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Corners for Layout:
End-to-End Layout Recovery from 360 Images

Clara Fernandez-Labrador∗1,2, Jose M. Facil∗1, Alejandro Perez-Yus1,
Cédric Demonceaux2, Javier Civera1 and Jose J. Guerrero1

Abstract—The problem of 3D layout recovery in indoor scenes
has been a core research topic for over a decade. However,
there are still several major challenges that remain unsolved.
Among the most relevant ones, a major part of the state-of-the-
art methods make implicit or explicit assumptions on the scenes
–e.g. box-shaped or Manhattan layouts. Also, current methods
are computationally expensive and not suitable for real-time
applications like robot navigation and AR/VR. In this work we
present CFL (Corners for Layout), the first end-to-end model that
predicts layout corners for 3D layout recovery on 360◦ images.
Our experimental results show that we outperform the state of the
art, making less assumptions on the scene than other works, and
with lower cost. We also show that our model generalizes better
to camera position variations than conventional approaches by
using EquiConvs, a convolution applied directly on the spherical
projection and hence invariant to the equirectangular distortions.

Index Terms—Omnidirectional Vision, Semantic Scene
Understanding

I. INTRODUCTION

RECOVERING the 3D layout of an indoor scene from a
single view has attracted the attention of computer vision

and graphics researchers in the last decade. The idea is going
beyond pure geometrical reconstructions and provide higher-level
contextual information about the scene, even in the presence
of clutter. Layout estimation is a key technology in several
emerging application markets, such as augmented and virtual
reality and robot navigation [1]. But also for more traditional
ones, like real estate [2].

Layout estimation, however, is not a trivial task and there are
several major problems that still remain unsolved. For example,
most existing methods are based on strong assumptions on the
geometry (e.g. Manhattan scenes) or the over-simplification of
the room types (e.g. box-shaped layouts), often underfitting the
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(2017-9201AAO048S01342).

∗ Equal contribution
1 C. Fernandez-Labrador, J.M. Facil, A. Perez-Yus, J. Civera and J.J.

Guerrero are with Instituto de Investigación en Ingenierı́a de Aragón (I3A),
Universidad de Zaragoza, Zaragoza 50018, Spain {cfernandez, jmfacil,
alperez,jcivera,josechu.guerrero}@unizar.es

2 C. Fernandez-Labrador and Cédric Demonceaux are with VIBOT
ERL CNRS 6000, ImViA, Université Bourgogne Franche-Comté, France.
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CFL: End-to-End
Layout Recovery

Fig. 1: Corners for Layout: The model end-to-end predicts
the layout corners from the spherical image. Connecting the
corners and assuming ceiling-floor parallelism, we can directly
obtain the 3D layout in a very short time.

richness of real indoor spaces. The limited field of view of con-
ventional cameras leads to ambiguities, which could be solved by
considering a wider context. For this reason it is advantageous to
use wide fields of view, like 360◦ panoramas. In these cases, how-
ever, the methods for conventional cameras are not suitable due
to the image distortions and new ones have to be developed [3].

In the last years, the main improvements in layout recovery
from panoramas have come from the application of deep
learning. The high-level features learned by deep networks
have proven to be as useful for this problem as for many others.
Nevertheless, these techniques entail other problems such as
the lack of data or overfitting. State-of-the-art methods require
additional pre- and/or post-processing. As a consequence they
are very slow, and this is a major drawback considering the
aforementioned applications for real-time layout recovery.

In this work, we present Corners for Layout (CFL), the first
end-to-end neural network that predicts a map of the corners
of the room to directly obtain the 3D layout from a single
360◦ image (Figure 1). This makes CFL more than 100 times
faster than the state of the art, while still outperforming the
accuracy of current approaches. Furthermore, our proposal
is not limited by typical scene assumptions, meaning that it can
predict complex geometries, such as rooms with more than
four walls or non strict Manhattan structures. Additionally,
we propose a novel implementation of the convolution for
360◦ images [4], [5] in the equirectangular projection. We
deform [6] the kernel to compensate the distortion and make
CFL more robust to camera rotation and pose variations,
generalizing to unseen configurations. Hence, it is equivalent
to applying directly a convolution operation to the spherical
image, which is geometrically more coherent than applying
a standard convolution on the equirectangular panorama. We
have extensively evaluated our network in two public datasets
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with several training configurations, including data augmentation
techniques to address occlusions by enforcing the network to
learn from the context. We also propose a robustness analysis to
see the effect of extrinsic variations in panoramas and dataset bias.
Our code and labeled dataset can be found here: CFL webpage.

