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Abstract

An option is defined by the R.A.E. as the “right to buy or sell something within a specified period and
at a previously agreed price”. The branch of finance dedicated to studying and analyzing the valuation of
options is known as the “Theory of Options”.

For decades, market analysts and investors worked without an effective and fair methodology to va-

lue financial options. In other words, they operated without being able to determine an appropriate price
to pay in the present for a future right.
Around the 1970s, mathematicians such as Fisher Black, Myron Scholes, and Robert Merton proposed a
model capable of valuing options based on certain variables, including the stock price, contract duration,
interest rate, and others. This model, named after its creators the Black-Scholes-Merton Model, revo-
Iutionized the field of quantitative finance and marked a turning point in the Theory of Options.

Despite the effectiveness of the Black-Scholes-Merton equation, numerous mathematicians and eco-
nomists continued to investigate option valuation with the aim of refining existing models. It was during
this period that Steven L. Heston discovered that price volatility evolves independently over time. This
contrasted with the Black-Scholes-Merton equation, which assumes constant volatility. Heston’s model
introduced a stochastic process to represent the evolution of volatility, thereby extending the price dyna-
mics of the underlying asset.

This TFG focuses on studying the structure of the Heston model. Chapter 1 serves as an introduc-
tion to the world of quantitative finance, explaining the fundamental concepts necessary to understand
the economic framework surrounding this model. Additionally, it provides an introduction to stochastic
calculus, presenting the mathematical results underlying the valuation model to clarify the procedures
involved. Particular emphasis is placed on stochastic volatility, a key concept that represented a new
perspective for researchers of the time and is a distinguishing feature of the Heston model compared to
its predecessors.

To understand the construction of the model, we must carefully examine elements of Probability
Theory, such as the concept of measure, which is developed in Chapter 2. There exists a relationship
between the two processes that constitute the model, and we explain how to express them in terms of
mutually independent motions. This approach is useful for analyzing volatility as an affine diffusion
process. Based on these elements, the Heston valuation equation can be constructed using two methodo-
logies: the martingale approach and the hedging approach.

Although the Heston model is efficient, the larga number of parameters make it challenging to accu-
rately determine the option price that best aligns with market prices. In a subsequent section, we examine
the parameter optimization process known as calibration.

Once the model’s structure and valuation equation have been defined, the question arises: What pro-
cess does volatility follow? Chapter 3 demonstrates that volatility follows an affine diffusion process.
Furthermore, when studying the stability of the model, it is essential to analyze higher-order moments.
For this purpose, we develop the discounted characteristic function, as it provides a more realistic repre-
sentation of the situation.
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v Abstract

After analyzing the model’s structure, its origins, and the stochastic processes underlying this econo-
mic model, the natural question is: How is it applied? To apply the model to a real-world case, additional
computational methods are required. This thesis focuses on the COS Method for such applications. Fi-
nally, the conclusion addresses extensions of the Heston model that incorporate more realistic market
scenarios, such as allowing for changes in the economic environment or the possibility of jumps in the
option price trajectory.



Resumen

Una opcidn se define segtin la R.A.E. como el “derecho a comprar o vender algo en plazo y precio
previamente acordado” y la rama de las finanzas que estudia y analiza la valoracion de estas se conoce
como «Teorfa de Opciones».

Durante décadas analistas de mercado e inversores se enfrentaron a su trabajo sin tener una metodo-

logia justa y eficaz de valoracién de las opciones financieras, esto es, trabajaban sin poder encontrar un
valor adecuado para pagar en el momento presente por un derecho futuro.
Entorno a los afios 70, algunos matemadticos como Fisher Black, Myron Scholes y Robert Merton plan-
tean un modelo capaz de valorar a partir de algunas variables implicadas, tales como, el precio de la
accion, la duracién del contrato, la tasa de interés... Este modelo que llevaba su nombre, Modelo de
Black-Scholes-Merton, revolucioné el mundo de las finanzas cuantitativas y supuso un antes y un des-
pués en la Teorfa de Opciones.

A pesar de la eficacia de la ecuacién de Black-Scholes-Merton, numerosos matemdticos y economis-
tas continuaban investigando sobre valoracién de opciones con el objetivo de perfeccionar los modelos
existentes. Es entonces cuando, Steven L. Heston descubre que la volatilidad del precio se comporta de
forma independiente en funcién del tiempo, en contraste a la Ecuaciéon de Black-Scholes-Merton, donde
la volatilidad se consideraba constante. Asi surge el modelo de Heston, afiadiendo al proceso de precios
del activo un proceso estocdstico que modele la evolucion de la volatilidad.

En el Trabajo de Fin de Grado que se presenta a continuacion se estudiara la estructura del modelo
de Heston. Para ello, utilizamos el Capitulo E] como introduccién al mundo de las finanzas cuantitativas,
explicando conceptos necesarios para entender el marco econdémico que rodea al modelo que nos ocupa.
También es de vital importancia dar una introduccién al cdlculo estocéstico, exponiendo los resultados
matematicos en los que se basa el modelo de valoracién para entender los procedimientos utilizados.
Profundizaremos en la idea de la volatilidad estocdstica, ya que su consideracién como variable indepen-
diente supuso una nueva perspectiva para los estudiosos del momento y es este detalle, lo que diferencia
nuestro modelo de los existentes previamente.

Para entender la construccién del modelo, debemos tener muy presentes los elementos de la Teoria
de Probabilidad tales como el concepto de medida, el cual desarrollamos en el Capitulo [2] Existe una
relacion entre los dos procesos que conforman el modelo y explicaremos la forma de expresarlos en
términos de movimiento independientes entre si, lo que serd util para mds adelante analizar la volatilidad
como un proceso de difusion afin. Con todo esto, se puede construir la ecuacién de valoracion de Heston
mediante dos métodos; por un lado el enfoque de la martingala y por otro el enfoque de cobertura.

A pesar de ser un modelo eficiente, su gran cantidad de pardmetros hace que sea complicado encon-
trar el precio de la opcién que mds se acerca al precio de mercado. Veremos en la seccidon consecutiva el
proceso de optimizacién de pardmetros denominado, calibracién.

Nos encontramos entonces ante la estructura del modelo y la ecuacién de valoracién ya definida, pero
¢qué proceso sigue la volatilidad? En el Capitulo [3] demostraremos que la volatilidad sigue un proceso
de difusién afin.

Ademas, a la hora de estudiar la estabilidad del modelo, debemos conocer los momentos de orden
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alto y para ello necesitamos desarrollar la funcién caracteristica, en este caso descontada, ya que nos
plantea un valor més realista de la situacion.

Una vez vista la estructura del modelo, su origen y la teoria de procesos estocasticos que se esconde
bajo este modelo econémico, la pregunta que nos puede surgir es ;cOmo se aplica?. Para poder aplicar
a un caso real este modelo se necesita de otros métodos de cdlculo, en este caso, nos centramos en el
Método COS. Por dltimo y como conclusidn, se abordan otras extensiones del modelo de Heston que
plantean situaciones mads realistas del mercado, tales como considerar que las condiciones del entorno
econémico pueden variar o que el precio de la opcién puede dar saltos en su trayectoria.
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Capitulo 1

Introduccion

Este trabajo recoge un andlisis de los modelos de volatilidad estocdstica, profundizando en los deta-
lles del modelo de Heston, por su realismo y flexibilidad.

Durante afios la compra-venta de opciones financieras se produjo sin tener una forma de calcular su
verdadero valor. No fue hasta 1968 cuando Fisher Black y Myron Scholes estudiaron la posibilidad de
escoger determinadas variables implicadas en la valoracién de una opcién. De esta forma, descubrieron
que con el precio de la accién, la duracién del contrato, la tasa de interés y el nivel de riesgo o volatilidad
era posible medir el valor de una opcidn, surge asi la ecuacién de Black-Scholes. Todas las variables
mencionadas anteriormente, salvo el riesgo, son medibles.

Black y Scholes no fueron capaces de resolver este problema de una manera 6ptima, por lo que la
aportacion de Robert Merton hizo que su ecuacién diera un giro y pasara a llamarse en 1973 Ecuacion de
Black-Scholes-Merton. Merton, gracias a las teorias de un matematico japonés, Ito, que habia estudiado
un problema similar para analizar las trayectorias de los misiles, encontré una forma de dividir el tiempo
en pequeiias fracciones. Estas fracciones eran tan pequefias que el tiempo podia pasar a considerarse
continuo y no discreto como hasta ahora.

