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Prologo

A lo largo de la historia de la teoria de matrices, uno de los objetivos principales ha sido buscar una
descomposicién matricial o una descomposicion en forma candnica. A lo largo del siglo XVIII algu-
nos matematicos estudiaron una descomposicion para matrices cuadradas basada en los valores propios.
Sin embargo, hasta el siglo XIX no se encontré una descomposicién matricial para matrices rectangu-
lares. Eugenio Beltrami, Camille Jordan, James Joseph, Erhard Schmidt y Hermann Weyl enunciaron
la existencia de los valores singulares y desarrollaron su teoria, aplicdndola a diferentes ramas de las
matematicas como el dlgebra lineal o las ecuaciones integrales (ver referencia [6]).

La descomposicion en valores singulares es una descomposicion de una matriz A como producto de
tres matrices, dos matrices ortogonales e invertibles, U y V, y una matriz diagonal ¥ tal que sus entradas
son los valores singulares de A en orden decreciente. El producto resulta de la forma A = UXVT. Esta
descomposicién tiene diferentes utilidades, tanto en el dmbito de las mateméticas, como en campos mas
practicos. Algunos ejemplos son la compresion de imagenes, el analisis de datos o la resolucién de
problemas de minimos cuadrados.

Este trabajo estd dividido en dos capitulos. En el primer capitulo vamos a estudiar la existencia de la
descomposicién en valores singulares y algunos resultados sobre la misma, como su relacién con diferen-
tes normas, su importancia en el problema de minimos cuadrados o el teorema de mejor aproximacion.
Mientras que en el segundo capitulo vamos a presentar un método numérico para obtener la descomposi-
cidén en valores singulares. Este método estd dividido en dos pasos, un primer paso de bidiagonalizacion,
seguido de un segundo paso de bisqueda de los valores singulares de la bidiagonal mediante iteraciones
del algoritmo QR implicito.
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Summary

One of the central concepts in matrix theory is to find a decomposition of a matrix or its canonical
form. Since the 18th century, scientists have explored a matrix decomposition for square matrices based
on the eigenvalues. Some of the key contributors to this theory include Leonhard Euler, Joseph-Louis
Lagrange, Augustin-Louis Cauchy and Joseph Fourier. They spent much of their lives studying different
mathematical fields and relating them with the matrix decomposition based on eigenvalues. However,
it was not until the 19th century that a decomposition for rectangular matrices was discovered. Five
mathematicians established the existence of singular values and developed their theory. Eugenio Bel-
trami, Camille Jordan and James Joseph Sylvester studied the singular values in the domain of linear
algebra, while Erhard Schmidt and Hermann Weyl found the singular values during the study of integral
equations. We can see more about their research on [6].

The Singular Value Decomposition (SVD) is a method for decomposing any matrix A as a product of
three matrices: two orthogonal matrices, U and V, and a diagonal matrix, X, whose entries are the singular
values of A arranged in decreasing order, o7y, ..., 0, with r being the rank of A. The decomposition has
this form A = UXVT. In the current study we work with real matrices.

The decomposition is highly versatile, with applications not only in mathematic but also in many
applied fields. In mathematics, the singular value decomposition can be used to solve least squares pro-
blems, to compute different norms, to determine the spectral condition number and to find the best ap-
proximation of a given rank. These elements are the foundation for practical applications such as image
compression [5], latent semantic analysis [4] and dimensionality reduction, which is particularly useful
in data analysis, as we can study on [3].

This study is divided into two chapters. The first chapter is focused on establishing and proving the
existence of the singular value decomposition, as well as, presenting related results. The second chapter
is focused on the numerical computation of the singular values.

We are going to take a closer look at the results that we are going to prove in this study, starting by
the existence of the singular value decomposition (SVD). As previously mentioned, for any matrix A in
R"™" with rank r, it can be decomposed as

A=UxvT,
where
U:( U Uy ‘ Uppl - U ) 7
V=(vi - v|ver o o),
¥ =diag(oy,...,0,,0,...,0),
with uy,...,u, orthonormal basis of R™, vy,...,v, orthonormal basis of R” and oy, ..., 0, the singular

values of A, listed in decreasing order.

The proof of this result is based on finding the eigenvalues of A”A and AA”, which share the same
nonzero eigenvalues, denoted by A, ..., A,. Once these eigenvalues are computed, we define the singular
values of A as 6; = /A; for 1 <i<r.

After this theorem, we will explore several results related to this decomposition. Some of them invol-

ve different norms, such as the spectral norm, ||A||, = o1, or the Frobenius norm, ||A||r = /02 + -+ + 02.
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VI Summary

Additionally, we will examine how singular values relate to the spectral condition number, for instance,
cond(A) = 2.

In the first chapter, we will dedicate an entire section to discussing the least squares problem. A
fundamental problem in many applications of linear algebra is solving linear systems of equations Ax = b
with A matrix in R™, b a vector in R” and x unknown in R”. When A is square and non-singular, the
system has a unique solution given by x = A~'h. However, when the system is overdetermined (m > n),
the matrix A is rectangular and the system is often incompatible. Therefore, the best option is to find x
such that the residual » = b — Ax is minimal, i.e., we want to find x such that it minimizes ||Ax — b||,.
For this purpose, we use the pseudoinverse A'. The pseudoinverse is a matrix that satisfies the following
properties,

AATA=A, ATAAT =AT, (AAT)T = AAT and (ATA)T = ATA.

If we have a matrix A in R™" with full rank and its SVD is ULV, then its pseudoinverse is given by
A" =VX~1UT . This provides the solution to the least squares problem.

To conclude this chapter, we will present and prove the low-rank approximation theorem which
says that, given any matrix A in R”" with rank r and SVD of the form A = UXV7, then, for any ma-
trix B in R"™" with rank p < r the inequality ||A —A,|l» < ||A — B||2 holds, where A, = UX,V' and
¥, =diag(oy,...,0,,0,...,0). After proving this theorem, we will demonstrate how the singular value
decomposition can be applied to a practical task such as image compression. Although this method may
not the most efficient for this purpose, it is a direct and illustrative application of the low-rank approxi-
mation theorem.

We are starting the second chapter with the introduction of two important classes of orthogonal
matrices that form the basis for our numerical algorithms, since they are used to create zeros in desired
components of a matrix. In particular, we will study Householder reflectors and Givens rotators.

We are going to divide the numerical computation of singular values into two steps. The first step
involves computing a bidiagonal matrix associated with the original matrix A. To this end, we will use
the following theorem.

Theorem: Let A be a matrix in R™", then there exist orthogonal matrices U e R™™ and V e R™"
both being the product of a finite number of Householder matrices, and a bidiagonal matrix B € R"™",
such that

A=UBVT.
However, in practice, m is often considerably larger than n. Therefore, for efficiency, the best option is
to compute the QR factorization of the original matrix A, and then use the previous theorem to calculate
the bidiagonal form B of the upper triangular matrix R. By doing so, we obtain

A=0,UBVT.

The second step in the numerical computation is to compute the singular values of the bidiagonal
matrix B. The singular value decomposition of B is related to the eigenvalue decomposition of B B
and BB” . This means that eigenvalue calculation algorithms for symmetric matrices will be useful for
computing singular values. Additionally, we note that if B is bidiagonal, then both B’ B and BB” are
tridiagonal matrices.

One of the most common algorithms for calculating the eigenvalues of real matrices is the QR algo-
rithm. However, there are two reasons that make this algorithm inefficient. The first reason is the high
cost of each QR iteration, which is O(n?). The second issue is the generally slow convergence. In order
to solve these problems, we are going to work with tridiagonal matrices, which reduce the cost of each
iteration to O(n), and we are going to use the shifted QR algorithm to improve the convergence rate.

In the current study, we will prove that we can perform an iteration of the shifted QR algorithm
on BBT and B” B without directly computing these products. This way, the computational cost will be
reduced. Once we have found the eigenvalues of BB” and B” B, we just have to calculate their square
roots to obtain the singular values of the bidiagonal matrix B, and consequently, the singular values of
the original matrix A.
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Capitulo 1

Descomposicion en Valores Singulares

Las matrices cuadradas se pueden caracterizar por sus valores y vectores propios. Recordemos que,
dada una matriz cuadrada A en R™, v un vector no nulo en R"” y A un escalar, tales que Av = Av,
entonces decimos que v es un vector propio de A asociado al valor propio A.

Esta definicidn es muy util en diferentes dmbitos, como el anélisis de sistemas lineales, anélisis de
datos, descomposicion espectral e incluso en fisica 0 mecdnica cudntica. Sin embargo, para el caso mas
general de las matrices rectangulares en R™"  con m # n, no existen valores propios. Notemos que es
imposible que la igualdad Av = Av se cumpla, dado que en la parte izquierda estamos en el espacio R™,
mientras que en la parte derecha estamos en R”. Por ello, es necesario buscar una definicién que sirva
para cualquier matriz. La descomposicién en valores singulares es justamente lo que necesitamos, es una
herramienta para descomponer matrices muy importante, tanto tedricamente como computacionalmente.

