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Abstract

An option is defined by the R.A.E. as the “right to buy or sell something within a specified period and
at a previously agreed price”. The branch of finance dedicated to studying and analyzing the valuation of
options is known as the “Theory of Options”.

For decades, market analysts and investors worked without an effective and fair methodology to va-
lue financial options. In other words, they operated without being able to determine an appropriate price
to pay in the present for a future right.
Around the 1970s, mathematicians such as Fisher Black, Myron Scholes, and Robert Merton proposed a
model capable of valuing options based on certain variables, including the stock price, contract duration,
interest rate, and others. This model, named after its creators the Black-Scholes-Merton Model, revo-
lutionized the field of quantitative finance and marked a turning point in the Theory of Options.

Despite the effectiveness of the Black-Scholes-Merton equation, numerous mathematicians and eco-
nomists continued to investigate option valuation with the aim of refining existing models. It was during
this period that Steven L. Heston discovered that price volatility evolves independently over time. This
contrasted with the Black-Scholes-Merton equation, which assumes constant volatility. Heston’s model
introduced a stochastic process to represent the evolution of volatility, thereby extending the price dyna-
mics of the underlying asset.

This TFG focuses on studying the structure of the Heston model. Chapter 1 serves as an introduc-
tion to the world of quantitative finance, explaining the fundamental concepts necessary to understand
the economic framework surrounding this model. Additionally, it provides an introduction to stochastic
calculus, presenting the mathematical results underlying the valuation model to clarify the procedures
involved. Particular emphasis is placed on stochastic volatility, a key concept that represented a new
perspective for researchers of the time and is a distinguishing feature of the Heston model compared to
its predecessors.

To understand the construction of the model, we must carefully examine elements of Probability
Theory, such as the concept of measure, which is developed in Chapter 2. There exists a relationship
between the two processes that constitute the model, and we explain how to express them in terms of
mutually independent motions. This approach is useful for analyzing volatility as an affine diffusion
process. Based on these elements, the Heston valuation equation can be constructed using two methodo-
logies: the martingale approach and the hedging approach.

Although the Heston model is efficient, the larga number of parameters make it challenging to accu-
rately determine the option price that best aligns with market prices. In a subsequent section, we examine
the parameter optimization process known as calibration.

Once the model’s structure and valuation equation have been defined, the question arises: What pro-
cess does volatility follow? Chapter 3 demonstrates that volatility follows an affine diffusion process.
Furthermore, when studying the stability of the model, it is essential to analyze higher-order moments.
For this purpose, we develop the discounted characteristic function, as it provides a more realistic repre-
sentation of the situation.
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After analyzing the model’s structure, its origins, and the stochastic processes underlying this econo-
mic model, the natural question is: How is it applied? To apply the model to a real-world case, additional
computational methods are required. This thesis focuses on the COS Method for such applications. Fi-
nally, the conclusion addresses extensions of the Heston model that incorporate more realistic market
scenarios, such as allowing for changes in the economic environment or the possibility of jumps in the
option price trajectory.



Resumen

Una opción se define según la R.A.E. como el “derecho a comprar o vender algo en plazo y precio
previamente acordado” y la rama de las finanzas que estudia y analiza la valoración de estas se conoce
como «Teoría de Opciones».

Durante décadas analistas de mercado e inversores se enfrentaron a su trabajo sin tener una metodo-
logía justa y eficaz de valoración de las opciones financieras, esto es, trabajaban sin poder encontrar un
valor adecuado para pagar en el momento presente por un derecho futuro.
Entorno a los años 70, algunos matemáticos como Fisher Black, Myron Scholes y Robert Merton plan-
tean un modelo capaz de valorar a partir de algunas variables implicadas, tales como, el precio de la
acción, la duración del contrato, la tasa de interés... Este modelo que llevaba su nombre, Modelo de
Black-Scholes-Merton, revolucionó el mundo de las finanzas cuantitativas y supuso un antes y un des-
pués en la Teoría de Opciones.

A pesar de la eficacia de la ecuación de Black-Scholes-Merton, numerosos matemáticos y economis-
tas continuaban investigando sobre valoración de opciones con el objetivo de perfeccionar los modelos
existentes. Es entonces cuando, Steven L. Heston descubre que la volatilidad del precio se comporta de
forma independiente en función del tiempo, en contraste a la Ecuación de Black-Scholes-Merton, donde
la volatilidad se consideraba constante. Así surge el modelo de Heston, añadiendo al proceso de precios
del activo un proceso estocástico que modele la evolución de la volatilidad.

En el Trabajo de Fin de Grado que se presenta a continuación se estudiará la estructura del modelo
de Heston. Para ello, utilizamos el Capítulo 1 como introducción al mundo de las finanzas cuantitativas,
explicando conceptos necesarios para entender el marco económico que rodea al modelo que nos ocupa.
También es de vital importancia dar una introducción al cálculo estocástico, exponiendo los resultados
matemáticos en los que se basa el modelo de valoración para entender los procedimientos utilizados.
Profundizaremos en la idea de la volatilidad estocástica, ya que su consideración como variable indepen-
diente supuso una nueva perspectiva para los estudiosos del momento y es este detalle, lo que diferencia
nuestro modelo de los existentes previamente.

Para entender la construcción del modelo, debemos tener muy presentes los elementos de la Teoría
de Probabilidad tales como el concepto de medida, el cual desarrollamos en el Capítulo 2. Existe una
relación entre los dos procesos que conforman el modelo y explicaremos la forma de expresarlos en
términos de movimiento independientes entre sí, lo que será útil para más adelante analizar la volatilidad
como un proceso de difusión afín. Con todo esto, se puede construir la ecuación de valoración de Heston
mediante dos métodos; por un lado el enfoque de la martingala y por otro el enfoque de cobertura.

A pesar de ser un modelo eficiente, su gran cantidad de parámetros hace que sea complicado encon-
trar el precio de la opción que más se acerca al precio de mercado. Veremos en la sección consecutiva el
proceso de optimización de parámetros denominado, calibración.

Nos encontramos entonces ante la estructura del modelo y la ecuación de valoración ya definida, pero
¿qué proceso sigue la volatilidad? En el Capítulo 3, demostraremos que la volatilidad sigue un proceso
de difusión afín.

Además, a la hora de estudiar la estabilidad del modelo, debemos conocer los momentos de orden
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alto y para ello necesitamos desarrollar la función característica, en este caso descontada, ya que nos
plantea un valor más realista de la situación.

Una vez vista la estructura del modelo, su origen y la teoría de procesos estocásticos que se esconde
bajo este modelo económico, la pregunta que nos puede surgir es ¿cómo se aplica?. Para poder aplicar
a un caso real este modelo se necesita de otros métodos de cálculo, en este caso, nos centramos en el
Método COS. Por último y como conclusión, se abordan otras extensiones del modelo de Heston que
plantean situaciones más realistas del mercado, tales como considerar que las condiciones del entorno
económico pueden variar o que el precio de la opción puede dar saltos en su trayectoria.
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Capítulo 1

Introducción

Este trabajo recoge un análisis de los modelos de volatilidad estocástica, profundizando en los deta-
lles del modelo de Heston, por su realismo y flexibilidad.

Durante años la compra-venta de opciones financieras se produjo sin tener una forma de calcular su
verdadero valor. No fue hasta 1968 cuando Fisher Black y Myron Scholes estudiaron la posibilidad de
escoger determinadas variables implicadas en la valoración de una opción. De esta forma, descubrieron
que con el precio de la acción, la duración del contrato, la tasa de interés y el nivel de riesgo o volatilidad
era posible medir el valor de una opción, surge así la ecuación de Black-Scholes. Todas las variables
mencionadas anteriormente, salvo el riesgo, son medibles.

Black y Scholes no fueron capaces de resolver este problema de una manera óptima, por lo que la
aportación de Robert Merton hizo que su ecuación diera un giro y pasara a llamarse en 1973 Ecuación de
Black-Scholes-Merton. Merton, gracias a las teorías de un matemático japonés, Itō, que había estudiado
un problema similar para analizar las trayectorias de los misiles, encontró una forma de dividir el tiempo
en pequeñas fracciones. Estas fracciones eran tan pequeñas que el tiempo podía pasar a considerarse
continuo y no discreto como hasta ahora.

En torno a 1990, algunos matemáticos como Hull y White (1987), Stein y Stein (1991), Heston
(1993) o Schöbel y Zhu (1999) proponen nuevas formas de valorar opciones financieras. A partir de la
fluctuación de la volatilidad del precio, estos matemáticos elaboran un concepto nuevo: modelar la vola-
tilidad como una variable aleatoria.

