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Prólogo

A lo largo de la historia de la teoría de matrices, uno de los objetivos principales ha sido buscar una
descomposición matricial o una descomposición en forma canónica. A lo largo del siglo XVIII algu-
nos matemáticos estudiaron una descomposición para matrices cuadradas basada en los valores propios.
Sin embargo, hasta el siglo XIX no se encontró una descomposición matricial para matrices rectangu-
lares. Eugenio Beltrami, Camille Jordan, James Joseph, Erhard Schmidt y Hermann Weyl enunciaron
la existencia de los valores singulares y desarrollaron su teoría, aplicándola a diferentes ramas de las
matemáticas como el álgebra lineal o las ecuaciones integrales (ver referencia [6]).

La descomposición en valores singulares es una descomposición de una matriz A como producto de
tres matrices, dos matrices ortogonales e invertibles, U y V , y una matriz diagonal Σ tal que sus entradas
son los valores singulares de A en orden decreciente. El producto resulta de la forma A = UΣV T . Esta
descomposición tiene diferentes utilidades, tanto en el ámbito de las matemáticas, como en campos más
prácticos. Algunos ejemplos son la compresión de imágenes, el análisis de datos o la resolución de
problemas de mínimos cuadrados.

Este trabajo está dividido en dos capítulos. En el primer capítulo vamos a estudiar la existencia de la
descomposición en valores singulares y algunos resultados sobre la misma, como su relación con diferen-
tes normas, su importancia en el problema de mínimos cuadrados o el teorema de mejor aproximación.
Mientras que en el segundo capítulo vamos a presentar un método numérico para obtener la descomposi-
ción en valores singulares. Este método está dividido en dos pasos, un primer paso de bidiagonalización,
seguido de un segundo paso de búsqueda de los valores singulares de la bidiagonal mediante iteraciones
del algoritmo QR implícito.
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Summary

One of the central concepts in matrix theory is to find a decomposition of a matrix or its canonical
form. Since the 18th century, scientists have explored a matrix decomposition for square matrices based
on the eigenvalues. Some of the key contributors to this theory include Leonhard Euler, Joseph-Louis
Lagrange, Augustin-Louis Cauchy and Joseph Fourier. They spent much of their lives studying different
mathematical fields and relating them with the matrix decomposition based on eigenvalues. However,
it was not until the 19th century that a decomposition for rectangular matrices was discovered. Five
mathematicians established the existence of singular values and developed their theory. Eugenio Bel-
trami, Camille Jordan and James Joseph Sylvester studied the singular values in the domain of linear
algebra, while Erhard Schmidt and Hermann Weyl found the singular values during the study of integral
equations. We can see more about their research on [6].

The Singular Value Decomposition (SVD) is a method for decomposing any matrix A as a product of
three matrices: two orthogonal matrices, U and V , and a diagonal matrix, Σ, whose entries are the singular
values of A arranged in decreasing order, σ1, . . . ,σr with r being the rank of A. The decomposition has
this form A =UΣV T . In the current study we work with real matrices.

The decomposition is highly versatile, with applications not only in mathematic but also in many
applied fields. In mathematics, the singular value decomposition can be used to solve least squares pro-
blems, to compute different norms, to determine the spectral condition number and to find the best ap-
proximation of a given rank. These elements are the foundation for practical applications such as image
compression [5], latent semantic analysis [4] and dimensionality reduction, which is particularly useful
in data analysis, as we can study on [3].

This study is divided into two chapters. The first chapter is focused on establishing and proving the
existence of the singular value decomposition, as well as, presenting related results. The second chapter
is focused on the numerical computation of the singular values.

We are going to take a closer look at the results that we are going to prove in this study, starting by
the existence of the singular value decomposition (SVD). As previously mentioned, for any matrix A in
Rmxn with rank r, it can be decomposed as

A =UΣV T ,

where
U =

(
u1 · · · ur ur+1 · · · um

)
,

V =
(

v1 · · · vr vr+1 · · · vn
)
,

Σ = diag(σ1, . . . ,σr,0, . . . ,0) ,

with u1, ...,um orthonormal basis of Rm, v1, ...,vn orthonormal basis of Rn and σ1, ...,σr the singular
values of A, listed in decreasing order.

The proof of this result is based on finding the eigenvalues of AT A and AAT , which share the same
nonzero eigenvalues, denoted by λ1, ...,λr. Once these eigenvalues are computed, we define the singular
values of A as σi =

√
λi for 1 ≤ i ≤ r.

After this theorem, we will explore several results related to this decomposition. Some of them invol-

ve different norms, such as the spectral norm, ∥A∥2 =σ1, or the Frobenius norm, ∥A∥F =
√

σ2
1 + · · ·+σ2

r .
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VI Summary

Additionally, we will examine how singular values relate to the spectral condition number, for instance,
cond(A) = σ1

σn
.

In the first chapter, we will dedicate an entire section to discussing the least squares problem. A
fundamental problem in many applications of linear algebra is solving linear systems of equations Ax = b
with A matrix in Rmxn, b a vector in Rm and x unknown in Rn. When A is square and non-singular, the
system has a unique solution given by x = A−1b. However, when the system is overdetermined (m > n),
the matrix A is rectangular and the system is often incompatible. Therefore, the best option is to find x
such that the residual r = b−Ax is minimal, i.e., we want to find x such that it minimizes ∥Ax− b∥2.
For this purpose, we use the pseudoinverse A†. The pseudoinverse is a matrix that satisfies the following
properties,

AA†A = A, A†AA† = A†, (AA†)T = AA† and (A†A)T = A†A.

If we have a matrix A in Rmxn with full rank and its SVD is UΣV T , then its pseudoinverse is given by
A† =V Σ−1UT . This provides the solution to the least squares problem.

To conclude this chapter, we will present and prove the low-rank approximation theorem which
says that, given any matrix A in Rmxn with rank r and SVD of the form A = UΣV T , then, for any ma-
trix B in Rmxn with rank p ≤ r the inequality ∥A−Ap∥2 ≤ ∥A−B∥2 holds, where Ap = UΣpV T and
Σp = diag(σ1, . . . ,σp,0, . . . ,0). After proving this theorem, we will demonstrate how the singular value
decomposition can be applied to a practical task such as image compression. Although this method may
not the most efficient for this purpose, it is a direct and illustrative application of the low-rank approxi-
mation theorem.

We are starting the second chapter with the introduction of two important classes of orthogonal
matrices that form the basis for our numerical algorithms, since they are used to create zeros in desired
components of a matrix. In particular, we will study Householder reflectors and Givens rotators.

We are going to divide the numerical computation of singular values into two steps. The first step
involves computing a bidiagonal matrix associated with the original matrix A. To this end, we will use
the following theorem.

Theorem: Let A be a matrix in Rmxn, then there exist orthogonal matrices Û ∈ Rmxm and V̂ ∈ Rnxn,
both being the product of a finite number of Householder matrices, and a bidiagonal matrix B̂ ∈ Rmxn,
such that

A = ÛB̂V̂ T .

However, in practice, m is often considerably larger than n. Therefore, for efficiency, the best option is
to compute the QR factorization of the original matrix A, and then use the previous theorem to calculate
the bidiagonal form B of the upper triangular matrix R. By doing so, we obtain

A = Q1ŨBṼ T .

The second step in the numerical computation is to compute the singular values of the bidiagonal
matrix B. The singular value decomposition of B is related to the eigenvalue decomposition of BT B
and BBT . This means that eigenvalue calculation algorithms for symmetric matrices will be useful for
computing singular values. Additionally, we note that if B is bidiagonal, then both BT B and BBT are
tridiagonal matrices.

One of the most common algorithms for calculating the eigenvalues of real matrices is the QR algo-
rithm. However, there are two reasons that make this algorithm inefficient. The first reason is the high
cost of each QR iteration, which is O(n3). The second issue is the generally slow convergence. In order
to solve these problems, we are going to work with tridiagonal matrices, which reduce the cost of each
iteration to O(n), and we are going to use the shifted QR algorithm to improve the convergence rate.

In the current study, we will prove that we can perform an iteration of the shifted QR algorithm
on BBT and BT B without directly computing these products. This way, the computational cost will be
reduced. Once we have found the eigenvalues of BBT and BT B, we just have to calculate their square
roots to obtain the singular values of the bidiagonal matrix B, and consequently, the singular values of
the original matrix A.
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Capítulo 1

Descomposición en Valores Singulares

Las matrices cuadradas se pueden caracterizar por sus valores y vectores propios. Recordemos que,
dada una matriz cuadrada A en Rnxn, v un vector no nulo en Rn y λ un escalar, tales que Av = λv ,
entonces decimos que v es un vector propio de A asociado al valor propio λ .

Esta definición es muy útil en diferentes ámbitos, como el análisis de sistemas lineales, análisis de
datos, descomposición espectral e incluso en física o mecánica cuántica. Sin embargo, para el caso más
general de las matrices rectangulares en Rmxn, con m ̸= n, no existen valores propios. Notemos que es
imposible que la igualdad Av = λv se cumpla, dado que en la parte izquierda estamos en el espacio Rm,
mientras que en la parte derecha estamos en Rn. Por ello, es necesario buscar una definición que sirva
para cualquier matriz. La descomposición en valores singulares es justamente lo que necesitamos, es una
herramienta para descomponer matrices muy importante, tanto teóricamente como computacionalmente.

