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Resumen

El principal objetivo del presente trabajo es probar que la aplicacién logistica de Ulam Ty, dada
por
z— 4zl —z), z €[0,1],

es ergodica.

Comenzaremos dando cuenta del comportamiento asintotico de las trayectorias (u orbitas) para
el sistema dindmico discreto definido por la aplicacion logistica T.: [0, 1] — [0, 1], dada por

T, (x) = rz(l —x),

en funcion del valor del parametro r € [0,4]. Para ello, primeramente realizaremos una serie de
simulaciones numéricas, tales como representar de manera grafica el comportamiento asintético
de algunas orbitas, asi como el célculo del diagrama de 6rbita (o diagrama de Feigenbaum) para
la familia logistica {T}},¢[04)- A través de estos experimentos, clasificaremos las funciones de
dicha familia principalmente en dos grupos: hablaremos de aplicaciones regulares y de aplica-
ciones estocasticas. Este hecho se formaliza en el teorema regular o estocastico de Lyubich (ver

[6]).

En aras de cumplir con nuestro objetivo, en el Capitulo 1 realizamos otro experimento en el que
calculamos un histograma que refleja la distribuciéon de casi todas las 6rbitas para la aplicacion
de Ulam Tjy.

El razonamiento llevado a cabo en este experimento se formalizara en el marco de la teoria de la
medida, y en particular dentro del marco de la teoria ergédica y el teorema ergodico de Birkhoff,
que nos ayudarin a estudiar y entender el comportamiento a largo plazo y en promedio de casi
todas las érbitas para la aplicaciéon de Ulam.

Muy relacionado con lo anterior es el hecho de que la aplicacién de Ulam 7T} es topolégicamente
transitiva y de que casi todas sus trayectorias son densas en el intervalo unidad [0,1]. Para
probar dichas afirmaciones tendremos que recurrir a otro sistema dindmico discreto que esta
estrechamente relacionado con la aplicacion Tj: la funcién de duplicacion S: [0,1] — [0, 1], dada
por

S(z) = Frac(2z),

donde el operador Frac(x) nos proporciona la parte decimal de un namero x € R. Probaremos
que S es topologicamente transitiva y que casi todas sus 6rbitas son densas en [0, 1]. Para ello,
dotaremos a S de una nueva interpretacién: pasando a la representacién binaria de los niimeros
reales © € [0,1]. La relacién entre Ty y S se formalizara con la nocién de semiconjugacion
topolégica.

Hemos hablado acerca de la teoria ergddica, la cual puede verse como una aplicacién de la teorfa
de la medida al estudio del comportamiento promedio a largo plazo de los sistemas dindmicos.
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v Resumen

Las principales nociones seran las de medida invariante con respecto a una aplicacién, y la de
aplicacién ergddica con respecto a una medida invariante. Ademas, la principal idea de la teoria
ergédica serd el teorema ergddico de Birkhoff, segiin el cual, con probabilidad uno, la media de
una funcién integrable a lo largo de una érbita de una aplicacién ergodica es igual a la integral
de dicha funcién. Desarrollaremos todas las nociones y resultados necesarios para probar dicho
teorema en el Capitulo 2 del presente trabajo.

Por dltimo, en el Capitulo 3, probaremos que la aplicacion de Ulam T} es ergddica con respecto
a una medida de probabilidad u. Para ello, nuevamente, nos serviremos del hecho de que T}
serd, topologicamente semiconjugada con S, y de que S serd ergodica con respecto a la medida
de Lebesgue. Ademds, probaremos que la funciéon de densidad p, asociada a la medida de
probabilidad p, estard dada por la siguiente expresioén analitica:

() = Wx(ll_x) v e (0,1).

Casi todas las 6rbitas de Ty se distribuiran con arreglo a esta funcién de densidad. Finalmente,
explicaremos como hacer un bosquejo de la grafica de p utilizando el teorema ergodico de Birkhoff.

La principal fuente utilizada para la realizacion del presente trabajo ha sido el libro "Computa-
tional Ergodic Theory" de Choe (ver [3]).
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Chapter 1

Introduction to the Logistic Family

The present work is framed within the theory of discrete dynamical systems, which studies the
iteration of a function of a set into itself. In our case, the set will be the unit interval [0, 1], which
we will denote by I, and the function will be the so-called logistic map T,.: I — I, given by

T (x) =rz(l —x),

where the values of the parameter r are restricted to the interval [0,4], so that T, (xz) € I for
every = € I.

When we iterate the logistic map starting at an initial value xg € I, we obtain what is called the
orbit of g, i.e. the set of points xg,x1,T2,..., %y, ..., where x,, = T;.(x,—1) for n > 1.

We will adopt a measure-theoretic viewpoint, in the sense that we are interested in describing
the asymptotic behavior of almost all orbits of T, for almost any parameter value r € [0, 4].
The terms "almost all" and "almost any" mean that the corresponding assertions are true except
on a set of Lebesgue measure zero.! We will denote by B the Borel o-algebra over I and by A
the Lebesgue measure on (I, B).

1.1 Orbit Diagram

We will say that the orbit of xg € I is periodic if there exists n > 1 such that x,, = zg. The least
positive integer n for which x,, = x¢ is called the period of the orbit. In this case, the orbit of
xg is just the set of points xg, z1,x2,...,Ts—_1, and we will say that the lenght of the orbit is n,
and that the orbit is a n-cycle.

Let’s start by doing some experiments. In Figures 1.1 and 1.2 we show graphically the asymp-
totic behavior of four orbits for different r-values and different initial conditions xy € I.

On the horizontal axis, the number of iterations n is marked, while on the vertical axis, the
iterates x,, are given for each n. The points (n,x,) are connected by line segments to enhance
visibility.

In the first picture, we observe that, after a transient phase, the orbit tends to a 1-cycle (or fixed
point), while in the second and third, also after a transient, the orbit leads to a 2-cycle and a
3-cycle, respectively (periodic points). In contrast, the last image exhibits an irregular pattern
all the time (chaotic behavior).

'Both the parameter interval [0,4] and the unit interval I are endowed with the Lebesgue measure.
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Tp Tn
1 1
0.8 1 0.8 1
0.64Y v 0.6
0.4 0.4
0.2 0.2 1
T T T T T n T T T T T n
10 20 30 40 50 10 20 30 40 50

Figure 1.1: Orbits for r = 2.9 and zp = e — 2 (left) and r = 3.1 and z¢ = 7 — 3 (right).

Tp Tn
14 14
0.8 1 0.8 1
0.6 0.6
0.4 0.4
0.2 0.2
T T T T T n T T T T T n
10 20 30 40 50 10 20 30 40 50

Figure 1.2: Orbits for r = 1 +v/8 and g = v/2 — 1 (left) and r = 4 and 29 = e — 2 (right).

Experiments of this type show that the asymptotic behavior of the orbits depends on the pa-
rameter value r € [0,4], but it does not seem to depend substantially on the initial condition
xg € I. Further, we observe that there are r-values for which the orbits seem to stabilize in a
cycle, while there are others for which the orbits show an apparently chaotic behavior.

Hence, we carry out another experiment which consists in ploting, for each parameter value
r € [0,4] and starting at a randomly chosen initial value z¢ € I, the part of the orbit which we
obtain after disregarding a transient phase, thus getting the so-called orbit diagram (or bifurca-
tion diagram, or Feigenbaum diagram) which we show in Figure 1.3.

More precisely, the horizontal axis denotes the r-values, and the vertical axis represents the unit
interval I. For each of 1001 equally spaced r-values? the iterations x1,z, ..., zy, say N = 1000,
are computed, but we drop the first 801 iterations xg, z1,...,goo. This eliminates the transient,
so that the dependence on the initial choice xg is diluted to almost zero. Only the remaining 200
iterations xgg1, £g02, - . ., TN are plotted in the image.

Therefore, given a parameter value r € [0, 4], if there exists a set of points to which almost all
orbits of T, converge, what we will informally call the attractor, this experiment will be able to
locate it.

