000149076 001__ 149076
000149076 005__ 20250124153131.0
000149076 0247_ $$2doi$$a10.1016/j.surfin.2024.105598
000149076 0248_ $$2sideral$$a142166
000149076 037__ $$aART-2025-142166
000149076 041__ $$aeng
000149076 100__ $$0(orcid)0000-0003-2517-9468$$aSalvador-Porroche, Alba
000149076 245__ $$aElectrical gating based on ion and electron beam irradiation of PdAc films: Application to superconducting nanowires
000149076 260__ $$c2025
000149076 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149076 5203_ $$aFocused ion beam (FIB) is a nanopatterning technique commonly used for material removal, but in combination with a precursor material it gives rise to additive nanomanufacturing, of great interest in nanotechnology and semiconductor applications. The precursor material can be delivered onto the substrate either in the gas form, through a gas-injection system, or in thin-film form, through spin coating. Recently, it has been found that the electrical resistance of spin-coated PdAc organometallic films submitted to FIB irradiation can be metallic at an optimized ion dose, without the need of any post-processing purification step. On the other hand, if such PdAc films are submitted to low-dose focused electron beam irradiation (FEB), they become an insulating material. Here, we combine the use of FIB and FEB irradiation to produce (additively) micro- and nano-structured materials that act as gates in electronic devices. Three different gate configurations have been explored and applied to suppress superconductivity in metallic nanowires through electric-field effects, including lateral and top gating. This new fabrication technique for investigation of electrical gating effects at the micro- and nano-scales stands out by its precision and resolution (due to the use of focused charged beams), by the absence of sacrificial resist layers, and by the process speed.
000149076 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/AEI/PDC2023-145810-I00$$9info:eu-repo/grantAgreement/ES/AEI/PID2020-11223914RB-I00$$9info:eu-repo/grantAgreement/ES/AEI/PID2022-141433OB-I00$$9info:eu-repo/grantAgreement/ES/AEI/PID2023-146451OB-I00$$9info:eu-repo/grantAgreement/ES/AEI/RED2022-134096-T$$9info:eu-repo/grantAgreement/ES/AEI/TED2021-131318B-I00$$9info:eu-repo/grantAgreement/EUR/COST/CA19140 FIT4NANO$$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/ES/DGA/E31-23R
000149076 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000149076 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000149076 700__ $$0(orcid)0000-0002-3576-5156$$aHerrer, Lucía
000149076 700__ $$0(orcid)0000-0002-4123-487X$$aSangiao, Soraya$$uUniversidad de Zaragoza
000149076 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000149076 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, José María
000149076 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000149076 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000149076 773__ $$g56 (2025), 105598 [10 pp.]$$tSurfaces and Interfaces$$x2468-0230
000149076 8564_ $$s8997971$$uhttps://zaguan.unizar.es/record/149076/files/texto_completo.pdf$$yVersión publicada
000149076 8564_ $$s2590955$$uhttps://zaguan.unizar.es/record/149076/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000149076 909CO $$ooai:zaguan.unizar.es:149076$$particulos$$pdriver
000149076 951__ $$a2025-01-24-14:50:09
000149076 980__ $$aARTICLE