000149094 001__ 149094
000149094 005__ 20250124213231.0
000149094 0247_ $$2doi$$a10.1016/j.fuproc.2015.05.034
000149094 0248_ $$2sideral$$a90915
000149094 037__ $$aART-2015-90915
000149094 041__ $$aeng
000149094 100__ $$0(orcid)0000-0003-3315-5933$$aRemón, J.$$uUniversidad de Zaragoza
000149094 245__ $$aEffect of acetic acid, methanol and potassium hydroxide on the catalytic steam reforming of glycerol: Thermodynamic and experimental study
000149094 260__ $$c2015
000149094 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149094 5203_ $$aThe present work analyses the effect on the reforming process of biodiesel crude glycerol of three impurities commonly found in this product. The influence of the presence of CH3OH (0–5 wt.%) and/or CH3COOH (0–3 wt.%) and/or KOH (0–2.8 wt.%) during the catalytic steam reforming of a 30 wt.% glycerol aqueous solution has been evaluated theoretically, studying the equilibrium composition of the gas, and experimentally in a fluidised bed reactor at 550 °C. The presence of the aforementioned impurities has a weak impact on the thermodynamic gas composition. However, they significantly influence the product distribution (in carbon basis) obtained experimentally. The carbon of the feed converted into gas, solid and liquid products varied as follows: 75–100%, 0–25% and 0–2.5%. CH3OH alone does not alter the results obtained with pure glycerol. In contrast, CH3COOH and KOH decrease the initial production of gases. This decrease is very high for KOH due to the formation of char. However, its progressive accumulation inside the reactor exerts a positive catalytic effect on the gasification of this char, augmenting the gas production over time. The composition of the gas was little affected by the presence of the impurities. The gas phase was made up of a mixture of H2 (66–70 vol.%), CO2 (24–29 vol.%), CO (3–6 vol.%) and CH4 (0.5–2.5 vol.%). The liquid phase consisted of a mixture of alcohols, ketones, cyclic compounds, aldehydes and phenols
000149094 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BES-2011-044856$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2010-18985
000149094 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000149094 590__ $$a3.847$$b2015
000149094 591__ $$aCHEMISTRY, APPLIED$$b9 / 72 = 0.125$$c2015$$dQ1$$eT1
000149094 591__ $$aENGINEERING, CHEMICAL$$b18 / 135 = 0.133$$c2015$$dQ1$$eT1
000149094 591__ $$aENERGY & FUELS$$b19 / 88 = 0.216$$c2015$$dQ1$$eT1
000149094 592__ $$a1.501$$b2015
000149094 593__ $$aEnergy Engineering and Power Technology$$c2015$$dQ1
000149094 593__ $$aFuel Technology$$c2015$$dQ1
000149094 593__ $$aChemical Engineering (miscellaneous)$$c2015$$dQ1
000149094 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000149094 700__ $$aMercado, V.
000149094 700__ $$0(orcid)0000-0001-7115-9025$$aGarcía, L.$$uUniversidad de Zaragoza
000149094 700__ $$0(orcid)0000-0002-5959-3168$$aArauzo, J.$$uUniversidad de Zaragoza
000149094 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000149094 773__ $$g138 (2015), 325-336$$pFuel process. technol.$$tFuel Processing Technology$$x0378-3820
000149094 8564_ $$s853054$$uhttps://zaguan.unizar.es/record/149094/files/texto_completo.pdf$$yPostprint
000149094 8564_ $$s1520023$$uhttps://zaguan.unizar.es/record/149094/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000149094 909CO $$ooai:zaguan.unizar.es:149094$$particulos$$pdriver
000149094 951__ $$a2025-01-24-21:10:03
000149094 980__ $$aARTICLE