*In the orbit diagrams of Figure 1.3, we have considered the parameter values rj = 4#“00 (left) and ri, = 3+1(§€W
(right) for £ =0,1,...,1000.
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0.8 1 0.8 1

0.6 1 0.6 1
0.4 7

0.4 7

0.2 4 0.2 4

0.‘5 i l.l5 2I 2.‘5
Figure 1.3: Orbit diagrams of 7). for 0 < r <4 (left) and 3 < r < 4 (right).

1.1.1 Regularity

Let’s analyze the orbit diagram a bit more in depth. If we look at the left-hand side of the
orbit diagrams in Figure 1.3, we can see that there is a lot of regularity, in the sense that the
asymptotic behavior of the orbits is quite simple. We will say that a parameter value r € [0, 4]
is regular (see [6]) if there exists an attracting cycle to which almost all orbits of T, converge.
This attracting cycle is unique. Thus, for regular values, the attractor is the attracting cycle.

As examples of regularity, we have that £ = 0 is an attracting fixed point for r € [0, 1] and
that x = 1 — % is an attracting fixed point for r» € (1,b1], where by = 3. In Figure 1.4 we can
also observe an attracting 2-cycle for r € (b1, ba], where by = 1 + V6 ~ 3.449489, an attracting
4-cycle for r € (bg,bs], where by &~ 3.544090, and an attracting 8-cycle for r € (bs, bs], where
by ~ 3.564407. In general, at = by, a new attracting 2F-cycle appears. These r-values are called
bifurcation points. Hence, we have an increasing sequence of parameter values by, which tends to
the so-called Feigenbaum point bs, ~ 3.569945% (see [7]). The region between 7 = 0 and r = by,
is called the period-doubling tree of the orbit diagram.

\

\/
\\‘-—-

0.4 1

0.2 9 0.2 4

1 b i L e

0

Figure 1.4: Orbit diagrams of T} for 3 < r < by (left) and by, < 7 < 3.857 (right) along with
some notable r-values and some periodic windows.

At the right-hand side of the Feigenbaum point not everything is chaotic. For example, the

3The Feigenbaum point is neither regular nor stochastic (see Section 1.1.2). Furthermore, the attractor for
this r-value is a Cantor set: we may have some intuition about this as the branches of the period-doubling tree
fork at each by, but understanding the dynamics at this point is beyond the scope of the present work.
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parameter value r = 14 1/8 ~ 3.828427 is a regular value at which an attracting 3-cycle is bormn,
in the sense that there is no 3-cycle (attractor or not) for any smaller value of r. In Figure 1.4,
we oberve an attracting 5-cycle, 7-cycle, 6-cycle, 10-cycle and 12-cycle. The regions of the orbit
diagram where chaos seems to be interrupted by attracting cycles are called periodic windows.
Further, we observe that at 7 = m; ~ 3.678573 the orbit diagram splits into 2 parts (from right
to left), at » = meg it splits into 4 parts, and at » = mg it splits into 8 parts. In general, at r = my
the orbit diagram splits into 2¥ parts. These r-values are called band-merging points. Hence, we
have a decreasing sequence of parameter values my, which also leads to the Feigenbaum point
Moo = boo (s€€ [7]).

1.1.2 Stochasticity

Now, we ask what happens to the orbits for apparently chaotic r-values such as » = 4. For this
parameter value, Ty is the so-called Ulam logistic map (see Figure 1.7). Since we are interested in
knowing the asymptotic behavior of the orbits, we wonder whether we can give a satisfactory an-
swer to questions such as what is the probability that the orbit xg, z1, z2, ..., 2z, = Ty(xp-1),. ..,
(in the long term and on average) lies in the interval [0.68,0.69].

To answer this question, we do another experiment which consists of seeing how the points of
the orbit of x(y are distributed in the unit interval I. Thus, we compute a histogram reflecting
which parts of the unit interval are visited by the orbit and how often (see Figure 1.5).

To this end, we pick an initial point zg € I at random and iterate the Ulam map, say N = 10°
times. Now, we divide the unit interval I into a large number of small subintervals, say M = 1000,

given by
k—1 k
I, = (,} , k=1,2,..., M.
F M M
Then, we count how many of the iterates zg,x1,x2,...,xn fall into each interval I. Let this

number be ng. In other words, ng is the number of events in I, i.e. the absolute frequency
for the interval I. Thus, noting that the lenght of the truncated orbit of zg is N + 1, we may
consider the associated relative frequencies, given by

N

fk:mv

k=1,2,..., M.

Moreover, the relative frequency fr can be interpreted as a probability: it is the probability
that we guess correctly (whitout calculations) the interval [} into which a point falls, randomly
chosen from the N + 1 points of the truncated orbit of xg.

Therefore, the area of the k' column of the histogram will be f;, and since the width of each
column is 77 (the lenght of I;), we conclude that the height of the k'™ column will be given by

2z

=Mf=M .
Pk Tk N1l

In Figure 1.5 we see a distribution for the p; which is symmetric with respect to x = %, and which
is rather flat in the center while having steep boundary spikes at x = 0 and x = 1. This means
that, during the course of the iteration, the probability that we see a point of the truncated orbit
near x = 0 or x = 1 is comparatively much higher than that of seeing it in the center of the unit
interval I.

Running the same experiment again for different initial values xg € I, results in histograms which
are indistinguishable from the one above. As we increase the number M of subintervals and the
number N of iterations, the effect is a smoothing of the shape of the columns of the histogram.
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Pk Pk
20 20 A
15 4 151
10 A 10 A
54 51
I I | | | | L I
0.2 0.4 0.6 0.8 1 0.02 0.04 0.06 0.08 0.1
Figure 1.5: Histogram for the distribution of the truncated orbit zg,z1,x2,...,zN in the unit
interval I.

In the limit, we would approximate a well-known curve (see Figure 1.6): the probability density
function® of the arcsine distribution, given by
1

p(x) = m, z € (0,1).

p(x)
20 20 pr=p(x)
154 15 4
10 104
5 L jj 5

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 1.6: y = p(x) (left) and the histogram approximation to the graph of p (right).

Let’s now calculate the arcsine distribution function F:

F(z) —/w (t)dt—/xdt _ 2/ﬁdy = 2 aresin(va), = € [0, 1]
0 p 0 W\/t(l—t) ™ Jo \/1—y2 ™ ’ T
where we have used the change of variables y = \/i, 0<t<uz.

Therefore, the probability that the orbit xg, x1,x2, ..., 2y, ... (in the long-term and on average)
lies in the interval [0.68,0.69] is exactly

2
F(0.69) — F(0.68) = — (arcsin(\/0.69) — arcsin(\/0.68)) ~ 0.0068527.

™

“Only for r = 4 an analytical expression for the probability density function is known, albeit for other values
such as » = m1 there also seems to be one.
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On the other hand, we can also estimate this probability summing the corresponding relative

frequencies fi, i.e. since
690

[0.68,0.69] = U I, 5
k=681
we conclude that the probability that a randomly chosen point of the truncated orbit xg, 1, x2,..., TN
belongs to the interval [0.68,0.69] is

690
Z fr ~ 0.0069059, ¢
k=681

which roughly agrees with the exact value.

The reasoning carried out in the experiments above is formalized in the framework of ergodic
theory and the Birkhoff ergodic theorem, which will be discussed in Chapter 2. The main con-
cepts are: invariant measure with respect to a map, and ergodic map with respect to an invariant
measure.

In the previous experiments, the probability measure p defined over the measurable space (I, ),
whose density function is p, is invariant with respect to the Ulam map T}, and T} is ergodic with
respect to p. In this situation, the Birkhoff ergodic theorem states that

‘ 1 n—1 i

T S ATh@) = [ (1.1)
k=0

for almost all x € I with respect to p, and for any integrable function f. If we take f = X[0.63,0.69]

we obtain the probability calculated above.

Moreover, since u is a probability measure with density function p, p is absolutely continuous
with respect to A, and since p is positive in (0, 1), A is also absolutely continuous with respect
to pu. Hence, p and X are equivalent, so an assertion is true p-a.e. if and only if it is true A-a.e.
Thus, Equality 1.1 holds also for almost all x € I with respect to A.

The details of all this will be discussed in Chapter 3.