En este capitulo, vamos a ver como se define la Descomposicién en Valores Singulares, SVD (del
inglés Singular Value Decomposition), demostraremos que dicha descomposicion siempre existe y vere-
mos distintas formas en las que la podemos expresar (ver las paginas 56, 57, 58 de [7]). También vamos a
presentar algunas utilidades que tienen los valores singulares como su relacién con diferentes normas, su
conexién con el nimero de condicidn espectral y su papel en el problema de minimos cuadrados. Profun-
dizando en el problema de minimos cuadrados y basdndonos en la descomposicién en valores singulares,
vamos a definir la pseudoinversa, que es una herramienta 1til para resolver sistemas de ecuaciones so-
bredeterminados (como se explica en [2]). Para finalizar el capitulo, enunciaremos y demostraremos el
teorema de mejor aproximacion, que nos servird para ver como los valores singulares se pueden utilizar
en una actividad cotidiana como la compresién de imdgenes. También, vamos a desarrollar un programa
con Matlab para comprimir imdgenes, basdndonos en el cédigo de la pagina 114 de [1].

1.1. Definiciones y resultados previos

Antes de introducir la descomposicién en valores singulares, recordemos algunas definiciones y re-
sultados que vamos a utilizar a lo largo de esta memoria. A partir de este momento, consideramos matri-
ces de R™™ con la condicién de que m > n.

Definicion 1.1. Dada A una matriz en R™" llamamos factorizacion QR a una descomposicion de la
forma:

a=or=[or o] [q] .

donde Q es una matriz ortogonal en R™", llamaremos Q1 a la matriz en R™™ formada por las primeras
n columnas de Q y Qy a la matriz en R™"=") formada por las iltimas m —n columnas de Q, y R es una
matriz triangular superior en R™",

Cuando la matriz es de rango maximo, la factorizacién QR, eligiendo R con las entradas de la diago-
nal positivas, es Unica.



2 Capitulo 1. Descomposicion en Valores Singulares

Definicion 1.2. Liamamos norma matricial || - || a una funcion que asigna a cada matriz un niimero real
no negativo y satisface las siguientes condiciones:

1. No negatividad, ||A|| >0y ||A|| =0 si y solo si A =0.

2. Homogeneidad, sea a un escalar, ||aAl|| = |c|||A]l.

3. Desigualdad triangular, |A+ B|| < ||A||+ ||B]|.

Existen numerosas normas que cumplen estas condiciones, vamos a ver algunas de las mas utilizadas.

Definicion 1.3. La norma definida como

A
||A||2:m:':’1xH aik con xeR",
A0 ||x]2

se denomina norma espectral. Es la norma inducida por la norma vectorial euclidea.

Definicion 1.4. Llamamos norma de Frobenius a la norma definida como,

1/2
2
IAllF = { ) lasl
i.J
La siguiente propiedad justifica la utilidad de disefar algoritmos basados en productos de matrices
ortogonales.
Propiedad 1.5. Las matrices ortogonales preservan la norma euclidea.

Demostracion. Llamemos Q a una matriz ortogonal en R™" y x a un vector en R”. Veamos cémo actian
bajo la accién de la norma vectorial:

102 = 1/ (0X)T (Qx) = /2T QT Qx = VaTx = ||x]»

1.2. Descomposicion en Valores Singulares
Comenzamos la seccidn introduciendo la definicién de descomposicion en valores singulares.

Definicion 1.6. Sea A una matriz en R™" y sean dos conjuntos de vectores, uy,...,u,, ortonormales en
R™ y vy,...,v, ortonormales en R", tales que:

Av = o1u; s

Av, = Oy (1.1)
Avpy1 =0, '
Av, =0,

donde r es el rango de la matriz A. A los valores 6;, con 1 <i <, los llamamos valores singulares de
la matriz A. A los vectores u;, con 1 <i <m, yvj, coni< j<n, los denominamos vectores singulares
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asociados a izquierda y a derecha, respectivamente. Trasponiendo A, vemos que tenemos una relacion
similar entre los vectores u; con 1 <i < my losvectoresvjcon1 < j<r:

ATL{1 =01vy,

ATy, = o,v, , (1.2)
ATur+1 =0 ’ ‘
(ATuy =0.

La matriz A tendrd r valores singulares positivos, que consideramos en orden descendiente G| > 0, >
... 20, > 0. Los iiltimos v;, con r+1 < j < n, se encuentran en el espacio nulo de A, y los u; tales que
r+1 <i<mestdn en el espacio nulo de AT.

A continuacién probaremos que estos vectores singulares existen para cualquier matriz.

Teorema 1.7. Dada una matriz A en R™" de rango r, se puede descomponer de la forma

A=UxvVT, (1.3)
donde
U:(M] ur‘ur+1 um)7
T
o -
O,
Y= g
0 )
- 0_
con uy,...,uy, base ortonormal de R™ y vy,...,v, base ortonormal de R". A la factorizacion (1.3) la

denominamos Descomposicion en Valores Singulares, SVD (en inglés, Singular Value Decomposition).

Demostracion. Primero vamos a ver que A”A y AAT tienen los mismos valores propios no nulos, puesto
que esta propiedad serd usada en esta demostracion. Para ello, asumimos que A # 0 es valor propio de
ATA. Entonces, existe x # 0 en R” tal que AT Ax = Ax, y, si multiplicamos esta igualdad por A a izquierda,
tenemos que AA” Ax = AAx. Es decir, Ax es vector propio de AAT asociado al valor propio A. Como esto
es cierto para todos los valores propios no nulos, A”A y AA” tienen los mismos valores propios no nulos.
Ademis, sabemos que A”A y AAT son matrices simétricas, y por tanto, diagonizables. Sus valores
propios son reales y podemos tomar vectores propios ortonormales. También son semidefinidas positivas,
por lo que, todos sus valores propios son mayores o iguales a 0 y, las podemos descomponer de la
siguiente manera:
ATA=vDVT,
AAT =UDUT .
En esta descomposicién V y U son las matrices ortogonales formadas por sus vectores propios res-
pectivamente. Dy es la matriz diagonal con los valores propios reales A, ...,A,, y D5 es la matriz diagonal
con los valores propios A1, ..., A,,. Recordemos que el rango de A es r, por lo que el rango de ATA y AAT

también es r, y, por tanto, A; = 0 para i > r. Sin pérdida de generalidad, ordenamos los valores propios
de forma decreciente, es decir, A; > ... > A, > 0. A continuacién, definimos

G,-:\/I,-, paracada 1 <i<r (1.4)
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esté bien definido porque cada A; es mayor estricto que 0. Luego los valores propios no nulos de ATA y
AAT son 612, ...,02. Consideramos los vectores propios ortonormales v1,...,v, de ATA, que cumplen:

AT A, = szvk, para 1<k<r

Y ahora, definimos los vectores uy, con 1 < k < r de la siguiente forma:

Avk
= — . (1.5)
Ok
Asi se obtienen los valores singulares y vectores singulares de A. Falta ver que uy,...,u, son vectores

propios ortonormales de AAT . Tomando 1 < k < r, vemos que

Av AT Ay v Av
AATw = AAT () = A0 = A= = 22 = Gy
Ok Ok Ok Ok
T(AT ..
il = (R Ay A oy, [Lsij=k,
J O; Ok OO0k Oj J 0, Sij#k.

Para acabar de formar la base ortonormal tenemos que elegir los n — r vectores v,41,...,v, en R" y los
m — r Vectores u,1,...,u, en R™. Los vectores v; (r4+1 < j < n) se encuentran en el espacio nulo de
A, mientras que los vectores u; (r+1 <i < m) estdn en el espacio nulo de AT . Por tanto, cualquier
base ortonormal de ambos espacios nulos va a ser ortogonal a los vectores singulares que ya tenemos
respectivamente.

Concluimos la demostracion viendo que, efectivamente, hemos obtenido una descomposicién de la forma
A =UZXVT. Para ello tomamos las ecuaciones de (1.1) y la ponemos de forma matricial,

V:(V] vr‘vr_i_] vn)’
U:(ul ur‘ur+1 um)7
o .
o,
Y= d
0
. 0_
Asi obtenemos la ecuacion
AV =UYL,

y como V es ortogonal, al multiplicar a ambos lados por V7, concluimos que
A=Uzv",
como queriamos demostrar. 0

En el siguiente resultado, mostramos que la descomposicidn en valores singulares también se puede
escribir como la suma de » matrices de rango 1.

Lema 1.8. La descomposicion en valores singulares nos permite expresar A como suma de r matrices
de rango 1 de la siguiente forma:

A:UZVT:GmlvlT—i—...—i—O'rurv,T, (1.6)

donde r es el rango de la matriz A, o; son los valores singulares de A y u; y v;, con 1 <i <, son los
vectores singulares asociados a izquierda y a derecha, respectivamente.