II. RELATED WORK

The layout of a room provides a strong prior for other visual
tasks like single-view and multi-view depth recovery [7], [8],
realistic insertions of virtual objects into indoor images [9],
indoor object recognition [10], [11], indoor place recognition
[12] or human pose estimation [13]. A large variety of methods
have been developed for this purpose using multiple input images
[14], [15] or depth sensors [16], which deliver high-quality recon-
struction results. For the common case when a single RGB image
is available, the problem becomes considerably more challenging
and researchers need very often to rely on strong assumptions.

The seminal approaches to layout prediction from a single view
were [17], [18], followed by [19], [20]. They basically model the
layout of the room with a vanishing-point-aligned 3D box, being
hence constrained to this particular room geometry and unable
to generalize to others appearing frequently in real applications.
Most recent approaches exploit CNNs and their excellent perfor-
mance in a wide range of applications such as image classifica-
tion, segmentation and detection. [21], [22], [23], [24], for exam-
ple, focus on predicting the informative edges separating the ge-
ometric classes (walls, floor and ceiling). Alternatively, Dasgupta
[25] proposed a FCN to predict labels for each of the surfaces of
the room. All these methods require extra computation added to
the forward propagation of the network to retrieve the actual lay-
out. In [26], for example, an end-to-end network predicts the lay-
out corners in a perspective image, but after that it has to infer the
room type within a limited set of manually chosen configurations.

While layout recovery from conventional images has
progressed rapidly with both geometry and deep learning,
the works that address these challenges using omnidirectional
images are still very few. Panoramic cameras have the potential
to improve the performance of the task: their 360◦ field of view
captures the entire viewing sphere surrounding its optical center,
allowing to acquire the whole room at once and hence predicting
layouts with more visual information. PanoContext [27] was the
first work that extended the frameworks designed for perspective
images to panoramas. It recovers both the layout, which is also
assumed as a simple 3D box, and bounding boxes for the most
salient objects inside the room. Pano2CAD [28] extends the
method to non-cuboid rooms, but it is limited by its dependence
on the output of object detectors. Motivated by the need of
addressing complex room geometries, [29] generates layout
hypotheses by geometric reasoning from a small set of structural
corners obtained from the combination of geometry and deep
learning. The most recent works along this line are LayoutNet
[30], that trains a FCN from panoramas and vanishing lines,
generating the layout models from edge and corner maps, and
DuLa-Net [31], that predicts Manhattan-world layouts leveraging
a perspective ceiling-view of the room. All of these approaches
require pre- or post-processing steps like line and vanishing
point extraction or room model fitting, that increase their cost.
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Fig. 2: CFL architecture. Our network is built upon ResNet-50,
adding a single decoder that jointly predicts edge and corner maps.
There are two network variations: one applies Standard Con-
volutions and Upconvolutions on the equirectangular panorama,
whereas the other one applies Equirectangular Convolutions and
Equirectangular Convolutions + unpooling directly on the sphere.

In addition to all the challenges mentioned above, we also
notice that there is an incrongruence between panoramic images
and conventional CNNs. The space-varying distortions caused by
the equirectangular representation makes the translational weight
sharing ineffective. Very recently, Cohen [5] did a relevant theo-
retical contribution by studying convolutions on the sphere using
spectral analysis. However, it is not clearly demonstrated whether
Spherical CNNs can reach the same accuracy and efficiency on
equirectangular images. EquiConvs are inspired by the work of
[4]. They propose distortion-aware convolutional filters to solve
the problem of dense prediction by leveraging commonly used
datasets with annotations for perspective images during training.
In this work, instead, we exploit this idea to tackle the problem
of layout recovery from panoramas and intensively study their
robustness to camera pose variation. In practice, we propose a
novel parameterization and implementation of the deformable
convolutions [6] by following the idea of adapting the receptive
field of the convolutional kernels by deforming their shape
according to the distortion of the equirectangular projection.