At this point, we have built sufficient background to address the notion of stochasticity. As
opposed to the notion of regularity, a parameter value r € [0, 4] is said to be stochastic (see [6])
if there exists a T,-invariant probability measure u, which is absolutely continuous with respect
to the Lebesgue measure A. In that case, T; is u-ergodic, and we can apply the Birkhoff ergodic
theorem. The probability measure u, then explains the asymptotic behavior of almost all orbits
of T,.

It is known that T;. cannot be simultaneously regular and stochastic, and that both, the set of
r-values for which 7, is regular and the set of r-values for which T, is stochastic, have positive
Lebesgue measure A.

Furthermore, Lyubich Regular or Stochastic theorem states that for almost every r € [0, 4], the
logistic map T, is either regular or stochastic (see [6]). This theorem, which was a milestone
in the understanding of one-dimensional dynamics, provides a complete qualitative description
of the asymptotic behavior of almost all orbits for almost any parameter value r in the logistic
family T

®Equality modulo Lebesgue measure zero sets (see Chapter 3).
See A.3 to verify this value.
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1.2 Chaos and Dense Orbits

Closely related to the above is the fact that the Ulam map T} is chaotic on the unit interval I and
that almost all of its orbits are dense in I. Given a topological space X and a map T: X — X
the orbit of zg € X is dense in X if for any open non-empty subset U C X there exists n > 0
such that T™(zp) € U. In our case, I is a metric space, so the orbit of zy € I is dense in I if and
only if for any = € I and any € > 0 there exists n > 0 such that |z — T"(z)| < €.

Definition (Devaney’s Definition of Chaos). Let X be a metric space. A continuous map
T: X — X is said to be chaotic on X if

(i) T is topologically transitive, i.e. for any pair of open non-empty subsets U,V C X
there exists k > 0 such that T*(U) NV # 0,

(ii) the set of periodic points of 7" is dense in X, i.e. for any z € X and any € > 0 there
exists a periodic point y € X of T such that |x — y| < &, and

(iii) T has sensitive dependence on initial conditions, i.e. there exists § > 0 such that,
for any x € X and any neighborhood N of z, there exist y € N and n > 0 such that
|T™(x) — T"(y)| > 6. In this case, J is called the sensitivity constant.

A few years after the publication of this denition (see [4]), a group of five mathematicians (see
[2]) showed that transitivity plus density of periodic points implied sensitivity. And two years
later, other two mathematicians (see [8]) proved that, for the case of continuous maps defined
on an interval, transitivity implied chaos.

Therefore, to prove that the Ulam map Ty is chaotic, the only condition that has to be checked
is transitivity. We will accomplish this through the introduction of another map.

1.2.1 The Doubling Map

The goal of this section is to prove transitivity, as well as density of almost all orbits, for the
so-called doubling map S: I — I, given by

S(z) = Frac(2z).
Remembering that the fractional part (or decimal part) of a number x € R is defined by
Frac(z) =2z —k, fk <z <k+1, ke€Z,

we may develop the term on the right to obtain an explicit formula for the doubling map (see
Figure 1.7). Then
Frac(2z) =2z —k, if k <2z < k+1, k€ Z.

Since 0 < 22 < 2, we conclude that the only possible integer values are k = 0,1 and 2. Hence,

2, if 0 <z <3,
S(z) = Frac(2z) =¢ 2z -1, ifi <z <1,
0, ifx=1.

Let’s start by proving some basic properties of the Frac-operator.
Proposition. Let z € R and m € Z. Then
(i) Frac(x +m) = Frac(x).

(ii) Frac(mFrac(x)) = Frac(mx).
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Proof. (i) Let k € Z such that k < <k+1. Thusk+m <zx+m <k+m+1, and
Frac(x +m) = x4+ m — (k+ m) = z — k = Frac(x).
(ii) Let k € Z such that k < x < k+ 1. Then
Frac(mFrac(x)) = Frac(m(x — k)) = Frac(maz — mk) = Frac(mx),
where the last equality follows from the first property. O

From this proposition we can derive a closed-form expression for the iteration of the doubling
map S.

Proposition. Let xg € I. Then
xn = 8" (xo) = Frac(2"zg), n > 1.

Proof. We prove the statement by induction on n. The first iterate, 1 = S(z¢) = Frac(2zo), is
already in the closed form by definition. For the induction step from n to n + 1, let us assume
the hypothesis x,, = Frac(2"z¢) for some n > 1. Then, we compute

Tpi1 = S(x,) = Frac(2x,) = Frac(2Frac(2"z¢)) = Frac(2" ™ 'xy),

where the last equality follows from the second property of the Frac-operator. This concludes
the proof by induction. O

Now, we reveal a new interpretation for the doubling map S by passing to binary representations
of the numbers x € I. Recall that any = € I can be written as x = 0.a1a2a3 .. ., where the a; are
binary digits, i.e. a; € {0, 1}, and

T = a12_1 + a22_2 + a32_3 + -
Proposition. Let z,y € I with binary expansions x = 0.a1azas3 ... and y = 0.b1bobs ... Then
o —yl <27,
provided that a; = b; fori=1,... k.
Proof. Without loss of generality, we can assume that z > y. Then

\w — y[ = |0.a1a2a3 e 0.b1b2b3 e | < ’0.&1 NN a;ﬁ — 0.b1 PN bkﬁ\ = |0.0 NN 0T| = Q_k.

If we apply the doubling map S to a binary representation x = 0.ajaz2as . .. then
S(z) = Frac(2x) = Frac(aj.a2a3ay . ..) = 0.a2a3a4 . . .,

i.e. one application of S consists in first shifting all binary digits one place to the left, and then
erasing the digit that is moved in front of the decimal point. Due to the type of this almost
mechanical procedure, S is also called the binary shift operator.

Note. There is a technicality which we must address here, namely, the ambiguity of the binary
representations. For example, z = % has two possible binary versions: 0.1 and 0.01. If we
apply the shift operator to them we obtain 0 and 0.1 = 1, respectively. On the other hand,
S (%) = Frac(1) = 0. Hence, to avoid the ambiguity and to be consistent with the initial definition
of S, we discard all binaries ending with repeating digits 1.7 Thus, we represent z = % = 0.1
and x = i = 0.01, but not as 0.01 or 0.001.

"Our convention implies that we cannot represent = = 1 in the form 0.1. This point is the only one that will
not have a binary representation in our analysis. But this is not significant for the dynamics of the iteration of
S, since = 1 has not preimages (no point of I is mapped into z = 1 through S), and this point is mapped into
the fixed point = = 0.



Introduction to the Logistic Family 9

Note. The notion of transitivity does not require a map to be continuous. Thus, we may try
transitivity for the doubling map S.

Now, we are ready to prove the following key theorems.
Theorem. The doubling map is topologically transitive.

Proof. Let U and V be two open non-empty subsets in I. Then, there exist two open non-
empty subintervals U C U and V C V. Now, let k¥ > 0 such that U has a length greater than
2~(=1) Further, let = 0.ajasas . .. be the binary representation of the midpoint of U and let
y = 0.b1babs . .. be the binary representation of a point of V.

We construct an initial point zg € U which, after exactly k iterations of the shift operator, will
be equal to y, thus providing the required point in the target interval V. To define zy we copy
the first k£ digits of the center of U and then append all digits of the target point y:

Tro = 0.&1&20,3 e akblbgbg e

Now, we check that z( belongs to U: by the previous proposition |z — x| < 27k ie. x differs
from the center of U by at most 27%. Since the width of U is greater than twice this distance,
necessarily xg € U. Secondly, after k iterations we have

T = Sk<1‘0) =0.b1bobs... =y € f/

Therefore,

SFU)YNV 2 SKU)Y NV #0.
O

Remark. In the proof above we have even over-fulfilled the requirement, since in the case of the
shift operator we can hit any target point y € V.

Theorem. Almost all orbits of the doubling map are dense in I.

Proof. We have to prove the following: if we pick an initial condition zg € I at random, then for
any x € I and any £ > 0 almost surely there exists n > 0 such that |x — S"(x)| < e.

So, let g € I for which we choose its binary digits at random and let x = 0.aja2as ... be the
binary representation of a point of I. Given ¢ > 0, there exists k& > 0 such that 27% < ¢.