Descomposicion en valores singulares - Carmen Jiménez Segura 5

Demostracién. Llamemos B a la parte derecha de la igualdad, B = Y!_, oju;v], y vamos a comprobar
que A = B. Para ello, vamos a ver que Av; = By; para cada 1 < j < n. Primero, por la definicién de valor
singular sabemos que

Avi=ojuj, para 1<j<r,
Av;i=0, para r+1<j<n.

A contiuacion, estudiamos el producto Bv;:
r r
T T
BVj = (Z OiU;v; )Vj = Z G,'Lt,'(vl- Vj)
i=1 i=1

. T _ . . T, _
Teniendo en cuenta que vy, ..., v, s una base ortonormal, se cumple que v; v; =0 cuandoi# jyv;v; =1
si i = j. Por tanto, tenemos que

Bvi=oju;, para 1<j<r,
Bv;i=0, para r+1<j<n.

Hemos visto que, efectivamente, Av; = Bv; para cada 1 < j < n. Por tanto, concluimos que
r
A=B= Zciu,-vl-T .
i=1

O]

Existe una forma reducida de la descomposicién en valores singulares, que consiste en suprimir todos
los vectores singulares asociados a cero.

Teorema 1.9. Dada una matriz A en R™" no nula con rango r, se puede decomponer de la forma
A=UxLVI, (1.7

donde U, es una matriz en R™ formada por las primeras r columnas de U y V, una matriz en R™
formada por las primeras r columnas de V, con U y 'V definidas en el Teorema 1.7 . La matriz ¥, es una
matriz diagonal r X r cuyos elementos diagonales son 01,03, ..., ;.

Demostracion. La férmula (1.7) es consecuencia directa del Teorema 1.7 y la factorizacién (1.3). ]

A continuacién, enunciamos varias propiedades interesantes de la descomposicion en valores singu-
lares.

Proposicién 1.10. Dada S = QAQT una matriz simétrica, definida positiva y cuyos valores propios estdn
ordenados en orden decreciente. Entonces la descomposicion en valores singulares de S es ULVT =

QAQ".
Demostracion. Basta con tomar U =V = Q ya que son matrices ortogonales. Lo que implicaX =A. [J

Proposicién 1.11. Si S = QAQ? tiene un valor propio negativo (Sx = —ax), su valor singular asociado
es 0 = -+ y uno de los vectores singulares serd —x .

Proposicion 1.12. Si A = Q es una matriz ortogonal, todos sus valores singulares son 1.

Demostracion. Como hemos visto antes, los valores singulares son la raiz de los valores propios de A7 A
(1.4), y en este caso ATA = QT Q = I. Por tanto, los valores propios de Q”Qson 1 yX=1. O

En los siguientes resultados se muestra parte de la informacién que los valores singulares contienen
sobre el espectro de una matriz.
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Teorema 1.13. Sea A una matriz en R™" cuyos valores singulares son 61 > 6, > ... > 0, .  Entonces,
se tiene que ||Alj2 = oy .

Demostracion. Basandonos en la definicién de norma espectral, Definicion 1.3, queremos ver que

2

A
Al = ma 12312
BB

o] .

Primero, tomando x = v obtenemos,

[Avilla _ [oulllvilla _
vill2 [vill2

Y

es decir, ||A||2 es como minimo o7, ||A|]2 > 0.
A continuacién, podemos expresar x € R" como combinacion lineal de vy, ...,v, ya que es una base
ortonormal del espacio,

x=cvi+..+cv, con cy,....,.c, ER.

Entonces, utilizando que vy, ...,v, y uy, ..., i, son bases ortonormales obtenemos que
X3 = llervt + oo+ eavall3 = lerPIvillz + o+ lealPvallz = ler P+ o+ feal s

Ax=clAvi+ ...+ cAv, = cio1uy +... + ¢, 6,u, +0+ ... +0,
|Ax[3 = |lc1o1u1 + ..+ ¢ 0|3 = |e1 [P0 Jur |3 + ... + |er 207 |[ur|l3 = of|er [ + ...+ 67 e, |
Por dltimo, utilizando estas igualdades y teniendo en cuenta que 6] > 0, > ... > O, podemos ver que

||A”2 = o 2 2 2 2 2 2 2 2 2 2
[Ax|z = otfet]"+ ...+ of[er|” < o (ler|" + ... +[er|7) = o7 |Ix]l2

A
||AH2:méx” xHZ < _

A0 [lxl2 T w0 lx]l2

Llegamos a la conclusién de que ||A|2 < 07 y como también habiamos visto que ||A]|2 > o}, entonces
concluimos que ||A||, = 0. O

opllxl>

2

El teorema anterior nos da una demostracion inmediata del siguiente enunciado.

Corolario 1.14. Sea A una matriz en R™" cuyos valores singulares son 6y > G, > ... > O, , entonces
— |AT
[All2 = [[A]]2-

Demostracion. Como A 'y AT tiene los mismos valores singulares ||Al|; = [|AT ||, = o7 . O

Proposicion 1.15. El mddulo de los valores propios de una matriz cuadrada A es siempre menor o igual
que su mayor valor singular oy .

Demostracion. Recordemos que las matrices ortogonales preservan las normas vectoriales, luego
1Ax]|2 = [UZV x|y = [[ZV " xll2 < 22|V 2l = 01[[V7 ][ = 01 |12 -

Como la igualdad anterior es cierta para cada x, sustituyendo ||Ax||, = |A|||x||> obtenemos || < 07 como
queriamos demostrar. O

La norma de Frobenius de una matriz también queda caracterizada por sus valores singulares.

Teorema 1.16. Sea A una matriz en R™" cuyos valores singulares son 61 > 6, > ... > O, , la norma de
Frobenius de una matriz es de la forma:

JAllr = /o7 + 03+ +07
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Demostracion. La norma de Frobenius de una matriz tiene la siguiente definicién:

lAllF = ZZa tr(ATA)

i=1j=
Vamos a calcular AT A usando la descomposicién en valores singulares,
ATA = (wzvhHT(wzvh) =veluTusv? =vzzv’ .
Dado que V es una matriz ortogonal, tenemos que
tr(ATA) = () =06 +---+ 2.

El resultado es la suma del cuadrado de los valores singulares. Asi podemos concluir que /tr(ATA) =

\/ 624+ + 62, por lo que se tiene que ||A||p = /07 + -+ G2 . O

Los valores singulares también sirven para medir el condicionamiento de una matriz, como se mues-
tra en los siguientes resultados.

Definicion 1.17. Dada una matriz A en R™" invertible, consideramos el sistema lineal Ax = b, con b
un vector en R". El niimero de condicion espectral mide cudnto varia la solucion del sistema lineal al
realizar perturbaciones en A o b. Se define como

-1
cond(A) = ||A[|2[|A"]]2 -

Teorema 1.18. Sea A una matriz invertible en R™" cuyos valores singulares son 6y > 6, > ... > 6, > 0.
El niimero de condicion espectral de A es

01

cond(A) = — .

On
Demostracion. Para calcular la norma euclidea de la matriz inversa hay que proceder de manera similar
a la demostracién del Teorema 1.13, es decir, aplicamos "la regla del saindwich" sobre

||A l|| — méx HA 'x HZ_ . HXHZ .
A0 lxlla w0 [JAx])2

Y llegamos a

_ 1
A7 2= —.
On

Haciendo el producto de ambas normas obtenemos que

_ 1 (o]
cond(A) = |A|L]A7 =01 — = —.
o, O,

Teorema 1.19. Dada A una matriz en R™ invertible, entonces se tiene que cond(ATA) = cond(A)?

Demostracion. Silos valores singulares de A son o7, ..., 0;,, es ficil ver que los de AT A son 612, . an. Pa-
ra ello calculamos su descomposicién en valores singulares A7A = (ULVT)T(ULVT) = vZUuTUzvT =
VE2vT . Aplicando la propiedad anterior del nimero de condicién espectral a la izquierda de la igualdad

obtenemos,

2

oi
5 -

G}’l

Haciendo lo mismo al lado derecho de la igualdad llegamos a,

2
cond(A)?* = <zl> ,

demostrando asi la igualdad. O

cond(ATA) =
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1.3. Problema de minimos cuadrados

Un problema fundamental en muchas aplicaciones del dlgebra lineal consiste en estudiar sistemas
de ecuaciones lineales Ax = b con A matriz en R"™", b un vector en R™ y x un vector indeterminado de
dimension 7.

Cuando la matriz es cuadrada e invertible, el sistema tiene solucién y es Unica, x = A~'b. Pero,
cuando nos encontramos con un problema sobredeterminado, es decir, con mds ecuaciones que incégnitas
(m > n), la matriz A es rectangular y el sistema muchas veces en la préctica es incompatible. Por ello, lo
mejor a lo que podemos optar es buscar un x tal que el residuo r = b — Ax sea minimo, es decir, buscamos
x tal que minimice ||Ax — b||>.

