (c)), right-shoulder
(Figure 1 (d)), and linear (Figure 1 (e) membership functions.

4

Page 4 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library
(a) (b) (c) (d) (e)

Fig. 1: (a) Trapezoidal; (b) Triangular; (c) Left-shoulder; (d) Right shoulder; (e)
Linear fuzzy membership functions

Example 1. In the field of means of transportation, a fuzzy set HighmaxSpeedKmh can
be defined using a a triangular function triangular(500,1000,1500). If the maximum
speed of dbr:Fiat G.91Y is 1110 km/h, its membership degree to HighmaxSpeedKmh
is: µHighmaxSpeedKmh(dbr:Fiat G.91Y)=(triangular(500,1000,1500))(1110)=0.8. ⊓⊔

Fuzzy Logic enables approximate reasoning. Logical operations over classical sets
are also generalized to the fuzzy case. To compute the conjunction, disjunction, comple-
ment and implication over fuzzy sets one can use different families of functions, namely
a t-norm function⊗, a t-conorm function⊕, a negation function⊖ and an implication
function⇒ (see Klir and Yuan (1995) for details). For example, the minimum and the
product are t-norms, while the maximum and the probabilistic sum are t-conorms.

In addition to logical operators, other ways to combine fuzzy sets are possible.
An aggregation operator is a function that takes n values in [0,1](x1,x2,...,xn) and
returns a single value in [0,1]. Some examples are the weighted mean (WMEAN) or
the Ordered Weighted Averaging (OWA) operator.

– Given a vector of weights [w1,w2, ... ,wn] such that ∀i ∈ {1, ... ,n},wi ∈ [0,1]
and

∑n
i=1wi = 1, WMEAN is defined as

∑n
i=1wixi. That is, the i-th weight

corresponds to the i-th value to be aggregated.
– On the other hand, OWA is defined as

∑K
i=1wixσ(i), where σ(i) is a permuta-

tion such that xσ(1)≥xσ(2)≥···≥xσ(K) Yager (1988). That is, the i-th weight
corresponds to the i-th largest value to be aggregated.

Selecting the appropriate weights of OWA operators is not a trivial problem. One
of the most popular solutions is using quantifier-guided aggregation Yager (1996).
Given a Regular Increasing Monotone (RIM) fuzzy quantifier Q : [0,1]→ [0,1], which
satisfies the boundary conditions Q(0)=0 and Q(1)=1, and is monotone increasing,
the weights of an OWA operator of dimension n can be defined as wi=Q(i

n)−Q(i−1
n),

∀i∈{1,...,n}. Right-shoulder and linear functions can be used to describe RIMs.

Example 2. right(1/3,2/3) is a RIM fuzzy quantifier. For n=3, it leads to the vector
of weights [0,1,0] since:

• w1=Q(13)−Q(0)=0−0=0
• w2=Q(23)−Q(13)=1−0=1

5

Page 5 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

• w3=Q(1)−Q(23)=1−1=0

Using this vector of weights, OWA discards the highest and the lowest value to
be aggregated, as they have a 0 weight, and returns the middle value. ⊓⊔

Another important element of fuzzy logic are fuzzy hedges (also called fuzzy
modifiers), which modify the shape of a fuzzy set by altering its membership function.
The most popular examples are the weakening modifier very, characterized by the
function very(x)=x2, and the increasing modifier few, defined as few(x)=

√
x.

Example 3. By applying very to the fuzzy set HighmaxSpeedKmh defined in Exam-
ple 1, we get the fuzzy set VeryHighmaxSpeedKmh. For example, for dbr:Fiat G.91Y,
µVeryHighmaxSpeedKmh(1100)=very(µhighmaxSpeedKmh(1100))=(µhighmaxSpeedKmh(1100))

2=
0.82=0.64. Note that as the membership degree to the modified fuzzy set is in [0,1],
by squaring it, we reinforce the need to belong “very” to the set. ⊓⊔

3 Flexible queries

This section will firstly describe how to characterize flexible queries (Section 3.1) and
then we will address how to solve them (Section 3.2).

3.1 Representing the queries

Given a Knowledge Graph K, a flexible query can be characterized by the following
parameters:

– A set of classes C1,C2,...,CN

– A set of functional numerical data properties P1,P2,...,Pn

– A list of fuzzy datatypes D1,D2,...,Dn

– A list of fuzzy hedges H1,H2,...,Hn

– An optional retrieval operator for the classes ⋄
– An optional fusion operator for the properties @: [0,1]n→ [0,1]
– An optional maximum of results k

For the classes, there are two possible retrieval operators, namely the union ∨ and
the intersection ∧. For the properties, possible fusion operators include t-norms,
t-conorms, or other aggregation operators (such as weighted mean, or OWA).

Example 4. Given a Knowledge Graph about means of transportation, a possible
flexible query to retrieve “motorcycles or automobiles with very high maximum speed,
high cruise speed, and neutral empty weight” might be described as:

– Classes: dbo:Motorcycle and dbo:Automobile
– Data properties: dbp:maxSpeedKmh, dbp:emptyWeightKg and dbp:cruiseSpeedKmh
– Fuzzy datatypes: HighmaxSpeedKmh, defined as triangular(500,1000,1500),

NeutralemptyWeightKg, defined as triangular(1000,3000,5000), and Highcruis-
eSpeedKmh, defined as triangular(500,750,1000)

6

Page 6 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

– Fuzzy hedges: very (for dbp:maxSpeedKmh) none (for dbp:emptyWeightKg), and
none (for dbp:cruiseSpeedKmh).

– Retrieval operator for the classes: union ∨ (any of the classes)
– Fusion operator for the properties: product t-norm
– Number of results: 999 ⊓⊔

We propose to rely on Fuzzy OWL 2 datatypes Bobillo and Straccia (2011),
which includes trapezoidal, triangular, left-shoulder, and right-shoulder datatypes. In
Fuzzy OWL 2, a datatype declaration can be associated with an OWL 2 annotation
encoding a fuzzy membership function, using an XML-like syntax. Interestingly, such
annotations can be encoded as triples in the Knowledge Graph.

