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Abstract It is proved that any BRπ -matrix has positive determinant. For
π > 0, norm bounds for the inverses of BRπ -matrices and error bounds for linear
complementarity problems (LCPs) associated with BRπ -matrices are provided.
In this last case, the bounds are simpler than previous bounds and also have
the advantage that they can be used without previously knowing whether we
have a BRπ -matrix. Some numerical examples show that these new bounds can
be considerably sharper than previous ones.
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1 Introduction

This paper provides error bounds for linear complementarity problems (LCPs)
associated with BRπ -matrices as well as norms for the inverses of these matrices.
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The LCP (see Section 4) has many important applications, for instance, to
problems in linear and quadratic programming, network equilibrium problems,
or to the Nash equilibrium of a bimatrix game (see [1, 2, 4, 22]). A principal
minor is the determinant of a submatrix involving the same rows and columns,
and P -matrices are square matrices with all their principal minors positive.
Let us recall a remarkable property of P -matrices: the solution to a LCP exists
and is unique if and only if its associated matrix is a P -matrix [4].

Error bounds for LCPs associated to several subclasses of P -matrices are
presented in [2, 5–8, 10, 11, 14, 17, 24]. In particular, error bounds for LCPs
associated with BRπ -matrices with π > 0 were presented in [9,13]. The class of
BRπ -matrices was introduced by Neumann et al. in [19], generalizing the class
of B-matrices (see [8,10,18,21]). If we do not know whether a given matrix is
a BRπ -matrix with a fixed π > 0, then we cannot apply the bounds of [9, 13].
In this paper we shall provide alternative bounds for any matrix with positive
row sums that is a BRπ -matrix with π ≥ 0. Moreover, we shall characterize
BRπ -matrices with π ≥ 0 and provide π > 0. In contrast to [9, 13], our new
bound does not depend on an additional parameter ε, so that its application
is simpler. In addition, we show in Section 4 with some test matrices used
in [9, 13] that our new bound considerably improves those of [9, 13].

In Section 2 we first introduce BRπ -matrices and clarify a result of [19],
where it was claimed that any BRπ -matrix is a P -matrix but the proof assumed
that π ≥ 0. We show in Example 1 that there exist BRπ -matrices that are not
P -matrices when π has a negative component. However, Theorem 2 proves
that any BRπ -matrix has positive determinant. We also present in Section 2
a characterization to determine whether a given matrix is a BRπ -matrix with
π ≥ 0. This characterization also provides a positive vector π. Section 3 is
devoted to bound the infinity norm of the inverse of BRπ -matrices. Results
of Section 3 are used in Section 4 to derive the new error bounds of LCPs
associated to BRπ -matrices with π > 0. Numerical examples are included at
the end of Section 4.

Finally, let us recall some matrix definitions. We say that a matrix A is
nonnegative (respectively, positive) if all its entries are nonnegative (respec-
tively, positive) and we write A ≥ 0 (respectively, A > 0). The same nota-
tion applies to vectors considering them as column matrices. A matrix M =
(mij)1≤i,j≤n is a strictly diagonally dominant matrix if |mii| >

∑
j 6=i |mij |,

for each i = 1, . . . , n. A Z-matrix is a square real matrix with nonpositive
off-diagonal entries. A nonsingular M -matrix is a Z-matrix with nonnegative
inverse. Nonsingular M -matrices form an important subclass of P -matrices
and some fields where these matrices arise are dynamic systems, economics or
the discretization of partial differential equations.

2 Some basic results on BR
π -matrices

Let us start by recalling the definition of a BRπ -matrix given in [19].
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Error bounds for LCPs of BRπ -matrices 3

Definition 1 Let π = (π1, . . . , πn)T be a vector such that

0 <

n∑
j=1

πj ≤ 1. (1)

Let M = (mij)1≤i,j≤n be a real matrix with positive row sums and let R =
(R1, . . . , Rn)T be the vector formed by the row sums of M . Then we say that
M is a BRπ -matrix if for all i = 1, . . . , n,

πjRi > mij , ∀j 6= i. (2)

When πj = 1/n for all j, the previous definition coincides with that of a
B-matrix (see [21]). The close relationship of P -matrices with the LCP was
recalled in the Introduction. In fact, in Theorem 3.4 of [19] it was proved
that a BRπ -matrix is also a P -matrix whenever the vector π is nonnegative.
However, the condition on the sign of π is omitted as a hypothesis in the
statement of that theorem. Precisely, as was commented in page 251 of [20],
the nonnegativity of the vector π is sufficient to ensure that a BRπ -matrix is
also a P -matrix. So, we state the result that was proved in fact in Theorem
3.4 of [19].