Así nace el concepto de volatilidad estocástica y con esta, los modelos que veremos a continuación.
En estos modelos, la volatilidad se comporta de forma independiente en función del tiempo, algo que los
modelos de volatilidad local no contemplan.

Incluimos en este capítulo algunos conceptos necesarios para entender el Modelo de Heston, la ecua-
ción de Black Scholes y sus aplicaciones en las finanzas, así como conceptos teóricos de inversión.

1.1. Introducción a las matemáticas financieras

Las matemáticas financieras o finanzas cuantitativas, son una rama de las matemáticas aplicadas que
estudian la modelización de conceptos dentro del ámbito financiero. Se pueden diferenciar dos catego-
rías: el cálculo de precios de derivados y la gestión de riesgos y carteras.
Empezaron a considerarse una disciplina en la década de los setenta, gracias a que matemáticos como los
previamente comentados, Fisher Black, Myron Scholes o Robert Merton centraron sus investigaciones
en la teoría de valoración de opciones.
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Esta teoría se basa en calcular el “riesgo” que conllevaría comprar o vender un activo. A ese riesgo se
le denomina «volatilidad» y existen diferentes modelos para calcularla, según la naturaleza del derivado
y de la transacción.

Los derivados financieros son productos cuyo valor depende de la evolución de otro activo financiero
subyacente, como pueden ser las acciones, los tipos de interés o las divisas. Dependiendo del tipo de
contrato, existen diferentes tipos de derivados: Contratos forward, swaps, contratos de futuros, opciones
(europeas o americanas), warrants...

El «contrato forward» es un tipo de acuerdo al que llegan las dos partes interesadas, el comprador
y el vendedor, para ejercer la venta de un activo específico en una fecha futura determinada a un precio
establecido hoy.

Un «swap de varianza» es un acuerdo de intercambio financiero en el que una de las partes se com-
promete a pagar con una cierta periodicidad una serie de flujos monetarios a cambio de recibir otra serie
de flujos de la otra parte. Se trata de un contrato de tipo forward y generalmente, la negociación no tiene
lugar en el mercado regulado, sino que se acuerda entre las partes interesadas.

Una «opción financiera» es un contrato que proporciona a su poseedor el derecho (pero no la obliga-
ción) de comprar o vender un activo subyacente en el futuro a un precio predeterminado. Las opciones
con derecho a compra se conocen como opciones call y las de venta como opciones put.

Existen dos categorías según su naturaleza a la hora de establecer el momento de compra o venta.
Por un lado, las «opciones europeas» son aquellas que establecen un tiempo futuro en el contrato de la
opción, por lo que existe una «fecha de vencimiento o de ejercicio». Por otro lado, tenemos las «opciones
americanas», algo más complejas que las anteriores, con estas se puede ejercer el derecho a compra/venta
en un momento previo a la fecha de vencimiento. En este análisis, nos centraremos en el cálculo de la
volatilidad de las opciones financieras europeas.

Saber arriesgar capital puede aportar un beneficio al inversor, es por esto por lo que conocer el valor
del dinero en cada momento es de vital importancia. Para ello debemos conocer los «tipos de interés».
En caso de trabajar con un interés positivo, el valor de una divisa crecerá con el tiempo, mientras que
frente a un interés negativo, el valor disminuirá.

Un recurso de inversión altamente utilizado entre las personas que buscan hacer crecer su dinero es el
«interés compuesto». Esta forma de ahorro se basa en aumentar el rendimiento con cada pago, es decir,
el capital crece cada vez más rápido. En esta idea se basa la cuenta de ahorros:

M(T ) =
(

1+
r
m

)m

con r el interés aplicado y m el número de pagos realizados.

Es decir, el dinero obtenido al final del periodo es directamente proporcional al capital inicial, el tipo
de interés r y el periodo de tiempo.

1.2. Introducción al cálculo estocástico

El cálculo estocástico es la rama de las matemáticas que analiza y modela sistemas que evolucionan
de manera aleatoria en el tiempo. Para ello, se utilizan los procesos estocásticos.

Un proceso estocástico, X(t), es una colección de variables aleatorias indexadas por una variable de
tiempo, t. A partir de ciertos valores del proceso estocástico X(t) observados hasta hoy no podemos saber
su trayectoria exacta en el futuro pero podemos simularla mediante alguna distribución que modele el
precio del activo. Más adelante veremos la definición formal de esta idea.
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Para entenderla y poder profundizar en los modelos de volatilidad estocástica daremos varias de-
finiciones básicas de Teoría de Probabilidad, así como algunos resultados sobre el cálculo estocástico
imprescindibles para entrar en la materia.

Definición 1. Sea Ω un conjunto no vacío. Una σ -álgebra sobre Ω es una familia F de subconjuntos
de Ω que cumple las siguientes propiedades:

F ̸= /0.

Para A ∈ F , se tiene Ac ∈ F .

Para Ai, i ∈ I ⊆ F se tiene que
⋃

i∈I Ai ∈ F .

Definición 2. Sea (Ω,F) un espacio medible, donde Ω es el conjunto de todos los resultados posibles de
un experimento (espacio muestral) y F es una σ -álgebra de subconjuntos de Ω (eventos). Una función
P : F → [0,1] se llama medida de probabilidad si cumple las siguientes propiedades:

Para todo A ∈ F , P(A)≥ 0.

P(Ω) = 1.

Para cualquier sucesión de eventos mutuamente excluyentes A1,A2,A3, · · · ∈ F , se cumple que:

P

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

P(Ai).

Así, la terna (Ω,F,P) se denomina espacio de probabilidad.

Definición 3. Sea (Ω,F,P) un espacio de probabilidad. Un proceso estocástico X es una aplicación:

X : (ω, t) ∈ Ω×T→ Xω(t) ∈ R

medible, es decir, tal que X−1(B) ∈ F ⊗B(R) ∀B ∈ B(R)

A lo largo de este trabajo solo consideraremos procesos estocásticos a tiempo discreto, es decir,
T := 0,1, ...,N.

Definición 4. Una filtración asociada a un espacio de probabilidad (Ω,F,P) es una sucesión de σ -
álgebras {F := Fn,n ∈ T} tales que:

Fn ⊆ F , ∀n ∈ T.

Fn−1 ⊆ Fn, ∀n ∈ T.

Así, un espacio de probabilidad con una filtración asociada (Ω,F,F,P) se denomina espacio de
probabilidad filtrado.

Definición 5. Dado un proceso estocástico X se define su filtración natural como la sucesión de σ -
álgebras Fn := {Xk,k ≤ n}, es decir, las σ -álgebras definidas por las propias variables del proceso.

Definición 6. Se dice que un proceso estocástico X definido sobre un espacio de probabilidad filtrado es
adaptado si para cada n ∈ T, Xn es Fn−1-medible.

Notar que todo proceso estocástico es adaptado a su filtración natural.

Con todo esto podemos definir un concepto que trataremos posteriormente, las martingalas.

Definición 7. Se dice que un proceso M := {Mn,n ∈ T} es una martingala respecto a una filtración F
si:
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M es un proceso adaptado a F.

E(|Mn|)< ∞ ∀n ∈ T. Es decir, todas las variables del proceso son integrables.

E(Mn|Fn−1) = Mn−1,casi− seguramente,∀n ∈ T.

Con E la esperanza matemática.
La última propiedad se conoce como «la propiedad de martingala», recibe nombre propio ya que es

esencial en muchos campos tales como las finanzas o la teoría de la probabilidad. Más adelante analiza-
remos el motivo de su importancia.

Algunos procesos estocásticos serán de especial interés para nosotros, ya que los utilizaremos para
definir determinados modelos relevantes en matemáticas financieras. Uno de ellos es el «movimiento
browniano» o Proceso de Wiener. Surge cuando el matemático Richard Brown (1827) observa el mo-
vimiento en zig-zag de una partícula de polen en un líquido, pero no es hasta 1920 cuando Wiener
encuentra una fórmula matemática para este movimiento. Antes de dar la definición formal debemos ver
algunos conceptos previos.

Definición 8. Un proceso estocástico {X(t), t ∈ T}, donde T := 0,1, ...,N tiene incrementos indepen-
dientes si ∀t1 < t2 < .. . < tm, las variables aleatorias X(t2)−X(t1), . . . ,X(tm)−X(tm−1) son indepen-
dientes.

Definición 9. Un proceso estocástico {X(t), t ∈ T}, donde T := 0,1, ...,N tiene incrementos estaciona-
rios si ∀t1 < t2, la distribución de la variable aleatoria X(t2)−X(t1) es la misma que la distribución de la
variable X(t2 − t1)−X(0).