III. CORNERS FOR LAYOUT

Here we describe our end-to-end approach for recovering
the room corners that allow us to estimate the layout, i.e. the
main structure of the room, from a single 360◦ image. First,
we describe the proposed network architecture and training and
finally we describe how we directly transform the output into
the 3D layout. The network architecture is adapted for Standard
Convolutions and for our proposed Equirectangular Convolutions
implementation, the latest being explained in Section IV.

A. Network architecture

The proposed FCN follows the encoder-decoder structure and
builds upon ResNet-50 [32]. We replace the final fully-connected
layer with a decoder that jointly predicts layout edges and
corners locations already refined. We illustrate the proposed
architecture in Figure 2.
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Fig. 3: Layout from corner predictions. From the corner
probability map, the coordinates with maximum values are
directly selected to generate the layout.

Encoder. Most of deep-learning approaches facing layout
recovery problem have made use of the VGG16 [33] as
encoder [21], [25], [26]. Instead, [24] builds their model over
ResNet-101 [32] outperforming the state of the art. Here, we
use ResNet-50 [32], pre-trained on the ImageNet dataset [34],
which leads to a faster convergence due to the general low-level
features learned from ImageNet. Residual networks allow us to
increase the depth without increasing the number of parameters
with respect to their plain counterparts. This leads, in ResNet-50,
to capture a receptive field of 483×483 pixels, enough for our
input resolution of 256×128 pixels.

Decoder. Most of the recent work [21], [30], [22] builds two
output branches for multi-task learning, which increases the com-
putation time and the network parameters. We instead propose a
unique branch with two output channels, corners and edge maps,
which helps to reinforce the quality of both map types. In the
decoder, we combine two different ideas. First, skip-connections
[35] from the encoder to the decoder. Specifically, we concatenate
“up-convolved” features with their corresponding features from
the contracting part. Second, we do preliminary predictions at
lower resolutions which are also concatenated and fed back to
the network following the spirit of [36], ensuring early stages
of internal features aim for the task. We use ReLU as non-linear
function except for the prediction layers, where we use Sigmoid.

We propose two variations of the network architecture for two
different convolution operations (Figure 2). The first one, CFL
StdConvs, convolves the feature maps with Standard Convolutions
and use up-convolutions to decode the output. The second one,
CFL EquiConvs, uses Equirectangular Convolutions both in the
encoder and the decoder, using unpooling to upsample the output.
Equirectangular Convolutions are deformable convolutions that
adapt their size and shape depending on the position in the
equirectangular image, for which we propose a new implemen-
tation explained in Section IV to make our results reproducible.

B. Training

1) Objective output: The ground truth (GT) for every
panorama consists of a set of corner coordinates. With this
coordinates we generate two maps, m, one represents the room
edges (m = e), i.e. intersections between walls, ceiling and
floor, and the other encodes the corner locations (m=c). Both
maps are defined as Ym= {ym1 ,...,ymi ,...}, with pixel values
ymi ∈{0,1}. ymi has a value of 1 if it belongs to an edge or a
corner, and 0 otherwise. Dealing with the image at pixel level is
very noise-sensitive so we do line thickening and Gaussian blur

for easier convergence during training since it makes the loss
progression continuous instead of binary. The loss is gradually
reduced as the prediction approaches the target.

Notice here that our target is considerably simpler than
others that usually divide the ground truth into different classes.
This contributes to the small computational footprint of our
proposal. For example, [21], [24] use independent feature maps
for background, wall-floor, wall-wall and wall-ceiling edges.
A full image segmentation into left, front and right wall, ceiling
and floor categories is performed in [25]. In [26], they represent
a total of 48 different corner types by a 2D Gaussian heatmap
centered at the true keypoint location. Here, instead, we only
use two probability maps, one for edges and another one for
corners – see outputs in the Figure 2.