Now, the Infinite monkey theorem (see [1]) implies that the string of digits ajazas . . . ai (the first
k digits of x) almost surely appears in the binary expansion of xg at some place, and therefore
sufficiently many shifts will bring this string to the leading digits, i.e. almost surely there exists
n > 0 such that z, = S™(z¢) = 0.a1a2a3 . ..aj ..., and thus,

|z — x| < 27k < ¢

1.2.2 Topological Conjugacy and Semi-conjugacy

The goal of this section is to relate the dynamics of the doubling map S to the dynamics of the
Ulam map Ty, in order to transfer to the latter what we have just proved for the former.

Definition. Let X and Y be two topological spaces and f: X — X and g: ¥ — Y two maps.



10 Chaos and Dense Orbits

(i) f and g are said to be topologically conjugate provided f and g are continuous and
there exists a homeomorphism h: X — Y such that ho f = go h. In this case, h is called
a topological conjugacy.

(ii) ¢ is said to be topologically semi-conjugate to f provided there exists a continuous
and onto map h: X — Y such that ho f = go h. In this case, h is called a topological
semi-conjugacy.

To express that the conjugacy equation ho f = go h holds, we say that the following diagram is
commutative:

x-J.ox

h h

Y —Y
g

Proposition. Let g be topologically semi-conjugate to f via h. Then
(i) The functional equation ho f™ = g" o h holds for every n > 1.
(ii) If f is topologically transitive, then also g is topologically transitive.
(155) If the orbit of xo is dense in X, then the orbit of yo = h(xg) is dense in Y.

Proof. (i) We prove the statement by induction on n. For n = 1, the functional equation
ho f = goh holds since h is a topological semi-conjugacy. For the induction step from n to
n + 1, let us assume that h o f™* = g o h. Then,

ho fr*l = (ho "o f = (g"oh)o f=g"o(hof)=g"o(goh) =g+ oh.

(ii) Let U and V be two open non-empty subsets in Y. We have to find y € U and k£ > 0 such
that ¢g*(y) € V. To do this, we take the preimages A = h~1(U) and B = h~(V), which are
non-empty subsets since h is onto, and also, they are open in X since h is continuous. Thus,
there exists € A and k > 0 such that f*(z) € B, since f is topologically transitive. Now, we
take y = h(x), and using the functional equation h o f* = ¢g¥ o h we obtain

9"(y) = " (h(x)) = h(f*(x)) € h(B) =V,

since h is onto.

(iii) Let U an open non-empty subset in Y. We have to find n > 0 such that ¢"(y9) € U. To do
this, we take the preimage A = h~!(U), which is a non-empty subset since h is onto, and also,
it is open in X since h is continuous. Thus, there exists n > 0 such that f"(xo) € A, since the
orbit of x¢ is dense. Now, using the functional equation h o f® = g" o h we obtain

9"(yo) = 9" (h(x0)) = h(f"(20)) € h(A) =T,
since h is onto. O

Proposition. The Ulam map is topologically semi-conjugate to the doubling map via the map
v: I — 1, given by
P(z) = sin’®(mz).

Proof. 1t is clear that 1 is continuous and onto, but not one-to-one, since y = ¢ (x) if and only
ifz=zo0rxz=1- 2z where

1 . 1
2= arcsin(,/y) € {0, 2} .
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On the one hand,

Y(2z), fo<az<i
(poS)(z)=4¢ P(2x—1), if $<z<1 3 =sin*2mz),
¥(0), ifx=1

and, on the other hand,

(Ty o ) (x) = 4sin®(rz)(1 — sin?(rx)) = (2sin(rz) cos(mz))? = sin?(27z), z € I.

S(x) ¥(x) Ty()

1 1 1
0.8 1 0.8 0.8
0.6 0.6 0.6
0.4 1 0.4 0.4
0.2 1 0.2 0.2

T T T
02 04 06 08 1 02 04 06 08 1 02 04 06 08 1

Figure 1.7: y = S(x) (left), y = ¢(x) (center) and y = 4x(1 — x) (right).

Corollary. We conclude the following two facts:
(i) The Ulam map is chaotic on I.
(7i) Almost all orbits of the Ulam map are dense in 1.

Proof. (i) This follows from the fact that the Ulam map T4 is continuous and that it inherits
from the doubling map S, via ¥, the property of topological transitivity.

(ii) This also follows from the fact that T inherits from S, via 1, the property of density of
almost all orbits. 0

The fact that almost all orbits of T, are dense in I suggests that the attractor for the Ulam map
is the whole interval I.

In Chapter 3, we will follow the same proof strategy as above to show that the Ulam map is
ergodic.

1.2.3 Dense Orbit implies Topological Transitivity

We start by proving the following result:

Proposition. Let X be a topological space without isolated points, D a dense subset in X and
x1,22,...,2n € D. Then, the set D,, = D\ {x1,22,...,x,} is dense in X.

Proof. We must prove the following: D, N U # 0, for any open non-empty subset U C X.

So, let U an open non-empty subset in X. We prove the statement by induction on n. Forn =1,

DiNU =D\ {z1})NU = (DNU)\ {z1} #0,
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since x1 is not isolated. Hence, D is dense in X. For the induction step from n to n + 1, let us
assume that D,, = D\ {z1,29,...,2,} is dense in X. Then,

DpiinNU = (D\{(L‘l,xg,. .. ,:cn,a:n+1}) NnU = (Dn \ {xn+1}) NU = (Dn N U) \ {xn+1} =+ @,

since Tn41 is not isolated. Therefore, D, is dense in X. O

Theorem. Let X be a topological space without isolated points and T: X — X a continuous
map. If T has a dense orbit in X, then T is topologically transitive.

Proof. Suppose that the orbit of an initial value o € X is dense in X. Let U and V be two
open non-empty subsets in X. Then, there exists n > 0 such that x,, = T"(xg) € U. Now, the
orbit of x, € X is also dense in X, since, by the previous proposition, the set

{xn’xn+1u . } = {$07 T, - - } \ {ﬂfo,fl?]_, ey xn—1}7
is dense in X. Thus, there exists k& > 0 such that T%(z,) € V. O
In separable complete metric spaces, the converse is also true.

Theorem (Birkhoff Transitivity Theorem). Let X be a separable complete metric space
without isolated points and T: X — X a continuous map. The following statements are equiva-
lent:

(i) T is topologically transitive.
(i) T has a dense orbit in X.

For a proof of this theorem see [5].



Chapter 2

Ergodic Theory

The most fundamental idea in ergodic theory is the Birkhoff ergodic theorem, which states that,
with probability one, the average of a function along an orbit of an ergodic map is equal to the
integral of the given function.

2.1 Image Measure

Let’s start by remembering the notion of an image measure. Given a measurable space (X, .A)
and amap T: X — X, we know that the set

TA) ={ECX:TYE) e A}

is a o-algebra over X, the so-called image o-algebra of A under T'. If a measure u is chosen
for (X,.A) we may consider the image measure of p under 7', given by

poT™: T(A) — [0,400]
E s w(TYE)).

We will denote the image measure o T~ by T,(u).

Further, if A C T'(A), we may consider the restriction measure of T (u) to A, so that (X, A, Tk(u), )
is a measure space. For ease of notation, we will write simply Ti(u)|, = T (1) in that case.

Note that A C T(A) is equivalent to T~ (E) € A for every E € A.

2.2 Invariant Measure

Definition. Let (X, A, ) be a measure space. A map 7: X — X is said to be measure
preserving with respect to u (or u-preserving) if

ACT(A) and Ti(p) = p.
In this case, u is said to be invariant under 7' (or T-invariant).

Definition. Let (X, .A) be a measurable space. A function f: X — R is said to be measurable

(or A-measurbale) if
f~YE) € A for every E € B(R),

where B(R) denotes the Borel o-algebra. If f is also a complex function, we say that f is
measurable if its real and imaginary parts are measurable functions.

Definition. Let (X, A, 1) be a measure space. A measurable function f: X — R is said to be
integrable with respect to u (or u-integrable) if

/ |fldp < +o0.
X

13
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In this case, we denote by L'(X, ) the set of integrable functions on X. If f is also a complex
function, we say that f is integrable if its real and imaginary parts are integrable functions.