Definición 10. Un movimiento browniano estándar es un proceso estocástico {W (t), t ≥ 0} definido
en un espacio de probabilidad (Ω,F,P) tal que satisface las siguientes propiedades:

W (0) = 0, casi-seguramente.

Tiene incrementos independientes.

∀ 0 ≤ s < t, W (t)−W (s)∼ N(0, t − s).

También tienen una gran presencia en los modelos estocásticos los procesos de Poisson, conocidos
comúnmente como «ley de los sucesos raros» ya que cuentan eventos que se consideran raros que ocurren
a lo largo del tiempo T. A pesar de tener un nombre propio, recibe este nombre por su estrecha relación
con la distribución de Poisson y no por ser este el descubridor o impulsor de este proceso estocástico.
Algunos investigadores como John Michell (1767) estudiaron o utilizaron este proceso, incluso una dé-
cada antes del nacimiento de Siméon Denis Poisson (1781). No fue hasta principios del siglo XX cuando
matemáticos como Filip Lundberg (1903) publicó una tesis ahora considerada fundamental y pionera, en
la que proponía modelar reclamaciones de seguros mediante un proceso de Poisson homogéneo.

Definición 11. Un proceso de cuenteo es un proceso aleatorio {N(t), t ≥ 0} no negativo que crece en
valores enteros, es decir,

1. N(0) = 0 y N(t)≥ 0, ∀t ≥ 0.

2. N(t) es un número entero.

3. Si s ≤ t, entonces N(s)≤ N(t)

Si s < t, N(t)−N(s) es el número de sucesos que han ocurrido en el intervalo de tiempo [s, t].

Definición 12. Un proceso de cuenteo {N(t), t ≥ 0} es un proceso de Poisson de parámetro λ , con
λ > 0 si:
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N(0) = 0.

El proceso tiene incrementos independientes y estacionarios.

P(N(h) = 1) = λh+o(h).

P(N(h)≥ 2) = o(h).

Los procesos de Wiener y los procesos de Poisson son casos particulares de procesos de Lévy. Intui-
tivamente, un proceso de Lévy representa el movimiento de un punto cuyos desplazamientos sucesivos
son aleatorios e independientes, y estadísticamente tienen la misma distribución sobre diferentes inter-
valos de tiempo de la misma longitud. En esas condiciones un proceso de Lévy puede verse como un
análogo en tiempo continuo del proceso aleatorio.

Definición 13. Un proceso de Lévy es un proceso estocástico {X(t), t ≥ 0} que satisface las siguientes
propiedades:

X(0) = 0 casi-seguramente.

Tiene incrementos independientes.

Tiene incrementos estacionarios.

Continuidad en probabilidad: Xt es continuo en probabilidad, es decir, lı́mt→s Xt = Xs.

Otro resultado interesante que nos será útil más adelante es el lema de Itô.

Definición 14. El proceso de Itô, X(t) viene definido por la EDE, Ecuación Diferencial Estocástica.

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW (t), X(t0) = X0, (1.1)

con dos funciones genéricas para la deriva µ(t,X(t)) y la volatilidad σ(t,X(t)). Estas dos funciones
deben satisfacer las dos condiciones de Lipschitz:

|µ(t,x)−µ(t,y)|2 + |σ(t,x)−σ(t,y)|2 ≤ K1|x− y|2,
|µ(t,x)|2 + |σ(t,x)|2 ≤ K2(1+ |x|2),

para ciertas constantes K1,K2 ∈ R+ y x,y ∈ R. Estas condiciones aseguran que los términos de la deriva
y la volatilidad no aumentarán demasiado rápido.

Cuando las condiciones de Lipschitz se cumplen, existe una solución continua, adaptada a (1.1).

Lema 1.1 (Lema de Itô). Sea un proceso X(t) que sigue la dinámica de Itô

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW (t), X(t0) = X0,

donde la deriva µ(t,X(t)) y la difusión σ(t,X(t)) satisfacen las condiciones de Lipschitz estándar sobre
el crecimiento de estas funciones.

Sea g(t,X) una función de X := X(t) y del tiempo t, con derivadas parciales continuas:
∂g
∂X

,
∂ 2g
∂X2 ,

∂g
∂ t

.

Entonces, una variable estocástica Y (t) := g(t,X) también sigue un proceso de Itô, gobernado por el
mismo proceso de Wiener W (t), es decir,

dY (t) =
(

∂g
∂ t

+µ(t,X)
∂g
∂X

+
1
2

∂ 2g
∂X2 σ

2(t,X)

)
dt +

∂g
∂X

σ(t,X)dW (t).

Ver demostración en Shreve (2004).
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1.3. Volatilidad estocástica

La volatilidad es una medida de la incertidumbre sobre el comportamiento futuro de un activo, que
habitualmente se mide como la desviación típica de la rentabilidad de dicho activo.

Una de las posibilidades para estudiar la volatilidad es acudir a los datos históricos de los que dispo-
nemos sobre el precio del activo. Otra posibilidad, muy utilizada en este sector es utilizar lo que se ha
dado a conocer como «volatilidades implícitas». La volatilidad implícita en el precio de mercado de una
opción es el valor de la volatilidad que introducido en la fórmula de Black-Scholes, proporciona un valor
teórico igual al valor de mercado de la misma.

A la hora de resolver la ecuación de Black-Scholes nos encontramos con un gran obstáculo, la difi-
cultad de invertir la fórmula de Black-Scholes para despejar la volatilidad.

Además del aumento de la diferencia entre los precios de mercado y los estimados por la ecuación
de Black-Scholes, al invertir la fórmula para obtener la volatilidad implícita en el precio de mercado de
las opciones, se observa que las volatilidades tienden a estar relacionadas con el precio de ejercicio.

La relación empírica que se observa entre la volatilidad implícita y el precio de ejercicio se denomina
«sonrisa de volatilidad» ya que se trata de una curva cuadrática. (Ver Figura 1.1).

Una opción es at-the-money cuando su precio de ejercicio o strike es igual o está muy cerca del valor
actual del activo subyacente. Por contra, una opción es deep out-of-the-money si el precio de ejercicio es
mayor que el precio actual del activo subyacente en el caso de una opción call o es menor que el precio
actual del activo en el caso de una opción put. En paralelo, una opción es deep in-the-money si el precio
de ejercicio es menor que el precio del activo subyacente para las opciones call o es mayor que el precio
del activo subyacente para las opciones put.

Figura 1.1: Sonrisa de volatilidad

Como vemos en la Figura 1.1 la volatilidad implícita tiende a ser mayor para las opciones deep out-
of-the-money y deep in-the-money que para las opciones at-the-money.

Cabe destacar que la volatilidad puede no ser constante y seguir un proceso aleatorio en función del
tiempo. Esto es lo que se conoce como «volatilidad estocástica» y sobre este concepto está basado el
modelo de Heston, que estudiaremos en el próximo capítulo.



Capítulo 2

Modelo de volatilidad de Heston

Como hemos mencionado previamente, la gran dificultad de la ecuación de Black-Scholes es que no
logra reproducir la sonrisa de volatilidad implícita. De esta idea surgen los modelos de volatilidad local
y los modelos con saltos.

Los modelos de volatilidad local se basan en la relación entre los precios de mercado de una op-
ción y la función de densidad de probabilidad implícita. Propuestos por Dupire (1994), Derman y Kani
(1998), Coleman et al. (1999) se basan en los valores de volatilidad observados en el mercado para poder
aproximar el modelo a un conjunto de precios de opciones europeas libres de arbitraje (estas son las que
no permiten ganancias sin riesgo). En estos modelos, la función de volatilidad puede formularse en base
a las cotizaciones de mercado, por lo que no sería necesario llevar a cabo el proceso de calibración de
parámetros que más adelante veremos para el modelo de Heston.

A pesar de conseguir reproducir la sonrisa de volatilidad, este modelo también presenta alguna des-
ventaja, una de las principales es su dependencia con el precio de mercado actual, ya que, se adapta a
un mercado y un vencimiento específico. En conclusión, este modelo sería útil para calcular el valor de
opciones europeas pero si estudiamos opciones que dependen de la trayectoria debemos tener en cuenta
algunas de las propiedades de las densidades de transición de subyacente.

Por otro lado, los saltos naturales del valor de determinados activos como, por ejemplo, las materias
primas o las acciones de una empresa, pueden modelizarse por procesos tales como, el Proceso de Pois-
son, el Movimiento browniano o el Proceso de Lévy, definidos en el Capítulo 1.2 A este tipo de modelos
se les denomina modelos con saltos. Si bien es cierto que son capaces de modelar las propiedades de las
densidades de transición, es difícil crear una cartera que reproduzca los mismos flujos de efectivo que el
activo. Por ejemplo, un salto en el precio de la acción de una empresa puede deberse a una variación en
su valor al efecto de la presentación de unos malos resultados a cierre del ejercicio, pero también podría
ser la consecuencia de un «desdoblamiento de acciones», esto es, cuando la empresa decide aumentar el
número de acciones, y por tanto el valor de la acción individual pierde valor.

