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Resumen en castellano

Uno de los desarrollos cientificos més revolucionarios que han tenido lugar en el &mbito de
rayos-X es la imagen por difraccion coherente (Coherent Diffraction Imaging, CDI). Al contrario
de la microscopia tradicional, donde se hace uso de lentes para recoger la luz dispersada por una
muestra, y asi recuperar la imagen, CDI ilumina directamente la muestra con un haz coherente y
recoge la luz difractada por el objeto en un detector. De este modo, elimina todas las limitaciones
que introducen las lentes, permitiendo su uso en numerosas aplicaciones, como la visualizacién
detallada en tres dimensiones (3D) de los componentes bésicos en materiales o células. En este
trabajo nos centraremos en el modo de medir conocido como Bragg CDI (BCDI). Consiste en
realizar la medida CDI en geometria de Bragg, es decir, iluminando la muestra tal que la direccion
del haz incidente y el difractado coincidan con un pico de Bragg, producido por una familia de
planos especificos dentro del cristal. Ademds, para obtener informactién en 3D se realiza una
medida llamada rocking curve scan, que consiste en rotar ligeramente (en una ventana angular
de ~ 1°) el cristal con respecto a la direcciéon del haz incidente y asi, medir la distribucién 3D
de intensidad difractada en torno al pico de Bragg.

Para recuperar la imagen del objeto a partir de las medidas de en 3D de la intensidad
difractada, se hace un procesado numérico de los datos. Dicho procesado se basa en que la onda
difractada por la muestra (que es una magnitud compleja y por tanto tiene médulo y fase) es
proporcional a la Transformada de Fourier (FT, del inglés Fourier Transform) de la densidad
electrénica del objeto. Esto ocurre iinicamente al tener un haz coherente, de aqui la importancia
de este factor. Sin embargo, como sélo la intensidad, es decir, el modulo al cuadrado de la FT,
puede ser medida por un detector, la informacién de fase se pierde, conduciendo al conocido
como problema de la fase. Sin embargo, la distribucién de fase de la onda difractada que falta
y, por tanto, el frente de onda completo, puede obtenerse mediante un algoritmo siempre y
cuando la distribucién de intensidad obtenida esté lo suficientemente muestreada (este concepto
se desarrollard en detalle).

Los algoritmos de recuperacion de fase funcionan relacionando iterativamente el espacio real
y el espacio reciproco a través de la Transformada de Fourier. En cada ciclo, el algoritmo propone
un ansazt (una hipétesis para el modulo y fase del campo difractado y para el correspondiente
objeto) y aplica en el espacio real distintas restricciones, como el soporte, la positividad (que
indica que la densidad de electrones no puede ser negativa) o las regiones parcialmente super-
puestas, mientras que la intensidad medida se utiliza como restricciéon en el espacio reciproco.
Normalmente, después de varios cientos a miles de iteraciones, se puede recuperar la informa-
cién de fase exacta, como se explicard en detalle en la Seccién [3] La base tedrica necesaria para
establecer la viabilidad de la reconstruccion fue propuesta por Sayre en 1952. En esencia, fue
el primero en asociar una funcién periédica junto con su FT y los espectros en el dominio de la
frecuencia a un cristal y la intensidad difractada en el campo reciproco.

No obstante, estos algoritmos tienen algunas limitaciones: todos asumen que la muestra estd
estatica. Ademas, el objeto no debe rotar durante las medidas, para no introducir una fuente
de incertidumbre adicional en la rocking curve que afecte a la calidad de la reconstruccién del
objeto. Sin embargo, en un experimento, la estatica del objeto no siempre puede garantizarse, lo
que provoca problemas de reconstruccién y requiere entonces el desarrollo de nuevas estrategias
para superarlos.
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Este trabajo esta dividido en cuatro secciones: en la Seccién [2] se describe el fundamento
tedrico necesario para desarrollar los algoritmos de reconstruccion, en la Seccién 3|demostraremos
la capacidad de los algoritmos de reconstruccion estandar para recuperar la forma y la estructura
interna (es decir, el médulo y la fase) de un cristal ctibico ideal y en la Seccién [ ilustraremos las
limitaciones del algoritmo anterior, basado en la Transformada de Fourier 3D, en un experimento
mas realista en el que el cristal simulado estd rotado respecto al haz entrante. Asi, surge de
manera natural la necesidad de un nuevo algoritmo de reconstrucciéon basado en el Teorema de
“corte”de Fourier (Fourier Slice Theorem), que explicaremos y aplicaremos. Por tltimo, en la
Seccion [p| presentaremos las conclusiones obtenidas y propondremos nuevas lineas de trabajo
futuro.

En primer lugar, la Seccion [2] desarrolla el fundamento teodrico, tanto de la Transformada
de Fourier como sus aplicaciones al campo de imagen difractada y los algoritmos que la utilizan.
Comenzaremos definiendo una sucesién periédica, y sobre ella, la Transformada Discreta de
Fourier y su inversa. No obstante, si el nimero de datos que tenemos es muy grande, el ntimero
de operaciones a realizar crece, y con él, también el tiempo de céomputo, por lo que muchos
resultados no podian calcularse. Para solucionar este problema surge el algoritmo de la Trans-
formada Rapida de Fourier (FFT, del inglés Fast Fourier Transform). En esta linea, se realiza
un estudio exhaustivo del nimero de operaciones necesario, antes y después de la introducciéon
de la FFT, mostrando de forma clara las ventajas y necesidad de este nuevo algoritmo.

A continuacién, esta definicién matematica de la FT se conecta con el formalismo utilizado
en la obtenciéon de imagenes por difraccién coherente. En esta linea, se explica cémo las ca-
racteristicas de la FT conducen a las propiedades de los campos real y difractado, y se aborda
el problema de la fase, detallando las ligaduras que requiere. Posteriormente, se explican varios
algoritmos de recuperacién de fase: Error-Reduction (ER), Hybrid-Input-Output (HIO) y Shrink-
Wrap (SW). Sin embargo, estos algoritmos tienen un denominador comin que es la suposicién
de que el objeto esta estatico. Por lo tanto, cuando esto no se cumple, requiere un nuevo
planteamiento del problema, que se resuelve introduciendo el Fourier Slice Theorem. Esta
nueva estrategia algoritmica abre la puerta de aplicar Bragg CDI al estudio de sistemas que

evolucionan en el tiempo.

En la Seccion [3| se reconstruye un cristal ciibico ideal utilizando algoritmos estandar de
recuperacién de la fase. En primer lugar, simularemos un cristal ciibico ideal, esto es, sin
rotaciones o efectos indeseados en la medida. A él le aplicaremos la FT para obtener su patrén
de difracciéon (DP, del inglés Diffraction Pattern) asociado, es decir, la intensidad que seriamos
capaces de medir en el laboratorio. Es a este DP a quien le aplicaremos el algoritmo propuesto.

Este algoritmo consta de un total de 560 iteraciones, organizadas en cinco ciclos de ER +
HIO, finalizando con 200 iteraciones de ER, para asegurar que la métrica de error alcanza su
minimo. Ademés, a mitad de cada serie de ER se actualiza el soporte via SW. Para mostrar la
actuaciéon del algoritmo, se presenta la evolucién de la métrica de error a lo largo de cada una

de las iteraciones, evidenciando el efecto de cada uno de los algoritmos individuales.