En torno a 1990, algunos matemadticos como Hull y White (1987), Stein y Stein (1991), Heston
(1993) o Schébel y Zhu (1999) proponen nuevas formas de valorar opciones financieras. A partir de la
fluctuacion de la volatilidad del precio, estos matematicos elaboran un concepto nuevo: modelar la vola-
tilidad como una variable aleatoria.

Asfi nace el concepto de volatilidad estocdstica y con esta, los modelos que veremos a continuacion.
En estos modelos, la volatilidad se comporta de forma independiente en funcién del tiempo, algo que los
modelos de volatilidad local no contemplan.

Incluimos en este capitulo algunos conceptos necesarios para entender el Modelo de Heston, la ecua-
cién de Black Scholes y sus aplicaciones en las finanzas, asi como conceptos tedricos de inversion.

1.1. Introduccion a las matematicas financieras

Las mateméticas financieras o finanzas cuantitativas, son una rama de las matematicas aplicadas que
estudian la modelizacién de conceptos dentro del 4mbito financiero. Se pueden diferenciar dos catego-
rias: el cdlculo de precios de derivados y la gestién de riesgos y carteras.

Empezaron a considerarse una disciplina en la década de los setenta, gracias a que matematicos como los
previamente comentados, Fisher Black, Myron Scholes o Robert Merton centraron sus investigaciones
en la teoria de valoracién de opciones.
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Esta teoria se basa en calcular el “riesgo” que conllevaria comprar o vender un activo. A ese riesgo se
le denomina «volatilidad» y existen diferentes modelos para calcularla, segtn la naturaleza del derivado
y de la transaccidn.

Los derivados financieros son productos cuyo valor depende de la evolucion de otro activo financiero
subyacente, como pueden ser las acciones, los tipos de interés o las divisas. Dependiendo del tipo de
contrato, existen diferentes tipos de derivados: Contratos forward, swaps, contratos de futuros, opciones
(europeas o americanas), warrants...

El «contrato forward» es un tipo de acuerdo al que llegan las dos partes interesadas, el comprador
y el vendedor, para ejercer la venta de un activo especifico en una fecha futura determinada a un precio
establecido hoy.

Un «swap de varianza» es un acuerdo de intercambio financiero en el que una de las partes se com-
promete a pagar con una cierta periodicidad una serie de flujos monetarios a cambio de recibir otra serie
de flujos de la otra parte. Se trata de un contrato de tipo forward y generalmente, la negociacién no tiene
lugar en el mercado regulado, sino que se acuerda entre las partes interesadas.

Una «opcidn financiera» es un contrato que proporciona a su poseedor el derecho (pero no la obliga-
cién) de comprar o vender un activo subyacente en el futuro a un precio predeterminado. Las opciones
con derecho a compra se conocen como opciones call y las de venta como opciones put.

Existen dos categorias segin su naturaleza a la hora de establecer el momento de compra o venta.
Por un lado, las «opciones europeas» son aquellas que establecen un tiempo futuro en el contrato de la
opcidn, por lo que existe una «fecha de vencimiento o de ejercicio». Por otro lado, tenemos las «opciones
americanas», algo mas complejas que las anteriores, con estas se puede ejercer el derecho a compra/venta
en un momento previo a la fecha de vencimiento. En este andlisis, nos centraremos en el cdlculo de la
volatilidad de las opciones financieras europeas.

Saber arriesgar capital puede aportar un beneficio al inversor, es por esto por lo que conocer el valor
del dinero en cada momento es de vital importancia. Para ello debemos conocer los «tipos de interés».
En caso de trabajar con un interés positivo, el valor de una divisa crecerd con el tiempo, mientras que
frente a un interés negativo, el valor disminuira.

Un recurso de inversion altamente utilizado entre las personas que buscan hacer crecer su dinero es el
«interés compuesto». Esta forma de ahorro se basa en aumentar el rendimiento con cada pago, es decir,
el capital crece cada vez mas rdpido. En esta idea se basa la cuenta de ahorros:

r m
M(T) = (1 + —)
m
con r el interés aplicado y m el nimero de pagos realizados.

Es decir, el dinero obtenido al final del periodo es directamente proporcional al capital inicial, el tipo
de interés r y el periodo de tiempo.

1.2. Introduccion al calculo estocastico

El célculo estocdstico es la rama de las matemadticas que analiza y modela sistemas que evolucionan
de manera aleatoria en el tiempo. Para ello, se utilizan los procesos estocdsticos.

Un proceso estocastico, X (¢), es una coleccion de variables aleatorias indexadas por una variable de
tiempo, ¢. A partir de ciertos valores del proceso estocéstico X (¢) observados hasta hoy no podemos saber
su trayectoria exacta en el futuro pero podemos simularla mediante alguna distribuciéon que modele el
precio del activo. Mds adelante veremos la definicion formal de esta idea.
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Para entenderla y poder profundizar en los modelos de volatilidad estocéstica daremos varias de-
finiciones basicas de Teoria de Probabilidad, asi como algunos resultados sobre el calculo estocastico
imprescindibles para entrar en la materia.

Definicion 1. Sea Q un conjunto no vacio. Una o-algebra sobre Q es una familia F' de subconjuntos
de Q que cumple las siguientes propiedades:

= F£0.
m ParaA € F,setiene A € F.
s Para A;,i € I C F setiene que |J;;A; € F.

Definicion 2. Sea (Q, F') un espacio medible, donde Q es el conjunto de todos los resultados posibles de
un experimento (espacio muestral) y F' es una o-dlgebra de subconjuntos de Q (eventos). Una funcién
P:F — [0,1] se llama medida de probabilidad si cumple las siguientes propiedades:

» ParatodoA € F,P(A) > 0.
. P(Q)=1.

= Para cualquier sucesion de eventos mutuamente excluyentes Aj,A»,A3,--- € F, se cumple que:
P <UA,-> =) P(4).
i=1 i=1

Asi, la terna (Q, F,P) se denomina espacio de probabilidad.
Definicion 3. Sea (Q, F,IP) un espacio de probabilidad. Un proceso estocastico X es una aplicacion:
X:(0,))eQxT—Xp(t)eR
medible, es decir, tal que X~ !(B) € F ® #(R) VB e %(R)

A lo largo de este trabajo solo consideraremos procesos estocdsticos a tiempo discreto, es decir,
T:=0,1,...,N.

Definicién 4. Una filtracion asociada a un espacio de probabilidad (Q,F,P) es una sucesién de o-
algebras {IF := F,,n € T} tales que:

n [, CF,VneT.
m F, 1CF,VneT.

Asi, un espacio de probabilidad con una filtracién asociada (Q,F,F,P) se denomina espacio de
probabilidad filtrado.

Definicion 5. Dado un proceso estocdstico X se define su filtracién natural como la sucesioén de o-
algebras F,, := {Xy,k < n}, es decir, las o-dlgebras definidas por las propias variables del proceso.

Definicion 6. Se dice que un proceso estocdstico X definido sobre un espacio de probabilidad filtrado es
adaptado si para cadan € T, X,, es F,,_;-medible.

Notar que todo proceso estocastico es adaptado a su filtracion natural.

Con todo esto podemos definir un concepto que trataremos posteriormente, las martingalas.

Definicion 7. Se dice que un proceso M := {M,,,n € T} es una martingala respecto a una filtracién [
si:
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= M es un proceso adaptado a [F.
» E(|M,|) <o Vn € T. Es decir, todas las variables del proceso son integrables.
» E(M,|F,—1) = M,_1,casi — seguramente,n € T.

Con E la esperanza matematica.

La dltima propiedad se conoce como «la propiedad de martingala», recibe nombre propio ya que es
esencial en muchos campos tales como las finanzas o la teoria de la probabilidad. Mas adelante analiza-
remos el motivo de su importancia.

