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Abstract—This paper presents a game theoretic solution for
end-to-end channel and power allocation in multihop cognitive
radio networks analyzed under the physical interference model.
The objective is to find a distributed solution that maximizes
the number of flows that can be established in the network. The
problem is addressed through three different games: a local flow
game which uses complete information about the links of the flow,
a potential flow game requiring global network knowledge and a
cooperative link game based on partial information regarding
the links of the flow. Results show that the proposed link
game highly decreases the complexity of the channel and power
allocation problem in terms of computational load, reducing the
information shared between the links forming each flow with a
performance similar to that of the more complex flow games.

Index Terms—Game theory, multihop wireless networks, chan-
nel allocation, power control.

I. INTRODUCTION

AUTONOMOUS, self-configuring multihop networks
present a versatile solution to provide broadband ser-

vices with infrastructure-less deployments and decentralized
management. Furthermore, their intrinsic adaptability and re-
silience can be enhanced with cognitive radio technology [1],
enabling the nodes of the network to adjust their transmitting
parameters to the specific operational environment of the
network. One of the main research challenges in these kind
of networks is the proposal of efficient and distributed radio
resource management solutions that accomplish the channel
and power allocation for the links of each flow in the network.

These solutions should be simple enough to be imple-
mented in real systems, where overall information on the
environment is not assured, and should get good results in
terms of the global network performance. To tackle these
challenges, game theory has recently received an increasing
interest in the context of cognitive networks [2]. Game theory
is a mathematical tool that analyzes the strategic interactions
among multiple decision makers. This characterization of the
problem facilitates the evaluation of the expected performance
of the network, giving an insight into its behavior. The joint
channel and power allocation problem for cognitive radio
networks have been already studied with a game theoretical
perspective [3]-[6]. These works focus on the establishment
of single hop links between pairs of nodes as isolated entities.
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However, in a multihop network, the successful establishment
of an end-to-end flow between two nodes requires the joint
activation of all the links of the flow. In [7] channel allo-
cation for multi radio wireless networks is studied from a
game-theoretical perspective, taking into account these end-
to-end requirements. However, the problem is analyzed under
a simplified propagation model with fixed transmission and
sensing ranges, assuming that all flows reside in a single
collision domain. Aspects such as the transmission power
or the quality of the links, measured through the received
Signal-to-Interference-and-Noise-Ratio (SINR) are not taken
into account.

The aim of this work is to model the behavior of competing
flows within an autonomous multihop wireless network using
game theory in order to provide strategies that maximize the
number of flows that can be established. To the authors’
knowledge, this is the first game theoretic approach to model
the end-to-end resource allocation problem in multihop cog-
nitive radio networks under a realistic physical interference
model [8]. Specifically, we propose, define and evaluate with
simulations three different games that perform an end-to-end
joint channel and power allocation in this scenario. In two
of them, the flows themselves are the players, which implies
high communication and computation complexities. In the
third one, the individual links of each flow are the players,
so each link updates its strategy locally, with a certain degree
of cooperation among links, but with much lower complexity
than the flow games. The obtained results demonstrate that
this simple cooperative link game can provide a feasible
solution for the addressed problem with good performance,
limited computational complexity and low requirements of
environmental information. This work is organized as follows.
In Section II the system model is described. Section III
presents the game theoretic approach with the description
of the proposed games. The simulation framework and the
obtained results are shown in Section IV. Finally, in Section
V the main conclusions are summarized.

II. SYSTEM MODEL

The system considered in this work is a multihop wireless
network with N nodes. The maximum transmission power
for each node is Pmax. This transmission power is discretized
into a finite number of Q levels, equispaced between 0 and
Pmax. There are C non-interfering channels in the network,
and each node can only transmit in a specific subset of these
channels, which can vary from one node to another. Within
this network, a set F of flows is desired to be established. Each
flow f is formed by a sequence of k directed links between
the source node and the destination node obtained with the