Example 5. To express that fuzzy datatype HighmaxSpeedKmh corresponds to a
triangular function triangular(500,1000,1500), we use the following set of RDF triples:

@PREFIX ex: <http :// www.example.org/beer/> .

@PREFIX owl: <http :// www.w3.org /2002/07/ owl#> .

@PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .

@PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#> .

ex: fuzzyLabel rdf:type owl: AnnotationProperty .

ex: HighmaxSpeedKmh rdf:type rdfs:Datatype .

ex: HighmaxSpeedKmh ex: fuzzyLabel """< fuzzyOwl2 fuzzyType =\" datatype \">

<Datatype type =\" triangular \" a=\"500\" b =\"1000\" c =\"1500\" />

</fuzzyOwl2 >""" .

⊓⊔

Because there are several optional parameters, it is important to define the default
values. It seems clear that, if no maximum of results is specified, all non-zero results
should be retrieved. However, the choice of the retrieval and fusion operators could
depend on the implementation. As we will see in Section 4, when they are not specified
we propose (i) to retrieve instances of all classes (∧) and (ii) to combine values using
the product.

3.2 Solving flexible queries

To solve a flexible query, we propose Algorithm 1. Firstly, we initialize the set of
responses QR. Line 2 retrieves the instances belonging to all or to some of the classes,
according to the operator ⋄, and then Line 3 retrieves the fuzzy datatype definitions
Fi for each fuzzy datatype Di in the query. Next, we compute for each instance of
the classes the degree of satisfaction to the query. For each property Pi, Lines 5–12
compute the membership degree of the value yi of Pi for individual x, to the fuzzy
datatype Fi, and then a fuzzy hedge Hi is applied. It is worth to note that if the
value of some property Pi is not defined (so getPropertyValue returns a null value),
the value rxi is not computed for that property. Next, the algorithm checks that
individual x has a value for all the properties in the query, so the cardinalities of rxi
and Pi coincide. If this is the case, Line 14 combines all the membership degrees of
each individual using the fusion operator @, and Lines 15–16 add the individual and

7

Page 7 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

the value to the set of answers if the value is not zero. Once all individuals have been
processed, Line 20 orders the result (in decreasing value) and Line 21 filters the list
to the keep the k highest values, before returning the query result.

Algorithm 1 Flexible Query Processing

Input: A knowledge graph K
Input: A flexible query ⟨{Ci},{Pi},{Di},{Hi},⋄,@,k⟩
Output: QR={<x,αx>|x∈KG,αx∈ [0,1]}
1: QR←∅
2: {x}←getInstances(K,{Ci},⋄)
3: {Fi}←getFuzzyDatatypes(K,{Di})
4: for all x∈{x} do
5: rxi ←∅
6: for all Pi∈{Pi} do
7: yxi ←getPropertyV alues(K,x,Pi)
8: if yxi ≠null then
9: zxi ←zxi ∪{getMembershipDegree(yxi ,Fi)}
10: rxi ←applyModifier(zxi ,Hi)
11: end if
12: end for
13: if |rxi |= |Pi| then
14: αx←fusion(rxi ,@)
15: if αx>0 then
16: QR←QR∪⟨x,αx⟩
17: end if
18: end if
19: end for
20: QR←order(QR)
21: QR←slice(QR,1,k)
22: return QR

More precisely, we can solve the flexible query by performing the following steps:

1. To retrieve the candidates (members of the classes) and the values of the data
properties when the retrieval operator is the conjunction, we retrieve the members
of all classes by using the following SPARQL query:

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

SELECT DISTINCT ?x ?Y1 ... ?Yn

WHERE {

?x rdf:type/rdfs: subClassOf * C1 .

...

?x rdf:type/rdfs: subClassOf * CN .

?x P1 ?Y1 .

...

?x Pn ?Yn .

}

8

Page 8 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

The result of this step is a list of tuples ⟨x,yx1 ,...,yxn⟩. Note that this query not
only retrieves the direct instances of the concepts C1,...,Cn, but also their indirect
instances (i.e., including the instances of some of their subclasses). It could also
be extended to retrieve values Yi linked to ?x via a subproperty of Pi, or to infer
the classes of ?x via some domain or role restrictions.
Instead, if the retrieval operator is the union, we retrieve the members of some
of the classes by using the following SPARQL query:

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

SELECT DISTINCT ?x ?Y1 ... ?Yn

WHERE {

{ { ?x rdf:type/rdfs: subClassOf * C1 } UNION

...

{ ?x rdf:type/rdfs: subClassOf * CN } } .

?x P1 ?Y1 .

...

?x Pn ?Yn .

}

Example 6. The next query retrieves instances of any of the classes dbo:Motorcycle

and dbo:Automobile, together with the values of the properties dbp:maxSpeedKmh,
dbp:cruiseSpeedKmh, and dbp:emptyWeightKg:

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

PREFIX rdfs: <http :// www .w3.org /2000/01/ rdf -schema#>

PREFIX dbo:<http :// dbpedia.org/ontology/>

PREFIX dbp:<http :// dbpedia.org/property/>

SELECT DISTINCT ?x ?Y1 ?Y2 ?Y3

WHERE {

{ { ?x rdf:type/rdfs: subClassOf * dbo: Motorcycle } UNION

{ ?x rdf:type/rdfs: subClassOf * dbo: Automobile } } .

?x dbp: maxSpeedKmh ?Y1 ;

dbp: cruiseSpeedKmh ?Y2 ;

dbp: emptyWeightKg ?Y3

}

⊓⊔

2. To retrieve the definition Fi of the input fuzzy datatype Di for each i∈{1,...,n},
we can use the following SPARQL query:

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

SELECT ?Fi

WHERE {

Di rdf:type rdfs:Datatype .

Di fuzzyLabel Fi .