Para solventar estos problemas y observando la naturaleza variable e impredecible de la volatilidad,
nace la idea de considerarla como un proceso de difusión. Los procesos de difusión modelan la forma en
la que una variable varía en el tiempo, influida por alguna forma de aleatoriedad.

En esto consiste el modelo de Heston, en añadir al proceso de precios del activo un proceso esto-
cástico. Para que el modelo sea representativo, será necesario que exista una correlación entre dichos
procesos. La varianza del activo sigue un proceso que estudiaremos más adelante denominado Cox-
Ingersoll-Ross, CIR, lo que refleja su aleatoriedad.

7
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2.1. Medida del mundo real y el modelo de Heston

La medida de probabilidad bajo la que se verifica la propiedad de martingala se denomina «medida
de riesgo neutro» y se denota por Q. Bajo esta medida, los precios actuales de los activos serán iguales a
los valores esperados descontados de sus precios futuros bajo estas nuevas probabilidades, lo que quiere
decir que se calcula suponiendo que todos los inversores son indiferentes al riesgo. En este caso, un
mayor riesgo, no implica un mayor retorno en la transacción.

El Modelo de Heston (1993) se compone de dos ecuaciones diferenciales estocásticas,{
dS(t) = rS(t)dt +

√
v(t)S(t)dWQ

x (t),S(t0) = S0 > 0,
dv(t) = κ(v− v(t))dt + γ

√
v(t)dWQ

v (t),v(to) = vo > 0.
(2.1)

La primera relacionada con el precio del activo subyacente S(t) y la segunda para el proceso de
varianza v(t), ambas descritas bajo la medida en riesgo neutro Q.

Veamos la ecuación para el precio del activo subyacente:
El término rS(t)dt representa la tendencia esperada del precio, es decir, el beneficio que se obtendría

de la compra o venta de este activo. Se denomina la tasa de retorno.
Por otro lado, el término

√
v(t)S(t)dWQ

t es el componente estocástico y está compuesto por la vo-
latilidad instantánea del activo,

√
v(t) y por el incremento del proceso de Wiener asociado al precio del

activo, dWQ
t . El precio del activo puede crecer o caer de forma aleatoria en función de los valores histó-

ricos de la volatilidad, esto hace que sea necesario añadir el incremento del proceso browniano, ya que
aporta la aleatoriedad a la dinámica del precio del activo.

En cuanto a la ecuación para la volatilidad estocástica:
Los parámetros κ ≥ 0, v ≥ 0, y γ > 0 son la velocidad de reversión a la media, la media a largo plazo

del proceso varianza y la volatilidad de la volatilidad, respectivamente.
La velocidad de reversión a la media describe lo que tardaría la volatilidad en regresar a su media

en caso de exceder o no alcanzar ese valor en algún instante.
El término γ

√
v(t)dWQ

v (t) es el componente estocástico de esta y refleja la variabilidad de la vola-
tilidad. Como antes, está compuesto por el incremento del proceso browniano asociado a la volatilidad
dWQ

v (t) que aporta la aleatoriedad necesaria y γ
√

v(t) ques la volatilidad de la volatilidad.

El proceso que surge a partir de la ecuación anterior se denomina proceso CIR, por Cox-Ingersoll-
Ross y fue propuesto por Cox et al. (1985) para modelar tipos de interés. Gracias a la condición de Feller,
garantiza la no negatividad de la volatilidad.

La condición de Feller, 2κv ≥ γ2, garantiza que v(t) no tome valores negativos. Si esta condición
no se satisface la distribución acumulada presenta un comportamiento quasi-singular cerca del origen,
es decir, la cola izquierda de la densidad puede crecer rápido. Por esta razón, el cumplimiento de la
condición asegura que v(t) no llegue a tomar valores negativos, ya que en caso de no cumplirse existe
una acumulación de masa de probabilidad en torno a 0.

Existe una correlación entre los movimientos brownianos subyacentes, ρx,vdt = dWQ
v (t)dWQ

x (t).
La dinámica del activo está definida según la medida de riesgo neutro, es decir, el precio del activo

descontado S(t)
M(t) , con M(t) = M(s)er(t−s) es una martingala.

A pesar de que para este modelo, la transformación de la medida puede resultar compleja, vamos a ana-
lizar el impacto que tendría el cambio a la medida del mundo real P sobre la dinámica de los procesos
subyacentes del modelo.

Las dinámicas de Heston bajo la medida del mundo real P serían:

{
dS(t) = µS(t)dt +

√
v(t)S(t)dWP

x (t),
dv(t) = κ(vP− v(t))dt + γ

√
v(t)dWP

v (t),
(2.2)
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con la correspondiente correlación entre los movimientos brownianos bajo la medida P dada por ρx,vdt =
dWP

v (t)dWP
x (t). Gracias a la factorización de Cholesky, podemos expresar (2.2) en términos de movi-

mientos brownianos independientes:

{
dS(t) = µS(t)dt +

√
v(t)S(t)dW̃P

x (t),

dv(t) = κ(vP− v(t))dt + γ
√

v(t)
(

ρx,vdW̃P
x (t)+

√
1−ρ2

x,vdW̃P
v (t)

)
,

(2.3)

con W̃P
x (t) y W̃P

v (t) los procesos independientes.

Se busca entonces un proceso Φ(t) en dW̃Q
x (x) = Φ(t)dt +dW̃P

x (x) tal que
S(t)
M(t)

sea una martingala,

con M(t) la cuenta de ahorros habitual.
Aplicando el lema de Itô a S(t) = S(t)

M(t) , se obtiene

dS(t)
S(t)

= (µ − r)dt +
√

v(t)dWP
x . (2.4)

Así, hemos obtenido la transformación de la medida:dWP
x (t) = dWQ

x − (µ − r)√
v(t)

dt,

dWP
v (t) = dWQ

v (t).
(2.5)

Con esto, bajo la medida Q, la dinámica del activo en el modelo de Heston viene dada por

dS(t) = rS(t)dt +
√

v(t)S(t)dWQ
x (t),

y el proceso de varianza por

dv(t) = κ(vP− v(t))dt + γ
√

v(t)
(

ρx,vdWP
x (t)+

√
1−ρ2

x,vdWP
v (t)

)
= κ

(
vP− ρx,v

κ
γ(µ − r)− v(t)

)
dt + γ

√
v(t)

[
ρx,vdWQ

x (t)+
√

1−ρ2
x,vdWQ

v (t)
]
.

Con v := vP− ρx,v
κ

γ(µ − r)− v(t) obtenemos la ecuación correspondiente a la volatilidad estocástica
de (2.1).

2.2. Ecuación de valoración de Heston

En este apartado no escribiremos el super índice Q para indicar que trabajamos el movimiento brow-
niano bajo la medida de riesgo neutro a no ser que sea estríctamente necesario.

Al igual que con el modelo de Black-Scholes, existen dos procedimientos para obtener la ecuación
de valoración del modelo de Heston.

Por un lado, el enfoque de martingala donde consideramos el problema de valoración:

V (t,S,v) = M(t)EQ
[

1
M(t)

V (T ;S;v) | F (t)
]
, (2.6)

con F (t) = σ(s,S,v;s ≥ t) la sigma-álgebra.
Si dividimos todo por M(t) se obtiene:

V (t,S,v)
M(t)

= EQ
[

1
M(t)

V (T ;S;v) | F (t)
]
.
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Gracias al lema de Itô podemos determinar la dinámica de la función derivable que representa el valor
de la opción descontado. Esta debe ser una martingala.

d
(

V
M

)
=

1
M

dV − r
V
M

dt. (2.7)

Lo que quiere decir que un incremento infinitesimal dV con las dinámicas de S(t) y v(t) dadas por el
modelo de Heston (2.1), tiene la dinámica:

dV =

(
∂V
∂ t

+ rS
∂V
∂S

+κ(v− v)
∂V
∂v

+
1
2

vS2 ∂ 2V
∂S2 +ρx,vγSv

∂ 2V
∂S∂v

+
1
2

γ
2v

∂ 2V
∂v2

)
dt +S

√
v

∂V
∂S

dWx + γ
√

v
∂V
∂v

dWv.

Así

d
(

V
M

)
=

1
M

(
∂V
∂ t

+ rS
∂V
∂S

+κ(v− v)
∂V
∂v

+
1
2

vS2 ∂ 2V
∂S2 +ρx,vγSv

∂ 2V
∂S∂v

+
1
2

γ
2v

∂ 2V
∂v2

)
dt

+S
√

v
∂V
∂S

dWx + γ
√

v
∂V
∂v

dWv − r
V
M

dt.

