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In this work, we study a generic squared symmetric Hamiltonian of two degrees of freedom. 
Our aim is to show a global methodology to analyze the evolution of the families of periodic 
orbits and their bifurcations. To achieve it, we use several numerical techniques such as a 
systematic grid search algorithm in sequential and parallel, a fast chaos indicator and a tool for 
the continuation of periodic orbits. Using them, we are able to study the special and generic 
bifurcations of multiplicity one that allow us to understand the dynamics of the system and we 
show in detail the evolution of some symmetric breaking periodic orbits.
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1. Introduction

The study of Hamiltonian systems of two-degrees of freedom has been done by a 
large number of researchers by using different techniques. Nowadays, it is possible 
to mix several of these methods in order to provide a more complete study of the 
systems. Besides, most of the techniques can be extended to systems with more 
degrees of freedom. The main purpose of this paper is to focus on this global 
approach, that is, to use several methods, most of them already used by other 
authors and adapted to the current computational tools like parallel computing, in 
order to study a particular important problem that has not been analyzed com-

pletely in the literature.
When we want to study a Hamiltonian system, one of the most common ways to 

proceed is to perform several Poincare� Surfaces of Section to determine how the 
system evolves as the energy changes. In this paper, we propose to combine that 
study with more specific techniques such as a chaotic indicator and a search of 
symmetric periodic orbits to have a better vision of the invariants of the system, 
with the goal to understand the dynamics in a greater detail. One of these invariant 
objects are the families of periodic orbits.

The importance of studying periodic orbits in nonintegrable Hamiltonian sys-
tems with two degrees of freedom has been recognized since Poincar�e,1 as it is a 
route to understand the nonintegrable dynamics of the system. The periodic orbits 
can be thought as the skeleton of the dynamics.2,3 In particular, if the periodic orbits 
are symmetric, they can be computed using a grid search method.4�8 As the flow is 
continuous, a trajectory near a periodic orbit will present a similar dynamics. 
Therefore, the knowledge of the families of periodic orbits of a system and their 
stability will give us a better understanding of the phase space structure.9

The periodic orbits play an important role in several physical applications, such 
as in chaotic billiards,10 in the control of chaotic dynamical systems,11 in the plasma 
physics,12 in the transition state theory of chemical reactions,13 in the studies of the 
scars in a quantum system14,15 or in celestial mechanics and mission design,16,17 

among other applications.
In this paper, we are going to analyze a Hamiltonian system with a quartic 

potential that posses square symmetries using some numerical tools. We are going 
to show the complex structure of its phase space and to study the progressive loss of 
symmetry in the periodic orbits after each bifurcation until we obtain a family of 
asymmetric periodic orbits.

This paper is organized as follows. In Sec. 2, we explain the generic quartic 
Hamiltonian, in Sec. 3 we describe the numerical techniques that we have used to 
analyze this problem. In Sec. 4, we show the evolution of the system as the energy 
grows, in Sec. 5, we study the main bifurcations of multiplicity one of systems with
symmetry D4, in Sec. 6 we compute some asymmetric families that appear in this 
problem and we show their evolution and finally, in Sec. 7 we show how to decrease the 
computing time of the systematic grid search method by parallelizing the algorithm.



2. The Quartic Hamiltonian

An interesting generic family of Hamiltonian system is given by H ¼ 1
2 �

ð _x2 þ _y2Þ þ V ðx; yÞ with the quartic potential

V ðx; yÞ ¼ 1

2
nðx2 þ y2Þ þ �x2y2 þ 1

4
�ðx4 þ y4Þ; ð1Þ

that was proposed by Andrle18 for a stellar system with an axis and a plane

of symmetry, and later used in many applications. This potential depends on

parameters n; �; � 2 R, and it is known to be integrable for some values of

the parameters.19�21 If we take n > 0, then it can be considered to model two

coupled isotropic oscillators that has been analyzed in problems related to quantum

chaos21,22 and galactic dynamics.23,24 If however n < 0, it can be considered as a

model for two coupled Duffing oscillators.18

This Hamiltonian presents the D4 symmetry, that is, it is invariant under a

rotation by �=2. It has also the time-reversal symmetry.

This model has been studied previously for several values of the parameters.

