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Resumen

El principal objetivo del presente trabajo es probar que la aplicación logística de Ulam T4, dada
por

x 7→ 4x(1− x), x ∈ [0, 1],

es ergódica.

Comenzaremos dando cuenta del comportamiento asintótico de las trayectorias (u órbitas) para
el sistema dinámico discreto de�nido por la aplicación logística Tr : [0, 1] → [0, 1], dada por

Tr(x) = rx(1− x),

en función del valor del parámetro r ∈ [0, 4]. Para ello, primeramente realizaremos una serie de
simulaciones numéricas, tales como representar de manera grá�ca el comportamiento asintótico
de algunas órbitas, así como el cálculo del diagrama de órbita (o diagrama de Feigenbaum) para
la familia logística {Tr}r∈[0,4]. A través de estos experimentos, clasi�caremos las funciones de
dicha familia principalmente en dos grupos: hablaremos de aplicaciones regulares y de aplica-
ciones estocásticas. Este hecho se formaliza en el teorema regular o estocástico de Lyubich (ver
[6]).

En aras de cumplir con nuestro objetivo, en el Capítulo 1 realizamos otro experimento en el que
calculamos un histograma que re�eja la distribución de casi todas las órbitas para la aplicación
de Ulam T4.

El razonamiento llevado a cabo en este experimento se formalizará en el marco de la teoría de la
medida, y en particular dentro del marco de la teoría ergódica y el teorema ergódico de Birkho�,
que nos ayudarán a estudiar y entender el comportamiento a largo plazo y en promedio de casi
todas las órbitas para la aplicación de Ulam.

Muy relacionado con lo anterior es el hecho de que la aplicación de Ulam T4 es topológicamente
transitiva y de que casi todas sus trayectorias son densas en el intervalo unidad [0, 1]. Para
probar dichas a�rmaciones tendremos que recurrir a otro sistema dinámico discreto que está
estrechamente relacionado con la aplicación T4: la función de duplicación S : [0, 1] → [0, 1], dada
por

S(x) = Frac(2x),

donde el operador Frac(x) nos proporciona la parte decimal de un número x ∈ R. Probaremos
que S es topológicamente transitiva y que casi todas sus órbitas son densas en [0, 1]. Para ello,
dotaremos a S de una nueva interpretación: pasando a la representación binaria de los números
reales x ∈ [0, 1]. La relación entre T4 y S se formalizará con la noción de semiconjugación
topológica.

Hemos hablado acerca de la teoría ergódica, la cual puede verse como una aplicación de la teoría
de la medida al estudio del comportamiento promedio a largo plazo de los sistemas dinámicos.
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iv Resumen

Las principales nociones serán las de medida invariante con respecto a una aplicación, y la de
aplicación ergódica con respecto a una medida invariante. Además, la principal idea de la teoría
ergódica será el teorema ergódico de Birkho�, según el cual, con probabilidad uno, la media de
una función integrable a lo largo de una órbita de una aplicación ergódica es igual a la integral
de dicha función. Desarrollaremos todas las nociones y resultados necesarios para probar dicho
teorema en el Capítulo 2 del presente trabajo.

Por último, en el Capítulo 3, probaremos que la aplicación de Ulam T4 es ergódica con respecto
a una medida de probabilidad µ. Para ello, nuevamente, nos serviremos del hecho de que T4
será topológicamente semiconjugada con S, y de que S será ergódica con respecto a la medida
de Lebesgue. Además, probaremos que la función de densidad ρ, asociada a la medida de
probabilidad µ, estará dada por la siguiente expresión analítica:

ρ(x) =
1

π
√
x(1− x)

, x ∈ (0, 1).

Casi todas las órbitas de T4 se distribuirán con arreglo a esta función de densidad. Finalmente,
explicaremos como hacer un bosquejo de la grá�ca de ρ utilizando el teorema ergódico de Birkho�.

La principal fuente utilizada para la realización del presente trabajo ha sido el libro "Computa-
tional Ergodic Theory" de Choe (ver [3]).
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Chapter 1

Introduction to the Logistic Family

The present work is framed within the theory of discrete dynamical systems, which studies the
iteration of a function of a set into itself. In our case, the set will be the unit interval [0, 1], which
we will denote by I, and the function will be the so-called logistic map Tr : I → I, given by

Tr(x) = rx(1− x),

where the values of the parameter r are restricted to the interval [0, 4], so that Tr(x) ∈ I for
every x ∈ I.

When we iterate the logistic map starting at an initial value x0 ∈ I, we obtain what is called the
orbit of x0, i.e. the set of points x0, x1, x2, . . . , xn, . . . , where xn = Tr(xn−1) for n ≥ 1.

We will adopt a measure-theoretic viewpoint, in the sense that we are interested in describing
the asymptotic behavior of almost all orbits of Tr for almost any parameter value r ∈ [0, 4].
The terms "almost all" and "almost any" mean that the corresponding assertions are true except
on a set of Lebesgue measure zero.1 We will denote by B the Borel σ-algebra over I and by λ
the Lebesgue measure on (I,B).

1.1 Orbit Diagram

We will say that the orbit of x0 ∈ I is periodic if there exists n ≥ 1 such that xn = x0. The least
positive integer n for which xn = x0 is called the period of the orbit. In this case, the orbit of
x0 is just the set of points x0, x1, x2, . . . , xn−1, and we will say that the lenght of the orbit is n,
and that the orbit is a n-cycle.

Let's start by doing some experiments. In Figures 1.1 and 1.2 we show graphically the asymp-
totic behavior of four orbits for di�erent r-values and di�erent initial conditions x0 ∈ I.
On the horizontal axis, the number of iterations n is marked, while on the vertical axis, the
iterates xn are given for each n. The points (n, xn) are connected by line segments to enhance
visibility.

In the �rst picture, we observe that, after a transient phase, the orbit tends to a 1-cycle (or �xed
point), while in the second and third, also after a transient, the orbit leads to a 2-cycle and a
3-cycle, respectively (periodic points). In contrast, the last image exhibits an irregular pattern
all the time (chaotic behavior).

1Both the parameter interval [0, 4] and the unit interval I are endowed with the Lebesgue measure.
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Figure 1.1: Orbits for r = 2.9 and x0 = e− 2 (left) and r = 3.1 and x0 = π − 3 (right).
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Figure 1.2: Orbits for r = 1 +
√
8 and x0 =

√
2− 1 (left) and r = 4 and x0 = e− 2 (right).

Experiments of this type show that the asymptotic behavior of the orbits depends on the pa-
rameter value r ∈ [0, 4], but it does not seem to depend substantially on the initial condition
x0 ∈ I. Further, we observe that there are r-values for which the orbits seem to stabilize in a
cycle, while there are others for which the orbits show an apparently chaotic behavior.

Hence, we carry out another experiment which consists in ploting, for each parameter value
r ∈ [0, 4] and starting at a randomly chosen initial value x0 ∈ I, the part of the orbit which we
obtain after disregarding a transient phase, thus getting the so-called orbit diagram (or bifurca-
tion diagram, or Feigenbaum diagram) which we show in Figure 1.3.

More precisely, the horizontal axis denotes the r-values, and the vertical axis represents the unit
interval I. For each of 1001 equally spaced r-values2 the iterations x1, x2, . . . , xN , say N = 1000,
are computed, but we drop the �rst 801 iterations x0, x1, . . . , x800. This eliminates the transient,
so that the dependence on the initial choice x0 is diluted to almost zero. Only the remaining 200
iterations x801, x802, . . . , xN are plotted in the image.

Therefore, given a parameter value r ∈ [0, 4], if there exists a set of points to which almost all
orbits of Tr converge, what we will informally call the attractor, this experiment will be able to
locate it.

2In the orbit diagrams of Figure 1.3, we have considered the parameter values rk = 4 k
1000

(left) and rk = 3+ k
1000

(right) for k = 0, 1, . . . , 1000.
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Figure 1.3: Orbit diagrams of Tr for 0 ≤ r ≤ 4 (left) and 3 ≤ r ≤ 4 (right).

1.1.1 Regularity

Let's analyze the orbit diagram a bit more in depth. If we look at the left-hand side of the
orbit diagrams in Figure 1.3, we can see that there is a lot of regularity, in the sense that the
asymptotic behavior of the orbits is quite simple. We will say that a parameter value r ∈ [0, 4]
is regular (see [6]) if there exists an attracting cycle to which almost all orbits of Tr converge.
This attracting cycle is unique. Thus, for regular values, the attractor is the attracting cycle.

As examples of regularity, we have that x = 0 is an attracting �xed point for r ∈ [0, 1] and
that x = 1 − 1

r is an attracting �xed point for r ∈ (1, b1], where b1 = 3. In Figure 1.4 we can

also observe an attracting 2-cycle for r ∈ (b1, b2], where b2 = 1 +
√
6 ≈ 3.449489, an attracting

4-cycle for r ∈ (b2, b3], where b3 ≈ 3.544090, and an attracting 8-cycle for r ∈ (b3, b4], where
b4 ≈ 3.564407. In general, at r = bk a new attracting 2k-cycle appears. These r-values are called
bifurcation points. Hence, we have an increasing sequence of parameter values bk, which tends to
the so-called Feigenbaum point b∞ ≈ 3.5699453 (see [7]). The region between r = 0 and r = b∞
is called the period-doubling tree of the orbit diagram.