Theorem 1 If A is a BRπ -matrix with π ≥ 0, then A is a P -matrix.

With the following example we show that the condition π ≥ 0 can not be
omitted to assure that a BRπ -matrix is a P -matrix.

Example 1 Let us consider the vector π = (1.1,−2.9, 2.1)T . Then the matrix

A :=

 2 −3 2
−1 1 1
0.1 −1 1


is a BRπ -matrix. However, A is not a P -matrix since the principal minor using
the first and second rows and columns is −1.

Let us also mention that, in order to derive bounds for LCPs associated to
BRπ -matrices, the condition π > 0 was used in [9, 13] as well as in the bounds
that we shall present later. In contrast to the loss of the property of being a P -
matrix seen in Example 1, we can see that detA > 0 holds for any BRπ -matrix
A for any vector π.

Theorem 2 Let M = (mij)1≤i,j≤n be a real matrix with positive row sums.
If M is a BRπ -matrix, then detM > 0.

Proof By (1) there exists k ∈ {1, . . . , n} such that πk > 0. Let us choose ε > 0
such that πk − ε > 0 and mik − (πk − ε)Ri < 0 for i 6= k. Then we can define
a new parameter vector π̂ = (π̂1, . . . , π̂n)T with

π̂i =

{
πi, i 6= k,

πk − ε, i = k,
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and use it to decompose M as

M = B+ + C, B+ := (mij − π̂jRi)1≤i,j≤n, C := Rπ̂T . (3)

Then B+ is a Z-matrix with row sums R̄ = (R̄1, . . . , R̄n)T . Observe that, by
(1) and the definition of π̂,

∑n
j=1 π̂j < 1. Hence, for i = 1, . . . , n, the row sum

R̄i is given by:

R̄i =

n∑
j=1

(mij − π̂jRi) = Ri(1−
n∑
j=1

π̂j) > 0. (4)

Since B+ is a Z-matrix with positive diagonal entries, the positivity of its
row sums implies that it is also strictly diagonally dominant. Hence, B+ is a
nonsingular M -matrix and so det(B+) > 0. By the decomposition (3) and the
relationship between R and R̄ given by (4), we have that

detM = det(B+ + C) = det(B+ +Rπ̂T ) = det(B+)(1 + π̂T (B+)−1R)

= det(B+)(1 + π̂T (B+)−1(1−
n∑
j=1

π̂j)
−1R̄).

Given e = (1, . . . , 1)T , observe that B+e = R̄, and so

detM = det(B+)(1 + π̂T (B+)−1(1−
n∑
j=1

π̂j)
−1B+e).

Therefore, we deduce that

detM = det(B+)(1 + π̂T (1−
n∑
j=1

π̂j)
−1e) = det(B+)(1 +

n∑
j=1

π̂j(1−
n∑
j=1

π̂j)
−1)

= det(B+)(1−
n∑
j=1

π̂j)
−1,

and, since det(B+) > 0, we conclude that detM > 0. ut

By Proposition 3.5 of [19], the class of matrices satisfying Definition 1 is
closed under positive linear combinations. Then, by Theorem 2, it has positive
determinant. Finally, Theorem 1 gives a sufficient condition to assure that
the positive combination is a P -matrix. This information is gathered in the
following corollary.

Corollary 1 Let A = (aij)1≤i,j≤n and B = (bij)1≤i,j≤n be a BRπ -matrix and
a BRψ -matrix, respectively. Let s and t be nonnegative numbers with s+ t > 0.
Then:

i) det(sA+ tB) > 0.
ii) If π, ψ > 0, then sA+ tB is a P -matrix.
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Error bounds for LCPs of BRπ -matrices 5

We now present a characterization that allows us to determine whether a
given matrix is a BRπ -matrix with π ≥ 0 and so, in the affirmative case, that
it is in particular a P -matrix. Moreover, the characterization gives a suitable
positive vector π satisfying (1) and so we can apply the bounds that will be
presented later. This characterization will allow us to obtain bounds for BRπ -
matrices whenever the vector π is unknown. A characterization of a BRπ -matrix
for any π was obtained in Observation 3.2 of [19], but we are going to adapt
it by imposing the additional condition π ≥ 0.