Dijkstra algorithm. Given a directional link l between a pair of
nodes (lTX → lRX), the channel gain from transmitter (lTX) to
receiver (lRX) is defined as gl,l = d−γ

l,l , being dl,l the distance
from lTX to lRX and γ the path loss index. Similarly, gm,l =
d−γ
m,l represents the channel gain from the transmitter of link

m (mTX) to the receiver of link l (lRX).
A flow is feasible if and only if all its links can be

established. To determine if a link is active or not, the physical
interference model has been employed in the work. Under this
model, a directional link l can be successfully established if
and only if the SINR at the receiver (lRX) is higher than a
certain threshold α:

SINRl =
pl · gl,l

PN +
∑

m∈L,m �=l
cm=cl

pm · gm,l

≥ α (1)

with pl the power assigned to link l, cl the channel used by
link l, L the set of links in the network and PN the background
noise power.

III. GAME THEORETIC APPROACH

Let be the game Γ =
{
M, {Si}i∈M , {ui}i∈M

}
, where M

is the finite set of players, Si is the set of strategies related
to player i and ui : S → R is the utility function of that
player, with S = ×i∈NSi the strategy space of the game. This
utility function ui is a function of si, the strategy selected
by player i, and of s−i, the current strategy profile of the
rest of the players. Players will selfishly choose the actions
that improve their utility functions considering the current
strategies of the other players. One general key issue when
designing a game is the choice of ui so that the individual
actions of the players provide a good overall performance.
Two properties are usually desirable: the game should have an
equilibrium point and this point should maximize the network
utility. This equilibrium point, where no player has anything to
gain by unilaterally deviating, is known as Nash Equilibrium
(NE). Thus, a Nash equilibrium of a game Γ is a profile s∗ ∈ S
of actions such that for every player i ∈ M we have:

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i) (2)

for all si ∈ S, where si denotes any strategy of player i and
s∗−i ∈ S denotes the strategies of all the players other than
player i in the profile s∗.

Another specific key issue for the problem addressed in this
work is the definition of the players of the game. In this regard,
we consider two different choices: in the first one, the players
of the game are the flows themselves (flow game), while in
the second one the players are the set of links belonging to
the flows (link game). It must be noted that in the flow game,
there must be a physical entity (e. g. the source node of the
flow) which actually acts as the player. This entity gathers the
set of available channels and powers of each link in the flow
and performs the specific channel and power allocation for
all of them. Considering the different alternatives of players
and utility functions, we propose the following three games
to analyze the system:

A. Flow games

In these games, the players are the |F | flows of the network
(M = F ). The set of strategies Si of a flow i with k links
is formed by the Cartesian product of the set of strategies Al

of each link of the flow: Si = A1 × A2 × . . . × Ak. The
subindexes represent the position of the link in the flow, from
the source to the destination. Each link strategy al = (pl, cl)
is the allocation of transmission power and frequency channel
for that link.

1) Local flow game (LFG): The utility function of flow i
is directly related to the success in the establishment of the
flow. If Li denotes the subset of links belonging to flow i, the
utility function is defined as:

ui (si, s−i) =

⎧⎪⎨
⎪⎩

1 if SINRl > α ∀l ∈ Li

−1 if ∃l ∈ Li| (pl > 0) ∧ (SINRl < α)

0 otherwise (if pl = 0 ∀l ∈ Li)
(3)

The −1 value for any SINRl < α tries to introduce a degree
of cooperation to compensate the inherent selfishness of this
game: if a link of the flow cannot be established, the flow is
not viable and it is better to stop the transmission of the links
in the flow to reduce the interference on the remaining flows.

In the particular case where all the flows are single-hop
routes (i.e., single links), this game can be seen as a local link
game (LLG). In this kind of games the existence and conver-
gence to a pure NE cannot be assured [6], [9]. Therefore, the
same applies for this local flow game, which is an extension
of the previous one.

It must be noted that a full knowledge of all the strategy
spaces of each link of the flow (Al) is required in this game to
perform the strategy selection. In addition, to obtain the SINR
of each link, the node of the flow which acts as the player
needs to know the channel gain gl,l′ from the transmitter of
each link l (lTX) of the flow to the receivers of all the links
l′ (l′RX) in the flow and the interference levels at all these
receivers.