Algunos procesos estocdsticos serdn de especial interés para nosotros, ya que los utilizaremos para
definir determinados modelos relevantes en matemadticas financieras. Uno de ellos es el «movimiento
browniano» o Proceso de Wiener. Surge cuando el matemdtico Richard Brown (1827) observa el mo-
vimiento en zig-zag de una particula de polen en un liquido, pero no es hasta 1920 cuando Wiener
encuentra una férmula matemaética para este movimiento. Antes de dar la definicién formal debemos ver
algunos conceptos previos.

Definicion 8. Un proceso estocéstico {X(z),r € T}, donde T :=0,1,...,N tiene incrementos indepen-
dientes si V#; <1 < ... < ty, las variables aleatorias X (t2) — X (t1),...,X(tm) — X (t,»—1) son indepen-
dientes.

Definicién 9. Un proceso estocdstico {X(¢),# € T}, donde T :=0, 1,..., N tiene incrementos estaciona-
rios si V| < 1, la distribucién de la variable aleatoria X () — X (¢1) es la misma que la distribucién de la
variable X (r; —t;) — X (0).

Definicién 10. Un movimiento browniano estdndar es un proceso estocdstico {W(z),7 > 0} definido
en un espacio de probabilidad (Q, F,P) tal que satisface las siguientes propiedades:

= W(0) =0, casi-seguramente.
= Tiene incrementos independientes.
" VO<s<t,W(t)—W(s)~N(0,7—s).

También tienen una gran presencia en los modelos estocdsticos los procesos de Poisson, conocidos
cominmente como «ley de los sucesos raros» ya que cuentan eventos que se consideran raros que ocurren
a lo largo del tiempo T. A pesar de tener un nombre propio, recibe este nombre por su estrecha relacion
con la distribucién de Poisson y no por ser este el descubridor o impulsor de este proceso estocdstico.
Algunos investigadores como John Michell (1767) estudiaron o utilizaron este proceso, incluso una dé-
cada antes del nacimiento de Siméon Denis Poisson (1781). No fue hasta principios del siglo XX cuando
matematicos como Filip Lundberg (1903) public6 una tesis ahora considerada fundamental y pionera, en
la que proponia modelar reclamaciones de seguros mediante un proceso de Poisson homogéneo.

Definicién 11. Un proceso de cuenteo es un proceso aleatorio {N(z), > 0} no negativo que crece en
valores enteros, es decir,

1. NO)=0yN(t) >0, Vt>D0.
2. N(t) es un nimero entero.
3. Sis <t,entonces N(s) < N(¢)
Sis <t,N(t)— N(s) es el nimero de sucesos que han ocurrido en el intervalo de tiempo [s,1].

Definicién 12. Un proceso de cuenteo {N(z),r > 0} es un proceso de Poisson de pardmetro A, con
A > 0si:
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. N(0) =0.

El proceso tiene incrementos independientes y estacionarios.

P(N(h) = 1) = Ah+o(h).
« P(N(h) >2) = o(h).

Los procesos de Wiener y los procesos de Poisson son casos particulares de procesos de Lévy. Intui-
tivamente, un proceso de Lévy representa el movimiento de un punto cuyos desplazamientos sucesivos
son aleatorios e independientes, y estadisticamente tienen la misma distribucién sobre diferentes inter-
valos de tiempo de la misma longitud. En esas condiciones un proceso de Lévy puede verse como un
andlogo en tiempo continuo del proceso aleatorio.

Definicion 13. Un proceso de Lévy es un proceso estocéstico {X(¢),7 > 0} que satisface las siguientes
propiedades:

= X(0) = 0 casi-seguramente.

= Tiene incrementos independientes.

= Tiene incrementos estacionarios.

= Continuidad en probabilidad: X; es continuo en probabilidad, es decir, lim,_; X; = X;.
Otro resultado interesante que nos sera util mas adelante es el lema de Ito.

Definicion 14. El proceso de Itd, X (¢) viene definido por la EDE, Ecuacién Diferencial Estocdstica.
dX(t) = B, X (1))dt +G(1,X (¢))dW (¢),  X(t0) = Xo, (1.1)

con dos funciones genéricas para la deriva [i(z,X(¢)) y la volatilidad 6(¢,X(¢)). Estas dos funciones
deben satisfacer las dos condiciones de Lipschitz:

[E(1,2) =B (1,9)] + 16 (1,0) =5 (0,0)F < Kilx =7,
[ (,2) P+ [0 (1,20 P < Ko (14 [x]?),

para ciertas constantes K1,K, € R* y x,y € R. Estas condiciones aseguran que los términos de la deriva
y la volatilidad no aumentardn demasiado rdpido.

Cuando las condiciones de Lipschitz se cumplen, existe una solucién continua, adaptada a (I.1).

Lema 1.1 (Lema de Itd). Sea un proceso X (t) que sigue la dindmica de It6
dX(t) :ﬁ(t,X(t))dt+6(I,X(I))dW(l‘), X(tO) :X07

donde la deriva [1(t,X (t)) y la difusion 6 (t,X (t)) satisfacen las condiciones de Lipschitz estandar sobre
el crecimiento de estas funciones.

dg 0d%g 0
Sea g(t,X) una funcion de X := X (t) y del tiempo t, con derivadas parciales continuas: a—;, a—;;, a—f
Entonces, una variable estocdstica Y (t) := g(t,X) también sigue un proceso de Itd, gobernado por el

mismo proceso de Wiener W (t), es decir,

dg . dg 1% _ dg
ay (1) = (afﬂt(z,x)af( +28Xg202(z,x)> dz+§a(r,x)dw<z).

Ver demostracion en Shreve (2004).
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1.3. Volatilidad estocastica

La volatilidad es una medida de la incertidumbre sobre el comportamiento futuro de un activo, que
habitualmente se mide como la desviacién tipica de la rentabilidad de dicho activo.

Una de las posibilidades para estudiar la volatilidad es acudir a los datos histéricos de los que dispo-
nemos sobre el precio del activo. Otra posibilidad, muy utilizada en este sector es utilizar lo que se ha
dado a conocer como «volatilidades implicitas». La volatilidad implicita en el precio de mercado de una
opcion es el valor de la volatilidad que introducido en la férmula de Black-Scholes, proporciona un valor
tedrico igual al valor de mercado de la misma.

A la hora de resolver la ecuacion de Black-Scholes nos encontramos con un gran obstaculo, la difi-
cultad de invertir la férmula de Black-Scholes para despejar la volatilidad.

Ademas del aumento de la diferencia entre los precios de mercado y los estimados por la ecuacién
de Black-Scholes, al invertir la formula para obtener la volatilidad implicita en el precio de mercado de
las opciones, se observa que las volatilidades tienden a estar relacionadas con el precio de ejercicio.

La relacion empirica que se observa entre la volatilidad implicita y el precio de ejercicio se denomina
«sonrisa de volatilidad» ya que se trata de una curva cuadrdtica. (Ver Figura[L.).

Una opcién es at-the-money cuando su precio de ejercicio o strike es igual o estd muy cerca del valor
actual del activo subyacente. Por contra, una opcidn es deep out-of-the-money si el precio de ejercicio es
mayor que el precio actual del activo subyacente en el caso de una opcidn call o es menor que el precio
actual del activo en el caso de una opcién put. En paralelo, una opcién es deep in-the-money si el precio
de ejercicio es menor que el precio del activo subyacente para las opciones call o es mayor que el precio
del activo subyacente para las opciones put.

La volatilidad incrementa a medida que las opciones tienen
su precio fijado por encima o por debajo del precio de strike

Por debajo del precio Por encima del precio

1
n
7 de Venta H de Venta
] +— ; —_—
1
7 Porencimadelprecio 1! Por debajo del precio
4 de Compra ' de Compra
\
T

Figura 1.1: Sonrisa de volatilidad

Como vemos en la Figura[I.1]la volatilidad implicita tiende a ser mayor para las opciones deep out-
of-the-money y deep in-the-money que para las opciones at-the-money.

Cabe destacar que la volatilidad puede no ser constante y seguir un proceso aleatorio en funcion del
tiempo. Esto es lo que se conoce como «volatilidad estocastica» y sobre este concepto esta basado el
modelo de Heston, que estudiaremos en el préximo capitulo.



Capitulo 2

Modelo de volatilidad de Heston

Como hemos mencionado previamente, la gran dificultad de la ecuacién de Black-Scholes es que no
logra reproducir la sonrisa de volatilidad implicita. De esta idea surgen los modelos de volatilidad local
y los modelos con saltos.