Theorem. Let (X, A, u) be a finite measure space and T: X — X a map such that A C T'(A).
The following statements are equivalent:

(i) T is p-preserving.

(ii) For any f € LY(X,n) we have

[ fdn= [ (zoTyan.

Proof. (ii)=(i). Let E € A and take f = xp. Since u(X) < 400, then f € L'(X, u). Hence,

u(B) = [ xpla) = [ xo(@@) diu= [ rosm(a) du = n(T 7 (E) = ) ().
(i)=(ii). First observe that a complex-valued measurable function f can be written as a sum

f=fi—fa+i(fz— fa),

where i = v/—1, and each function f; is real, nonnegative and measurable. Thus, we may assume
that f is real-valued and f > 0. Let E € A and take f = xg. Then,

/X f(@) dp = p(E) = T (u)(E) = /X Xr-1()() ds = /X F(T()) dp.

By linearity, the same relation holds for a simple measurable function f. Now, for a general non-
negative function f € L'(X, i), choose an increasing sequence of simple measurable nonnegative
functions {Sn}nZI converging to f pointwise. Then, {s, o T}nZl is an increasing sequence and
it converges to f o T pointwise. Finally, the Monotone Convergence Theorem implies that

/f(T(:z:))d,u: lim sp(T(z))dp = lim Sp(x) d,u:/ flx)du.
X X X

n—o0 X n—o0

2.3 Ergodic Map
Definition. Let X be a set and T: X — X a map.
(i) A set E C X is said to be invariant under T (or T-invariant) if T-!(E) = E.
(ii) A function f: X — C is said to be invariant under 7" (or T-invariant) if foT = f.

Definition. Let (X, A, ) be a measure space and E,F € A. We say that £ = F modulo
measure zero if
p((E\F)U (F\E))=0.

In this case, we write £ = F.

Definition. Let (X, A, 1) be a probability space. A p-preserving map 7: X — X is said to be
ergodic with respect to p (or p-ergodic) if for any E € A

E is T-invariant modulo measure zero if and only if p(E) =0 or p(E) = 1.
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Definition. Let (X, A, u) be a measure space and P(x) a property whose validity depends on
z € X. We say that P(z) is true almost everywhere with respect to u (or p-a.e.) if

there exists N € A with p(N) = 0 such that P(z) holds true on X \ V.

Example. Let X beaset and T: X — X amap. Given f: X — C, we say that f is T-invariant
p-a.e. if there exists N € A with u(N) = 0 such that f(T'(z)) = f(z) at least for any z € X \ N.

Theorem. Let (X, A, 1) be a probability space and T: X — X a p-preserving map. The following
statements are equivalent:

(i) T is p-ergodic.
(i) If a measurable function f: X — C is T-invariant p-a.e., then f is constant p-a.e.
(iii) If an integrable function f: X — C is T-invariant p-a.e., then f is constant p-a.e.
() If a square-integrable function f: X — C is T-invariant u-a.e., then [ is constant u-a.e.

Proof. (i)=(ii). Let f be measurable and T-invariant p-a.e. By considering real and imaginary
parts, we may assume that f is real-valued. Put

k E+1
En’k:{xeX:Q—ngf(x)<2Ln},n21,keZ.

Then, {E,, 1 }kez is a partition of X for every n > 1. Note that

’ k41 k k41
Tl(En’k):{xeszgf(T(x))< ;n }é{xeX:WSf(x)< ;n }:Enﬁk,

since f is T-invariant p-a.e. Since T' is p-ergodic, pu(E, ) = 0 or 1; more precisely, for each
n > 1 there exists a unique k € Z, say ky, such that pu(Ey,,) = 1 and p(E, ) = 0 for k # k,,
since {E,, i }rez is a partition of X and p(X) = 1. Let

o
Xo =) En,-

n=1

By taking complements, we have

u(XG) = p (U Ei,kn> <> wES,) =0,

n=1

and so p(Xo) = 1. We will prove by contradiction that f is constant on Xy. Suppose that there

exist z,y € Xy such that f(x) # f(y), ie. e =|f(x) — f(y)| > 0.
On the one hand, there exists ng > 1 sufficiently large such that

27<€

for any n > nyg.
On the other hand, x,y € E,, 1, for every n > 1. In particular, x,y satisfy

Eng kno +1
S0 < flz), f(y) < Tono
Hence,
1

e =)~ FW)] < 5
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which is a contradiction.

(ii)=(i) Let E € A and take f = xg. Then g is measurable. Suppose that T-}(E) = E.
Thus xg is T-invariant p-a.e., and hence constant p-a.e. Since the possible values of xg are
0 and 1, we conclude that either yg = 0 p-a.e. or xg = 1 p-a.e., equivalently, u(E) = 0 or
u(E) = 1. Conversely, let E € A such that pu(E) = 0 or u(E) = 1. Since T is p-preserving,
wW(T=HE)) = pw(E) =0 or u(T~HE)) = u(E) = 1, equivalently, T~}(E) = E.

(ii)=-(iii). This is immediate since every integrable function f is measurable.

(ii)=(iv). Again, every square-integrable function f is measurable.

The implications (iii)=-(i) and (iv)=-(i) are identical to (ii)=-(i), since u(X) < +oo. O

2.4 The Birkhoff Ergodic Theorem

The proof of the Birkhoff ergodic theorem is rather technical. We need the following two previous
results.

Lemma. Let (X, A, ) be a measure space, T: X — X a p-preserving map and f: X — R an
integrable function. Define fo =0,

n—1

fa=) (foTh, n>1,

k=0
and

Fy = max f,, N >0.
0<n<N

Put AN ={x € X : Fy(z) >0}, N > 0. Then,

fdu=>0.
AN
Proof. Note that f,,, Fy € L'(X, ) and Fy > 0. For N = 0 we have
fd/J, =0,
Ao
since Ag = (). Now, for 0 <n < N we have Fiy > f,,, and so Fy oT > f, oT. Hence,
n
FyoT+f>faoT+f=>Y (foT")+f=fur1.
k=1
Thus,

FyoT+ f> max f,.
1<n<N+1

If Fny1 > 0, then the right-hand side of the inequality is equal to L 1fn = Fny1, and
<n<N+

hence f > Fyi1 — FyoT on Axyyq. Now, we have

[otdz [ mvade- [ BveTau= [ Fvade- [ Eyeran,
ANt1 ANt AN+11 X AN+41

since Fy41 =0on X \ Ayyi1. Dueto FyoT >0 and Fy < Fyy1, we conclude that

/ fduz/FN+1du—/FNonMZ/FN+1dM—/FN+1onu:0,
AN+1 X X X X

where the last equality follows from the fact that T is p-preserving. O
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Theorem (Maximal Ergodic Theorem). Let (X, A, i) be a finite measure space, T: X — X
a p-preserving map, and g: X — R an integrable function. Define

Then,

Furthermore, if E € A is T-invariant then
/ g du > ap(E N Bay).
ENBq

Proof. Let f = g — . Since f € L'(X, ), we may consider f,, Fy and Ay as in the previous
lemma. Now, we want to prove the following equality:

B, = U AN-
N=0
Indeed,
o n—1
k J—
T € U Ay < dN > 1, lglang (Z(Q(T (x)) a)) > 0.

N=0 =0
Let 1
k=0

Observe that the following equivalence holds:

S,
N >1, max S, >0« 3IN >1, max — > 0.
1<n<N 1<n<N n

Therefore, the last inequality is equivalent to:
1 n—1
sup < Zg(Tk(x))> >a e x € B,
n>1 \ T
k=0
Since {Fn}n>1 is an increasing sequence of functions, we have the increasing sequence of sets
A C A C--- CAN C ANy © - C By,
and, equivalently, we have the increasing sequence of characteristic functions

It is clear that the sequence {xa, } n>1 converges to x g, pointwise. Thus, the sequence {xa, f}n>1
also converges to xp, f pointwise. Observe that |xa, f| < |f| for any N > 1. The Dominated
Convergence Theorem implies that

[ sdu= [ xnsan=tim [ xagrdu=tim [ fauzo
Ba X N—oo X N—oo AN

where the last inequality is by the previous lemma. Hence,

/ gdp — ap(Ba) > 0.