Without being exhaustive, some interesting examples are the following:

. The Yang–Mills potential25 (n ¼ 0; � ¼ 1; � ¼ 0), first thought to be completely

ergodic, but later known to posses stable periodic orbits26

V ðx; yÞ ¼ x2y2:

. The galactic potential27,28 (n ¼ 1; � ¼ �1; � ¼ 0) with four escapes, that has been

object of studies by some authors, and it has been observed to posses safe regular

regions29 for energies above the escape energy

V ðx; yÞ ¼ 1

2
ðx2 þ y2Þ � x2y2:

. The homogeneous quartic oscillator17,19,30–33 (n ¼ 0; � ¼ 1; � ¼ 1), that has been

studied from a classical, semiclassical and quantum-mechanical perspective

V ðx; yÞ ¼ 1

4
ðx4 þ y4Þ þ x2y2:

. The dihedral potential34 (n ¼ �2; � ¼ 1=4; � ¼ 1) (see Fig. 1)

V ðx; yÞ ¼ 1

4
ðx2 þ y2Þ2 � ðx2 þ y2Þ � 1

4
x2y2: ð2Þ

In this paper, we are going to analyze the dihedral potential (Eq. (2)). It has 
been previously considered by some authors35,36 in the context of galactical dynamics,

where they analyzed their mixing properties. This Hamiltonian also appears34

when studying the Bogdanov�Takens bifurcation at the origin. This bifurcation 
has interest in fluid dynamics related to convection problems in a container such as
in a magnetoconvention37,38 model with a vertical magnetic field, but it can also



Fig. 1. (Color online) Dihedral potential (Eq. (2)).

appear in models with a salt gradient (thermohaline convection), a Coriolis force 
or other stabilizing effects (see Ref. 37 for more details). Due to this stabilizing
vertical gradient, the otherwise Oð2Þ symmetry of the convection problem is 
broken and a D4 symmetric system (assuming a square container; other sym-

metries are possible in other containers) remains that depends on a parameter. The
variation of this parameter allows to study the Bogdanov�Takens codimension 
two bifurcation on those systems. In a limit case the system is Hamiltonian34 with

the potential of Eq. (2).
Note that, the bifurcations found in this system may appear in any D4 symmetric 

system, and so this analysis is general.

3. Numerical Techniques

In this section, we describe briefly the numerical techniques used to study the 
dynamics of the Hamiltonian system, namely, to compute its Poincare� surfaces of 
section, to find the chaotic regions, to perform a systematic search of symmetric 
periodic orbits and to continue families of periodic orbits.

One of the most common tools used to analyze dynamical systems is the Poincare� 
Surface of Section (PSS). The basic idea is to select a 2D manifold transverse to 
most of the trajectories of the system and to study their cuts. In our case, the 
manifold has to be chosen to be transverse to all orbits.39

Another interesting thing is to locate the chaotic regions. One of the tools 
useful for that goal is a chaos indicator, that is a fast numerical technique used 
to detect chaos. Two common chaos indicators, based on variational methods, 
are the Fast Lyapunov Indicator40,41 (FLI) and the Orthogonal Fast Lyapunov 
Indicator41 (OFLI).



The OFLI242 method adds to FLI and OFLI the use of the second order vari-

ational equations to minimize the appearance of spurious structures.43 Therefore,

the OFLI2 indicator at the final time tf is given by

OFLI2 :¼ sup
t0<t<tf

log f»ðtÞ þ 1

2
�»ðtÞg?

����
����; ð3Þ

where » and �» are the first and second order sensitivities with respect to carefully

chosen initial vectors and g? denotes the component of g orthogonal to the flow. In

this case, the variational equations up to second order and the initial conditions are

given by

d½

dt
¼ f ðt;½Þ; ½ðt0Þ ¼ ½0;

d»

dt
¼ @f ðt;½Þ

@½
»; »ðt0Þ ¼

f ðt0;½0Þ
jjf ðt0;½0Þjj

;

d��j
dt

¼ @fj
@½

�»þ »>
@2fj
@½2

»; �»ðt0Þ ¼ 0:

ð4Þ

Note that, the last line of Eq. (4) is written for a single j-th component ��j to

simplify the notation.

OFLI2 tends to a constant value for the periodic orbits, behaves as log t for initial

conditions on a KAM tori and on a regular resonant motion but with different rate of

growing (and so they grow linearly in a logarithmic time scale as in Fig. 2) and grows

exponentially for chaotics orbits.

In Fig. 2, we show the evolution of the OFLI2 values in the time interval [1, 104]

for four particular orbits of the H�enon�Heiles problem. The orbits are indicated

with the letters �a� (a periodic orbit), �b� and �c� (orbits on a KAM tori) and

�d� (a chaotic orbit).

From now on, in the figures with the OFLI2 results, we have used the red color to

point the chaotic regions and blue for the most regular ones, being the intermediate

colors the transition from one to the other situation.