Los modelos de volatilidad local se basan en la relacién entre los precios de mercado de una op-
cién y la funcién de densidad de probabilidad implicita. Propuestos por Dupire (1994), Derman y Kani
(1998), Coleman et al. (1999) se basan en los valores de volatilidad observados en el mercado para poder
aproximar el modelo a un conjunto de precios de opciones europeas libres de arbitraje (estas son las que
no permiten ganancias sin riesgo). En estos modelos, la funcién de volatilidad puede formularse en base
a las cotizaciones de mercado, por lo que no seria necesario llevar a cabo el proceso de calibracion de
pardmetros que mds adelante veremos para el modelo de Heston.

A pesar de conseguir reproducir la sonrisa de volatilidad, este modelo también presenta alguna des-
ventaja, una de las principales es su dependencia con el precio de mercado actual, ya que, se adapta a
un mercado y un vencimiento especifico. En conclusion, este modelo seria util para calcular el valor de
opciones europeas pero si estudiamos opciones que dependen de la trayectoria debemos tener en cuenta
algunas de las propiedades de las densidades de transicién de subyacente.

Por otro lado, los saltos naturales del valor de determinados activos como, por ejemplo, las materias
primas o las acciones de una empresa, pueden modelizarse por procesos tales como, el Proceso de Pois-
son, el Movimiento browniano o el Proceso de Lévy, definidos en el Capitulo[I.2] A este tipo de modelos
se les denomina modelos con saltos. Si bien es cierto que son capaces de modelar las propiedades de las
densidades de transicion, es dificil crear una cartera que reproduzca los mismos flujos de efectivo que el
activo. Por ejemplo, un salto en el precio de la accién de una empresa puede deberse a una variacion en
su valor al efecto de la presentacion de unos malos resultados a cierre del ejercicio, pero también podria
ser la consecuencia de un «desdoblamiento de acciones», esto es, cuando la empresa decide aumentar el
nimero de acciones, y por tanto el valor de la accién individual pierde valor.

Para solventar estos problemas y observando la naturaleza variable e impredecible de la volatilidad,
nace la idea de considerarla como un proceso de difusién. Los procesos de difusién modelan la forma en
la que una variable varia en el tiempo, influida por alguna forma de aleatoriedad.

En esto consiste el modelo de Heston, en afiadir al proceso de precios del activo un proceso esto-
céstico. Para que el modelo sea representativo, serd necesario que exista una correlacién entre dichos
procesos. La varianza del activo sigue un proceso que estudiaremos mds adelante denominado Cox-
Ingersoll-Ross, CIR, lo que refleja su aleatoriedad.
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2.1. Medida del mundo real y el modelo de Heston

La medida de probabilidad bajo la que se verifica la propiedad de martingala se denomina «medida
de riesgo neutro» y se denota por Q. Bajo esta medida, los precios actuales de los activos seran iguales a
los valores esperados descontados de sus precios futuros bajo estas nuevas probabilidades, lo que quiere
decir que se calcula suponiendo que todos los inversores son indiferentes al riesgo. En este caso, un
mayor riesgo, no implica un mayor retorno en la transaccion.

El Modelo de Heston (1993) se compone de dos ecuaciones diferenciales estocdsticas,

ds(t) = rS(t)dt +/v(t)S(t)daw2(t),S(ty) = So > 0,
2.1
dv(t) = (v—v )dt + 74/ v( dWQ V(1) = v, > 0.

La primera relacionada con el precio del activo subyacente S(7) y la segunda para el proceso de
varianza v(t), ambas descritas bajo la medida en riesgo neutro Q.

Veamos la ecuacidn para el precio del activo subyacente:

El término rS(¢)dt representa la tendencia esperada del precio, es decir, el beneficio que se obtendria
de la compra o venta de este activo. Se denomina la tasa de retorno.

Por otro lado, el término \/@S (t)dW,Q es el componente estocdstico y estd compuesto por la vo-
latilidad instantdnea del activo, m y por el incremento del proceso de Wiener asociado al precio del
activo, dW,Q. El precio del activo puede crecer o caer de forma aleatoria en funcién de los valores histé-
ricos de la volatilidad, esto hace que sea necesario afiadir el incremento del proceso browniano, ya que
aporta la aleatoriedad a la dindmica del precio del activo.

En cuanto a la ecuacién para la volatilidad estocéstica:

Los pardmetros k¥ > 0,v > 0,y ¥ > 0 son la velocidad de reversion a la media, la media a largo plazo
del proceso varianza y la volatilidad de la volatilidad, respectivamente.

La velocidad de reversion a la media describe lo que tardaria la volatilidad en regresar a su media
en caso de exceder o no alcanzar ese valor en algiin instante.

El término }/\/@dWVQ(t) es el componente estocdstico de esta y refleja la variabilidad de la vola-
tilidad. Como antes, estd compuesto por el incremento del proceso browniano asociado a la volatilidad
dVKQ(t) que aporta la aleatoriedad necesaria y }/\/@ ques la volatilidad de la volatilidad.

El proceso que surge a partir de la ecuacion anterior se denomina proceso CIR, por Cox-Ingersoll-
Ross y fue propuesto por Cox et al. (1985) para modelar tipos de interés. Gracias a la condicion de Feller,
garantiza la no negatividad de la volatilidad.

La condicién de Feller, 2k > 72, garantiza que v(¢) no tome valores negativos. Si esta condicién
no se satisface la distribucién acumulada presenta un comportamiento quasi-singular cerca del origen,
es decir, la cola izquierda de la densidad puede crecer rapido. Por esta razén, el cumplimiento de la
condicién asegura que v(¢) no llegue a tomar valores negativos, ya que en caso de no cumplirse existe
una acumulacién de masa de probabilidad en torno a 0.

Existe una correlacion entre los movimientos brownianos subyacentes, py ,dt = dW.2(t)dW2(t).

La dindmica del activo estd definida segin la medida de riesgo neutro, es decir, el precio del activo
descontado (( )) con M(t) = M(s)e"" =) es una martingala.

A pesar de que para este modelo, la transformacién de la medida puede resultar compleja, vamos a ana-
lizar el impacto que tendria el cambio a la medida del mundo real P sobre la dindmica de los procesos
subyacentes del modelo.

Las dindmicas de Heston bajo la medida del mundo real P serian:

dS(t) = uS(t)dt +/v(t)S(t)dWE (1), 22
dv(t) = k(W —v(t))dt + y/v(t)dWE (1) '
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con la correspondiente correlacién entre los movimientos brownianos bajo la medida IP dada por p, ,dt =
dWF (t)dW? (t). Gracias a la factorizacién de Cholesky, podemos expresar (2.2) en términos de movi-
mientos brownianos independientes:

dS(t) = uS(t)de + /v(t)S(t)dWr (¢),
{dv(t) = k(0 —v(t))dt +y/v(t) (pde +4/1 —pfvvdﬁ/vp(t)) ; @3

con WF(t) y WF(r) los procesos independientes.

~ ~ S(t
Se busca entonces un proceso ®(¢) en AW (x) = ®(¢)dt +dWF (x) tal que M((t)) sea una martingala,
con M(t) la cuenta de ahorros habitual.

Aplicando el lema de It6 a S(t) = (—(t)) se obtiene

ds(t _

S(i)) = (U —r)dt +/V({O)dW,. (2.4)
Asi, hemos obtenido la transformacién de la medida:

a0y = aw®— =D gy

Vv(t) 2.5)

AW (1) = dW (1)
Con esto, bajo la medida Q, la dindmica del activo en el modelo de Heston viene dada por

dS(t) = rS(t)dt +/v(1)S(t)dW (1)

y el proceso de varianza por

av(t) = k(7 —v())dt +7/v(0) (Posd Wy (1) + /1 - p2, AW, (1))
= i (= Py ) =) ) i+ 7/9(0) [pusd W (0) 4\ 1= p2,aW ()]

Conv:=" — 2 =2y(u —r) —v(t) obtenemos la ecuacién correspondiente a la volatilidad estocdstica

de 2.1).