En este capítulo, vamos a ver cómo se define la Descomposición en Valores Singulares, SVD (del
inglés Singular Value Decomposition), demostraremos que dicha descomposición siempre existe y vere-
mos distintas formas en las que la podemos expresar (ver las páginas 56, 57, 58 de [7]). También vamos a
presentar algunas utilidades que tienen los valores singulares como su relación con diferentes normas, su
conexión con el número de condición espectral y su papel en el problema de mínimos cuadrados. Profun-
dizando en el problema de mínimos cuadrados y basándonos en la descomposición en valores singulares,
vamos a definir la pseudoinversa, que es una herramienta útil para resolver sistemas de ecuaciones so-
bredeterminados (como se explica en [2]). Para finalizar el capítulo, enunciaremos y demostraremos el
teorema de mejor aproximación, que nos servirá para ver cómo los valores singulares se pueden utilizar
en una actividad cotidiana como la compresión de imágenes. También, vamos a desarrollar un programa
con Matlab para comprimir imágenes, basándonos en el código de la página 114 de [1].

1.1. Definiciones y resultados previos

Antes de introducir la descomposición en valores singulares, recordemos algunas definiciones y re-
sultados que vamos a utilizar a lo largo de esta memoria. A partir de este momento, consideramos matri-
ces de Rmxn con la condición de que m > n.

Definición 1.1. Dada A una matriz en Rmxn llamamos factorización QR a una descomposición de la
forma:

A = Q1R =
[
Q1 Q2

][R
0

]
,

donde Q es una matriz ortogonal en Rmxm, llamaremos Q1 a la matriz en Rmxn formada por las primeras
n columnas de Q y Q2 a la matriz en Rmx(m−n) formada por las últimas m−n columnas de Q, y R es una
matriz triangular superior en Rnxn.

Cuando la matriz es de rango máximo, la factorización QR, eligiendo R con las entradas de la diago-
nal positivas, es única.
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2 Capítulo 1. Descomposición en Valores Singulares

Definición 1.2. Llamamos norma matricial ∥ · ∥ a una función que asigna a cada matriz un número real
no negativo y satisface las siguientes condiciones:

1. No negatividad, ∥A∥ ≥ 0 y ∥A∥= 0 si y solo si A = 0.

2. Homogeneidad, sea α un escalar, ∥αA∥= |α|∥A∥.

3. Desigualdad triangular, ∥A+B∥ ≤ ∥A∥+∥B∥.

Existen numerosas normas que cumplen estas condiciones, vamos a ver algunas de las más utilizadas.

Definición 1.3. La norma definida como

∥A∥2 = máx
x ̸=0

∥Ax∥2

∥x∥2
con x ∈ Rn,

se denomina norma espectral. Es la norma inducida por la norma vectorial euclídea.

Definición 1.4. Llamamos norma de Frobenius a la norma definida como,

∥A∥F =

(
∑
i, j
|ai j|2

)1/2

.

La siguiente propiedad justifica la utilidad de diseñar algoritmos basados en productos de matrices
ortogonales.

Propiedad 1.5. Las matrices ortogonales preservan la norma euclídea.

Demostración. Llamemos Q a una matriz ortogonal en Rnxn y x a un vector en Rn. Veamos cómo actúan
bajo la acción de la norma vectorial:

∥Qx∥2 =
√

(Qx)T (Qx) =
√

xT QT Qx =
√

xT x = ∥x∥2

1.2. Descomposición en Valores Singulares

Comenzamos la sección introduciendo la definición de descomposición en valores singulares.

Definición 1.6. Sea A una matriz en Rmxn y sean dos conjuntos de vectores, u1, ...,um ortonormales en
Rm y v1, ...,vn ortonormales en Rn, tales que:

Av1 = σ1u1 ,

...

Avr = σrur ,

Avr+1 = 0 ,

...

Avn = 0 ,

(1.1)

donde r es el rango de la matriz A. A los valores σi, con 1 ≤ i ≤ r, los llamamos valores singulares de
la matriz A. A los vectores ui, con 1 ≤ i ≤ m, y v j, con i ≤ j ≤ n, los denominamos vectores singulares
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asociados a izquierda y a derecha, respectivamente. Trasponiendo A, vemos que tenemos una relación
similar entre los vectores ui con 1 ≤ i ≤ m y los vectores v j con 1 ≤ j ≤ r:

AT u1 = σ1v1 ,

...

AT ur = σrvr ,

AT ur+1 = 0 ,

...

AT um = 0 .

(1.2)

La matriz A tendrá r valores singulares positivos, que consideramos en orden descendiente σ1 ≥ σ2 ≥
...≥ σr > 0. Los últimos v j, con r+1 ≤ j ≤ n, se encuentran en el espacio nulo de A, y los ui tales que
r+1 ≤ i ≤ m están en el espacio nulo de AT .

A continuación probaremos que estos vectores singulares existen para cualquier matriz.

Teorema 1.7. Dada una matriz A en Rmxn de rango r, se puede descomponer de la forma

A =UΣV T , (1.3)

donde
U =

(
u1 · · · ur ur+1 · · · um

)
,

V =
(

v1 · · · vr vr+1 · · · vn
)
,

Σ =



σ1
. . .

σr

0
. . .

0


,

con u1, ...,um base ortonormal de Rm y v1, ...,vn base ortonormal de Rn. A la factorización (1.3) la
denominamos Descomposición en Valores Singulares, SVD (en inglés, Singular Value Decomposition).

Demostración. Primero vamos a ver que AT A y AAT tienen los mismos valores propios no nulos, puesto
que esta propiedad será usada en esta demostración. Para ello, asumimos que λ ̸= 0 es valor propio de
AT A. Entonces, existe x ̸= 0 en Rn tal que AT Ax= λx, y, si multiplicamos esta igualdad por A a izquierda,
tenemos que AAT Ax = λAx. Es decir, Ax es vector propio de AAT asociado al valor propio λ . Como esto
es cierto para todos los valores propios no nulos, AT A y AAT tienen los mismos valores propios no nulos.

Además, sabemos que AT A y AAT son matrices simétricas, y por tanto, diagonizables. Sus valores
propios son reales y podemos tomar vectores propios ortonormales. También son semidefinidas positivas,
por lo que, todos sus valores propios son mayores o iguales a 0 y, las podemos descomponer de la
siguiente manera:

AT A =V D1V T ,

AAT =UD2UT .

En esta descomposición V y U son las matrices ortogonales formadas por sus vectores propios res-
pectivamente. D1 es la matriz diagonal con los valores propios reales λ1, ...,λn y D2 es la matriz diagonal
con los valores propios λ1, ...,λm. Recordemos que el rango de A es r, por lo que el rango de AT A y AAT

también es r, y, por tanto, λi = 0 para i > r. Sin pérdida de generalidad, ordenamos los valores propios
de forma decreciente, es decir, λ1 ≥ ...≥ λr > 0. A continuación, definimos

σi =
√

λi , para cada 1 ≤ i ≤ r (1.4)
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está bien definido porque cada λi es mayor estricto que 0. Luego los valores propios no nulos de AT A y
AAT son σ2

1 , ...,σ
2
r . Consideramos los vectores propios ortonormales v1, ...,vr de AT A, que cumplen:

AT Avk = σ
2
k vk, para 1 ≤ k ≤ r.

Y ahora, definimos los vectores uk, con 1 ≤ k ≤ r de la siguiente forma:

uk =
Avk

σk
. (1.5)

Así se obtienen los valores singulares y vectores singulares de A. Falta ver que u1, ...,ur son vectores
propios ortonormales de AAT . Tomando 1 ≤ k ≤ r, vemos que

AAT uk = AAT (
Avk

σk
) = A(

AT Avk

σk
) = A

σ2
k vk

σk
= σ

2
k

Avk

σk
= σ

2
k uk ,

uT
j uk = (

Av j

σ j
)T (

Avk

σk
) =

vT
j (A

T Avk)

σ jσk
=

σk

σ j
vT

j vk =

{
1, si j = k ,
0, si j ̸= k .

Para acabar de formar la base ortonormal tenemos que elegir los n− r vectores vr+1, ...,vn en Rn y los
m− r vectores ur+1, ...,um en Rm. Los vectores v j (r+ 1 ≤ j ≤ n) se encuentran en el espacio nulo de
A, mientras que los vectores ui (r + 1 ≤ i ≤ m) están en el espacio nulo de AT . Por tanto, cualquier
base ortonormal de ambos espacios nulos va a ser ortogonal a los vectores singulares que ya tenemos
respectivamente.
Concluimos la demostración viendo que, efectivamente, hemos obtenido una descomposición de la forma
A =UΣV T . Para ello tomamos las ecuaciones de (1.1) y la ponemos de forma matricial,

V =
(

v1 · · · vr vr+1 · · · vn
)
,

U =
(

u1 · · · ur ur+1 · · · um
)
,

Σ =



σ1
. . .

σr

0
. . .

0


.

Así obtenemos la ecuación
AV =UΣ ,

y como V es ortogonal, al multiplicar a ambos lados por V T , concluimos que

A =UΣV T ,

como queríamos demostrar.

En el siguiente resultado, mostramos que la descomposición en valores singulares también se puede
escribir como la suma de r matrices de rango 1.

Lema 1.8. La descomposición en valores singulares nos permite expresar A como suma de r matrices
de rango 1 de la siguiente forma:

A =UΣV T = σ1u1vT
1 + ...+σrurvT

r , (1.6)

donde r es el rango de la matriz A, σi son los valores singulares de A y ui y vi, con 1 ≤ i ≤ r, son los
vectores singulares asociados a izquierda y a derecha, respectivamente.
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Demostración. Llamemos B a la parte derecha de la igualdad, B = ∑
r
i=1 σiuivT

i , y vamos a comprobar
que A = B. Para ello, vamos a ver que Av j = Bv j para cada 1 ≤ j ≤ n. Primero, por la definición de valor
singular sabemos que {

Av j = σ ju j , para 1 ≤ j ≤ r ,
Av j = 0 , para r+1 ≤ j ≤ n .

A contiuación, estudiamos el producto Bv j:

Bv j = (
r

∑
i=1

σiuivT
i )v j =

r

∑
i=1

σiui(vT
i v j) .