Figure 1.4: Orbit diagrams of Tr for 3 ≤ r ≤ b∞ (left) and b∞ ≤ r ≤ 3.857 (right) along with
some notable r-values and some periodic windows.

At the right-hand side of the Feigenbaum point not everything is chaotic. For example, the

3The Feigenbaum point is neither regular nor stochastic (see Section 1.1.2). Furthermore, the attractor for
this r-value is a Cantor set: we may have some intuition about this as the branches of the period-doubling tree
fork at each bk, but understanding the dynamics at this point is beyond the scope of the present work.
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parameter value r = 1+
√
8 ≈ 3.828427 is a regular value at which an attracting 3-cycle is born,

in the sense that there is no 3-cycle (attractor or not) for any smaller value of r. In Figure 1.4,
we oberve an attracting 5-cycle, 7-cycle, 6-cycle, 10-cycle and 12-cycle. The regions of the orbit
diagram where chaos seems to be interrupted by attracting cycles are called periodic windows.

Further, we observe that at r = m1 ≈ 3.678573 the orbit diagram splits into 2 parts (from right
to left), at r = m2 it splits into 4 parts, and at r = m3 it splits into 8 parts. In general, at r = mk

the orbit diagram splits into 2k parts. These r-values are called band-merging points. Hence, we
have a decreasing sequence of parameter values mk, which also leads to the Feigenbaum point
m∞ = b∞ (see [7]).

1.1.2 Stochasticity

Now, we ask what happens to the orbits for apparently chaotic r-values such as r = 4. For this
parameter value, T4 is the so-called Ulam logistic map (see Figure 1.7). Since we are interested in
knowing the asymptotic behavior of the orbits, we wonder whether we can give a satisfactory an-
swer to questions such as what is the probability that the orbit x0, x1, x2, . . . , xn = T4(xn−1), . . . ,
(in the long term and on average) lies in the interval [0.68, 0.69].

To answer this question, we do another experiment which consists of seeing how the points of
the orbit of x0 are distributed in the unit interval I. Thus, we compute a histogram re�ecting
which parts of the unit interval are visited by the orbit and how often (see Figure 1.5).

To this end, we pick an initial point x0 ∈ I at random and iterate the Ulam map, say N = 106

times. Now, we divide the unit interval I into a large number of small subintervals, sayM = 1000,
given by

Ik =

Å
k − 1

M
,
k

M

ò
, k = 1, 2, . . . ,M.

Then, we count how many of the iterates x0, x1, x2, . . . , xN fall into each interval Ik. Let this
number be nk. In other words, nk is the number of events in Ik, i.e. the absolute frequency
for the interval Ik. Thus, noting that the lenght of the truncated orbit of x0 is N + 1, we may
consider the associated relative frequencies, given by

fk =
nk

N + 1
, k = 1, 2, . . . ,M.

Moreover, the relative frequency fk can be interpreted as a probability: it is the probability
that we guess correctly (whitout calculations) the interval Ik into which a point falls, randomly
chosen from the N + 1 points of the truncated orbit of x0.

Therefore, the area of the kth column of the histogram will be fk, and since the width of each
column is 1

M (the lenght of Ik), we conclude that the height of the k
th column will be given by

ρk =Mfk =M
nk

N + 1
.

In Figure 1.5 we see a distribution for the ρk which is symmetric with respect to x = 1
2 , and which

is rather �at in the center while having steep boundary spikes at x = 0 and x = 1. This means
that, during the course of the iteration, the probability that we see a point of the truncated orbit
near x = 0 or x = 1 is comparatively much higher than that of seeing it in the center of the unit
interval I.

Running the same experiment again for di�erent initial values x0 ∈ I, results in histograms which
are indistinguishable from the one above. As we increase the number M of subintervals and the
number N of iterations, the e�ect is a smoothing of the shape of the columns of the histogram.



Introduction to the Logistic Family 5

0.2 0.4 0.6 0.8 1
Ik

5

10

15

20

ρk

0.02 0.04 0.06 0.08 0.1
Ik

5

10

15

20

ρk

Figure 1.5: Histogram for the distribution of the truncated orbit x0, x1, x2, . . . , xN in the unit
interval I.

In the limit, we would approximate a well-known curve (see Figure 1.6): the probability density
function4 of the arcsine distribution, given by

ρ(x) =
1

π
√
x(1− x)

, x ∈ (0, 1).
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Figure 1.6: y = ρ(x) (left) and the histogram approximation to the graph of ρ (right).

Let's now calculate the arcsine distribution function F :

F (x) =

∫ x

0
ρ(t) dt =

∫ x

0

dt

π
√
t(1− t)

=
2

π

∫ √
x

0

dy√
1− y2

=
2

π
arcsin(

√
x), x ∈ [0, 1],

where we have used the change of variables y =
√
t, 0 ≤ t ≤ x.

Therefore, the probability that the orbit x0, x1, x2, . . . , xn, . . . (in the long-term and on average)
lies in the interval [0.68, 0.69] is exactly

F (0.69)− F (0.68) =
2

π

Ä
arcsin(

√
0.69)− arcsin(

√
0.68)

ä
≈ 0.0068527.

4Only for r = 4 an analytical expression for the probability density function is known, albeit for other values
such as r = m1 there also seems to be one.
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On the other hand, we can also estimate this probability summing the corresponding relative
frequencies fk, i.e. since

[0.68, 0.69] =

690⋃
k=681

Ik,
5

we conclude that the probability that a randomly chosen point of the truncated orbit x0, x1, x2, . . . , xN
belongs to the interval [0.68, 0.69] is

690∑
k=681

fk ≈ 0.0069059, 6

which roughly agrees with the exact value.

The reasoning carried out in the experiments above is formalized in the framework of ergodic
theory and the Birkho� ergodic theorem, which will be discussed in Chapter 2. The main con-
cepts are: invariant measure with respect to a map, and ergodic map with respect to an invariant
measure.

In the previous experiments, the probability measure µ de�ned over the measurable space (I,B),
whose density function is ρ, is invariant with respect to the Ulam map T4, and T4 is ergodic with
respect to µ. In this situation, the Birkho� ergodic theorem states that

lim
n→∞

1

n

n−1∑
k=0

f(T k4 (x)) =

∫
I
f dµ (1.1)

for almost all x ∈ I with respect to µ, and for any integrable function f . If we take f = χ[0.68,0.69],
we obtain the probability calculated above.

Moreover, since µ is a probability measure with density function ρ, µ is absolutely continuous
with respect to λ, and since ρ is positive in (0, 1), λ is also absolutely continuous with respect
to µ. Hence, µ and λ are equivalent, so an assertion is true µ-a.e. if and only if it is true λ-a.e.
Thus, Equality 1.1 holds also for almost all x ∈ I with respect to λ.
The details of all this will be discussed in Chapter 3.

At this point, we have built su�cient background to address the notion of stochasticity. As
opposed to the notion of regularity, a parameter value r ∈ [0, 4] is said to be stochastic (see [6])
if there exists a Tr-invariant probability measure µr which is absolutely continuous with respect
to the Lebesgue measure λ. In that case, Tr is µr-ergodic, and we can apply the Birkho� ergodic
theorem. The probability measure µr then explains the asymptotic behavior of almost all orbits
of Tr.

It is known that Tr cannot be simultaneously regular and stochastic, and that both, the set of
r-values for which Tr is regular and the set of r-values for which Tr is stochastic, have positive
Lebesgue measure λ.

Furthermore, Lyubich Regular or Stochastic theorem states that for almost every r ∈ [0, 4], the
logistic map Tr is either regular or stochastic (see [6]). This theorem, which was a milestone
in the understanding of one-dimensional dynamics, provides a complete qualitative description
of the asymptotic behavior of almost all orbits for almost any parameter value r in the logistic
family Tr.

5Equality modulo Lebesgue measure zero sets (see Chapter 3).
6See A.3 to verify this value.
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1.2 Chaos and Dense Orbits

Closely related to the above is the fact that the Ulam map T4 is chaotic on the unit interval I and
that almost all of its orbits are dense in I. Given a topological space X and a map T : X → X,
the orbit of x0 ∈ X is dense in X if for any open non-empty subset U ⊆ X there exists n > 0
such that Tn(x0) ∈ U . In our case, I is a metric space, so the orbit of x0 ∈ I is dense in I if and
only if for any x ∈ I and any ε > 0 there exists n > 0 such that |x− Tn(x0)| < ε.

De�nition (Devaney's De�nition of Chaos). Let X be a metric space. A continuous map
T : X → X is said to be chaotic on X if

(i) T is topologically transitive, i.e. for any pair of open non-empty subsets U, V ⊆ X
there exists k > 0 such that T k(U) ∩ V ̸= ∅,

(ii) the set of periodic points of T is dense in X, i.e. for any x ∈ X and any ε > 0 there
exists a periodic point y ∈ X of T such that |x− y| < ε, and

(iii) T has sensitive dependence on initial conditions, i.e. there exists δ > 0 such that,
for any x ∈ X and any neighborhood N of x, there exist y ∈ N and n ≥ 0 such that
|Tn(x)− Tn(y)| > δ. In this case, δ is called the sensitivity constant.