Proposition 1 Let A be a square matrix with positive row sums and let R =
(R1, . . . , , Rn)T be the vector formed from the row sums of A. Then there exists
a nonnegative vector π satisfying (1) such as A is a BRπ -matrix if and only if

n∑
j=1

max
i6=j

(
aij
Ri
, 0

)
< 1. (5)

Proof Let us first suppose that A is a BRπ -matrix for a given nonnegative
vector π satisfying (1). By (1) there exists k ∈ {1, . . . , n} such that πk > 0.

Then we have that maxi 6=k

(
aik
Ri
, 0
)
< πk and, since maxi 6=j

(
aij
Ri
, 0
)
≤ πj for

all j 6= k, we also have that

n∑
j=1

max
i 6=j

(
aij
Ri
, 0

)
<

n∑
j=1

πj ≤ 1. (6)

Conversely, let us now suppose that (5) holds. If we define

k := 1−
n∑
j=1

max
i 6=j

(
aij
Ri
, 0

)
, (7)

then we have that the vector π = (π1, . . . , πn) with

πj := max
i 6=j

(
aij
Ri
, 0

)
+
k

n
for j = 1, . . . , n (8)

is positive and satisfies (1). Hence, A is a BRπ -matrix. ut

Remark 1 Let us observe that the choice of π in (8) agrees with the natural
parameter vector π = ( 1

n , . . . ,
1
n )T of an n × n B-matrix in some extremal

examples of B-matrices (see [19]). A first example of these B-matrices is pro-
vided by any positive diagonal matrix. In this case, (7) gives k = 1 and so (8)
gives πj = 1

n for all j = 1, . . . , n. The other extremal example of a B-matrix
is provided by a matrix of the form

A =


1 + ε 1 . . . 1

1 1 + ε
. . .

...
...

. . .
. . . 1

1 . . . 1 1 + ε

 ,
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6 H. Orera, J. M. Peña

where ε > 0. In this case,
aij
Ri

= 1
n+ε for any i 6= j, and so (7) gives k =

1− n
n+ε = ε

n+ε and (8) gives πj = 1
n+ε + ε

n(n+ε) = 1
n for all j = 1, . . . , n.

Remark 2 Observe that in the proof of Proposition 1 we prove that, if the
matrix A satisfies (5), then the vector π given by (8) is positive.

3 Norm bounds for the inverses of BR
π -matrices

Given a BRπ -matrix M = (mij)1≤i,j≤n, in [13] a decomposition of M depending
on a parameter ε was obtained and applied to derive error bounds of LCPs
when the involved matrix is a BRπ -matrix with πj > 0 for all j. In the following
result, we provide another decomposition of a BRπ -matrix with πj > 0 for all
j, which will not depend on any parameter and which will be very useful in
this paper.

Proposition 2 Let M = (mij)1≤i,j≤n be a BRπ -matrix with πj > 0 for all j
and for each i = 1, . . . , n let γi := maxj 6=i {0, mij

πj
}. Then we can write M =

B+ + C, where B+ := (mij − πjγi)1≤i,j≤n is a strictly diagonally dominant
Z-matrix with positive diagonal entries and C is the rank one matrix given by
C := (γ1, . . . , γn)T (π1, . . . , πn).

Proof We only have to prove that the Z-matrix B+ has positive row sums.
As usual, let us denote by R = (R1, . . . , Rn) the vector of row sums of M ,
which are positive because M is a BRπ -matrix. For each i = 1, . . . , n, from (1)
we deduce that the sum of the ith row of B+ is Ri − γi(

∑n
j=1 πj) ≥ Ri − γi.

Then, by definition of γi, we conclude that it is bounded below by either Ri
(and so, it is positive) or by Ri − mij

πj
for some j ∈ {1, . . . , n} (which is also

positive by (2)). ut
The following result gives an upper bound for ‖M−1‖∞.