Teniendo en cuenta que v1, ...,vn es una base ortonormal, se cumple que vT
i v j = 0 cuando i ̸= j y vT

i v j = 1
si i = j. Por tanto, tenemos que {

Bv j = σ ju j , para 1 ≤ j ≤ r ,
Bv j = 0 , para r+1 ≤ j ≤ n .

Hemos visto que, efectivamente, Av j = Bv j para cada 1 ≤ j ≤ n. Por tanto, concluimos que

A = B =
r

∑
i=1

σiuivT
i .

Existe una forma reducida de la descomposición en valores singulares, que consiste en suprimir todos
los vectores singulares asociados a cero.

Teorema 1.9. Dada una matriz A en Rmxn no nula con rango r, se puede decomponer de la forma

A =UrΣrV T
r , (1.7)

donde Ur es una matriz en Rmxr formada por las primeras r columnas de U y Vr una matriz en Rnxr

formada por las primeras r columnas de V , con U y V definidas en el Teorema 1.7 . La matriz Σr es una
matriz diagonal r× r cuyos elementos diagonales son σ1,σ2, ...,σr.

Demostración. La fórmula (1.7) es consecuencia directa del Teorema 1.7 y la factorización (1.3).

A continuación, enunciamos varias propiedades interesantes de la descomposición en valores singu-
lares.

Proposición 1.10. Dada S =Q∆QT una matriz simétrica, definida positiva y cuyos valores propios están
ordenados en orden decreciente. Entonces la descomposición en valores singulares de S es UΣV T =
Q∆QT .

Demostración. Basta con tomar U =V = Q ya que son matrices ortogonales. Lo que implica Σ = ∆.

Proposición 1.11. Si S = Q∆QT tiene un valor propio negativo (Sx =−αx), su valor singular asociado
es σ =+α y uno de los vectores singulares será −x .

Proposición 1.12. Si A = Q es una matriz ortogonal, todos sus valores singulares son 1.

Demostración. Como hemos visto antes, los valores singulares son la raíz de los valores propios de AT A
(1.4), y en este caso AT A = QT Q = I. Por tanto, los valores propios de QT Q son 1 y Σ = I .

En los siguientes resultados se muestra parte de la información que los valores singulares contienen
sobre el espectro de una matriz.
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Teorema 1.13. Sea A una matriz en Rmxn cuyos valores singulares son σ1 ≥ σ2 ≥ ...≥ σr . Entonces,
se tiene que ∥A∥2 = σ1 .

Demostración. Basándonos en la definición de norma espectral, Definición 1.3, queremos ver que

∥A∥2 = máx
x ̸=0

∥Ax∥2

∥x∥2
= σ1 .

Primero, tomando x = v1 obtenemos,

∥Av1∥2

∥v1∥2
=

|σ1|∥v1∥2

∥v1∥2
= σ1 ,

es decir, ∥A∥2 es como mínimo σ1, ∥A∥2 ≥ σ1.
A continuación, podemos expresar x ∈ Rn como combinación lineal de v1, ...,vn ya que es una base

ortonormal del espacio,
x = c1v1 + ...+ cnvn con c1, ...,cn ∈ R .

Entonces, utilizando que v1, ...,vn y u1, ...,um son bases ortonormales obtenemos que

∥x∥2
2 = ∥c1v1 + ...+ cnvn∥2

2 = |c1|2∥v1∥2
2 + ...+ |cn|2∥vn∥2

2 = |c1|2 + ...+ |cn|2 ,

Ax = c1Av1 + ...+ cnAvn = c1σ1u1 + ...+ crσrur +0+ ...+0 ,

∥Ax∥2
2 = ∥c1σ1u1 + ..+ crσrur∥2

2 = |c1|2σ
2
1 ∥u1∥2

2 + ...+ |cr|2σ
2
r ∥ur∥2

2 = σ
2
1 |c1|2 + ...+σ

2
r |cr|2 .

Por último, utilizando estas igualdades y teniendo en cuenta que σ1 ≥ σ2 ≥ ... ≥ σr podemos ver que
∥A∥2 ≤ σ1:

∥Ax∥2
2 = σ

2
1 |c1|2 + ...+σ

2
r |cr|2 ≤ σ

2
1 (|c1|2 + ...+ |cr|2) = σ

2
1 ∥x∥2

2 ,

∥A∥2 = máx
x ̸=0

∥Ax∥2

∥x∥2
≤ máx

x ̸=0

σ1∥x∥2

∥x∥2
= σ1 .

Llegamos a la conclusión de que ∥A∥2 ≤ σ1 y como también habíamos visto que ∥A∥2 ≥ σ1, entonces
concluimos que ∥A∥2 = σ1.

El teorema anterior nos da una demostración inmediata del siguiente enunciado.

Corolario 1.14. Sea A una matriz en Rmxn cuyos valores singulares son σ1 ≥ σ2 ≥ ... ≥ σr , entonces
∥A∥2 = ∥AT∥2 .

Demostración. Como A y AT tiene los mismos valores singulares ∥A∥2 = ∥AT∥2 = σ1 .

Proposición 1.15. El módulo de los valores propios de una matriz cuadrada A es siempre menor o igual
que su mayor valor singular σ1 .

Demostración. Recordemos que las matrices ortogonales preservan las normas vectoriales, luego

∥Ax∥2 = ∥UΣV T x∥2 = ∥ΣV T x∥2 ≤ ∥Σ∥2∥V T x∥2 = σ1∥V T x∥2 = σ1∥x∥2 .

Como la igualdad anterior es cierta para cada x, sustituyendo ∥Ax∥2 = |λ |∥x∥2 obtenemos |λ | ≤ σ1 como
queríamos demostrar.

La norma de Frobenius de una matriz también queda caracterizada por sus valores singulares.

Teorema 1.16. Sea A una matriz en Rmxn cuyos valores singulares son σ1 ≥ σ2 ≥ ...≥ σr , la norma de
Frobenius de una matriz es de la forma:

∥A∥F =
√

σ2
1 +σ2

2 + · · ·+σ2
r .
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Demostración. La norma de Frobenius de una matriz tiene la siguiente definición:

∥A∥F =

√
m

∑
i=1

n

∑
j=1

a2
i j =

√
tr(AT A) .

Vamos a calcular AT A usando la descomposición en valores singulares,

AT A = (UΣV T )T (UΣV T ) =V Σ
TUTUΣV T =V ΣΣV T .

Dado que V es una matriz ortogonal, tenemos que

tr(AT A) = tr(Σ2) = σ
2
1 + · · ·+σ

2
r .

El resultado es la suma del cuadrado de los valores singulares. Así podemos concluir que
√

tr(AT A) =√
σ2

1 + · · ·+σ2
r , por lo que se tiene que ∥A∥F =

√
σ2

1 + · · ·+σ2
r .

Los valores singulares también sirven para medir el condicionamiento de una matriz, como se mues-
tra en los siguientes resultados.

Definición 1.17. Dada una matriz A en Rnxn invertible, consideramos el sistema lineal Ax = b, con b
un vector en Rn. El número de condición espectral mide cuánto varía la solución del sistema lineal al
realizar perturbaciones en A o b. Se define como

cond(A) = ∥A∥2∥A−1∥2 .

Teorema 1.18. Sea A una matriz invertible en Rnxn cuyos valores singulares son σ1 ≥ σ2 ≥ ...≥ σn > 0.
El número de condición espectral de A es

cond(A) =
σ1

σn
.

Demostración. Para calcular la norma euclídea de la matriz inversa hay que proceder de manera similar
a la demostración del Teorema 1.13, es decir, aplicamos "la regla del sándwich" sobre

∥A−1∥2 = máx
x ̸=0

∥A−1x∥2

∥x∥2
= mı́n

x ̸=0

∥x∥2

∥Ax∥2
.

Y llegamos a

∥A−1∥2 =
1

σn
.

Haciendo el producto de ambas normas obtenemos que

cond(A) = ∥A∥2∥A−1∥2 = σ1
1

σn
=

σ1

σn
.

Teorema 1.19. Dada A una matriz en Rnxn invertible, entonces se tiene que cond(AT A) = cond(A)2 .

Demostración. Si los valores singulares de A son σ1, ...,σn, es fácil ver que los de AT A son σ2
1 , ...,σ

2
n . Pa-

ra ello calculamos su descomposición en valores singulares AT A = (UΣV T )T (UΣV T ) =V ΣUTUΣV T =
V Σ2V T . Aplicando la propiedad anterior del número de condición espectral a la izquierda de la igualdad
obtenemos,

cond(AT A) =
σ2

1
σ2

n
.

Haciendo lo mismo al lado derecho de la igualdad llegamos a,

cond(A)2 =

(
σ1

σn

)2

,

demostrando así la igualdad.
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1.3. Problema de mínimos cuadrados

Un problema fundamental en muchas aplicaciones del álgebra lineal consiste en estudiar sistemas
de ecuaciones lineales Ax = b con A matriz en Rmxn, b un vector en Rm y x un vector indeterminado de
dimensión n.

Cuando la matriz es cuadrada e invertible, el sistema tiene solución y es única, x = A−1b. Pero,
cuando nos encontramos con un problema sobredeterminado, es decir, con más ecuaciones que incógnitas
(m > n), la matriz A es rectangular y el sistema muchas veces en la práctica es incompatible. Por ello, lo
mejor a lo que podemos optar es buscar un x tal que el residuo r = b−Ax sea mínimo, es decir, buscamos
x tal que minimice ∥Ax−b∥2.

Teorema 1.20. Dado un subespacio V de Rn y x un vector en Rn. Entonces la menor distancia entre x y
V es

mı́n
v∈V

∥x− v∥2 = ∥x− y∥2 ,

donde y es la proyección ortogonal de x sobre V .