Pero nos encontramos ante un problema, para satisfacer la propiedad de martingala, la dinámica no
debe presentar términos en dt , por lo que, necesariamente:

(
∂V
∂ t

+ rS
∂V
∂S

+κ(v− v)
∂V
∂v

+
1
2

vS2 ∂ 2V
∂S2 +ρx,vγSv

∂ 2V
∂S∂v

+
1
2

γ
2v

∂ 2V
∂v2

)
− r

V
M

= 0.

En conclusión, sustituyendo en (2.7) resulta la ecuación de valoración para el modelo de Heston:

d
(

V
M

)
=

1
M

(
S
√

v
∂V
∂S

dWx + γ
√

v
∂V
∂v

dWv

)
. (2.8)

Para que el mercado sea completo, es necesario que el número de activos y el número de fuentes de
aleatoriedad sean iguales, es decir, debemos añadir un proceso browniano para cada activo.
Al trabajar con volatilidad estocástica surge una dificultad, ya que podemos imitar derivados para medir
la volatilidad pero esta no es una cantidad medible. Por lo tanto, la cartera de cobertura está compuesta
de una opción vendida de valor V (t,S,v) menos el incremento de unidades del activo subyacente S(t)
y, para cubrirse contra el riesgo asociado a la aleatoriedad de la volatilidad, menos el incremento de
unidades de otra opción de valor V1(t,S,v;K1,T ), es decir,

Π(t,S,v) =V (t,S,v;K,T )−∆S−∆1V1(t,S,v;K1,T ). (2.9)

Así, tenemos dos fuentes de aleatoriedad, en S(t) y en v(t).
Hemos incluido explícitamente la dependencia en S, T y K1 en los argumentos de V y V1. V1 es una

opción con el mismo vencimiento pero distinto strike, K1.

Para abreviar, emplearemos la notación V ≡ V (t,S,v;K,T ) y V1 ≡ V1(t,S,v;K1,T ) y aplicando el
lema de Itô, obtenemos:

dΠ =

(
∂V
∂ t

+
1
2

vS2 ∂ 2V
∂S2 +ρx,vγSv

∂ 2V
∂S∂v

+
1
2

γ
2v

∂ 2V
∂v2

)
dt

−∆1

(
∂V1

∂ t
+

1
2

vS2 ∂ 2V1

∂S2 +ρx,vγSv
∂ 2V1

∂S∂v
+

1
2

γ
2v

∂ 2V1

∂v2

)
dt

+

(
∂V
∂S

−∆1
∂V1

∂S
−∆

)
dS+

(
∂V
∂v

−∆1
∂V1

∂v

)
dv. (2.10)
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Eliminamos la aleatoriedad de la dinámica de la cartera imponiendo que:

(
∂V
∂S

−∆1
∂V1

∂S
−∆

)
= 0 y

(
∂V
∂v

−∆1
∂V1

∂v

)
= 0.

Para evitar oportunidades de arbitraje, el retorno de esta cartera determinista y libre de riesgo debe
ajustarse al tipo de interés libre de riesgo, esto es, dΠ = rΠdt = r(V −∆S−∆1V1)dt.

Reordenando (2.10) obtenemos la igualdad:

∂V
∂ t

+
1
2

vS2 ∂ 2V
∂S2 +ρx,vγSv

∂ 2V
∂S∂v

+
1
2

γ2v
∂ 2V
∂v2 + rS

∂V
∂S

− rV

∂V
∂v

=

∂V1

∂ t
+

1
2

vS2 ∂ 2V1

∂S2 +ρx,vγSv
∂ 2V1

∂S∂v
+

1
2

γ2v
∂ 2V1

∂v2 + rS
∂V1

∂S
− rV1

∂V1

∂v

.

En ambos lados de la ecuación hay una función de variables independientes t, S y v que representan el
valor de las opciones V y V1. Por lo tanto, debería existir una función g(t,S,v) que solo dependa de las
variables independientes previamente mencionadas. En ese caso, si g(t,S,v) =−κ(v−v(t)), la igualdad
anterior resulta en una EDP de valoración bajo la dinámica de Heston dada por:

∂V
∂ t

+
1
2

vS2 ∂ 2V
∂S2 +ρx,vγSv

∂ 2V
∂S∂v

+
1
2

γ
2v

∂ 2V
∂v2 + rS

∂V
∂S

− rV +κ(v− v(t)) = 0. (2.11)

A través de sendos métodos obtenemos la misma representación de la EDP para la dinámica de
Heston.

2.3. Calibración del modelo de Heston

El proceso de calibración consiste en encontrar los parámetros del modelo Ω = {ρx,v,v0,v,κ,γ} para
los cuales, el precio de la opción del modelo se aproxima en la mayor medida posible al precio de
mercado. Para ello debemos buscar los valores que minimizan la diferencia de estos valores.

Las funciones objetivo más habituales definidas para minimizar la diferencia de precios en busca del
valor óptimo de los parámetros son:

mı́n
Ω

√
∑

i
∑

j
wi, j(V mkt

c (t0,S0;Ki,Tj)− (Vc(t0,S0;Ki,Tj,Ω))2, (2.12)

y

mı́n
Ω

√
∑

i
∑

j
wi, j(σ

mkt
imp(t0,S0;Ki,Tj)− (σimp(t0,S0;Ki,Tj,Ω))2, (2.13)

con V mkt
c (t0,S0;Ki,Tj) el precio de la opción call con strike (precio de ejecución) Ki y vencimiento Tj en

mercado y Vc(t0,S0;Ki,Tj,Ω) el valor de Heston para la opción call.
Por otro lado, σmkt

imp(t0,S0;Ki,Tj) y σimp(t0,S0;Ki,Tj,Ω) son las volatilidades implícitas de mercado y del
modelo de Heston, respectivamente y wi, j es la función de ponderación, que suele tener valor 1.

Encontramos un obstáculo en el proceso de optimización debido al número de parámetros que for-
man Ω ya que ni siquiera son completamente independientes, esto puede llevarnos a encontrar varios
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mínimos locales. Es por esto, por lo que es necesario hacer un análisis previo del impacto de los paráme-
tros sobre la volatilidad implícita. Un buen análisis puede proporcionar un conjunto inicial de parámetros
satisfactorio para proceder al proceso de optimización.
Otro método comúnmente usado para facilitar el cálculo es la reducción del número de parámetros. Por
ejemplo, la velocidad de reversión a la media κ y la volatilidad de la volatilidad γ tiene un impacto similar
sobre la forma de volatilidad implícita, por lo que es frecuente fijar uno de los parámetros, quedándonos
con un conjunto Ω de cuatro parámetros, en lugar de cinco, como teníamos al inicio. En el ámbito de las
matemáticas financieras, por lo general se elige κ = 0,5 y se optimiza γ .

Tampoco es difícil hacer una aproximación del valor inicial del proceso de varianza, v0. Para un
vencimiento próximo a hoy, es decir, para T → 0 el precio del activo se comportan paralelamente a su
comportamiento en el modelo de Black-Scholes. Por lo que el impacto debería ser despreciable en el
límite, T → 0.
En definitiva, para opciones con vencimientos cortos, el proceso se puede aproximar mediante un proceso
de la forma:

dS(t) = rS(t)dt +
√

v0S(t)dWx(t). (2.14)

Observamos que podemos tomar la varianza inicial v0 como el cuadrado de la volatilidad implícita de
una opción con el vencimiento más corto.

Otro de los métodos habitualmente utilizados para la calibración de los parámetros de Heston se basa
en utilizar la cotización de mercado del índice VIX, Volatility Index. Este índice representa la medida
de la expectativa de mercado sobre la volatilidad futura. A partir de diferentes cotizaciones de mercado
para distintos strikes Ki y vencimientos Tj, podemos calcular los parámetros óptimos resolviendo para
todos los pares (i, j) las siguientes igualdades:

Ki, j = v+
vo − v

κ(Tj − t0)

(
1− e−κ(Ti−t0)

)
. (2.15)



Capítulo 3

Función característica de Heston

Como ya hemos visto, la volatilidad que estudiamos a lo largo de este trabajo se denomina estocás-
tica porque sigue un proceso aleatorio dependiente del tiempo. En este capítulo profundizaremos en la
clase de proceso que sigue, es decir, la clase de procesos estocásticos de difusión afín y sus caracterís-
ticas. También analizaremos la función característica descontada del modelo de Heston, ya que esta nos
permitirá observar el comportamiento de los momentos del modelo. Para ello, buscaremos paso a paso
lo que se conoce como las EDOs de HEston a partir de las cuales se construye la función característica
descontada.