2.2. Ecuacion de valoracion de Heston

En este apartado no escribiremos el super indice Q para indicar que trabajamos el movimiento brow-
niano bajo la medida de riesgo neutro a no ser que sea estrictamente necesario.

Al igual que con el modelo de Black-Scholes, existen dos procedimientos para obtener la ecuacién
de valoracién del modelo de Heston.
Por un lado, el enfoque de martingala donde consideramos el problema de valoracién:

V(t,S,v) = M(t)EQ [ V(T;S;v) | 9(:)] , (2.6)

1
M(1)
con .Z#(t) = o(s,S,v;s > t) la sigma-édlgebra.

Si dividimos todo por M(t) se obtiene:

V(t,S,v) .q. 7

I
M(r)
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Gracias al lema de It6 podemos determinar la dindmica de la funcién derivable que representa el valor
de la opcién descontado. Esta debe ser una martingala.

1
d <V> =—dV — rKdt. 2.7)
M M M

Lo que quiere decir que un incremento infinitesimal dV con las dindmicas de S(¢) y v(¢) dadas por el
modelo de Heston (2.1)), tiene la dindmica:

_(9V oV aV 1 ,0%V 9’V 9°V
dv_<a+ Sﬁ—l—K( )a SV 5@ TPXVYSVS ot yz aQ)dtJrSf dw, + \f dW
Asi
VN 1 [/oVv oV av 1 ,0% 9%V 9V
d(M) <3t+ Sﬁ—l—K( )8 SW+px,vyS 359y 2 },z av2>dr
|4

+Sﬁ dW+}/\f dW—r dt.

Pero nos encontramos ante un problema, para satisfacer la propiedad de martingala, la dindmica no
debe presentar términos en dt , por lo que, necesariamente:

oV oV av 1 9%V 2%V 82V) 1%

—_ —_ 27 —_ ) — =
<8+S8S+K( )8v+ SaS2+va}/SaSa+ 72 " 0.

En conclusion, sustituyendo en (2.7) resulta la ecuacién de valoracion para el modelo de Heston:

d (L) = % (Sﬁg‘;dWx—i— yﬁaa‘:de> : (2.8)
Para que el mercado sea completo, es necesario que el nimero de activos y el nimero de fuentes de
aleatoriedad sean iguales, es decir, debemos afiadir un proceso browniano para cada activo.
Al trabajar con volatilidad estocastica surge una dificultad, ya que podemos imitar derivados para medir
la volatilidad pero esta no es una cantidad medible. Por lo tanto, la cartera de cobertura estd compuesta
de una opcién vendida de valor V(z,S,v) menos el incremento de unidades del activo subyacente S(7)
y, para cubrirse contra el riesgo asociado a la aleatoriedad de la volatilidad, menos el incremento de
unidades de otra opcién de valor Vi (z,S,v; K, T), es decir,

I(t,S,v) = V(t,5,v;K,T) — AS — A\ V; (¢,S,v; Ky, T). 2.9)

Asi, tenemos dos fuentes de aleatoriedad, en S(7) y en v(z).
Hemos incluido explicitamente la dependencia en S, T y K en los argumentos de V' y V;. V] es una
opcién con el mismo vencimiento pero distinto strike, K.

Para abreviar, emplearemos la notaciéon V =V (¢,S,v;K,T) y V|, = V;(¢,S,v;K;,T) y aplicando el
lema de Itd, obtenemos:

A% , 0%V o’V %V
dIl = (a SV S H PSS+ S 7/2 )dt
ovi 1 ,0°V, 82V1 9V
_A1<8t 2" st TP YSVasa, T Yz 81/2)

oV A% Vv 8V1
—i—(aS A== 35 A)dS—i—(av Ay aV)dv. (2.10)
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Eliminamos la aleatoriedad de la dindmica de la cartera imponiendo que:
Vv Vv, Vv av,
—A =0 — —A— | =0.
(as 95 ) Y (8\/ 1av>

Para evitar oportunidades de arbitraje, el retorno de esta cartera determinista y libre de riesgo debe
ajustarse al tipo de interés libre de riesgo, esto es, dI1 = rIldt = r(V —AS — A, V) )dt.

Reordenando (2.10) obtenemos la igualdad:

vV 1,0V v 1 Py V. o9V

o 12" g5 TPV asy T Vo TR s TV
v
dv

Vi 1,9 9*Vi Vi v

W"‘EVS 852 +pr')/S aSa + = '}/ v 32 "‘VSTS—I"V]
M |
dv

En ambos lados de la ecuacién hay una funcién de variables independientes ¢, S y v que representan el
valor de las opciones V' y V. Por lo tanto, deberia existir una funcién g(z,S,v) que solo dependa de las
variables independientes previamente mencionadas. En ese caso, si g(¢,S,v) = —x(v—v(¢)), la igualdad
anterior resulta en una EDP de valoracion bajo la dindmica de Heston dada por:

aV 282‘/ aQV 82V oV 3
o S o952 TPTVaE, T 72 +rSos =V K -v(r)) = 0. .11

A través de sendos métodos obtenemos la misma representacion de la EDP para la dindmica de
Heston.

2.3. Calibracion del modelo de Heston

El proceso de calibracién consiste en encontrar los parametros del modelo Q = {p,.,,vo,7, k, ¥} para
los cuales, el precio de la opcién del modelo se aproxima en la mayor medida posible al precio de
mercado. Para ello debemos buscar los valores que minimizan la diferencia de estos valores.

Las funciones objetivo mds habituales definidas para minimizar la diferencia de precios en busca del
valor 6ptimo de los pardmetros son:

mm\/ZZW’J t()’SO’Kl’T) ( C(t07S0;Ki57}7Q))2’ (212)

\/ZZWt,J mkt t07S0,K17T) (Gimp(thSO;Kinja-Q))z, (213)

con V"™ (1, So; K;, T; ;) el precio de la opcion call con strike (precio de ejecucion) K; y vencimiento 7; en
mercado y V,(to, So; Ki, Tj, Q) el valor de Heston para la opcion call.

Por otro lado, GI’ZZZ (o, SO,K,, Tj) y Oimp(t0,S0; Ki, T, Q) son las volatilidades implicitas de mercado y del
modelo de Heston, respectivamente y w; ; es la funcién de ponderacion, que suele tener valor 1.

Encontramos un obsticulo en el proceso de optimizacién debido al nimero de parametros que for-
man  ya que ni siquiera son completamente independientes, esto puede llevarnos a encontrar varios
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minimos locales. Es por esto, por lo que es necesario hacer un andlisis previo del impacto de los pardme-
tros sobre la volatilidad implicita. Un buen anélisis puede proporcionar un conjunto inicial de parametros
satisfactorio para proceder al proceso de optimizacion.

Otro método comunmente usado para facilitar el célculo es la reduccién del nimero de pardmetros. Por
ejemplo, la velocidad de reversidn a la media k' y la volatilidad de la volatilidad 7 tiene un impacto similar
sobre la forma de volatilidad implicita, por lo que es frecuente fijar uno de los pardmetros, quedandonos
con un conjunto Q de cuatro parametros, en lugar de cinco, como tenfamos al inicio. En el ambito de las
matemadticas financieras, por lo general se elige Kk = 0,5 y se optimiza 7.

Tampoco es dificil hacer una aproximacién del valor inicial del proceso de varianza, vy. Para un
vencimiento préximo a hoy, es decir, para T — 0 el precio del activo se comportan paralelamente a su
comportamiento en el modelo de Black-Scholes. Por lo que el impacto deberia ser despreciable en el
limite, T — 0.

En definitiva, para opciones con vencimientos cortos, el proceso se puede aproximar mediante un proceso
de la forma:

dS(t) = rS(t)dt +/voS(t)dWy(t). (2.14)

Observamos que podemos tomar la varianza inicial vy como el cuadrado de la volatilidad implicita de
una opcién con el vencimiento méas corto.