}

9

Page 9 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

3. To compute, for each individual ?x and each data property Pi, the membership
degree of the value Yi to the fuzzy datatype Fi, we can proceed as follows:

zxi =Fi(y
x
i), ∀i∈{1,...,n} (1)

4. To apply the fuzzy hedge Hi to modify the membership degree for each ?x, we
compute the following expression:

rxi =Hi(z
x
i) (2)

5. To aggregate all the values rxi corresponding to an individual ?x into a single
result αx using the input fusion operator, we can compute the following values:

αx=@i∈{1,...,n}(r
x
i) (3)

6. We form a list of values ⟨?x,αx⟩ sorted in decreasing order according to the value
αx and filtered to ensure that αx>0 and to restrict to the top-k results (i.e., the
individuals with the k highest values of αx).

The process can be illustrated with the flowchart in Figure 2.

Fig. 2: Flowchart of the query answering process algorithm

Example 7. Let us solve the query in Example 4 given the following set of triples on
the domain of means of transportation:

@PREFIX dbo: <http :// dbpedia.org/ontology/> .

@PREFIX dbr: < <http :// dbpedia.org/resource/> .

@PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .

@PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#> .

@PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #> .

10

Page 10 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

dbo: Automobile rdfs: subclassOf dbo: MeanOfTransportation .

dbo: Motorcycle rdfs: subclassOf dbo: MeanOfTransportation .

dbr:Fiat_G .91Y rdf:type dbo: Automobile ;

dbp: maxSpeedKmh "1110"^^ xsd:decimal ;

dbp: emptyWeightKg "3900"^^ xsd:decimal ;

dbp: cruiseSpeedKmh "630"^^ xsd:decimal .

dbr: McDonnell_Douglas_A -4 G_Skyhawk rdf:type dbo: Automobile ;

dbp: maxSpeedKmh "1086"^^ xsd:decimal ;

dbp: emptyWeightKg "4581"^^ xsd:decimal ;

dbp: cruiseSpeedKmh "788"^^ xsd:decimal .

dbr:Tupolev_Tu -95 rdf:type dbo: Automobile ;

dbp: maxSpeedKmh "925"^^ xsd:decimal ;

dbp: emptyWeightKg "90000"^^ xsd:decimal ;

dbp: cruiseSpeedKmh "710"^^ xsd:decimal .

The first SPARQL query retrieves both dbr:Fiat G.91Y, dbr:McDonnell Douglas A-
4G Skyhawk, and dbr:Tupolev Tu-95, together with their values of maximum speed,
cruise speeds, and empty weight. After that, the algorithm computes z1,z2 and z3,
and then αx=(z1·z2·z3)2. More precisely, the obtained values are:

?x ?Y1 ?Y2 ?Y3 z1 r1 z2/r2 z3/r3 αx

dbr:Fiat G.91Y 1110 3900 630 0.78 0.61 0.55 0.52 0.17
dbr:McDonnell Douglas A-4G Skyhawk 1086 4581 788 0.83 0.69 0.21 0.85 0.12

dbr:Tupolev Tu-95 925 90000 710 0.85 0.72 0.00 0.84 0.00

Finally, the result is the following ordered list of pairs:

⟨dbr:Fiat G.91Y, 0.17⟩
⟨dbr:McDonnell Douglas A-4G Skyhawk, 0.12⟩

⊓⊔

The main advantage of this algorithm is that it is possible to reuse standard RDF
language and SPARQL query endpoints, similarly as the authors in Huitzil et al.
(2020, 2021) do for fuzzy ontologies.

Note that some fusion operators and fuzzy hedges can be expressed using SPARQL
built-in functions (or inner expressions), allowing to perform more computations
without relying on external processing. However, the resulting SPARQL query could
be quite complex so as to be included here, and there are operators that cannot be
expressed in standard SPARQL, such as the geometric mean (involving n-th roots).

4 Implementation

This section describes FUKG (FUzzy Knowledge Graphs)5, a prototype tool imple-
menting the algorithm discussed in the previous section.

5 http://webdiis.unizar.es/~fbobillo/fukg

11

Page 11 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://webdiis.unizar.es/~fbobillo/fukg

The Electronic Library

4.1 Main features

We have implemented FUKG, a prototype tool implementing the algorithm discussed
in the previous section. FUKG has been implemented in Java and has a graphical user
interface developed using Swing so that the user can easily provide all the relevant
information.

The objective of the graphical user interface is to provide the relevant information
in a transparent to the user way:

– Providing the URL of the endpoint storing the Knowledge Graph.
– Providing the names of the concepts, data properties, and fuzzy datatypes.
– Selecting the retrieval, fusion and hedge operators from a list of options built

into the implementation.

To simplify the user interaction, FUKG GUI has implemented several optimiza-
tions of the process:

– The tool hides to the user the prefixes of the URIs and only the fragments are
shown.

– Rather than asking the user to write the full URI of a concept/property or to
select a concept/property from the Knowledge Graph (which requires showing
all possible options, overwhelming the user in large Knowledge Graphs), FUKG
uses an auto-complete mechanism. The user starts writing the fragment of the
URI and the available options are shown.

– FUKG assumes that all fuzzy datatypes have a name obtained by concatenating a
label and the corresponding property name. Possible values for the label are Very-
High, High, Neutral, Low, and VeryLow. For example, for the property maxSpeed-
Kmh, possible fuzzy datatypes are VeryHighmaxSpeedKmh, HighmaxSpeedKmh,
NeutralmaxSpeedKmh, LowmaxSpeedKmh, and VeryLowmaxSpeedKmh.

– To use weighted average as the fusion operator, rather than asking the user to
choose the weight associated to each property, FUKG makes it possible to choose
the preferred properties, and they will have double importance (a double weight)
than regular properties. If there are n properties and m of them are marked as
favorite properties, the weight of each favorite property is 2

n+m , and the weight

of each non-favorite property is 1
n+m .

– To use OWA as the fusion operator, rather than asking the user to choose as many
weights as the number of properties, FUKG makes it possible to select a function,
a fuzzy quantifier, to learn the weights using quantifier-guided aggregation.

FUKG has the following dependencies:

– Apache Jena and Jena Java API Carroll et al. (2004) 6 are used to submit
SPARQL queries to a remote SPARQL endpoint.