En el problema de mínimos cuadrados el subespacio V es el subespacio generado por las columnas
de A y la mejor aproximación de b es su proyección ortogonal sobre el subespacio columna de A, la cual
llamaremos Ax̂. Además, el residuo r = b−Ax̂ tiene que ser ortogonal al subespacio columna de A, es
decir,

AT (b−Ax̂) = 0 .

Luego, AT b−AT Ax̂ = 0 y llegamos a
AT Ax̂ = AT b . (1.8)

Al sistema definido por (1.8) se le conoce como sistema de ecuaciones normales. Recordemos que es
un sistema de ecuaciones lineales, donde AT A es una matriz cuadrada de tamaño n× n. Sabemos que
cuando su rango es máximo el problema está bien definido y tiene solución única. Por tanto, asumimos
que el rango de A es máximo y así el rango de AT A también lo es. Vamos a estudiar la solución de este
sistema aplicando la descomposición en valores singulares. Así, aplicamos la descomposición en valores
singulares (1.3) sobre el sistema de ecuaciones normales (1.8)

AT Ax̂ = AT b ,

V ΣUTUΣV T x̂ =V ΣUT b ,

y multiplicamos a izquierda por V T

V TV Σ
2V T x̂ =V TV ΣUT b ,

Σ
2V T x̂ = ΣUT b .

Como el rango de A es máximo, ningún valor singular es nulo. Entonces, multiplicamos a ambos lados
por

(
Σ−1
)2 y después por V , obteniendo que

V T x̂ = Σ
−1UT b ,

x̂ =V Σ
−1UT b .

Vemos que la solución única en sentido de mínimos cuadrados queda definida en función de la descom-
posición en valores singulares. Podemos ver que V Σ−1UT juega el mismo papel que A−1 en el caso de
un sistema compatible determinado Ax = b con A regular. Esto nos motiva a introducir la definición de
pseudoinversa para matrices más generales.

Definición 1.21. Sea A una matriz en Rmxn. Llamamos matriz pseudoinversa de A a la matriz A† en
Rnxm, la cual satisface:
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1. AA†A = A.

2. A†AA† = A†.

3. (AA†)T = AA†.

4. (A†A)T = A†A.

Vamos a comprobar que la pseudoinversa que hemos definido es única.

Teorema 1.22. Dada una matriz A en Rmxn existe una única matriz pseudoinversa A†.

Demostración. Supongamos que existen dos matrices P = A†
1 y Q = A†

2 en Rnxm las cuales cumplen las
cuatro propiedades de la Definición de pseudoinversa 1.21, luego:

P = PAP = (PA)T P = (AT PT )P = (AQA)T PT P = (AT QT AT )PT P = (QA)T (PA)T P = QAPAP = QAP.

Q=QAQ=Q(AQ)T =QQT AT =QQT (APA)T =QQT (AT PT AT ) =Q(AQ)T (AP)T =Q(AQA)P=QAP.

Esto demuestra que P = Q, luego la pseudoinversa es única.

Basándonos en la deducción anterior, podemos expresar esta pseudoinversa en términos de la des-
composición en valores singulares.

Teorema 1.23. Sea A una matriz en Rmxn con rango máximo y cuya descomposición en valores singula-
res es UΣV T . Entonces

A† =V Σ
−1UT (1.9)

es su pseudoinversa.

Demostración. Para demostrar que V Σ−1UT es una matriz pseudoinversa tenemos que comprobar que
satisface las cuatro propiedades de la Definición 1.21. Todas las propiedades se pueden demostrar utili-
zando la descomposición en valores singulares y teniendo en cuenta que U y V son matrices ortogonales.

1. AA†A = (UΣV T )(V Σ−1UT )(UΣV T ) =UΣΣ−1ΣV T =UΣV T = A.

2. A†AA† = (V Σ−1UT )(UΣV T )(V Σ−1UT ) =V Σ−1ΣΣ−1UT =V Σ−1UT = A†.

3. Descomponemos la parte izquierda de la igualdad: (AA†)T =
(
(UΣV T )(V Σ−1UT )

)T
=(UΣΣ−1UT )T =

U(ΣΣ−1)TUT =UΣΣ−1UT .
Descomponemos ahora la parte derecha: AA† = (UΣV T )(V Σ−1UT ) = UΣΣ−1UT . Vemos que se
cumple la igualdad.

4. Procedemos igual que antes. Estudiamos primero la parte iquierda: (A†A)T =
(
(V Σ−1UT )(UΣV T )

)T
=

(V Σ−1ΣV T )T =V (Σ−1Σ)TV T =V Σ−1ΣV T .
Vamos ahora con el lado derecho: A†A = (V Σ−1UT )(UΣV T ) =V Σ−1ΣV T . Se satisface la propie-
dad.

Como satisface las cuatro propiedades, V Σ−1UT es la pseudoinversa de A.

En particular, la pseudoinversa también tiene descomposición en valores singulares.

Teorema 1.24. Sea A una matriz en Rmxn con rango máximo y cuya descomposición en valores singu-
lares es A = UΣV T , entonces la descomposición en valores singulares de su matriz pseudoinversa A†

es
A† =V Σ

−1UT ,
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ya que, 

A†u1 = σ
−1
1 v1 ,

...

A†un = σ−1
n vn ,

A†un+1 = 0 ,

...

A†um = 0 .

(1.10)

Aunque hemos considerado el caso de A de rango máximo a la hora de resolver problemas de míni-
mos cuadrados, la definición de matriz pseudoinversa se puede generalizar a matrices de cualquier rango
r, como mostramos a continuación.

Definición 1.25. Sea A una matriz en Rmxn con rango r y cuya descomposición en valores singulares es
A =UΣV T como en (1.3). Entonces

A† =V Σ
†UT

donde Σ† es la pseudoinversa de la matriz diagonal Σ. La matriz Σ† tiene dimensión n×m y se obtiene
invirtiendo los valores singulares de A distintos de cero y manteniendo los ceros;

Σ
† =



1
σ1

. . .
1
σr

0
. . .

0


.

Observamos que u1, ...,um y v1, ...,vn son los vectores singulares a derecha y a izquierda de A† y σ
−1
1 , ...,σ−1

r
sus valores singulares.

Notemos que esta definición es compatible con la definición que hemos dado previamente de pseu-
doinversa para matrices de rango máximo. Además, dada esta descomposición podemos deducir que el
rango de A y de su pseudoinversa A† coincide.

Corolario 1.26. La matriz A y A† tienen el mismo rango r.

Todo esto nos sirve para definir la solución del problema de mínimos cuadrados. Sea A una matriz
en Rmxn y b un vector en Rn, y sea x̂ en Rm la solución de norma mínima de

∥b−Ax̂∥2 = mı́n
x∈Rm

∥b−Ax∥2 .

Entonces, se tiene que x̂ = A†b =V Σ†UT b.

1.4. Teorema de mejor aproximación y compresión de imágenes

La descomposición en valores singulares tiene una aplicación directa en el analisis de datos y las
matemáticas aplicadas, ya que sirve para encontrar aproximaciones de menor rango de una matriz, lo que
se puede emplear para abaratar los costes computacionales de numerosos métodos numéricos. Podemos
ver más acerca de otras aplicaciones en [5], [3] o [4].

Teorema 1.27. (Teorema de mejor aproximacion) Sea A una matriz en Rmxn con rango r, cuya descom-
posición en valores singulares es A =UΣV T . Entonces para cada B en Rmxn con rango p ≤ r

∥A−Ap∥2 ≤ ∥A−B∥2 , (1.11)



Descomposición en valores singulares - Carmen Jiménez Segura 11

con Ap = UΣpV T , donde Σp es una matriz diagonal con los valores singulares de A en las primeras p
entradas y 0 en las últimas,

Σ =



σ1
. . .

σp

0
. . .

0


.

Demostración. Comenzamos la demostración observando que ∥A−Ap∥2 = σp+1, ya que por el Teorema
1.13, la norma euclídea de una matriz es su mayor valor singular, y en el caso de A−Ap, éste es σp+1.
Por otro lado, vamos a estudiar

∥A−B∥2 = máx
x ̸=0

∥(A−B)x∥2

∥x∥2
.

Vamos a tomar un vector no nulo x tal que Bx = 0 y x = ∑
p+1
i=1 civi, con ci en R coeficientes y vi los

vectores singulares asociados a derecha de A. Primero, veamos que este vector existe. Para ello, vamos
a ver que la intersección de los dos subespacios a los que pertenece es no nula. El espacio nulo de B,
Null(B), tiene dimensión mayor o igual que n− p, dado que B tiene rango p. Además, el subespacio
generado por los vectores asociados a derecha vi con 1 ≤ i ≤ p+1 tiene dimensión p+1, ya que éstos
son una base. Luego la intersección de ambos subespacios es no nula y existe un vector x que satisface
ambas condiciones.

Null(B)∩R< v1, . . . ,vp+1 ≯= /0 .

Como hemos adelantado, tomamos x que pertenece a dicha intersección y vemos que cumple

∥(A−B)x∥2
2 = ∥Ax∥2

2 = ∥A
p+1

∑
i=1

civi∥2
2 = ∥

p+1

∑
i=1

ciσiui∥2
2 =

p+1

∑
i=1

c2
i σ

2
i ∥ui∥2

2 =
p+1

∑
i=1

c2
i σ

2
i .

Recordemos que ∥x∥2
2 = c2

1 + · · ·+ c2
p+1 y que σ1 ≥ ·· · ≥ σr, por tanto,

∥(A−B)x∥2
2 = c2

1σ
2
1 + · · ·+ c2

p+1σ
2
p+1 ≥ (c2

1 + · · ·+ c2
p+1)σ

2
p+1 = σ

2
p+1∥x∥2

2 .