To compute the symmetric periodic orbits, we use (see Ref. 44 for more details of

our implementation) a method based on the classical systematic search method.
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Fig. 2. (Color online) Evolution of the OFLI2 values in the time interval [1, 104] for four particular 
orbits: �a� (a periodic orbit), �b� and �c� (orbits on a KAM tori) and �d� (a chaotic orbit).



ðxð0Þ; yð0Þ; _xð0Þ; _yð0ÞÞ ¼ ðx0; 0; 0; y0
: Þ; ð5Þ

and crosses the x-axis again perpendicularly, then the orbit is closed and symmetric.

This happens exactly at half period of the orbit. Therefore, next step is to check the
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This method is easily parallelizable, and in Sec. 7 we show some tests that we have 
carried out. This method, for two degrees of freedom Hamiltonians with some

symmetries, was used to obtain the skeleton of symmetric periodic orbits shown in 
Fig. 3(a). The procedure to obtain the skeleton contains several steps. First, the
Poincare� map is computed in a particular well-chosen plane. It is important to 
include the symmetry conditions into the section for the systematic search. Plane
(x; x_) was choosen with y ¼ 0, and y_ was obtained from the energy. With these
conditions the Poincar�e sections are symmetric or reversing symmetric with respect
to x-axis. Now, if a solution is fxðtÞ; yðtÞg and depends on system symmetries, then
fxð�tÞ; �yðtÞg or fxðtÞ; �yðtÞg is also a solution. Let us consider an orbit which
starts at a position perpendicular to the x-axis

Fig. 3. (Color online) (a) Skeleton of symmetric periodic orbits of multiplicity m ¼ 1. Green represents 
stable and red unstable symmetric periodic orbits. (b) OFLI2 chaos indicator. Red corresponds to
the chaotic region and blue to the stable region. (c) Combined OFLI2 ðx; yÞ plots for different values f0:5; 
0:0; 2:0; 5:0; 10:0g of the energy together with the skeleton of symmetric periodic orbits.



existence of a symmetric periodic orbit at half period T=2 of the orbit with the

following condition

yðx0; 0; 0; y0
: ð0Þ;T=2Þ ¼ _xðx0; 0; 0; y0

:
;T=2Þ ¼ 0: ð6Þ

For other kind of symmetries the conditions are similar and therefore the same or a

similar method may be used. In particular, in our Hamiltonian system, we could also

have chosen the plane (y; _y) due to the D4 symmetry.

In order to proceed with the search of periodic orbits the first step is to give a

mesh N �N in the parameter and variable space. As our system is an autonomous

Hamiltonian system with two degrees of freedom, the Hamiltonian is an integral of

motion. Thus, we use the energy E � H as a parameter and we perform a mesh in

the plane ðx;EÞ. Each pair gives a complete set of initial conditions. Then, we

integrate until we find the chosen Poincar�e Surface of Section after a number of

crossings of the x-axis with _y > 0 equal to the multiplicity of the orbit we are looking

for. After this we need to combine the integration of the orbit with a rootfinding

process to obtain an orbit with _x ¼ 0 that will be a symmetric periodic orbit.

With the systematic search method we are only able to obtain families of sym-

metric periodic orbits, so we have to use another method for the asymmetric families

of periodic orbits. Therefore, our last method is the continuation of families of

periodic orbits. We use the AUTO software package which is based on the con-

tinuation theory for ODEs.45

AUTO uses the pseudo-arclength continuation method. As an initial condition

we choose a periodic orbit that is perturbed on the energy parameter. As explained

in Ref. 46 we need to formulate our problem as a boundary value problem intro-

ducing an unfolding term with an unfolding parameter. The solution is another

periodic orbit with a new energy value in a predictor�corrector algorithm. The

computations are repeated for new initial conditions, and so we get a complete

family and its bifurcations.

4. Evolution of the D4 Symmetric System

One interesting problem when studying dynamical systems is to analyze the evol-

ution of the system when one parameter is changed. In this section, we use the

numerical techniques explained in the previous section to obtain the skeleton of

periodic orbits and a classification of regions according to its chaotic or regular

behavior.

