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Introduccion

La aproximaciéon de campo medio es una técnica clésica empleada en el anéalisis de las pro-
piedades termodinamicas de sistemas fisicos macroscopicos, donde muchos componentes inter-
accionan entre si, determinando comportamientos colectivos. Estos sistemas de gran ntimero de
elementos también aparecen de manera recurrente al investigar sistemas biologicos, lo que hace
que sea una técnica muy extendida en el campo de la biofisica. Si bien los resultados que arroja
son precisos cuando el tamano del sistema es muy grande, la aproximacién de campo medio suele
fallar al tratar con sistemas cerca de sus puntos criticos, y esta limitada a sistemas en equilibrio.

Estas limitaciones han impulsado el desarrollo de técnicas de campo medio generalizadas que
cubran un mayor espectro de problemas, definidos en redes no necesariamente regulares. La idea
general de estos enfoques es definir unas regiones de la red (clusteres) cuyos estados se tratan de
manera exacta, mientras que para el resto de la red se emplea la aproximacion de campo medio.
En este proceso, resulta crucial controlar cuidadosamente los efectos de la separacion en regiones
sobre la estimaciéon de la entropia.

En este contexto surgen los algoritmos de propagacion de creencias y sus generalizaciones,
cuya importancia en el analisis de sistemas fisicos definidos en redes con variables discretas ha
aumentado en gran medida en los dltimos tiempos. Estos algoritmos se basan en la transmision
de informacién entre nodos de manera local, de forma que los nodos cercanos se van agrupando
formando pseudonodos que contienen toda la informaciéon del conjunto, con lo que se reduce
la dimensionalidad de la red. Se puede demostrar que los puntos fijos de estos algoritmos se
corresponden con los minimos de una funciéon energia libre definida sobre el sistema [1], con
lo que el problema de encontrar estados de equilibrio se puede transformar en un problema de
minimizacién bajo restricciones, resoluble mediante métodos variacionales.

Las generalizaciones de los métodos de propagaciéon de creencias se centran, por un lado, en
mejorar las propiedades de convergencia de los métodos, y por otro, en ampliar su aplicacién a
problemas de dindmica, y no solo de equilibrio. En esta linea, surgen articulos como el de Pelizzola
y Pretti [2]|, que buscan construir un método aproximado para la simulaciéon de la dindmica en
redes, haciendo uso de los fundamentos del método de variacién en clister.

En este trabajo, que retoma y desarrolla una investigacion previa [3, 4], se va a emplear el
método propuesto en el articulo de Pelizzola y Pretti para aplicarlo a distintos sistemas que
simulen una red de regulaciéon genética, analizando los resultados que arroja y comparandolos

con los correspondientes a otros métodos clasicos de estudio de dindmica en redes.



Estructura de la memoria

La memoria se estructura de la siguiente manera. En la seccién 1 se introducen los conceptos
de red de regulacion genética y de red booleana y se explican sus distintas representaciones y los
tipos de evolucién que se pueden definir sobre ellas.

La seccién 2 se dedica a presentar el método de variacién de claster, tanto en su version
clasica como en su versién dindmica, y los dos otros métodos que se van a emplear en el analisis
de resultados (método de Monte Carlo y método de la matriz de transicion), asi como los modelos
sobre los que se van a aplicar los métodos (modelo de juguete de tres nodos y modelo de ciclo
celular).

En la secciéon 3 se recogen los resultados de aplicar los distintos métodos sobre los modelos
presentados en la seccién 2. Estos dos modelos se habian considerado ya en una investigacion
anterior [3, 4], centrando el analisis en la evolucién temporal a partir de algunas condiciones
iniciales, utilizando el programa MaBoSS [5] como referencia. Aqui, después de remodelar en
profundidad el cédigo previo para poder usarlo sobre una red cualquiera, de cara a poder estu-
diar perturbaciones y modificaciones en las uniones de las redes, se utilizan esos modelos para
profundizar en el estudio del comportamiento del algoritmo. En particular, se muestran los re-
sultados de una exploracion sistemética de las condiciones iniciales de la dinamica, que reveld
una inestabilidad del algoritmo de Pelizzola y Pretti, disenado inicialmente para grafos no dirigi-
dos, cuando se aplica a las redes de regulacion genética. A continuacion, se explica la estrategia
adoptada para hacer frente a este problema, y los resultados que se obtienen.

Por ultimo, la seccién 4 se destina para las conclusiones del trabajo, asf como posibles lineas
de investigacion futuras relacionadas con el tema. Al final del documento se incluyen una serie
de apéndices que extienden y complementan el contenido del texto principal.



1. Marco teodrico

La complejidad de los sistemas bioloégicos propone retos importantes a la hora de formular
modelos para su descripcion, y el paradigma de la redes complejas representa un marco adecua-
do, aunque simplificado, para esa tarea. Por lo tanto, podemos hablar de redes biol6gicas para
describir sistemas completamente distintos, abarcando escalas tan dispares como las relaciones
interespecificas de un ecosistema o los sistemas de regulacion genética en el interior de las células.

De manera general, las redes biologicas se pueden definir como un sistema biolégico organizado
compuesto de unidades que interactian entre si de acuerdo a reglas regulatorias con el fin de
llevar a cabo una funcion especifica [6]. Dichas unidades se representan con los nodos de la red,
mientras que los enlaces representan las relaciones de interacién, regulaciéon, etc. Los bloques
constituyentes de las redes biolégicas pueden oscilar en complejidad desde biomoléculas hasta
organismos completos.

El vasto espectro de campos de investigacion que abarcan hace que se hayan desarrollado
diferentes métodos de estudio adaptados a las caracteristicas concretas de cada sistema.

Una de las clasificaciones de las redes biologicas consiste en distinguir el espacio de posibles
estados en los que se puede encontrar un nodo. Segiin esta, se puede hablar de espacios de estados
continuos (C R) o discretos (C N). Dentro de los discretos, hay una familia de redes cuyos nodos
solo toman dos valores, que se suelen representar por 1 (activo) y 0 (inactivo). A esta clase
pertenecen las redes booleanas que son las estructuras mateméticas subyacentes a las redes de
regulacion genética que se van a modelizar en este trabajo.

1.1. Redes de regulacién genética

Las redes de regulacién genética son un tipo particular de redes biologicas, mediante las
que se modeliza la respuesta de una célula a su entorno, asi como la regulacién de todos los
procesos metabdlicos, de senalizacion y de diferenciacion celular. En estas redes los nodos pueden
representar los tres actores relevantes en la regulacion: ADN (genes); ARN mensajeros, obtenidos
de la transcripcion de los genes; y proteinas, obtenidas de la traduccion del ARN, y que a su
vez actiian como reguladoras de los genes. Sin embargo, también es usual agrupar un gen con su
ARN y su proteina, describiéndolos como un tinico nodo. Esto implica renunciar a la descripcién
precisa de las dinamicas y de las escalas temporales de la transcripcion y la traduccion.

Aunque se suelen describir preferentemente con sistemas de ecuaciones diferenciales, las redes
de regulacién genética son también un dominio de aplicaciéon habitual de modelos booleanos, que
por su sencillez y ausencia de pardmetros, representan una buena herramienta para averiguar
cualitativamente el comportamiento de redes grandes. Asi, los modelos booleanos son actual-
mente la construcciéon matematica empleada para modelizar una gran variedad de mecanismos

moleculares de regulacion [7].

1.2. Redes genéticas booleanas

En una red genética booleana, las aristas (o enlaces) son dirigidas, representando acciones
de activacion o inhibicién. Varias aristas, procedentes de distintos nodos i1, . . .7, pueden incidir
sobre el mismo nodo j, de forma que el estado de este tltimo evoluciona en funcién de los valores
de aquellos, combinandolos segiin una expresiéon booleana. Conocer la expresion explicita de esta
funcion booleana para cada nodo es fundamental para caracterizar completamente la red, y es



una de las tareas mas complicadas en la practica, siendo que muchas veces la relaciones entre
genes no se conocen de antemano, y se infieren de los datos experimentales.

Por otro lado, con k nodos incidentes, hay 2* valores de entrada diferentes, y 92" posibles
funciones binarias asociadas, asi que una eleccién de la funcién de un nodo basada en pruebas
sistematicas es inabordable en la préactica. Afortunadamente, suelen observarse reglas razonable-
mente sencillas de combinacién. De esta manera, dado un nodo con varios posibles activadores,
se puede cominmente asumir que todos sus activadores tienen una contribucién igual, con lo
que se combinan mediante el operador logico “OR” (V). Reciprocamente, si se tiene un nodo que
puede ser inhibido por varias substancias, todos sus inhibidores se combinan mediante el opera-
dor logico “AND” (A). Asi, un nodo solo estara activo cuando al menos uno de sus activadores
esté presente, y ninguno de sus inhibidores esté activo. [8].

Los valores concretos de sus nodos evolucionan con el tiempo, de acuerdo con la expresion de
la funcién logica que combina los estados de los nodos vecinos. A la hora de actualizar los valores
de los nodos, se pueden seguir tres estrategias principales: sincrona, asincrona y probabilistica.

Cuando se emplean actualizaciones sincronas, el estado de todos los nodos se actualiza (de
acuerdo a unas reglas fijas) simultaneamente en cada paso temporal, con lo que la transicion
concreta que tiene lugar depende en su totalidad del estado inicial. De esta manera, se obtiene
una dindmica determinista muy robusta.

Por su parte, cuando se permiten actualizaciones asincronas, en cada paso temporal se con-
sidera tan solo la posible transicion de uno de los nodos (elegido al azar). Esto provoca que se
tengan N posibles transiciones (siendo N el namero de nodos del sistema), lo que se asemeja
més al comportamiento real de los sistemas biologicos.

Por ultimo, al considerar actualizaciones probabilisticas, las reglas que dictan la evolucién
entre dos estados consecutivos se expresan en términos de probabilidades de transiciéon. De esta
manera, el sistema se puede expresar como una cadena de Markov (ver apéndice A). Es este
altimo tipo de evolucion el que se va a emplear en este trabajo.

