000149139 001__ 149139
000149139 005__ 20250125214313.0
000149139 0247_ $$2doi$$a10.1039/d1nr04207f
000149139 0248_ $$2sideral$$a126521
000149139 037__ $$aART-2021-126521
000149139 041__ $$aeng
000149139 100__ $$0(orcid)0000-0002-0782-3160$$aArias Egido E.
000149139 245__ $$aDimensionality-driven metal-insulator transition in spin-orbit-coupled IrO2
000149139 260__ $$c2021
000149139 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149139 5203_ $$aA metal-insulator transition is observed in spin-orbit-coupled IrO2 thin films upon reduction of the film thickness. In the epitaxially grown samples, the critical thickness (t ~ 1.5-2.2 nm) is found to depend on growth orientation (001), (100) or (110). Interestingly from the applied point of view, the insulating behavior is found even in polycrystalline ultrathin films. By analyzing the experimental electrical response with various theoretical models, we find good fits to the Efros-Shklovskii-VRH and the Arrhenius-type behaviors, which suggests an important role of electron correlations in determining the electrical properties of IrO2. Our magnetic measurements also point to a significant role of magnetic order. Altogether, our results would point to a mixed Slater- and Mott-type of insulator. © 2021 The Royal Society of Chemistry.
000149139 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E12-20R$$9info:eu-repo/grantAgreement/ES/DGA/E28-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-115159GB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-54425-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-83468-R
000149139 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000149139 590__ $$a8.307$$b2021
000149139 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b37 / 179 = 0.207$$c2021$$dQ1$$eT1
000149139 591__ $$aPHYSICS, APPLIED$$b23 / 161 = 0.143$$c2021$$dQ1$$eT1
000149139 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b70 / 344 = 0.203$$c2021$$dQ1$$eT1
000149139 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b31 / 108 = 0.287$$c2021$$dQ2$$eT1
000149139 592__ $$a1.744$$b2021
000149139 593__ $$aNanoscience and Nanotechnology$$c2021$$dQ1
000149139 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000149139 594__ $$a13.4$$b2021
000149139 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000149139 700__ $$0(orcid)0000-0003-4069-0395$$aLaguna Marco M.A.
000149139 700__ $$0(orcid)0000-0003-4239-2949$$aPiquer Oliet C.
000149139 700__ $$0(orcid)0000-0003-0400-8600$$aJiménez Cavero P.
000149139 700__ $$0(orcid)0000-0003-0271-8713$$aLucas del Pozo I.$$uUniversidad de Zaragoza
000149139 700__ $$0(orcid)0000-0003-3724-508X$$aMorellón Alquézar L.$$uUniversidad de Zaragoza
000149139 700__ $$aGallego F.
000149139 700__ $$aRivera-Calzada A.
000149139 700__ $$aCabero-Piris M.
000149139 700__ $$aSantamaria J.
000149139 700__ $$aFabbris G.
000149139 700__ $$aHaskel D.
000149139 700__ $$aBoada R.
000149139 700__ $$aDíaz-Moreno S.
000149139 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000149139 773__ $$g13, 40 (2021), 17125-17135$$pNanoscale$$tNanoscale$$x2040-3364
000149139 8564_ $$s5773498$$uhttps://zaguan.unizar.es/record/149139/files/texto_completo.pdf$$yVersión publicada
000149139 8564_ $$s2847608$$uhttps://zaguan.unizar.es/record/149139/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000149139 909CO $$ooai:zaguan.unizar.es:149139$$particulos$$pdriver
000149139 951__ $$a2025-01-25-20:57:09
000149139 980__ $$aARTICLE