Haciendo uso de este algoritmo, trataremos de reconstruir el objeto simulado al principio del
capitulo. Para ensefar la evolucién del objeto y cémo varia a lo largo de cada una de las itera-
ciones, se representan y explican, tanto el médulo como la fase del objeto, en las cuatro fases del
algoritmo de la ultima iteracién, evidenciando asi el efecto directo de la F'T en la reconstruccién.
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En la Seccién [, por otro lado, simularemos un experimento mds realista. Para ello, rotare-
mos el cubo cristalino con respecto a la direccién angular incidente un angulo 8. El mero hecho
de rotar el cristal hace que los planos del detector estén inclinados con respecto a la direccién de
Qukr, introduciendo un artefacto en la imagen. Ademds, para hacer el experimento atin mas
realista, incluiremos una incertidumbre angular -a la que llamaremos jitter-, para simular rota-
ciones incontroladas del cristal durante la medida (como ocurriria en el caso de un aumento en
la temperatura del cristal), y ruido de Poisson, para reproducir de forma mas precisa el proceso
de deteccién de los fotones por un detector, que es en esencia estocastico.

Para corregir estos efectos en la calidad de la reconstruccion, y en particular el de las
rotaciones incontroladas del cristal, se propone una modificacién del algoritmo, sustituyendo la
FT en 3D por una serie de FTs en 2D, segtin el Fourier Slice Theorem. Sin embargo, no se han
procesado los datos a través de un algoritmo, por lo que se ha estudiado esta herramienta para
invertir los datos y observar la imagen que un algoritmo que la utilice podria, potencialmente,

reconstruir.

Se muestra entonces la evolucién, tanto de la correlacién entre el objeto original y el objeto
recuperado por FT en 3D y por FT en 2D mediante el Fourier Slice Theorem, para diferentes
grados de jittering, como de las distribuciones obtenidas del objeto invertido en el espacio real.
Esto demuestra la necesidad de introducir este nuevo enfoque de la F'T en 2D, asi como de extraer
las conclusiones adecuadas, prestando atencién a los pardmetros obtenidos numéricamente y a

las graficas de los objetos.

Por dltimo, en la Seccién [f] se concluye el trabajo realizado, tratando de explicar los arte-
factos que aparecen en las imédgenes obtenidas de los objetos en relacién a las limitaciones del
algoritmo utilizado. Ademas, también se proponen lineas de trabajo futuro, continuando con el
trabajo que se ha llevado a cabo.
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1 Introduction

One of the most revolutionary developments that the X-ray science community has wit-
nessed over the past two decades is coherent diffractive imaging (CDI), a new approach to X-ray
crystallography that enables structure determination of noncrystalline specimens and nanocrys-
tals with a resolution limited only by the spatial frequency of the diffracted waves. It emerged
from the realization that finely sampled (“oversampled”) diffraction patterns (DP) can be in-
verted to obtain real space images [1].

Unlike traditional microscopy, where a lens is used to collect the light scattered by a sample
and thereby recover an image, CDI avoids the physical and geometrical limitations that lenses
introduce by illuminating an object with a coherent laser-like beam and collecting the scattered
light on a detector. Just because no optics is inserted between the sample and the detector,
CDI represents the most photon-efficient X-ray imaging modality. CDI is ideally suited for non-
destructive, quantitative 3D characterization of materials at the nanoscale: X-rays have a larger
penetration depth than electrons, so that destructive sample preparation can often be avoided.
Also, CDI can extract the mass density and thus distinguish different phases in materials in three
dimensions. Furthermore, it enables nanoscale chemical, elemental, and magnetic mapping of
complex matter, allowing the internal structure of crystals and their irregular morphology to
be seen. In biological applications, CDI offers three distinctive features: it can image entire
cells without sectioning due to high X-ray penetration, utilizes the intrinsic density phase shift
(contrast) for detailed 3D imaging of cells and organelles, and achieves high resolution (in the
range of nanometers) as it is limited only by the spatial frequency of the diffracted waves, rather
than by lens limitations [2, 3.

Nanocrystal

Figure 1: Schematic layout of Bragg CDI: A coherent X-ray beam illuminating a nanocrystal
and its diffraction pattern surrounding a Bragg peak. Figure extracted from [2].

In this work, we will focus on an implementation of CDI which serves to visualize individual
3D crystalline objects and which is called Bragg CDI (BCDI), as shown in Figure. It consists in
performing a CDI experiment in Bragg geometry (see Panel a) of Figure : this is, to illuminate
with a coherent X-ray beam (i.e. a plane wave in the first approximation) an individual crystal
such that the incident and exit directions of the beam, k; and ks respectively, match the “Bragg
condition”. This happens when the momentum transfer, defined as Q = k¢ — kj, points at a
specific Bragg peak associated to a specific family of planes within the crystal, that we label
with the Miller indexes (HKL). In that case, the intensity registered in the detector corresponds
to a cut through the intensity distribution around that Bragg peak (see Panel b) of Figure .
Then, to gather 3D structural information, we need to perform a “rocking curve scan”. This
consists in rocking the sample (i.e. slightly change the orientation of the crystal) with respect to



the incoming beam direction such that we register with the detector a series of parallel cuts of
intensity around the 3D Bragg peak (see Panel c) of Figure . The rocking curve scan yields a
3D data set which can be finally processed by a numerical algorithm to obtain a reconstruction
of the crystalline system.
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Figure 2: Schematics to illustrate the basic concepts of Bragg CDI: a) Bragg geometry
measurements, b) “Bragg condition” and c) rocking curve. Figure extracted from [4].

Then, the image is recovered through the numerical processing of the data set, which exploits
the fact that the complex diffracted wave is proportional to the Fourier Transform (FT) of the
electron density of the object. Note that a necessary condition for this to occur is to have a
coherent beam, hence the importance of this factor. However, since only the intensity, that
is, the magnitude squared of the FT, can be measured by a detector, the phase information is
lost. This loss leads to the phase problem, where the missing phase information complicates the
reconstruction of an image from a diffraction pattern. If the complex-valued distribution of the
scattered wavefront was available, a simple inverse F'T could yield the exact sample distribution.
In reality, though, only the intensity distribution can be measured, which provides only the
amplitude distribution of the scattered wave. Despite this, the missing phase distribution of
the scattered wave and thus the complete wavefront can be retrieved through an algorithm, as
long as the acquired intensity distribution is sufficiently fine-sampled (“oversampled”, we will
develop this concept further below) [5].

Phase retrieval algorithms operate by iteratively switching between real space and reciprocal
space. In each cycle, different constraints are applied to a guessed object, such as support,

positivity (indicating that electron density cannot be negative) or partially overlapping regions,



are applied in real space, while the measured Fourier magnitude is used as a constraint in
reciprocal space. Typically, after several hundred to thousands of iterations, the guessed object
is refined until its corresponding diffraction pattern is congruent with the experimental one and
then, we consider that the accurate phase information has been recovered, as will be explained
in detail in Section [3l

However, the success of the data-processing stage depends not only on the convergence
properties of algorithms but also on a foundational body of theory that establishes the feasibility
of reconstructions. In 1952, David Sayre, influenced by Shannon’s sampling theorem [6], wrote
a brief paper [7] recognized as the first to propose the concept of diffractive imaging. In essence,
he was the first to associate a periodical function together with its Fourier transform and the
spectra in the frequency domain to a crystal and the diffracted intensity in the reciprocal field.

Nevertheless, these algorithms have some limitations. In the time frame over which an
individual rocking curve is measured, the sample is assumed to be static: i.e. nor its internal
structure, nor its morphology change. In addition, the object should not rotate during the
rocking curve, such that we can assume that the detector planes measure, in fact, a series of
2D planes on a regular grid (i.e. they are equispaced). However, in a experiment, the static
object constraint cannot always be ensured, leading to reconstruction problems. Throughout
this work we will show how phase retrieval algorithms work in the ideal case, but also the
problems that can be faced in the aforementioned real situations and some strategies will be

proposed to overcome them.