Como regla general, el conjunto de nodos de la red se representara mediante { X1, Xo, ..., Xy},
y cada nodo se correspondera con una variable aleatoria que toma valores en {0,1}. Los valores
concretos que toma cada nodo se denotaran como x;. Dado que se ha considerado una evolu-
cion estocastica, la solucién a los problemas de inferencia consistird en obtener la distribucion
de probabilidad conjunta p (X1 = z1, X9 = x9,..., Xxy = zx), que denotaremos p(x), para un
tiempo dado. En ocasiones, tan solo sera de interés la distribucion de probabilidad p(x,) de
algin subconjunto {X,} C {X1, Xs,..., Xn}, al que llamaremos cluster.

1.3. Representaciéon de una red booleana

Para el estudio de las redes en general, y de las booleanas en particular, se han desarrollado
numerosas representaciones graficas que facilitan tanto la visualizacion de la estructura de las
redes como el calculo de trayectorias sobre las mismas.

Entre las representaciones graficas mas comunes, se encuentran las redes bayesianas, los
campos aleatorios de Markov por pares y los grafos de factores. Cada representacion tiene unas
caracteristicas propias que la favorecen a la hora de visualizar clases de problemas diferentes, si
bien todas son equivalentes como se demuestra en [9]. Un ejemplo de cada tipo de representacion
se puede encontrar en la figura 1.
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Figura 1: Ejemplos de las distintas representaciones de una red booleana. A la izquierda, una
red bayesiana representando un problema de inferencia para el diagnéstico de una enfermedad.
En el centro, un campo aleatorio de Markov por pares representando un problema de lectura de
pixeles. A la derecha, un grafo de factores empleado para la resolucién de problemas de c6digos
de control de paridad. Imagenes obtenidas de [9].

1.3.1. Redes bayesianas

La representacion como red bayesiana consiste en mostrar en un grafo dirigido aciclico todos
los nodos del sistema, asi como las conexiones entre ellos, entendiendo que existe una conexién
entre el nodo A y el nodo B si el nodo A afecta al estado del nodo B en el siguiente paso
temporal (notar que B no tiene por qué afectar a A). Se dird entonces que A es un padre de
B. Cabe destacar que esta representacion es adecuada para casos en los que la red sea un grafo
dirigido aciclico, o en los que los ciclos existentes se puedan alterar (ya sea agrupando nodos o
reduciendo ciclos de tamano mayor que la longitud de correlacion) para conseguir la estructura
de grafo buscada.

Al trabajar con redes booleanas estocasticas se tiene que cada conexion entre nodos se co-
rresponde con una probabilidad condicionada. De esta manera, la probabilidad de que un nodo
se encuentre en uno de sus estados depende solo directamente del estado de sus padres. Para
los nodos que no tengan ningin padre se asumird que sus distribuciones de probabilidad son
independientes. Asi, la distribuciéon de probabilidad conjunta se obtendra como

N

p(x) =[[p (| Par (x)) (1.1)

1

donde Par (x;) es el estado de los padres del nodo X; (p (x; | Par (x;)) = p (z;) en caso de que no
tenga padres).
Para obtener la distribucién marginal correspondiente a un claster p (x,) hay que sumar sobre

todos los posibles estados de los nodos que no se encuentren en dicho cliaster

Z Zp(l‘l,xg,...,a}]v), (1.2)

i|Xi¢Xa T4

lo que hace que el coste computacional crezca exponencialmente con el tamano del clister. Este
hecho seré de gran importancia a la hora de buscar métodos de simulacién, ya que limitara en
gran medida el tamano de las redes para las que se pueden calcular probabilidades marginales
de manera directa.



1.3.2. Campos aleatorios de Markov por pares

En los campos aleatorios de Markov por pares se trabaja con dos conjunto diferentes de
nodos {X1,Xo,...,Xn} v {¥1,Ys,...,Yn}. Las variables Y; toman valores {y;} y se pueden
medir directamente, mientras que las variables X;, que toman valores en {x;}, son magnitudes
subyacentes de las que se quiere obtener informacion. Entre z; e y; existe una dependencia
estadistica, denominada evidencia de x; que se escribe como ¢; (x;,y;).

Este tipo de representacion se suele emplear para el reconocimiento de imégenes en problemas
de visién artificial, por lo que se asume cierta estructura sobre las variables X; subyacentes. Para
ello, se introduce una funcién de compatibilidad entre los valores de la variable X; y los valores de
sus vecinos (en un sentido tan laxo como se necesite) {X;} que se suele expresar como v;; (z;, z;).

En este caso, la distribuciéon de probabilidad conjunta debe incluir tanto las variables obser-
vables como las subyacentes, con lo que tiene la forma

pey) = TT v o) [T 61 (o). (1.3)

{i<>j} i

donde Z es una constante de normalizacion y {i <> j} representa el conjunto de todos los pares
de vecinos posibles.

El calculo de probabilidades marginales se haria de manera analoga a las redes bayesianas,
y conlleva igualmente el problema del crecimiento exponencial en el coste computacional. Sin
embargo, a diferencia de las redes bayesianas, esta representaciéon se puede emplear de manera
directa para grafos no dirigidos, puesto que en lugar de emplear probabilidades condicionales
entre las variables {X;} las relaciones entre estas se codifican en las funciones de compatibilidad

{wi;}.
1.3.3. Grafos de factores

Partimos del conjunto de nodos { X1, Xo,..., Xx} que toman valores {z;}. De manera gene-
ral, p (x) se puede escribir como

p() = = T Wa (xa). (1.4)
Z
(e
donde Z es una constante de normalizacién y las funciones ¥, son M funciones indexadas por
un parametro o que toman como argumento algtn subcluster (X,).

Un grafo de factores es un grafo bipartito que codifica la estructura de factorizacion de las
probabilidades en la ecuacion (1.4). En este caso, los dos conjuntos disjuntos que forman el grafo
bipartito serian los valores de los nodos {1, z2,...,zN}, que se representan por un circulo, y
las funciones {U4,Up,..., ¥}, que se representan con un cuadrado. Las tnicas conexiones
permitidas son entre valores de nodos y funciones, y se considerara que existe una conexién entre
x; v ¥, cuando x; sea un argumento de la funcién V..

Los grafos de factores han sido ampliamente empleados en la resolucion de cédigos de control
de paridad (codigos que controlan la correcta transmision de mensajes mediante el uso de bits
de paridad), si bien su campo de aplicaciéon es mucho més extenso como se vera a continuacion.
De nuevo, a la hora de calcular probabilidades marginales se encuentran problemas con el coste

computacional.



2. Metodologia

El principal objetivo de este trabajo es analizar la evolucién temporal de redes booleanas.
Para ello, se van a emplear el método de variacion de claster, el método de Monte Carlo y el
método de la matriz de transiciéon. Todos ellos van a ser implementados computacionalmente de
forma que se puedan simular distintos modelos. Inicialmente, se van a aplicar los métodos sobre
un modelo de juguete de tres nodos suficientemente pequeno como para poder seguir la evolucion
de los estados, pero con la complejidad necesaria para presentar estados y ciclos atractores. Tras
esto, se aplicaran sobre un modelo de diez nodos mas complejo que imita el ciclo celular.

2.1. Meétodo de variacion en claster (CVM)

El método de variacion en cluster, CVM por sus siglas en inglés (Cluster Variation Method),
es una jerarquia de técnicas variacionales apoximadas para realizar estadistica inferencial sobre
modelos discretos en equilibrio [10]. Historicamente, el método se ha empleado para determinar
diagramas de fase para transiciones de primer y segundo orden con esfuerzos computacionales
moderados y con resultados comparables a los obtenidos mediante simulaciones de Monte Carlo
[11]. El método fue propuesto por Kikuchi (1951) [12], pero por su mayor simplicidad, se va a
seguir aqui la presentacion del mismo por parte de Heskes y colaboradores [13].

Se parte de la distribucion de probabilidad presentada al hablar de los grafos de factores en la
ecuacion 1.4. Entendiendo las funciones ¥, como potenciales, se puede establecer un paralelismo
con el formalismo canoénico de la fisica estadistica, donde la energia asociada a cada claster vendra
dada por 9, (x4) = log ¥, (x,). Notar que, para un sistema no fisico, la Ley de Boltzmann

p(x) = %Q—E(x)/kBT (2.1)
se puede entender como un postulado que define la energia del sistema [1]. En ese caso, tanto
la temperatura (7") como la constante de Boltzmann (kp) se pueden elegir de manera arbitraria
puesto que solo determinan la escala para las unidades en la que se mide la energia, con lo que
se puede tomar kT = 1.

En general, para calcular la constante de normalizaciéon y las probabilidades condicionales
sobre los clisteres hay que sumar sobre el nimero de estados, que crece de manera exponencial
tanto con el tamano de la red como con el tamarnio de los clusteres. Mediante esta distribucion de
probabilidad, se pueden obtener los valores de la energia (E), la entropia (S), la energia libre de
Helmbholtz (F) y la constante de normalizacion (Z) segtn las conocidas relaciones termodinédmicas

E(p) = _Zzp(xa) Ya, (2.2)
S(p) == p(x)logp(x) (2.3)

F(p)=E(p)—S(p) =—log Z. (2.4)

La idea del CVM consiste en evitar la suma exponencial sobre el ntimero de estados del
sistema, calculando en su lugar una aproximacion de F'. Tras ello, se buscara minimizar F' (p)

sobre el conjunto de las distribuciones de probabilidad sobre el sistema (p (x)). Para realizar esta



aproximacion se expresara p (x) a través de las distribuciones de probabilidad definidas sobre los
clusteres (probabilidades marginales), que a priori no tienen por qué ser disjuntos.

Existe una seleccion minima de cltsteres que satisfacen la factorizaciéon de los potenciales en
la ecuacion 1.4, a los que llamaremos clusteres maximales. Notar que esta eleccion distingue entre
las diferentes realizaciones del método y determinaré el balance entre precisiéon y complejidad
computacional. Cuanto méas grandes sean los clisteres maximales, més precisa sera la aproxima-
cion, pero la complejidad de calculo serd mayor, puesto que esta crece de manera exponencial con
su tamafnio. Como ejemplo de elecciones de estos clusteres maximales, cuando se elige que cada
clister solo contenga un nodo, se recupera la apoximaciéon de campo medio, y cuando cada clis-
ter contiene un nodo y todos sus primeros vecinos, se recupera la aproximacion de Bethe-Peierls
[2, 14].