– Fuzzy OWL 2 API is used to parse the definitions of the fuzzy datatypes to
retrieve the function type and its parameters Bobillo and Straccia (2011).

6 http://jena.apache.org

12

Page 12 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://jena.apache.org

The Electronic Library

– AutoCompleter library7 assists users to write the names of the classes and
properties.

In some cases, we are interested at querying knowledge graphs which do not include
fuzzy datatype definitions and it is not possible to update the knowledge graph which
such definitions (e.g., we do not have write permission). To support querying such
knowledge graphs, FUKG makes it possible to include the fuzzy datatype definitions
in a local Fuzzy OWL 2 ontology file datatypes.owl, as illustrated in Example 8.

Example 8. A file datatypes.owl defining fuzzy datatype HighmaxSpeedKmh could
have the following content:

Prefix (:=< http :// Ontology.es/ datatypes .owl/>)

Ontology(<http :// Ontology.es/datatypes .owl >

Declaration (AnnotationProperty (: fuzzyLabel))

Declaration (Datatype (: HighmaxSpeedKmh))

AnnotationAssertion (: fuzzyLabel : HighmaxSpeedKmh

"<fuzzyOwl2 fuzzyType =\" datatype \">

<Datatype type =\" triangular \" a=\"500\" b=\"1000\" c=\"1500\" />

</fuzzyOwl2 >"

)

)

⊓⊔

This file is also used to include the definitions of the RIM fuzzy quantifiers used to
build OWA operators. We assume that their names are of the form RIM1, RIM2, etc.

FUKG supports the following operators:

– Retrieval operators: intersection and union.
– Fusion operators: minimum, product, maximum, weighted mean, and OWA. That

is, it supports two t-norms, one t-conorm, and two aggregation operators.
– Fuzzy hedges: very, few (defined in Section 2.2), and none (so no fuzzy hedge

is applied).

4.2 Description of the system

Selecting the knowledge graph. The first step is selecting the knowledge graph.
To this end, a graphical interface asks the user to write the URL of the SPARQL
endpoint of the knowledge graph. By default, the tool shows the URL of DBpedia
SPARQL endpoint (http://dbpedia.org/sparql). This is illustrated in Figure 3.
Then, FUKG submits an ASK query to the endpoint to check that it works:

ASK {?a ?b ?c}

If the answer to the ASK query is false, an error message is shown. Otherwise,
the execution of the algorithm continues.

7 http://serprogramador.es/autocompletar-en-java-swing/

13

Page 13 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://dbpedia.org/sparql
http://serprogramador.es/autocompletar-en-java-swing/

The Electronic Library
Fig. 3: Selection of the knowledge graph

Fig. 4: Selection of a class using auto-complete

Selecting the classes. The next step is to retrieve the candidate classes that can
be used in the query. To do so, FUKG retrieves all classes in the knowledge graph,
which will be used later by the auto-complete utility. This is accomplished by using
the following query:

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

PREFIX owl: <https :// www.w3.org /2002/07/ owl#>

SELECT DISTINCT ?class

WHERE {

{ ?class rdf:type/rdfs: subClassOf * owl:Class }

UNION

{?x rdf:type/rdfs: subClassOf * ?class}

}

14

Page 14 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

That is, FUKG retrieves both instances of owl:Class (or any of its subclasses),
and objects of a rdf:type triple (or any of its subclasses). For example, in DBpedia,
the query returns 1700 classes.

Once the candidate classes have been retrieved, the user can choose those of them
that will be used in the flexible query using auto-complete and hiding the prefix of
the URI, as illustrated in Figure 4. After selecting each class, the user can use a
button to add a new class.

Fig. 5: Selection of a property using auto-complete

Selecting the properties. The next step is to retrieve the candidate properties
that can be used in the query. The general idea is to retrieve all data properties
for which any instance of the selected classes has a numerical value. If the user has
selected classes C1,C2,...,CN , we use the following SPARQL query:

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

SELECT DISTINCT ?property MIN (? valor)

WHERE {

{ { ?instance rdf:type/rdfs: subClassOf * C1 } UNION

{ ?instance rdf:type/rdfs: subClassOf * C2 } UNION

...

{ ?instance rdf:type/rdfs: subClassOf * CN } } .

{ ?instance ?property ?valor } FILTER isNumeric (? valor)

15

Page 15 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

}

GROUP BY ?property

After retrieving the results, FUKG checks for errors. Typically, a knowledge
graph may have some erroneous values for some individuals. For example, in DB-
pedia, property dbp:aspectRatio usually has numerical values, but sometimes
it has an empty value “::: (en)”. FUKG also checks that the values are indeed
numeric (using parseDouble method from the Double class) and non-numerical
values are discarded. In fact, using the SPARQL endpoint, we noticed that boolean
values (e.g., "true"^^http://www.w3.org/2001/XMLSchema#boolean> for property
dbp:isHandicappedAccessible in DBpedia) are retrieved despite having used is-

Numeric SPARQL function.

For example, to retrieve the properties when the user has selected DBpedia classes
dbo:Motorcycle and dbo:Automobile, we use the following query, which returns 1275
properties after removing non-numerical variables:

PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

PREFIX dbo: <http :// dbpedia.org/ontology/>

SELECT DISTINCT ?property MIN (? valor)

WHERE {

{ { ?instance rdf:type/rdfs: subClassOf * dbo: Motorcycle } UNION

{ ?instance rdf:type/rdfs: subClassOf * dbo: Automobile } } .

{ ?instance ?property ?valor } FILTER isNumeric (? valor)

}

GROUP BY ?property

Similarly as with the classes, when candidate properties have been retrieved,
the user can choose those of them that will be used in the flexible query using
auto-complete and hiding the prefix of the URI, as illustrated in Figure 5. In the case
of elements with a different namespace but the same fragment, the namespace should
also be shown to disambiguate. By clicking on a button, one can add a new property.