Otro de los métodos habitualmente utilizados para la calibracion de los pardmetros de Heston se basa
en utilizar la cotizacién de mercado del indice VIX, Volatility Index. Este indice representa la medida
de la expectativa de mercado sobre la volatilidad futura. A partir de diferentes cotizaciones de mercado
para distintos strikes K; y vencimientos 7}, podemos calcular los pardmetros 6ptimos resolviendo para
todos los pares (i, j) las siguientes igualdades:

oy YTV (] x(Tn)
Kij=7+ )<1 e ). 2.15)



Capitulo 3

Funcion caracteristica de Heston

Como ya hemos visto, la volatilidad que estudiamos a lo largo de este trabajo se denomina estocas-
tica porque sigue un proceso aleatorio dependiente del tiempo. En este capitulo profundizaremos en la
clase de proceso que sigue, es decir, la clase de procesos estocdsticos de difusion afin y sus caracteris-
ticas. También analizaremos la funcidén caracteristica descontada del modelo de Heston, ya que esta nos
permitird observar el comportamiento de los momentos del modelo. Para ello, buscaremos paso a paso
lo que se conoce como las EDOs de HEston a partir de las cuales se construye la funcién caracteristica
descontada.

3.1. Volatilidad estocastica como un proceso de difusion afin

Para entender que la volatilidad en el modelo de Heston sigue un proceso afin, primero debemos
entender este concepto:

Definicion 15. Un proceso afin es un tipo de proceso estocdstico para el cual, las variables siguen una
funcién afin, es decir, siguen el patrén f(x) = mx + n. El proceso es de la forma:

dX(t) = (o+BX(t))dt+ (y+ 6X(¢))dW (), (3.1

donde X (¢) es el valor del proceso en el momento ¢, ¥y § son constantes que determinan la volatilidad,
W (t) es un proceso de Wiener que proporciona la aleatoriedad y & y B son constantes que determinan el
componente de deriva. Este dltimo hace referencia a la parte predecible del proceso.

La clase genérica que engloba estos procesos se denomina clase de procesos estocasticos de difu-
sion afin (clase DA).

Considerando un espacio de probabilidad (Q, F,Q), un proceso afin de Markov n-dimensional X(z)
y D C R", los modelos que pertenecen a la clase DA se pueden representar mediante la EDE:
dX(t) = i (t,X(t))dt + G, X(1))dW(t), 0<1y<t, (3.2)

donde 1t (¢,X()) : D — R" representa la deriva, 6 (¢,X(¢)) : D — R"*" se emplea para construir la matriz
de covarianzas y W(t) es un vector columna de movimientos brownianos independientes en R”. Para que
un modelo pertenezca a la clase DA, estas funciones deben ser afin.

Los modelos con una volatilidad estocéstica que sigue un proceso de difusion afin, se describen como
procesos con una estructura de volatilidad difusiva. La ecuacion (3.2) nos serd de utilidad para represen-
tar el modelo de Heston como tal, veamoslo.

Bajo la medida de riesgo neutro Q un modelo se puede escribir como:

13
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{dS(t) = rS(t)dt +a(t,v)S(1)dWi(1), (3.3)

dv(t) = b(t,v)dt +c(t,v)dW, (1),

con r constante y correlacion p,,dt = dW,(t)dW,(t) con |py,| < 1. Las funciones a(z,v),b(t,v),c(t,v)
definen distintos modelos de volatilidad estocéstica seglin como se definan.

El modelo genérico anterior, (3.3), se puede expresar en términos de movimientos brownianos inde-
pendientes dW,(t) y dW,(t) con la transformacién logaritmica X () = logS(t), la factorizacién de Cho-
1 px.v}

lesky y la matriz de correlacion entre los movimientos brownianos dW(t) y dW,(t), R = [ 1
X,V

1 0

Aplicando Cholesky a R obtenemos la matriz C = [ 02 ] tal que R = CC”.

X,V 1- X,V

De aqui resulta la siguiente ecuacién matricial:

1
ax®)] _|r—a2() a(t,v) 0 AW, (t)
[dv(t)]_[ Zev) puac(t,y) (/1= p3e(t,v) wavu)] Gd

=:pu(t,X(2))dt +0(t,X(1))

dt +

Pueden encontrarse condiciones para que un modelo de volatilidad estocéstica genérico como el que
describe el sistema [3.4]forme parte de la clase de procesos de difusién afin. Tomando:

» El tipo de interés constante 7(¢,X (7)) = r,
= [ os términos de deriva, funciones de la forma:
_ . r—laz(t,v) _ |ao+av
(X (1)) = [ 2t ] - [bo +b1v} , (3.5)

con ag,ay,bg,b; € R. De donde obtenemos que ag = r, a; = % y a*(t,v) = v, es decir, a(t,v) =

\/v(t) y b(t,v) cualquier funcién lineal de tiempo y de v(z).

= La matriz de covarianzas dada por:

2
(1, X)), X(1)T = [ a-(t,v) px,va(tvv)c(tav)] _ [00,1,1-1-61,1,1\/ Co,12+C11,2V

Prya(t,v)c(t,v) A(t,v) 02,1+ C121V Copp+cCipav|
(3.6)
Obtenemos que:

L. az(fﬂ’) = (\ﬁ)z =c0,1,1 T C1,1,1V»

2. p”a(t,v)c(t,v) = px’vﬁc(t,v) =C0,1,2 =+ C1,12V = C02,1 +Cl727]V ,

3. Cz(tv V) =co22+ 12V

Pensemos ahora en el modelo de Heston en especial, la EDE que define su dinamica seria:

dX(t) = (r—v(t)) dt + \/v(t)dWi(2), 37)
dv(t) = k(5 — V(1) )dt +73/v () AW, 1), |

con correlacion py ,dt = dW,(t)dW,(t) y X(t) = logS(t) observamos que es un proceso afin.
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Si procedemos como anteriormente y expresamos el modelo en funcién de dos movimientos brow-
nianos independientes, resulta la ecuacién matricial:

[dX(t)] _ [ r % (0)

dv(r) K(;— w(1)) a

V() 0 [dv:vx@)}
Pea¥ V() v/ (1=p2 )v(2) | [dW,(t)]’

De donde podemos sacar la conclusién de que:

5(1,X(1)5(1,X(1)" = [pxj(;v)(t> p;gvyzf(;)] ’

X(t)

es afin con respecto a X(r) = [v (t)

Heston es un proceso de difusion afin como queriamos ver.

} para Yy p,, constantes. Por lo que, efectivamente, el modelo de

3.2. Funcion caracteristica descontada de Heston

La funcion caracteristica de una variable X, denotada por ¢x (u), estd compuesta por la transformada
de Fourier de la funcién de distribucién acumulada Fx (x) y viene dada por:

+oo oo

Ox (u) == E[e"X] = / " dFy(x) = / ™ fy (x)dx. (3.8)
Esta nos sirve para conocer la informacion sobre la distribucion de X (1) = logS(t), que es vital para
proceder a la valoracién de opciones.

En cambio, la funcién caracteristica descontada es una aplicacion especifica de la funcidn caracteris-
tica. Esta tiene en cuenta el factor de descuento e~'7, es decir, ajusta los valores de pago esperados para
reflejar cual serfa su valor hoy. Utilizar esta funcion resulta més realista ya que asegura que el precio de
la opcidn sea consistente con el valor temporal del dinero.

Para el modelo de Heston, la funcidn caracteristica descontada es: []_-]

ox(u) == 9x (w;1,7) = E [exp(—r(T —1) +iu" X(T))|F(1)] = exp(A(u,7) +[B(u,7),C(u, 7)]X(r)),
3.9
conu? =[uu)’, t=T-1.

A continuacién, procederemos a encontrar las funciones A(u, 7), B(u,7) y C(u, ) sobre las que se
basa la funcién (3.9)
Para el tiempo T y u, = 0, es decir, u = [u uz] la funcién es de la forma:

ox(u;T,T) = EQ{eiuTX(T)’F(T)] _ eiuTX(T) — ouX(T) ¢ Gitv(T) _ ,iuX(T)

Y por tanto, sustituyendo T =T — T = 0 obtenemos que:

» A(u,0) =0
» B(u,0) =iu
» C(u,0)=0

'EQ representa la esperanza calculada en un espacio de probabilidad bajo la medida de riesgo neutro
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Las funciones A(u, 7), B(u,7) y C(u, 7) en (3.9) satisfacen el siguiente sistema de EDOs, conocido
como las EDOs de Riccati:

dA _
d——KvC—i-r( —1), A(u,0)=0,

T

B _

‘;T 0, B(u,0)=iu, (3.10)
dC _B-1 y _

E_B 5 —(k— yva) — C(u,0) =0,

con los pardmetros K, ¥, V, r y px,, del modelo de Heston.