Es decir, ∥(A−B)x∥2 ≥ σp+1∥x∥2,

∥A−B∥2 = máx
x ̸=0

∥(A−B)x∥2

∥x∥2
≥ máx

x ̸=0

σp+1∥x∥2

∥x∥2
= σp+1 .

Luego, juntando lo anterior tenemos que

∥A−Ap∥2 = σp+1 ≤ ∥A−B∥2 .

Otra forma de escribir la mejor aproximación es la siguiente.

Corolario 1.28. La mejor aproximación Ap se puede expresar como suma de p matrices de rango 1,

Ap = σ1u1vT
1 + · · ·+σpupvT

p .

Demostración. Es una consecuencia directa del Lema 1.8.
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Una aplicación directa de este resultado es la compresión de imágenes. Una imagen puede ser inter-
pretada como una matriz m×n, en la que cada componente representa la tonalidad de un píxel. Es decir,
cada entrada es un valor entre 0 y 255, donde 0 es el color negro, 255 es el blanco y el resto de valores
intermedios es la intensidad de gris de dicho píxel. A la hora de almacenar una imagen, en lugar de al-
macenar toda esta información (m×n), empleamos la compresión de imágenes. La compresión consiste
en almacenar ciertos valores que nos permitirán reconstruir la matriz de manera aproximada. Una forma
de hacer este proceso es a través de los valores singulares y el teorema de mejor aproximación (Teorema
1.27). Ésta no es la única forma ni la más óptima que existe para realizar la compresión de imágenes
(ver por ejemplo [5]), pero es un ejemplo práctico y visual de la utilidad de la descomposición en valores
singulares.

El teorema de mejor aproximación nos beneficia a la hora de almacenar información ya que eli-
giendo cierto rango p la información almacenada se reduce a (m+ n)p, p vectores de dimensión m,
σ1u1, . . . ,σpup y p vectores de dimensión n, v1, . . . ,vp.

Vamos a usar Matlab para ver cómo funciona la compresión de imágenes basándonos en este teorema.
Tomamos la siguiente foto de la facultad de matemáticas, la cargamos en Matlab y la ponemos en blanco
y negro para simplificar el proceso:

Figura 1.1: Código empleado para pasar de una imagen a una matriz que recoge la tonalidad de grises

Figura 1.2: Facultad de matemáticas original y en blanco y negro
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Ahora, aplicamos la descomposición en valores singulares a la matriz y, a continuación, empleamos
el Teorema 1.27 para diferentes valores de p e imprimimos la imagen por pantalla.

Figura 1.3: Código empleado para ejecutar la SVD y aplicar el Teorema de mejor aproximación a distin-
tos rangos p

Las imágenes obtenidas aplicando diferentes rangos p son las siguientes

Figura 1.4: p = 3 Figura 1.5: p = 30

Figura 1.6: p = 100 Figura 1.7: p = 300

La imagen original tiene dimensión 569× 759 = 431871, es decir, es una matriz con 431871 com-
ponentes. Con p = 100, la imagen ya se percibe muy similar a la original, y la cantidad de información
que hemos necesitado es (569+759)100 = 132800, que es notablemente menor que la cantidad original.
Observamos también que cuando el rango p es 30, la imagen ya se percibe y se reconoce. Luego parece
que el rango necesario para reconocer una imagen va a ser considerablemente menor que el de la matriz
original, por lo que la información que necesitamos almacenar se va a ver reducida. Esto demuestra de
forma gráfica la utilidad de los valores singulares en aplicaciones de compresión de información.
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Capítulo 2

Cálculo numérico de la Descomposición en
Valores Singulares

La descomposición en valores singulares de una matriz A está íntimamente relacionada con la des-
composición en valores propios de las matrices AT A y AAT , como hemos visto en el capítulo anterior.
Por tanto, los algoritmos de cálculo de valores propios para matrices simétricas son un buen punto de
partida para la obtención de algoritmos de cálculo de la descomposición en valores singulares. No obs-
tante, la adaptación de estos algoritmos no es directa, ya que la estructura especial de la descomposición
en valores singulares puede ser aprovechada para desarrollar algoritmos que sean más eficientes o más
precisos (ver por ejemplo [2]).

Uno de los algoritmos más comunes para calcular los valores propios de una matriz real A es el
algoritmo QR. El algoritmo QR se denomina así porque es un método numérico basado en el cálculo de
sucesivas factorizaciones QR. Si llamamos A0 = A esta secuencia se define de la siguiente forma

Am−1 = QmRm , RmQm = Am ,

donde Qm es una matriz ortogonal y Rm es triangular superior con entradas positivas en su diagonal.
Recordemos que cuando A tiene rango máximo estos factores están únicamente determinados. Además,
esta secuencia converge a una matriz triangular superior con los valores propios de A en su diagonal.

Hay dos razones básicas que hacen que este algoritmo sea, por lo general, ineficiente. Primero, el
coste de cada iteración QR es elevado, ya que cada descomposición QR tiene un coste de 4

3 n3 y la
multiplicación posterior tiene también un coste de orden O(n3). Este coste es elevado dado que se deben
realizar varias iteraciones. El segundo problema es, que generalmente, la convergencia es lenta, es decir,
se necesita un número alto de iteraciones para que Am esté cerca de ser la matriz triangular superior con
los valores propios de A en su diagonal. Entonces, necesitamos reducir el coste de cada iteración QR y,
además, nos interesa acelerar la convergencia del proceso.

Cuando la matriz A sobre la que estamos haciendo el algoritmo es Hessenberg superior, el coste
de cada iteración se reduce notablemente a orden O(n2). La situación es más favorable si la matriz es
simétrica y Hessenberg superior, es decir, es una matriz tridiagonal, en este caso, el orden es de O(n).
Además, el algoritmo QR preserva la forma de Hessenberg, por tanto, el coste total del algoritmo se ve
reducido considerablemente.

Por otro lado, para mejorar la velocidad de convergencia, nos interesa buscar un valor ρ próximo a
algún valor propio de A. Así, al aplicar el algoritmo QR sobre A− ρI, la convergencia es mucho más
rápida. A este valor ρ se le conoce como desplazamiento (shift en inglés).

Visto esto, el algoritmo que presentaremos para calcular los valores singulares en esta sección va a
ser una adaptación del algoritmo QR con desplazamiento ρ a este problema. Nuestra adaptación es una
implementación del algoritmo QR implícito sobre una matriz tridiagonal.

El algoritmo que vamos a presentar para calcular los valores y vectores singulares de una matriz A
se divide en dos pasos. El primer paso consiste en calcular una matriz bidiagonal cuadrada asociada a A,
que llamaremos B. Después, obtendremos la descomposición en valores singulares de B.

15
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2.1. Matrices ortogonales

Las matrices ortogonales son la base del algoritmo que vamos a estudiar, ya que, pueden ser emplea-
das para generar ceros en las componentes deseadas de una matriz con un coste computacional reducido,
y además, preservan la norma euclídea. Comenzamos definiendo las matrices de Householder.

Definición 2.1. Dado un vector no nulo v en Rn, llamamos matriz o reflector de Householder a:

H = I −2
vvT

vT v
.

Esta matriz se encuentra en Rnxn, es decir, es una matriz cuadrada.
Una transformación de Householder es una transformación lineal cuya matriz asociada es un reflector de
Householder. Estas transformaciones tienen una interpretación geométrica muy interesante. El conjunto
H = {u ∈ Rn | ⟨v,u⟩= 0} es un hiperplano, es decir, un subespacio vectorial de Rn de dimensión (n−1).
La matriz H lleva a cada vector x en Rn a su simétrico respecto al hiperplano H . Veamos algunas
propiedades de este tipo de matrices.

Proposición 2.2. Sea H un reflector de Householder y v su vector asociado, entonces H cumple las
siguientes propiedades:

1. Simetría, HT = H.

2. Ortogonalidad, HT H = I.

3. Hv =−v.

4. Hu = u , si u es un vector en Rn tal que ⟨v,u⟩= 0.

Demostración.

1. Al considerar un producto de la forma, vvT , obtenemos una matriz simétrica. Por tanto, su tras-
puesta es ella misma, (vvT )T = vvT . Basándonos en esta propiedad, obtenemos que

HT =

(
I −2

vvT

vT v

)T

= IT −2
(

vvT

vT v

)T

= I −2
vvT

vT v
= H .

2. Para demostrar esta propiedad tenemos que observar que vT v es un escalar. Así, vemos que

HT H = HH =

(
I −2

vvT

vT v

)(
I −2

vvT

vT v

)
= I −2

vvT

vT v
−2

vvT

vT v
+4

(vvT )(vvT )

(vT v)2 =

= I −4
vvT

vT v
+4

(vT v)vvT

(vT v)2 = I −4
vvT

vT v
+4

vvT

vT v
= I .

3. Argumentando como antes

Hv =
(

I −2
vvT

vT v

)
v = v−2

(vvT )v
vT v

= v−2
(vT v)v

vT v
= v−2v =−v .

4. Tomamos u tal que ⟨v,u⟩= vT u = 0. Entonces tenemos que

Hu =

(
I −2

vvT

vT v

)
u = u−2

(vvT )u
vT v

= u−2
v

vT v
⟨v,u⟩= u .
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Otra propiedad importante de los reflectores de Householder es la siguiente.

Teorema 2.3. Sean x e y vectores distintos en Rn tales que ∥x∥2 = ∥y∥2. Entonces existe un reflector de
Householder H tal que Hx = y.

Demostración. Probar la existencia del reflector H del enunciado equivale a encontrar el vector v tal que(
I −2

vvT

vT v

)
x = y .