Selecting the fuzzy datatypes. For each of the selected properties, the user must
choose a fuzzy datatype. To simplify the interface, for each property the user only has
to choose one of the five possible labels (VeryHigh, High, Neutral, Low, and VeryLow),
as illustrated in Figure 6. Then, the fuzzy datatype name is obtained by concatenating
the label and the property name, and FUKG retrieves the fuzzy datatype definition
from a local file if it exists. Note that it is not necessary that the local file includes the
definitions of the five fuzzy datatypes for each property; but those fuzzy datatypes
used in the flexible queries must be defined in the file.

Selecting the fuzzy hedges. For each of the selected properties, the user must
choose a fuzzy hedge. Currently, the user can choose one of the following three possible
labels (None, Very, and Few), as illustrated in Figure 7. By default, no fuzzy hedge
is applied.

16

Page 16 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

"true"^^http://www.w3.org/2001/XMLSchema#boolean>

The Electronic Library

Fig. 6: Selection of a fuzzy datatype

Fig. 7: Selection of a fuzzy hedge

17

Page 17 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

Fig. 8: Selection of a retrieval operator

Fig. 9: Selection of a fusion operator

18

Page 18 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

Selecting the other parameters. The user also must specify the other parameters
of the flexible query.

– Retrieval operator for the classes (⋄): there is a list with two options: all classes
or any class (Figure 8).

Fig. 10: Selection of preferred properties for the weighted mean

– Fusion operator (@): there is a list with five options: product, minimum, max-
imum, weighted mean, and OWA (Figure 9). The two latter options also require
an additional action to define the weights: selecting preferred properties (for
weighted mean, as shown in Figure 10) or selecting a fuzzy quantifier (for OWA,
as shown in Figure 11, where RIM1 is defined as right(1/3,2/3), and RIM2 is
defined as right(0.5,1)).

– Maximum number of answers (k): a numerical value can be specified in a JFor-

mattedTextField.

Submitting the query. Finally, the user can press a button (“Search”) and a new
window with the results will be shown, as we will illustrate in the next section with
a use case.

5 Use case

In this section, we will discuss a practical use case to illustrate the usefulness and
flexibility of FUKG. In particular, we will use DBpedia as the source knowledge

19

Page 19 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

Fig. 11: Selection of a fuzzy quantifier to build the OWA weights

graph to retrieve information about means of transportation which are fast (in terms
of maximum and cruising speed) and neither heavy nor light (in terms of empty
weight). More precisely, we will look for either motorcycles or automobiles8 with high
maximum and cruising speeds and neutral empty weight.

We will propose four queries Q1–Q4 using different fuzzy fusion operators for the
properties in order to show how they can affect the results of the queries:

– Classes: dbo:Motorcycle and dbo:Automobile
– Data properties: dbp:maxSpeedKmh, dbp:emptyWeightKg and dbp:cruiseSpeedKmh
– Fuzzy datatypes: HighmaxSpeedKmh, defined as triangular(500,1000,1500),

NeutralemptyWeightKg, defined as triangular(1000,3000,5000), and Highcruis-
eSpeedKmh, defined as triangular(500,750,1000)

– Fuzzy hedges: none
– Retrieval operator: union ∨ (any of the classes)
– Fusion operator

Q1: product
Q2: weighted mean with equally preferred properties
Q3: OWA with a fuzzy quantifier right(1/3,2/3)
Q4: maximum

– Number of results: 999

These queries are similar to the query in Example 4, but we considered alternative
fusion operators and discarded the fuzzy hedge. To provide an intuitive description of
the four queries, while Q1 computes a product of the satisfaction degrees, Q2 offers a

8 Note that the results include some aircrafts which are asserted to be instances of
dbo:Automobile in DBpedia.

20

Page 20 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

softened version of Q1, where “failures” (0 values) are not so penalized, Q3 can be seen
as a filter/equalizer (discarding the higher and the lower value), and Q4 provides an op-
timistic view by focusing on the most salient value (i.e., the highest satisfaction degree).

The first query (Q1) uses the product fusion operator. It requires that all the
satisfaction degrees of the flexible restriction associated to the properties are greater
than zero; if any of the values is zero, the product becomes zero. Furthermore, the
more properties there are in the query, the more likely it is for any individual that
one of these properties will be 0. Therefore, only 2 individuals are retrieved, as
shown in Figure 12a. The first individual is dbr:Fiat G.91Y and the second one is
dbr:McDonnell Douglas A-4G Skyhawk.

In the second query (Q2), the product fusion operator has been replaced with the
weighted mean. Since all properties are equally preferred, a weight of 1

3 is associated to
each property. Now, the number of answer increases to 21, as a single degree zero in one
of the properties does not imply that the global result is zero. Furthermore, values are
higher in general, as a product of three numbers in [0,1] is replaced with a sum of three
numbers in [0,1]. As we can see in Figure 12b, the first two individuals are the same
ones as in the previous example, but now they have a different order: the first individual
is dbr:McDonnell Douglas A-4G Skyhawk and the second one is dbr:Fiat G.91Y. For
the other 19 individuals which do not appear in the results of the previous query, we
can guess that the satisfaction degree of one of the constraints is zero.

In the third query (Q3), the fusion operator is OWA. Because there are three
values to be aggregated, according to Example 2, the selected fuzzy quantifier returns
the vector of weights [0,1,0], giving all the importance to the value to be aggregated
with the intermediate value (discarding the maximum and the minimum). In this
case, the number of results is the same (21), but the order of the individuals and their
degrees are different. Now, individuals with more balanced values are ranked higher.
For example, dbr:Tupolev Tu-95 is now ranked as the first individual, although it was
the fifth result for Q2 and was not a result for Q1. The results are shown in Figure 13a.

Finally, the last query (Q4) uses maximum as a fusion operator. The number of
results is the same one, but degrees are much higher. In general, the more properties in
the query, the more likely it is for any individual to have a satisfaction degree of 1.0 (or
close to 1.0) for some of the properties. The ranking of individuals is very different to
the previous examples, as it can be seen in Figure 13b. For example, the first individual,
dbr:Fokker F.VII, was the seventh one in queries Q2 and Q3 and was not a result for Q1.