Theorem 3 Let M = (mij)1≤i,j≤n be a BRπ -matrix with πj > 0 for all j and
let Rj , γj be given as in Definition 1 and Proposition 2, respectively. Then

‖M−1‖∞ ≤
max1≤i≤n

{
1
πi
− 1
}

min1≤i≤n

{
Ri − γi

∑n
j=1 πj

} . (9)

Proof By Proposition 2 and Theorem (2.3) of Chapter 6 of [1], B+ is a non-
singular M -matrix. So, we can write (B+)−1 =: (b̄ij)1≤i,j≤n with b̄ij ≥ 0 for
all i, j. Then we can express M = B+(I + (B+)−1C) and so

‖M−1‖∞ ≤ ‖(I + (B+)−1C)−1‖∞‖(B+)−1‖∞. (10)

Let us now provide an upper bound for ‖(B+)−1‖∞. By Proposition 2, B+

is a strictly diagonally dominant matrix with positive diagonal entries and so
it has positive row sums:

Ri − γi
n∑
j=1

πj > 0, i = 1, . . . , n.
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Error bounds for LCPs of BRπ -matrices 7

By Theorem 1 of [23], we deduce that

‖(B+)−1‖∞ ≤
1

min1≤i≤n

{
Ri − γi

∑n
j=1 πj

} . (11)

Now we bound the other factor of (10). Observe that

I + (B+)−1C =



1 + a1π1 a1π2 . . . a1πn
a2π1 1 + a2π2 . . . a2πn

...
...

...
...

...
...

...
...

anπ1 anπ2 . . . 1 + anπn

 , (12)

where ai :=
∑n
j=1 b̄ijγj ≥ 0 for i = 1, . . . , n. Then (12) can be written as

I + (B+)−1C = I +AP (13)

whereA := (a1, . . . , an)T eT (≥ 0), P := diag(π1, π2, . . . , πn) and e := (1, . . . , 1)T .
By our hypothesis on π, P is nonsingular and so I + AP = P−1(I + PA)P.
Denoting by C̄ := PA, we have

(I +AP )−1 = P−1(I + C̄)−1P. (14)

Observe that C̄ = āeT , where āi := πiai ≥ 0, for each i = 2, . . . , n and
ā := (ā1, . . . , ān)T . So, since eT ā =

∑n
i=1 āi ≥ 0, we can derive from the

Sherman-Morrison formula (see formula (2.1.5) of page 65 of [15])

(I + C̄)−1 = (I + āeT )−1 = I − āeT

1 + eT ā
. (15)

Hence, by (14), we get that

(I +AP )−1 =



1− ā1
1+

∑n
i=1 āi

π2

π1
( −ā1

1+
∑n

i=1 āi
) . . . πn

π1
( −ā1

1+
∑n

i=1 āi
)

π1

π2
( −ā2

1+
∑n

i=1 āi
) 1− ā2

1+
∑n

i=1 āi
. . . πn

π2
( −ā2

1+
∑n

i=1 āi
)

...
...

...
...

...
...

...
...

π1

πn
( −ān

1+
∑n

i=1 āi
) π2

πn
( −ān

1+
∑n

i=1 āi
) . . . 1− ān

1+
∑n

i=1 āi


. (16)

Then, since āi ≥ 0 for all i = 1, . . . , n, we conclude that ‖(I + AP )−1‖∞ is
given by

‖(I +AP )−1‖∞ = 1− āi
1 +

∑n
j=1 āj

+
∑
j 6=i

πj
πi

āi
1 +

∑n
j=1 āj

(17)
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8 H. Orera, J. M. Peña

for some i = 1, . . . , n. Since
∑n
j=1 πj ≤ 1 and āi ≥ 0 for all i, formula (17) can

be bounded above by

āi
1 +

∑n
j=1 āj

∑
j 6=i

πj
πi
− 1

+ 1 ≤ 1− πi
πi

− 1 + 1 =
1− πi
πi

and so,

‖(I +AP )−1‖∞ ≤ max
i

{
1

πi
− 1

}
. (18)

Now the result follows from (10), (11), (13) and (18). ut

Proposition 1, Remark 2 and Theorem 3 allow us to deduce the following
corollary.

Corollary 2 Let M be a square matrix with positive row sums R = (R1, . . . , Rn)T

satisfying (5), let π = (π1, . . . , πn) be the positive vector given by (8) and let
γj be given as in Proposition 2 for j = 1, . . . , n. Then M is a BRπ -matrix and
formula (9) holds.