3.1. Volatilidad estocástica como un proceso de difusión afín

Para entender que la volatilidad en el modelo de Heston sigue un proceso afín, primero debemos
entender este concepto:

Definición 15. Un proceso afín es un tipo de proceso estocástico para el cual, las variables siguen una
función afín, es decir, siguen el patrón f (x) = mx+n. El proceso es de la forma:

dX(t) = (α +βX(t))dt +(γ +δX(t))dW (t), (3.1)

donde X(t) es el valor del proceso en el momento t, γ y δ son constantes que determinan la volatilidad,
W (t) es un proceso de Wiener que proporciona la aleatoriedad y α y β son constantes que determinan el
componente de deriva. Este último hace referencia a la parte predecible del proceso.

La clase genérica que engloba estos procesos se denomina clase de procesos estocásticos de difu-
sión afín (clase DA).

Considerando un espacio de probabilidad (Ω,F,Q), un proceso afín de Markov n-dimensional X(t)
y D ⊂ Rn, los modelos que pertenecen a la clase DA se pueden representar mediante la EDE:

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW̃(t), 0 ≤ t0 < t, (3.2)

donde µ(t,X(t)) : D →Rn representa la deriva, σ(t,X(t)) : D →Rn×n se emplea para construir la matriz
de covarianzas y W̃(t) es un vector columna de movimientos brownianos independientes en Rn. Para que
un modelo pertenezca a la clase DA, estas funciones deben ser afín.

Los modelos con una volatilidad estocástica que sigue un proceso de difusión afín, se describen como
procesos con una estructura de volatilidad difusiva. La ecuación (3.2) nos será de utilidad para represen-
tar el modelo de Heston como tal, veámoslo.

Bajo la medida de riesgo neutro Q un modelo se puede escribir como:

13
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{
dS(t) = rS(t)dt +a(t,v)S(t)dWx(t),
dv(t) = b(t,v)dt + c(t,v)dWv(t),

(3.3)

con r constante y correlación ρx,vdt = dWx(t)dWv(t) con |ρx,v| < 1. Las funciones a(t,v),b(t,v),c(t,v)
definen distintos modelos de volatilidad estocástica según como se definan.

El modelo genérico anterior, (3.3), se puede expresar en términos de movimientos brownianos inde-
pendientes dW̃x(t) y dW̃v(t) con la transformación logarítmica X(t) = logS(t), la factorización de Cho-

lesky y la matriz de correlación entre los movimientos brownianos dWx(t) y dWv(t), R =

[
1 ρx,v

ρx,v 1

]
.

Aplicando Cholesky a R obtenemos la matriz C =

[
1 0

ρx,v

√
1−ρ2

x,v

]
tal que R =CCT .

De aquí resulta la siguiente ecuación matricial:[
dX(t)
dv(t)

]
=

[
r− 1

2
a2(v, t)

b(t,v)

]
dt +

[
a(t,v) 0

ρx,vc(t,v)
√

1−ρ2
x,vc(t,v)

][
dW̃x(t)
dW̃v(t)

]
(3.4)

=: µ(t,X(t))dt +σ(t,X(t))

Pueden encontrarse condiciones para que un modelo de volatilidad estocástica genérico como el que
describe el sistema 3.4 forme parte de la clase de procesos de difusión afín. Tomando:

El tipo de interés constante r(t,X(t)) = r ,

Los términos de deriva, funciones de la forma:

µ(t,X(t)) :=

[
r− 1

2
a2(t,v)

b(t,v)

]
=

[
a0 +a1v
b0 +b1v

]
, (3.5)

con a0,a1,b0,b1 ∈ R. De donde obtenemos que a0 = r, a1 =
1
2 y a2(t,v) = v, es decir, a(t,v) =√

v(t) y b(t,v) cualquier función lineal de tiempo y de v(t).

La matriz de covarianzas dada por:

σ(t,X(t))σ(t,X(t))T =

[
a2(t,v) ρx,va(t,v)c(t,v)

ρx,va(t,v)c(t,v) c2(t,v)

]
=

[
c0,1,1 + c1,1,1v c0,1,2 + c1,1,2v
c0,2,1 + c1,2,1v c0,2,2 + c1,2,2v

]
.

(3.6)

Obtenemos que:

1. a2(t,v) = (
√

v)2 = c0,1,1 + c1,1,1v,

2. ρx,va(t,v)c(t,v) = ρx,v
√

vc(t,v) = c0,1,2 + c1,1,2v = c0,2,1 + c1,2,1v ,

3. c2(t,v) = c0,2,2 + c1,2,2v.

Pensemos ahora en el modelo de Heston en especial, la EDE que define su dinámica sería:{
dX(t) =

(
r− 1

2 v(t)
)

dt +
√

v(t)dWx(t),
dv(t) = κ(v− v(t))dt + γ

√
v(t)dWv(t),

(3.7)

con correlación ρx,vdt = dWx(t)dWv(t) y X(t) = logS(t) observamos que es un proceso afín.
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Si procedemos como anteriormente y expresamos el modelo en función de dos movimientos brow-
nianos independientes, resulta la ecuación matricial:

[
dX(t)
dv(t)

]
=

[
r− 1

2
v(t)

κ(v− v(t))

]
dt +

[ √
v(t) 0

ρx,vγ
√

v(t) γ

√
(1−ρ2

x,v)v(t)

][
dW̃x(t)
dW̃v(t)

]
,

De donde podemos sacar la conclusión de que:

σ(t,X(t))σ(t,X(t))T =

[
v(t) ρx,vγv(t)

ρx,vγv(t) γ2v(t)

]
,

es afín con respecto a X(t) =
[

X(t)
v(t)

]
para γ y ρx,v constantes. Por lo que, efectivamente, el modelo de

Heston es un proceso de difusión afín como queríamos ver.

3.2. Función característica descontada de Heston

La función característica de una variable X , denotada por φX(u), está compuesta por la transformada
de Fourier de la función de distribución acumulada FX(x) y viene dada por:

φX(u) := E[eiuX ] =
∫ +∞

−∞

eiuxdFX(x) =
∫ +∞

−∞

eiux fX(x)dx. (3.8)

Esta nos sirve para conocer la información sobre la distribución de X(t) = logS(t), que es vital para
proceder a la valoración de opciones.

En cambio, la función característica descontada es una aplicación específica de la función caracterís-
tica. Esta tiene en cuenta el factor de descuento e−rT , es decir, ajusta los valores de pago esperados para
reflejar cual sería su valor hoy. Utilizar esta función resulta más realista ya que asegura que el precio de
la opción sea consistente con el valor temporal del dinero.

Para el modelo de Heston, la función característica descontada es: 1

φX(u) := φX(u; t,T ) = EQ [exp(−r(T − t)+ iuT X(T ))|F(t)
]
= exp(A(u,τ)+ [B(u,τ),C(u,τ)]X(t)),

(3.9)

con uT = [u,u2]
T , τ = T − t.

A continuación, procederemos a encontrar las funciones A(u,τ), B(u,τ) y C(u,τ) sobre las que se
basa la función (3.9)

Para el tiempo T y u2 = 0, es decir, u =
[
u u2

]
la función es de la forma:

φX(u;T,T ) = EQ[eiuT X(T )|F(T )] = eiuT X(T ) = eiuX(T )× eiu2v(T ) = eiuX(T ).

Y por tanto, sustituyendo τ = T −T = 0 obtenemos que:

A(u,0) = 0

B(u,0) = iu

C(u,0) = 0

1EQ representa la esperanza calculada en un espacio de probabilidad bajo la medida de riesgo neutro
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Las funciones A(u,τ), B(u,τ) y C(u,τ) en (3.9) satisfacen el siguiente sistema de EDOs, conocido
como las EDOs de Riccati:

dA
dτ

= κvC+ r(B−1), A(u,0) = 0,

dB
dτ

= 0, B(u,0) = iu,

dC
dτ

= B
B−1

2
− (κ − γρx,vB)C+

γ2C2

2
, C(u,0) = 0,

(3.10)

con los parámetros κ , γ , v, r y ρx,v del modelo de Heston.

Además, podemos observar que la solución de φX en (3.9) con τ = 0 satisface la EDP:

0 =−∂φX

∂τ
+

(
r+

1
2

v
)

∂φX

∂X
+κ(v− v(t))

∂φX

∂v
+

1
2

γ
2v

∂ 2φX

∂v2 +
1
2

v
∂ 2φX

∂X2 +ρx,vγv
∂ 2φX

∂X∂v
− rφX,

Esta EDP es afín, por lo que su solución es de la forma:

φX(u; t,T ) = exp(A(u,τ)+B(u,τ)X(t)+C(u,τ)v(t)).