Figure 3 shows the evolution of the system as the energy grows. Inset (a) presents

the skeleton of symmetric periodic orbits of multiplicity m ¼ 1. We can see that, 
there are many families just of this multiplicity. In green color, we plot the stable
periodic orbits and in red the unstable ones. In plate (b) the result of the OFLI2 
chaos indicator is presented. The colors that appear on this plot are blue and red, as
mentioned above, and they correspond to regular and chaotic regions, respectively. 
Comparing the two plots, we can see how the results of both techniques match



�
: ¼ J �HessðHðq;pÞÞ ��; with �ð0Þ ¼ I4; ð7Þ

where J is the canonical symplectic matrix , I4 the 4D identity matrix, and Hess

ðHðuÞÞ the Hessian matrix of H with respect of u. In the particular case of

Hamiltonians of the form Hðq;pÞ ¼ 1
2 ðp � pÞ þ UðqÞ, such as ours, the variational

equations take the simple form

�
: ¼ 0 I2

�HessðUðqÞÞ 0

� �
�; with �ð0Þ ¼ I4: ð8Þ

Since the system (2) is a Hamiltonian system, the monodromy matrix �1 is a

perfectly one each other, but we have to take into account that the OFLI2 method

collects information about all the orbits, and not only those of multiplicity m ¼ 1. 
A more complete evolution of the families of periodic orbits is presented at

Fig. 3(c), where we have combined the previously explained skeleton of periodic
orbits together with several OFLI2 plots for some values of the energy. This plot
shows not only the periodic orbits, but also the KAM tori around the periodic orbits
and the chaotic regions. We can see how the system evolves as the energy grows. For
very low values of the energy (E ¼ �0:5), the system appears to be very chaotic and 
is divided in two disconnected regions. When the energy increases to E ¼ 0:0, the
two regions touch and are connected at x ¼ 0. In the OFLI2 plots, we can see several 
complex structures with islands due to periodic orbits (blue), separated by chaotic
regions (red). If we further increase the energy, we see at E ¼ 2:0, E ¼ 5:0 and 
E ¼ 10:0, that the two regions are now completely connected and new structures 
appear and merge. As observed, there is a correspondence with the skeleton of
periodic orbits. At E ¼ 5:0, new structures appear that evolve as the energy grows, 
and at E ¼ 10:0, those islands have merged into a bigger structure. A similar 
evolution happens around the edges, where some families appear, giving rise to some

new islands.
These plots show us how the system evolves when the energy changes, but to 

complement this study we have to analyze the bifurcations of the system.

5. Bifurcations on the System

We are interested in studying the behavior of the system in the vicinity of a periodic 
orbit. Therefore, we want to calculate the stability of the orbit. As it is known, the
eigenvalues of the monodromy matrix �1 :¼ �ðT Þ allow us to study the linear 
stability of the periodic orbit. The monodromy matrix is the solution at time T (the
period of the periodic orbit) of the first order variational equations

real symplectic matrix and we have that its eigenvalues f�i; i ¼ 1; . . . ; 4g are in 
reciprocal pairs

�1�2 ¼ 1; �3�4 ¼ 1:



The complex eigenvalues are also in complex conjugate pairs. In order to study the

stability of orbits, the stability index � is defined as follows47

� ¼ �ð�ðT ÞÞ :¼ Trð�ðT ÞÞ � 2: ð9Þ
It is always possible to write the stability index in this form because there is

always an eigenvalue equal to one for a periodic orbit and therefore its reciprocal is

also equal to one. Thus, just the �3 and �4 eigenvalues remain to study. As they are

complex conjugate (when complex) and reciprocal they are on the unit circle in the

complex plane or on the real axis. In case when both eigenvalues are on the unit

circle j�j < 2, and the studied periodic orbit is stable. Unstable case occurs when �3

and �4 are real (j�j > 2). If the eigenvalues are equal to one or minus one (j�j ¼ 2), a

special case appears, it is the point where the stability may change.

The isochronous bifurcation point in the family of periodic orbits appears

when � ¼ �3 þ �4 ¼ 2Reð�3;4Þ ¼ 2. This allows us to know when such a bifurcation

occurs.

5.1. Bifurcations of multiplicity m=1

In this section, we describe the \typical"48 local bifurcations of the families of

periodic orbits for systems with squared symmetry. This means that different

bifurcations may happen, but they would be exceptional.

We are going to study with some detail the symmetric bifurcations of multi-

plicity m ¼ 1. Other typical bifurcations may happen for higher multiplicities.

In Fig. 4, we show a scheme of a Poincar�e section of the typical bifurcations of our 
system, taking into account that the Poincar�e section may appear rotated. We

suppose that the bifurcation happens when the parameter has the value PB and we 
write P ¼ PB þ ". We show just one direction, from " <  0 to  " > 0, but the bifur-
cation may occur in the opposite direction. The bifurcation B1 is generic,48 that is, it
may appear on systems having symmetries or not. After a family of periodic orbits 
has lost all its symmetries, this is the only typical bifurcation of multiplicity one.
For systems with the D4 symmetry, there are other possible bifurcations B2, B3, B4 
and B5, but they involve a loss of some symmetries in the new families of periodic 
orbits.