This work is divided in four sections:

e First of all, the theoretical framework is described. We will begin explaining the mathe-
matical concepts of the Discrete Fourier Transform and the Fast Fourier Transform, em-
phasizing the need for such an algorithm. Once these concepts have been introduced, they
will be connected to the CDI theory and the phase problem will be explained, as well as the
constraints that its solution requires. Afterwards, the standard phase retrieval algorithms
will be described, as well as how they apply these constraints. Finally we will discuss the
limitations of these algorithms, specially in the context of real experiments, and the need
for new strategies based on the Fourier slice theorem.

e In second place, we will demonstrate the ability of standard reconstruction algorithms,
to retrieve the shape and the internal structure (i.e. the modulus and phase) of an ideal
cubic crystal. For this, we will simulate the diffracted intensity produced by that sam-
ple and measured over the course of a rocking curve scan and we will invert it with an
algorithm implemented to recover the original crystal. This proposed algorithm consists
of a combination of three standard algorithms used for phase retrieval: Error-Reduction,
Hybrid-Input-Output and Shrink-Wrap. The step-by-step evolution of the object through-
out the algorithm will be presented, as well as the progression of the error metric, showing
the effects of each of the series.

o Lastly, we will illustrate the limitations of the previous algorithm based on the 3D Fourier
transform in a more realistic experiment where the simulated crystal is rotated with respect
to the incoming beam. In this case, the need of a different algorithm, based on the Fourier
Slice Theorem is explained and applied, and its effect on data inversion was compared to
the 3D IFFT previously employed.



2 Theoretical framework

2.1 Discrete Fourier Transform

The discrete Fourier Transform transforms a set of N complex numbers {z,} = xq,
x1,...,xN—1 into another set of complex numbers, {X;} = X, X1,..., Xny_1, making use
of exponentials as will be seen [§]. Due to the periodicity of these exponentials, the most ap-
propriate context to develop this theory is that of periodic sequences. Thus, we define the

following:
Definition 2.1.1. A sequence of complex numbers a = {an}nez is said to be N-periodic if

Gn+N = Gn, Vn € Z.

Definition 2.1.2. Given an N-periodic sequence b = {b,}nez, we call the discrete
Fourier Transform (N) of b the sequence with coefficients

N-1 N
k=Y bue PN = 3y e PN ke, (1)
n=0 n=1
where {j1,...,JN} is any system of representatives modulo N.

Let us note two things: first, that indeed the sum does not depend on the choice of the
system of representatives and second, that the sequence ¢ thus defined is also N-periodic and it
suffices therefore to know it in IV indices forming a system of representatives modulo N. Both
facts are due to the periodicity of the exponentials. Now, the orthogonality of the exponentials
proves the following result.

Theorem 2.1.3. The discrete Fourier transform N b — c¢ is a bijection in the set of
N -periodic complex sequences. Moreover, the inverse application — discrete inverse Fourier
transform — is the application given by

1 & 2min £ 1 & 2mijn £
bk:Nche N:Nchne "N, keZ (2)
n=0 n=1
with {j1,...,jN} any system of representatives modulo N.

Due to the definition based on sequences, the discrete Fourier transform has also a clear

continuity property.

In practice, it is very simple in any calculation program to perform these operations which
are only addition and multiplication. However, the following problem arises: if N is very large,
many operations need to be performed; so many, that most of the results could not be computed.
Since most applications require dealing with a large amount of data, this problem was solved
with the appearance of the Fast Fourier transform.

2.1.1 The Fast Fourier Transform algorithm

It was thanks to J.W. Cooley and J.W. Tukey, who designed in 1965 the Fast Fourier
Transform (FFT) algorithm, that the number of operations was reduced significantly and Fourier
theory could be applied to signal processing. In fact, Matlab performs the discrete Fourier



Transform via the Fast Fourier Transform with the command fft, hence the interest in this

algorithm.

Let us examine this more carefully by estimating the number of operations that have to be
performed, as a function of N, to compute a Fourier Transform. Let us set N = N and data
bo,b1,...,by—1. How many additions and multiplications must be computed to obtain the ¢
coefficients? If we denote wy = e 2™/N_ N — 2 multiplications need to be done to have all
the N-th roots of unity (thus all the exponentials involved have been calculated, although in
disorder). Then, for each coefficient c;, N multiplications have to be done and to find the sum
of N summands we have to do N — 1 additions. Note that this is the maximum number of
operations, according to the zeros that we had we could save many. Then, we can conclude
that calling oper(/N) to the total number of operations required for the calculation of all the
coefficients c¢y:

oper(N) < (N —2)+ N(N +N —1) =2N% -2 = O(N?). (3)

In this context arose the FFT algorithm, to try to reduce this amount. The algorithm is
based on the following idea: let us call b = (bg,b1,...,by—1) and change the ¢; in the notation
by cév(b) to express the dependence of N and b. If N is even, i.e., N = 2M, we decompose the
vector b of length 2M into two vectors, those of even coordinates and those of odd coordinates,
and denote them by and by, respectively. The crucial point is that wy; = w%M (due to basic
properties of the exponential), since we can then write, for each j between 0 and 2M — 1:

2M—1 M-1 ) 1
Z banM = Z bgleM + Z b2m+1w2§wm+ )

=0 m=0

M-1
Z bowy + wang Z bom41w}]
1=0

That is, we proved that:

AM(b) = cM(bo) + M (b1) - why, j=0,....,2M —1 (4)

Notice that we considered that when j exceeds M:

¢} (bo) = ¢jy1(bo), ¢} (b1) = ¢}fy;(ba), (5)
using the periodicity of the discrete Fourier transform.

Let us now see how many operations (at most) are needed to calculate ¢ (b) using this
new expression. To compute the coefficients for the vectors bg and by, we need 2 x oper(M).
Moreover, for the exponentials wfg, j=1,...,2M, we need 2M operations and to find each
C?M (b), one multiplication and one addition. That is, for all of them, we need 2 x 2M = 4M
operations. Thus, we conclude that

oper(2M) < 2oper(M) + 6M, VM € N. (6)

In particular, this procedure will be optimal when N is a power of 2, as the data vector b
can be subdivided into blocks of two until we reach 2, obtaining then the following result:



Proposition 2.1.4. If N = 2P with p € N, then
oper(N) < 4-2Pp = 4N logy(N),
which gives
oper(N) = O(N log N).

Proof. We will prove it by induction on p. For p = 1, we only have two coefficients, and it is
easy to see that only 4 operations are needed, which is less than 6. Assuming the bound is true
for p, using @, we have:

(*
~~
oper(2PT1) < 2oper(2P) 4+ 6- 2P < 2oper(2P) + 8- 2P <
<2x4-2Pp+8-2°0 =427 (p 4 1) =4 2P og, (2PT1)

~

Where the inequality in (*) simply adds the operations due to a normalization factor to consider

the maximum number of possible operations. ]

Note that the reduction of operations is drastic. In particular, for p = 10, N = 210 = 1024,
as will be our case, the number of operations drops from about one million operations (N2 + N)
to only 40 000. That is, the proportion of operations we do less of increases exponentially with p.

2.2 Addressing the uniqueness of the phase problem: constraints

Sampling is the process of converting a signal into a sequence of values. Ever since this
concept appeared in communication science, setting the rate at which the signal is univocally
determined and distortion is avoided, has always been one of the main limitations in the field.
Shannon laid the basis of this theory formulating the following theorem [6]:

Theorem 2.2.1. If a function f(t) contains no frequencies higher than W Hz, it is com-
pletely determined by giving its ordinates at a series of points spaced 1/2W seconds apart.

This is commonly referred to as the Nyquist-Shannon theorem, where the threshold 2W is
called the Nyquist rate. That is, at least twice the frequency of the sample needs to be measured

in order to be able to retrieve the function correctly.