In the proof of Theorem 3 we have bounded the second factor of (10) by using
Varah’s bound for strictly diagonally dominant matrices of Theorem 1 of [23].
If we use a sharper bound, then we obtain sharper bounds for the norm of the
inverse of a BRπ -matrix. In order to illustrate this fact, we are going to use the
bound introduced in [16] for Nekrasov matrices, which in particular improves
Varah’s bound for SDD matrices (as proven in Theorem 2.4 of [16]):

∥∥A−1
∥∥
∞ ≤ max

i∈N

zi(A)

|aii| − hi(A)
, (19)

where zi(A) and hi(A) are defined recursively for i = 1, . . . , n by

z1(A) := 1, zi(A) :=

i−1∑
j=1

|aij |
zj(A)

|ajj |
+ 1, i = 2, . . . , n.

h1(A) :=
∑
j 6=1

|a1j |, hi(A) :=

i−1∑
j=1

|aij |
hj(A)

|ajj |
+

n∑
j=i+1

|aij |, i = 2, . . . , n.

In particular, if we apply bound (19) to the second factor of (10) we deduce
the following result:

Theorem 4 Let M = (mij)1≤i,j≤n be a BRπ -matrix with πj > 0 for all j and
let Rj , γj be given as in Definition 1 and Proposition 2, respectively. Then

‖M−1‖∞ ≤ max
1≤i≤n

{
1

πi
− 1

}
max

1≤i≤n

zi(B
+)

mii − γiπi − hi(B+)
, (20)

where B+ is given in Proposition 2, hi(B
+) =

∑i−1
j=1

γiπj−mij

mjj−γjπj
hj(B

+)+
∑n
j=i+1(γiπj−

mij) and zi(B
+) =

∑i−1
j=1

γiπj−mij

mjj−γjπj
zj(B

+) + 1.
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Error bounds for LCPs of BRπ -matrices 9

The next result follows from Proposition 1, Remark 2 and Theorem 4.

Corollary 3 Let M be a square matrix with positive row sums R = (R1, . . . , Rn)T

satisfying (5), let π = (π1, . . . , πn) be the positive vector given by (8) and let
γj be given as in Proposition 2 for j = 1, . . . , n. Then M is a BRπ -matrix and
formula (20) holds.

We now present some numerical examples in order to illustrate our new re-
sults. Our test matrices were introduced in previous articles that studied error
bounds for LCPs of BRπ -matrices. The matrix A1(m) corresponds to Example
1 from [13]. M1(k), M2(h) and M3(m) are examples from [9]:

A1(m) =

 10m −10m 1
−10m+ 1 10m 0

2 3 3

 , M1(k) =


4k k 0 −k
k 6k 0 0
0 k 4k −k
k 0 −k 7k

 ,

M2(h) =

3h h −h
3h 10h 3h
−h h 3h

 , M3(m) =


3m m 0 0

0.5m 4m 0 −0.5m
0.5m m 3m −0.5m
0.5m m −0.5m 3m

 .

We have computed bounds for the infinity norm of the inverse using theorems
3 and 4 and corollaries 2 and 3. The previous theorems need a given vector π,
so we are going to use the parameter vectors given in the original articles. In
Table 1 we gather these parameters and we present our results in Table 2.

Matrix π source
A1(8) (19/50, 19/50, 6/25) [13]

M1(21/25) (7/24, 7/24, 1/4, 1/6) [9]
M2(8/9) (3/8, 3/8, 1/4) [9]
M3(1/2) (9/24, 7/24, 1/6, 1/6) [9]

Table 1 Examples of BRπ -matrices with their parameter vector π.

Matrix A1(8) M1(21/25) M2(8/9) M3(1/2)
||A−1||∞ 2.0000 0.40668 0.8839 1.0333

Theorem 3 30.083 10.4167 10.1250 17.500
Theorem 4 27.226 10.4167 10.1250 17.500
Corollary 2 7 4.4025 4.1720 7.0200
Corollary 3 7 4.4025 4.1720 7.0200

Table 2 Bounds to ||A−1||∞ .

We can see that Theorem 4 only improves Theorem 3 for the matrix A1

and that Corollary 2 (and Corollary 3) considerably improve theorems 3 and
4.
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4 Error bounds for LCPs involving BR
π -matrices.

Let us recall that the linear complementarity problem (LCP) looks for a vector
x ∈ Rn such that

x ≥ 0, Mx+ q ≥ 0, xT (Mx+ q) = 0, (21)

where M is the n × n associated real matrix and q ∈ Rn. Some important
applications of this problem have been mentioned in the Introduction.