2) Loss function: Edge and corner maps are learned through
a pixel-wise sigmoid cross-entropy loss function. Since we know
a priori that the natural distribution of pixels in these maps is
extremely unbalanced (∼95% have a value of 0), we introduce
weighting factors to make the training stable. Defining as 1 and
0 the positive and negative labels, the weighting factors are
defined as wt = N

Nt
, being N the total number of pixels and

Nt the amount of pixels of class t per sample. The per-pixel
per-map loss Lmi is as follows:

Lmi = w1

(
ymi
(
−log(ŷmi )

))
+

+ w0

(
(1−ymi )

(
−log(1−ŷmi )

))
, (1)

where ymi is the objective value for pixel i in the map m
and ŷmi is the network output for pixel i and map m. We
minimize this loss at 4 different resolutions k = {1, ... ,4},
specifically in the network output (k=4) and 3 intermediate
layers (k= {1,...,3}). The total loss is then the sum over all
pixels, the 4 resolutions and both the edge and corner maps

L =
∑

k={1,...,4}

∑
m={e,c}

∑
i

Lmi [k]. (2)

C. From Corner Maps to 3D Layout

Current methods [30], [29], [27] use pre-computed vanishing
points and posterior optimizations, being constrained to produce
strict Manhattan 3D layouts. Aiming to a fast end-to-end simple
model, CFL avoids extra computation and adopt a representation
usually referred as Soft/Weak Manhattan [37] or Atlanta World
[38]. Following this, horizontal directions are not necessarily
orthogonal to each other, thus relaxing the model assumptions. To
this end, we simply follow a natural transformation from corners
coordinates to 2D and 3D layout. The 2D corners coordinates are
the maximum activations in the probability map. Assuming that
the corner set is consistent, they are directly joined, from left to
right, in the unit sphere space and re-projected to the equirectan-
gular image plane. The 3D layout is inferred by only assuming
ceiling-floor parallelism, leaving the wall structure unconstrained
–i.e., we assume that the floor corners are on the same plane
and the top corners are directly above the floor ones, but we do
not force the usual Manhattan perpendicularity between walls.
Corners are projected to floor and ceiling planes given a unitary
camera height (trivial as results are up to scale). See Figure 3.
We extend this explanation in the supplementary material.
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Fig. 4: Spherical parametrization of EquiConvs. The spher-
ical kernel, defined by its angular size (αw×αh) and resolution
(rw×rh), is convolved around the sphere with angles φ and θ.

Limitations of CFL: We directly join corners from left to right,
meaning that our model would not work if any wall is occluded
because of the convexity of the scene. In those particular
cases, the joining process should follow a different order. [29]
proposes a geometry-based post-processing that could alleviate
this problem, but its cost is high and it needs the Manhattan
World assumption. The addition of this post-processing into
our work, in any case, could be done similarly to [39].

IV. EQUIRECTANGULAR CONVOLUTIONS

Spherical images are receiving an increasing attention due to
the growing number of omnidirectional sensors in drones, robots
and autonomous cars. A naı̈ve application of convolutional
networks to a equirectangular projection, is not, in principle,
a good choice due to the space-varying distortions introduced
by such projection.

In this section we present a convolution that we name
EquiConv, which is defined in the spherical domain instead of
the image domain and it is implicitly invariant to equirectangular
representation distortions. The kernel in EquiConvs is defined
as a spherical surface patch –see Figure 4. We parametrize
its receptive field by the angles αw and αh. Thus, we directly
define a convolution over the field of view. The kernel is rotated
and applied along the sphere and its position is defined by
the spherical coordinates (φ and θ in the figure) of its center.
Unlike standard kernels, that are parameterized by their size
kw×kh, with EquiConvs we define the angular size (αw×αh)
and resolution (rw×rh). In practice, we keep the aspect ratio,
αw

rw
= αh

rh
, and we use square kernels, so we will refer the

field of view as α (αw=αh) and the resolution as r (rw=rh)
respectively from now on. In this work, we choose values of
resolution and field of view to be the same as the image.