Si sustituimos esta solución en el sistema de EDOs (3.10) y agrupamos los términos de X y los de v, se
obtiene las siguientes ecuaciones diferenciales ordinarias:


B(u,τ) = iu,

C(u,τ) =
1− eD1τ

γ2(1−geD1τ)
(κ − γρx,viu−D1),

A(u,τ) = r(iu−1)τ +
κvτ

γ2 (κ − γρx,viu−D1)−
2κv
γ2 log

(
1−geD1τ

1−g

)
,

con D1 =
√

(κ − γρx,viu)2 +(u2 + iu)γ2 y g =
κ − γρx,viu−D1

κ − γρx,viu+D1
.

Demostración. Se tiene que B(u,τ) = iu por lo que sustituyendo en las otras dos ecuaciones obtenemos
el siguiente sistema: 

dC
dτ

= a1 −a2C+a3C2
, C(u,0) = 0,

dA
dτ

= b1 +b2C, A(u,0) = 0,
(3.11)

con a1 =−1
2(u

2+ iu), a2 = κ −γρx,viu y a3 =
1
2 γ2, b1 = r(iu−1) y b2 = κv. Con esto, podemos resolver

la ecuación C del sistema 3.11:

Para ello, factorizamos el polinomio a1−a2C+a3C2
= a3(C−r+)(C−r−) con r±= 1

2a3

(
a2 ±

√
a2

2 −4a1a3

)
valores de C que satisfacen a1 −a2C+a3C2

= 0.
Por el método de separación de variables obtenemos:

1
a3(C− r+)(C− r−)

=

( 1
r+−r−

a3(C− r+)
−

1
r+−r−

a3(C− r−)

)
,

Por lo que podemos integrar:( 1
r+−r−

a3(C− r+)
−

1
r+−r−

a3(C− r−)

)
dC = dτ,
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de donde obtenemos:

log(C− r+)
a3(r+− r−)

− log(C− r−)
a3(r+− r−)

= τ + c̃. (3.12)

Sea D1 =
√

a2
2 −4a1a3, sustituyendo en r± = 1

2a3

(
a2 ±

√
a2

2 −4a1a3

)
= 1

2a3
(a2±D1) y despejando

D1 de este sistema de dos ecuaciones con una incógnita, se tiene que D1 = a3(r+ − r−). Además, de
(3.10) utilizamos que C(u,0) = 0 y con esto podemos concluir que la constante de integración es:

c̃ =
1

D1
log(−r+)−

1
D1

log(−r−),

que implica.

r+
r−

= ec̃D1 =: g.

Resolviendo 3.12 para C(u,τ), obtenemos:

C(u,τ) =
(

1− e−D1τ

1−ge−D1τ

)
r+.

Con a1 =−1
2(u

2 + iu), a2 = κ − γρx,viu y a3 =
1
2 γ2 la función C(u,τ) queda determinada.

Con C(u,τ) podemos resolver A(u,τ) como:

A(u,τ) = b1τ +b2

∫
τ

0
C(u,z)dz = b1τ +b2

(
τr−− 1

a3
log
(

1−geD1τ

1−g

))
.

Obteniendo así la expresión de las funciones A(u,τ), B(u,τ) y C(u,τ).

A continuación estudiaremos los momentos del modelo de Heston planteando el problema de la «ex-
plosión de momentos».

El problema de la explosión de los momentos consiste en la situación que puede llegar a darse si
los momentos, es decir, las esperanzas de las potencias de una variable aleatoria, dejan de ser finitos a
medida que el tiempo avanza. Esto daría lugar a lo que se conoce como un modelo inestable.
Basándonos en la función φlogS(t)(u) de un proceso transformado logarítmicamente de la forma X(t) =
logS(t), podemos calcular los momentos de S(t) para t > 0.

Definimos la función característica como:

φlogS(t)(u) = EQ[eiulogS(t)] =
∫

∞

0
eiulog(y) fS(t)(y)dy =

∫
∞

0
yiu fS(t)(y) = E[(S(t))iu].

Sustituyendo u =−ik obtenemos:

φlogS(t)(−ik) =
∫

∞

0
yk fS(t)(y) = E[Sk(t)].

Este resultado, E[Sk(t)] es el momento k-ésimo de S(t).
Por otro lado, la función característica bajo el modelo de Heston es:

φlogS(t)(u) = eiulogS(t0)+C(u,τ)v(t0)+A(u,τ)
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Como previamente hemos visto, es necesario resolver un sistema de tres EDOs para obtener las
expresiones de C(u,τ), A(u,τ). La EDO para C(u,τ) con u =−ik viene dada por:

dC
dτ

=
1
2

k(k−1)+(γρx,vk−κ)C+
1
2

γ
2C2. (3.13)

En función de los parámetros, la solución de (3.13), es decir, del momento k-ésimo de S(t) puede
volverse inestable.

Veamos para qué parámetros el modelo se vuelve inestable:

Llamemos h(C) al polinomio cuadrático de la ecuación (3.13), es decir,

h(C) :=
dC
dτ

= a1 +a2C+a3C2
,

con los términos: a1 =
1
2

k(k−1), a2 = (γρx,vk−κ), a3 =
1
2

γ2.

Por otro lado, el discriminante de h(C) se obtiene como:

Dh(C) = a2
2 −4a1a3 = (γρx,vk−κ)2 −4

1
2

k(k−1)
1
2

γ
2.

Por tanto, la existencia de soluciones se basa en las posiciones de las raíces de este polinomio.
El discriminante será positivo si y solo si (γρx,vk−κ)2 > k(k−1)γ2.

En conclusión, si ρx,v <
κ

γk
−
√

k−1
k

se puede esperar que el modelo sea estable.

En caso contrario, es probable que E[Sk(t)]→ ∞,∀k > 0.
Para garantizar que los momentos de orden más alto sean estables, es necesario que ρx,v →−1.



Capítulo 4

Extensiones del modelo de Heston

En este capítulo veremos que existen variaciones del modelo que solventan o mejoran algunas de las
desventajas que el modelo de Heston no contempla, por ejemplo, los cambios económicos del entorno
o los posibles saltos de los precios de las opciones financieras. Empezamos presentando el teorema de
Feynman-Kac que será necesario posteriormente para calcular la esperanza descontada. Al igual que con
la función característica descontada, lo que diferencia este concepto de la esperanza conocida y utilizada
hasta ahora es que posee el término de descuento e−r, es decir, calcula el valor actual de una serie de
pagos o cobros que se emitirán en el futuro.

Teorema 4.1. Teorema de Feynman-Kac.
Dada una cuenta de ahorros, M(t) modelada por dM(t) = rM(t)dt con un tipo de interés constante r
y sea V (t,S) una función suficientemente derivable del tiempo t y del precio S = S(t). Supongamos que
V (t,S) satisface la ecuación en derivadas parciales, dada por:

∂V
∂ t

+µ(t,S)
∂V
∂S

+
1
2

σ
2(t,S)

∂ 2V
∂S2 − rV = 0, (4.1)

con la condición final V (T,S) = H(T,S). La solución V (t,S) para t < T es

V (t,S) = e−r(T−t)EQ[H(T,S)|F(t)] =: M(t)EQ
[

H(T,S)
M(T )

|F(t)
]
, (4.2)

donde la esperanza, EQ se toma bajo la medida Q con respecto a un proceso S definido por

dS(t) = µ(t,S)dt +σ(t,S)dWQ(t), t > t0. (4.3)

Demostración: Véase Oosterlee, Grzelack y Leitao (2021)

4.1. Método COS

Procedemos a estudiar un método de valoración, que será muy útil a la hora de aplicar el modelo de
Heston. La fórmula de valoración COS lleva este nombre ya que está basada en aproximar la función de
densidad mediante una aproximación en series de Fourier de cosenos. Viene dada por:

V (t0,x) = e−rτ
Ñ−1

∑
k=0

Re

{
φX

(
kπ

b−a

)
exp
(
−ikπ

a
b−a

)}
Hk, (4.4)

con τ = T − t0, φX(u) = φX(u,x; t0,T ) y Hk :=
2

b−a

∫ b

a
V (T,y)cos

(
kπ

y−a
b−a

)
dy.

y = X(T ), x = X(t0) =
logS(t0)

K
, Donde la tilde en el sumatorio indica que el primer término de la suma

está dividido por 2.