Volviendo al caso general, en la aproximacion de la energia libre mediante el CVM se deja
el término asociado a la energia sin modificar, y se busca aproximar la entropia mediante una

suma de las entropias marginales de forma que

F(p) =~ Foevm (p) = E(p) — Scvum (p) , (2.5)

donde Scy s toma la forma

Sovu®) = > Sa®+ D S50, (2.6)

ac{maxClust} Be{subClust}

donde S, s es la entropia marginalizada a un clister (calculada restringiendo el sumatorio de
la ecuacion 2.3 a los posibles estados del claster) y los cg son los ntimeros de Mdobius o de
sobreconteo, cuyo papel se explica a continuacion.

En la ecuacion anterior, el primer término suma las entropias de los clasteres maximales.
No obstante, dado que los clisteres maximales no son disjuntos, al sumar sus entropias se esté
sobrecontando la contribucién a la entropia total de algunos de los nodos. Para corregir esto, se
anade el segundo sumando, en el que el sumatorio ya no se efectiia sobre los clusteres maxima-
les, sino que recorre los subclisteres obtenidos mediante intersecciones de clusteres maximales,
interesecciones de intersecciones, y cualquier otra intersecciéon sucesiva. Asi se anade la entropia
asociada a estos subclusteres modulada por los coeficientes cg de forma que la contribucién a la
entropia de cada nodo solo aparezca una vez.

Notar que si bien la ecuacién 2.6 se puede obtener de manera directa razonando sobre la
aproximaciéon del sistema como un conjunto de clisteres, esta también se puede deducir de
manera formal como se recoge en el apéndice B. Como se demuestra alli, lo que realmente se esta
realizando es el truncamiento de la expansién de S como serie de cumulantes.

Volviendo a la ecuaciéon 2.6, de la idea de que los coeficientes cg evitan el sobreconteo de
algunos nodos se puede deducir que

cg=1 VBEU, cg=1-) ci¥ BEV (2.7)
aDpf

donde U es el conjunto de los clisteres maximales, y V el conjunto de todos sus subclusteres.
Cabe destacar, por tltimo, que por la aproximaciéon que se ha realizado de la entropia, la
aproximacion del CVM de la energia libre solo depende de las probabilidades marginales definidas

sobre los clusteres. Sustituimos asi la minimizacién de la energia libre sobre la distribucion de



probabilidad conjunta p (x) por la minimizacién de la energia libre definida en la ecuacion 2.5
sobre un conjunto de pseudomarginales Q = {Q,} consistentes y normalizadas de acuerdo a las
ecuaciones

> Qy(zy) =Qy(xy) ¥/ Dy (2.8)

T\

> Q(zy) =1 V. (2.9)
Ty
Lo que se espera del método CVM es que estas pseudomarginales sean aproximaciones precisas
de las marginales exactas p (X, ). La entropia calculada usando las distribuciones pseudomargi-

nales seré exacta siempre que el grafo de region asociado al sistema sea simplemente conexo.

2.1.1. Meétodo de variacién de clister cinético

Como se ha comentado antes, el CVM clasico se emplea para analizar sistemas en equilibrio.
No obstante, en los tultimos anos se han llevado a cabo cada vez méas estudios orientados a
investigar la dindmica en redes complejas, con especial interés en el papel que juega la red [2].
Asi, diferentes adaptaciones del CVM en las que las probabilidades de transiciéon entre estados
juegan el papel de interacciones han cobrado mayor importancia a la hora de realizar estadistica
inferencial sobre sistemas que evolucionan con el tiempo. En este caso, se va a emplear la llamada
aproximacion PQR, extraida del articulo de Pelizzola y Pretti [2].

Partimos de una red booleana que evoluciona con el tiempo de manera estocastica. Como

se ha indicado, esta situacién es equivalente a contar con una cadena de Markov en la que

(t)}t (]?7 T
=1,...,N~

Una trayectoria particular de la cadena de Markov serfa x(9, ..., x(7), y tendria asociada una
probabilidad

cada nodo tiene asociado una variable aleatoria, cuyo valor cambia con el tiempo {X;

T—1

» (X<o> — X0 x(™) X(ﬂ) 0 (X<0>) IER <x<t+1> | x(t)) , (2.10)
t=0

donde se ha usado la hipotesis de una dindmica de Markov, y donde p(®) (X(O)) es la probabilidad
inicial del estado x(@ y w(® (x(tH) | x(t)) la probabilidad de transicion entre x(*) y x(t+1),

Restringiendo que el estado de cada nodo en el siguiente paso temporal solo dependa de
su estado actual y el de sus vecinos (lo cual es valido en la mayoria de sistemas fisicos), la
probabilidad de transicién factoriza como

w®(y | x) sz (Wi | @i0i) » (2.11)

donde x e y se corresponden con dos configuraciones cualesquiera de la red, x; e y; serian las
configuraciones de cada nodo, y z; p; una abreviacion de la configuracién de x; y de todos sus
vecinos. Cabe destacar que para sistemas arbitrarios este no tiene por qué ser el caso, con lo que
el razonamiento siguiente dejaria de ser valido.

Consideremos ahora la entropia asociada a la distribuciéon sobre las trayectorias de la cadena

S(p)=-— Z P (x(o), . ,X(T)) Inp (x(o), . ,X(T)) ) (2.12)

x(0) 7,_.’x('r)



Definiendo una funcién potencial como

€ (x(o), . ,X(T)> —Inp®© ( (0)> Zlnw ( (t+1) | x ”) (2.13)
se puede construir un analogo de energia libre de Helmholtz como

F(p) = Z p(x(o),...,x(T))e (X(O),...,X(T)) —S(p). (2.14)

x(o) 7“_7)((7)

Esta funcion F' serfa la energia libre asociada a un sistema en el que el tiempo fuera una
dimension extra. De hecho, se podria visualizar el sistema como una pila de 7 + 1 copias de la
red (indexadas por el parametro t), con lo que se tendria una red en el espacio-tiempo (notar
que las copias de niveles sucesivos estan conectadas mediante las probabilidades de transicion).

Sobre las probabilidades de transiciéon se ha asumido un caracter local, y la propiedad de
Markov dota a la dimensién del tiempo de esa misma localidad, con lo que cabe esperar que
la entropia se pueda aproximar de manera bastante precisa mediante un truncamiento de su
expansion como serie de cumulantes. Asi, se buscara aplicar una generalizacion del CVM sobre
el sistema espacio-temporal construido.

Como se mencioné al introducir el CVM, la elecciéon més relevante que se debe hacer y que
establece el balance entre precisiéon y complejidad es la de los clisteres maximales. Esta eleccion
viene influenciada por el tipo de correlacién que se quiera mantener sobre las variables. En
un sistema en el que los nodos puedan estar conectados a los vecinos de su capa temporal y
posiblemente a los vecinos de la capa temporal posterior (no existen conexiones con més capas
temporales por la propiedad de Markov) los posibles clasteres en torno a un nodo vienen dados
por la tabla 1.

En este caso, los cliisteres maximales elegidos son los de tipo P, @ y R. El tipo P es necesario
puesto que incluye toda la informacién necesaria para calcular las probabilidades de transicion
segiin la ecuacién 2.11. Por su parte, el clister () anade correlaciones temporales entre pares de
primeros vecinos, y el clister R, correlaciones entre un nodo en un paso temporal y sus vecinos
en el paso consecutivo. La eleccién de estos tres clisteres es la llamada aproximacion PQR.

La entropia asociada al CVM para la aproximacion PQ R se deduce de combinar las ecuaciones
2.6 y 2.12, lo que da lugar a

sran =S5 5 () 5 () + (1)) - S )

t=0 7

- %[5 (1) +s ()] - {5 () - T ()

1,j€01

(2.15)

Cabe destacar, no obstante, que la entropia Spgr esta asociada a toda la trayectoria temporal
del sistema. Para poder comparar con otros métodos, se necesita la entropia del sistema en cada
paso temporal para lo que hay que marginalizar los clisteres de forma que queden sobre una
misma capa temporal. En este caso, se tendrd que

Shor =5 () - > s (29). (2.16)
i ij
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t t+1 Representacion  Definicion

M 0,00 i,0i Mi(t) (Yi,0i»Tigi) P (Xl%?) = Yi,0i» X%)i = xi,ai)
P i,0i i Pz( ) (vi, i 0i) p( (t+1) Z,Xz(ta)Z Z; 8z'>
Q i i QY  p(XEY =y XY = aiy)
R i i, Oi ; ) (Yi.0i> T4) P <tha+,1 = z@zaX(t) = %)

S 00 — 89 (zia) P (XZ ) = az)

Toig i Tew)  p (XY =X =)
Ui i UD ) p (X (t+1) ,J,X(” - a:)
Vo i t) (yi, x;) p<X (t+1) z,X() )

Z i, - Zz]t (i) P (X = xw)

Y T

Tabla 1: Resumen de los posibles cliisteres existentes en torno a un nodo. En la primera columna
el nombre del clister, en la segunda los nodos que incluye en la capa temporal actual, y en
la tercera los nodos de la capa temporal posterior. Notar que i,j hace referencia a un par de
primeros vecinos. En la cuarta y quinta columna se recogen la representaciéon que se usara del
clister y su definicién en cuanto a variables aleatorias.

Recordemos que la idea de aproximar la entropia del sistema era poder resolver el problema
de minimizacién de la energia libre de Helmholtz, para lo que basta minimizar la entropia en 2.15,
lo que resulta un problema complicado debido a la superposiciéon de los cltasteres. En general,
esta minimizaciéon se puede realizar de manera iterativa mediante técnicas de propagaciéon de
creencias, que no aseguran la convergencia, o con otros métodos mas complejos. No obstante, en
el caso de un sistema espacio-temporal proveniente de una cadena de Markov como el que se ha

planteado, existe un procedimiento mucho mas sencillo, como se recoge en el apéndice C.