A. EquiConvs Details

In [6], they introduce deformable convolutions by learning
additional offsets from the preceding feature maps. Offsets
are added to the regular kernel locations in the Standard
Convolution enabling free form deformation of the kernel.

Standard Deformable Equirectangular

Fig. 5: Effect of offsets on a 3× 3 kernel. Left: Regular
kernel in Standard Convolution. Center: Deformable kernel in
[6]. Right: Spherical surface patch in EquiConvs.

Inspired by this work, we deform the shape of the kernels
according to the geometrical priors of the equirectangular image
projection. To do that, we generate offsets that are not learned
but fixed given the spherical distortion model and constant over
the same horizontal locations. Here, we describe how to obtain
the distorted pixel locations from the original ones.

Let us define (u0,0,v0,0) as the pixel location on the equirect-
angular image where we apply the convolution operation (i.e.
the image coordinate where the center of the kernel is located).
First, we define the coordinates for every element in the kernel
and afterwards we rotate them to the point of the sphere where
the kernel is being applied. We define each point of the kernel as

p̂ij=

x̂ijŷij
ẑij

=
ij
d

, (3)

where i and j are integers in the range [− r−12 , r−12 ] and d is
the distance from the center of the sphere to the kernel grid.
In order to cover the field of view α,

d=
r

2tan(α2 )
. (4)

We project each point into the sphere surface by normalizing
the vectors, and rotate them to align the kernel center to the
point where the kernel is applied.

pij=

xijyij
zij

=Ry(φ0,0)Rx(θ0,0) p̂ij|p̂ij | , (5)

where Ra(β) stands for a rotation matrix of an angle β around
the a axis. φ0,0 and θ0,0 are the spherical angles of the center
of the kernel –see Figure 4, and are defined as

φ0,0=(u0,0−
W

2
)
2π

W
; θ0,0=−(v0,0−

H

2
)
π

H
, (6)

where W and H are, respectively, the width and height of the
equirectangular image in pixels. Finally, the rest of elements
are back-projected to the equirectangular image domain. First,
we convert the unit sphere coordinates to latitude and longitude
angles:

φij=arctan(
xij
zij

) ; θij=arcsin(yij). (7)

And then, to the original 2D equirectangular image domain:

uij=(
φij
2π

+
1

2
)W ; vij=(−θij

π
+
1

2
)H. (8)
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Fig. 6: EquiConvs on spherical images. We show three
kernel positions to highlight the differences between the offsets.
As we approach to the poles (larger θ angles) the deformation
of the kernel on the equirectangular image is bigger, in order to
reproduce a regular kernel on the sphere surface. Additionally,
with EquiConvs, we do not use padding when the kernel is
on the border of the image since offsets take the points to their
correct position on the other side of the 360◦ image.

In Figure 5 we show how these offsets are applied to a
regular kernel; and in Figure 6 three kernel samples on the
spherical and on the equirectangular images.

V. EXPERIMENTS

We present a set of experiments to evaluate CFL using both
Standard Convolutions (StdConvs) and the proposed Equirect-
angular Convolutions (EquiConvs). We do not only analyze the
corner maps predicted by our model, but also the impact of each
algorithmic component through ablation studies. We report the
performance of our proposal in two different datasets, and show
qualitative 2D and 3D models of different indoor scenes.

A. Datasets
We use two public datasets that comprise several indoor

scenes, SUN360 [40] and Stanford (2D-3D-S) [41] in
equirectangular projection (360◦). The former is used for
ablation studies, and both are used for comparison against
several state-of-the-art baselines.
SUN360 [40]: We use ∼500 bedroom and livingroom panoramas
from this dataset labeled by Zhang et al. [27]. We use these
labels but, since all panoramas were labeled as box-type rooms,
we hand-label and substitute 35 panoramas representing more
faithfully the actual shapes of the rooms. We split the raw dataset
in 85% training scenes and 15% test scenes randomly by making
sure that there were rooms of more than 4 walls in both partitions.
Stanford 2D-3D-S [41]: This dataset contains more challenging
scenarios like cluttered laboratories or corridors. In [30], they
use areas 1, 2, 4, 6 for training, and area 5 for testing. For
our experiments we use same partitions and the ground truth
provided by them.