Supongamos v = x− y. Primero descomponemos x de la siguiente forma

x =
1
2
(x− y)+

1
2
(x+ y) ,

y consideramos el producto

Hx = H
(

1
2
(x− y)+

1
2
(x+ y)

)
=

1
2

H(x− y)+
1
2

H(x+ y) .

Utilizamos las propiedades (3) y (4) de la proposición anterior y obtenemos que H(x−y) = y−x, ya que
v = x− y y que H(x+ y) = x+ y, porque se cumple que

⟨v,x+ y⟩= ⟨x− y,x+ y⟩= ⟨x,x⟩+ ⟨x,y⟩−⟨y,x⟩−⟨y,y⟩= ∥x∥2 −∥y∥2 = 0 .

Para finalizar juntamos todo lo visto y observamos que

Hx =
1
2

H(x− y)+
1
2

H(x+ y) =
1
2
(y− x)+

1
2
(x+ y) = y .

Por tanto, tomando v = x− y se satisface la propiedad Hx = y, como queríamos demostrar.

De este resultado podemos ver que los reflectores pueden usarse para hacer ceros en vectores y
matrices.

Corolario 2.4. Dado un vector no nulo x en Rn. Entonces existe un reflector de Householder H tal que

H


x1
x2
...

xn

=


∗
0
...
0

 .

Demostración. Tomamos y =
[
−τ 0 · · · 0

]T con τ = ±∥x∥2. Si elegimos correctamente el signo
podemos asegurar que x ̸= y y, claramente, ∥x∥2 = ∥y∥2. Por lo que, utilizando el Teorema 2.3, existe un
reflector H tal que Hx = y.

Basándonos en estos resultados y sus demostraciones, podemos construir un reflector H que lleva
cualquier vector x a otro cuya primera componente es distinta de cero y las demás son nulas. El reflector
H es de la forma I −2 vvT

vT v , donde v tiene la estructura

v = x− y =


x1 + τ

x2
...

xn

 .
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Cualquier múltiplo de v genera el mismo reflector, por lo que, generalmente, se normaliza v de manera
que la primera entrada sea un 1. El vector resultante es

v =
x− y
x1 + τ

=


1

x2/(x1 + τ)
...

xn/(x1 + τ)

 .

Recordemos que la cancelación de x1 + τ no puede suceder, ya que hemos tomado el signo de τ correc-
tamente para que esto no ocurra.

Otro tipo de matriz ortogonal que vamos a utilizar en el algoritmo QR son los rotadores de Givens.

Definición 2.5. Los rotadores de Givens son matrices cuadradas ortogonales que tienen la siguiente
forma

col i col j

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


fila i

fila j

con c = cosθ y s = sinθ .

Los rotadores de Givens se pueden interpretar geométricamente como rotaciones planas en el espacio
vectorial, es decir, son rotaciones de dos dimensiones en un espacio mayor. Algunas características de
estos rotadores son las siguientes.

Proposición 2.6. Llamemos Q a un rotador de Givens con dimensión m×m.

1. Sea A una matriz en Rmxn. Al aplicar Q sobre A, QA, solo se alteran las filas i y j de A. Además,
las filas i y j de QA son combinaciones lineales de las filas i y j de A.

2. Sea B una matriz en Rnxm. Al aplicar B sobre Q, BQ, se alteran únicamente las columnas i y j
de B. De manera similar a antes, las columnas i y j de BQ son combinaciones lineales de las
columnas i, j de B.

3. Dada una matriz ortogonal, ésta se puede descomponer como producto de rotadores de Givens.

Otra utilidad muy importante de los rotadores es crear ceros en matrices o vectores.

Proposición 2.7. Dada una matriz A en Rmxn de la cual queremos anular la componente ai j, exite un
rotador de Givens Q tal que, al aplicar su traspuesta sobre la matriz A, QT A, anula esa componente.

Demostración. Asumimos que i > j. Tomamos la componente a j j y calculamos

c =
a j j√

a2
j j +a2

i j

y s =
ai j√

a2
j j +a2

i j

,

con estos valores formo el rotador Q, de tal manera que al hacer el producto QT A la componente (i, j)
resultaría

ãi j =−sa j j + cai j =−
ai j√

a2
j j +a2

i j

a j j +
a j j√

a2
j j +a2

i j

ai j = 0 .
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Un resultado fundamental para desarrollar el algoritmo QR implícito es el resultado conocido como
el teorema de la Q-implícita, que obtenemos de la página 382 de [8].

Teorema 2.8. (Teorema de la Q-implícita) Sea A, Â, Ã, Q̂ y Q̃ matrices en Cnxn. Con Â propiamente
Hessenberg superior, Ã Hessenberg superior y Q̂ y Q̃ unitarias, tales que

Â = Q̂−1AQ̂ y Ã = Q̃−1AQ̃ .

Además, la primera columna de Q̂ y la primera columna de Q̃ son proporcionales, es decir, q̂1 = q̃1d1,
donde |d1| = 1. Entonces, Ã es también propiamente Hessenberg superior y existe una matriz diagonal
unitaria D tal que

Q̂ = Q̃D y Â = D−1ÃD .

Ahora vamos a empezar a describir el algoritmo de cálculo de la descomposición en valores singula-
res. Recordemos que el primer paso consiste en reducir la matriz original a forma bidiagonal.

2.2. Reducir A a forma bidiagonal

Definimos como matriz bidiagonal a una matriz en Rmxn tal que bi, j = 0 cuando i > j o i < j− 1.
Luego es de la forma: 

b1,1 b1,2
b2,2 b2,3

. . . . . .
bn−1,n−1 bn−1,n

bn,n


.

Llamamos matriz propiamente bidiagonal a la matriz bidiagonal cuyas entradas en la diagonal y en la
diagonal superior, es decir, los bi, j con j−1 ≤ i ≤ j, son no nulas.

Gracias a las matrices de Householder podemos relacionar una matriz cualquiera con una matriz
bidiagonal. Para ello, nos apoyaremos en el siguiente teorema.

Teorema 2.9. Sea A una matriz en Rmxn. Entonces existen matrices ortogonales Û en Rmxm y V̂ en Rnxn,
ambas producto de un número finito de matrices de Householder, y una matriz bidiagonal B̂ en Rmxn

tales que
A = ÛB̂V̂ T . (2.1)

Además, existe un algoritmo finito para calcular Û ,V̂ y B̂.

Demostración. Vamos a demostrar este enunciado de forma constructiva. Veremos el desarrollo para
llegar a la expresión (2.1).

El primer paso consiste en hacer ceros en la primera fila y columna de A. Para ello, multiplicamos a
izquierda por la matriz de Householder Û1, de tamaño m×m, tal que,

Û1


a11
a21

...
am1

=


â11
0
...
0

 ,
es decir, al multiplicar Û1A resulta una matriz con la primera columna formada por ceros excepto la
posición (1,1):

Û1A =


â11 â12 · · · â1n

0
... (Û1A)1
0

 .
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Ahora, queremos hacer los ceros en la primera fila. Para ello, tomamos la matriz de Householder V̂1 de
tamaño n×n con la siguiente forma:

V̂1 =


1 0 · · · 0
0
... Ṽ1
0

 ,
tal que cumpla lo siguiente [

â12 · · · â1n
]
Ṽ1 =

[
ã12 0 · · · 0

]
.

Por tanto, como V̂1 tiene el primer vector de la base canónica e1 como su primera columna, hemos
conseguido lo que buscábamos. Entonces, al hacer el producto Û1AV̂1 la primera columna de Û1A no
varía y obtenemos una matriz de la forma:

Û1AV̂1 =


â11 ã12 0 · · · 0
0
... A1
0

 .
El segundo paso consiste en hacer ceros en la segunda fila y columna. Vamos a proceder de la misma
manera, pero esta vez sobre la submatriz A1. Además, utilizando un razonamiento similar al que hemos
visto con el vector canónico e1, es fácil ver que los ceros de las posiciones que nos interesan no se anulan.
Después de este paso obtendremos una matriz de la forma:

Û2Û1AV̂1V̂2 =


∗ ∗ 0 0 · · · 0
0 ∗ ∗ 0 · · · 0
0 0
...

... A2
0 0

 .

Actuando por inducción sobre la submatriz Ak, después de n pasos, la matriz resultante será de la forma:

Ûn...Û2Û1AV̂1V̂2...V̂n−2 =



∗ ∗
∗ ∗

. . . . . .
∗ ∗

∗


= B̂.

Notemos que en los últimos dos pasos, el paso n y el paso n− 1, solo necesitamos hacer el producto a
izquierda.
Para acabar la demostración, llamamos Û = Û1Û2...Ûn y V̂ = V̂1V̂2...V̂n−2, que ya no son reflectores de
Householder pero sí siguen siendo matrices ortogonales. Por tanto, hemos llegado a que

ÛT AV̂ = B̂, es decir, A = ÛB̂V̂ T ,

como queríamos demostrar.

Esta es una forma de reducir A a forma bidiagonal, pero en la práctica, a menudo m es considerable-
mente mayor que n, por ejemplo en el problema de mínimos cuadrados, donde podemos tener muchas
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observaciones de un suceso. En estos casos, a nivel de eficiencia, es mejor calcular la matriz bidiagonal
relacionada con A en dos etapas. La primera etapa consiste en calcular la factorización QR de A,

A =
[
Q1 Q2

][R
0

]
, (2.2)

donde Q es una matriz ortogonal en Rmxm, dividida en Q1 una matriz formada por las primeras n columnas
de Q y Q2 formada por las últimas m−n columnas de Q, y R es una matriz triangular superior cuadrada
en Rnxn. Esta factorización reduce el número de operaciones del proceso de bidiagonalización, ya que
solo tenemos que multiplicar por matrices de Householder a izquierda de A.