Teorema 1.20. Dado un subespacioV de R" y x un vector en R". Entonces la menor distancia entre x y
Ves

min |[x —v|; =[x —

min [x—vlz = =yl

donde y es la proyeccion ortogonal de x sobre V.

En el problema de minimos cuadrados el subespacio V es el subespacio generado por las columnas
de A y la mejor aproximacion de b es su proyeccion ortogonal sobre el subespacio columna de A, la cual
llamaremos AX. Ademads, el residuo r = b — AX tiene que ser ortogonal al subespacio columna de A, es
decir,

AT(b—A%)=0.

Luego, ATh — AT A% = 0y llegamos a
ATAz=ATh. (1.8)

Al sistema definido por (1.8) se le conoce como sistema de ecuaciones normales. Recordemos que es
un sistema de ecuaciones lineales, donde A”A es una matriz cuadrada de tamafio n x n. Sabemos que
cuando su rango es maximo el problema estd bien definido y tiene solucidn tnica. Por tanto, asumimos
que el rango de A es maximo y asf el rango de A” A también lo es. Vamos a estudiar la solucién de este
sistema aplicando la descomposicion en valores singulares. Asi, aplicamos la descomposicién en valores
singulares (1.3) sobre el sistema de ecuaciones normales (1.8)

ATA=ATb,
veuTuzvTs=vuTh,
y multiplicamos a izquierda por V7
vivevTz=vTvzuTsp,
2»?viz=xUTp.

Como el rango de A es mdximo, ningtin valor singular es nulo. Entonces, multiplicamos a ambos lados
2 . .
por (£~1)" y después por V, obteniendo que

vig=x"1U"p,

Vemos que la solucién tnica en sentido de minimos cuadrados queda definida en funcién de la descom-
posicién en valores singulares. Podemos ver que VE~!'UT juega el mismo papel que A~! en el caso de
un sistema compatible determinado Ax = b con A regular. Esto nos motiva a introducir la definicién de
pseudoinversa para matrices mds generales.

Definicion 1.21. Sea A una matriz en R™". Llamamos matriz pseudoinversa de A a la matriz AT en
R™™ la cual satisface:
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1. AATA = A.
2. ATAAT = A",
3. (AATT = AAT,
4. (ATA)T = ATA,
Vamos a comprobar que la pseudoinversa que hemos definido es tnica.
Teorema 1.22. Dada una matriz A en R™" existe una vinica matriz pseudoinversa A¥.

Demostracion. Supongamos que existen dos matrices P = AJ{ yQ= A; en R™" las cuales cumplen las
cuatro propiedades de la Definicidn de pseudoinversa 1.21, luego:

P =PAP = (PA)'P = (ATP")P = (AQA)" PTP = (AT Q" AT)P"P = (QA)" (PA)" P = QAPAP = QAP.

0= QA0 =Q(AQ)" = QQTAT = 00T (APA)T = QQ" (AT PTAT) = Q(AQ)" (AP)" = Q(AQA)P = QAP.

Esto demuestra que P = Q, luego la pseudoinversa es dnica. 0

Basandonos en la deduccion anterior, podemos expresar esta pseudoinversa en términos de la des-
composicion en valores singulares.

Teorema 1.23. Sea A una matriz en R™" con rango mdximo y cuya descomposicion en valores singula-
res es ULVT. Entonces

AT =vr-lyT (1.9)
es su pseudoinversa.

Demostracion. Para demostrar que VX~ 'UT es una matriz pseudoinversa tenemos que comprobar que
satisface las cuatro propiedades de la Definicién 1.21. Todas las propiedades se pueden demostrar utili-
zando la descomposicidn en valores singulares y teniendo en cuenta que U y V son matrices ortogonales.

1. AATA = (uxvT)(ve-luT)(uzv!) =vuzz-'zv? =uzv? = A,
2. ATAAT = (vE—luT)(uzvT)(ve~luT) =ve-lzx- T = vz~ luT = AT,

3. Descomponemos la parte izquierda de la igualdad: (AA™)" = (UZVT)(VE~'UT)) = (urz-luhTr =
vEzHTuT =uzz-'uT.
Descomponemos ahora la parte derecha: AAT = (UZVT)(VE~'UT) = UZZ'UT. Vemos que se
cumple la igualdad.

4. Procedemos igual que antes. Estudiamos primero la parte iquierda: (ATA)” = (VE-'UT)(UZVT)) T
(velzvhT =y (- 1p)Tvl =ve-lxvl,
Vamos ahora con el lado derecho: ATA = (VE'UT)(ULVT) = VEZ1EVT, Se satisface la propie-
dad.

Como satisface las cuatro propiedades, VE~'UT es la pseudoinversa de A. O
En particular, la pseudoinversa también tiene descomposicion en valores singulares.

Teorema 1.24. Sea A una matriz en R™" con rango mdximo y cuya descomposicion en valores singu-
lares es A = ULV, entonces la descomposicion en valores singulares de su matriz pseudoinversa AT
es

AT =vylyT,
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ya que,
ATul = G;lvl R
Atu, = Gn_lv,, ,
A-{-un—i-] o, (1.10)
Afu, =0.

Aunque hemos considerado el caso de A de rango méaximo a la hora de resolver problemas de mini-
mos cuadrados, la definicién de matriz pseudoinversa se puede generalizar a matrices de cualquier rango
r, COMO mostramos a continuacion.

Definicion 1.25. Sea A una matriz en R™" con rango r 'y cuya descomposicion en valores singulares es
A =UXVT como en (1.3). Entonces
AT =vEluT

donde X es la pseudoinversa de la matriz diagonal X. La matriz ¥ tiene dimension n x m 'y se obtiene
invirtiendo los valores singulares de A distintos de cero y manteniendo los ceros;

-1 -

0

Observamos que uy, ..., Uy Y Vi, ..., vy son los vectores singulares a derecha y a izquierda de A" y ofl sy O
sus valores singulares.

Notemos que esta definicién es compatible con la definicién que hemos dado previamente de pseu-
doinversa para matrices de rango maximo. Ademads, dada esta descomposicién podemos deducir que el
rango de A y de su pseudoinversa A” coincide.

Corolario 1.26. La matriz Ay A" tienen el mismo rango r.

Todo esto nos sirve para definir la solucién del problema de minimos cuadrados. Sea A una matriz
en R™ y b un vector en R”, y sea £ en R la solucién de norma minima de

||b—A55H2 = min Hb—Atz .
xeRm

Entonces, se tiene que £ =A"b = VETUTb.

1.4. Teorema de mejor aproximacion y compresion de imagenes

La descomposicién en valores singulares tiene una aplicacion directa en el analisis de datos y las
matemadticas aplicadas, ya que sirve para encontrar aproximaciones de menor rango de una matriz, lo que
se puede emplear para abaratar los costes computacionales de numerosos métodos numéricos. Podemos
ver mds acerca de otras aplicaciones en [5], [3] o [4].

Teorema 1.27. (Teorema de mejor aproximacion) Sea A una matriz en R™" con rango r, cuya descom-
posicion en valores singulares es A = UYLV . Entonces para cada B en R™" con rango p < r

[A=Apll2 < [[A=Bll2, (1.11)

-1
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conA, =U ZPVT, donde ¥, es una matriz diagonal con los valores singulares de A en las primeras p
entradas y 0 en las ultimas,

]

0

Demostracion. Comenzamos la demostracion observando que [|[A —A,||> = 0,41, ya que por el Teorema
1.13, la norma euclidea de una matriz es su mayor valor singular, y en el caso de A — A, éste es G 1.
Por otro lado, vamos a estudiar

A—B
HA—BszméxH( )x([2
#0  [|x[|2
Vamos a tomar un vector no nulo x tal que Bx =0y x = {7:4-11 ¢ivi, con ¢; en R coeficientes y v; los

vectores singulares asociados a derecha de A. Primero, veamos que este vector existe. Para ello, vamos
a ver que la interseccion de los dos subespacios a los que pertenece es no nula. El espacio nulo de B,
Null(B), tiene dimensién mayor o igual que n — p, dado que B tiene rango p. Ademads, el subespacio
generado por los vectores asociados a derecha v; con 1 <i < p+1 tiene dimensién p + 1, ya que éstos
son una base. Luego la interseccién de ambos subespacios es no nula y existe un vector x que satisface
ambas condiciones.

Null(B) "R < VigeoosVpg1 >F#0.

