000149141 001__ 149141
000149141 005__ 20250125214313.0
000149141 0247_ $$2doi$$a10.3390/nano11061478
000149141 0248_ $$2sideral$$a127268
000149141 037__ $$aART-2021-127268
000149141 041__ $$aeng
000149141 100__ $$0(orcid)0000-0003-0400-8600$$aJiménez-Cavero P.
000149141 245__ $$aStrong crystallographic influence on spin hall mechanism in pld-grown iro2 thin films
000149141 260__ $$c2021
000149141 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149141 5203_ $$aSpin-to-charge conversion is a central process in the emerging field of spintronics. One of its main applications is the electrical detection of spin currents, and for this, the inverse spin Hall effect (ISHE) has become one of the preferred methods. We studied the thickness dependence of the ISHE in iridium oxide (IrO2 ) thin films, producing spin currents by means of the spin Seebeck effect in ¿-Fe2 O3 /IrO2 bilayers prepared by pulsed laser deposition (PLD). The observed ISHE charge current density, which features a maximum as a consequence of the spin diffusion length scale, follows the typical behaviour of spin-Hall-related phenomena. By fitting to the theory developed by Castel et al., we find that the spin Hall angle ¿SH scales proportionally to the thin film resistivity, ¿SH ¿ ¿c, and obtains a value for the spin diffusion length ¿IrO2 of ¿IrO2 = 3.3(7) nm. In addition, we observe a negative ¿SH for every studied thickness and temperature, unlike previously reported works, which brings the possibility of tuning the desired functionality of high-resistance spin-Hall-based devices. We attribute this behaviour to the textured growth of the sample in the context of a highly anisotropic value of the spin Hall conductivity in this material. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
000149141 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26$$9info:eu-repo/grantAgreement/ES/MCIU/MAT2017-82970-C2-2-R
000149141 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000149141 590__ $$a5.719$$b2021
000149141 591__ $$aPHYSICS, APPLIED$$b37 / 161 = 0.23$$c2021$$dQ1$$eT1
000149141 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b109 / 344 = 0.317$$c2021$$dQ2$$eT1
000149141 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b55 / 179 = 0.307$$c2021$$dQ2$$eT1
000149141 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b53 / 108 = 0.491$$c2021$$dQ2$$eT2
000149141 592__ $$a0.839$$b2021
000149141 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000149141 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ1
000149141 594__ $$a6.6$$b2021
000149141 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000149141 700__ $$0(orcid)0000-0003-0271-8713$$aLucas I.$$uUniversidad de Zaragoza
000149141 700__ $$aAra-Arteaga J.
000149141 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra M.R.$$uUniversidad de Zaragoza
000149141 700__ $$0(orcid)0000-0002-4698-3378$$aAlgarabel P.A.
000149141 700__ $$0(orcid)0000-0003-3724-508X$$aMorellón L.$$uUniversidad de Zaragoza
000149141 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000149141 773__ $$g11, 6 (2021), 1478 [10 pp]$$pNanomaterials (Basel)$$tNanomaterials$$x2079-4991
000149141 8564_ $$s1066248$$uhttps://zaguan.unizar.es/record/149141/files/texto_completo.pdf$$yVersión publicada
000149141 8564_ $$s2537304$$uhttps://zaguan.unizar.es/record/149141/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000149141 909CO $$ooai:zaguan.unizar.es:149141$$particulos$$pdriver
000149141 951__ $$a2025-01-25-20:57:13
000149141 980__ $$aARTICLE