Corners
Conv. IP EM IoU Acc P R F1

:1 :1 :1 :1 :1
StdConvs - - 0.519 0.978 0.611 0.763 0.675
StdConvs - X 0.531 0.979 0.639 0.749 0.685
StdConvs X X 0.569 0.982 0.684 0.761 0.718

EquiConvs - - 0.485 0.972 0.551 0.786 0.642
EquiConvs - X 0.536 0.980 0.649 0.744 0.690
EquiConvs X X 0.580 0.983 0.697 0.762 0.726

bigger is better

TABLE I: Ablation study on SUN360 dataset. We show
results for both Standard Convolutions (StdConvs) and our
proposed Equirectangular Convolutions (EquiConvs) with some
modifications: Using or not intermediate predictions (IP) in the
decoder and edge map predictions (EM).

Fig. 7: EquiConvs show more consistent qualitative results
whereas StdConvs simply do not understand that the image
wraps around the sphere, losing the continuous context that
these images provide.

B. Implementation details
The input to the network is a single panoramic RGB image

of resolution 256×128. The outputs are, on the one hand, the
room layout edge map and on the other hand, the corner map,
both of them at resolution 128×64. A widely used strategy to
improve generalization of neural networks is data augmentation.
We apply random erasing, horizontal mirroring as well as
horizontal rotation from 0◦ to 360◦ of input images during
training. The weights are all initialized using ResNet-50 [32]
trained on ImageNet [34]. For CFL EquiConvs we use the same
kernel resolutions and field of views as in ResNet-50. This
means that for a standard 3×3 kernel applied to a W×H feature
map, r=3 and α=r fovW , where fov=360◦ for panoramas. We
minimize the cross-entropy loss using Adam [42], regularized
by penalizing the loss with the sum of the L2 of all weights.
The initial learning rate is 2.5e−4 and is exponentially decayed
by a rate of 0.995 every epoch. We apply a dropout rate of 0.3.

The network is implemented using TensorFlow [43] and
trained and tested in a NVIDIA Titan X. The training time for
StdConvs is around 1 hour and the test time is 0.31 seconds per
image. For EquiConvs, training takes 3 hours and test around
3.32 seconds per image.

C. Network’s output evaluation
We measure the quality of our predicted probability corner

maps using five standard metrics: intersection over union IoU, pre-
cision P, recall R, F1 Score F1 and accuracy Acc. Table I summa-
rizes our results and allows us to answer the following questions:
What are the effects of different convolutions? As one would
expect, EquiConvs, aware of the distortion model, learn in a non-
distorted generic feature space achieving accurate predictions, like
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Input Panorama Without 
random erasing

With
random erasingErasing example

Fig. 8: Augmenting the data with virtual occlusions. Left:
Image with erased pixels. Right: Input panorama and predictions
without and with pixel erasing. Notice the improvement by
random erasing.

StdConvs on conventional images [26]. Distortion understanding,
additionally, gives the network other advantages. While StdConvs
learn strong bias correlation between features and distortion
patterns (e.g. ceiling line on the top of the image or clutter in the
mid-bottom), EquiConvs are invariant to that. For this reason, the
performance of EquiConvs does not degrade when varying the
camera DOF pose – see Section V-D. Additionally, EquiConvs
allow to directly leverage networks pre-trained on conventional
images. Specifically, this translates into a faster convergence,
which is desirable as, to date, 360◦ datasets contain far less im-
ages than datasets with conventional images. In omnidirectional
images, the right and the left edge are the same spot in reality so,
another strength of EquiConvs lie in the fact that we can avoid
padding when the kernel reaches the border of the image since
offsets take the points to their correct position on the other side of
the 360◦ image. This allows the model to understand the continu-
ity of the scene. StdConvs, instead, simply do not understand that
the image wraps around the sphere. As a consequence, in most
cases when corners approach the borders, StdConvs predict these
corners twice, at both ends, or the edges at one side would not
coincide with the edges at the other side. This effect is highlighted
in Figure 7 and further demonstrated in the supplementary video.
How can we refine predictions? There are some techniques
that we can use in order to obtain more accurate and refined
predictions. Here, we make pyramid preliminary predictions in
the decoder and iteratively refine them, by feeding them back to
the network, until the final prediction. Also, although we only
use the corner map to recover the layout of the room, we train
the network to additionally predict edge maps as an auxiliary
task. This is another representation of the same task that ensures
that the network learns to exploit the relationship between both
outputs, i.e., the network learns how edges intersect between them
generating the corners. The improvement is shown in the Table I.
How can we deal with occlusions? We do Random Erasing
Data Augmentation. This operation randomly selects rectangles
in the training images and removes its content, generating
various levels of virtual occlusion. In this manner we simulate
real situations where objects in the scene occlude the corners of
the room layout, and force the network to learn context-aware
features to overcome this challenging situation. Figure 8
illustrates this strategy with an example.
Is it possible to relax the scene assumptions while keeping a
good performance? By avoiding constrained Manhattan 3D lay-
out predictions we not only achieve better results compared with