A few years later, Sayre, inspired by Shannon’s sampling theorem, laid the groundwork for
diffractive imaging in a half-page paper [7] . In it, Sayre sets out the sampling requirements in
a crystallographic environment to directly reconstruct electron density from intensity measure-
ments alone, making similarities of a periodic function with a crystal. Both works led to the
development of the CDI theory as we know it today, which is explained below.

-,

Given the density of an object f(&), its Fourier transform F'(k) is given by:

- 0 —

F(F) = / F(@)exp(=2mik - 7)dF (7)
— o0

where ¥ = (1,22, 23), the spatial coordinates in real space, and k= (k1, k2, k3), the spatial-

frequency coordinates in Fourier space. In practice, we approximate the object (&) and the

-,

Fourier space (k) by arrays. That is, we discretize the FT by using the conventional sampling,

getting:
N-1

F(k)= " f(@exp(—2mik - Z/N) (8)

=0



where # and k stand for pixels that range in each dimension from 0 to N — 1.

Moreover, the Fourier Transform (FT) not only connects the object and its associated
diffraction pattern, but also the real space itself with the reciprocal space. The spatial resolution
in reciprocal space (dk) is obtained from the size of the reticle in direct space (D). What is
more, the size of the reticle in reciprocal space (Dyep) is related to the resolution in direct space
(0x), as defined in Equations @ and , the so called reciprocal relationships.

2

ok =25 9)
2T

Dyep = 5o (10)

Therefore, increasing the size of the reticle in direct space (D) implies decreasing the pixel
size in reciprocal space (%r); that is, improving spatial resolution in frequency space. Likewise,
decreasing the pixel size in direct space () we increase the reticle size in reciprocal space (57 ).
Or in other words, improving the spatial resolution in real space requires to increase the reticle

size (equivalent to the rocking curve size) in reciprocal space.

As introduced before, only the intensity -represented by the magnitude of the Fourier
transform- can be experimentally measured, so the data taken correspond to the following set

of equations:
2

L2 (Nl .
[=|F@®)| = |3 F@exp(~2mik - T/N) (11)
=0

Hence, the phase problem consists in finding the modulus and the phase for f(Z) at each pixel.

We will then discuss Equation under two conditions [9]:
o First, we assume that f(Z) is complex valued, which is its proper form. For a 1D object

the total number of equations is IV, but the total number of unknown variables is 2N, since
each pixel has real and imaginary part. For 2D and 3D, the total number of equations is
N2 and N3, and the total number of unknown variables is 2N? and 2N3, respectively.

» Second, we consider f (&) real, which is how we are able to measure, and therefore determine
F(R)|,
has central symmetry. Therefore, for a 1D real object, the number of equations reduces

it at first. According to Friedel’s la , the magnitude of its Fourier transform,

to N/2, while the number of unknown variables remains N. In the case of 2D and 3D real
objects, the total number of equations becomes N2/2 and N?3/2, respectively, with the

total number of unknown variables being N2 and N3 in each case.

Based on the above analysis, it is suggested that, given the magnitude of a Fourier transform,
the phase problem is underdetermined by a factor of 2 for 1D, 2D, and 3D objects, instead of
factors of 4 and 8 for 2D and 3D objects, as one might think at first. This issue compromises
the uniqueness of the solution to Equation (11)) which is produced by the algorithm. Thus, in
order to solve the phase problem, a necessary condition is that the number of unknowns and
the number of equations must be equal. To achieve so, some constraints need to be introduced
to simplify the problem, that will be described mathematically. Constraints can be applied in
both real and reciprocal space, as will be detailed.

'Friedel’s law is a property of Fourier transforms of real functions that states that given a real function f(&),
its Fourier transform F(k) has the following property: F(k) = F*(—Fk), that is: |F (k)| = |F(—k)|, which means
that Bragg reflections related by inversion through the origin have equal amplitude.



Constraints in reciprocal space

To determine the necessary number of known pixels with in f(Z) to solve Equation ,
we define the concept of sampling ratio o as follows [9]:

total pixel number
o= - (12)
unknown valued-pixel number

where the unknown-valued pixels are to be solved for.

Since the phase problem is under-determined by a factor of 2, the equations should have
a unique solution as long as o > 2, as was introduced above. Hence the strategy to increase
the number of the number of equations (the total number of pixels) is to use the oversampling
method. This technique involves sampling the magnitude of the FT (in the reciprocal space)

finely enough to ensure o > 2.

Particularizing for a square object, as in our case or study, in each dimension, the oversam-
pling condition is expressed as:
o >2tn (13)

where n is the total number of dimensions. This requirement corresponds to the oversampling
by o > 2 for a 1D object, o > 2%/2 in each dimension for a 2D object, and ¢ > 23 in
each dimension for a 3D object. Interestingly, the oversampling requirement per dimension is
lower for 3D objects compared to 2D objects. It has been demonstrated that for 1D signals, no
unique solution to the problem of recovering a signal from the amplitude of its Fourier transform
exists [l 10].

Therefore, to maintain an oversampling ratio of o > 2 we should ensure that in the reciprocal
space there are at least 2 detector pixels (0k) across the width of each intensity fringe (Ak) in
the diffraction pattern measured:

Ak
— >
= > 2 (14)

Constraints in real space

This case correspond to constraints applied on the object itself. In particular, the zero-
padding and the positivity constraint will be explained [9]. These have a particularly important
role in the case of loose supports. That is, supports larger than the real size of the object, that
need to be updated upon the iterations of the algorithm, to adjust eventually to the object.

The first approach to be examined is to decrease the number of unknown variables by
using objects that contain some pixels with known values, in particular zero valued. This
consists in padding the object distribution (unknown-valued pixels) with known valued pixels
(as zeropadding) in the object domain, automatically leading to oversampling of the signal

spectrum in the Fourier domain, which is the main goal.

Secondly, although each equation in the set presents two possible solutions due to the
modulus, the positivity constraint remove one of the two, as explained below. For complex-
valued objects, as occurs in the case of X-ray diffraction, the complex-valued object intensity
can be expressed by p = A - e'®, where the amplitude A is related to the electronic density
(typically A > 0), and the phase ¢ contains information about structural distortions in the
crystalline lattice (always positive for ordinary matter). Consequently, it has been proposed



that the positivity constraints on the imaginary part of complex-valued objects can generally
be employed as internal constraints for phase retrieval. That is, for X-ray diffraction, our field
of interest, it is sufficient to select the positive solution of Equation (11) and disregard the

negative one.

2.3 Algorithms: a description

A coherent beam implies a FT between real and reciprocal space. Based on the FT and
its inverse, we have two fundamental tools to move between the object p in real space and the
diffracted field ¥ in the reciprocal space:

o Forward problem: ¥ = F[p]

o Inverse problem: p = F~1[¥]

where F' stands for the FT operator.

A particularly successful approach to solving these problems is the use of optimization
algorithms which seek for the object p which minimizes an error metric defined as:

(= |\1/|>2, (15)

where Iy, is the set of experimental diffraction patterns measured in the rocking curve and ||
is the modulus of the diffracted wavefield calculated from the guessed p.

These are iterative tools that begin with an initial guess of the optimal values of the vari-
ables and generate a sequence of improved estimates until they reach the global minimum of
€2, compatible with the level of noise with which the experimental data have been measured.
The strategy used to move from one iterate to the next is what distinguishes one algorithm
from another. In our case, algorithms involve iterative Fourier transformation back and forth
between the object and Fourier domains and the application of aforementioned constraints in
each domain. There are various sorting strategies to update the object during the algorithm
iterations, such as Error reduction [I1], Hybrid-Input-Output [11] and Shrink-Wrap [12], as will

be described .