By Theorem 2.3 of [2], if M is a P -matrix, then the solution x∗ of the LCP
(21) satisfies

‖x− x∗‖∞ ≤ maxd∈[0,1]n‖M−1
D ‖∞‖r(x)‖∞, (22)

where
MD := I −D +DM, (23)

I is the n×n identity matrix,D is the diagonal matrix diag(di) with 0 ≤ di ≤ 1,
for all i = 1, . . . , n and r(x) := min(x,Mx+q), where the min operator denotes
the componentwise minimum of two vectors.

In [13], another decomposition of a BRπ -matrix involving a parameter ε
was obtained and applied to derive bounds for the error of the LCP when the
associated matrix is a BRπ -matrix with πj > 0 for all j. It was also used in [9].
Let us now recall it in order to compare it with our new decomposition.

Given a BRπ -matrix M = (mij)1≤i,j≤n, by (1) there exists j ∈ {1, . . . , n}
such that πj > 0. By (2) there exists an ε > 0 such that

πj − ε > 0 and mij − (πj − ε)Ri < 0, ∀ i 6= j. (24)

Then we can write
M = B+(ε) + C(ε), (25)

where

B+(ε) =


m11 − π1R1 . . . m1j − (πj − ε)R1 . . . m1n − πnR1

...
...

...
...

...
...

mn1 − π1Rn . . . mnj − (πj − ε)Rn . . . mnn − πnRn

 (26)

and

C(ε) =


π1R1 . . . πj−1R1 (πj − ε)R1 πj+1R1 . . . πnR1

...
...

...
...

...
...

...
...

...
...

π1Rn . . . πj−1Rn (πj − ε)Rn πj+1Rn . . . πnRn

 . (27)

In order to bound the error of the corresponding LCP, we have to provide
an upper bound for ‖M−1

D ‖∞, where MD is given by (23) and M is a BRπ -
matrix for a vector π = (π1, . . . , πn) with πi > 0 for all i = 1, . . . , n. Let B+(ε)
and C(ε) be the matrices given by (26) and (27) and let

CD := DC(ε), B+
D := I −D +DB+(ε). (28)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Error bounds for LCPs of BRπ -matrices 11

By Proposition 2 of [13], B+
D(ε) is a strictly diagonally dominant Z-matrix with

positive diagonal entries and so it has positive row sums. For each i = 1, . . . , n,
let us denote by βi > 0 the sum of the entries of the ith row of B+

D(ε) and let
β(ε) := mini{βi}. The following result shows the mentioned upper bound for
maxd∈[0,1]n‖M−1

D ‖∞ given in Theorem 1 of [13]. It uses the parameter ε.

Theorem 5 Let M be a BRπ -matrix for a vector π = (π1, . . . , πn) with πi >
0 for all i = 1, . . . , n and let MD, CD,and B+

D be given by (23), (28) and
B+(ε) =: (bij)1≤i,j≤n. Then

maxd∈[0,1]n‖M−1
D ‖∞ ≤

maxi

{
1
πi
− 1
}

min{β(ε), 1}
, (29)

where β(ε) := mini{βi} and βi := bii −
∑
j 6=i |bij |, i = 1, . . . , n.

In this section, we present a new bound for the error of the LCP associated
to a BRπ -matrix for a vector π = (π1, . . . , πn) with πi > 0 for all i = 1, . . . , n by
using the decomposition of Proposition 2. In contrast to the previous bound,
it will not depend on a parameter.

Given M , a BRπ -matrix for a vector π = (π1, . . . , πn) with πi > 0 for all
i = 1, . . . , n, we can define again MD = (m̄ij)1≤i,j≤n by (23) for any diagonal
matrix D = diag(di) with 0 ≤ di ≤ 1 for all i = 1, . . . , n . If B+ and C are
the matrices given by the decomposition of M given in Proposition 2, then we
can define the corresponding matrices B+

D, CD by

CD := DC, B+
D := I −D +DB+, B+ = (bij)1≤i,j≤n. (30)

The following result gives an upper bound for ‖M−1
D ‖∞.