current arts, but also we save in computation. Additionally, our
model overcomes the classic box-room simplification (four-walls
room setups), even if we still have a largely unbalanced dataset
after labeling some panoramas more accurately to their actual
shape. We address this problem by choosing a batch size of 16
and forcing it to always include one non-box sample. This favors
the learning of more complex rooms despite having few examples.

F1 Acc IoU

Trans StdConvs 55.32±8.23 95.46±1.3 39.135±7.82
EquiConvs 59.55±8.95 96.21±1.14 43.47±8.83

Rot x StdConvs 45.89±14.72 93.44±3.18 31.26±12.83
EquiConvs 46.2±15.1 94.43±2.18 31.625±13.41

Rot y StdConvs 72.28±2.7 98.21±0.21 57.54±3.25
EquiConvs 72.96±2.02 98.29±0.14 58.44±2.44

TABLE II: Robustness analysis. Values represent the mean
value (bigger is better) ± standard deviation (smaller is better)
in %. We apply three types of transformations to the panoramas:
translations in y dependant on the room height from −0.3h
to 0.3h, rotations in x from −30◦ to +30◦ and rotations in
y from 0◦ to 360◦. We do not use these images for training but
just for testing in order to show the generalization capabilities
of both models.

D. Robustness analysis

We test our model with previously unseen images where the
camera viewpoint is different from that in the training set. The
distortion in equirectangular projection is location dependent,
specifically, it depends on the polar angle θ. Since EquiConvs
are invariant to this distortion, it is interesting to see how
modifications in the camera extrinsic parameters (translation
and rotation) affect the model performance using EquiConvs
against StdConvs. When we generate translations (over vertical
axis y) and rotations (over horizontal axis x), the shape of the
layout is modified by the distortion, losing its characteristic
pattern (which StdConvs use in its favor).

Since standard datasets have a strong bias when referring
to camera pose and rotation, we synthetically render these
transformations along our test set. The rotation is trivial as we
work on the spherical domain. As the complete 3D dense model
of the rooms is not available, the translation simulation is
performed by using the existing information, ignoring occlusions
produced by viewpoint changes. Nevertheless, as we do not
work with wide translations the effect is minimal and images
are realistic enough to prove the point we want to highlight
(see Figure 9). Refer to supplementary material for more details.
For both experiments, we uniformly sample from a minimum
to a maximum transformation and calculate the mean and
standard deviation for all the metrics. What we see in Table II
is that we obtain higher mean values by using EquiConvs. This
means that this EquiConvs make the model more robust and
generalizable to real life situations, not covered in the datasets,
e.g. panoramas taken by hand, drones or small robots.