Error reduction (ER)

The Gerchberg-Saxton algorithm was originally invented in connection with the problem
of reconstructing the phase from two intensity measurements acquired in two different planes.
Typically, the two planes are the image plane and the diffraction plane, and the wavefront
propagation between these two planes is given by the Fourier Transform. However, in CDI, only
one intensity measurement is available — the diffraction pattern, and some a priori information
about the object distribution is known. Exploiting these facts, the algorithm consists of the four
simple steps detailed in the scheme in Figure

In this approach, the method simply transforms back and forth between the two domains,
ensuring that constraints are met in one domain before returning to the other. This adaptation
of the Gerchberg-Saxton algorithm is known as the Error-Reduction (ER) algorithm, as the error
(as defined in ) decreases with each iteration, it can only be the same or less than the error



at the previous iteration. The process repeats until the computed FT fulfills the Fourier-domain

constraints, or the generated image meets the object-domain constraints.

D ¢ S F|- | %GZ‘G’@M A
(4) SATISFY FUNCTION SATISFY FOURIER 2)
CONSTRAINTS CONSTRAINTS

| |

C g—F Y |f—— G =|Fl¢* B

(3)

Figure 3: Block diagram of the ER (Gerchberg-Saxton) algorithm, containing the following
four steps: (1) Fourier transform an estimate of the object, (2) replace the modulus of the

resulting computed F'T with the measured Fourier modulus to form an estimate of the FT,
(3) inverse Fourier transform the estimate of the FT and (4) replace the modulus of the
resulting computed image with the measured object modulus to form a new estimate of
the object satisfying the object-domain constraints. The letters A, B, C and D denote the
results after steps (1), (2), (3) and (4), respectively. Adapted from [IT].

That is, the fourth step of the ER algorithm reduces to Equation :

g,(x), = ¢,
grpi(@) =" (16)
0, T € 7,

where + is the set of points at which g; (z) violates the object-domain constraints.

At this point, the solution —a Fourier transform pair that meets constraints in both do-
mains— is achieved. Convergence is typically monitored by evaluating €2 (see Eq. .

A notable limitation of this algorithm, however, is its relatively slow convergence. While
error reduction is significant over the initial thirty iterations, it then slows considerably, ap-
proaching a plateau with minimal additional decrease. Moreover, another important limitation

is the stagnation in local minima, this is why HIO had been introduced.
Hybrid-Input-Output (HIO)

A solution to the problem of the slow convergence of the ER algorithm has been the Input-
Output (IO) algorithm, which has proved to converge faster for the problem of one intensity
measurement. The IO algorithm differs from the ER algorithm only in the object-domain
operation. The first three operations are the same for both algorithms -as can be seen in the
algorithm scheme in Figure [4}, which can be thought of as a nonlinear system having an input
g(x) and an output ¢’(x). A key property of this system is that its output always produces an
image with a Fourier transform satisfying the required Fourier-domain constraints.

10
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Figure 4: Block diagram of the system for the HIO concept, containing the following steps.
The first three operations are the same as in the ER algorithm: Fourier transforming the
object g(x), satisfying the Fourier-domain constraints and inverse Fourier transforming the
result to get ¢'(x). However, in this case, the input g(x) no longer must be thought of as the
current best estimate of the object, but as the driving function for the next output g'(x),
which provides some freedom in defining an algorithm that converges more rapidly to the
solution. Adapted from [I1J.

In the IO algorithms, the input for the next iteration g(x) does not necessarily satisfy the
object-domain constraints. This idea provides substantial flexibility in choosing the subsequent
input, paving the way for developing algorithms that converge more rapidly to a solution. In
particular, even though the 10 algorithm is actually a class of algorithms, we will focus on the
Hybrid-Input-Output (HIO) algorithms, described as follows:

9k (), z ¢,

(17)
gr(z) — By (), €7,

Irv1(z) =

where ~ is defined as in and the feedback parameter S is a constant to be determined to
damp the application of the support constraint. Feedback allows for the pixels to be updated
both within and outside the support (in a certain range). This prevents the algorithm from
getting trapped in a local minimum of the error metric. Typically, 8 = 0.9 is selected.

In this algorithm, we exploit the above mentioned property of the nonlinear system that if
an output ¢’ is used as an input, its output will be itself, since the FT of ¢’ already satisfies the
Fourier-domain constraints. On the other hand, where the constraints are violated, the desired
change of the output, in order for it to satisfy the object-domain constraints, is one that drives
it to a value of zero, and therefore, the negative of the output at those points.

Shrink-Wrap

The Shrink-Wrap (SW) algorithm is a further modification of the ER algorithm, periodically
updating the object support in step (4) -Figure |3} during the iterative reconstruction process
at each 20-th iteration. Over time, this adjustment enables the object support to closely match
the true shape of the object distribution, ultimately achieving a “tight support”.

The innovation proposed is the simple but powerful use of the current estimate of the object
to determine the support constraint. Through the standard process of the ER algorithm, this
refined support constraint further enhances the object estimate. What is more, we find that this

11



method is very stable and converges to the correct support and object for both simulated and

experimental X-ray-diffraction data.

2.4 Limitations of standard algorithms and how to address them

As was introduced in Section [I] when the rocking curve was defined, there is one common
assumption in all these algorithms, which is that the objects are static in the time frame over

which an individual rocking curve is measured.

However, when measuring experimentally in the laboratory, it is common to have a non-
regular sampling of the intensity (the sampling in the rocking curve direction is not performed
over a regular angular grid) or a non-static object (objects whose morphology or internal struc-

ture change during the rocking curve measurement).

These situations can occur, for example, when a stationary incident beam illuminates a
sample undergoing uncontrolled rotation (as in high-temperature experiments) or imprecise
experimental stages, difficult-to-stabilize sample environments or, even, to the torque exerted
by the x-ray beam on the sample (the so called radiation pressure). All these non-expected
processes lead to a detrimental effect of the angular positioning error of the sample. However,
they only will be noticeable when they are at levels commensurate with goniometer uncertainties,

that is, the angular resolution we are able to measure experimentally.

To address these challenges we need to change the implementation of the Fourier Transform
at the core of the reconstruction algorithm. This is to substitute the 3D FT by a series of 2D
FT as done in the Fourier Slice Theorem.

2.4.1 The Fourier Slice Theorem

The Fourier Slice Theorem (also known as the Fourier Projection-Slice Theorem), discovered
by Bracewell in the context of radio astronomy [I3] is formulated in its classical version as
follows [14]:

Theorem 2.4.1. (Projection-Slice Theorem) Let F'(u,v) be the Fourier Transform of
the function f(x,y). Then, the Fourier Transform of the projection of f(x,y) in the direction 0

is equal to the slice through F(u,v) in the corresponding direction.

This theorem thus states that a 1D slice of a 2D function’s Fourier spectrum is the Fourier
transform of the projection of the 2D function, and is the theoretical foundation of many medical
imaging techniques. Conceptually, the theorem works because the value at the origin of frequency
space gives the integrated value of the signal, and rotations do not fundamentally change this
fact. The theorem works for jittering and shearing operations as well as rotations, since shearing
a space is equivalent to rotating and dilating the space. From this perspective, it makes sense
that the theorem generalizes to higher dimensions. In particular, throughout this work the
projection in 2D of a 3D function will be employed.

12



3 Reconstruction of an ideal cubic crystal using standard

algorithms

As a first result and approximation to reality, we implemented an algorithm based on the
ones described in Section 2] To test the performance of the algorithm and study its conver-
gence behavior, an ideally static three dimensional crystal was simulated, its corresponding
3D diffraction pattern was calculated and inverted with that algorithm. Section [3.1] describes
how the crystal was created together with its associate 3D diffraction pattern and Section [3.2]
describes the algorithm and its implementation.