A few years after the publication of this denition (see [4]), a group of �ve mathematicians (see
[2]) showed that transitivity plus density of periodic points implied sensitivity. And two years
later, other two mathematicians (see [8]) proved that, for the case of continuous maps de�ned
on an interval, transitivity implied chaos.

Therefore, to prove that the Ulam map T4 is chaotic, the only condition that has to be checked
is transitivity. We will accomplish this through the introduction of another map.

1.2.1 The Doubling Map

The goal of this section is to prove transitivity, as well as density of almost all orbits, for the
so-called doubling map S : I → I, given by

S(x) = Frac(2x).

Remembering that the fractional part (or decimal part) of a number x ∈ R is de�ned by

Frac(x) = x− k, if k ≤ x < k + 1, k ∈ Z,

we may develop the term on the right to obtain an explicit formula for the doubling map (see
Figure 1.7). Then

Frac(2x) = 2x− k, if k ≤ 2x < k + 1, k ∈ Z.

Since 0 ≤ 2x ≤ 2, we conclude that the only possible integer values are k = 0, 1 and 2. Hence,

S(x) = Frac(2x) =


2x, if 0 ≤ x < 1

2 ,
2x− 1, if 1

2 ≤ x < 1,
0, if x = 1.

Let's start by proving some basic properties of the Frac-operator.

Proposition. Let x ∈ R and m ∈ Z. Then

(i) Frac(x+m) = Frac(x).

(ii) Frac(mFrac(x)) = Frac(mx).
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Proof. (i) Let k ∈ Z such that k ≤ x < k + 1. Thus k +m ≤ x+m < k +m+ 1, and

Frac(x+m) = x+m− (k +m) = x− k = Frac(x).

(ii) Let k ∈ Z such that k ≤ x < k + 1. Then

Frac(mFrac(x)) = Frac(m(x− k)) = Frac(mx−mk) = Frac(mx),

where the last equality follows from the �rst property.

From this proposition we can derive a closed-form expression for the iteration of the doubling
map S.

Proposition. Let x0 ∈ I. Then

xn = Sn(x0) = Frac(2nx0), n ≥ 1.

Proof. We prove the statement by induction on n. The �rst iterate, x1 = S(x0) = Frac(2x0), is
already in the closed form by de�nition. For the induction step from n to n + 1, let us assume
the hypothesis xn = Frac(2nx0) for some n ≥ 1. Then, we compute

xn+1 = S(xn) = Frac(2xn) = Frac(2Frac(2nx0)) = Frac(2n+1x0),

where the last equality follows from the second property of the Frac-operator. This concludes
the proof by induction.

Now, we reveal a new interpretation for the doubling map S by passing to binary representations
of the numbers x ∈ I. Recall that any x ∈ I can be written as x = 0.a1a2a3 . . ., where the ai are
binary digits, i.e. ai ∈ {0, 1}, and

x = a12
−1 + a22

−2 + a32
−3 + · · · .

Proposition. Let x, y ∈ I with binary expansions x = 0.a1a2a3 . . . and y = 0.b1b2b3 . . . Then

|x− y| ≤ 2−k,

provided that ai = bi for i = 1, . . . , k.

Proof. Without loss of generality, we can assume that x ≥ y. Then

|x− y| = |0.a1a2a3 . . .− 0.b1b2b3 . . . | ≤ |0.a1 . . . akÛ1− 0.b1 . . . bkÛ0| = |0.0 . . . 0Û1| = 2−k.

If we apply the doubling map S to a binary representation x = 0.a1a2a3 . . . then

S(x) = Frac(2x) = Frac(a1.a2a3a4 . . .) = 0.a2a3a4 . . . ,

i.e. one application of S consists in �rst shifting all binary digits one place to the left, and then
erasing the digit that is moved in front of the decimal point. Due to the type of this almost
mechanical procedure, S is also called the binary shift operator.

Note. There is a technicality which we must address here, namely, the ambiguity of the binary
representations. For example, x = 1

2 has two possible binary versions: 0.1 and 0.0Û1. If we

apply the shift operator to them we obtain 0 and 0.Û1 = 1, respectively. On the other hand,
S(12) = Frac(1) = 0. Hence, to avoid the ambiguity and to be consistent with the initial de�nition
of S, we discard all binaries ending with repeating digits 1.7 Thus, we represent x = 1

2 = 0.1

and x = 1
4 = 0.01, but not as 0.0Û1 or 0.00Û1.

7Our convention implies that we cannot represent x = 1 in the form 0.Û1. This point is the only one that will
not have a binary representation in our analysis. But this is not signi�cant for the dynamics of the iteration of
S, since x = 1 has not preimages (no point of I is mapped into x = 1 through S), and this point is mapped into
the �xed point x = 0.
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Note. The notion of transitivity does not require a map to be continuous. Thus, we may try
transitivity for the doubling map S.

Now, we are ready to prove the following key theorems.

Theorem. The doubling map is topologically transitive.

Proof. Let U and V be two open non-empty subsets in I. Then, there exist two open non-
empty subintervals Ũ ⊆ U and Ṽ ⊆ V . Now, let k > 0 such that Ũ has a length greater than
2−(k−1). Further, let x = 0.a1a2a3 . . . be the binary representation of the midpoint of Ũ and let
y = 0.b1b2b3 . . . be the binary representation of a point of Ṽ .

We construct an initial point x0 ∈ Ũ which, after exactly k iterations of the shift operator, will
be equal to y, thus providing the required point in the target interval Ṽ . To de�ne x0 we copy
the �rst k digits of the center of Ũ and then append all digits of the target point y:

x0 = 0.a1a2a3 . . . akb1b2b3 . . .

Now, we check that x0 belongs to Ũ : by the previous proposition |x− x0| ≤ 2−k, i.e. x0 di�ers
from the center of Ũ by at most 2−k. Since the width of Ũ is greater than twice this distance,
necessarily x0 ∈ Ũ . Secondly, after k iterations we have

xk = Sk(x0) = 0.b1b2b3 . . . = y ∈ Ṽ .

Therefore,

Sk(U) ∩ V ⊇ Sk(Ũ) ∩ Ṽ ̸= ∅.

Remark. In the proof above we have even over-ful�lled the requirement, since in the case of the
shift operator we can hit any target point y ∈ V .

Theorem. Almost all orbits of the doubling map are dense in I.

Proof. We have to prove the following: if we pick an initial condition x0 ∈ I at random, then for
any x ∈ I and any ε > 0 almost surely there exists n > 0 such that |x− Sn(x0)| < ε.

So, let x0 ∈ I for which we choose its binary digits at random and let x = 0.a1a2a3 . . . be the
binary representation of a point of I. Given ε > 0, there exists k > 0 such that 2−k < ε.

Now, the In�nite monkey theorem (see [1]) implies that the string of digits a1a2a3 . . . ak (the �rst
k digits of x) almost surely appears in the binary expansion of x0 at some place, and therefore
su�ciently many shifts will bring this string to the leading digits, i.e. almost surely there exists
n > 0 such that xn = Sn(x0) = 0.a1a2a3 . . . ak . . ., and thus,

|x− xn| ≤ 2−k < ε.

1.2.2 Topological Conjugacy and Semi-conjugacy

The goal of this section is to relate the dynamics of the doubling map S to the dynamics of the
Ulam map T4, in order to transfer to the latter what we have just proved for the former.

De�nition. Let X and Y be two topological spaces and f : X → X and g : Y → Y two maps.
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(i) f and g are said to be topologically conjugate provided f and g are continuous and
there exists a homeomorphism h : X → Y such that h ◦ f = g ◦ h. In this case, h is called
a topological conjugacy.

(ii) g is said to be topologically semi-conjugate to f provided there exists a continuous
and onto map h : X → Y such that h ◦ f = g ◦ h. In this case, h is called a topological
semi-conjugacy.

To express that the conjugacy equation h ◦ f = g ◦ h holds, we say that the following diagram is
commutative:

X
f //

h
��

X

h
��

Y g
// Y

Proposition. Let g be topologically semi-conjugate to f via h. Then

(i) The functional equation h ◦ fn = gn ◦ h holds for every n ≥ 1.

(ii) If f is topologically transitive, then also g is topologically transitive.

(iii) If the orbit of x0 is dense in X, then the orbit of y0 = h(x0) is dense in Y .

Proof. (i) We prove the statement by induction on n. For n = 1, the functional equation
h ◦ f = g ◦ h holds since h is a topological semi-conjugacy. For the induction step from n to
n+ 1, let us assume that h ◦ fn = gn ◦ h. Then,

h ◦ fn+1 = (h ◦ fn) ◦ f = (gn ◦ h) ◦ f = gn ◦ (h ◦ f) = gn ◦ (g ◦ h) = gn+1 ◦ h.