To conclude, let us mention that FUKG solved the previous queries fast (about
0.2 seconds per query), although the initialization time was higher: retrieving the list
of classes from DBpedia took about 30 s in the first query (the next queries used
cache and takes about 1 second), and retrieving the list of properties took about 20 s.

6 Related work

For a long time, extensions of Semantic Web technologies with different formalisms
to represent and manage uncertainty have been proposed in the literature. In par-
ticular, the combination of Fuzzy Logic and Semantic Web has received a notable
attention Sanchez (2006), Straccia (2013). Most of the work has focused on fuzzy on-

21

Page 21 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

(a) Q1 (product) (b) Q2 (weighted mean)

Fig. 12: Results for Q1 (product) and Q2 (weighted mean)

tologies Lukasiewicz and Straccia (2008), Zhang et al. (2016) or fuzzy Description Log-
ics Bobillo et al. (2015), as the main formalism behind fuzzy ontologies, including fuzzy
extensions of fuzzy ontology languages such as OWL 2 Bobillo and Straccia (2011).

The literature also includes previous efforts studying the combination of Fuzzy
Logic and RDF language. However, existing approaches focus on fuzzy axioms, whereas
our approach focus on fuzzy datatypes. Indeed, none of the previous approaches
addresses the representation of fuzzy datatypes:

– Vaneková et al. proposed, to the best of our knowledge, the oldest fuzzy ex-
tension of RDF Vaneková et al. (2005). Their approach makes it possible to
represent a fuzzy fact of the form “a resource s belongs to a fuzzy set f with
degree α”, with α∈(0,1], using an RDF triple of the form ⟨s,f,α⟩. For example,
⟨aircraft001,FastAircraft,0.9⟩ denotes that aircraft001 belongs to the class of fast
aircrafts with a high degree (0.9), so it is a fast aircraft.
While this approach makes it possible to use a single triple reusing standard
RDF, there is an implicit relationship type which is not being represented. For
example, the authors do not represent the fact that aircraft001 is of type (rdf:type)
aircraft, or the fact that aircraft001’s speed is fast.

22

Page 22 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

(a) Q3 (OWA) (b) Q4 (maximum)

Fig. 13: Results for Q3 (OWA) and Q4 (maximum)

– Similarly, M. Mazzieri and A. F. Dragoni proposed to replace RDF triples with
quadruples of the form ⟨s,p,o,α⟩ Mazzieri and Dragoni (2008), where α∈(0,1]
quantifies the partial fulfillment of the RDF triple ⟨s,p,o⟩. Thus, this approach
focuses on the representation of relationships which partially hold. Depending
on the property p, we can have concept assertions (rdf:type), subclass axioms
(rdfs:subclassOf), subproperty axioms (rdfs:subPropertyOf) or, more generally,
object/data property assertions.

– A. E. A. Djebri discussed different approaches to annotate such statements of
the form ⟨s,p,o,α⟩: reification, n-ary properties, single named graph, singleton
properties, and RDF-star Djebri (2022).

– Y. Lv et al. proposed a more general fuzzy extensions, with statements of the
form ⟨α1/s,α2/p,α3/o,α⟩, where the different degrees α1,α2,α3 reflect the mem-
bership degree of the subject, predicate, and object, respectively, to the RDF
triple ⟨s,p,o,α⟩ Lv et al. (2008). For example, this makes it possible to represent
⟨film001,0.8/starring,actor001⟩ or ⟨film001,genre,0.7comedy⟩. In the former case,
the relationship (starring) is partial, whereas in the latter case the membership
of the object (the degree of being a comedy) is partial.

23

Page 23 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

The literature also includes previous efforts to query fuzzy RDF languages. How-
ever, our approach is more general, promotes the reuse of existing RDF knowledge
graphs and SPARQL endpoints, and is suitable to query classical knowledge graphs
via flexible datatypes:

– J. Z. Pan et al. proposed Fuzzy SPARQL, an extension of SPARQL designed to
query fuzzy ontologies (but not fuzzy Knowledge Graphs) with statements of the
form ⟨s,p,o,α⟩ Pan et al. (2008). Fuzzy SPARQL uses comments to encode fuzzy
restrictions, making it backwards compatible. For each triple in the SPARQL
query, it is possible to add a degree of truth (restricting the value to be greater
or equal than it, or exactly equal than it). This approach does not consider fuzzy
datatypes or fuzzy hedges. Furthermore, although it is possible to specify a fusion
operator type to combine the satisfaction degrees of each part of the query, the
description of fusion operators is too general. For example, a possible option is
“AGGREGATION”, but the concrete aggregation operator is not specified.

– U. Straccia studied a fuzzy extension of ρDF (a fragment of RDF Schema) with
statements of the form ⟨s,p,o,α⟩ but no fuzzy datatypes Straccia (2009). He
proposed a novel reasoning algorithm and fuzzy conjunctive queries over a fuzzy
graph (which can include fuzzy triples), and assignments involving fuzzy mem-
bership functions and fusion operators, e.g., q(x,s)←⟨x,rdf : type,Aircraft⟩∧
⟨x,speed,y⟩∧{s :=s1·Fast(y)} Straccia (2009). The approach also includes a novel
reasoning algorithm. However, this approach does not detail how to represent the
syntax of the fuzzy datatypes (we instead use Fuzzy OWL 2 datatypes already
represented in the RDF graph) and does not consider fuzzy hedges. Our approach
could be friendlier to the user as there is no need to write such complex queries.

– J. Cheng et al. proposed f-SPARQL as another fuzzy extension of SPARQL where
FILTER clauses can include fuzzy terms Cheng et al. (2010). For example, restric-
tions of the form (?speed=fast) or (?speed closeTo 200) are possible. Such restric-
tions can also include fuzzy hedges. The user can specify the relative importance
of the RDF triples by assigning a different weight to each of triple. To answer the
queries, fuzzy queries are translated into classical SPARQL queries by using α-cuts
of the fuzzy sets, and the α values are the same user weights. Therefore, if the user
does not specify a preference, fast would be replaced by its core (i.e., the set of ele-
ments which belong to the fuzzy set with degree 1). Using α-cuts causes, for exam-
ple, that ?speed=fast with a weight 0.8 would be replaced by a restriction of the
form ?speed>120, where 120 being the minimal value such that µfast(120)=0.8.
In all cases, fuzziness is removed before solving the SPARQL queries and thus
without taking into account the real values in the knowledge base. Instead, our
approach applies fuzziness to the real values retrieved by the SPARQL endpoint.
Furthermore, there is no way to provide the definitions of the fuzzy membership
functions (e.g., fast or closeTo), and general fusion operators are not supported.