3.1 Code to simulate the cubic crystal

The simulation of the crystal was performed using MATLAB and own functions [I5]. The
chosen space was a cube of side 128 pixels, in which the cubic crystal p was defined. Note that a
power of 2 has been chosen as the array size, given the importance of what was above explained
in Section [2.1.1] regarding the FFT algorithm.

While the whole space was defined as a grid of zeros of the mentioned size, a cubical grid
of side 21 pixels with ones was defined in its center, as is presented in Figure representing
the ideal crystal. Moreover, Figure shows the diffraction pattern associated with the cube.
That is, the intensity that would be measured from that sample, and the only data we have
available to process and retrieve the amplitude and the phase of the signal in the original sample.
This diffraction pattern, as was previously explained in Section [2| was computed by performing
the Fourier transform to the simulated data and obtaining its square modulus, |F(p)[?. As a
result, note that the maxima in real space, with a value of 1, correspond to a value of 27 in the
reciprocal space. We refer to this simulation as “ideal” since neither Poisson noise nor rotations

or undesirable defects in the measurements are being introduced.
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Figure 5: Simulated cubic grid of 128 pixels with a 3D cubic crystal of 21 pixels of side in
its center. Views of the three main planes in (a) the real space and (b) the reciprocal space.
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3.2 Implementation of the proposed algorithm

As was introduced in Section [2 although many phase retrieval algorithms have been de-
veloped, the two most commonly used are the ER and HIO algorithms. The most common
practice for CDI phase retrieval is to alternate between both, while periodically updating the
support via the SW method. In this work we will also make use of this combination, based
on the one implemented in reference [I5]. In addition, the evolution of the error metric (see
Eq. is monitored over the course of the iterations, since it is the parameter which quantifies
the degree of congruence between the retrieved object and its diffraction pattern and the experi-
mental measurements. In definitive, it quantifies the convergence behavior of the algorithm and
establishes a number of iterations beyond which the reconstruction won’t be improved. This
happens when the error metric has reached its global minimum.

The algorithm consists in a total of 560 iterations, organized as shown in Table |1, These
include five cycles of ER + HIO, in which the support is updated in the middle of each ER
sequence via SW, ending with 200 ER iterations to ensure the error metric reaches its lowest
point. Nevertheless, the exact number of iterations was fixed experimentally, by performing

numerous tests and observing the evolution of the results for the different cases.

ER | 20-SW-20 | 20-SW-20 | 20-SW-20 | 20-SW-20 | 20-SW-20 | 200
HIO 20 20 20 50 50

Table 1: Iteration steps for the combined algorithm, consisting of five cycles of ER-HIO
and 200 ER iterations at the end. Note that in the middle of every ER series the support
is updated via SW.

As explained in Section the ER algorithm is most efficient during its first 20-30 it-
erations, which is why it is used sparingly. Additionally, as detailed for the SW, it is applied
every 20th ER iteration, hence the chosen cycle structure. Regarding the HIO algorithm, while
it temporarily increases the error metric, it produces a better object estimate, allowing for the
subsequent ER series to reduce the error metric more effectively. The number of iterations also
increases in the final two cycles. Observing the progression of the error metric (like the one
presented in Figure@, it becomes evident that as the error metric decreases, the HIO algorithm
requires more iterations to stabilize. Finally, the algorithm concludes with a series of 200 ER
iterations. Although the most significant reduction in the error metric occurs during the first
20 iterations, improvements continue steadily throughout the entire series.

Since there is a noticeable variability in the quality of the final reconstruction, we followed
the procedure used in [I6]: we repeated the ER/HIO/SW cycle 10 times and we chose the
reconstructed object and the support yielding the lowest error metric as the final reconstruction.
This error metric is presented in Figure [6] in which the different stages of the algorithm have
been pointed out. The final error metric €2 obtained was 0.138, as seen in the graph.

Although it is not the minimum error metric that can be obtained with this type of al-
gorithm, we can be satisfied with the result, given the initial point. Starting from a better
estimation of the object (and thus a lower value of the error metric), the algorithm would be
able to decrease the minimum value of the error metric much more, as expected. Notice also
that given our object and the initial conditions that are provided, increasing the number of
iterations does not lead to a better final result but to a probable stagnation in a local minimum,

14



as was observed in several trials. Hence the reason of the “low” number of iterations in the
whole algorithm, since computational time in this case was not an issue, the algorithm did not

take more than a few minutes to proceed.
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Figure 6: Evolution of the error metric over the cycles of standard ER/HIO/SW algorithms.
The error metric achieved after the 560 iterations was ¢2 = 0.138.

As emphasized in the previous sections, our final goal is to recover the amplitude and phase
of the sample that is being measured. Since the last step of the algorithm is a series of ER
iterations (Table , the evolution throughout the last iteration was displayed in order to show
the effect of the algorithm, as well as the reached final result. Recalling the scheme of the ER
algorithm presented in Figure [3] the results A, B, C and D after each of the steps were plotted.
The result is presented in Figure[7]and it shows all the features of the algorithm aforementioned
in Section[2.3] allowing for a deep understanding and summarizing the effect of the algorithm in a
very clear way, showing the outcome in the final result. Taking advantage of the cubic symmetry
of the system, only one of the three planes is presented as the amplitude of the system.

Before explaining all the phases in detail, it is worth noting that steps A and B belong to
the reciprocal space, thus they have a diffraction pattern in the amplitude map. On the other
hand, C and D belong to the real space, so the amplitude in this case in fact matches the shape
of the object. In the first row, A is displayed, obtained by applying a F'T to the object obtained
from the previous iteration, thus it is complex. Since we are only measuring the intensity, the
diffraction pattern on its right consists of a distribution around the Bragg peak, where the phase

remains a random grid between —7 and 7.

In the following step of the algorithm, Fourier constraints are applied, so in B the amplitude

is updated, whereas the phase remains as before.

Subsequently, an inverse F'T is applied to the estimate of the object and C is obtained. In
the first plot of the third row, both the support (in the yellow shadow) and C (in green) are
plotted, where it can be appreciated the slightly different sizes of both. The plot next to it
depicts the support, a grid full of zeroes with a cube in its center that clearly shows the goal
of this tool, a binary filter to delimit the size of the object. With respect to the angle of C,
although it is still not well defined due to the phase problem (the phase is not unique after only
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applying an inverse FT), the cubic shape of the object is already distinguishable.
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Figure 7: Evolution of the amplitude (shown as abs(-)) and the phase (angle(-)) of the re-
constructed object and diffraction pattern throughout the last iteration of the ER algorithm
series. The results A, B, C and D, defined as in Figure[3 are plotted. Note that steps A
and B belong to the reciprocal space, thus the Bragg peak in the amplitude map. On the
other hand, C and D belong to the real space, so the amplitude in fact matches the cubic
shape of the original object that we are trying to reconstruct.

Lastly, after applying the function constraints using the support, the final object is recov-
ered. The shape of D now matches the one of C but having expanded it to cover the whole
support volume. With respect to the amplitude, now it in fact matches the cubic original shape
of the object we are trying to reconstruct: a grid full of zeroes, corresponding to the empty
space, with a smaller cube in the center of amplitude one, as was defined initially. Regarding
the phase, now it is also a grid full of zeroes, corresponding to the empty space, with a smaller
cube in the center of a random grid between —7 and m, as was expected.