(ii) Let U and V be two open non-empty subsets in Y . We have to �nd y ∈ U and k > 0 such
that gk(y) ∈ V . To do this, we take the preimages A = h−1(U) and B = h−1(V ), which are
non-empty subsets since h is onto, and also, they are open in X since h is continuous. Thus,
there exists x ∈ A and k > 0 such that fk(x) ∈ B, since f is topologically transitive. Now, we
take y = h(x), and using the functional equation h ◦ fk = gk ◦ h we obtain

gk(y) = gk(h(x)) = h(fk(x)) ∈ h(B) = V,

since h is onto.
(iii) Let U an open non-empty subset in Y. We have to �nd n > 0 such that gn(y0) ∈ U . To do
this, we take the preimage A = h−1(U), which is a non-empty subset since h is onto, and also,
it is open in X since h is continuous. Thus, there exists n > 0 such that fn(x0) ∈ A, since the
orbit of x0 is dense. Now, using the functional equation h ◦ fn = gn ◦ h we obtain

gn(y0) = gn(h(x0)) = h(fn(x0)) ∈ h(A) = U,

since h is onto.

Proposition. The Ulam map is topologically semi-conjugate to the doubling map via the map

ψ : I → I, given by

ψ(x) = sin2(πx).

Proof. It is clear that ψ is continuous and onto, but not one-to-one, since y = ψ(x) if and only
if x = z or x = 1− z, where

z =
1

π
arcsin(

√
y) ∈

ï
0,

1

2

ò
.
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On the one hand,

(ψ ◦ S)(x) =


ψ(2x), if 0 ≤ x < 1

2
ψ(2x− 1), if 1

2 ≤ x < 1
ψ(0), if x = 1

 = sin2(2πx),

and, on the other hand,

(T4 ◦ ψ)(x) = 4 sin2(πx)(1− sin2(πx)) = (2 sin(πx) cos(πx))2 = sin2(2πx), x ∈ I.

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1
S(x)

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1
ψ(x)

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1
T4(x)

Figure 1.7: y = S(x) (left), y = ψ(x) (center) and y = 4x(1− x) (right).

Corollary. We conclude the following two facts:

(i) The Ulam map is chaotic on I.

(ii) Almost all orbits of the Ulam map are dense in I.

Proof. (i) This follows from the fact that the Ulam map T4 is continuous and that it inherits
from the doubling map S, via ψ, the property of topological transitivity.
(ii) This also follows from the fact that T4 inherits from S, via ψ, the property of density of
almost all orbits.

The fact that almost all orbits of T4 are dense in I suggests that the attractor for the Ulam map
is the whole interval I.
In Chapter 3, we will follow the same proof strategy as above to show that the Ulam map is
ergodic.

1.2.3 Dense Orbit implies Topological Transitivity

We start by proving the following result:

Proposition. Let X be a topological space without isolated points, D a dense subset in X and

x1, x2, . . . , xn ∈ D. Then, the set Dn = D \ {x1, x2, . . . , xn} is dense in X.

Proof. We must prove the following: Dn ∩ U ̸= ∅, for any open non-empty subset U ⊆ X.

So, let U an open non-empty subset in X. We prove the statement by induction on n. For n = 1,

D1 ∩ U = (D \ {x1}) ∩ U = (D ∩ U) \ {x1} ≠ ∅,
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since x1 is not isolated. Hence, D1 is dense in X. For the induction step from n to n+ 1, let us
assume that Dn = D \ {x1, x2, . . . , xn} is dense in X. Then,

Dn+1 ∩ U = (D \ {x1, x2, . . . , xn, xn+1}) ∩ U = (Dn \ {xn+1}) ∩ U = (Dn ∩ U) \ {xn+1} ≠ ∅,

since xn+1 is not isolated. Therefore, Dn+1 is dense in X.

Theorem. Let X be a topological space without isolated points and T : X → X a continuous

map. If T has a dense orbit in X, then T is topologically transitive.

Proof. Suppose that the orbit of an initial value x0 ∈ X is dense in X. Let U and V be two
open non-empty subsets in X. Then, there exists n > 0 such that xn = Tn(x0) ∈ U . Now, the
orbit of xn ∈ X is also dense in X, since, by the previous proposition, the set

{xn, xn+1, . . .} = {x0, x1, . . .} \ {x0, x1, . . . , xn−1},

is dense in X. Thus, there exists k > 0 such that T k(xn) ∈ V .

In separable complete metric spaces, the converse is also true.

Theorem (Birkho� Transitivity Theorem). Let X be a separable complete metric space

without isolated points and T : X → X a continuous map. The following statements are equiva-

lent:

(i) T is topologically transitive.

(ii) T has a dense orbit in X.

For a proof of this theorem see [5].



Chapter 2

Ergodic Theory

The most fundamental idea in ergodic theory is the Birkho� ergodic theorem, which states that,
with probability one, the average of a function along an orbit of an ergodic map is equal to the
integral of the given function.

2.1 Image Measure

Let's start by remembering the notion of an image measure. Given a measurable space (X,A)
and a map T : X → X, we know that the set

T (A) = {E ⊆ X : T−1(E) ∈ A}

is a σ-algebra over X, the so-called image σ-algebra of A under T . If a measure µ is chosen
for (X,A) we may consider the image measure of µ under T , given by

µ ◦ T−1 : T (A) −→ [0,+∞]
E 7−→ µ(T−1(E)).

We will denote the image measure µ ◦ T−1 by T∗(µ).
Further, ifA ⊆ T (A), we may consider the restriction measure of T∗(µ) toA, so that (X,A, T∗(µ)|A)
is a measure space. For ease of notation, we will write simply T∗(µ)|A = T∗(µ) in that case.
Note that A ⊆ T (A) is equivalent to T−1(E) ∈ A for every E ∈ A.

2.2 Invariant Measure

De�nition. Let (X,A, µ) be a measure space. A map T : X → X is said to be measure

preserving with respect to µ (or µ-preserving) if

A ⊆ T (A) and T∗(µ) = µ.

In this case, µ is said to be invariant under T (or T -invariant).

De�nition. Let (X,A) be a measurable space. A function f : X → R is said to be measurable

(or A-measurbale) if
f−1(E) ∈ A for every E ∈ B(R),

where B(R) denotes the Borel σ-algebra. If f is also a complex function, we say that f is
measurable if its real and imaginary parts are measurable functions.

De�nition. Let (X,A, µ) be a measure space. A measurable function f : X → R is said to be
integrable with respect to µ (or µ-integrable) if∫

X
|f | dµ < +∞.

13
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In this case, we denote by L1(X,µ) the set of integrable functions on X. If f is also a complex
function, we say that f is integrable if its real and imaginary parts are integrable functions.

Theorem. Let (X,A, µ) be a �nite measure space and T : X → X a map such that A ⊆ T (A).
The following statements are equivalent:

(i) T is µ-preserving.

(ii) For any f ∈ L1(X,µ) we have ∫
X
f dµ =

∫
X
(f ◦ T ) dµ .

Proof. (ii)⇒(i). Let E ∈ A and take f = χE . Since µ(X) < +∞, then f ∈ L1(X,µ). Hence,

µ(E) =

∫
X
χE(x) dµ =

∫
X
χE(T (x)) dµ =

∫
X
χT−1(E)(x) dµ = µ(T−1(E)) = T∗(µ)(E) .

(i)⇒(ii). First observe that a complex-valued measurable function f can be written as a sum

f = f1 − f2 + i(f3 − f4),

where i =
√
−1, and each function fj is real, nonnegative and measurable. Thus, we may assume

that f is real-valued and f ≥ 0. Let E ∈ A and take f = χE . Then,∫
X
f(x) dµ = µ(E) = T∗(µ)(E) =

∫
X
χT−1(E)(x) dµ =

∫
X
f(T (x)) dµ .

By linearity, the same relation holds for a simple measurable function f . Now, for a general non-
negative function f ∈ L1(X,µ), choose an increasing sequence of simple measurable nonnegative
functions {sn}n≥1 converging to f pointwise. Then, {sn ◦ T}n≥1 is an increasing sequence and
it converges to f ◦ T pointwise. Finally, the Monotone Convergence Theorem implies that∫

X
f(T (x)) dµ = lim

n→∞

∫
X
sn(T (x)) dµ = lim

n→∞

∫
X
sn(x) dµ =

∫
X
f(x) dµ .

2.3 Ergodic Map

De�nition. Let X be a set and T : X → X a map.

(i) A set E ⊆ X is said to be invariant under T (or T -invariant) if T−1(E) = E.

(ii) A function f : X → C is said to be invariant under T (or T -invariant) if f ◦ T = f .

De�nition. Let (X,A, µ) be a measure space and E,F ∈ A. We say that E = F modulo

measure zero if

µ((E \ F ) ∪ (F \ E)) = 0.

In this case, we write E ⊜ F .

De�nition. Let (X,A, µ) be a probability space. A µ-preserving map T : X → X is said to be
ergodic with respect to µ (or µ-ergodic) if for any E ∈ A

E is T -invariant modulo measure zero if and only if µ(E) = 0 or µ(E) = 1.
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De�nition. Let (X,A, µ) be a measure space and P (x) a property whose validity depends on
x ∈ X. We say that P (x) is true almost everywhere with respect to µ (or µ-a.e.) if

there exists N ∈ A with µ(N) = 0 such that P (x) holds true on X \N.