2.2. Meétodo de Monte Carlo

El método de Monte Carlo es un método clasico en el estudio de modelos estocasticos, puesto
que permite estimar las probabilidades de los distintos estados en sistemas en los que la evoluciéon
exacta sea dificil de calcular. La idea del método es simular un gran namero de veces la evolucion
del sistema para aproximar algtin estimador realizando estadistica sobre los resultados obtenidos.

Al trabajar con cadenas de Markov, lo que se busca generar es un gran ntumero de trayectorias
independientes partiendo de unas mismas condiciones iniciales. En cada trayectoria, existe una
cierta probabilidad de transicion (que en este caso vendra dada por las w; de la ecuacion 2.11)
entre el estado de un nodo a tiempo ¢ y los posibles estados del nodo accesibles para el paso
t+ 1. Asi, en funcién de dicha probabilidad se decidira si se acepta o no la transiciéon, repitiendo
el proceso para todos los pasos. En concreto, la implementacion utilizada sigue un proceso de
actualizacién de los nodos sincrono. De esta manera, en cada paso temporal, la probabilidad de
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transicion de cada uno de los nodos se evaliia de manera independiente al resto, dependiendo tan
solo del estado del sistema a tiempo t. Esto puede dar lugar a los dos casos extremos de que el
sistema no modifique el estado de ninguno de sus nodos, o de que modifique el estado de todos.

La clave del método consiste en que, al promediar los resultados de una magnitud para todas
las trayectorias, se obtiene un estimador de la misma. Las leyes de los grandes ntimeros aseguran
la convergencia a su valor esperado del estimador correspondiente a n trayectorias, si bien el
error cometido tan solo decrece como 1/4/n. Esto hace que se necesiten muestras muy grandes
para obtener valores precisos. No obstante, este error se puede reducir en gran medida empleando

técnicas de reduccion de varianza como se recoge en [15].

2.3. Evolucidén mediante matriz estocastica

Este método de célculo no supone sino una aplicacién directa de las propiedades de las
cadenas de Markov en tiempo discreto homogéneas. Partiendo de la ecuacién A.1 es facil ver
que la distribucién de probabilidad en un instante ¢ es el resultado de aplicar la matriz de
transicion t veces sobre la distribucién inicial. Usando la nomenclatura introducida al presentar
el CVM, las entradas de dicha matriz de transicion se corresponderian con las w (y | x) de
la ecuaciéon 2.11. Bajo la hipoétesis de factorizaciéon de las probabilidades se podran entonces
relacionar las probabilidades de transiciéon de cada nodo con las probabilidades de transicién de
los estados completos de la red. Notar asimismo que, en ese caso, la distribucién inicial debe
hacer referencia a la red completa, con lo que en caso de contar con las condiciones iniciales de
los nodos individuales, estas se deben combinar en una probabilidad global.

De los métodos presentados aqui, es el tinico que obtiene la distribuciéon de probabilidad
exacta para cada paso temporal, si bien su coste computacional crece exponencialmente con el
tamano del sistema. Esto es facil de ver notando que los vectores que expresan la probabilidad
de cada estado x, de la red, q(t) = {p(Xa,t),a = 1,..., K}, tienen longitud K = 2V siendo
N el numero de nodos de la red. Asi, el nimero de operaciones a realizar para obtener cada
nuevo vector crece de manera exponencial con el tamano de la red, haciendo que el método
sea computacionalmente inservible para sistemas suficientemente grandes. No obstante, para
los modelos pequenos que se van a tratar aqui (a lo sumo de diez nodos) servira para obtener

resultados contra los que comparar el CVM.

2.4. Modelos

Como se ha comentado, los modelos cuyo comportamiento se va a estudiar en primer lugar
son un modelo de juguete de tres nodos y un modelo del ciclo celular. Es importante destacar la
forma en la que se va a modelizar la evolucién estocéstica, para lo que se va a seguir el enfoque
de G. Stoll y colaboradores en [5]. Es de este mismo trabajo del que se han obtenido inicialmente
los modelos de estudio.

En dicho articulo, se trabaja con ritmos de transicién para cada nodo, en lugar de probabili-
dades de transicion. Esto permite trabajar con sistemas a tiempo continuo, y ademas proporciona
una manera de introducir informacién bioldgica cuantitativa para determinadas redes (por ejem-
plo, los ritmos de decaimiento o de generacion de proteinas se pueden medir experimentalmente).
Mas atn, las probabilidades de transiciéon se pueden recuperar a posteriori a partir de los ritmos
definidos, como se explicard a continuacién. La eleccion de este articulo viene motivada por el
hecho de que es uno de los pocos trabajos en los que se presenta una descripcién probabilisti-
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ca de las reglas de evolucién para los distintos nodos. Asi, el esfuerzo de traducir los ritmos a
probabilidades y de pasar de tiempo continuo a discreto se compensa con el hecho de tener un
marco de trabajo sobre el que definir modelos booleanos estocésticos arbitratios.

Para un nodo I cualquiera, se tienen definidos un ritmo de activacién pge y un ritmo de

decaimiento pge. como

Pact = Pacty si COndl, Pacty €11 otro caso (217)

Pdec = Pdec, Si conda, pPdec, €n otro caso,

donde las condiciones cond; y conds son una funcion del estado de los vecinos y donde usualmente

Pacts = Pdec; = 0, si bien esta condicién puede relajarse para introducir ruido en el modelo.
Puesto que todos los métodos presentados parten de la existencia de una probabilidad de tran-

sicién para cada nodo, es necesario poder transformar estos ritmos de vuelta en probabilidades.

Esta equivalencia se recoge en la ecuaciéon
Wi (yl(t) | :UE%) = Pai—sgi (1 = 00,9.) T+ (1 = pu;—35.T) Oay (2.18)

donde w; es la probabilidad de transicion entre estados de la ecuacion 2.11, p,, .4 es el ritmo
de transicién de x; a y; # T4, 0,4, €s la delta de Kroenecker y 7 es un parametro que regula
la ventana temporal con la que se discretiza la evolucion continua basada en ritmos (que se
corresponde con el limite 7 — 0). Notar que las probabilidades de transicion asi contruidas
estan normalizadas sobre cada uno de los nodos independientemente del valor de 7, puesto que

> wi (?/z(t) | m%z) =1 = po—yi T+ pri—g,7 = 1. (2.19)
Yi

Més atn, cabe destacar que 7 escala los ritmos para las transiciones, con lo que su valor
determina el balance entre la probabilidad de que el nodo cambie de estado, o permanezca en su
estado actual. Dado que se esta tratando con probabilidades, las w; deben ser no negativas, lo
que observando la ecuacion 2.18 introduce la condicion pg, 5,7 < 1. El p més alto con el que se
va a trabajar es 10, con lo que se va a fijar 7 = 0.01 quedando siempre dentro de dicha condicion.

2.4.1. Modelo de tres nodos (modelo de juguete)

El primer modelo que se va a estudiar consta tan solo de tres nodos: A, B,C. El nodo A es
activado por C e inhibido por B; el nodo B es activado por A y por C, y el nodo C es activado
por A o por B. El grafo asociado se puede encontrar en la figura 2. Las relaciones entre los nodos
vienen dadas por

Pact = puy si (C' A B€), 0 en otro caso

A:
Pdec = Pd, si B, 0 en otro caso
= si A, 0 en otro caso
B: Pt TP (2.20)
Pdec = Pdy 51 A, 0 en otro caso
C- Pact = 0
Pdec = Pescape Si (A° A B€), 0 en otro caso,
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donde p,; y pq, son los parametros correspondientes a los ritmos de activaciéon y de decaimien-
to (respectivamente) de los correspondientes nodos y X¢ es la aplicacion del operador logico
"NOT" (=) sobre el nodo X.

Dado que en este caso solo se tienen ocho posibles estados, resulta sencillo seguir las trayec-
torias (ver figura 2), con lo que se puede comprobar que existe un tnico punto fijo ([000]). Esto
hace que la entropia de equilibrio sea 0 para cualquier condicién inicial.

No obstante, cabe destacar que también existe un ciclo que decae al punto fijo cuando se pasa
del estado [001] al [000]. La probabilidad de esta transicién viene dada por pescape, con lo que
modificando los valores de este parametro se puede modificar el tiempo de permanencia esperado
en el ciclo hasta hacerlo infinito (en el limite Pescape — 0). En este caso limite, el sistema
evolucionaria entre los cuatro estados del ciclo, con lo que el valor de los nodos no estaria fijado,
lo que daria lugar a una entropia de equilibrio no nula.

o7 ¥
& ~
011 | 101
&b . T
7
[
. 4

D
,—'/
m

Figura 2: A la izquierda, grafo asociado al sistema del modelo de juguete. A la derecha, grafo de
transiciones para los posibles estados. Notar que tan solo se muestran las transiciones posibles,
si bien al haber introducido aleatoriedad en el modelo en algunos casos existe una probabilidad
no nula de mantenerse en el estado actual. El orden de los nodos en los estados del diagrama
seria [ABCY. Imégenes obtenidas de [5].

2.4.2. Modelo del ciclo celular

Este modelo esta compuesto de diez nodos y describe los mecanismos que controlan la activi-
dad de diferentes complejos CDK/ciclinas, quienes se encargan de la regulacion de la dindmica en
el ciclo celular. Las relaciones concretas entre los nodos se recogen en el apéndice D, asi como su
grafo asociado. En este caso, el grafo de la red de transiciones, analogo al que aparece a la derecha
en la figura 2 para el modelo de tres nodos, tiene 1024 nodos. Asi, resulta ya muy complicado
obtener informacion de él, con lo que cobran importancia los métodos de estudio presentados
anteriormente.
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3. Resultados

Como ya se ha comentado, en este trabajo se van a analizar computacionalmente distintas
redes booleanas mediante tres métodos diferentes con el fin de obtener informacién relevante
sobre las mismas, a la vez que se examina el comportamiento del CVM, desde el punto de vista
de la precision de los resultados. En concreto, se quieren estudiar las virtudes y limitaciones del
CVM, empleando como referencia para comparar los métodos de Monte Carlo y de la matriz
de transferencia. Cabe mencionar que, mientras en los trabajos previos se hacian comparaciones
con los resultados de métodos de Monte Carlo cinéticos en tiempo continuo obtenidos con el
programa MaBoSS [5] (un codigo bien establecido y de referencia), aqui utilizamos un método
de Monte Carlo en tiempo discreto, que se ha construido para reproducir de forma precisa las
probabilidades de salto utilizadas en el CVM y en la evolucién exacta.