The case B1 corresponds to a saddle-node bifurcation. For this bifurcation, two 
periodic orbits are created one being stable and the other one unstable (we mark the 
unstable orbits with a red cross in Fig. 4). This is the only way of creating new 
families of periodic orbits (apart from the boundaries of the domain of definition of 
the Hamiltonian system).

The bifurcations B2 and B3 are symmetric pitchfork and antipitchfork: two new 
periodic orbits are created from a symmetric periodic orbit but they loss sym-

metries. The new orbits are isochronous with the main periodic orbit (i.e. they have 
multiplicity one as well) and they are stable (B2) or unstable (B3). The main 
symmetric orbit changes its stability.



The case B4 corresponds to the creation of resonance islands of local multiplicity

m ¼ 1 around the main orbit that remains stable. The orbits on the islands lose their

D4 symmetry.

Finally, the case B5 is another special bifurcation (called touch-and-go), where

four unstable periodic orbits (without D4 symmetry) of local multiplicity one touch

the center orbit that is symmetric and stable and \bounce" after a rotation.

As already mentioned, the system that is studied in this paper has the D4

symmetry, so we can find these bifurcations in it. We illustrate some of these

bifurcations in our problem on the plots of Figs. 5 and 6, by showing an OFLI2 plot

and a PSS for values of the energy before (" < 0) and after (" > 0) the bifurcations.

In Fig. 5, we show when the B3 antipitchfork bifurcation occurs in our system.

For an energy before the bifurcation (E ¼ 0:25) there is only an unstable periodic

orbit. After the bifurcation (E ¼ 0:12) the unstable orbit becomes stable and in the

right plot there is a zoom of the bifurcated stable family. Note that the bifurcation

appears as the energy decreases, so the sign of " changes.

In Fig. 6, we show the B4 four-islands chain of multiplicity one bifurcation.
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Fig. 4. (Color online) Generic and special bifurcations of local multiplicity m ¼ 1 in a D4 symmetric

Hamiltonian system.

Before the bifurcation (E ¼ 1:30), there is just one stable orbit, and after it 
(E ¼ 0:85), there is a chain of four-islands with four new stable orbits at the



center and another four unstable orbits connecting the islands. The D4 symmetry

of each individual orbit is lost, but all together keep the symmetry of the

system. These periodic orbits for a particular value of the energy are plotted in

Fig. 8(c).

Note that, Fig. 4 is presented here just to illustrate some of the bifurcations of

our problem, without doing a complete study of Hamiltonian bifurcations under

symmetries which is out of the scope of the present paper (see the extensive lit-

erature on this subject48�52 for a more detailed explanation).

The normal forms53 of these bifurcations of multiplicity m ¼ 1, are presented in

Table 1. In particular, the normal form for the B4 bifurcation is53

f�ð	; 
Þ ¼
1

2
"	2 þ 1

4
a	4 þ 1
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Fig. 5. (Color online) OFLI2 (top) and Poincar�e surface of section (bottom) before (left E ¼ 0:25) and

after (right E ¼ 0:12) bifurcation (antipitchfork) on plane ðx; _xÞ. On the right, magnification of the

bifurcated stable family.

where a; b are constants and (	, �) are polar coordinates. If " is positive and passes
through zero to a negative value, then the origin becomes a maximum (for jaj > jbj).
At the bifurcation point, four stable and unstable families symmetrically placed
appear, and this situation is called a \four-islands chain" bifurcation. The normal 
form of the four-islands chain of isochronous bifurcation (B4) is plotted in Fig. 4, 
and at this case four stable and four unstable periodic orbits are created and the 
main family remains stable.

If jaj < jbj we get the B5 touch-and-go bifurcation. In this system, we have not 
been able to observe this bifurcation for orbits of local multiplicity m ¼ 1.
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In Fig. 7, we show the evolution of the stability index of the main (blue) and the

bifurcated (green) families at the four-islands bifurcation. When the main family has

a stability index � ¼ 2, the bifurcated family appears. Inset (a) shows a ðE; �Þ plot,
whereas (b) shows ðx; �Þ. The main family appears at a saddle-node bifurcation at a

negative energy value. The stable branch undergoes a period doubling bifurcation
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Table 1. Normal forms of the bifurcations of multiplicity m ¼ 1

of Fig. 4.