We also quantitatively analyzed the robustness of the model
to rotation over the vertical axis y. Even though this rotation do
not distort the shape of the layout like the previous extrinsic pa-
rameters, the incapability of StdConvs to wrap around the sphere
and understand the continuity of the scene was a frequent source
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Fig. 9: Synthetic images for robustness analysis. Here
we show two examples of panoramas generated with upward
translation in y and rotation in x respectively.

of failure as we showed in Figure 7 and the supplementary video.
Table II compare both convolutions, where the numbers represent
the mean of the results obtained from each panorama after doing
all possible rotations (from 0◦ to 360◦ horizontally) and com-
puting mean and standard deviation per panorama. Results show
that EquiConvs not only have better overall performance, but
the standard deviation is much smaller since there are no special
cases that cause failure due to lack of continuity in the borders.

E. 3D Layout comparison

We evaluate our layout predictions using three standard
metrics, 3D intersection over union 3DIoU , corner error
CE and pixel error PE, and compare ourselves against four
approaches from the state of the art [27], [30], [29], [31].
Pano2CAD [28] has no source code available nor evaluation
of layouts, making direct comparison difficult. The pixel error
metric given by [30] only distinguishes between ceiling, floor and
walls, PESS . Instead our proposed segmented mask distinguish
between ceiling, floor and each wall separately, PECS , which is
more informative since it also has into account errors in wall-wall
boundaries. For all experiments, only SUN360 dataset is used
for training. Table III shows the performance of our proposal
testing on both datasets, SUN360 and Stanford 2D-3D. Results
are averaged across all images. It can be seen that our approach
outperforms the state of the art clearly, in all the metrics.

It is worth mentioning that our approach, not only obtains
better accuracy but also it recovers shapes more faithful to
the real ones, since it can handle non box-type room designs
with few training examples. In Table IV we show that, apart
from achieving better localization of layout corners, our model
is much faster. Our full method with EquiConvs takes 3.47
seconds (0.3 fps) to process one room and with StdConvs just
0.46 seconds (2.2 fps), which is a major advantage considering
the aforementioned applications of layout recovery need to be
real-time (robot navigation, AR/VR).

VI. CONCLUSIONS

In this work we present CFL, the first end-to-end algorithm for
layout recovery in 360◦ images. Our experimental results demon-
strate that our predicted layouts are clearly more accurate than the
state of the art. Additionally, the removal of extra pre- and post-
processing stages makes our method much faster than other works.
Finally, being entirely data-driven relaxes the geometric assump-
tions that are commonly used in the state of the art and limits their
usability in complex geometries. We present two different variants
of CFL. The first one, implemented using Standard Convolutions,
reduces the computation in 100 times and it is very suitable

Test Method 3DIoU CE PESS PECS

SUN360

PanoContext [27] 67.22 1.60 4.55 10.34
Fernandez [29] - - - 7.26
LayoutNet [30] 74.48 1.06 3.34 -
DuLa-Net [31] 77.42 - - -
CFL StdConvs 78.79 0.79 2.49 3.33

CFL EquiConvs 78.87 0.75 2.6 3.03

Std.2D3D
Fernandez [29] - - - 12.1
LayoutNet [30] 64.56 1.44 5.16 -
CFL StdConvs 65.13 1.44 4.75 6.05

CFL EquiConvs 65.23 1.64 5.52 7.11
smaller is better

TABLE III: Layout results on both datasets (in %), training
on SUN360 data. SS: Simple Segmentation (3 categories):
ceiling, floor and walls [30]. CS: Complete Segmentation:
ceiling, floor, wall1,..., walln [29]. Observe how our method
outperforms all the baselines in all the metrics.

Method Computation Time (s)

PanoContext [27] >300
LayoutNet [30] 44.73
DuLa-Net [31] 13.43

CFL EquiConvs 3.47
CFL StdConvs 0.46

TABLE IV: Average computing time per image. Every
approach is evaluated using NVIDIA Titan X and Intel Xeon
3.5 GHz (6 cores) except DuLa-Net, evaluated using NVIDIA
1080Ti GPU. Our end-to-end method is more than 100 times
faster than other methods.

for images taken with a tripod (recommended if the time is a
critical issue). The second one uses our proposed implementation
of Equirectangular Convolutions that adapt their shape to the
equirectangular projection of the spherical image (recommended
if looking for robustness and better generalization). This proves
to be more robust to translations and rotations of the camera
making it ideal for panoramas taken by a hand-held camera.
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