Example. Let X be a set and T : X → X a map. Given f : X → C, we say that f is T -invariant
µ-a.e. if there exists N ∈ A with µ(N) = 0 such that f(T (x)) = f(x) at least for any x ∈ X \N .

Theorem. Let (X,A, µ) be a probability space and T : X → X a µ-preserving map. The following

statements are equivalent:

(i) T is µ-ergodic.

(ii) If a measurable function f : X → C is T -invariant µ-a.e., then f is constant µ-a.e.

(iii) If an integrable function f : X → C is T -invariant µ-a.e., then f is constant µ-a.e.

(iv) If a square-integrable function f : X → C is T -invariant µ-a.e., then f is constant µ-a.e.

Proof. (i)⇒(ii). Let f be measurable and T -invariant µ-a.e. By considering real and imaginary
parts, we may assume that f is real-valued. Put

En,k =

ß
x ∈ X :

k

2n
≤ f(x) <

k + 1

2n

™
, n ≥ 1, k ∈ Z.

Then, {En,k}k∈Z is a partition of X for every n ≥ 1. Note that

T−1(En,k) =

ß
x ∈ X :

k

2n
≤ f(T (x)) <

k + 1

2n

™
⊜
ß
x ∈ X :

k

2n
≤ f(x) <

k + 1

2n

™
= En,k,

since f is T -invariant µ-a.e. Since T is µ-ergodic, µ(En,k) = 0 or 1; more precisely, for each
n ≥ 1 there exists a unique k ∈ Z, say kn, such that µ(En,kn) = 1 and µ(En,k) = 0 for k ̸= kn,
since {En,k}k∈Z is a partition of X and µ(X) = 1. Let

X0 =

∞⋂
n=1

En,kn .

By taking complements, we have

µ(Xc
0) = µ

( ∞⋃
n=1

Ecn,kn

)
≤

∞∑
n=1

µ(Ecn,kn) = 0,

and so µ(X0) = 1. We will prove by contradiction that f is constant on X0. Suppose that there
exist x, y ∈ X0 such that f(x) ̸= f(y), i.e. ε = |f(x)− f(y)| > 0.
On the one hand, there exists n0 ≥ 1 su�ciently large such that

1

2n
< ε

for any n ≥ n0.
On the other hand, x, y ∈ En,kn for every n ≥ 1. In particular, x, y satisfy

kn0

2n0
≤ f(x), f(y) <

kn0 + 1

2n0
.

Hence,

ε = |f(x)− f(y)| < 1

2n0
,
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which is a contradiction.
(ii)⇒(i) Let E ∈ A and take f = χE . Then χE is measurable. Suppose that T−1(E) ⊜ E.
Thus χE is T -invariant µ-a.e., and hence constant µ-a.e. Since the possible values of χE are
0 and 1, we conclude that either χE = 0 µ-a.e. or χE = 1 µ-a.e., equivalently, µ(E) = 0 or
µ(E) = 1. Conversely, let E ∈ A such that µ(E) = 0 or µ(E) = 1. Since T is µ-preserving,
µ(T−1(E)) = µ(E) = 0 or µ(T−1(E)) = µ(E) = 1, equivalently, T−1(E) ⊜ E.
(ii)⇒(iii). This is immediate since every integrable function f is measurable.
(ii)⇒(iv). Again, every square-integrable function f is measurable.
The implications (iii)⇒(i) and (iv)⇒(i) are identical to (ii)⇒(i), since µ(X) < +∞.

2.4 The Birkho� Ergodic Theorem

The proof of the Birkho� ergodic theorem is rather technical. We need the following two previous
results.

Lemma. Let (X,A, µ) be a measure space, T : X → X a µ-preserving map and f : X → R an

integrable function. De�ne f0 = 0,

fn =

n−1∑
k=0

(f ◦ T k), n ≥ 1,

and

FN = max
0≤n≤N

fn, N ≥ 0.

Put AN = {x ∈ X : FN (x) > 0}, N ≥ 0. Then,∫
AN

f dµ ≥ 0.

Proof. Note that fn, FN ∈ L1(X,µ) and FN ≥ 0. For N = 0 we have∫
A0

f dµ = 0,

since A0 = ∅. Now, for 0 ≤ n ≤ N we have FN ≥ fn, and so FN ◦ T ≥ fn ◦ T . Hence,

FN ◦ T + f ≥ fn ◦ T + f =

n∑
k=1

(f ◦ T k) + f = fn+1.

Thus,
FN ◦ T + f ≥ max

1≤n≤N+1
fn.

If FN+1 > 0, then the right-hand side of the inequality is equal to max
0≤n≤N+1

fn = FN+1, and

hence f ≥ FN+1 − FN ◦ T on AN+1. Now, we have∫
AN+1

f dµ ≥
∫
AN+1

FN+1 dµ−
∫
AN+1

FN ◦ T dµ =

∫
X
FN+1 dµ−

∫
AN+1

FN ◦ T dµ ,

since FN+1 = 0 on X \AN+1. Due to FN ◦ T ≥ 0 and FN ≤ FN+1, we conclude that∫
AN+1

f dµ ≥
∫
X
FN+1 dµ−

∫
X
FN ◦ T dµ ≥

∫
X
FN+1 dµ−

∫
X
FN+1 ◦ T dµ = 0,

where the last equality follows from the fact that T is µ-preserving.
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Theorem (Maximal Ergodic Theorem). Let (X,A, µ) be a �nite measure space, T : X → X
a µ-preserving map, and g : X → R an integrable function. De�ne

Bα =

{
x ∈ X : sup

n≥1

(
1

n

n−1∑
k=0

g(T k(x))

)
> α

}
, α ∈ R.

Then, ∫
Bα

g dµ ≥ αµ(Bα).

Furthermore, if E ∈ A is T -invariant then∫
E∩Bα

g dµ ≥ αµ(E ∩Bα).

Proof. Let f = g − α. Since f ∈ L1(X,µ), we may consider fn, FN and AN as in the previous
lemma. Now, we want to prove the following equality:

Bα =
∞⋃
N=0

AN .

Indeed,

x ∈
∞⋃
N=0

AN ⇔ ∃N ≥ 1, max
1≤n≤N

(
n−1∑
k=0

(g(T k(x))− α)

)
> 0.

Let

Sn =
n−1∑
k=0

(g(T k(x))− α), 1 ≤ n ≤ N.

Observe that the following equivalence holds:

∃N ≥ 1, max
1≤n≤N

Sn > 0 ⇔ ∃N ≥ 1, max
1≤n≤N

Sn
n
> 0.

Therefore, the last inequality is equivalent to:

sup
n≥1

(
1

n

n−1∑
k=0

g(T k(x))

)
> α⇔ x ∈ Bα.

Since {FN}N≥1 is an increasing sequence of functions, we have the increasing sequence of sets

A1 ⊆ A2 ⊆ · · · ⊆ AN ⊆ AN+1 ⊆ · · · ⊆ Bα,

and, equivalently, we have the increasing sequence of characteristic functions

0 ≤ χA1 ≤ χA2 ≤ · · · ≤ χAN
≤ χAN+1

≤ · · · ≤ χBα .

It is clear that the sequence {χAN
}N≥1 converges to χBα pointwise. Thus, the sequence {χAN

f}N≥1

also converges to χBαf pointwise. Observe that |χAN
f | ≤ |f | for any N ≥ 1. The Dominated

Convergence Theorem implies that∫
Bα

f dµ =

∫
X
χBαf dµ = lim

N→∞

∫
X
χAN

f dµ = lim
N→∞

∫
AN

f dµ ≥ 0,

where the last inequality is by the previous lemma. Hence,∫
Bα

g dµ− αµ(Bα) ≥ 0.

For the second part we consider the restriction map of T to E. Since E is T -invariant, then
T (E) ⊆ E. In this situation, the subset E plays the role of X in the �rst case.
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Theorem (Birkho� Ergodic Theorem). Let (X,A, µ) be a probability space, T : X → X a

µ-preserving map and f : X → C an integrable function. Then,

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) = f∗(x) µ-a.e.,

and ∫
X
f∗ dµ =

∫
X
f dµ ,

for some T -invariant f∗ ∈ L1(X,µ). Moreover, if T is µ-ergodic, then f∗ is constant µ-a.e. and

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) =

∫
X
f dµ µ-a.e.

Proof. By considering real and imaginary parts, we may prove the statement for real-valued
functions f . Let

(Anf)(x) =
1

n

n−1∑
k=0

f(T k(x)), n ≥ 1.

Put
f∗(x) = lim sup

n→∞
(Anf)(x) and f∗(x) = lim inf

n→∞
(Anf)(x).

Then f∗(x) ≤ f∗(x). Now, let us see that both functions are T -invariant. Indeed,

(Anf)(T (x)) =
1

n

n∑
k=1

f(T k(x)) =
n+ 1

n

1

n+ 1

n∑
k=1

f(T k(x)) =

n+ 1

n

(
1

n+ 1

n∑
k=0

f(T k(x))− 1

n+ 1
f(x)

)
=
n+ 1

n
(An+1f)(x)−

1

n
f(x).

Thus,
f∗(T (x)) = lim sup

n→∞
(Anf)(T (x)) = lim sup

n→∞
(An+1f)(x) = f∗(x) .