2) Potential flow game (PFG): An Exact Potential Game is
a game for which there exists a potential function V : S → R

such that:

Δui = ui (si, s−i)− ui (s
′
i, s−i) = ΔV =

= V (si, s−i)− V (s′i, s−i) , ∀i ∈ M, ∀si, s′i ∈ Si

(4)

If only one player acts at each time step (repeated sequen-
tial game) and the acting player maximizes (best response
strategy) or at least improves (better response strategy) [2] its
utility, given the most recent action of the other players, then
the process will always converge to a NE. In addition, global
maximizers of the potential function V are NE, although they
may be just a subset of all NE of the game.

We can define a potential game with V equals to the
objective to maximize, in this case, the number of flows to be
established. A direct option is to define the utility function ui

equal to the potential function (identical interest games [10]):

ui (si, s−i) =
∑
j∈F

λj (5)



where λj is 1 if flow j is active and 0 otherwise.
In this game, besides requiring the Al for all the links in the

flow, each player needs global information about all the flows
(and consequently, all the links) in the network. To compute
the viability of all the flows for each selected strategy, each
player requires the channel gains gl,m between any pair of
transmitting and receiving nodes of the links in the network
and the current strategies al = (pl, cl) of all these links.

B. Cooperative link game (CLG)

The main drawback of the flow games is the complexity
that they pose in terms of the necessity of sharing information
amongst the nodes of the network and the computational load
required to perform the strategy selection. The cardinality of
the strategy space of each flow is O((Q · C)k), being the
time complexity to select the strategy profile exponential. To
solve this problem, we propose a cooperative link game which
does not require a central entity in each flow to perform
the strategy selection. This decreases both the amount of
information shared between the nodes of the network and the
complexity of the selection of the strategy profile. Nevertheless
a certain degree of cooperation between the links of the flow
is required as described below.

In this game, the players are the set of links belonging to
the |F | flows of the network (M = L). The set of strategies
Si of a link i is its available set of power transmission and
channel frequency combinations, si = ai = (pi, ci). The links
belonging to the same flow cooperate in the selection of their
strategies. The game is played sequentially from the source to
the destination for each link i of a flow f , being the strategy
selection process divided in two steps. In the first one, each
link i selects its strategy according to the following utility
function:

ui (si, s−i) =

⎧⎪⎨
⎪⎩

1 if SINRl > α ∀l ≤ i

0 if pi = 0

−1 otherwise

(6)

i.e., each link tries to choose a strategy that activates its own
link without disrupting the previous ones to obtain ui = 1. If
this is not possible, it is better for itself and the following
links stop transmitting to obtain ui = 0. To compute the
SINR of the previous links in the flow, each link needs to
know the strategies selected by those links (but not the whole
strategy space as in the flow games), their channel gains gl′,l′ ,
the channel gain from the transmitter of the player i to the
receivers of those previous links, gi,l′ and the interference
levels at these receivers.

In the second step, once all the links of the flow have played,
they update their strategy with the following utility function:

ui (si, s−i) =

⎧⎪⎨
⎪⎩

1 if SINRl > α ∀l ∈ Lf

0 if pi = 0

−1 otherwise

(7)

Thus, if all the links have been activated, the flow f is active
and no more actions are required. On the contrary, if any link
is not active, the flow cannot be established and ui = −1 for
all the links. Therefore, to improve their utility and reduce the
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Fig. 1. Active flows as a function of the number of competing flows in the
network for the analyzed games. Mean value and standard deviation (bars).
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Fig. 2. Mean number of links per active flow as a function of the number
of competing flows in the network for the analyzed games.

interference on the remaining flows, all the links in the flow
must stop transmitting (ui = 0).

C. Timing and decision rules

A repeated sequential game with a round robin scheduling
and a better response strategy is considered for all the pro-
posed games. For the flow games (both local and potential), the
game is played until a pure NE is found or until a predefined
maximum number of iterations is reached. This playing rule
requires searching through the entire strategy space, which as
stated above implies a high complexity for the flow games. The
cooperative link game reduces this complexity at the expense
of not evaluating all the possible strategy profiles. Therefore,
the profiles corresponding to the NEs may not be reached and
consequently a different less restrictive rule is defined to stop
the game: if no link has improved its utility (and hence no new
flow has been established) in a round robin cycle, the game
is stopped. It is worth mentioning that this stopping rule does
not imply that some new flow could actually be established
since the complete strategy space is not evaluated.