La segunda fase consiste en buscar la forma bidiagonal de R. Para ello, utilizamos el teorema anterior
y obtenemos la factorización R= ŨBṼ T , donde todas las matrices involucradas son n×n. El Algoritmo 1
explica mediante pseudocódigo cómo reducir una matriz triangular superior cuadrada a forma bidiagonal
paso a paso. Luego, recopilando todo lo visto hasta ahora, tenemos que

A =
[
Q1 Q2

][Ũ 0
0 I

][
B
0

]
Ṽ T .

Si introducimos la notación

Û =
[
Q1 Q2

][Ũ 0
0 I

]
=
[
Q1Ũ Q2

]
, B̂ =

[
B
0

]
y V̂ = Ṽ ,

tenemos lo que queríamos, A = ÛB̂V̂ T como en (2.1).
Como hemos mencionado antes, realizar este proceso cuando m es significativamente mayor que n

reduce el coste computacional notablemente. Esto es debido a que en la primera fase las multiplicacio-
nes por matrices de Householder se ejecutan únicamente a izquierda. Además en la segunda fase estas
multiplicaciones se ejecutan sobre la matriz reducida R, que tiene dimensión n×n y no sobre la matriz
A cuya dimensión es m×n.
No obstante, este proceso supone una desventaja en algunos casos, ya que las multiplicaciones a derecha
de la segunda fase deshacen los ceros de la matriz triangular superior, y, por tanto, hay que añadir una
multiplicación a izquierda aumentando así el coste. Este aumento de coste es favorable cuando m es con-
siderablemente mayor que n, ya que el coste adicional de las multiplicaciones a izquierda se compensará
con creces por el ahorro en las multiplicaciones a derecha. En concreto, según la página 404 de [8] , el
cociente m/n debe ser mayor que 5/3 para que este proceso sea la mejor opción.

2.3. Calcular los valores singulares de B

Volviendo al problema del cálculo de los valores singulares, hemos calculado la matriz bidiagonal B̂
asociada a una matriz cualquiera A, de dimensión m×n. Recordemos que B̂ tiene la forma

B̂ =

[
B
0

]
,

donde B es una matriz bidiagonal cuadrada en Rnxn de la forma,

B =


β1 γ1

β2 γ2

β3
. . .
. . . γn−1

βn

 . (2.3)

Comenzamos ahora el segundo paso para obtener la descomposición en valores singulares de A. Dada
la relación entre A y B̂ (2.1), calcular la descomposición en valores singulares de A se reduce a obtener
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la descomposición en valores singulares de B. Antes de empezar a desarrollar el cálculo de los valores
singulares, vamos a asumir sin pérdida de generalidad que B es propiamente bidiagonal y que sus entradas
no nulas son positivas. El Comentario 1 justifica que podemos asumir que B es propiamente bidiagonal.

Comentario 1. Podemos asumir que B es propiamente bidiagonal por estos motivos. Por un lado, si
algún γk, con 1 ≤ k ≤ n−1, es igual a cero, podemos dividir la matriz B en dos submatrices bidiagonales
de la forma:

B =

[
B1 0
0 B2

]
,

con B1 en Rkxk y B2 en R(n−k)×(n−k) y aplicar este algoritmo a las dos submatrices B1 y B2. Por otro
lado, si algún βk, con 1 ≤ k ≤ n, es igual a cero, podemos realizar operaciones elementales sobre las
filas y las columnas para conseguir una matriz propiamente bidiagonal.

También nos interesa asumir que las entradas no nulas de B son positivas.

Comentario 2. Podemos asumir que todas las entradas no nulas, es decir, βi, con 1 ≤ i ≤ n, y γ j, con
1 ≤ j ≤ n−1, son positivas. Esto se debe a que, si no lo fuera, siempre existen dos matrices ortogonales
y diagonales D1 y D2 las cuales hacen que D1BD2 sea una matriz bidiagonal cuyas entradas no nulas
son positivas.

Visto todo esto, podemos afirmar que B es una matriz bidiagonal cuyas entradas no nulas son positivas
sin pérdida de generalidad.

Como hemos visto en la demostración del Teorema 1.7, para calcular la descomposición en valores
singulares de B, primero tenemos que calcular los valores propios de las matrices BT B y BBT . Para ello,
hay varios algoritmos que podemos emplear. En este caso vamos a utilizar el algoritmo QR sin realizar
explícitamente el producto de BT B o BBT . Antes de empezar con el desarrollo del algoritmo necesitamos
presentar algunas definiciones y resultados relacionados.

Definición 2.10. Una matriz tridiagonal cuadrada es una matriz cuyas entradas bi, j tales que |i-j|>1,
son iguales a 0. 

b1,1 b1,2
b2,1 b2,2 b2,3

b3,2 b3,3
. . .

. . . . . . bn−1
bn−1,n−1 bn,n


Una matriz es propiamente tridiagonal cuando las entradas de la diagonal principal y la diagonal supe-
rior e inferior a ésta son no nulas.

Para nuestro resultado final vamos a utilizar la siguiente proposición.

Proposición 2.11. Si B es una matriz propiamente bidiagonal, entonces BT B y BBT son matrices pro-
piamente tridiagonales.

Demostración. Tomamos B matriz propiamente bidiagonal, es decir, de la forma (2.3), y realizamos el
producto BT B. BBT será análogo.

BT B=


β1
γ1 β2

γ2 β3
. . . . . .

γn−1 βn




β1 γ1

β2 γ2

β3
. . .
. . . γn−1

βn

=


β 2

1 β1γ1
γ1β1 γ2

1 +β 2
2 β2γ2

γ2β2 γ2
2 +β 2

3
. . .

. . . . . . βn−1γn−1
γn−1βn−1 γ2

n−1 +β 2
n

 .
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Hemos mencionado anteriormente que para calcular los valores propios de BT B y BBT vamos a
utilizar el algoritmo QR sin realizar explícitamente los productos BT B y BBT . En particular, vamos a
considerar el caso más general con desplazamiento ρ , que puede servir para mejorar la velocidad de
convergencia del método. Primero vamos a ver cómo sería una iteración de este algoritmo si hiciéramos
los productos:

BT B−ρI = Q̂R and BBT −ρI = P̂S , (2.4)

con Q̂ y P̂ matrices ortogonales, mientras que, R y S matrices triangulares superiores. Asumimos que ρ

no es un valor propio de BT B y BBT , así las matrices R y S son invertibles. Además, podemos normalizar
R y S de tal forma que las entradas de las diagonales principales sean todas positivas.
Vamos a llamar B̂ a

B̂ = P̂T BQ̂ . (2.5)

De aquí deducimos que

B̂T B̂ =
(
P̂T BQ̂

)T (
P̂T BQ̂

)
= Q̂T BT P̂P̂T BQ̂ = Q̂T BT BQ̂ =

= Q̂T (Q̂R+ρI
)

Q̂ = Q̂T Q̂RQ̂+ρQ̂T Q̂ = RQ̂+ρI ,

B̂B̂T =
(
P̂T BQ̂

)(
P̂T BQ̂

)T
= P̂T BQ̂Q̂T BT P̂ = P̂T BBT P̂ =

= P̂T (P̂S+ρI
)

P̂ = P̂T P̂SP̂+ρP̂T P̂ = SP̂+ρI .

Esto nos indica que B̂T B̂ y B̂B̂T son iteraciones del algoritmo QR con desplazamiento ρ sobre BT B y
BBT . Para calcular B̂ tenemos que obtener las matrices P̂ y Q̂ que se definen en (2.4). Sabemos que estas
matrices se pueden escribir como productos de rotadores de Givens, ya que son ortogonales, y tienen la
siguiente forma

P̂ = P1 · · ·Pn−1 y Q̂ = Q1 · · ·Qn−1 .

Si obtenemos estos rotadores de Givens, los podemos aplicar de la forma adecuada a B y la transfor-
maremos en B̂. El objetivo es encontrarlos de manera que el coste del algoritmo sea lo menor posible,
evitando calcular las matrices BT B y BBT y la factorización QR explícita.

Primero, veamos que B̂ hereda la forma de matriz propiamente bidiagonal de B.

Proposición 2.12. Dada B̂ definida por (2.5) y R y S invertibles, si B es bidiagonal, entonces B̂ también
lo es.

Demostración. Probamos antes unas expresiones auxiliares que vamos a emplear.(
BBT −ρI

)
B = BBT B−ρB = B

(
BT B−ρI

)
,(

BT B−ρI
)

BT = BT BBT −ρBT = BT (BBT −ρI
)
.

Por otro lado de (2.4) deducimos que(
BT B−ρI

)
R−1 = Q̂ y

(
BBT −ρI

)
S−1 = P̂ .

Ahora, podemos trabajar con B̂ de otra forma:

B̂ = P̂T BQ̂ = P̂T B
(
BT B−ρI

)
R−1 = P̂T (BBT −ρI

)
BR−1 = P̂T P̂SBR−1 = SBR−1 , (2.6)

B̂T =
(
P̂T BQ̂

)T
= Q̂T BT P̂= Q̂T BT (BBT −ρI

)
S−1 = Q̂T (BT B−ρI

)
BT S−1 = Q̂T Q̂RBT S−1 =RBT S−1 .