The same holds for f∗. Now, we will show that f∗ = f∗ and that both are integrable.
Put

Eα,β = {x ∈ X : f∗(x) < β and α < f∗(x)}, α, β ∈ Q.

Note that
{x ∈ X : f∗(x) < f∗(x)} =

⋃
β<α

Eα,β,

where the right-hand side is a countable union of sets. Moreover, T−1(Eα,β) = Eα,β , since f∗
and f∗ are T -invariant. Put

Bα =

®
x ∈ X : sup

n≥1
(Anf)(x) > α

´
.

Then, Eα,β ⊆ Bα, since if x ∈ Eα,β then

α < f∗(x) = lim sup
n→∞

(Anf)(x) ≤ sup
n≥1

(Anf)(x).

From the Maximal Ergodic Theorem we have∫
Eα,β

f dµ =

∫
Eα,β∩Bα

f dµ ≥ αµ(Eα,β ∩Bα) = αµ(Eα,β).
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Note that (−f)∗ = −f∗ and (−f)∗ = −f∗, so that

Eα,β = {x ∈ X : (−f)∗(x) > −β and − α > (−f)∗(x)} .

If we replace f, α and β by −f,−β and −α respectively in the previous inequality, then we have∫
Eα,β

(−f) dµ ≥ −βµ(Eα,β), i.e.
∫
Eα,β

f dµ ≤ βµ(Eα,β).

Thus, we obtain αµ(Eα,β) ≤ βµ(Eα,β), which implies that if β < α then µ(Eα,β) = 0.
Therefore, f∗ = f∗ µ-a.e. and

lim
n→∞

(Anf)(x) = f∗(x) µ-a.e.

Now, we show that f∗ is integrable. Let

gn(x) = |(Anf)(x)|, n ≥ 1.

Then, lim
n→∞

gn(x) = |f∗(x)| µ-a.e. and

∫
X
gn dµ ≤ 1

n

n−1∑
k=0

∫
X
|f(T k(x))| dµ =

∫
X
|f | dµ ,

where the last equality follows from the fact that T is µ-preserving.
Fatou's lemma implies that∫

X
|f∗| dµ =

∫
X
lim inf
n→∞

gn dµ ≤ lim inf
n→∞

∫
X
gn dµ ≤

∫
X
|f | dµ < +∞.

It remains to show that ∫
X
f∗ dµ =

∫
X
f dµ .

Put

Dn,k =

ß
x ∈ X :

k

n
≤ f∗(x) <

k + 1

n

™
, n ≥ 1, k ∈ Z.

Note that {Dn,k}k∈Z is a partition of X for every n ≥ 1. Further, T−1(Dn,k) = Dn,k, since f
∗ is

T -invariant. For su�ciently small ε > 0 we have

Dn,k ⊆ B k
n
−ε.

The Maximal Ergodic Theorem implies that∫
Dn,k

f dµ ≥
Å
k

n
− ε

ã
µ(Dn,k),

for every su�ciently small ε > 0, and hence,∫
Dn,k

f dµ ≥ k

n
µ(Dn,k).

By the de�nition of Dn,k,∫
Dn,k

f∗ dµ ≤ k + 1

n
µ(Dn,k) ≤

1

n
µ(Dn,k) +

∫
Dn,k

f dµ .
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Summing over k ∈ Z we obtain ∫
X
f∗ dµ ≤ 1

n
+

∫
X
f dµ ,

since µ(X) = 1. This holds true for every n ≥ 1. By letting n→ ∞ we have∫
X
f∗ dµ ≤

∫
X
f dµ .

Applying the same procedure to −f we obtain∫
X
(−f)∗ dµ ≤

∫
X
(−f) dµ , i.e.

∫
X
f∗ dµ ≥

∫
X
f dµ .

Since f∗ = f∗ µ-a.e., we conclude that∫
X
f∗ dµ =

∫
X
f dµ .

Finally, if T is µ-ergodic, then f∗ is constant µ-a.e. and

lim
n→∞

(Anf)(x) = f∗(x) =

∫
X
f∗ dµ =

∫
X
f dµ µ-a.e.,

where the second equality follows from the fact that µ(X) = 1.

Corollary. Let (X,B(X), µ) be a probability space, where X is a topological space and B(X)
denotes the Borel σ-algebra generated by the topology of X, and T : X → X a map. Assume also

that the topology of X is generated by a countable basis U = {U1, U2, . . .}. If T is µ-ergodic, then
almost all orbits of T are dense in X.

Proof. Suppose that the orbit of an initial value x0 ∈ X is not dense in X. Thus, there exists an
open set Ui which does not intersect the orbit of x0. Now, if we take f = χUi , then f ∈ L1(X,µ),
since µ(X) < +∞. On the one hand,∫

X
χUi dµ = µ(Ui) > 0,

since Ui ̸= ∅, and, on the other hand,

lim
n→∞

1

n

n−1∑
k=0

χUi(T
k(x0)) = 0,

since the orbit of x0 does not meet Ui. Hence x0 ∈ Ei, where

Ei =

{
x ∈ X : lim

n→∞

1

n

n−1∑
k=0

χUi(T
k(x)) ̸=

∫
X
χUi dµ

}
.

Therefore, the set of points which do not have a dense orbit is included in the union

∞⋃
n=1

Ei.

But the Birkho� ergodic theorem implies that

µ

( ∞⋃
n=1

Ei

)
= 0,

which proves the claim.



Chapter 3

Ergodicity of the Ulam Logistic Map

In this chapter we will focus on maps T : I → I continuous λ-a.e., i.e. T−1(E) ∈ B for every
E ∈ B, which is equivalent to

B ⊆ T (B) = {E ⊆ I : T−1(E) ∈ B}.

3.1 Ergodicity of the Doubling Map

Proposition. The doubling map preserves Lebesgue measure.

Proof. It is clear that S is continuous λ-a.e., so B ⊆ S(B). Let E ∈ B. Then,

S∗(λ)(E) = λ(S−1(E)) =

∫
I
χS−1(E)(x) dx =

∫
I
χE(S(x)) dx .

On the one hand, ∫ 1
2

0
χE(2x) dx =

1

2

∫ 1

0
χE(x) dx ,

and, on the other hand, ∫ 1

1
2

χE(2x− 1) dx =
1

2

∫ 1

0
χE(x) dx .

Adding up we obtain

S∗(λ)(E) =

∫
I
χE(S(x)) dx =

∫
I
χE(x) dx = λ(E).

Theorem. The doubling map is ergodic with respect to Lebesgue measure.

Proof. It is clear that λ is a probability measure. Let

f(x) =
∑
n∈Z

cne
2πinx, x ∈ I,

be the Fourier series expansion of an S-invariant λ-a.e. function f ∈ L2(I, λ). Then,

f(S(x)) =
∑
n∈Z

cne
2πi2nx, x ∈ I.

Comparing the Fourier coe�cients of f(x) and f(S(x)), we conclude that

cn =

®
cn

2
, if n is even

0, if n is odd
.

Therefore, cn = 0 if n ̸= 0, so f = c0 λ-a.e.

21
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3.2 Ergodicity of the Ulam Logistic Map

Proposition. The Ulam map preserves the image measure of λ under the topological semi-

conjugacy ψ(x) = sin2(πx), i.e. the measure µ = ψ∗(λ).

Proof. Since T4 and ψ are continuous, then B ⊆ T4(B) and B ⊆ ψ(B). Thus, we can consider
the image measure

µ = ψ∗(λ) : B −→ [0,+∞]
E 7−→ λ(ψ−1(E)).

Then,

(T4)∗(µ) = (T4)∗(ψ∗(λ)) = (T4 ◦ ψ)∗(λ) = (ψ ◦ S)∗(λ) = ψ∗(S∗(λ)) = ψ∗(λ) = µ,

where we have used the fact that T4 is topologically semi-conjugate to S via ψ and that S is
λ-preserving.

Theorem. The Ulam map is ergodic with respect to the probability measure µ = ψ∗(λ).

Proof. It is clear that µ = ψ∗(λ) is a probability measure. Let E ∈ B such that T−1
4 (E) = E.

Then,

µ(E) = ψ∗(λ)(E) = λ(ψ−1(E))

and

S−1(ψ−1(E)) = ψ−1(T−1
4 (E)) = ψ−1(E),

where we have used the fact that T4 is topologically semi-conjugate to S via ψ. Therefore, since
S is λ-ergodic, we obtain

µ(E) = λ(ψ−1(E)) = 0 or 1.

3.3 The Probability Density Function ρ

In the following, λ is not necessarily the Lebesgue measure. Given a measure space (X,A, λ)
and a measurable function φ : X → [0,+∞), we know that the function

µ : A −→ [0,+∞]
E 7−→

∫
E φ dλ

is a measure over (X,A). In this case, φ is called the density function of µ with respect to
λ, and we write dµ = φ dλ. If (X,A, µ) is also a probability space, φ is called the probability
density function.

De�nition. Let µ and λ be two measures over a measurable space (X,A). The measure µ is
said to be absolutely continuous with respect to λ if

µ(E) = 0 for any E ∈ A such that λ(E) = 0.