Bifurcation Normal form

B1 f�ðq; pÞ ¼ 1
2 p

2 þ 1
3 q

3 þ "q

B2 f�ðq; pÞ ¼ 1
2 bp

2 þ 1
4 aq

4 þ 1
2 "q

2 ab < 0

B3 ab > 0

B4 f�ð	; 
Þ ¼ 1
4 a	

4 þ 1
4 b	

4 cosð4�Þ þ 1
2 "	

2 jaj > jbj
B5 jaj < jbj

(b)

Fig. 7. (Color online) (a) Stability index versus energy and (b) stability index versus coordinate x, for 
two families at the four-islands chain of isochronous bifurcation. Blue color represents the main family

fMg while green corresponds to the bifurcated family fB4g.



slighly below E ¼ 0, and then the energy grows until it reaches the isochronous four-

islands bifurcation near E ¼ 1, shown as a red dot. Note that the family of periodic

orbits is still stable after the bifurcation, as the stability index bounces back at 2.

The bifurcated families appear as a single curve in (a). Nevertheless, in (b) we see

that in fact the families present different values of the coordinate x and we are able

to separate them. The other two stable families can be separated plotting the

coordinate y and the four unstable families are rotated.

To have the whole picture of the bifurcated families, we show in Fig. 8 the

schematic representation of the four-islands chain (B4) bifurcation diagram. In

panel (a) we have the evolution of the four stable families versus the Energy. In (b),

we show just the skeleton of periodic orbits as usually computed and in (c), we plot

the four periodic orbits for a value of the energy (shown as a colored dot at the center

and left plots). In (c), each color corresponds to an orbit. Note that, on black we

have the main symmetric periodic orbit. The other colors correspond to the stable

bifurcated periodic orbits. Each of them has lost the D4 symmetry, but they still

have other symmetries.

6. Connecting Symmetric and Asymmetric Families of Periodic

Coordinate x Coordinate y

E
ne

rg
y 

E

(a)

Coordinate x 

−2.1 −2 −1.9 −1.8
0.7

0.8

0.9

1

Coordinate x

E
ne

rg
y 

E

(b)

Coordinate x 

−2 0 2

−2

0

2

C
oo

rd
in

at
e 

y 

Coordinate x

(c)

Fig. 8. (Color online) (a) Outline of the stable orbits of the four-islands chain isochronous bifurcation on

plane ðx; yÞ versus Energy and (c) selected orbits. (b) shows the skeleton obtained from AUTO. In black

we plot the main family and in the other colors the four stable bifurcated families.

Orbits in Symmetric Hamiltonians

We have so far computed symmetric periodic orbits using our systematic search 
method, but this system also presents families of periodic orbits without sym-

metries. To obtain them, we are going to use the AUTO45 software that, as men-

tioned previously, uses a continuation method. With AUTO, it is possible to obtain 
families of periodic solutions, starting from a known periodic orbit and continuing it. 
At the same time, AUTO can locate the bifurcations, and continue the bifurcated 
families at the bifurcation points. These points are the starting points for the next 
computations, where new families of periodic orbits are detected and are charac-
terized by dropping one symmetry.



Figure 9 shows several families of periodic orbits with their bifurcation points.

There is a family that performs a whole loop while it undergoes several bifurcations as

the energy changes, as shown in the stability index plot in Fig. 9 (right-bottom). We

are going to describe this figure aswemove through these bifurcations. Since the figure

is symmetric, we are going to consider positive values of the coordinate x because the

same bifurcations will happen for negative values of x. At the saddle-node bifurcation

point BP1 (x ¼ 0:149;E ¼ �7:5� 10�5), two orbits are created. The unstable family

ends at the stable point at x ¼ 0. The stable family increases the value of the coor-

dinate x until it arrives at the antipitchfork bifurcation BP2 (x ¼ 0:636;E ¼ 0:193)

where it becomes unstable.At the same time, twounstable families are created.One of

them finishes at the stable point x ¼ 0. The other finishes at (x ¼ 0:96;E ¼ 0). Their

stability index is shown in Fig. 9 (right). Continuing with the main family, it presents

a pitchfork bifurcation at BP3 (x ¼ 0:702;E ¼ 2:3). At this point, two stable asym-

metric families appear and quickly become unstable through a period doubling

bifurcation, ending again at the stable point x ¼ 0. Their stability index is shown in

Fig. 9 (right). Finally, the main family finishes at the bifurcation point BP4

(x ¼ 0;E ¼ 9:73), which is a pitchfork bifurcation of the vertical family fag that is

born at the stable point x ¼ 0. That family becomes stable as seen in the stability

index plot and keeps its stable character even for big values of the energy.