Ademds, podemos observar que la solucién de ¢x en (3.9) con 7 = 0 satisface la EDP:

a0 (L) 0 P, P P
0="%: +< * v) ox TEOVO) G TS T v axa TP g, éx.

Esta EDP es afin, por lo que su solucién es de la forma:
ox(u;t,T) = exp(A(u,7) +B(u,7)X (t) +C(u, 7)v(¢)).

Si sustituimos esta solucién en el sistema de EDOs (3.10) y agrupamos los términos de X y los de v, se
obtiene las siguientes ecuaciones diferenciales ordinarias:

B(u,7) = iu
o l_eD]’E )
C(u,7) = W(K_ YPxitt —Dy),

2KV 1 — ge” >
A, 1) =r(iu—1)1+ —(x it —Dy) — —-log | ——— |,
(0,8) = i 1) 5 ppuyi— 1) = 2o (15

K— yp”iu — D,
K — Ypxyit+ Dy

con D; = \/(K— YPxvitt)? + (u? +iu)y? y g =

Demostracion. Se tiene que B(u, T) = iu por lo que sustituyendo en las otras dos ecuaciones obtenemos
el siguiente sistema:

dC _
—al—aQC—i-agC C(u,O) =0,
Zlg (3.11)
T =bi+hC. A(u,0)=0,
conaj = —%(u2 +iu), ay = K—Ypyiny az = %yz, by =r(iu—1)y b, = xv. Con esto, podemos resolver

la ecuacion C del sistema

Para ello, factorizamos el polinomio a; — a26+a362 =a3(C—ry)(C—r_)conry = ﬁ (az +4/a5— 4a1a3)

— . — —2
valores de C que satisfacen a; —a;C+azC =0.
Por el método de separacién de variables obtenemos:

1 — —
a3(C—ry)(C—r-) B <a3(C—”+) - 613(C—”)> 7

Por lo que podemos integrar:

1 1
e dC = dr,
<a3(C—r+) a3(C—”—)>
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de donde obtenemos:

log(C—ry) log(C—r-)

az(ry—r-) as(ry—r-)

SeaD; =4 /a% —4ayas, sustituyendo en ry = 2;3 (az + 4 /a% —4a1a3> = 2%3(“2 +Dy) y despejando

D) de este sistema de dos ecuaciones con una incégnita, se tiene que D; = a3(ry —r—). Ademds, de
(3.10)) utilizamos que C(u,0) = 0 y con esto podemos concluir que la constante de integracion es:

=T+¢. (3.12)

1 1
é= plog(—r.) = p-log(—r-).

que implica.

ry =
L =P =g,
r—

Resolviendo para C(u, 7), obtenemos:
— 1—e D17
C(u,7)= <l—ge—DIT> ry.
Cona; = —3(u? +iu), a» = k — Ypxiu y a3 = 3y* la funcién C(u, 7) queda determinada.
Con C(u, 7) podemos resolver A(u, T) como:

T_ 1 1 —geP”
A(u”[) :b]T+b2/ C(u,Z)dZ:b1T+b2 <TI" - *ZOg <>> .
0 as l—g

Obteniendo asf la expresion de las funciones A(u, 7), B(u,7) y C(u, 7). O

A continuacién estudiaremos los momentos del modelo de Heston planteando el problema de la «ex-
plosién de momentos».

El problema de la explosién de los momentos consiste en la situacién que puede llegar a darse si
los momentos, es decir, las esperanzas de las potencias de una variable aleatoria, dejan de ser finitos a
medida que el tiempo avanza. Esto daria lugar a lo que se conoce como un modelo inestable.
Basdndonos en la funcioén ¢,,s;) (1) de un proceso transformado logaritmicamente de la forma X (1) =
logS(t), podemos calcular los momentos de S(¢) parat > 0.

Definimos la funcién caracteristica como:

Dot () = B[ 50) = [ ehtox) fy o)y = [ f () = EI(S(0))")

Sustituyendo u = —ik obtenemos:
buogs (1K) = [ 3 fy () = EIS* @)

Este resultado, E[S¥(¢)] es el momento k-ésimo de S(t).
Por otro lado, la funcién caracteristica bajo el modelo de Heston es:

¢logS(t) (u) _ eiulogS(to)+6(u,T)v(to)JrX(u,T)
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Como previamente hemos visto, es necesario resolver un sistema de tres EDOs para obtener las
expresiones de C(u, T), A(u, 7). La EDO para C(u, T) con u = —ik viene dada por:
dC 1 — 1,
— =—k(k—1 k— —yC2. 1
7z = k= D+ (k= K)C+ 37 C (3.13)

En funcién de los pardmetros, la solucién de (3.13)), es decir, del momento k-ésimo de S(t) puede
volverse inestable.

Veamos para qué pardmetros el modelo se vuelve inestable:

Llamemos /(C) al polinomio cuadratico de la ecuacién (3.13), es decir,

_ dc _ _
h(C):= i ai +a2C+a3C2,

1 1
con los términos: a; = Ek(k_ 1), a2 = (Ypavk — k), a3 = 57/2_

Por otro lado, el discriminante de 2(C) se obtiene como:

1 1
Dy = a5 — 4araz = (Ypx k — k)% — 4§k(k — 1)53/2.

Por tanto, la existencia de soluciones se basa en las posiciones de las raices de este polinomio.
El discriminante serd positivo si y solo si (ypy vk — k) > k(k—1)y%.
E S K k—1
n conclusion, si p,, < % — X
En caso contrario, es probable que E[S¥(¢)] — o, Vk > 0.

Para garantizar que los momentos de orden mds alto sean estables, es necesario que py, — —1.

se puede esperar que el modelo sea estable.



Capitulo 4

Extensiones del modelo de Heston

En este capitulo veremos que existen variaciones del modelo que solventan o mejoran algunas de las
desventajas que el modelo de Heston no contempla, por ejemplo, los cambios econdémicos del entorno
o los posibles saltos de los precios de las opciones financieras. Empezamos presentando el teorema de
Feynman-Kac que serd necesario posteriormente para calcular la esperanza descontada. Al igual que con
la funcién caracteristica descontada, lo que diferencia este concepto de la esperanza conocida y utilizada
hasta ahora es que posee el término de descuento e¢~", es decir, calcula el valor actual de una serie de
pagos o cobros que se emitirdn en el futuro.

Teorema 4.1. Teorema de Feynman-Kac.

Dada una cuenta de ahorros, M(t) modelada por dM(t) = rM(t)dt con un tipo de interés constante r
y sea V(t,S) una funcion suficientemente derivable del tiempo t y del precio S = S(t). Supongamos que
V(t,S) satisface la ecuacion en derivadas parciales, dada por:

v IV 1 9%V
§+H(I,S)ﬁ+562(t,S)W—rV:0, 4.1)
con la condicion final V(T,S) = H(T,S). La solucion V (¢,S) parat < T es
V(t,8) = e "TIEQ[H(T,S)|F (1)) =: M(t)E2 ﬁl‘;(TTi) F(t)] : (4.2)

donde la esperanza, EQ se toma bajo la medida Q con respecto a un proceso S definido por
dS(t) =(t,8)dt +(1,8)dwW(r), 1> 1. (4.3)

Demostracion: Véase Oosterlee, Grzelack y Leitao (2021)

4.1. Método COS

Procedemos a estudiar un método de valoracién, que serd muy util a la hora de aplicar el modelo de
Heston. La férmula de valoracién COS lleva este nombre ya que estd basada en aproximar la funcion de
densidad mediante una aproximacion en series de Fourier de cosenos. Viene dada por:

V(to,x) = "FR K —ikn—— ) VH, 4.4)
0,X) =e kg{) eq Ox h_g )P\ ik, — ks .

2 b _
con T =T —ty, px (1) = ¢x (u,x;t0,T) y Hy := m/ V(T,y)cos <an—Z> dy.
)= logS(19)
K

y=X(T),x=X(19
estd dividido por 2.