In this case, we write µ ≪ λ. If also λ ≪ µ, µ and λ are said to be equivalent, and we write
µ ∼ λ.

Remark. In view of the above, we have the following two immediate facts:

(i) If dµ = φ dλ then µ≪ λ.

(ii) If µ ∼ λ, then a property P (x) is true µ-a.e. if and only if P (x) is true λ-a.e.
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Theorem. The probability measure µ = ψ∗(λ) is absolutely continuous with respect to Lebesgue

measure λ, and its probability density function is given by

ρ(x) =
1

π
√
x(1− x)

, x ∈ (0, 1).

Moreover, µ and λ are equivalent.

Proof. Let E ∈ B. Then,

µ(E) = λ(ψ−1(E)) =

∫
I
χψ−1(E)(x) dx =

∫
I
χE(ψ(x)) dx .

Thus, ∫ 1

0
χE(ψ(x)) dx = 2

∫ 1
2

0
χE(ψ(x)) dx ,

where we have used the fact that the function ψ is symmetric with respect to x = 1
2 .

Using the change of variables{
y = ψ(x) = sin2(πx), 0 ≤ x ≤ 1

2

dx = dy

2π
√
y(1−y)

}
,

we conclude that

2

∫ 1
2

0
χE(ψ(x)) dx = 2

∫ 1

0
χE(y)

dy

2π
√
y(1− y)

=

∫
I
χE(y)ρ(y) dy =

∫
E
ρ dλ ,

where

ρ(x) =
1

π
√
x(1− x)

, x ∈ (0, 1).

Therefore,

µ(E) =

∫
E
ρ dλ ,

and µ≪ λ. Finally, since dµ = ρ dλ and ρ is positive in (0, 1), then

dλ =
1

ρ
dµ ,

and thus µ ∼ λ.

3.3.1 Sketch of the Graph of ρ

In this section we explain how to sketch the graph of ρ using the Birkho� ergodic theorem. In
our case, the probability space is (I,B, µ) and the µ-ergodic map is the Ulam map T4 : I → I,
given by

T4(x) = 4x(1− x).

First, we choose an initial point x0 ∈ I at random and iterate the Ulam map N = 106 times.
Again, we divide the unit interval I into M = 1000 subintervals, given by

Ik =

Å
k − 1

M
,
k

M

ò
, k = 1, 2, . . . ,M.

Hence, Birkho� ergodic theorem, applied to the integrable function f = χIk , implies that

1

N + 1

N∑
j=0

χIk(T
j
4 (x0)) ≈

∫
I
χIk dµ =

∫
Ik

ρ dλ ≈ ρ(xk)λ(Ik) = ρ(xk)
1

M
,
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where the second approximation is due to the mean value theorem for de�nite integrals, and xk
is the midpoint of Ik, i.e

xk =
k − 1

2

M
.

Therefore, we approximate the graph of ρ by

ρ(xk) ≈
M

N + 1

N∑
j=0

χIk(T
j
4 (x0)), k = 1, 2, . . . ,M.

Furthermore, note that the previous sum counts how many of the points T j4 (x0) for j = 0, 1, . . . , N ,
visit the interval Ik, then

N∑
j=0

χIk(T
j
4 (x0)) = nk,

where nk was the absolute frequency for the interval Ik, and thus,

ρ(xk) ≈
M

N + 1
nk = ρk, k = 1, 2, . . . ,M,

which agrees with what we had seen in Chapter 1.

0.2 0.4 0.6 0.8 1
xk

5

10

15

20

ρk

0.02 0.04 0.06 0.08 0.1
xk

5

10

15

20

ρk

Figure 3.1: Sketch of the graph of ρ using the Birkho� ergodic theorem.

In Figure 3.1 we have connected the points (xk, ρk) by line segments to smooth the shape of the
graph of ρ.
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Appendix A

Python Programs

In this section we show the python code that we have used to obtain the images of the present
work, together with some comments that will almost surely be very useful to understand the
code.

A.1 Orbits

1 # Parameter value [2.9, 3.1, (1+ sqrt (8)).n(), 4]

2 r = 2.9

3

4 # Initial condition [(e-2).n(), (pi -3).n(), (sqrt (2) -1).n()]

5 x_0 = (e-2).n()

6

7 # Logistic map

8 T(x) = r*x*(1-x)

9

10 # Number of iterations

11 N = 50

12

13 # Orbit of x_0: {x_0 , x_1 , x_2 ,..., x_N}

14 seed = [0.0 for i in range(N+1)]

15 seed [0] = x_0

16

17 # Iteration of T starting at x_0

18 for i in range(1,N+1):

19 seed[i] = T(seed[i-1])

20

21 # We plot the points (n,x_n) and connect them by line segments

22 g = plot(points ([[i,seed[i]] for i in range(N+1)], color='green ', pointsize =20))

23 g += plot(line ([[i,seed[i]] for i in range(N+1)], color='blue'))

24

25 # Labels for the axes

26 g.axes_labels (['$n$', '$x_n$'])

27

28 # We show the orbit in the range from 0 to 1

29 show(g, ymin=0, ymax =1)

30

31 # We save the image

32 g.save('1-CYCLE.pdf')

Listing A.1: Code for Figures 1.1 and 1.2.

A.2 Orbit Diagrams

27
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1 # Initial condition

2 x_0 = (pi -3).n()

3

4 # Number of iterations

5 N = 1000

6

7 # Number of parameter values

8 M = 1000

9

10 # For each parameter value: {r_0 , r_1 , r_2 ,..., r_M}

11 # we have the orbit of x_0: {x_0 , x_1 , x_2 ,..., x_N}

12 seed = [[0.0 for i in range(N+1)] for k in range(M+1)]

13

14 # Iteration of T_r for each parameter value between 0 and 4

15 # starting at x_0

16 for k in range(M+1):

17 seed[k][0] = x_0

18 r = 4*k/M # [3+k/M]

19 T(x) = r*x*(1-x)

20 for i in range(1,N+1):

21 seed[k][i] = T(seed[k][i-1])

22

23 # For each r we plot the remaining 200 iterations: {x_801 , x_802 ,..., x_N}

24 g = plot(points ([[4*k/M,seed[k][i]] for i in range (801,N+1)

25 for k in range(M+1)], color='green', pointsize =1))

26

27 g.axes_labels (['$r$', '$I$'])

28

29 show(g)

30

31 g.save('ORBIT -DIAGRAM.png')

Listing A.2: Code for Figure 1.3.

1 # Initial condition

2 x_0 = (pi -3).n()

3

4 # Number of iterations

5 N = 1000

6

7 # Number of parameter values

8 M = 1000

9

10 # For each parameter value: {r_0 , r_1 , r_2 ,..., r_M}

11 # we have the orbit of x_0: {x_0 , x_1 , x_2 ,..., x_N}

12 seed = [[0.0 for i in range(N+1)] for k in range(M+1)]

13

14 # Iteration of T_r for each parameter value between 3 and 3.56994567

15 # starting at x_0

16 for k in range(M+1):

17 seed[k][0] = x_0

18 r = 3+(3.56994567 -3)*k/M

19 T(x) = r*x*(1-x)

20 for i in range(1,N+1):

21 seed[k][i] = T(seed[k][i-1])

22

23 # For each r we plot the remaining 200 iterations: {x_801 , x_802 ,..., x_N}

24 g = plot(points ([[3+(3.56994567 -3)*k/M,seed[k][i]] for i in range (801,N+1)

25 for k in range(M+1)], color='green', pointsize =1))

26

27 # We plot a vertical line segment for some bifurcation points

28 g += plot(line ([[3,0], [3,1]], color='blue'))

29 g += text('$b_1$ ', [3 -0.01 ,0.03] , horizontal_alignment='center ',

30 color='black', fontsize =12)
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31

32 g += plot(line ([[1+ sqrt (6) ,0], [1+ sqrt (6) ,1]], color='blue'))

33 g += text('$b_2$ ', [1+ sqrt (6) -0.01 ,0.03] , horizontal_alignment='center ',

34 color='black', fontsize =12)

35

36 g += plot(line ([[3.544090 ,0] , [3.544090 ,1]] , color='blue'))

37 g += text('$b_3$ ', [3.544090 -0.01 ,0.03] , horizontal_alignment='center ',

38 color='black', fontsize =12)

39

40 g += plot(line ([[3.564407 ,0] , [3.564407 ,1]] , color='blue'))

41 g += text('$b_4$ ', [3.564407 -0.01 ,0.03] , horizontal_alignment='center ',

42 color='black', fontsize =12)

43

44 g += plot(line ([[3.56994567 ,0] , [3.56994567 ,1]] , color='red'))

45 g += text('$b_\infty$ ', [3.56994567+0.015 ,0.03] , horizontal_alignment='center ',

46 color='black', fontsize =12)

47

48 g.axes_labels (['$r$', '$I$'])

49

50 show(g)

51

52 g.save('ORBIT -DIAGRAM2.png')

Listing A.3: Code for Figure 1.4 (left).