– O. Pivert et al. proposed yet another fuzzy extension of SPARQL called FURQL
(Fuzzy RDF Query Language) Pivert et al. (2016), allowing fuzzy properties
(that partially hold) and fuzzy datatypes in queries over a fuzzy RDF graph with
statements of the form ⟨s,p,o,α⟩. However, although fuzzy datatypes are used

24

Page 24 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

in the examples, it is not discussed how to represent them in the graph, it is not
possible to specify the fusion operator, and fuzzy hedges are not supported.

Last but not least, it is worth to mention a previous approach to answer classical
queries over classical RDF using fuzzy logic operators Chen et al. (2022). X. Chen
et al. proposed FuzzQE (Fuzzy Query Embedding), a fuzzy logic based embedding
framework to answer classical queries over KGs. Supported queries are expressed
using First Order Logic in disjunctive normal form. Then, they are embedded as fuzzy
vectors, and Boolean operators are implemented using t-norms, t-conorms (maximum
and probabilistic sum) and fuzzy negations (standard negation. In particular, Fuz-
zQE supports two t-norms (minimum and product), two t-conorms (maximum and
probabilistic sum), and one negation (standard). Compared to our approach, it does
not support fuzzy datatypes (in query representation), fuzzy hedges or aggregation
operators (in query answering). It is also worth to note that FuzzQE supported fuzzy
operators are usually combined using Gödel negation, rather than with standard
negation Straccia (2013).

7 Conclusions and future work

In this paper we have proposed a Fuzzy Logic based approach to answer flexible
queries over Knowledge Graphs. The user not only specifies the classes of the indi-
viduals to be retrieved but also some flexible constraints on the values of the data
properties, described using fuzzy sets.

The main advantage of our approach is that it makes it possible to reuse existing
RDF graphs and SPARQL endpoints, building a fuzzy layer on top of them. An
important novelty with respect to the previous work is that our approach supports
Fuzzy OWL 2 datatypes to describe fuzzy membership functions. Interestingly, Fuzzy
OWL 2 datatypes also makes it possible to reuse standard OWL 2 ontology language.
Moreover, it is a very general approach that supports different choices of fuzzy
operators: t-norms, t-conorms, aggregation operators, and fuzzy hedges.

Our flexible query answering algorithm has been implemented in the FUKG system,
with an intuitive user graphical interface to avoid requiring users to deal with a concrete
syntax and to assist users at several steps, for example, using auto-complete when
typing the names the entities or using strategies to avoid writing numerical weights. We
have also shown a use case to illustrate the capabilities of the system and the possibility
to aggregate information in different ways by selecting different fusion operators. In
our preliminary experiments, FUKG answers query over DBpedia in a few seconds.

Some limitations of FUKG are that it cannot support fuzzy axioms in the knowl-
edge graph or fuzzy terms in the query, and that missing values do not receive any
special attention. Therefore, a possible idea for the future work is to extend the tool
to deal with missing values, rather than requiring that there is a value for each data
property in the query. A possible solution is to aggregate only the values that are
available. This was the approached followed in Huitzil et al. (2020), where the weights
of the weighted mean and OWA are adapted for each individual to the number of
criteria to be aggregated.

25

Page 25 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

Future work could also include the application of FUKG to more real applications
and to perform an empirical evaluation of the performance of the tool on such
scenarios. Furthermore, the tool could be extended to support more fusion operators,
fuzzy quantifiers, or fuzzy hedges. Indeed, thanks to the modular design of the system,
adding new operators is very easy.

Acknowledgments

C. Bobed and F. Bobillo were supported by the I+D+i project PID2020-113903RB-
I00, funded by MCIN/AEI/10.13039/501100011033, and by DGA/FEDER. I. Huitzil
was partially supported by the Italian MUR under the PRIN project PINPOINT
Prot. 2020FNEB27, CUP H45E21000210001.

26

Page 26 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The Electronic Library

Bibliography

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. and Patel-Schneider, P. F.:
2003, The Description Logic Handbook: Theory, Implementation, and Applications,
Cambridge University Press.

Bizer, C., Heath, T. and Berners-Lee, T.: 2009, Linked data - the story so far,
International Journal on Semantic Web and Information Systems 5(3), 1–22.

Bobillo, F.: 2016, The role of crisp elements in fuzzy ontologies: The case of fuzzy
OWL 2 EL, IEEE Transactions on Fuzzy Systems 24, 1193–1209.

Bobillo, F., Cerami, M., Esteva, F., Garćıa-Cerdaña, À., Peñaloza, R. and Straccia,
U.: 2015, Fuzzy description logics, in P. Cintula, C. Fermüller and C. Noguera (eds),
Handbook of Mathematical Fuzzy Logic Volume III, Vol. 58 of Studies in Logic, Math-
ematical Logic and Foundations, College Publications, chapter XVI, pp. 1105–1181.

Bobillo, F., Delgado, M., Gómez-Romero, J. and Straccia, U.: 2012, Joining Gödel
and Zadeh fuzzy logics in fuzzy description logics, International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 20(4), 475–508.

Bobillo, F. and Straccia, U.: 2011, Fuzzy ontology representation using OWL 2,
International Journal of Approximate Reasoning 52(7), 1073–1094.

Brickley, D. and Guha, R. V.: 2014, RDF Schema 1.1, W3C recommendation, W3C.
http://www.w3.org/TR/rdf-schema/.