El cédigo desarrollado para estos fines se puede consultar en el repositorio de GitHub pre-
sentado en el apéndice E, y estd compuesto por dos modulos acoplados. Por un lado, esta el
codigo desarrollado inicialmente en [3| corregido frente a la aparicion de comportamientos caoti-
cos, ampliado para incluir mas métodos aparte del método de variacién de claster y generalizado
para poder recibir cualquier tipo de red. Por otro lado, se tiene un médulo encargado de proce-
sar cualquier red, generar los archivos necesarios para las simulaciones y procesar los resultados

posteriores.

3.1. Modelo de tres nodos (modelo de juguete)

En primer lugar, se analizaron los resultados arrojados por el CVM aplicados sobre el modelo
de tres nodos descrito en el apartado 2.4.1. Observando el grafo de transiciones de la figura 2
se puede ver que los dos tipos de trayectorias relevantes son la que parte de [ABC] = [100]
para llegar al atractor, y la que parte de cualquiera de las condiciones iniciales que componen el
ciclo transitorio (por ejemplo [ABC] = [111]). Asimismo, como se ha comentado al presentar las
ecuaciones que gobiernan la evoluciéon de los nodos, el pardmetro méas influyente de este modelo
€S Pescape; Y& que determina la probabilidad de abandonar el ciclo.

Usando las condiciones iniciales mencionadas y fijando pescape = 10, se obtuvieron los resul-
tados de la figura 3. En ella se puede ver como en el caso de comenzar en [100] los valores de
la entropia exacta, del método de Monte Carlo (promediando 10000 trayectorias) y del CVM
coinciden; mientras que partiendo de [111], los resultados de la simulacion de Monte Carlo y
de la solucién exacta son iguales, pero difieren ligeramente de los del CVM. La razén de que
para la condicion inicial [100] el CVM sea un método exacto reside en el hecho de que en toda
la trayectoria hasta llegar al atractor [000], el valor de C' nunca es 1, con lo que el modelo es
efectivamente un modelo de dos nodos. En ese caso, y dado que A y B son vecinos entre si, se
tiene que el cluster @ (asociado a cualquiera de los nodos) coincide con el sistema completo, con
lo que realmente no existe un truncamiento de la serie de cumulantes de la entropia, y el valor
obtenido por el CVM es exacto.

Cabe mencionar que, en este caso, se han usado para comparar con los resultados del CVM
tanto el método de Monte Carlo como la soluciéon exacta, obteniendo que los resultados de
ambos son consistentes. Como se ha comentado anteriormente, en este trabajo se va a trabajar
con redes de tamano pequeno, con lo que el método basado en la matriz de transicién tiene
un coste computacional asequible y sera el empleado para obtener los valores de referencia. No
obstante, es importante disponer de la posibilidad de hacer simulaciones de Monte Carlo, puesto
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que nos permitiran, por un lado, poder analizar trayectorias concretas sobre las redes, y por otro,
extender los analisis aqui realizados a sistemas con un ntmero de nodos mucho mayor.
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Figura 3: Comparacion de los resultados de la simulaciéon del modelo de juguete para dos con-

diciones iniciales fijando pescape = 10. A la izquierda, los resultados obtenidos para la condicion
inicial [ABC] = [100], y a la derecha, los obtenidos para la condicién incial [111].

Dado que la condicién inicial [111] esta contenida en el ciclo transitorio, esta se us6 para
estudiar el efecto del valor de pescape €n la evolucion de la entropia. De esta manera, se obtuvo la
figura 4. En ella se puede ver como al reducir el valor de pescqpe la entropia parece estabilizarse
en un valor no nulo, lo que indica la existencia de un ciclo estable. No obstante, este ciclo es tan
solo transitorio, puesto que, como se observa en la gréfica, pasados suficientes pasos temporales,
la entropia comienza a descender, llegando eventualmente a 0 para tiempos muy grandes.

Aunque en este caso el ciclo se puede obtener analiticamente, conviene desarrollar las herra-
mientas que se usaran cuando las redes sean demasiado grandes para poder determinar trayec-
torias concretas facilmente. Asi, con el fin de estudiar méas a fondo este ciclo, se us6é el método
de Monte Carlo para simular una trayectoria partiendo de [111] (para pescqpe = 0.05) durante
10000 pasos temporales. De esta forma, se obtuvo la figura 5 en la que se muestran los primeros
500 pasos de la trayectoria y el esquema de transiciones entre los estados del ciclo. En dicho
esquema, el tamano de los nodos (que aqui representan estados completos) es proporcional al

nimero de pasos permanecido en ellos, y la anchura de los ejes es proporcional a la probabili-
dad de la transicién asociada. Analizando la trayectoria se puede ver como en la mayoria de los
pasos temporales el sistema no realiza ninguna transicién, si bien el tiempo de estancia en cada

estado varia. Esto se puede observar también en el hecho de que no todos los nodos del grado de
transiciones tienen el mismo tamano.
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Figura 4: Comparacion de los resultados de la entropia para dos valores de pescape Partiendo de la
condicioén inicial [ABC] = [111]. En morado/verde, los resultados correspondientes a pescape = 10,
y en azul/naranja, los resultados para pescape = 0.05.

3.2. Modelo de ciclo celular

Una vez comprobada la correcta implementaciéon de los métodos sobre un modelo sencillo,
se paso a analizar un modelo més complejo compuesto de diez nodos (véase apartado 2.4.2 y
apéndice D). Notar que a lo largo de la seccion se trabajara con los estados del sistema escritos
como numeros binarios y como niimeros enteros. La forma de pasar de una representacion a otra,
y de traducir ambas en una configuracion del sistema, se encuentra en el apéndice D.1.

Dado que en este caso no se disponia de una visualizacién sencilla del grafo de transicién,
no se conocian las condiciones iniciales que dan lugar a los distintos tipos de trayectorias. Por
ello, se realiz6 en primer lugar una exploraciéon de todas las condiciones iniciales, de forma que se
pudieran conocer cudles daban lugar a resultados del CVM maés similares a la evolucion exacta,

asi como cuéles son los tipos posibles de atractores de la dinamica.

3.2.1. Inestabilidad computacional y comportamiento cadtico

Tras una primera exploracién, se encontraron varias condiciones iniciales en las que el valor
asintotico de la entropia del CVM distaba considerablemente del valor de la entropia exacta.

Para estudiar la causa de estas discrepancias, se graficaron las trayectorias completas de
algunas de estas condiciones iniciales, observindose principalmente dos perfiles de discrepancias
(ver figura 6). Por un lado, en algunas trayectorias aparecia repentinamente un pico de entropia
para la simulacion del CVM que no se observaba en la evolucion exacta, y por otro lado, en
otras trayectorias se observaba una entropia oscilante en el CVM, mientras que la entropia
exacta tendia progresivamente a 0. Igualmente, se observd que para determinadas trayectorias
del CVM habfa puntos con entropia negativa, lo que parecia implicar la existencia de errores en

la simulacién. Con el fin de poder comparar, el mismo c6digo se compilé con otro compilador y
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Figura 5: A la izquierda, primeros pasos temporales de una trayectoria partiendo de [ABC] =
[111] obtenida mediante el método de Monte Carlo para pescape = 0.05. A la derecha, grafo
de transiciones entre los estados del ciclo para esa misma simulacién considerando 10000 pasos
temporales. Los nodos de este grafo representan estados del sistema y su tamanio es proporcional
al tiempo de estancia de cada estado. Por su parte, los ejes tienen una anchura proporcional a
la transicién que representan.

se ejecutd en un sistema operativo diferente, observandose que en este caso no se encontraban
las discrepancias mencionadas.

Es comun al trabajar con C encontrarse con pequenas discrepancias debidas al compilador,
puesto que es un lenguaje en el que ciertas operaciones (por ejemplo los redondeos a la méaxima
precision permitida) dependen de la implementacion que se haga en cada compilador. En esta
linea, se han desarrollado trabajos para conseguir compiladores que realicen las operaciones en
coma flotante de manera estandarizada como se recoge en [16]. No obstante, las diferencias tan
significativas encontradas aqui mostraban, por un lado, la fuerte sensibilidad del método frente
a perturbaciones, y por otro, la necesidad de implementar un algoritmo mas robusto.

La sensibilidad del método se puede apreciar facilmente en la fila inferior de la figura 6, donde
una ligera discrepancia en torno al paso temporal 100 da lugar a evoluciones totalmente opuestas,
lo que sugiere un comportamiento caético del algoritmo empleado.