Note that, the curve corresponding to the linear family exists for all positive

values of the Energy exactly at x ¼ 0. This family has just the reflexion symmetry in
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Fig. 9. (Color online) Symmetric and asymmetric families of periodic orbits. On right panels we show 
the stability index � for these families. Green color denotes stable periodic orbits and red color unstable 
periodic orbits.



In Fig. 9 (right), there are four panels that correspond to the stability index �

versus the energy E of the main orbit (bottom), of the fag family, and the two

bifurcated families from the main loop family. As we can see, the fcg family is

always unstable whereas the fdg family is initially stable until it undergoes a period

doubling bifurcation and remains unstable until it collides at the origin.

In Fig. 10, we show with more detail the evolution of the symmetric periodic

orbits (with reflexion symmetry) of the main loop family fbg. On panel (b), we plot

the whole family. In green, we show the stable periodic orbits and in red the unstable

ones. The blue dots in panel (b) indicate the orbits projected into the ðx; yÞ plane in
panel (c), where we see that the orbits evolve from an orbit deformed to the right to

the vertical orbit as it goes through BP4, and then in reverse direction to an orbit

to the left. In panel (a), we show a 3D plot with the orbits in the ðx; y; _xÞ variables.
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both x and y axis. The other families bifurcate from it, so neither of those families
present the D4 symmetry, and they lose one symmetry after each bifurcation. At 
BP4, the x-axis reflexion symmetry is lost, and then, either at BP3 the y-axis 
reflexion symmetry is lost or at BP2 the time-reversal symmetry is lost.

Fig. 10. (Color online) (a) Evolution of symmetric periodic orbits of the loop family fbg of Fig. 9. Panel
(b) plot presents the main family. Panel (c) shows the evolution of the orbits on the plane ðx; yÞ. Red color 
corresponds to unstable periodic orbits and green color to stable periodic orbits.



We see that, the unstable orbits move through more space volume although most of

the family is stable as seen in (b).

In Fig. 11, we present the evolution of some asymmetric periodic orbits. On panel
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Fig. 11. (Color online) (a) Evolution of asymmetric periodic orbits of the family fdg of Fig. 9. Panel (b)

presents on black the main symmetric family fbg, whereas the asymmetric family fdg is represented in

red color the unstable orbits and in green the stable ones. Panel (c) shows the evolution of the orbits on

the plane ðx; yÞ.

(b), we show the asymmetric family fdg. In black, we plot the main family that is
shown in detail in Fig. 10. Again green and red orbits are the stable and unstable 
periodic orbits of the family. At each BP3 bifurcation points, two families of periodic 
orbits appear to preserve the reflexion symmetry of the main loop family as already 
seen in Fig. 9. One of the orbits moves to the forward direction and the other one to 
the backward direction. To show this on panel (b), we present them in a 3D plot 
where in the horizontal plane we plot the value of the x coordinate at the PSS. The 
blue dots are some selected orbits that are shown in (c), where we can see the
evolution of the orbits in the ðx; yÞ plane and their lack of symmetry. The family 
rotates to an almost horizontal orbit when the family arrives at the origin. Finally on
panel (a) we have a 3D plot with the evolution of the orbits in the ðx; y; x_Þ variables.

7. High Order Multiplicities and Parallel Study of the Problem

In this section, we describe an improvement of the systematic grid search method, 
namely the parallelization of the code in order to decrease the computing time.



In Fig. 12, we show the symmetric periodic orbits in the plane ðx;EÞ of multi-

plicities m ¼ 2, 4 and 6. Last figure shows all the multiplicities from 1 to 6. In

Table 2, we present the number of the orbits found and classified by its multiplicity

that span from m ¼ 1 to 12. We have repeated this test for a grid of 500� 500

points, computing thousands of orbits and another grid of 1000� 1000 points,

obtaining about seven hundred thousand orbits. We see here that, as expected, the

complexity increases with the multiplicity and so the computing time will be

greater.

The computer time increases with the multiplicity, so the use of multiple cores of

modern computers can give us an important boost, decreasing the time needed to

finish the computation. In our case, the systematic grid search method is an easily

When we compute, not only periodic orbits of multiplicity one but also of higher 
order multiplicities, we approach to the approximate general solution of the pro-
blem54 by means of computing a dense set of families of periodic orbit that allow us 
to describe globally the behavior of the Hamiltonian system.



parallelizable algorithm, as it is divisible into parts and it can be directly used with

OpenMP or MPI.