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A. and Wilkinson,
K.: 2004, Jena: Implementing the semantic web recommendations, Proceedings
of the 13th International World Wide Web Conference on Alternate Track Papers
& Posters, ACM, pp. 74—-83.

Chen, X., Hu, Z. and Sun, Y.: 2022, Fuzzy logic based logical query answering
on knowledge graphs, Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI 2022), AAAI Press, pp. 3939–3948.

Cheng, J., Ma, Z. M. and Yan, L.: 2010, f-SPARQL: A flexible extension of SPARQL,
Proceedings of the 21st International Conference on Database and Expert Systems
Applications (DEXA 2010), Part I, Vol. 6261 of Lecture Notes in Computer
Science, Springer, pp. 487–494.

Cuenca-Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. and Sattler,
U.: 2008, OWL 2: The next step for OWL, Journal of Web Semantics 6(4), 309–322.

Djebri, A. E. A.: 2022, Uncertainty Management for Linked Data Re-
liability on the Semantic Web, PhD thesis, Université Côte D’Azur.
http://hal.archives-ouvertes.fr/tel-03679118.

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutíerrez, C.,
Kirrane, S., Labra Gayo, J. E., Navigli, R., Neumaier, S., Ngonga Ngomo, A.-C.,
Polleres, A., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J. F., Staab, S.
and Zimmermann, A.: 2021, Knowledge Graphs, number 22 in Synthesis Lectures
on Data, Semantics, and Knowledge, Morgan & Claypool.

Huitzil, I., Alegre, F. and Bobillo, F.: 2020, GimmeHop: A recommender system for
mobile devices using ontology reasoners and fuzzy logic, Fuzzy Sets and Systems
401, 55–77.

Page 27 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.w3.org/TR/rdf-schema/
http://hal.archives-ouvertes.fr/tel-03679118

The Electronic Library

Huitzil, I., Molina-Solana, M., Gómez-Romero, J. and Bobillo, F.: 2021, Minimalistic
fuzzy ontology reasoning: An application to Building Information Modeling,
Applied Soft Computing 103, 107158.

Klir, G. J. and Yuan, B.: 1995, Fuzzy Sets and Fuzzy Logic: Theory and Applications,
Prentice-Hall.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N.,
Hellmann, S., Morsey, M., Van Kleef, P., Auer, S. et al.: 2015, Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia, Semantic web 6(2), 167–195.

Lukasiewicz, T. and Straccia, U.: 2008, Managing uncertainty and vagueness in
Description Logics for the Semantic Web, Journal of Web Semantics 6(4), 291–308.

Lv, Y., Ma, Z. M. and Yan, L.: 2008, Fuzzy RDF: A data model to represent
fuzzy metadata, Proceedings of the 17th IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE 2008, IEEE, pp. 1439–1445.

Mazzieri, M. and Dragoni, A. F.: 2008, A fuzzy semantics for the resource description
framework, Uncertainty Reasoning for the Semantic Web I, Vol. 5327 of Lecture
Notes in Computer Science, Springer, pp. 244–261.

Pan, J. Z., Stamou, G., Stoilos, G., Thomas, E. and Taylor, S.: 2008, Scalable
querying service over fuzzy ontologies, Proceedings of the 17th International World
Wide Web Conference (WWW 2008), pp. 575–584.

Pérez, J., Arenas, M. and Gutíerrez, C.: 2006, The semantics and complexity of
SPARQL, Proceedings of the 5th International Semantic Web Conference (ISWC
2006), Vol. 4273 of Lecture Notes in Computer Science, Springer, pp. 30–43.

Pivert, O., Slama, O. and Thion, V.: 2016, An extension of SPARQL with fuzzy naviga-
tional capabilities for querying fuzzy RDF data, Proceedings of the 2016 IEEE Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE 2016), IEEE, pp. 2409–2416.

Sanchez, E. (ed.): 2006, Fuzzy Logic and the Semantic Web, Vol. 1 of Capturing
Intelligence, Elsevier Science.

Schreiber, G. and Raimond, Y.: 2014, RDF 1.1 primer, W3C working group note,
W3C. http://www.w3.org/TR/rdf11-primer.

Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A. and Katz, Y.: 2007, Pellet:
A practical OWL-DL reasoner, Journal of Web Semantics 5(2), 51–53.

Staab, S. and Studer, R.: 2004, Handbook on Ontologies, International Handbooks
on Information Systems, Springer.

Straccia, U.: 2009, A minimal deductive system for general fuzzy RDF, Proceedings
of the 3rd International Conference on Web Reasoning and Rule Systems (RR
2009), Vol. 5837 of Lecture Notes in Computer Science, Springer, pp. 166–181.

Straccia, U.: 2013, Foundations of Fuzzy Logic and Semantic Web Languages, CRC
Studies in Informatics Series, Chapman & Hall.

Vaneková, V., Bella, J., Gurský, P. and Horváth, T.: 2005, Fuzzy RDF in the
semantic web: deduction and induction, Proceedings of the 6th Workshop on Data
Analysis (WDA 2005), pp. 16–29.

Yager, R. R.: 1988, On ordered weighted averaging aggregation operators in mul-
ticriteria decision making, IEEE Transactions on Systems, Man and Cybernetics
18(1), 183–190.

Yager, R. R.: 1996, Quantifier guided aggregation using OWA operators, International
Journal of Intelligent Systems 11(1), 49–73.

28

Page 28 of 29The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.w3.org/TR/rdf11-primer

The Electronic Library

Yagüe, J. F., Huitzil, I., Bobed, C. and Bobillo, F.: 2022, Flexible queries over
knowledge graphs, Proceedings of the 4th Iberoamerican and 3rd Indo-American
Knowledge Graphs and Semantic Web Conference (KGSWC 2022), Vol. 1686 of
Communications in Computer and Information Science, Springer, pp. 192–200.

Zadeh, L. A.: 1965, Fuzzy sets, Information and Control 8, 338–353.
Zhang, F., Cheng, J. and Ma, Z.: 2016, A survey on fuzzy ontologies for the semantic
web, Knowledge Engineering Review 31(3), 278–321.

29

Page 29 of 29 The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