All in all, although the cube is not perfectly sharp at the edges, we can be more than
satisfied with the obtained reconstruction of the object, given the limitations of the algorithm.
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4 Reconstruction of a shear artifact using the Fourier Slice

Theorem

Once we have evaluated the quality of the reconstruction on a simplified experiment (see
previous section), we can evaluate the quality of the reconstruction in an experiment closer to
reality. To simulate a more realistic experiment, we rotate the crystalline cube with respect to
the incident angle direction in an angle 6. As we will see, the standard algorithm, based on a 3D
FT, introduces systematically a shear artifact in the reconstructed object. To correct for this
effect, we will propose a modification of the algorithm where we will substitute the 3D FT by a
series of 2D FTs, according to the Fourier Slice Theorem. Finally, to push further the limits of
the algorithm performance in realistic experiments, we will include an angular uncertainty (that
we call jitter) to simulate uncontrolled rotations of the crystal during the measurements. By
varying the degree of jittering (i.e. the level of angular perturbation), we will quantify the extent
of artifacts introduced in the reconstruction during an experiment taken in realistic conditions

(e.g. measurements of rocking curves during crystal annealing).

Section[d.]describes how the crystal was created and what scattering geometry was adopted.
Section [4.2] compares the effect of a 3D FT versus a series of 2D FT (Fourier Slice Theorem) on
the inversion of this realistic rocking curve scan. Note that in this section we do not process the
data through an algorithm, we only use the Fourier Transformation in different ways to observe
the object which would be virtually obtained.

4.1 Code to simulate a realistic experiment

As performed above in Section the simulation of the Bragg CDI experiment on a cubic
crystal was carried out performed using MATLAB and own functions [I5]. Once again, the
chosen space was a cube of side 128 pixels, in which the cubic crystal p was defined. For the
same reason as before (see Section , a power of 2 was chosen as the array size.

The whole space was defined as a grid of zeros of the mentioned size, whereas the crystal is
represented in its center by a cubical grid of side 21 pixels. In this case, a rotation at an angle
of 8 = 26.7° with respect to the incoming beam was introduced. This allows for capturing the
Bragg reflection of crystalline planes which are perpendicular to the direction of the momentum
transfer Q, as seen in Figure [§| Then, we calculate the 3D diffracted intensity captured by the
detector in a rocking curve scan where the angular step between cuts is 66 = 0.0156°, with a
total of 256 cuts.

17



3D diffraction pattern in reciprocal space &

3D cube in real space rocking curve scan (RC)

Detector

Q direction

Figure 8: On the left panel, simulated cubic crystal of 21 pixels of size (corresponding to
2.1-107% m), rotated at an angle of § = 23.7° with respect to the horizontal plane. On
the right panel, associated 3D diffracted intensity distribution around the Bragg peak in
reciprocal space, along with its rocking curve scan. Adapted from [4].

Finally, Poisson noise was introduced in the diffraction patterns of the rocking curve in
order to reproduce more accurately the detection process, which is in essence stochastic (see
Figure E[) The major effect of the Poisson noise is the loss of information at high frequencies,
which also affects at the spatial resolution with which we can reconstruct the object.
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Figure 9: Left panel: noiseless diffracted intensity slice registered by the detector when it
cuts the center of the Bragg peak. Right panel: same cut but with Poisson noise, where a
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significant loss of information associated to high spatial frequencies is observed.

4.2 Implementation of the Fourier Slice Theorem and correction of the shear
artifact

In this case, to recover the original object, if we inverse Fourier transform with a 3D IFFT
the diffracted wave field registered by the detector plane in the rocking curve, we observe that
the resulting crystal is no longer cubic but has been distorted. In particular, it presents a shear
of its shape, as seen in Figure This shear is an artifact which arises from the tilting of the
detector planes in the rocking curve scan with respect to the direction of the Q vector, which is
not taken into account by the 3D IFFT.
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Figure 10: 3D Inverse F'T result of the rocking curve scan data set of the simulated rotated
crystal, using (a) the 3D Inverse FF'T and (b) the Slice Fourier Theorem.

Thus, to avoid the introduction of this shear artifact we need to modify the forward problem
by which we connect the direct and reciprocal space. This new forward model should describe
explicitly the wave-field at each slice, ¥;. To achieve so, we will make use of the Fourier Slice
Theorem, which enables to use a 2D Fourier transformation (Fap) that acts on a 3D — 2D

projection of the 3D object (p) modified by a multiplicative phase term as follows:

—

U = W7 A, p) = Fap { R[Q(A))]} (18)

where ¢'stands for the momentum transfer vector, A} for the phase shift term, p for the 3D object,
Fyp for the 2D Fourier Transform operator, R, for the projection operator and ) = exp(i&j - T)
for the phase term. In this expression, the essential feature is the term @, which allows for
calculating slices of ¥ corresponding to a set of arbitrary incident angles that do not need to
follow a regular pattern. This works because any given rotation of the sample away from the
Bragg angle (Af;) can be represented as a corresponding shift of the detector’s measurement
plane by a vector A} in reciprocal space, moving away from the Bragg peak [15].

4.2.1 Effect of the angular uncertainty (jitter) in the quality of the reconstruction

In this last section, we will compare the reconstruction quality that would be potentially
obtained if we were to use the standard algorithm versus the algorithm based on the new
forward problem to invert the rocking curve data sets where angular jittering has been included.
Thus, in this case we can’t properly speak about reconstruction (which would imply the use
of iterative algorithms) but simply about inversions of diffracted wave field by the means of
Fourier Transform based operations.

Finally, the level of jittering is defined as a percentage of the angular step 66 which separates
successive cuts in the rocking curve, and which in our case is of 0.0156°. By gradually changing
that level, we model different degrees of instability of the object under realistic conditions.

The quality of the inversion was quantized via the cosine similarity. This metric measures
the similarity between two vectors by calculating the cosine of the angle between them, namely:

A-B >+ b

T IAT-IBI a2 5
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where A and B are the two vectors. Here, vector A stands for the original object and vector B

is the inverted object.

Thus, this expression returns a value between -1 and 1, where a value closer to 1 indicates
greater similarity between the original and the retrieved object (or equivalently, an angle of
0 between the two vectors). The results for different percentages of jittering are presented in
Table 21

% of jitter || 3D IFFT | 2D Slice Fourier Theorem | Angular uncertainty (°)
0 0.89275 1.00000 0
1 0.89254 0.99999 1.56-10*
2 0.89265 0.99998 3.12-1074
5 0.89392 0.99969 7.80-1074
10 0.88861 0.99952 1.56-1073

Table 2: Cosine similarity between the original object and the retrieved one, via the 3D IFF'T
-first column- or the 2D Fourier Slice Theorem -second column-, and associated angular
uncertainty -third column-, for different degrees of jitter in the rocking curve data.

From the correlation results shown in the table above, one may think there is not much
difference in the obtained results; nor between the 3D IFFT and the 2D Slice Fourier Theorem,
nor among the different jittering percentages. However, if we plot the retrieved objects for all
cases, the conclusions that can be drawn are significantly different. The 3D of the retrieved
objects in all these cases are plotted in Figure

In particular, the jittering was simulated to be 1, 2, 5 and 10% of the rocking curve scan
data. Although the numerical difference in the correlation is very slight, the distortion can be
clearly noticeable as the jitter increases. In this line, it should be remembered that the ultimate
goal of this type of diffraction imaging is to recover the original object, not only to obtain a
numerical similarity to it, thus the importance of representing the data.

Moreover, for a 10% of jitter, the original object, which is a solid cube, cannot even be
recognized due to the high amount of artifacts that appear in the image. The Poisson noise
introduced, together with the jitter, make it impossible to have enough useful data. However,
this percentage of jittering is pretty high and probably not even realistic in an experimental
setup, but it is useful to display the effect of the jittering when applying the Inverse Fourier

Transform.
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Figure 11: 3D Inverse FT result of the rocking curve scan data set of the simulated rotated
crystal, using the 3D Inverse FFT and the Slice Fourier Theorem, for a certain jitter per-
centage in the rockinng curve data.
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5 Conclusions

This work presents a study of numerical algorithms used for the reconstruction of crystalline
objects measured with the microscopy technique: Bragg Coherent Diffraction Imaging. As we
have explained these algorithms make use of the properties of the Fourier Transform to extract
structural information from diffraction patterns measured in the reciprocal space arising from
the scattering of a coherent X-ray beam by a crystalline sample.