@

For the second part we consider the restriction map of T' to E. Since E is T-invariant, then
T(F) C E. In this situation, the subset F plays the role of X in the first case. O
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Theorem (Birkhoff Ergodic Theorem). Let (X, A, u) be a probability space, T: X — X a
w-preserving map and f: X — C an integrable function. Then,

n—1
Jim ST (M) = @) o
k=0

/Xf*du—/xfduy

for some T-invariant f* € LY (X, ). Moreover, if T is p-ergodic, then f* is constant p-a.e. and

and

1 n—1
i S5 = | tdn pac

Proof. By considering real and imaginary parts, we may prove the statement for real-valued

functions f. Let
n—1

(And)(@) = 3 FTH@), n =1,
k=0
Put

f*(z) =limsup(A4,f)(z) and fi(x)=liminf(A,f)(z).

n—00 n—00

Then fi(z) < f*(z). Now, let us see that both functions are T-invariant. Indeed,

(AnF)T(@) = 3 FTHa) = 0 S (1)) =

e (nil > H(T ) - — f(sc)) = ) - L)
k=0

Thus,
fH(T(z)) = limsup(An f)(T'(x)) = limsup(An 41 f)(2) = f*(2) .

n—oo n—o0

The same holds for f,. Now, we will show that f, = f* and that both are integrable.
Put

Ev.p={z € X : fu(z) < fand a < f*(2)}, a, S € Q.
Note that
freX: f@) < @)= Eus,

B<a

where the right-hand side is a countable union of sets. Moreover, T~Y(E, g) = E, 3, since fi
and f* are T-invariant. Put

B, = {x € X :sup(4nf)(z) > a} .
n>1
Then, E, g C By, since if v € E, g then

a < f*(x) = limsup(An f)(z) < sup(Anf)(z).

n— 00 n>1

From the Maximal Ergodic Theorem we have

[ fdu= [ fduzan(EusnB) = auEag),
EQ,B EaﬁﬂBa



Ergodic Theory 19

Note that (—f)* = —f. and (—f). = —f*, so that
Evwp={re X :(—f)"(x)>—-Fand —a>(—f)(x)}.
If we replace f,a and 8 by —f, —8 and —« respectively in the previous inequality, then we have

/ (=f)dp > —Bu(Eqp), ie. / fdu < Bu(Eap)-
E.p Eu

Thus, we obtain au(Eqsg) < Bu(Eq ), which implies that if 8 < o then p(E, ) = 0.
Therefore, f. = f* p-a.e. and

lim (A, f)(z) = f*(x) p-ae.

n—oo

Now, we show that f* is integrable. Let

gn(x) = |(Anf)(z)], n > 1.

Then, lim g,(x) = |f*(z)| p-a.e. and
n—oo

1 n—1 . B
Jomdn< o3 [t nian= [ ifian

where the last equality follows from the fact that T is p-preserving.
Fatou’s lemma implies that

/]f*\du:/liminfgndugliminf/ gndug/ |f]dp < +o0.

It remains to show that
[ ran=[ fan.
X X

k k+1
Dup={rex:Papw <P nsiken

Put

Note that {D,, x }rez is a partition of X for every n > 1. Further, T-1(D,, 1) = Dy, since f* is
T-invariant. For sufficiently small € > 0 we have

o

Dn,k - Bﬁ_

The Maximal Ergodic Theorem implies that

k
[ ranz(E-c)uoan.
Dn,k n
for every sufficiently small € > 0, and hence,
k
fdp > —p(Dn ).
Dn,kz n

By the definition of D, p,

e k1 1
/ frdp < ——u(Dng) < —p(Dn i) +/ fdp.
Dn,k n n Dn,k
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Summing over k € Z we obtain

1
[rranss [ sau,
X n X

since p(X) = 1. This holds true for every n > 1. By letting n — oo we have

/Xf*duﬁ/xfdﬂ-

Applying the same procedure to —f we obtain

Jeprans [ enanie [ ganz [ fan

Since f, = f* p-a.e., we conclude that

/Xf*duz/xfdu-

Finally, if T is p-ergodic, then f* is constant p-a.e. and

lim (Anf) () /f i = /fdu e,

n—o00
where the second equality follows from the fact that (X . O

Corollary. Let (X,B(X),u) be a probability space, where X is a topological space and B(X)
denotes the Borel o-algebra generated by the topology of X, and T: X — X a map. Assume also
that the topology of X is generated by a countable basis U = {Uy,Us,...}. If T is p-ergodic, then
almost all orbits of T are dense in X.

Proof. Suppose that the orbit of an initial value xg € X is not dense in X. Thus, there exists an
open set U; which does not intersect the orbit of xg. Now, if we take f = xy,, then f € LY(X, u),
since p(X) < 4o00. On the one hand,

/ xu; dp = p(U;) > 0,
X

since U; # (), and, on the other hand,

n—1

1
lim — > xu,(T"(0)) = 0,
k=0

n—oo N

since the orbit of xy does not meet U;. Hence zg € E;, where

L 1 k(o
E’L—{ZL‘EX nh_>ngo ZXU (T"( #/XUdM}

Therefore, the set of points which do not have a dense orbit is included in the union

oo
n=1

But the Birkhoff ergodic theorem implies that

which proves the claim. O



Chapter 3

Ergodicity of the Ulam Logistic Map

In this chapter we will focus on maps T: I — I continuous M-a.e., i.e. T~Y(E) € B for every
E € B, which is equivalent to

BCTB)={ECI:TYE)eB)}.
3.1 Ergodicity of the Doubling Map

Proposition. The doubling map preserves Lebesque measure.

Proof. 1t is clear that S is continuous A-a.e., so B C S(B). Let E € B. Then,

S.(N)(E) = MS™(B)) = / Ysm1 () (x) da = / xE(S(2)) da
On the one hand,
3 1 /1
| xeCoyde =5 [ xet@)aa.

and, on the other hand,

1 1 /1
/ xe(2x —1)dz = / xe(z)dz.
1 2 Jo

2

Adding up we obtain

I I
O
Theorem. The doubling map is ergodic with respect to Lebesque measure.
Proof. 1t is clear that A is a probability measure. Let
f(z) = che%mm, xrel,
neL
be the Fourier series expansion of an S-invariant A-a.e. function f € L2(I, \). Then,
f(S(z)) = Z cn€2™2 g e I
ne”L
Comparing the Fourier coefficients of f(z) and f(S(x)), we conclude that
co, if n is even
C =
" 0, ifnisodd
Therefore, ¢, =0 if n # 0, so f = ¢y M-a.e. O

21
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3.2 Ergodicity of the Ulam Logistic Map

Proposition. The Ulam map preserves the image measure of A\ under the topological semi-
conjugacy (x) = sin?(rx), i.e. the measure p = Y. (\).

Proof. Since Ty and v are continuous, then B C Ty(B) and B C ¢(B). Thus, we can consider
the image measure
p=1v.N): B — [0,+0]
B — Ayl(E)).

Then,

(T1)+ (1) = (Ta)«(¥x(A)) = (Ta 0 )« (A) = (¥ © 5)x(A) = u(Sc (X)) = ¥u(X) = 1,

where we have used the fact that Ty is topologically semi-conjugate to S via ¢ and that S is
A-preserving. O

Theorem. The Ulam map is ergodic with respect to the probability measure p = 1. (N).

Proof. Tt is clear that y = t,()) is a probability measure. Let E € B such that T, '(E) = E.
Then,

p(E) = (N (E) = ANy~ (E))
and
STy HE)) = ¢ (T, H(B)) = ¢~ (B),

where we have used the fact that Ty is topologically semi-conjugate to S via . Therefore, since
S is A-ergodic, we obtain
u(E) = \@~(E)) = 0 or 1.

3.3 The Probability Density Function p

In the following, A is not necessarily the Lebesgue measure. Given a measure space (X, .4, \)
and a measurable function ¢: X — [0, +00), we know that the function

p: A — [0,4]
E +— ngodA

is a measure over (X,.A). In this case, ¢ is called the density function of p with respect to
A, and we write du = @ dA. If (X, A, p) is also a probability space, ¢ is called the probability
density function.