Para conseguir que el método fuera consistente, independientemente del proceso de compila-
cion empleado, surgié la necesidad de desarrollar un programa mas robusto frente a la aparicion
de estas perturbaciones, para lo que se siguieron dos estrategias. En primer lugar, se forzo la
normalizacién de todos los clisteres para cada paso temporal, de forma que ninguna de las pro-
babilidades marginales se desviara en gran medida. Esta modificaciéon estabilizaba ciertas tra-
yectorias, si bien otras seguian presentando comportamientos erraticos. Asi, se introdujo como
segunda modificacién el promediado del valor de los clusteres sobre todas las posibles margina-

lizaciones. En concreto, para el claster V' se promedio el resultado obtenido en la ecuacion C.5

18



-b T T T I T T T T I T T T T |- -b T T I T T T T I T T T |-
a) [ + Exacta | I + Exacta |
- CVM - CVM
s N : 1 [ : ]

° L] °
—~ F . 1 L 1
S f 1 i ]
5 20 . 1 [ ]
~ 1 3 . i LS i
wn I ‘ M i I i
OF- - = -
O I N L) A P A
T — T T TS A ——— T3
b) _k + Exacta ] .k + Exacta ]
A . cvm 1 F . CVM 7
L ¢ ] L ¢ ]
~apy AFFEFERARELLESELIY B3 E
I R W S A A I ]
:; L % % % e 0% % o0 g L, ] - -
\-«2__ ® 0™ oo o ‘: e * e ° o.. ] » .
wn B ® e ®e e ® e e e ‘e ¢ ] - E
- e, a8 0 ::‘ HES I S B 1
[ : ] [ ]
TOON 1 F ;
O-_t 1 1 1 1 1 1 1 1 1 1 I_- -_t 1 1 1 _-
0 500 1000 1500 0 500 1000 1500

Pasos temporales

Pasos temporales

Figura 6: Comparacién de los resultados de la simulacion para dos condiciones iniciales, emplean-
do dos compiladores y sistemas operativos diferentes. En la parte superior, los resultados asocia-
dos a las condicion inicial [0110001101], y en la parte inferior los correspondientes a [0011100011].
A la izquierda, los resultados obtenidos con la versiéon 6.3.0 de gec para un modelo de hilos win32
(sistema opetativo Windows); y a la derecha, los resultados obtenidos con la version de gee 14.2.0
en un modelo de hilos posiz (sistema operativo Linux, distribuciéon Ubuntu). En rojo, en la gra-
fica superior izquierda, se marca el punto de entropia negativa encontrado.

con los valores de marginalizar T

ZTZ(& yuxz,] Vl(t) (yi,l’z‘) Vi, Vj € 0; (3~1)

yU

Z ij, z yl,j7xl = ‘/Z(t) (yiaxi) Vi, Vj € 0j; (3'2)

y para el clister Z, se promedi() el resultado de la ecuacién C.8 con el resultado de la margina-
lizacion de U
1 S
Z 7,]1 y’L,j7 ‘CC’L - Z(t+ ) (y'b ]) VZJVJ E 8@ (33)

De esta manera se consiguié que todas las trayectorias estuvieran estabilizadas, con lo que se

pudo pasar a la exploraciéon de las condiciones iniciales.
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3.2.2. Exploraciéon de las condiciones iniciales

Una vez comprobada la robustez del codigo frente a errores de redondeo, se pasé a realizar un
analisis del comportamiento asintético de la red sobre todas las condiciones inciales. Para ello, se
emplearon tanto el CVM como el método basado en la matriz de transferencia, de forma que se
pudiera comparar la entropia aproximada con la exacta. Se observo que, para la mitad (512) de
las posibles condiciones iniciales, la entropia asintética era 0, tanto en el caso exacto como en el
aproximado, mientras que para la otra mitad se tenia que Scyvyr — 3.277 y Sgrzacta — 3.464.
Este hecho sugiere la existencia de, al menos, un estado atractor (lo que daria lugar a la entropia
nula) y un ciclo estable (en el que la entropia seria constante, pero no nula). Estos dos mismos
tipos de comportamientos estacionarios se encuentran en las conclusiones de [5], si bien en ese
caso la proporcion de condiciones iniciales que van a parar a cada uno difiere ligeramente (el
48 % van a parar al punto fijo, y el 52% al ciclo atractor, frente al 50 %-50 % obtenido aqui).

A la hora de extraer conclusiones de manera cualitativa, la discrepancia del 5.4 % entre el
valor exacto y el del CVM es aceptable, si bien podria quedarse corta si se quisieran extraer
conclusiones cuantitativas con mayor precision.

A fin de obtener més informacion sobre el comportamiento transitorio, se calculé la integral
sobre los pasos temporales de la diferencia cuadratica entre la entropia exacta y la entropia del
CVM para todas las condiciones iniciales. Si bien el CVM es un método inicialmente ideado
para obtener resultados asintoticos, con esta medida se puede comprobar si de las estimaciones
del CVM a lo largo de la simulacién también se pueden extraer conclusiones aproximadas. Los
resultados obtenidos se separaron en funcién del valor asintético de la entropia obteniendo los
resultados de la figura 7.
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Figura 7: Distribuciéon de los valores de la integral sobre los pasos temporales de la discrepancia
cuadréatica entre la entropia exacta y la entropia del CVM. A la izquierda, la distribucién solo para
aquellas condiciones iniciales en las que la entropia asintotica es 0. A la derecha, la distribucion
cuando la entropia asintoética es no nula.
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De esta figura se observa, por un lado, que en los casos en los que la entropia asintética es
nula la gran mayoria de condiciones iniciales sigue una trayectoria similar a la que se obtiene
mediante la matriz de transferencia. Sin embargo, existe una cierta proporcién de condiciones
iniciales para las que las discrepancias van creciendo hasta alcanzar valores 25 veces superiores
a las maximas diferencias alcanzadas cuando la entropia asintotica no se anula. Para analizar
la causa del creciente valor de las discrepancias se graficoé la evolucion de cuatro condiciones
iniciales con valores de discrepancias crecientes, obteniendo la figura 8. En ella se puede ver
como la entropia del CVM sigue siempre una forma similar, presentando un pico inicial en los
primeros pasos temporales para luego decaer rapidamente a 0. Por su parte, la entropia exacta
puede presentar una mayor variedad de patrones, incluyendo dobles picos, picos mas tardios, y
sobre todo decae mas lentamente a 0.
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Figura 8: Comparacion de los resultados de la simulacién del modelo de ciclo celular para cua-
tro condiciones iniciales cuya entropia estacionaria tiende a cero. De izquierda a derecha, los
resultados obtenidos para las condiciones iniciales [0111000111], 0111110111}, [0101010111] y
[0100010010].

Por otro lado, cuando la entropia asintotica es no nula, se observa que la dispersiéon de
las discrepancias es mucho menor ya que todas se encuentran entre 40 y 90. No obstante, las
discrepancias quedan lejos de 0, con lo que hay diferencias relevantes entre las evoluciones de
las entropias. En concreto, dado que se observan dos picos (uno en torno a 50 y otro en torno
a 80) en los que se concentran los valores, se espera encontrar dos tipos de perfiles para la
estabilizacion de la entropia. Esto se observa en la figura 9, donde se han elegido las condiciones
iniciales de menor ([1010011101]) y mayor ([1101011011]) discrepancia. En dicha figura, se puede
ver que, cuando la entropia crece mucho en los primeros pasos temporales, la entropia del CVM
atraviesa un valle y se despega del valor de la entropia exacta, que presenta un pico, para después
estabilizarse ambas. En cambio, cuando la entropia se mantienen acotada en los pasos iniciales,

ambas entropias se mantienen mas proximas y presentan un pico inicial, si bien la entropia del
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CVM decae mas rapidamente hasta alcanzar su valor de equilibrio.
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Figura 9: Comparaciéon de los resultados de la simulaciéon del modelo de ciclo celular para dos
condiciones iniciales, cuya entropia estacionaria es no nula. A la izquierda, los resultados obteni-
dos para la condicion inicial [1010011101], y a la derecha, los obtenidos para la condicién inicial
[1101011011].

Como se ha comentado anteriormente, el hecho de que la entropia tienda a 0 en determinadas
trayectorias parece corresponder con la existencia de estados atractores, y el hecho de que su
valor de equilibrio sea en ocasiones no nulo, con la existencia de ciclos estables. Cabe destacar
que también es posible la existencias de ciclos transitorios como parece deducirse de la evolucién
de la entropia exacta en la gréfica inferior izquierda de la figura 8, si bien estos son més dificiles
de detectar.

Para estudiar mas a fondo los atractores, se analizaron las probabilidades obtenidas mediante
de los distintos nodos de estar activados en el equilibrio. Con ello se observo que el estado final
de todas las trayectorias en las que la entropia se anulaba era el mismo para ambos métodos
([0000101001]), y se correspondia con el mismo estado atractor descrito en [5]. Por su parte, en
las trayectorias con entropia de equilibrio no nula se vié que, para un mismo método, las proba-
bilidades de equilibrio de todos los nodos también eran iguales entre trayectorias con diferentes
condiciones iniciales, si bien los valores concretos diferfan entre métodos. Con el fin de conocer
mejor las trayectorias seguidas, se realizdé una simulacién de Monte Carlo de 15000 pasos tempo-
rales partiendo de una de las condiciones iniciales ([1101001000]) que daba lugar a entropia no
nula.

Mediante este anéalisis se vi6 que no existia un ciclo estable como se habia pensado, sino que
realmente el estado de equilibrio consistia en un conjunto de ciclos transitorios acoplados. El grafo
de las transiciones seguidas a lo largo de la trayectoria (figura 10), permite observar la existencia
de ciertos estados en los que el tiempo de permanencia es mayor que en el resto: 269, 261, 513,
547, 545, 5, 13, 769, 897. Dichos estados, traducidos a sus correspondientes configuraciones de
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nodos, se corresponden con conjuntos de nodos activos descritos en 5] como estados cuasiestables
de la distribucién estacionaria de las trayectorias que no van al punto fijo. La tnica excepcién es
el estado 13 ([1011000000]) que no se recoge en la enumeracion del articulo. Notar, no obstante,
que alli se incluyen solo los estados mayoritarios resultantes de un gran ntimero de simulaciones,
mientras que aqui solo se ha considerado una trayectoria, con lo que es posible que al promediar
més trayectorias, el peso de este estado se diluya.
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Figura 10: Grafo de transiciones entre los estados visitados por la trayectoria de Monte Carlo
partiendo de la condicién inicial [1101001000], considerando 15000 pasos temporales. Los nodos
de este grafo representan estados del sistema y su tamano es proporcional al tiempo de estancia de
cada estado. Por su parte, los ejes tienen una anchura proporcional a la transicién que representan.

4. Conclusiones y trabajo futuro

En este trabajo, se han presentado en primer lugar los conceptos de redes de regulacién
genética y de redes booleanas, explicando sus diferentes representaciones y los distintos tipos
de evoluciones que se pueden definir sobre ellas, y haciendo especial énfasis en la evolucion
probabilistica.

Tras esto, se ha presentado el método CVM, tanto en su version clasica (inicialmente propues-
ta por Kikuchi [12], y adaptada por Heskes y colaboradores [13]), como en la version dindmica
planteada por Pelizzola y Pretti [2|. Asimismo, se han introducido los métodos (Monte Carlo
y evolucion mediante la matriz de transicion) contra los que se han comparado los resultados
obtenidos por el CVM. A continuacién, se han presentado los modelos de redes de regulacion

genética sobre los que se han aplicado los métodos anteriores, poniendo especial atencion en la
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forma de transformar el enfoque de tiempo continuo y ritmos de transicion de [5] (de donde se
han extraido los modelos) en una evolucion discreta basada en probabilidades de transicion.