Theorem 6 Suppose that M = (mij)1≤i,j≤n is a BRπ -matrix for a vector π
with πi > 0 for all i = 1, . . . , n and let MD = (m̄ij)1≤i,j≤n, CD and B+

D be the
matrices given by (23) and (30). Then B+

D is a strictly diagonally dominant
Z-matrix with positive diagonal entries and

maxd∈[0,1]n‖M−1
D ‖∞ ≤

max1≤i≤n

{
1
πi
− 1
}

min1≤i≤n

{
1, Ri − γi

∑n
j=1 πj

} , (31)

where, for each i = 1, . . . , n, Ri and γi are given by Definition 1 and Proposi-
tion 2, respectively.

Proof It is easy to check that MD is a BR̄π -matrix where R̄ = (R̄1, . . . , R̄n)T

and that R̄i = (1 − di) + diRi for each i = 1, . . . , n. We can observe that the
decomposition (10) of MD is given by the matrices B+

D and CD of (30). Then

maxd∈[0,1]n‖M−1
D ‖∞ ≤ maxd∈[0,1]n‖(I+(B+

D)−1CD)−1‖∞maxd∈[0,1]n‖(B+
D)−1‖∞.

(32)
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Following the argumentation given in the proof of Theorem 3, we can give the
same bound for the first factor of (32). So, we have that

maxd∈[0,1]n‖(I + (B+
D)−1CD)−1‖∞ ≤ max

1≤i≤n

{
1

πi
− 1

}
. (33)

The matrix B+
D is a strictly diagonally dominant Z-matrix with positive

diagonal entries, and so, taking into account (30), we can write

αDi = (1− di) + dibii −
n∑
j 6=i

di|bij | = 1− di + di

n∑
j=1

(mij − γiπj) > 0.

By Theorem 1 of [23], we deduce that

‖(B+
D)−1‖∞ ≤

1

min1≤i≤n αDi
=

1

min1≤i≤n{1− di + di
∑n
j=1(mij − γiπj)}

.

(34)
Let us consider an index k ∈ N such that αDk = mini{αDi }. Then

αDk = 1− dk + dk

n∑
j=1

(mkj − γkπj) = 1− dk + dk(Rk −
n∑
j=1

γkπj).

If Rk−
∑n
j=1 γkπj ≥ 1, then αDk ≥ 1 for any dk ∈ [0, 1], and so, ‖(B+

D)−1‖∞ ≤
1. Otherwise, we have that αDk ≤ Rk −

∑n
j=1 γkπj for any dk ∈ [0, 1]. Taking

into account these cases, we can bound (34) as follows

‖(B+
D)−1‖∞ ≤

1

min1≤i≤n

{
1, Ri − γi

∑n
j=1 πj

} . (35)

So we conclude that (31) holds since it is the product of the bound (35)
for ‖(B+

D)−1‖∞ and the bound (33) for ‖(I + (B+
D)−1CD)−1‖∞. ut

We can deduce the next result from Proposition 1, Remark 2 and Theorem 6.

Corollary 4 Let M be a square matrix with positive row sums R = (R1, . . . , Rn)T

satisfying (5), let π = (π1, . . . , πn) be the positive vector given by (8) and let
γj be given as in Proposition 2 for j = 1, . . . , n. Then M is a BRπ -matrix and
formula (31) holds.

Finally, we are going to present some numerical examples to compare our
new results with previous ones. The test matrices are those used in the previous
section. In this case, we have computed bounds for the error of the LCP using
Theorem 6 (that used the given vector π in Table 1) and Corollary 4. We
show the results obtained following this approach in the third and fourth rows
of Table 3. We compare the results with those obtained using the bounds
introduced in [13] and [9], which are included in the first two rows of Table
3. We borrowed the data from the original articles whenever possible, and we
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Matrix A1(8) M1(21/25) M2(8/9) M3(1/2)
LCP [13] 26.389 10 6 10
LCP [9] 20.192 9.9125 6.6667 9

Theorem 6 30.083 10.4167 10.1250 17.500
Corollary 4 7 5.5882 4.1720 7.0200

Table 3 Bounds for the LCP.

computed the corresponding bound when it was not available. These bounds
also use the parameter vector π given by Table 1.

Table 3 shows that the bounds obtained with Theorem 6 using a given
vector π are not necessarily sharper. However, we can see that the new bounds
given by Corollary 4 are sharper in all cases. Moreover, another advantage of
this approach is that it can be applied to any matrix with positive row sums
to first identify if it is a BRπ -matrix. If so, it computes a compatible vector π
and then we can apply our new bounds without further modifications.
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