IV. SIMULATION RESULTS

The proposed games have been evaluated by simulation.
The network consists of 200 nodes deployed in a square



TABLE I
MEAN AND STANDARD DEVIATION (IN BRACKETS) OF THE NORMALIZED

NUMBER OF FLOW STEPS PERFORMED UNTIL CONVERGENCE FOR THE
ANALYZED GAMES.

Flows LLG CLG LFG PFG

10 44 (11) 45 (18) 46 (19) 30 (4)

20 106 (19) 142 (76) 171 (94) 71 (14)

30 186 (37) 286 (140) 426 (662) 118 (25)

40 271 (52) 359 (140) 588 (474) 166 (32)

area of length 1 km with different random locations. Several
numbers of flows ranging from 10 to 40 are generated between
nodes of the topology. The source and destination nodes of
the flows are also randomly generated. All the presented
results are averaged with 100 random instances of the scenario.
The maximum number of hops of each flow is limited to 6.
The number of non-interfering channels is set to C = 10,
nevertheless, only a subset of these channels is available to
each node. To do so, the scenario is divided into regions of
100× 100 m, being assigned only a random subset (between
3 and 8) of these C channels to the nodes in the area. Pmax is
set to 20 dBm, transmission power is quantized with Q = 16
levels and the path loss index is γ = 4. The SINR threshold α
is set to 10dB. PN is set to -70 dBm, which ensures a SINR
of 10 dB at 100 m. This sets the maximum transmission range
in 100 m.

Fig. 1 shows the number of active flows obtained with
the three proposed games at the equilibrium point (NE for
the flow games and the criterion defined in section III.C
for the cooperative link game). As a reference, the results
obtained with a local link game (LLG) [6] where each link
only tries to be established without any knowledge about the
flow it belongs to are also included. The three proposed games
clearly outperform the LLG, since the only objective of this
one is to establish isolated links. In addition, the cooperative
link game provides a performance close to that of the local
flow game and even better than the potential flow game
with a much lower complexity. It must be noted that Fig. 1
only shows the active flows when the game has converged.
While the convergence is guaranteed for the potential flow
game, it cannot be assured for the local flow game and the
cooperative link game. Nevertheless, between 95% and 98%
of the simulated scenarios for the local flow game and 100%
for the cooperative link game have reached the equilibrium
point in the presented results.

Fig. 2 shows the mean number of links of the established
flows. This number decreases as the congestion in the network
(i. e., the number of competing flows) grows. In this situation,
the flows with fewer links tend to be established since the
requirement that all the links are active in the flow is more
easily achieved with short flows.

As for the computational complexity of the games, two
variables must be taken into account: the number of steps re-
quired to achieve the convergence and the computational load

of each step. Table I shows the mean number of normalized
flow steps for the four games. For the flow games, the flow
step is directly the game step, whereas for the link games, the
flow step is equivalent to k game steps, being k the number

of links (players) of the flow. Therefore, the flow steps for the
link games in Table I are normalized by dividing the number
of link steps by the mean number of links per flow.

Regarding the computational load of each step, the flow
games may require in the worst case exploring (Q · C)k

combinations of channel and power allocations to select the
strategy. On the contrary, the worst case for the link game
only requires exploring Q ·C combinations per link step, that
is k·Q·C combinations considering the k links of the flow (the
equivalent to a flow game step). Consequently, although the
number of flow steps are within the same magnitude order for
both flow and link games (Table I), the computational load of
each step is much lower in the latter, decreasing the complexity
of the game.

V. CONCLUSION

In this letter, a game theoretic framework for end-to-end
joint channel and power allocation in multihop cognitive
radio networks has been proposed and evaluated under the
physical interference model. Simulation results have shown
that the proposed cooperative link game can provide stable
configurations with a global performance similar to more
complex flow games. Our future work is focused on a deeper
analytical convergence study of the cooperative link game and
the definition of new utility functions aimed to reduce fairness
problems among short and long flows.
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