Este método y estos modelos ya se habian considerado en una investigacion previa |3, 4],
si bien en ese caso el analisis se centr6 en la evolucion temporal a partir de ciertas condiciones
iniciales fijas, y la referencia para comparar fue el programa MaBoSS [5]. Aqui, tras llevar a cabo
un extenso proceso de reescritura del cédigo previo para poder emplearlo en redes arbitrarias,
facilitando el estudio de perturbaciones y modificaciones estructurales, se ha profundizado en
el estudio del comportamiento del algoritmo. En particular, se ha detectado una inestabilidad,
por pérdida de precision numérica, del algoritmo de Pelizzola y Pretti, en su implementacién de
acuerdo al esquema publicado en [2]| (véase apéndice C), la cual se ha solucionado forzando las
relaciones de marginalizaciéon entre clisteres. Hay que destacar que el algoritmo esta original-
mente ideado para grafos no dirigidos, asi que esta inestabilidad podria estar relacionada con el
uso actual en grafos dirigidos.

Con el modelo de juguete, se ha observado un caso en el que el CVM dinamico es exacto,
lo cuél se da cuando alguno de los clisteres maximales coincide con el sistema total, y se han
analizado los distintos tipos de estados estacionarios que puede tener una red, observando cémo
se traduce cada uno en un comportamiento de la entropia estacionaria.

En cuanto al modelo de ciclo celular, se han observado dos atractores de la dindmica, ambos
con una cuenca de atraccién compuesta por la mitad de las condiciones iniciales. Por un lado, se
ha encontrado un punto fijo, que se puede reconocer mediante la evolucién de la entropia, por ir
esta a 0. Dicho punto fijo se ha comprobado que corresponde con el mencionado en [5].

Por otro lado, se ha encontrado la existencia de un conjunto amplio de estados, del cual
una trayectoria no escapa una vez ha entrado, que son recorridos mediante ciclos transitorios
acoplados. Este estado estacionario da lugar a una entropia no nula, puesto que el sistema no
se queda estatico en ningin estado. De este conjunto, se han obtenido los estados con mayores
tiempo de permanencia y se ha observado una buena concordancia con los resultados de [5].

En definitiva, podemos concluir que el CVM reproduce correctamente, aunque no de forma
cuantitativa, los resultados exactos, siendo fiable para tiempos largos, mientras que su exactitud
en tiempos cortos tiene una fuerte dependencia de las condiciones iniciales.

Este trabajo abre otras posibles vias de investigaciéon. El hecho de desarrollar un codigo
apto para procesar redes arbitrarias permite analizar rapidamente un gran nimero de sistemas,
introducir modificaciones sobre ellos, y extraer conclusiones. Mas aun, el esfuerzo hecho para
estabilizar el c6digo permite minimizar el riesgo de comportamientos cadticos inesperados en
sistemas sobre los que a priori esto podria ser dificil de detectar.

En concreto, un sistema sobre el que seria interesante poder obtener resultados seria una red
con estructura de arbol. Este sistema es el mas sencillo (no trivial) que se puede construir, y el
CVM clasico deberia dar resultados exactos al aplicarse sobre él. No obstante, cuando se trabaja
con el CVM dinamico, la dimensién temporal juega un papel crucial, por lo que la estructura de
arbol en ese caso se pierde y nada asegura que los resultados del CVM deban ser exactos.

Por 1ultimo, la combinacién del método CVM con la posibilidad de procesar redes arbitrarias,
abre la puerta al anélisis de sistemas de gran dimensionalidad, ya que poporciona un método
rapido y de una precisiéon aceptable con el que poder extraer conclusiones sobre los estados
estacionarios de las mismas. Un ejemplo de estos sistemas seria el descrito en [17], mediante el
cual se pueden obtener sistemas arbitrariamente grandes repitiendo una unidad minima de nodos

e interacciones.
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A. Cadenas de Markov

Los métodos empleados para el estudio de las redes booleanas de este trabajo se basan en
las propiedades derivadas de la modelizacién del sistema como cadenas de Markov, con lo que es
necesario profundizar sobre sus propiedades.

Como concepto previo, se debe hablar de los procesos estocasticos, que son familias de varia-
bles aleatorias {X (t) | t € T} definidas sobre un espacio de probabilidad cualquiera indexadas
con un parametro ¢t que varfa en un conjunto de indices 7.

En funcién del espacio de estados (S) en el que toman valor las variables aleatorias, se habla
de proceso continuo (variables aleatorias continuas) o discreto (variables aleatorias discretas).
Estos ultimos son los mas usuales y son el objeto de estudio en este trabajo, por lo que de ahora
en adelante solo se presentaran los conceptos para procesos discretos (para procesos continuos
son, por lo general, anélogos). En funcion del rango de valores que toma ¢ se hablara de procesos
de tiempo continuo o procesos de tiempo discreto.

El conjunto de estados concretos observados a lo largo del tiempo se denomina realizacién
del proceso, y cada cambio de estado se denomina transicion.

Las cadenas de Markov son un tipo particular de procesos estocasticos en los que el estado del
sistema en el futuro solo depende del estado del sistema actualmente, con lo que es independiente
de lo que haya ocurrido en el proceso en el pasado (propiedad de Markov).

Dentro de las cadenas de Markov, un tipo de especial interés son las cadenas homogéneas,
que se caracterizan porque las propiedades de transicién entre estados son independientes del

tiempo, es decir, se puede definir una matriz de transiciéon
P = (pij)ijer

donde p;; es la probabilidad de pasar del estado ¢ al j.

Notar que las filas de la matriz de transicion (también llamada matriz estocéstica) suman 1,
puesto que estarian expresando la probabilidad de que, dado un estado, en el siguiente instante
el sistema estuviera en otro estado cualquiera (incluido él mismo).

A.1. Cadenas de Markov en tiempo continuo

Cuando el conjunto T sobre el que se indexa la familia de variables aleatorias es un intervalo
continuo de R, se tiene un proceso estocastico en tiempo continuo.

En este caso, la propiedad de Markov se expresa como
P(X(tnt1) = Tng1 | X(tn) = 2, ..., X (1) = 21) = P(X(tn41) = Tni1 | X(t) = n)
con tpy1 >ty > ... >t tales que t; € R.

A.2. Cadenas de Markov en tiempo discreto

Se habla de cadena de Markov en tiempo discreto cuando el conjunto T" que indexa la familia
de variables aleatorias es un subconjunto de N. En este caso, se suele usar la variable n que toma

valores 0,1,2....
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La propiedad de Markov se expresa como
P(Xn+1 = .%'n+1 ’ Xn = Tp, Xn—l =Tp—-1--- 7)(0 = 1‘0) = P(Xn+1 = Tn+1 ‘ Xn = Iljn)

En este caso, resulta sencillo obtener una expresion exacta para la distribucién de probabilidad
a la que se llegaria partiendo de una distribucién de probabilidad inicial sobre los estados.

Dado un vector q (0) de longitud el ntumero de estados, que represente estas probabilidades
iniciales, la distribucién de probabilidad en un instante n viene dada por

q(n) = q(0) P". (A1)
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B. Aproximaciéon de la entropia para el CVM

Como se ha comentado en la secciéon 2.1, la aproximaciéon que se realiza para la entropia en el
CVM no es mas que un truncamiento de la expansion de S como serie de cumulantes. Antes de
pasar a la aproximacién como tal, conviene definir ciertos conceptos que se usaran posteriormente.
Notar que se ha seguido como guia el articulo de An [11] adaptando la demostracion alli realizada.

En primer lugar, consideremos un conjunto P = {a, 3,7, ... } sobre el que hay definida una
relacién binaria R reflexiva, transitiva y antisimétrica. Dicha relacién se denomina orden parcial
sobre Py se escribe <. El conjunto P se dice que estd parcialmente ordenado (por ejemplo, N
con la relacién menor o igual).

Sea ahora la funciéon ¢ : P x P — {0, 1} tal que

u@@:{l sifse (B.1)

0 en otro caso.

Se define la funcién de Mobius p del conjunto parcialmente ordenador P como la dnica
funcion p : P x P — 7Z que satisface

D> B u(By) =08 (7), (B.2)

a<p<y

donde 0 (o, ) es la delta de Kronecker.

Consideremos por tltimo, dos funciones f,g: P — R cualesquiera tales que

Fla)=> g8,

B

entonces se tiene que

g(@) =) f(B)u(Ba), (B.3)
B<a
donde a, 8 € P.

Una vez vistas las definiciones previas, se puede pasar ya a desarrollar la aproximaciéon de
la entropia. Consideremos un sistema formado por N nodos L = {X;, Xo,... Xy} y definamos
el conjunto P como el conjunto de las partes de L, con lo que un claster es un subconjunto
cualquiera de L. Diremos que a@ < 3 si el @ C B. Esta relacion de orden define un conjunto
parcialmente ordenado en el que L es el cluster mas grande.

Suponiendo una distribucién de probabilidad sobre el sistema, se puede hablar de la dis-
tribuciéon de probabilidad sobre los distintos clisteres obtenida como la marginalizacién de la
distribucién global. Asi, tiene sentido hablar tanto de la entropia del sistema como de la entropia
de cada clister, calculdndose en ambos casos de acuerdo a la ecuaciéon 2.3. Notar que la entropia
del cluster L (S1) coincide con la entropia del sistema S,

A partir de la funciéon de Mobius, se pueden definir las funciones

Su =3 n(B.a)Ss, (B.4)

BLla

que tienen como ventaja frente a sus respectivas S, el hecho de que se espera que su valor vaya
a 0 conforme el tamaifio del claster considerado sea mayor que la longitud de correlacion.
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Estas funciones S, realmente no son méas que los cumulantes, como se puede ver usando la

inversion de Mdbius (ecuacion B.3) e identificando f (a) = Sy y g(8) = Sp,

Sa=Y_ S5 (B.5)

BLa

Asi, recordando que S = Sy, se tiene que

S=8,=> Sa=)_ 5 (B.6)

a<L acP

de manera exacta.