Como hemos adelantado, tomamos x que pertenece a dicha interseccién y vemos que cumple
2 2 s 2 ha 2 n 221112 n 2 2
1A= B)xllz = [|Ax]l3 = A Y covills = || }_ ciouills = Y ¢j o7’ fuillz =} ciay -
i=1 i=1 i=1 i=1

Recordemos que [x||3 = c?+- - +c§,+1 y que 0] > -+ > Oy, por tanto,

I(A=B)x|lF = ciof + -4 cp 1051 = (] +++cpi) i1 = Oplll3 -

Es decir,

(A=B)x[2 > 0p1]lx]

25

[A=B)xla _ . Oprilixll2 _

1A — B||> = mdx
0 [lx]2 0 |lxl2

p+1 -

Luego, juntando lo anterior tenemos que

1A =Apll2=0ps1 < [|A=Bl|2.

Otra forma de escribir la mejor aproximacion es la siguiente.
Corolario 1.28. La mejor aproximacion A, se puede expresar como suma de p matrices de rango 1,
T T
Ap=o01uvy +---+ OplUpV), -

Demostracion. Es una consecuencia directa del Lema 1.8. O]
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Una aplicacién directa de este resultado es la compresion de imagenes. Una imagen puede ser inter-
pretada como una matriz m X n, en la que cada componente representa la tonalidad de un pixel. Es decir,
cada entrada es un valor entre 0 y 255, donde O es el color negro, 255 es el blanco y el resto de valores
intermedios es la intensidad de gris de dicho pixel. A la hora de almacenar una imagen, en lugar de al-
macenar toda esta informacion (m x n), empleamos la compresion de imdgenes. La compresion consiste
en almacenar ciertos valores que nos permitirdn reconstruir la matriz de manera aproximada. Una forma
de hacer este proceso es a través de los valores singulares y el teorema de mejor aproximacion (Teorema
1.27). Esta no es la tnica forma ni la mas éptima que existe para realizar la compresién de imégenes
(ver por ejemplo [5]), pero es un ejemplo practico y visual de la utilidad de la descomposicion en valores
singulares.

El teorema de mejor aproximacion nos beneficia a la hora de almacenar informacién ya que eli-
giendo cierto rango p la informacién almacenada se reduce a (m+n)p, p vectores de dimensioén m,
Oilty,...,0pUp y p vectores de dimension n, vy,...,v).

Vamos a usar Matlab para ver cémo funciona la compresién de imdgenes basdndonos en este teorema.
Tomamos la siguiente foto de la facultad de matematicas, la cargamos en Matlab y la ponemos en blanco
y negro para simplificar el proceso:

>» dmg=imread( ' FacultadMatematicas.jpg’);
if size(img,3)==

img_gray=rgb2gray(img);

else

img_gray= img;

end

colormap( "gray');

image(img_gray);

matriz=double(img_gray);

Figura 1.1: Cédigo empleado para pasar de una imagen a una matriz que recoge la tonalidad de grises

Figura 1.2: Facultad de matemaéticas original y en blanco y negro
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Abhora, aplicamos la descomposicién en valores singulares a la matriz y, a continuacién, empleamos
el Teorema 1.27 para diferentes valores de p e imprimimos la imagen por pantalla.

[U,5,V]=svd(matriz);
image(U(:,1:p)*S(1:p,1:p)*V(:,1:p)");

Figura 1.3: Cédigo empleado para ejecutar la SVD y aplicar el Teorema de mejor aproximacion a distin-
tos rangos p

Las imdgenes obtenidas aplicando diferentes rangos p son las siguientes

100
200
300
400 |

200 400 600 200 400 600

200 400 600

Figura 1.6: p =100 Figura 1.7: p =300

La imagen original tiene dimensién 569 x 759 = 431871, es decir, es una matriz con 431871 com-
ponentes. Con p = 100, la imagen ya se percibe muy similar a la original, y la cantidad de informacién
que hemos necesitado es (569 +759)100 = 132800, que es notablemente menor que la cantidad original.
Observamos también que cuando el rango p es 30, la imagen ya se percibe y se reconoce. Luego parece
que el rango necesario para reconocer una imagen va a ser considerablemente menor que el de la matriz
original, por lo que la informacidén que necesitamos almacenar se va a ver reducida. Esto demuestra de
forma grafica la utilidad de los valores singulares en aplicaciones de compresion de informacién.
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Capitulo 2

Calculo numérico de la Descomposicion en
Valores Singulares

La descomposicién en valores singulares de una matriz A estd intimamente relacionada con la des-
composicién en valores propios de las matrices ATA y AAT, como hemos visto en el capitulo anterior.
Por tanto, los algoritmos de cdlculo de valores propios para matrices simétricas son un buen punto de
partida para la obtencién de algoritmos de cdlculo de la descomposicion en valores singulares. No obs-
tante, la adaptacion de estos algoritmos no es directa, ya que la estructura especial de la descomposicion
en valores singulares puede ser aprovechada para desarrollar algoritmos que sean més eficientes 0 mas
precisos (ver por ejemplo [2]).

Uno de los algoritmos mds comunes para calcular los valores propios de una matriz real A es el
algoritmo QR. El algoritmo QR se denomina asi porque es un método numérico basado en el célculo de
sucesivas factorizaciones QR. Si llamamos Ay = A esta secuencia se define de la siguiente forma

Am—l = QmRm y RQO = Am )

donde Q,, es una matriz ortogonal y R, es triangular superior con entradas positivas en su diagonal.
Recordemos que cuando A tiene rango méximo estos factores estdn tnicamente determinados. Ademas,
esta secuencia converge a una matriz triangular superior con los valores propios de A en su diagonal.

Hay dos razones basicas que hacen que este algoritmo sea, por lo general, ineficiente. Primero, el
coste de cada iteracion QR es elevado, ya que cada descomposicién QR tiene un coste de %n3 y la
multiplicacién posterior tiene también un coste de orden O(n?). Este coste es elevado dado que se deben
realizar varias iteraciones. El segundo problema es, que generalmente, la convergencia es lenta, es decir,
se necesita un nimero alto de iteraciones para que A,, esté cerca de ser la matriz triangular superior con
los valores propios de A en su diagonal. Entonces, necesitamos reducir el coste de cada iteraciéon QR vy,
ademads, nos interesa acelerar la convergencia del proceso.

Cuando la matriz A sobre la que estamos haciendo el algoritmo es Hessenberg superior, el coste
de cada iteracién se reduce notablemente a orden O(n?). La situacién es mds favorable si la matriz es
simétrica y Hessenberg superior, es decir, es una matriz tridiagonal, en este caso, el orden es de O(n).
Ademés, el algoritmo QR preserva la forma de Hessenberg, por tanto, el coste total del algoritmo se ve
reducido considerablemente.

Por otro lado, para mejorar la velocidad de convergencia, nos interesa buscar un valor p préximo a
alguin valor propio de A. Asi, al aplicar el algoritmo QR sobre A — pl, la convergencia es mucho mas
rdpida. A este valor p se le conoce como desplazamiento (shift en inglés).

Visto esto, el algoritmo que presentaremos para calcular los valores singulares en esta seccién va a
ser una adaptacién del algoritmo QR con desplazamiento p a este problema. Nuestra adaptacion es una
implementacién del algoritmo QR implicito sobre una matriz tridiagonal.

El algoritmo que vamos a presentar para calcular los valores y vectores singulares de una matriz A
se divide en dos pasos. El primer paso consiste en calcular una matriz bidiagonal cuadrada asociada a A,
que llamaremos B. Después, obtendremos la descomposicién en valores singulares de B.

15
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2.1. Matrices ortogonales

Las matrices ortogonales son la base del algoritmo que vamos a estudiar, ya que, pueden ser emplea-
das para generar ceros en las componentes deseadas de una matriz con un coste computacional reducido,
y ademds, preservan la norma euclidea. Comenzamos definiendo las matrices de Householder.

Definicion 2.1. Dado un vector no nulo v en R", llamamos matriz o reflector de Householder a:
T
vy
viy

Esta matriz se encuentra en R™, es decir, es una matriz cuadrada.
Una transformacién de Householder es una transformacién lineal cuya matriz asociada es un reflector de
Householder. Estas transformaciones tienen una interpretacién geométrica muy interesante. El conjunto
A ={u € R"| (v,u) = 0} es un hiperplano, es decir, un subespacio vectorial de R" de dimensioén (n—1).
La matriz H lleva a cada vector x en R"” a su simétrico respecto al hiperplano .7#. Veamos algunas
propiedades de este tipo de matrices.

Proposicion 2.2. Sea H un reflector de Householder y v su vector asociado, entonces H cumple las
siguientes propiedades:

1. Simetria, H' = H.

2. Ortogonalidad, H TH—1

3. Hv=—v.

4. Hu=u, siuesunvectorenR" tal que (v,u) = 0.
Demostracion.

1. Al considerar un producto de la forma, w!, obtenemos una matriz simétrica. Por tanto, su tras-
puesta es ella misma, (v’ )7 =T Basdndonos en esta propiedad, obtenemos que

2. Para demostrar esta propiedad tenemos que observar que v’

T T T T T T
HTH = HH = (1—2W> (1—2W> :1—2%—2K+4M:

v es un escalar. Asi, vemos que

vy vy vy Ty (vT'v)?
T T N\l T T
vy (v'v)w 0% Y
A SR )4 Sy S A A LA
VT ()2 T, T4,

3. Argumentando como antes

T T T
Hv = 1—2K v:v—Z(W )v:v—2(v v)v:v—2v:—v.
vIy vIy vIy

T

4. Tomamos u tal que (v,u) = v" u = 0. Entonces tenemos que

T T
% (w')u v
Hu—<1—2vTv>u—u—2 T :u—2ﬂ<v,u>:u.
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Otra propiedad importante de los reflectores de Householder es la siguiente.

