000149132 001__ 149132
000149132 005__ 20251017144554.0
000149132 0247_ $$2doi$$a10.1039/c9dt04816b
000149132 0248_ $$2sideral$$a117220
000149132 037__ $$aART-2020-117220
000149132 041__ $$aeng
000149132 100__ $$0(orcid)0000-0003-1029-3751$$aRubín, Javier$$uUniversidad de Zaragoza
000149132 245__ $$aMagnetic chains of Fe3 clusters in the {Fe3YO2} butterfly molecular compound
000149132 260__ $$c2020
000149132 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149132 5203_ $$aThe "butterfly" molecule [Fe3Y(µ3-O)2(CCl3COO)8(H2O)(THF)3] (in brief {Fe3YO2}) includes three Fe3+ ions which build a robust Fe3 cluster with a strong intracluster antiferromagnetic exchange and a total spin S = 5/2. It represents the starting magnetic system to study further interactions with magnetic rare earths when Y is replaced with lanthanides. We present heat capacity and equilibrium susceptibility measurements below 2 K, which show that each cluster has a sizeable magnetic anisotropy pointing to the existence of intercluster interactions. However, no phase transition to a long-range magnetically ordered phase is observed down to 20 mK. The intercluster interaction is analysed in the framework of the one-dimensional Blume-Capel model with an antiferromagnetic chain interaction constant J/kB = -40(2) mK between Fe3 cluster spins, and a uniaxial anisotropy with parameter D/kB = -0.56(3) K. This is associated to single chains of Fe3 clusters oriented along the shortest intercluster distances displayed by the crystal structure of {Fe3YO2}. Ac susceptibility measurements reveal that the magnetic relaxation is dominated by a quantum tunnelling process below 0.2 K, and by thermally activated processes above this temperature. The experimental activation energy of this single chain magnet, Ea/kB = 3.4(6) K, can be accounted for by the combination of contributions arising from single-molecule magnetic anisotropy and spin-spin correlations along the chains.
000149132 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E09-17R$$9info:eu-repo/grantAgreement/ES/DGA/E12-R17$$9info:eu-repo/grantAgreement/ES/MCINN/MAT2017-83468-R$$9info:eu-repo/grantAgreement/ES/MCINN/PCI2018-093116$$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096075-B-C21$$9info:eu-repo/grantAgreement/EUR/MOLSPIN-COST/CA15128
000149132 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000149132 590__ $$a4.39$$b2020
000149132 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b8 / 45 = 0.178$$c2020$$dQ1$$eT1
000149132 592__ $$a0.98$$b2020
000149132 593__ $$aInorganic Chemistry$$c2020$$dQ1
000149132 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000149132 700__ $$0(orcid)0000-0002-6045-3576$$aBadía-Romano, Laura$$uUniversidad de Zaragoza
000149132 700__ $$0(orcid)0000-0001-6284-0521$$aLuis, Fernando$$uUniversidad de Zaragoza
000149132 700__ $$aMereacre, Valeriu
000149132 700__ $$aProdius, Denis
000149132 700__ $$0(orcid)0000-0002-5999-341X$$aArauzo, Ana$$uUniversidad de Zaragoza
000149132 700__ $$0(orcid)0000-0002-0047-1772$$aBartolomé, Fernando$$uUniversidad de Zaragoza
000149132 700__ $$0(orcid)0000-0002-6517-1236$$aBartolomé, Juan$$uUniversidad de Zaragoza
000149132 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000149132 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000149132 773__ $$g49, 9 (2020), 2979-2988$$pDalton Trans.$$tDalton Transactions$$x1477-9226
000149132 8564_ $$s6583451$$uhttps://zaguan.unizar.es/record/149132/files/texto_completo.pdf$$yPostprint
000149132 8564_ $$s1513841$$uhttps://zaguan.unizar.es/record/149132/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000149132 909CO $$ooai:zaguan.unizar.es:149132$$particulos$$pdriver
000149132 951__ $$a2025-10-17-14:12:33
000149132 980__ $$aARTICLE