El primer paso es probar que, si B es triangular superior, B̂ también lo es. Es fácil de ver, ya que el
producto de matrices triangulares superiores es una matriz triangular superior. Por hipótesis, S, B y R
son de esta forma. También sabemos que la inversa de una matriz triangular superior también lo es, por
tanto R−1 también es triangular superior. Todas las matrices involucradas en el producto son triangulares
superiores, por ello, B̂ también lo es.
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También sabemos que al multiplicar una matriz triangular superior por una Hessenberg superior, el re-
sultado es Hessenberg superior, luego, si B es Hessenberg, B̂ también lo es.
Para finalizar, recordamos que si B es bidiagonal, BBT y BT B son tridiagonales. Queremos llegar a que
B̂B̂T es tridiagonal, por tanto, B̂ será bidiagonal. Si B es bidiagonal, por un lado,

B̂B̂T = SBR−1RBT S−1 = SBBT S−1 ,

como BBT es tridiagonal, es decir, Hessenberg, B̂B̂T también es Hessenberg. Por otro lado,

(B̂B̂T )T = B̂T B̂ = RBT S−1SBR−1 = RBT BR−1 ,

de nuevo, como BT B es tridiagonal también es Hessenberg, por tanto B̂T B̂ es Hessenberg. Dado que B̂B̂T

y (B̂B̂T )T son ambas Hessenberg, estamos ante una matriz tridiagonal. Por tanto, B̂ es bidiagonal.

Corolario 2.13. Bajo la misma hipótesis que antes, si B es propiamente bidiagonal, B̂ también lo es.

Corolario 2.14. Cuando R y S estan normalizadas de forma que las entradas de su diagonal principal
sean positivas, entonces si las entradas no nulas de B son todas positivas, entonces las entradas no nulas
de B̂ también lo son.

A continuación, comenzamos el desarrollo del algoritmo QR implícito con desplazamiento ρ , esto
es, buscamos la descomposición BT B−ρI = Q̂R. Sin necesidad de hacer el producto, observamos que,
como R es triangular superior, la primera columna de Q̂ es proporcional a

β 2
1 −ρ

γ1β1
0
...
0

 . (2.7)

Ahora utilizaremos rotadores de Givens para hacer ceros. Llamemos rotador de Givens sobre el plano
[1,2] a V1, cuya primera columna es proporcional a (2.7) y hacemos BV1, este producto altera únicamente
las primeras dos columnas de B y crea una componente distinta de cero en la posición (2,1).
Para volver a la forma bidiagonal, buscamos un rotador U1 sobre el plano [1,2] tal que al hacer UT

1 BV1
genere un cero en la posición (2,1). Este paso genera una nueva componente no nula en (1,3), la cual
queremos anular mediante el rotador V2 sobre el plano [2,3]. Ejecutamos UT

1 BV1V2, esto anula la compo-
nente deseada (1,3) y crea una nueva entrada en (3,2). Así, necesitamos aplicar sucesivamente rotadores
UT

2 ,V3,UT
3 , . . . De esta manera vamos anulando las componentes fuera de la bidiagonal y generando

nuevas entradas no nulas hasta llegar a una matriz de forma bidiagonal:

B̃ =UT
n−1 · · ·UT

2 UT
1 BV1V2 · · ·Vn−1 .

Si llamamos
P̃ =U1U2 · · ·Un−1 y Q̃ =V1V2 · · ·Vn−1 ,

obtenemos que
B̃ = P̃T BQ̃ . (2.8)

En el algoritmo 2, presentado en el anexo de pseudocódigos, mostramos paso a paso cómo obtener la
expresión (2.8).

Por tanto, tenemos que probar ahora que la matriz B̂ de (2.5) y la matriz B̃ de (2.8) son “esencial-
mente” la misma matriz.
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Teorema 2.15. Dada B matriz invertible. Sea B̃ matriz bidiagonal, B̂ matriz propiamente bidiagonal y
P̂, Q̂, P̃, Q̃ matrices ortogonales tales que

B̂ = P̂T BQ̂ y B̃ = P̃T BQ̃ .

Supongamos además que Q̂ y Q̃ tienen esencialmente la misma primera columna, es decir, Q̂e1 = Q̃e1d1,
con d1 =±1. Entonces, existen matrices ortogonales diagonales D y E tales que Q̂ = Q̃D y P̂ = P̃E y

B̂ = EB̃D .

Dicho de otra forma, B̂ y B̃ son esencialmente iguales.

Demostración. Notemos que

B̂T B̂ = (P̂T BQ̂)T (P̂T BQ̂) = Q̂T BT P̂P̂T BQ̂ = Q̂T (BT B)Q̂ y B̃T B̃ = Q̃T (BT B)Q̃ .

También sabemos que B̃T B̃ es una matriz tridiagonal y B̂T B̂ es propiamente tridiagonal. Con todo esto,
podemos aplicar el teorema de la Q-implícita (Teorema 2.8). Llamamos A a BT B, Ã a B̃T B̃ y Â a B̂T B̂ y
nos da como resultado la existencia de una matriz diagonal ortogonal D tal que Q̂ = Q̃D, es decir, Q̂ y Q̃
son esencialmente iguales. Fijándonos en la definición de B̂ y B̃ observamos que

P̂B̂ = BQ̂ = BQ̃D = P̃B̃D .

Llamamos C = P̂B̂ = P̃(B̃D) y observamos que ambas son descomposiciones QR de C, luego, P̂ y P̃ son
esencialmente iguales. Existe una matriz ortogonal y diagonal E tal que P̂ = P̃E. Juntando lo anterior
llegamos a

B̂ = P̂T BQ̂ = (P̃E)T BQ̃D = ET P̃T BQ̃D = EB̃D .

Por tanto, nuestro caso concreto queda reflejado en el siguiente corolario del teorema anterior, que
utiliza la misma notación empleada anteriormente.

Corolario 2.16. Si B̂ y B̃ son propiamente bidiagonales y Q̂e1 = Q̃e1, entonces Q̂ = Q̃, P̂ = P̃ y B̂ = B̃.

Si podemos aplicar este teorema sobre nuestras matrices B̂ y B̃, podremos completar la iteración QR
sin realizar los productos BT B y BBT . Para ello, tenemos que ver cómo son las primeras columnas de Q̂
y Q̃.
Según la notación que hemos seleccionado Q̃ = V1V2 · · ·Vn−1. Su primera columna es la primera de V1,
ya que el resto son rotadores de Givens que actúan sobre el resto de columnas. La primera columna de
V1 ha sido elegida de forma que es igual a la primera columna de Q̂. Es decir, Q̃e1 = Q̂e1, luego podemos
aplicar el Teorema 2.15 y deducimos que B̂ y B̃ son esencialmente iguales.

Así hemos visto cómo calcular una iteración del algoritmo QR sin realizar el producto BT B o BBT

puesto que la matriz B̂ nos sirve para definir una iteración del algoritmo QR con desplazamiento ρ . Con-
tinuando esta estrategia, podemos obtener la descomposición en valores singulares de B y gracias a la
fórmula (2.1) del Teorema 2.9 obtenemos la descomposición en valores singulares de A.

El objetivo principal de este capítulo ha sido justificar paso a paso una forma de calcular los valores
singulares de una matriz real cualquiera. Juntando todo lo estudiado, el procedimiento para calcular los
valores singulares de A consiste en reducir la matriz original A a forma bidiagonal utilizando multipli-
caciones a izquierda y a derecha por matrices de Householder. Como hemos observado, cuando m es
considerablemente mayor que n, el coste computacional se ve reducido si, previamente, ejecutamos una
descomposición QR de A (2.2) y, a continuación, reducimos R a forma bidiagonal. Una forma de ejecutar
esta reducción es aplicar el Algoritmo 1. Una vez hemos calculado la matriz bidiagonal B, tenemos que
calcular sus valores singulares y éstos se obtienen calculando los valores propios de BT B y BBT . Para
ello, empleamos el algoritmo QR implícito sin realizar explícitamente los productos BT B y BBT con
desplazamiento ρ . En esta sección, hemos estudiado cómo se haría una iteración justificando todos los
pasos, y en Algoritmo 2 vemos claramente cómo realizar una iteración. Una vez hemos realizado todas
las iteraciones y tenemos los valores propios de BT B y BBT , basta con tomar sus raíces cuadradas para
obtener los valores singulares de A.
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Apéndice A

Pseudocódigos

Algorithm 1 Reducir a forma bidiagonal

Entradas: R ∈ Rnxn triangular superior
Salidas: B ∈ Rnxn, bidiagonal, Ũ ∈ Rnxn producto de matrices Householder, Ṽ ∈ Rnxn producto de
matrices Householder, R = ŨBṼ T

Inicializar B = R
Inicializar Ũ = Inxn

Inicializar Ṽ = Inxn

for k = 1 : n do
Buscar Qk matriz de Householder tal que:

Al multiplicar a izquierda por Qk no modifique las primeras k−1 componentes

Qk



0
...
0

bk−1,k
bk,k

bk+1,k
...

bm,k


=



0
...
0

bk−1,k
b̃k,k
0
...
0


B = QkB
Ũ = ŨQk
if k ≤ n−2 then

Buscar Pk matriz de Householder tal que:
Al multiplicar a derecha por Pk no modifique las primeras k componentes[
0 · · · 0 bk,k bk,k+1 · · · bk,n

]
Pk+1 =

[
0 · · · 0 bk,k b̃k,k+1 0 · · · 0

]
end if
B = BPk
Ṽ = Ṽ Pk

end for

29
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Algorithm 2 Calcular una iteración del algoritmo QR implícito

Entradas: B ∈ Rnxn , bidiagonal
Salidas: B̃, P̃, Q̃ ∈ Rnxn

Inicializar B̃ = B
Inicializar P̃ = Inxn

Inicializar Q̃ = Inxn

for k = 1 : n−1 do
Buscar rotador de Givens Vk (en el plano [k,k+1]) tal que
if k = 1 then

primera columna de Vk =


β 2

1 −ρ

γ1β1
0
...
0


else

B̃Vk tiene 0 en la posición (k−1,k+1)
end if
B̃ = B̃Vk
Q̃ = Q̃Vk
Buscar rotador de Givens Uk (en el plano [k,k+1]) tal que UT

k B̃ tenga 0 en la componente (k+1,k)
B̃ =UT

k B̃
P̃ = P̃Uk

end for