Definition. Let g and A be two measures over a measurable space (X,.A). The measure p is
said to be absolutely continuous with respect to A if

w(E) =0 for any E € A such that A\(E) = 0.

In this case, we write p < A. If also A < p, p and A are said to be equivalent, and we write
e~ A

Remark. In view of the above, we have the following two immediate facts:
(1) If du = @ dA then p < .

(ii) If pu ~ A, then a property P(x) is true p-a.e. if and only if P(x) is true M-a.e.
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Theorem. The probability measure p = 1. (X\) is absolutely continuous with respect to Lebesque
measure X, and its probability density function is given by

p(2) = ——— ze(0,1).

my/z(l — )
Moreover, p and X\ are equivalent.

Proof. Let E € B. Then,

Thus,
1 :
/ () dr = 2 / (@) de,
0 0

where we have used the fact that the function ¢ is symmetric with respect to x = %
Using the change of variables

{ y = (x) = sin®(nz), 0 <z < % }
d dy )

v 2m/y(1-y)

we conclude that

o[ dy B
2/0 xe(¥(z)) dx —2/0 XE(y)m = /IXE(Q)P(?J) dy = /Epd)u

o=

where |
)= —— 2c(0,1).
p(x) I (0,1)
Therefore,
u(E) = / pdX,
E
and p < A. Finally, since du = pdX and p is positive in (0, 1), then
1
dA = —du,
p
and thus p ~ A O

3.3.1 Sketch of the Graph of p

In this section we explain how to sketch the graph of p using the Birkhoff ergodic theorem. In
our case, the probability space is (I, B, 1) and the p-ergodic map is the Ulam map Ty: I — I,
given by

Ty(z) = 4z(1 — x).

First, we choose an initial point zq € I at random and iterate the Ulam map N = 10° times.
Again, we divide the unit interval I into M = 1000 subintervals, given by

k-1 k}
Iy=\—-—1|, k=1,2,...,M.
k <M7M7 ) <y ’

Hence, Birkhoff ergodic theorem, applied to the integrable function f = xy,, implies that

N
1 . 1
N1 jZ;XIk( 1(0)) /]XIk I /IkP p@R)AIk) = p(@k) 37
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The Probability Density Function p
where the second approximation is due to the mean value theorem for definite integrals, and T,
is the midpoint of I, i.e

_ k-

T =

N[

M
Therefore, we approximate the graph of p by

N

— M j

p(@k) ~ 7 D (T (w0)), k=12, M
J=0

Furthermore, note that the previous sum counts how many of the points TZ (o) for j = 0,1,
visit the interval Iy, then

N,
N .
> x5 (T (o)) = 1,
i=0

where nj was the absolute frequency for the interval Iy, and thus,

_ M
p(Tk) ~

= k=1,2,.... M
N + 1nk Pk ) ’ )
which agrees with what we had seen in Chapter 1.
Pk

201

Pk
201
15

15 A
10

10 A

L ‘J 5 |
02 04

. . Ty,
0.6 0.8 1

0.02 0.04

T T ~ Tk
0.06 0.08 0.1

graph of p.

Figure 3.1: Sketch of the graph of p using the Birkhoff ergodic theorem.
In Figure 3.1 we have connected the points (Zy, px) by line segments to smooth the shape of the
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Appendix A

Python Programs

In this section we show the python code that we have used to obtain the images of the present
work, together with some comments that will almost surely be very useful to understand the
code.

A.1 Orbits

Parameter value [2.9, 3.1, (1+sqrt(8)).n(), 4]
= 2.9

Lo I =3

# Initial condition [(e-2).n(), (pi-3).n(), (sqrt(2)-1).n(0)]
x_0 = (e-2).n0)

# Logistic map
T(x) = r*x*(1-x)

# Number of iterations
N = 50

# Orbit of x_0: {x_0, x_1, x_2,..., x_N}
seed = [0.0 for i in range(N+1)]
seed [0] = x_0

# Iteration of T starting at x_0
for i in range(1,N+1):
seed[i] = T(seed[i-11)

# We plot the points (n,x_n) and connect them by line segments
g = plot(points ([[i,seed[i]] for i in range(N+1)], color=’green’, pointsize=20))

g += plot(line([[i,seed[i]] for i in range(N+1)], color=’blue’))

# Labels for the axes
g.axes_labels ([’$n$’, *$x_n$°1)

# We show the orbit in the range from 0 to 1
show (g, ymin=0, ymax=1)

# We save the image
g.save(’1-CYCLE.pdf )

Listing A.1: Code for Figures 1.1 and 1.2.

A.2 Orbit Diagrams

27
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# Initial condition
x_0 = (pi-3).n(Q)

# Number of iterations
N = 1000

# Number of parameter values

M = 1000
# For each parameter value: {r_0, r_1, r_2,..., r_M}
# we have the orbit of x_0: {x_0, x_1, x_2,..., x_N}

seed = [[0.0 for i in range(N+1)] for k in range(M+1)]

# Iteration of T_r for each parameter value between O and 4
# starting at x_0O
for k in range (M+1):

seed[k] [0] = x_0

r = 4xk/M # [3+k/M]

T(x) = r*x*(1-x)

for i in range(1,N+1):

seed[k][i] = T(seed[k][i-11)

# For each r we plot the remaining 200 iteratiomns: {x_801, x_802,..., x_N}
g = plot(points ([[4*xk/M,seed[k]1[i]l] for i in range(801,N+1)

for k in range(M+1)], color=’green’, pointsize=1))
g.axes_labels ([?$r$’, ’$I$°])
show (g)
g.save (’O0RBIT-DIAGRAM.png’)

Listing A.2: Code for Figure 1.3.

# Initial condition
x_0 = (pi-3).n0)

# Number of iterations
N = 1000

# Number of parameter values

M = 1000
# For each parameter value: {r_0, r_1, r_2,..., r_M}
# we have the orbit of x_0: {x_0, x_1, x_2,..., x_N}

seed = [[0.0 for i in range(N+1)] for k in range (M+1)]

# Iteration of T_r for each parameter value between 3 and 3.56994567
# starting at x_0
for k in range (M+1):

seed[k][0] = x_0

r = 3+(3.56994567-3) *xk/M

T(x) = r*x*x(1-x)

for i in range(1,N+1):

seed[k][i] = T(seed[k][i-1])

# For each r we plot the remaining 200 iteratiomns: {x_801, x_802,..., x_N}
g = plot (points ([[3+(3.56994567-3) *k/M,seed[k][i]] for i in range(801,N+1)
for k in range(M+1)], color=’green’, pointsize=1))

# We plot a vertical line segment for some bifurcation points

+= plot(line([[3,0], [3,1]1]1, color=’blue’))

g += text(’$b_1$°, [3-0.01,0.03], horizontal_alignment=’center’,
color=’black’, fontsize=12)

o5}
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g *+= plot(line ([[1+sqrt(6) ,0], [1+sqrt(6) ,1]1], color=’blue’))
g +t= text(’$b_2$°, [1+sqrt(6) -0.01,0.03], horizontal_alignment=’center’,
color=’black’, fontsize=12)

g += plot(line ([[3.544090,0], [3.544090,1]], color=’blue’))

g += text(’$b_3$°, [3.544090-0.01,0.03], horizontal_alignment=’center’,
color=’black’, fontsize=12)

g += plot(line ([[3.564407,0], [3.564407,1]], color=’blue’))

g += text(’$b_4%$°, [3.564407-0.01,0.03], horizontal_alignment=’center’,
color=’black’, fontsize=12)

g += plot(line ([[3.56994567,0], [3.56994567,1]], color=’red’))

g += text(’$b_\infty$’, [3.56994567+0.015,0.03], horizontal_alignment=’center’,
color=’black’, fontsize=12)

g.axes_labels ([’$r$’, ’$I$°1)

show (g)

g.save (’O0RBIT-DIAGRAM2 .png?)

Listing A.3: Code for Figure 1.4 (left).