Initially, the theoretical foundations of the (Discrete) Fourier Transform were presented
and its weaknesses when implementing these operations in an algorithm, giving rise to the Fast
Fourier Transform. Then, the mathematical definition of the F'T was connected to the formalism
used in Coherent Diffraction Imaging. In this line, it was explained how the the characteristics of
the FT lead to the properties of both the real and diffracted fields, and the phase problem was
addressed, detailing the constraints it requires. Subsequently, several well-known algorithms
in phase retrieval were explained: Error-Reduction, Hybrid-Input-Output and Shrink-Wrap.
However, these algorithms have a common denominator which is the static assumption of the
object. Thus, whenever this condition is not met, this requires a new approach of the forward
problem, solved by introducing the Fourier Slice Theorem. These new algorithm strategies have
been explored in recent years and these are the ones that were examined in this work.

The first results of this work, show how an ideal crystal was simulated and recovered using
standard algorithms. In particular, an algorithm was proposed combining cycles of the three
aforementioned algorithms. An optimal series of iterations was obtained (Table , attending
to the performance and limitations of each of the algorithms individually and thus, its impact
on the evolution of the error metric. Moreover, the behavior of every step in the last iteration
was shown in order to demonstrate the effect of the implemented algorithm and the object was
retrieved successfully. However, there are some features in Figure [7] that are worth explaining.
A phase ramp, in the form of a wavy pattern can be observed both in angle(A) and angle(B),
which is most likely due to the reconstructed object being slightly displaced with respect to the
center. Indeed, the cube was simulated rounding 1/6th of the total 128 pixels, that is, with
a size of 21 pixels instead of 21.33. This slight difference is yet enough to create this artifact.
Also, the high frequencies in angle(D) (represented by the kind of checkerboard that appears)
are also probably due to that effect.

Secondly, the performance of the algorithm was evaluated when applying the algorithm
to an experiment closer to reality. In this case, the crystal was rotated with respect to the
incident angle direction and an angular uncertainty (namely jitter) was introduced. To correct
for the effect that the 3D F'T introduces in this cases, a modification of the previous algorithm
was proposed, based on the 2D Fourier Slice Theorem. This led to significant improvements in
the quality of reconstruction, as was shown. However, the numerical correlation between the
retrieved object and the original one was proved to be not enough to evaluate the goodness of
the result and so the need of 3D plotting the final object was demonstrated. Nonetheless, as
occurred before, a slight phase ramp can also be seen in the retrieved object, likely due to the
same reason as above. Moreover, it should also be taken into account that although jitter can be
corrected experimentally by trying to model the evolution of the sample over time, the Poisson
noise is intrinsic to the process of detection. Thus, it has to be introduced in the reconstruction,
even though it clearly worsens the results, being more noticeable in the cases of relatively high
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percentages of jitter.

Despite this, there is always room for improvement. The most natural way to continue this
presented work would be to implement the inverse Fourier Slice Theorem within an algorithm
in Section [3:2] That is, applying a series of 2D IFFT to a selected projection of the diffracted
spectrum every time a 3D IFFT was performed. This modification was indeed the one proposed
n [I5], but was not performed in this work due to lack of time and the difficulties encountered

in the way.

Overall, we can conclude that the results achieved have been satisfactory, given the limita-
tions of the algorithm. The robust power of the Fourier Transform was exploited with its useful
application in diffractive imaging. An ideal object was simulated, transformed to the diffractive
field, and recovered making use of an algorithm based on the FFT. Furthermore, a new strategy
was shown to solve the limitations of the prior algorithm. Though progress can still be made,
the potential of Fourier Transform based algorithms for data inversion with Coherent X-ray
microscopy has been proven.

References

[1] M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, “Three-
dimensional mapping of a deformation field inside a nanocrystal,” Nature, vol. 442, no.
7098, pp. 63-66, 2006.

[2] J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography:
Diffractive imaging using coherent X-ray light sources,” Science, vol. 348, no. 6234, pp.
530-535, 2015.

[3] I. Robinson and R. Harder, “Coherent x-ray diffraction imaging of strain at the nanoscale,”
Nature materials, vol. 8, no. 4, pp. 291-298, 2009.

[4] I. Calvo-Almazén, V. Chamard, T. Griinewald, and M. Allain, “Inhomogeneous probes for
bragg coherent diffraction imaging: Toward the imaging of dynamic and distorted crystals,”
Physical Review B, vol. 110, no. 13, p. 134117, 2024.

[5] T. Latychevskaia, “Iterative phase retrieval in coherent diffractive imaging: practical is-
sues,” Applied optics, vol. 57, no. 25, pp. 7187-7197, 2018.

[6] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE, vol. 37,
no. 1, pp. 10-21, 1949.

[7] D. Sayre, “Some implications of a theorem due to Shannon,” Acta Crystallographica, vol. 5,
no. 6, pp. 843-843, 1952.

[8] F. J. Ruiz Blasco, “Fourier analysis: Lecture notes,” Unizar.

[9] J. Miao, D. Sayre, and H. Chapman, “Phase retrieval from the magnitude of the Fourier
transforms of nonperiodic objects,” JOSA A, vol. 15, no. 6, pp. 1662-1669, 1998.

[10] E. Hofstetter, “Construction of time-limited functions with specified autocorrelation func-
tions,” IEEE Transactions on Information Theory, vol. 10, no. 2, pp. 119-126, 1964.

23



[11]

[12]

[14]

[15]

[16]

[17]

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Applied optics, vol. 21, no. 15,
pp. 2758-2769, 1982.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weier-
stall, and J. C. Spence, “X-ray image reconstruction from a diffraction pattern alone,”
Physical Review B, vol. 68, no. 14, p. 140101, 2003.

R. N. Bracewell, “Strip integration in radio astronomy,” Australian Journal of Physics,
vol. 9, no. 2, pp. 198-217, 1956.

R. Bracewell, Fourier analysis and imaging. Springer Science & Business Media, 2003.

I. Calvo-Almazan, M. Allain, S. Maddali, V. Chamard, and S. Hruszkewycz, “Impact and
mitigation of angular uncertainties in bragg coherent x-ray diffraction imaging,” Scientific
Reports, vol. 9, no. 1, p. 6386, 2019.

A. Ulvestad, Y. Nashed, G. Beutier, M. Verdier, S. Hruszkewycz, and M. Dupraz, “Identify-
ing defects with guided algorithms in bragg coherent diffractive imaging,” Scientific reports,
vol. 7, no. 1, p. 9920, 2017.

A. Ulvestad, A. Tripathi, S. Hruszkewycz, W. Cha, S. Wild, G. Stephenson, and P. Fuoss,
“Chrono CDI: Coherent diffractive imaging of time-evolving samples,” arXiv:1605.01668v1,
2016.

24



	Resumen en castellano
	Introduction
	Theoretical framework
	Discrete Fourier Transform
	The Fast Fourier Transform algorithm

	Addressing the uniqueness of the phase problem: constraints
	Algorithms: a description
	Limitations of standard algorithms and how to address them
	The Fourier Slice Theorem


	Reconstruction of an ideal cubic crystal using standard algorithms
	Code to simulate the cubic crystal
	Implementation of the proposed algorithm

	Reconstruction of a shear artifact using the Fourier Slice Theorem
	Code to simulate a realistic experiment
	Implementation of the Fourier Slice Theorem and correction of the shear artifact
	Effect of the angular uncertainty (jitter) in the quality of the reconstruction


	Conclusions
	References