Teorema 2.3. Sean x e y vectores distintos en R" tales que ||x||2 = ||y||2. Entonces existe un reflector de
Householder H tal que Hx = y.

Demostracion. Probar la existencia del reflector H del enunciado equivale a encontrar el vector v tal que

T
12%

Supongamos v = x — y. Primero descomponemos x de la siguiente forma

1 1
X = E(X—Y)‘i‘i(x‘i‘)’) ;

y consideramos el producto

Hx=H <;(x—y)+;(x+y)> = %H(x—y)—i—%H(x%—y).

Utilizamos las propiedades (3) y (4) de la proposicion anterior y obtenemos que H(x—y) =y —x, ya que
v=x—yyque H(x+y) =x+y, porque se cumple que

x+y) = (x—=yx+y) = (6,x) + (6,y) — ,x) — 3y) = [|x[2 = [yl =0.

Para finalizar juntamos todo lo visto y observamos que

1 1 1 1
Hx=_-H(x— —H =—(y— — =y.
x=sHx—y)+sHx+y)=50-0)+50x+y) =y
Por tanto, tomando v = x — y se satisface la propiedad Hx = y, como queriamos demostrar. O

De este resultado podemos ver que los reflectores pueden usarse para hacer ceros en vectores y
matrices.

Corolario 2.4. Dado un vector no nulo x en R". Entonces existe un reflector de Householder H tal que

X1 *

X 0

H| |=].

Xn 0

> T . : :

Demostracién. Tomamos y = [-7 0 --- 0]  con 7 = %|[x[]2. Si elegimos correctamente el signo
podemos asegurar que x # y y, claramente, ||x||2 = ||y||2. Por lo que, utilizando el Teorema 2.3, existe un
reflector H tal que Hx = y. O

Basandonos en estos resultados y sus demostraciones, podemos construir un reflector H que lleva
cualquier vector x a otro cuya primera componente es distinta de cero y las demds son nulas. El reflector
T .
H es de la forma [ — 2%, donde v tiene la estructura

X1+7T
X2

Xn
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Cualquier mdltiplo de v genera el mismo reflector, por lo que, generalmente, se normaliza v de manera
que la primera entrada sea un 1. El vector resultante es

1
ox=y x2/(x1+7)
V_XH-T_ :
Xn/ (x1+7)

Recordemos que la cancelacion de x; + T no puede suceder, ya que hemos tomado el signo de 7 correc-
tamente para que esto no ocurra.
Otro tipo de matriz ortogonal que vamos a utilizar en el algoritmo QR son los rotadores de Givens.

Definicion 2.5. Los rotadores de Givens son matrices cuadradas ortogonales que tienen la siguiente
forma
coli col j

1 ... 0 --- 0 --- O]
0 e s 0]
6 N C (:) filaj
0 0 -0 1

conc=cosBys=sinb.

Los rotadores de Givens se pueden interpretar geométricamente como rotaciones planas en el espacio
vectorial, es decir, son rotaciones de dos dimensiones en un espacio mayor. Algunas caracteristicas de
estos rotadores son las siguientes.

Proposicion 2.6. Llamemos Q a un rotador de Givens con dimension m x m.

1. Sea A una matriz en R™™". Al aplicar Q sobre A, QA, solo se alteran las filas iy j de A. Ademds,
las filas iy j de QA son combinaciones lineales de las filas i y j de A.

2. Sea B una matriz en R™". Al aplicar B sobre Q, BQ, se alteran tinicamente las columnas i y j
de B. De manera similar a antes, las columnas i y j de BQ son combinaciones lineales de las
columnas i, j de B.

3. Dada una matriz ortogonal, ésta se puede descomponer como producto de rotadores de Givens.
Otra utilidad muy importante de los rotadores es crear ceros en matrices o vectores.

Proposicion 2.7. Dada una matriz A en R™" de la cual queremos anular la componente a;j, exite un
rotador de Givens Q tal que, al aplicar su traspuesta sobre la matriz A, QT A, anula esa componente.

Demostracion. Asumimos que i > j. Tomamos la componente a;; y calculamos

aii aji

Czijj y Szij y
2 2 2 2
aj;+ai; \/ 45 tai;

con estos valores formo el rotador Q, de tal manera que al hacer el producto Q7 A la componente (i, )

resultaria 0 a
1
2 : 2 @i + 2 = 2
\/ ;T i \/ 45T i

ajj = —sajj+cajj= —

Cl,’j:O.
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Un resultado fundamental para desarrollar el algoritmo QR implicito es el resultado conocido como
el teorema de la Q-implicita, que obtenemos de la pagina 382 de [8].

Teorema 2.8. (Teorema de la Q-implicita) Sea A, A A, Q y O matrices en C™. Con A propiamente
Hessenberg superior, A Hessenberg superiory Q y O unitarias, tales que

A=07"'40 y A=0"A0.
Ademds, la primera columna de Q y la primera columna de Q son proporcionales, es decir, §, = Gid,,
donde |di| = 1. Entonces, A es también propiamente Hessenberg superior y existe una matriz diagonal
unitaria D tal que
0=0D y A=D'AD.
Ahora vamos a empezar a describir el algoritmo de cdlculo de la descomposicién en valores singula-
res. Recordemos que el primer paso consiste en reducir la matriz original a forma bidiagonal.

2.2. Reducir A a forma bidiagonal

Definimos como matriz bidiagonal a una matriz en R™" tal que b; ; =0 cuando i > jo i< j— 1.
Luego es de la forma:

(D11 bin
brp b3

bnfl,nf 1 bnf 1,n
bn,n

Llamamos matriz propiamente bidiagonal a la matriz bidiagonal cuyas entradas en la diagonal y en la
diagonal superior, es decir, los b; j con j—1 <i < j, son no nulas.

Gracias a las matrices de Householder podemos relacionar una matriz cualquiera con una matriz
bidiagonal. Para ello, nos apoyaremos en el siguiente teorema.

Teorema 2.9. Sea A una matriz en R™". Entonces existen matrices ortogonales U en R™™ y V en R™,
ambas producto de un niimero finito de matrices de Householder, y una matriz bidiagonal B en R™"
tales que

A=UBV". 2.1)
Ademds, existe un algoritmo finito para calcular U,V y B.

Demostracion. Vamos a demostrar este enunciado de forma constructiva. Veremos el desarrollo para
llegar a la expresion (2.1).

El primer paso consiste en hacer ceros en la primera fila y columna de A. Para ello, multiplicamos a
izquierda por la matriz de Householder U,, de tamafio m x m, tal que,

an an

. | a2

Ul . - 5
am1 0

es decir, al multiplicar U;A resulta una matriz con la primera columna formada por ceros excepto la
posicién (1,1):
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Ahora, queremos hacer los ceros en la primera fila. Para ello, tomamos la matriz de Householder V; de
tamafio n X n con la siguiente forma:

10 0
‘71 = 1. ~ )
. V1
0
tal que cumpla lo siguiente
12 -+ dw|Vi=[an 0 - 0].

Por tanto, como V) tiene el primer vector de la base candnica e; como su primera columna, hemos
conseguido lo que buscdbamos. Entonces, al hacer el producto U;AV) la primera columna de U;A no
varfa y obtenemos una matriz de la forma:

an dpp 0 0
. 0
UAV, = | . A
: 1
0

El segundo paso consiste en hacer ceros en la segunda fila y columna. Vamos a proceder de la misma
manera, pero esta vez sobre la submatriz A;. Ademas, utilizando un razonamiento similar al que hemos
visto con el vector candnico ey, es facil ver que los ceros de las posiciones que nos interesan no se anulan.
Después de este paso obtendremos una matriz de la forma:

* x 0 O
0 * 0

0,0,AV,V, = |0 0

(=)

*

Ar

0 0

Actuando por induccién sobre la submatriz Ay, después de n pasos, la matriz resultante serd de la forma:

I
oS

O 020V AV V. s — .

Notemos que en los dltimos dos pasos, el paso n y el paso n — 1, solo necesitamos hacer el producto a
izquierda.