# Initial condition
x_0 = (pi-3).n0)

# Number of iterations
N = 1000

# Number of parameter values

M = 1000
# For each parameter value: {r_0, r_1, r_2,..., r_M}
# we have the orbit of x_0: {x_0, x_1, x_2,..., x_N}

seed = [[0.0 for i in range(N+1)] for k in range (M+1)]

# Iteration of T_r for each parameter value between 3 and 3.56994567
# starting at x_0
for k in range (M+1):

seed[k][0] = x_0

r = 3.56994567+(3.857-3.56994567) xk/M

T(x) = r*x*x(1-x)

for i in range(1,N+1):

seed[k][i] = T(seed[k][i-1])

# For each r we plot the remaining 200 iterations: {x_801, x_802,..., x_N}

g = plot (points ([[3.56994567+(3.857-3.56994567) *k/M,seed[k][i]]
for i in range(801,N+1) for k in range(M+1)], color=’green’,
pointsize=1))

# We plot a vertical arrow for some periodic windows

g += text(’$3$’, [3.835,0.04], horizontal_alignment=’center’, color=’black’,
fontsize=12)

g += arrow([3.835,0.05], [3.835,0.165], arrowshorten=8, arrowsize=2, width=1,
color=’orange’)

g += text(’$5$’, [3.740,0.115], horizontal_alignment=’center’, color=’black?’,
fontsize=12)
g += arrow([3.740,0.125], [3.740,0.24], arrowshorten=8, arrowsize=2, width=1,
color=’orange’)

g += text(’$7$’, [3.702,0.145], horizontal_alignment=’center’, color=’black’,
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fontsize=12)
g += arrow([3.702,0.155], [3.702,0.27], arrowshorten=8, arrowsize=2, width=1,
color=’orange’)

g +t= text(’$6$°’, [3.630,0.195], horizontal_alignment=’center’, color=’black’,
fontsize=12)
g += arrow([3.630,0.205], [3.630,0.32], arrowshorten=8, arrowsize=2, width=1,
color=’orange’)

g += text(’$10%°, [3.606,0.21], horizontal_alignment=’center’, color=’black?’,
fontsize=12)
g += arrow([3.606,0.22], [3.606,0.335], arrowshorten=8, arrowsize=2, width=1,
color=’orange’)

g += text(’$12%°, [3.583,0.2218], horizontal_alignment=’center’, color=’black?’,
fontsize=12)
g += arrow([3.583,0.2318], [3.583,0.3468], arrowshorten=8, arrowsize=2, width=1,
color=’orange’)

# We plot a vertical line segment for some band-merging points

g +t= text(’$m_1$°, [3.67857351-0.006,0.025], horizontal_alignment=’center’,
color=’black’, fontsize=12)

g += plot(line([[3.67857351,0], [3.67857351,1]], color=’blue’))

g +t= text(’$m_2$°, [3.591+0.008,0.025], horizontal_alignment=’center’,
color=’black’, fontsize=12)
g += plot(line([[3.591,0], [3.591,1]1], color=’blue’))

g += text(’$m_3$°, [3.573-0.0065,0.025], horizontal_alignment=’center’,
color=’black’, fontsize=12)

g += plot(line([[3.573,0], [3.573,1]1]1, color=’blue’))

g.axes_labels ([?$r$’, $I$°])

show (g)

g.save (’ORBIT-DIAGRAM3 .png?)
Listing A.4: Code for Figure 1.4 (right).

A.3 Histograms

# The probability density function of the arcsine distribution
rho(x) = 1/(pi*sqrt(x*x(1-x)))

# The Ulam map
T(x) = 4*x*(1-x)

# Initial condition
x_0 = (pi-3).n(Q)

# Number of iterations
N = 1000000

# Orbit of x_0: {x_0, x_1, x_2,..., x_N}
seed = [0.0 for i in range(N+1)]
seed[0] = x_0

# Iteration of T starting at x_0
for i in range(1,N+1):
seed[i] = T(seed[i-11)
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# Number of subintervals
M = 1000

# Absolut frequencies: {n_0, n_1, n_2,..., n_M}
# (freq[0] is not used in calculations)
freq = [0.0 for k in range (M+1)]

# We count the number of iterates n_k which fall into each interval I_k
for i in range (N+1):

slot = ceil (M*seed[i])

freq[slot] = freqlslot]+1

# Coordinates for the four vertices of each column of the histogram

£

(P[0] is not used in calculations)
= [[0.0,0.0] for k in range (4*M+1)]

jav)

# We calculate the coordinates for the four vertices of each column
# based on the number of hits n_k
for k in range(1,M+1):

P[4*k-3] = [(k-1)/M,0]
P[4xk-2] = [(k-1)/M,freq[k]l*M/(N+1)]
P[4*k-1] = [k/M,freql[k]l*M/(N+1)]

P[4*xk] = [k/M,0]

# We plot line segments between the four vertices of each column
g = plot(line ([P[k] for k in range (1,4*M+1)], color=’green’))

# Graph of rho in the unit interval
g += plot(rho,0,1, color=’red’)

g += text (’$\\rho_k\\approx\\rho$’, (0.5,20), horizontal_alignment=’center’,
color=’black’, fontsize=15)

g.axes_labels ([’ *, > ’1)

# We adjust the graph to our convenience (ymax=freq[MI*M/(N+1))
show (g, ymax=20.3179796820203)

g.save (’DENSITY -MAP2.pdf?)
Listing A.5: Code for Figure 1.6 (right).
suma=0.0
# Sum of the absolute frequencies from the first interval to the last
for k in range (681,690+1):

suma=freq[k]+suma

# Sum of the corresponding relative frequencies
suma/(N+1)

Listing A.6: Code for numerical estimations.

A.4 Graphs of our Maps

# The probability density function of the arcsine distribution
rho(x) = 1/(pi*sqrt(x*(1-x)))

# Graph of rho in the unit interval
g = plot(rho,0,1, color=’blue’)

g.axes_labels ([’$x$°, $\\rho(x)$°])
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# We adjust the graph to our convenience (ymax=freq[M]*M/(N+1))
show (g, ymax=20.3179796820203, ymin=0)

g.save (’DENSITY -MAP.pdf’)
Listing A.7: Code for Figure 1.7 (left).

# The doubling map [psi(x)=sin(pi*x)*sin(pi*x), T(x)=4*x*(1-x)]
S(x) = frac(2+*x)

# Discontinuity points of S
excl = [1/n for n in range (1,2+1)]

# We exclude the discontinuity points of S
g = plot(S,0,1, exclude=excl)

g.axes_labels ([?$x$°, $S(x)$°1)

# We put the same scale in both axes
show (g, aspect_ratio=1)

g.save (’DOUBLING-MAP.pdf’, aspect_ratio=1)
Listing A.8: Code for Figure 1.7.

A.5 Birkhoff Ergodic Theorem in Practice

# The Ulam map
T(x) = 4*x*x(1-x)

# Initial condition
x_0 = (pi-3).n0)

# Number of iterations
N = 1000000

# Orbit of x_0: {x_0, x_1, x_2,..., x_N}
seed = [0.0 for i in range(N+1)]
seed[0] = x_0

# Iteration of T starting at x_0
for i in range(1,N+1):
seed[i] = T(seed[i-1])

# Number of subintervals
M = 1000

# Absolut frequencies: {n_0, n_1, n_2,..., n_M}
# (freq[0] is not used in calculations)
freq = [0.0 for k in range (M+1)]

# We count the number of iterates n_k which fall into each interval I_k
for i in range (N+1):

slot = ceil (M*seed[i])

freq[slot] = freqlslot]+1

# We plot the points (x_k,rho_k)) and connect them by line segments

g = plot(points ([[(k-0.5)/M,freq[k]*M/N] for k in range(1,M+1)], color=’green’,
pointsize=1))

g += plot(line([[(k-0.5)/M,freq[k]*M/N] for k in range(1,M+1)], color=’blue’))
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g.axes_labels ([’$\\overline{x}_k$’, ’$\\rho_k$’])

# We adjust the graph to our convenience (ymax=freq[MI*M/(N+1))
show (g, ymax=20.3179796820203)

g.save (’DENSITY -MAP3.pdf )

Listing A.9: Code for Figure 3.1.
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