19
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Para el modelo de Heston podemos simplificar el método COS:

Ya que la función característica en u =

[
X(t)
v(t)

]
se puede expresar como:

φX(u; t0,T ) =: ϕH(u,T ;v(t0))eiuX(t0), (4.5)

podemos vectorizar la fórmula COS con v(t0) la varianza del subyacente en t0, la parte que se refiere al
modelo de Heston ϕH(u,T ;v(t0)) viene dada por:

ϕH(u,T ;v(t0)) = exp
[(

iurτ +
v(t0)
γ2

(
1− e−D1τ

1−ge−D1τ

)
(κ − iρx,vγu−D1)

)]
× exp

[
κv
γ2

(
τ(κ − iρx,vγu−D1)−2log

(
1−ge−D1τ

1−g

))]
,

con τ = T − t0, D1 =
√
(κ − iρx,vγu)2 +(u2 + iu)γ2 y g =

κ − iρx,vγu−D1

κ − iρx,vγu+D1
.

Entonces, veamos como se puede simplificar el método por medio de la vectorización de la fórmula
(4.4):

Sea X(t) = log S(t)
K , con K un vector de strikes, es decir, precios de ejercicio. Ahora la fórmula (4.4)

viene dada por:

V (t0,x)≈ Ke−rτRe

{̃
N−1

∑
k=0

ϕH

(
kπ

b−a
,T ;v(t0)

)
Hkexp

(
ikπ

X(t0)−a
b−a

)}
. (4.6)

Con esto y con los datos necesarios, puede valorarse una opción financiera en el presente para pre-
decir el beneficio o pérdida que tendría la ejecución de la misma.

Veamos, como avanzábamos antes, dos de las variaciones del modelo de Heston que sirven para
solventar algunos detalles que nuestro modelo no tiene en cueta. Empecemos por sopesar los posibles
cambios en el entorno macro-económico que se encuentran los analistas a la hora de valorar una opción
financiera.

4.2. Parámetros definidos a trozos

Hasta ahora no habíamos tenido en cuenta cambios en las condiciones económicas del entorno, pero
existe una extensión del modelo de Heston que ajusta mejor la calibración de los datos de mercado. Se
trata del Modelo de Heston con parámetros definidos a trozos. Esta variación del modelo nos permite
capturar mejor los comportamientos observados en el mercado.

Recordemos que el sistema del modelo de Heston tiene la dinámica dependiente del tiempo descrita
en (3.7). En este caso, la función característica para u ∈ C viene dada por:

φX(u; t0,T ) = exp
(

A(u,τ)+BT
(u,τ)X(t)

)
,

con τ = T − t0, B(u,τ) =
[

B(u,τ)
C(u,τ)

]
.

Para u=

[
u
0

]
resulta B(u,0)= iu y C(u,0)= 0 y añadiendo la condición A(u,0)= 0 podemos escribir

las EDOs con valores en C dadas por:
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
dC
dτ

=
1
2

iu(iu−1)− (κ(T − τ)− γ(T − τ)ρx,v(T − τ)iu)C+
1
2

γ2(T − τ)C2
,

dA
dτ

= κ(T − τ)v(T − τ)(iu−1).

Estas EDOs no se pueden resolver analíticamente ya que los parámetros ahora dependen del tiempo.
Con todo, si recordamos el Lema de Riccati nos daba una solución para un sistema genérico de EDOs
dado por (3.11) con las soluciones:

A(u,τ) = a0 +a1τ +a2

[(
r+− D1

c3

)
τ − 1

c3
log
(

ge−τD1 −1
g−1

)]
,

C(u,τ) =
r+ge−τD1 − r−

ge−τD1 −1
,

con g =
2c3c0 − (c2 −D1)

2c3c0 − (c2 +D1)
, r± =

1
2c3

(c2 ±D1) y D1 =
√

c2
2 −4c1c3.

En cuanto a los parámetro a1,a2,c1,c2 y c3 tenemos:

a1 = r(T − τ)(iu−1), a2 = κ(T − τ)v(T − τ),

c1 =
1
2

iu(iu−1), c2 = κ(T − τ)− γ(T − τ)ρx,v(T − τ)iu, y c3 =
1
2

γ
2(T − τ).

Estas soluciones son ciertas para a0,c0 ̸= 0.
Con esto, se define una malla de tiempo 0 = τ0 ≤ τ1 ≤ ·· · ≤ τN−1 ≤ τN = τ tal que en cada instante

τi, i = 0, . . . ,N los parámetros se evalúan en el periodo T − τi. Los parámetros son constantes a trozos lo
que implica que la función característica puede evaluarse recursivamente:

1. En el primer intervalo [0,τ1) se utilizan las condiciones iniciales C(u,0) = 0 y A(u,0) = 0, con las
que se obtiene una solución analítica de donde obtenemos dos soluciones a1 y c1.

2. Para el intervalo [τ1,τ2) se asignan como condiciones iniciales C(u,τ1) = c1 y A(u,τ1) = a1.
Se repite este procedimiento sucesivamente hasta llegar a:

3. [τN−1,τN) donde los valores iniciales son C(u,τN−1) = τN−1 y A(u,τN−1) = τN−1 y obtenemos aN

y cN .

En este caso hemos añadido parámetros definidos a trozos, pero también existe una ampliación del
modelo de Heston donde se añaden saltos al proceso de precios, se trata del modelo de Bates. Esto re-
sulta especialmente interesante a la hora de valorar acciones ya que, a lo largo del tiempo y debido a
numerosos acontecimientos, el valor de la acción de una empresa puede caer drásticamente o por el con-
trario, ascender tras el nombramiento de un nuevo CEO, por ejemplo. En el Capítulo 2, presentábamos
el proceso de Poisson como esencial para entender este tipo de sucesos.

4.3. Modelo de Bates

Esta variación viene dada por el sistema de EDEs:

{
dS(t) = (r−λE[eJ −1])dt +

√
v(t)dWx(t)+(eJ −1)dXP(t),

dv(t) = κ(v− v(t))dt + γ
√

v(t)dWv(t),
(4.7)

con XP un proceso de Poisson de intensidad λ y una magnitud de saltos J que sigue una distribución
Normal de media µJ y varianza σ2

J .
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El proceso de Poisson no guarda correlación con los movimientos brownianos ni con la magnitud de
los saltos. Esta adaptación del modelo de Heston se conoce como modelo de Bates y aplicándole una
transformación logarítmica se obtiene:

dX(t) = (r− 1
2

v−λE[eJ −1])dt +
√

v(t)dWx(t)+ JdXP(t),

dv(t) = κ(v− v(t))dt + γ
√

v(t)dWv(t).
(4.8)

La ecuación diferencial del modelo de Bates para V =V (t,X), viene dada por:

∂V
∂ t

+(r− 1
2

v−λE[eJ −1])
∂V
∂X

+κ(v− v(t))
∂V
∂v

+
1
2

γ
2v

∂ 2V
∂v2

+
1
2

v
∂ 2

∂X2 +ρx,vγv
∂ 2V

∂X∂v
+λE[V (t,X + J)] = (r+λ )V.

Nos encontramos ante un proceso de difusión con saltos, por lo que la función característica descon-

tada se puede obtener para X(t) =
[

X(t)
v(t)

]
.

Las relaciones de afinidad de procesos de difusión con saltos nos proporcionan el siguiente sistema
de Edos:

Lema 4.2 (EDOs de Bates). Las funciones ABates(u,τ), B(u,τ) y C(u,τ) satisfacen:

dB
dτ

= 0, B(u,τ) = iu

dC
dτ

=
1
2

B(B−1)− (κ − γρx,vB)C+
1
2

γ2C2
, C(u,τ) = 0

dABates

dτ
= κvC+ r(B−1)−ξpE[eJ −1]B+λE[eJB −1], ABates(u,τ) = 0

con los parámetro κ , γ , v, r y ρx,v igual que en el modelo de Heston.

Lo único que hacen diferentes a los modelos de Bates y Heston es que ABates(u,τ) en el modelo
de Bates se basa en componentes de salto. Los dos términos que hacen referencia a la esperanza en
ABates(u,τ) vienen dadas por:

E[eJ −1] = eµJ+ 1
2 σ2

J −1, E[eiuJ −1] = eiuµJ+ 1
2 σ2

J −1.

ya que los saltos J siguen una distribución normal con media µJ y varianza σ2
J . De esta forma, resulta la

EDO:

dABates

dτ
=

dA
dτ

−λ iu(eµJ+
1
2 σ2

J −1)+λ (eiuµJ− 1
2 σ2

J u2 −1), (4.9)

Para concluir, observamos que la solución obtenida para ABates(u,τ) es:

ABates(u,τ) = A(u,τ)−λ iuτ(eµJ+
1
2 σ2

J −1)+λτ(eiuµJ− 1
2 σ2

J u2 −1). (4.10)
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