Para acabar la demostracién, llamamos U = U,U...U, y V="V.V, s, que ya no son reflectores de
Householder pero si siguen siendo matrices ortogonales. Por tanto, hemos llegado a que

UTAV =B, esdecir, A=UBVT |
como queriamos demostrar. O

Esta es una forma de reducir A a forma bidiagonal, pero en la prictica, a menudo m es considerable-
mente mayor que n, por ejemplo en el problema de minimos cuadrados, donde podemos tener muchas
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observaciones de un suceso. En estos casos, a nivel de eficiencia, es mejor calcular la matriz bidiagonal
relacionada con A en dos etapas. La primera etapa consiste en calcular la factorizacién QR de A,

A= 0] m (2.2)

donde Q es una matriz ortogonal en R"*”, dividida en O una matriz formada por las primeras n columnas
de Q' y O, formada por las tltimas m — n columnas de Q, y R es una matriz triangular superior cuadrada
en R™™. Esta factorizacion reduce el nimero de operaciones del proceso de bidiagonalizacién, ya que
solo tenemos que multiplicar por matrices de Householder a izquierda de A.

La segunda fase consiste en buscar la forma bidiagonal de R. Para ello, utilizamos el teorema anterior
y obtenemos la factorizaciéon R = UBV', donde todas las matrices involucradas son n x n. El Algoritmo 1
explica mediante pseudocddigo cémo reducir una matriz triangular superior cuadrada a forma bidiagonal
paso a paso. Luego, recopilando todo lo visto hasta ahora, tenemos que

U 0] [B] -~
A=[01 0] [0 ]} [0} vl
Si introducimos la notacién

U 0 .

U= QZ][O I}:[Qlﬁ 01, BZ[lg] y V=V,

tenemos lo que querfamos, A = UBV” como en (2.1).

Como hemos mencionado antes, realizar este proceso cuando m es significativamente mayor que n

reduce el coste computacional notablemente. Esto es debido a que en la primera fase las multiplicacio-
nes por matrices de Householder se ejecutan tinicamente a izquierda. Ademads en la segunda fase estas
multiplicaciones se ejecutan sobre la matriz reducida R, que tiene dimension n X n y no sobre la matriz
A cuya dimension es m X n.
No obstante, este proceso supone una desventaja en algunos casos, ya que las multiplicaciones a derecha
de la segunda fase deshacen los ceros de la matriz triangular superior, y, por tanto, hay que afiadir una
multiplicacién a izquierda aumentando asi el coste. Este aumento de coste es favorable cuando m es con-
siderablemente mayor que 7, ya que el coste adicional de las multiplicaciones a izquierda se compensara
con creces por el ahorro en las multiplicaciones a derecha. En concreto, segtin la pagina 404 de [8] , el
cociente m/n debe ser mayor que 5/3 para que este proceso sea la mejor opcion.

2.3. Calcular los valores singulares de B

Volviendo al problema del célculo de los valores singulares, hemos calculado la matriz bidiagonal B
asociada a una matriz cualquiera A, de dimensién m x n. Recordemos que B tiene la forma

-l

donde B es una matriz bidiagonal cuadrada en R™ de la forma,
B n

B »
B= ﬁ3 . . (23)

Ya—1
B

Comenzamos ahora el segundo paso para obtener la descomposicién en valores singulares de A. Dada
la relacién entre A y B (2.1), calcular la descomposicion en valores singulares de A se reduce a obtener
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la descomposicioén en valores singulares de B. Antes de empezar a desarrollar el cdlculo de los valores
singulares, vamos a asumir sin pérdida de generalidad que B es propiamente bidiagonal y que sus entradas
no nulas son positivas. El Comentario 1 justifica que podemos asumir que B es propiamente bidiagonal.

Comentario 1. Podemos asumir que B es propiamente bidiagonal por estos motivos. Por un lado, si
algiin v, con 1 <k <n—1, es igual a cero, podemos dividir la matriz B en dos submatrices bidiagonales

de la forma:
_|B1 0
5= sl

con By en R¥* y By en R0 *01=k) v aplicar este algoritmo a las dos submatrices By y Ba. Por otro
lado, si algiin By, con 1 < k < n, es igual a cero, podemos realizar operaciones elementales sobre las
filas y las columnas para conseguir una matriz propiamente bidiagonal.

También nos interesa asumir que las entradas no nulas de B son positivas.

Comentario 2. Podemos asumir que todas las entradas no nulas, es decir, B;, con 1 <i<mn,y Yj, con
1 < j<n—1, son positivas. Esto se debe a que, si no lo fuera, siempre existen dos matrices ortogonales
y diagonales D y D; las cuales hacen que D{BD; sea una matriz bidiagonal cuyas entradas no nulas
son positivas.

Visto todo esto, podemos afirmar que B es una matriz bidiagonal cuyas entradas no nulas son positivas
sin pérdida de generalidad.

Como hemos visto en la demostracion del Teorema 1.7, para calcular la descomposicién en valores
singulares de B, primero tenemos que calcular los valores propios de las matrices BY B'y BB” . Para ello,
hay varios algoritmos que podemos emplear. En este caso vamos a utilizar el algoritmo QR sin realizar
explicitamente el producto de BY B o BB” . Antes de empezar con el desarrollo del algoritmo necesitamos
presentar algunas definiciones y resultados relacionados.

Definicién 2.10. Una matriz tridiagonal cuadrada es una matriz cuyas entradas b; ; tales que li-jl>1,
son iguales a 0.

[b11 b1
by1 byy b3
b3r b33
) bn—l
bnfl,nfl bn,n |

Una matriz es propiamente tridiagonal cuando las entradas de la diagonal principal y la diagonal supe-
rior e inferior a ésta son no nulas.

Para nuestro resultado final vamos a utilizar la siguiente proposicion.

Proposicion 2.11. Si B es una matriz propiamente bidiagonal, entonces B' B y BB! son matrices pro-
piamente tridiagonales.

Demostracion. Tomamos B matriz propiamente bidiagonal, es decir, de la forma (2.3), y realizamos el
producto BT B. BB ser4 analogo.

By 1018 » 1 [B: Bin
v B B »r nBr +B; Bn
B'B= v B B . = nB  B+B;
: . : * . * . . /ynil * . . . .
L Yn—1 Bn_ i ﬁn ] i Yn—lﬁn—l ')/371 +ﬁnz_

O]

an 1Y—1
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Hemos mencionado anteriormente que para calcular los valores propios de B'B y BBT vamos a
utilizar el algoritmo QR sin realizar explicitamente los productos B’ By BB'. En particular, vamos a
considerar el caso mds general con desplazamiento p, que puede servir para mejorar la velocidad de
convergencia del método. Primero vamos a ver cémo serfa una iteracién de este algoritmo si hiciéramos
los productos:

B'B—pIl=0R and BB" —pI=PS, (2.4)

con Q y P matrices ortogonales, mientras que, R y S matrices triangulares superiores. Asumimos que p
no es un valor propio de BT By BB , asf las matrices R y S son invertibles. Ademas, podemos normalizar
Ry S de tal forma que las entradas de las diagonales principales sean todas positivas.
Vamos a llamar B a

B=P"B

S

. 2.5)

De aqui deducimos que
BB = (P"BQ)" (P"BO) = 0" BT PP"BO = O"B"BO =
= 0" (OR+pI) 0 =0"0RO+p0" O =RO+pI ,
BB" = (P"BQ) (P"BO)" = P"BOOTB"P = PTBB" P =
=P" (PS+pI)P=P"PSP+pP"P=5SP+pI.

Esto nos indica que B7B y BB son iteraciones del algoritmo QR con desplazamiento p sobre B'B y
BB . Para calcular B tenemos que obtener las matrices P y O que se definen en (2.4). Sabemos que estas
matrices se pueden escribir como productos de rotadores de Givens, ya que son ortogonales, y tienen la
siguiente forma
P=P-P1 y 0=010u1.
Si obtenemos estos rotadores de Givens, los podemos aplicar de la forma adecuada a B y la transfor-
maremos en B. El objetivo es encontrarlos de manera que el coste del algoritmo sea lo menor posible,
evitando calcular las matrices BT By BB! y la factorizacién QR explicita.

Primero, veamos que B hereda la forma de matriz propiamente bidiagonal de B.

Proposicién 2.12. Dada B definida por (2.5) y R y S invertibles, si B es bidiagonal, entonces B también
lo es.

Demostracion. Probamos antes unas expresiones auxiliares que vamos a emplear.
(BB" —pI)B=BB"B—pB=B(B"B—pl) ,
(B"B—pI)B" =B"BB" —pB" =B" (BB" —pI) .
Por otro lado de (2.4) deducimos que
(B'B—pI)R"'=Q y (BB"—pI)S'=P.
Ahora, podemos trabajar con B de otra forma:
B=P"BO=P"B(B"B—pI)R '=P" (BB" —pI)BR ' =P"PSBR ' =SBR™',  (2.6)

BT = (PTBQ)T =Q"B"P=0Q"B" (BB" —pI)S'=Q" (B"B—pI)B"S ' =Q"ORB"S ' =RB"S .