Se introduce ahora la aproximacion usada en el CVM. De esta manera, se elige un conjunto
de clusteres maximales C' = {7y1,72,...7%} (es decir, ningtin ; es subclister de otro v;) y
se mantienen solo los términos de la serie asociados con los subclisteres obtenidos mediante
intersecciones de estos clisteres maximales. Denotando como P’ el conjunto de los cltsteres

maximales y sus subclusteres, se tiene que

S~y S, (B.7)

aeP’!

donde el truncamiento esta justificado por la rapida convergencia de las S, a 0 al aumentar el ta-

mano de o comentada anteriormente. Notar que esta aproximacion es susceptible de fallar cuando

la longitud de correlaciéon del sistema sea comparable al tamafnio de los clisteres maximales.
Sustituyendo la ecuacion B.4 en B.7 y recordando la definicién de la funcion ¢ en B.1 se tiene

que

S Y Sa=2 D> nBa)Ss=23 > n(Ba)C(Ba)Ss (B.8)

aEP! a€P’ f<a aEP’' BeP’

Finalmente, se puede intercambiar el orden de los sumatorios (son sumas finitas) para obtener

S = Z 353, (B.9)
BepP’

donde se han definido los coeficientes cg (que se suelen llamar nimeros de Mobius) como

cg= > n(Ba)(B,a). (B.10)

aeP’

De esta manera se obtiene la aproximacion de la entropia empleada en el CVM, asi como un
método de calculo de los numeros de Mébius. No obstante, el calculo de estos se puede simplificar

empleando la definicién de la funciéon de Mobius p dado que

Y= > CapuB =) fan=1= =1 (Bl

B>a yEP a<pB<ly yEP’ B>a

Asi, resolviendo recursivamente sobre el tamafio de los clusteres se pueden obtener todos los
coeficientes de manera sencilla.
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C. Algoritmo de simulaciéon del CVM cinético

Como se ha comentado, para el CVM cinético aplicado a sistemas provenientes de cadenas de
Markov es comiin que exista un algoritmo sencillo que permita obtener el minimo de la energia
libre de Helmholtz. Dicho algoritmo, aplicado al caso de la aproximacion PQR, se muestra a

continuacién, y se encuentra resumido en la figura 11.

(0)

. 0 P .. C
Se parte de los clasteres S, y ZZ(j) expresados en términos de las condiciones iniciales

SZ-(O) (wigi) = i () Hp] Vi,
JEDL (Cl)

Zi; O (2:5) = p () p;© (2;) Vi

Estos clusteres cumplen la relacién de compatibilidad

S° 80 (2i00) = 2 (wig) ViV € O (C.2)

Zoi\j

y permiten calcular las distribucién del claster P(*) a través de la ecuacion

Pz(t) (yi, $i,8i) = w( ) (yl | €Ly 82) S(t) (xl 31) Vi (CB)

Marginalizando P®) se pueden obtener entonces las distribuciones para los clasteres 7)

ST P (i wipr) = T (yivwig) Vi,V € 95, (C.4)
Loi\j
y V)
ZP yuxz 8z = Vz(t) (yzaxz) Vi. (05)
Xy

Recuperando el claster Z() podemos calcular el clister maximal Q) como

T(t) (yza xl,j) TJ(l)J (yja xi,j)
Zf}) (i)

QY (yij.wig) = Vij. (C.6)

De la marginalizacion de Q) se obtienen el cluster U*) mediante la ecuacion
O o Y= UD (g ) Vi Vi € O C.7
ZQU (Wig» wig) = Uy (Wi, wi) Vi, Vi € 04, (C.7)
y el nuevo valor del claster Z (Z*+1) usando

> Qg‘) (Yig> ig) = Zz‘(;+1) (yij) Vij (C.8)

l'i,j
Finalmente, usando U®) y V®) se construye el altimo clister maximal

;o Uiji™ (yig, i)

Vi, (C.9)
VO (i, )%

RZ@ (Yi,0i, i) =
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y con él, se recalcula el valor del cluster .S para obtener

1 .
SORY (ioiwi) = S (wien) Vi (C.10)

T;
? step 2 ? step 3 ? step 4 T:
g(t) S(t+1)
input output
Z() Z(t+1)

Figura 11: Diagrama de flujo para el céalculo de los distintos clisteres para la aproximacién PQR.
Las cajas mas grandes representan los clisteres maximales, y las mas pequeiias los subclusteres.

Imagen obtenida de [2].

Como nota adicional, cabe destacar que, si se estd interesado en conocer la distribuciéon de

probabilidad de un solo nodo en concreto, basta marginalizar el claster P para obtener

AT = Z P (yi, zi00) Vi (C.11)

xi,ai
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D. Ampliaciéon del modelo de ciclo celular

Se recogen aqui las reglas para las transiciones entre nodos, asi como el grafo asociado para el
modelo de ciclo celular (figura 12). Notar que en las reglas aparecen los parametros CycD _del,
Rb_del y C'dc20_del, que si bien se podrian modelizar como nodos, en este caso se tratan como
la presencia o ausencia de sustancias que hagan decaer la ciclina D, el complejo Rb y la proteina
Cdc20, respectivamente. Para todas las simulaciones, su valor se ha tomado como 0.

En la seccién D.1 se recoge la equivalencia entre la representacion de los estados como ntimeros
enteros y niimeros binarios. Asimismo, se muestra la traduccién de un estado a una configuracién

concreta de los nodos.

Pact = 0
CycD:
Pdec = pr st CycD _del, 0 en otro caso
Pact = pi si (Rb° A E2F), 0 en otro caso
CyckE':
pdec = 0si (RbC A E2F, p, en otro caso
Cued: JPact =P si (Rb¢ A Cdc20¢ A (UbcH10 A edhl) A (CycAV E2F)), 0 en otro caso
ycA:
pdec =081 (Rb® A Cdc20° A (UbcH10 A cdhl) A (CycAV E2F)), pr en otro caso
Pact = pi si (Cdc20° A edh1€), 0 en otro caso
CycB:
pdec = 081 (Cdc20° A cdh1®), p, en otro caso
Rp: JPect =P si (CyeD A CycB¢ N\ (p27V (CycAV CycE)) A Rb_del®), 0 en otro caso
. pdec = 0si (CyeD® A CycB¢ N\ (p27V (CycAV CycE)) A Rb_del), p, en otro caso
pop. dPat =P si (Rb¢ A CycB¢ A (p27V CycA®)), 0 en otro caso
. pdec = 0si (R A CycB¢ A (p27V CycA°)), pr en otro caso
pact = pyf si (CyeD® A CyceBe A ((CycAV CycE)V (p27 A (CycE A CycA)))),
0 en otro caso
p27:
pdec = 081 (CycD® A CycB° A ((CycAV CycE) V (p27 A (CycE N CycA)9))),
pPr €en otro caso
Cde20- Pact = pi si (CyeB A Cdc20 _del€), 0 en otro caso
pdec = 0si (CycB A Cdc20_del®), p, en otro caso
pact = p1 si (((cdhl AUbcH10) A (CycAV CycB))
UbeH 10 V (CycA® A CyeB© A (cdh1€V (Cde20 A UbcH10)))), 0 en otro caso
c :
pacc = 081 (((edhl AUbcH10)° A (CycA vV CycB))
V (CycA® A CyeBe A (edh1€ Vv (Cde20 A UbcH10)))), pyr en otro caso
dnl. JPect = s si (Cde20 Vv (CyeB® A (CycA€V p27))), 0 en otro caso
cdhl:
pdec = 081 (Cdc20 V (CyeBe A (CycA€V p2T7))), pr en otro caso

(D.1)
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oA I,

UbcH10

L

Figura 12: Grafo asociado al modelo de red de regulacion del ciclo celular. Imagen obtenida del
repositorio web de MaBoSS.

D.1. Representacion de los estados del ciclo celular

Con el fin de tener una notacién més compacta, a lo largo del la secciéon 3.2 se utilizan ntimeros
enteros y numeros binarios para representar configuraciones de los nodos de la red. Puesto que
es importante el significado bioldgico de las especies subyacentes a los nodos, se recoge aqui la
forma de traducir los estados entre los distintos enfoques.

Notar, en primer lugar, que el orden en el que se consideran los nodos (que es arbitrario) es
el mismo con el que aparecen en la ecuacion D.1.

A la hora de describir un estado en concreto en binario, el orden de los digitos respeta el
orden de presentacion de los nodos. Asi, el estado [z x9 x3 x4 x5 T X7 T3 T9 T10] Se corresponderia

con la configuraciéon

CycD = xq, CycE = xo, CycA = x3, CycB = x4, Rb = x5,
E2F = xg, P27 = x7, Cdc20 = xsg, UbcH10 = x9, cdhl = x1g.

Por su parte, cuando se trabaja con los estados representados como nimeros enteros, lo que
se hace es invertir el orden de los digitos de la representaciéon binaria, y traducir ese niimero a
decimal. La razon de proceder asi proviene de la eleccion que se hizo en [3] para el almacenado
de los estados.

Como ejemplo, considerar el caso en el que C'ycD = 1 y todos los demas nodos valen 0. En
binario, se escribiria [1000000000], y en decimal, seria el estado 1.
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E. Repositorio de codigo

El cédigo empleado a lo largo del proyecto se encuentra almacenado en el repositorio de

GitHub
https://gitfront.io/r/DanilUli/r17SsLsdsZ82/CVM/.

Como se ha mencionado antes, en el coédigo se pueden distinguir dos partes diferenciadas,
pero complementarias.

Por un lado, se cuenta con un conjunto de ficheros en C que permiten realizar las distintas
simulaciones con los tres métodos presentados. La elecciéon de este lenguaje responde principal-
mente a su velocidad de ejecucion.

Por otro lado, se tiene una serie de archivos de Python que permiten procesar una red
cualquiera (expresada en un formato .json definido) para obtener los ficheros de entrada de las
simulaciones, asi como procesar los resultados obtenidos por el programa en C.

Para una mejor comprensioén de los archivos empleados, consultar el archivo README.md
asociado al repositorio.
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