The grid search algorithm studies consecutively each of the N horizontal lines

and next each of the N vertical lines (grid N �N). In each line, we use the infor-

mation of two consecutive points to calculate the zero. We remark that no infor-

mation of the previous lines is needed. Therefore, we parallelize the algorithm

simply by computing each line on each processor.

In this work, we have used a personal computer PC Intel quad-core i7, CPU 860,

2.80GHz under a 2.6.32-29-generic SMP x86 64 Linux system and the super-

computer HECToR (High End Computing Terascale Resources) that is located at

the University of Edinburgh in Scotland. HECToR’s hardware configuration (2011,

phase 2b (XE6)) contains a large number of compute nodes, each one with two

12-core AMD Opteron 2.1GHz Magny Cours processors. Each 12-core processor

shares 16Gb of memory, giving a system total of 59.4 Tb. We use in this simulations

one of such compute nodes.

One standard metric to measure the performance of a parallel algorithm is just

the CPU-time. In Table 3, we show the CPU-time with HECToR in a grid of

500� 500 points and up to multiplicity m ¼ 6, depending on the number of cores.

Another standard metric to measure the performance of a parallel algorithm is the

Efficiency, EðpÞ, defined as

EðpÞ ¼ T ð1Þ
p � T ðpÞ ;

where T ð1Þ is the CPU-time (in seconds) of the sequential algorithm and T ðpÞ is the
CPU-time of the parallel algorithm executed on p processors. In the benchmarking

Table 3. CPU-time (seconds) and efficiency on HECToR for each number

of cores in a grid 500� 500 up to multiplicity m ¼ 6.

Cores p ¼ 1 2 4 8 12 16 20 24

CPU 4717. 2363. 1235. 627.2 420.3 318.3 260.5 218.7

EðpÞ ��� 0.998 0.954 0.940 0.935 0.926 0.905 0.899

Table 2. Number of orbits computed with multiplicities that span from 1 to 12, for

grids 500� 500 and 1000� 1000.

500� 500 m ¼ 1 2 3 4 5 6

Num. of orbits 3,682 5,866 14,035 19,152 23,618 21,369

500� 500 7 8 9 10 11 12 Total

Num. of orbits 20,322 16,071 14,315 10,940 10,641 8,306 168,317

1000� 1000 m ¼ 1 2 3 4 5 6

Num. of orbits 9,041 16,022 42,002 65,411 92,296 95,846

1000� 1000 7 8 9 10 11 12 Total

Num. of orbits 96,919 84,756 78,625 64,127 59,057 48,777 752,879
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Fig. 13. (Color online) CPU-time versus number of cores. On the left, with an Intel i7 quad-core 
computer and on the right, with HECToR.

test, we have obtained very good results and a relative efficiency around 90% with 
24 cores of HECToR computer.

Nowadays, the personal computers are multicore (dual-core, quad-core, six-
core), so it is interesting and useful to use the power provided to us by these modern 
computers. As it is shown in Fig. 13, the CPU-time is similar using the same number 
of cores with an usual computer or with a supercomputer like HECToR although it 
has thousands cores. On the left, we can see the CPU-time on a quad-core Intel i7 
computer showing that the complete use of a modern multicore processor permits to 
reduce significatively the global time of computing. On the right, we observe that 
using more and more cores on HECToR, the algorithm will permit to perform very 
detailed studies in a reasonable time.

8. Conclusion

In this paper, we show the generic structure of D4 Hamiltonian symmetric systems 
via the detailed study of a particular case of interest. To perform our analysis, we 
have used several numerical methods to study the dynamics of such systems. This 
kind of systems appears frequently in different fields like in galactic dynamics, 
quantum and semiclassical chaos, coupled classical oscillators, and some others. 
The results obtained with the study of this particular case can be directly extended 
to these problems.

We study the evolution of the different families via systematic search methods in 
the symmetric case and continuation methods for the asymmetric case. The study is 
complemented with a careful analysis of the chaotic and regular regions of the 
system using the OFLI2 chaos indicator, which joined with the skeleton of periodic 
orbits gives a detail study of the dynamics of the system. Different bifurcations of 
periodic orbits, both generic and special (taking into account the symmetries of the



system), are also presented. All these bifurcations and generic dynamics are pre-

sented in most of the D4 symmetric systems.

Finally, we show that we can decrease significatively the computing time for

some of our computation, by using a parallel code together with the power of a

modern multicore computer.
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