El primer paso es probar que, si B es triangular superior, B también lo es. Es facil de ver, ya que el
producto de matrices triangulares superiores es una matriz triangular superior. Por hipétesis, S, By R
son de esta forma. También sabemos que la inversa de una matriz triangular superior también lo es, por
tanto R~! también es triangular superior. Todas las matrices involucradas en el producto son triangulares
superiores, por ello, B también lo es.
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También sabemos que al multiplicar una matriz triangular superior por una Hessenberg superior, el re-
sultado es Hessenberg superior, luego, si B es Hessenberg, B también lo es.

Para finalizar, recordamos que si B es bidiagonal, BB y BT B son tridiagonales. Queremos llegar a que
BBT es tridiagonal, por tanto, B seré bidiagonal. Si B es bidiagonal, por un lado,

BB = SBR'RBTS ! =SBBTS !,
como BB es tridiagonal, es decir, Hessenberg, BB también es Hessenberg. Por otro lado,
(BB")T =B"B=RB"S'SBR™' =RB'BR™',

de nuevo, como B” B es tridiagonal también es Hessenberg, por tanto B’ B es Hessenberg. Dado que BB”
y (BBT)T son ambas Hessenberg, estamos ante una matriz tridiagonal. Por tanto, B es bidiagonal. O

Corolario 2.13. Bajo la misma hipétesis que antes, si B es propiamente bidiagonal, B también lo es.

Corolario 2.14. Cuando Ry S estan normalizadas de forma que las entradas de su diagonal principal
sean positivas, entonces si las entradas no nulas de B son todas positivas, entonces las entradas no nulas
de B también lo son.

A continuacién, comenzamos el desarrollo del algoritmo QR implicito con desplazamiento p, esto
es, buscamos la descomposicién BT B — pI = QR. Sin necesidad de hacer el producto, observamos que,
como R es triangular superior, la primera columna de Q es proporcional a

(Bt —p]
7B
0 . .7)

L O -
Ahora utilizaremos rotadores de Givens para hacer ceros. Llamemos rotador de Givens sobre el plano
[1,2] a V}, cuya primera columna es proporcional a (2.7) y hacemos BV, este producto altera tinicamente
las primeras dos columnas de B y crea una componente distinta de cero en la posicién (2,1).
Para volver a la forma bidiagonal, buscamos un rotador U, sobre el plano [1,2] tal que al hacer UlT BV,
genere un cero en la posicién (2,1). Este paso genera una nueva componente no nula en (1,3), la cual
queremos anular mediante el rotador V, sobre el plano [2,3]. Ejecutamos U IT BV1V,, esto anula la compo-
nente deseada (1,3) y crea una nueva entrada en (3,2). Asi, necesitamos aplicar sucesivamente rotadores
U2T ,V3,U3T ,... De esta manera vamos anulando las componentes fuera de la bidiagonal y generando
nuevas entradas no nulas hasta llegar a una matriz de forma bidiagonal:

B=u!,...ulfulBvivy---v,_, .

Si llamamos
P=UU---Uyy y O0=ViVa---V,q,

obtenemos que
B=P'B0. (2.8)

En el algoritmo 2, presentado en el anexo de pseudocddigos, mostramos paso a paso cémo obtener la
expresion (2.8).

Por tanto, tenemos que probar ahora que la matriz B de (2.5) y la matriz B de (2.8) son “esencial-
mente” la misma matriz.
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Teorema 2.15. Dada B matriz invertible. Sea B matriz bidiagonal, B matriz propiamente bidiagonal y
P, O, P, O matrices ortogonales tales que

B=P'BO y B=P'B0.
Supongamos ademds que Q 'y Q tienen esencialmente la misma primera columna, es decir, Qe; = Qe dj,
con di = %1. Entonces, existen matrices ortogonales diagonales D y E tales que Q = QD y P = PE y

B=EBD.
Dicho de otra forma, B y B son esencialmente iguales.
Demostracion. Notemos que
BB = (PTBO)T (P"BQ) = Q"B"PP'BO=0"(B'B)Q y B'B=0"(B'B)0.
También sabemos que B” B es una matriz tridiagonal y B” B es propiamente tridiagonal. Con todo esto,
podemos aplicar el teorema de la Q-implicita (Teorema 2.8). Llamamos A a B'B,Aa B"TByAaB"By

nos da como resultado la existencia de una matriz diagonal ortogonal D tal que Q = OD, es decir, O 'y O
son esencialmente iguales. Fijandonos en la definicién de B y B observamos que
PB=BQ=BOD=PBD.

Llamamos C = PB = P(BD) y observamos que ambas son descomposiciones QR de C, luego, Py P son
esencialmente iguales. Existe una matriz ortogonal y diagonal E tal que P = PE. Juntando lo anterior
llegamos a
B=P"BO = (PE)TBOD = ETPTBOD = EBD .

O

Por tanto, nuestro caso concreto queda reflejado en el siguiente corolario del teorema anterior, que
utiliza la misma notacién empleada anteriormente.

Corolario 2.16. Si B y B son propiamente bidiagonales y Qe; = Qe, entonces Q = Q, P=Py B =B.

Si podemos aplicar este teorema sobre nuestras matrices B y B, podremos completar la iteracién QR
sin realizar los productos B' B'y BB . Para ello, tenemos que ver cémo son las primeras columnas de O
y Q. y
Segtin la notacién que hemos seleccionado Q = V|V, ---V,_1. Su primera columna es la primera de V1,
ya que el resto son rotadores de Givens que actiian sobre el resto de columnas. La primera columna de
V| ha sido elegida de forma que es igual a la primera columna de Q. Es decir, Oe; = Qe/, luego podemos
aplicar el Teorema 2.15 y deducimos que B y B son esencialmente iguales.

Asi hemos visto cémo calcular una iteracién del algoritmo QR sin realizar el producto B’ B o BBT
puesto que la matriz B nos sirve para definir una iteracién del algoritmo QR con desplazamiento p. Con-
tinuando esta estrategia, podemos obtener la descomposicién en valores singulares de B y gracias a la
férmula (2.1) del Teorema 2.9 obtenemos la descomposicion en valores singulares de A.

El objetivo principal de este capitulo ha sido justificar paso a paso una forma de calcular los valores
singulares de una matriz real cualquiera. Juntando todo lo estudiado, el procedimiento para calcular los
valores singulares de A consiste en reducir la matriz original A a forma bidiagonal utilizando multipli-
caciones a izquierda y a derecha por matrices de Householder. Como hemos observado, cuando m es
considerablemente mayor que n, el coste computacional se ve reducido si, previamente, ejecutamos una
descomposicién QR de A (2.2) y, a continuacién, reducimos R a forma bidiagonal. Una forma de ejecutar
esta reduccioén es aplicar el Algoritmo 1. Una vez hemos calculado la matriz bidiagonal B, tenemos que
calcular sus valores singulares y éstos se obtienen calculando los valores propios de B’ B'y BB' . Para
ello, empleamos el algoritmo QR implicito sin realizar explicitamente los productos B'B y BB con
desplazamiento p. En esta seccidn, hemos estudiado cémo se haria una iteracién justificando todos los
pasos, y en Algoritmo 2 vemos claramente cdmo realizar una iteracién. Una vez hemos realizado todas
las iteraciones y tenemos los valores propios de BY B'y BB”, basta con tomar sus raices cuadradas para
obtener los valores singulares de A.
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Apéndice A

Pseudocodigos

Algorithm 1 Reducir a forma bidiagonal

Entradas: R € R™ triangular superior
Salidas: B € R™", bidiagonal, U € R™" producto de matrices Householder, V € R™" producto de
matrices Householder, R = UBVT

Inicializar B = R
Inicializar U = I,,.,
Inicializar V = I,
fork=1:ndo
Buscar Oy matriz de Householder tal que:
Al multiplicar a izquierda por Q; no modifique las primeras k — 1 componentes

0 0
0 0
bi—ix| | bk—1k
O brk | | brk
by 1k 0
Lbmie | L O
B= OB
U=00

if kK <n—2 then
Buscar P, matriz de Householder tal que:
Al multiplicar a derecha por P, no modifique las primeras kK componentes
[0 -+ 0 brx brgsr - bka)Bar=1[0 -+ 0 b bggsr 0. 0]
end if
B =BPF,
V=Vp
end for

29
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Capitulo A. Pseudocédigos

Algorithm 2 Calcular una iteracion del algoritmo QR implicito

Entradas: B € R™" , bidiagonal

Salidas: B,P,0 € R™"

Inicializar B = B

Inicializar P =I,,,,
Inicializar O = I,
fork=1:n—1do

Buscar rotador de Givens V; (en el plano [k, k + 1]) tal que

if K = 1 then

primera columna de Vj, =

else

BV tiene 0 en la posicion (k—1,k+1)

end if
B=BV,
0 =0k

(B —p]

7B
0

0

Buscar rotador de Givens Uy (en el plano [k, k+ 1]) tal que U] B tenga 0 en la componente (k+ 1,k)

B=U!B
P = PU;
end for