1 # Initial condition

2 x_0 = (pi -3).n()

3

4 # Number of iterations

5 N = 1000

6

7 # Number of parameter values

8 M = 1000

9

10 # For each parameter value: {r_0 , r_1 , r_2 ,..., r_M}

11 # we have the orbit of x_0: {x_0 , x_1 , x_2 ,..., x_N}

12 seed = [[0.0 for i in range(N+1)] for k in range(M+1)]

13

14 # Iteration of T_r for each parameter value between 3 and 3.56994567

15 # starting at x_0

16 for k in range(M+1):

17 seed[k][0] = x_0

18 r = 3.56994567+(3.857 -3.56994567)*k/M

19 T(x) = r*x*(1-x)

20 for i in range(1,N+1):

21 seed[k][i] = T(seed[k][i-1])

22

23 # For each r we plot the remaining 200 iterations: {x_801 , x_802 ,..., x_N}

24 g = plot(points ([[3.56994567+(3.857 -3.56994567)*k/M,seed[k][i]]

25 for i in range (801,N+1) for k in range(M+1)], color='green ',

26 pointsize =1))

27

28 # We plot a vertical arrow for some periodic windows

29 g += text('$3$', [3.835 ,0.04] , horizontal_alignment='center ', color='black ',

30 fontsize =12)

31 g += arrow ([3.835 ,0.05] , [3.835 ,0.165] , arrowshorten =8, arrowsize=2, width=1,

32 color='orange ')

33

34 g += text('$5$', [3.740 ,0.115] , horizontal_alignment='center ', color='black ',

35 fontsize =12)

36 g += arrow ([3.740 ,0.125] , [3.740 ,0.24] , arrowshorten =8, arrowsize=2, width=1,

37 color='orange ')

38

39 g += text('$7$', [3.702 ,0.145] , horizontal_alignment='center ', color='black ',
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40 fontsize =12)

41 g += arrow ([3.702 ,0.155] , [3.702 ,0.27] , arrowshorten =8, arrowsize=2, width=1,

42 color='orange ')

43

44 g += text('$6$', [3.630 ,0.195] , horizontal_alignment='center ', color='black ',

45 fontsize =12)

46 g += arrow ([3.630 ,0.205] , [3.630 ,0.32] , arrowshorten =8, arrowsize=2, width=1,

47 color='orange ')

48

49 g += text('$10$', [3.606 ,0.21] , horizontal_alignment='center ', color='black ',

50 fontsize =12)

51 g += arrow ([3.606 ,0.22] , [3.606 ,0.335] , arrowshorten =8, arrowsize=2, width=1,

52 color='orange ')

53

54 g += text('$12$', [3.583 ,0.2218] , horizontal_alignment='center ', color='black',

55 fontsize =12)

56 g += arrow ([3.583 ,0.2318] , [3.583 ,0.3468] , arrowshorten =8, arrowsize =2, width=1,

57 color='orange ')

58

59 # We plot a vertical line segment for some band -merging points

60 g += text('$m_1$ ', [3.67857351 -0.006 ,0.025] , horizontal_alignment='center ',

61 color='black', fontsize =12)

62 g += plot(line ([[3.67857351 ,0] , [3.67857351 ,1]] , color='blue'))

63

64 g += text('$m_2$ ', [3.591+0.008 ,0.025] , horizontal_alignment='center ',

65 color='black', fontsize =12)

66 g += plot(line ([[3.591 ,0] , [3.591 ,1]] , color='blue'))

67

68 g += text('$m_3$ ', [3.573 -0.0065 ,0.025] , horizontal_alignment='center ',

69 color='black', fontsize =12)

70 g += plot(line ([[3.573 ,0] , [3.573 ,1]] , color='blue'))

71

72 g.axes_labels (['$r$', '$I$'])

73

74 show(g)

75

76 g.save('ORBIT -DIAGRAM3.png')

Listing A.4: Code for Figure 1.4 (right).

A.3 Histograms

1 # The probability density function of the arcsine distribution

2 rho(x) = 1/(pi*sqrt(x*(1-x)))

3

4 # The Ulam map

5 T(x) = 4*x*(1-x)

6

7 # Initial condition

8 x_0 = (pi -3).n()

9

10 # Number of iterations

11 N = 1000000

12

13 # Orbit of x_0: {x_0 , x_1 , x_2 ,..., x_N}

14 seed = [0.0 for i in range(N+1)]

15 seed [0] = x_0

16

17 # Iteration of T starting at x_0

18 for i in range(1,N+1):

19 seed[i] = T(seed[i-1])

20
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21 # Number of subintervals

22 M = 1000

23

24 # Absolut frequencies: {n_0 , n_1 , n_2 ,..., n_M}

25 # (freq [0] is not used in calculations)

26 freq = [0.0 for k in range(M+1)]

27

28 # We count the number of iterates n_k which fall into each interval I_k

29 for i in range(N+1):

30 slot = ceil(M*seed[i])

31 freq[slot] = freq[slot ]+1

32

33 # Coordinates for the four vertices of each column of the histogram

34 # (P[0] is not used in calculations)

35 P = [[0.0 ,0.0] for k in range (4*M+1)]

36

37 # We calculate the coordinates for the four vertices of each column

38 # based on the number of hits n_k

39 for k in range(1,M+1):

40 P[4*k-3] = [(k-1)/M,0]

41 P[4*k-2] = [(k-1)/M,freq[k]*M/(N+1)]

42 P[4*k-1] = [k/M,freq[k]*M/(N+1)]

43 P[4*k] = [k/M,0]

44

45 # We plot line segments between the four vertices of each column

46 g = plot(line([P[k] for k in range (1,4*M+1)], color='green'))

47

48 # Graph of rho in the unit interval

49 g += plot(rho ,0,1, color='red')

50

51 g += text('$\\rho_k\\ approx \\rho$', (0.5 ,20), horizontal_alignment='center ',

52 color='black', fontsize =15)

53

54 g.axes_labels ([' ', ' '])

55

56 # We adjust the graph to our convenience (ymax=freq[M]*M/(N+1))

57 show(g, ymax =20.3179796820203)

58

59 g.save('DENSITY -MAP2.pdf')

Listing A.5: Code for Figure 1.6 (right).

1 suma =0.0

2

3 # Sum of the absolute frequencies from the first interval to the last

4 for k in range (681 ,690+1):

5 suma=freq[k]+suma

6

7 # Sum of the corresponding relative frequencies

8 suma/(N+1)

Listing A.6: Code for numerical estimations.

A.4 Graphs of our Maps

1 # The probability density function of the arcsine distribution

2 rho(x) = 1/(pi*sqrt(x*(1-x)))

3

4 # Graph of rho in the unit interval

5 g = plot(rho ,0,1, color='blue')

6

7 g.axes_labels (['$x$', '$\\rho(x)$'])
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8

9 # We adjust the graph to our convenience (ymax=freq[M]*M/(N+1))

10 show(g, ymax =20.3179796820203 , ymin =0)

11

12 g.save('DENSITY -MAP.pdf')

Listing A.7: Code for Figure 1.7 (left).

1 # The doubling map [psi(x)=sin(pi*x)*sin(pi*x), T(x)=4*x*(1-x)]

2 S(x) = frac (2*x)

3

4 # Discontinuity points of S

5 excl = [1/n for n in range (1 ,2+1)]

6

7 # We exclude the discontinuity points of S

8 g = plot(S,0,1, exclude=excl)

9

10 g.axes_labels (['$x$', '$S(x)$'])

11

12 # We put the same scale in both axes

13 show(g, aspect_ratio =1)

14

15 g.save('DOUBLING -MAP.pdf', aspect_ratio =1)

Listing A.8: Code for Figure 1.7.

A.5 Birkho� Ergodic Theorem in Practice

1 # The Ulam map

2 T(x) = 4*x*(1-x)

3

4 # Initial condition

5 x_0 = (pi -3).n()

6

7 # Number of iterations

8 N = 1000000

9

10 # Orbit of x_0: {x_0 , x_1 , x_2 ,..., x_N}

11 seed = [0.0 for i in range(N+1)]

12 seed [0] = x_0

13

14 # Iteration of T starting at x_0

15 for i in range(1,N+1):

16 seed[i] = T(seed[i-1])

17

18 # Number of subintervals

19 M = 1000

20

21 # Absolut frequencies: {n_0 , n_1 , n_2 ,..., n_M}

22 # (freq [0] is not used in calculations)

23 freq = [0.0 for k in range(M+1)]

24

25 # We count the number of iterates n_k which fall into each interval I_k

26 for i in range(N+1):

27 slot = ceil(M*seed[i])

28 freq[slot] = freq[slot ]+1

29

30 # We plot the points (x_k ,rho_k)) and connect them by line segments

31 g = plot(points ([[(k -0.5)/M,freq[k]*M/N] for k in range(1,M+1)], color='green',

32 pointsize =1))

33 g += plot(line ([[(k -0.5)/M,freq[k]*M/N] for k in range(1,M+1)], color='blue'))

34
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35 g.axes_labels (['$\\ overline{x}_k$', '$\\ rho_k$ '])

36

37 # We adjust the graph to our convenience (ymax=freq[M]*M/(N+1))

38 show(g, ymax =20.3179796820203)

39

40 g.save('DENSITY -MAP3.pdf')

Listing A.9: Code for Figure 3.1.
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