, Donde la tilde en el sumatorio indica que el primer término de la suma

19
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Para el modelo de Heston podemos simplificar el método COS:

X(t)

Ya que la funcién caracteristica en u = [ ()
%

ox (w310, T) =: @ (u, T;v(1g)) X 0), 4.5)

} se puede expresar como:

podemos vectorizar la férmula COS con v(f) la varianza del subyacente en f, la parte que se refiere al
modelo de Heston @ (u, T;v(tp)) viene dada por:

o (1, T;v(ty)) = exp [(iurf+ vg/tg) < e ) (K‘—ipx,v}’l/i—Dl)>:|

1 —ge Dt

KV ) l—ge_D”))]
xexp|— | T(Kk—ipryYu—Dy) —2log | ————— ,
p[y2<( PxpYu—Dy) g( g

K— ipm)/u — D

K—ipyyyu+Dy
Entonces, veamos como se puede simplificar el método por medio de la vectorizacién de la férmula

®@.4):

cont=T—1y, Di=+/(K—ipeyyu)>+W>+iu)y> y g=

Sea X(t) = log%, con K un vector de strikes, es decir, precios de ejercicio. Ahora la férmula (4.4)

viene dada por:

(N ok  X(ty)—a
V (to,x) ~ Ke TRe{kZE)(pH (b_a,T;v(to)> Hyexp <lk77:b> ) (4.6)

Con esto y con los datos necesarios, puede valorarse una opcién financiera en el presente para pre-
decir el beneficio o pérdida que tendria la ejecucién de la misma.

Veamos, como avanzabamos antes, dos de las variaciones del modelo de Heston que sirven para
solventar algunos detalles que nuestro modelo no tiene en cueta. Empecemos por sopesar los posibles
cambios en el entorno macro-econémico que se encuentran los analistas a la hora de valorar una opcién
financiera.

4.2. Parametros definidos a trozos

Hasta ahora no habiamos tenido en cuenta cambios en las condiciones econémicas del entorno, pero
existe una extension del modelo de Heston que ajusta mejor la calibracion de los datos de mercado. Se
trata del Modelo de Heston con pardmetros definidos a trozos. Esta variacién del modelo nos permite
capturar mejor los comportamientos observados en el mercado.

Recordemos que el sistema del modelo de Heston tiene la dindmica dependiente del tiempo descrita
en (3.7). En este caso, la funcién caracteristica para u € C viene dada por:

ox(u;tg,T) = exp (X(u, T) —i—ET(u, ’L')X(t)) ,

cont=T—1ty, B(ur1)= [ggz’ ’Zﬂ :

Parau= [ 0} resulta B(u,0) = iu'y C(u,0) = 0 y afiadiendo la condicién A(u,0) = 0 podemos escribir
las EDOs con valores en C dadas por:
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(;’f = %iu(iu— 1) —(k(T—7)— YT — T)pxw(T—T)iu)é—l-%yz(T—f)Ez,
% =k(T—t)(T —7)(iu—1).

Estas EDOs no se pueden resolver analiticamente ya que los pardmetros ahora dependen del tiempo.
Con todo, si recordamos el Lema de Riccati nos daba una solucién para un sistema genérico de EDOs
dado por (3.T1) con las soluciones:

A D 1 —TDl_l
A(U,T):ao—i-a]f—i-az {<r+_l>f—log<ge>]’
C3 g—l

™D

= ryge "l —r_

C(u,1) = R

2c3¢0 — (c2 —Dy) 1 \/27
cong=—— , — — (¢o+D D — " deron
8 2¢3¢0 — (c2+Dy) = 2¢5 (c2 1)y 1 c; —4cic3

En cuanto a los pardmetro aj,as,cy, ¢ y ¢3 tenemos:

9

ay=r(T—1)(iu—1), a, = k(T —17)v(T — 1),

| .
c1= Ezu(zu—l), c2=K(T —7)—=Y(T —7)px(T — 7)iu, y c3 ==Y (T —1).
Estas soluciones son ciertas para ag,co 7 0.
Con esto, se define una malla de tiempo 0 = 79 < 71 < --- < 7vy_1 < Ty = 7 tal que en cada instante
T;, i =0,...,N los pardmetros se evaldan en el periodo 7" — 7;. Los pardmetros son constantes a trozos lo
que implica que la funcién caracteristica puede evaluarse recursivamente:

1. En el primer intervalo [0, 71) se utilizan las condiciones iniciales C(u,0) = 0y A(u,0) = 0, con las
que se obtiene una solucién analitica de donde obtenemos dos soluciones a; y cj.

2. Para el intervalo [7], T») se asignan como condiciones iniciales C(u, 7)) =c; y A(u, 7)) = a;.
Se repite este procedimiento sucesivamente hasta llegar a:

3. [tv_1,7ny) donde los valores iniciales son C(u,Ty_1) = Ty_1 y A(u, Ty_1) = Ty_1 y obtenemos ay
Y Cn.

En este caso hemos afiadido pardmetros definidos a trozos, pero también existe una ampliacién del
modelo de Heston donde se afiaden saltos al proceso de precios, se trata del modelo de Bates. Esto re-
sulta especialmente interesante a la hora de valorar acciones ya que, a lo largo del tiempo y debido a
numerosos acontecimientos, el valor de la accién de una empresa puede caer drasticamente o por el con-
trario, ascender tras el nombramiento de un nuevo CEO, por ejemplo. En el Capitulo 2] presentdbamos
el proceso de Poisson como esencial para entender este tipo de sucesos.

4.3. Modelo de Bates

Esta variacidn viene dada por el sistema de EDE:s:

{dS(t) (r—AE[e! — 1])dt + \/v(1)dW,(t) + (¢ — 1)dX (1),
dv(t) = k(v —v(t))dt +y/v(1)dW, (1),

con X un proceso de Poisson de intensidad A y una magnitud de saltos J que sigue una distribucién
Normal de media p; y varianza GJZ.

“.7
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El proceso de Poisson no guarda correlacion con los movimientos brownianos ni con la magnitud de
los saltos. Esta adaptacién del modelo de Heston se conoce como modelo de Bates y apliciandole una
transformacién logaritmica se obtiene:

X (1) = (r— %v CAE[E — 1))t + ) dWi(t) + JdX (1),
dv(t) = k(¥ —v(t))dt +7,/v(t)dW,(t).

La ecuacién diferencial del modelo de Bates para V =V (¢,X), viene dada por:

4.8)

v

v 1 Vv 8V+1y27
2" Vo

i _ y_ J_ 12 T i

o +(r 5V AE[e 1])aX—i—K(v (1)) 3,
1 0? %V

+§VW +px7y'}’Vm +AJE[V([,X+J)] = (F+A)V

Nos encontramos ante un proceso de difusién con saltos, por lo que la funcién caracteristica descon-

tada se puede obtener para X(¢) = [}5((;))} .

Las relaciones de afinidad de procesos de difusién con saltos nos proporcionan el siguiente sistema
de Edos:

Lema 4.2 (EDOs de Bates). Las funciones Apyes(u, ), B(u,7) y C(u, 1) satisfacen:

B _

;1‘:0’ B(u,T):iM

C 1-.- I TP
—==BB—-1)—(k—7pxyB ~7 ) b)) =
= 3B(B 1)~ (k1P BT+ 57C, Clu)=0
dABates

= kVC+r(B—1)—EEle/ —1|B+AE[e’B —1], Apaes(u,7) =0

con los pardmetro K, ¥, V, 'y Py, igual que en el modelo de Heston.

Lo tnico que hacen diferentes a los modelos de Bates y Heston es que Apgzes (u,7) en el modelo
de Bates se basa en componentes de salto. Los dos términos que hacen referencia a la esperanza en
ABates(u, T) vienen dadas por:

E[ej _ 1] — euJJr%GJz o 17 E[eiu./ _ 1] _ eiu/l]#»%ﬁjz —1.

ya que los saltos J siguen una distribucién normal con media y; y varianza GJZ. De esta forma, resulta la
EDO:

A ates A 2 iuply =3
d;fz :%—Aiu(e“"*é"fz—1)+7L(e”‘“" éG}u2_1)7 4.9)

Para concluir, observamos que la solucién obtenida para Apgs(u, T) es:

2

Apates(,7) = A(u,7) — Aiut(eh 2% — 1) + A (=29 1), (4.10)
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