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Abstract

Auctions are a widespread method of buying and selling any object. There are a wide variety
of auctions, from face to face to online auctions.

Auctions are commonly known as a mechanism with many rules in order to decide the price
and the buyer of any good, through the bids of the participants.

Auction theory is an applied field of economics, which investigates the actions of the partici-
pants as well as the actions of the seller. The equilibrium strategies of the bidders and the profit
of the seller in each situation are the main issues studied.

In this project, we study the mathematical theory that characterizes four types of auctions.
Moreover, we also study a new possible type of auction, giving some results with their corres-
ponding proofs.

In chapter 1, we introduce the main concepts of auctions, such as the types we are going to
study, the equivalences that exist between them, two different ways in which auctions can be
carried out (valuations). In addition, we also give a brief explanation of two possible situations in
auctions, one in which the seller has the right to set a minimum price for the object and another
in which bidders break the rules and cooperate with each other.

Moving on to Chapter 2, we focus on one of the ways in which auctions can be carried out.
We study the equilibrium strategies of the different auctions. Moreover, we describe a new type of
auction and give a practical example of the profit that the seller obtains in each type of auction,
comparing its expected values and variances. In addition, we give the proof of a really important
theorem. Finally, a minimum price can be set by the seller and bidders can cooperate by breaking
rules so we study the effects of both situations.

Chapter 3 focuses on the study of auctions but changing two features. The first section
concerns the change in the attitude of bidders towards risk. We compare the effects of this new
situation on the expected profit in two auctions. In the following section of the chapter, we study
the equilibrium strategies of two auctions but when bidders do not know exactly the value of the
object.
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Capítulo 1

Introducción

Según el diccionario del español jurídico de la RAE, una subasta es la venta de un bien a
quien ofrezca el mejor precio entre los licitadores que concurran.

Desde la antigüedad se han utilizado las subastas como medio para vender una gran cantidad
de objetos, desde antigüedades, joyas, vehículos, hasta pisos. Un uso también muy importante
de estas es transferir bienes públicos a manos privadas.

Además, en estas últimas décadas ha crecido mucho el número de subastas a través de In-
ternet. En este trabajo, vamos a estudiar por qué son tan importantes las subastas hoy en día,
además de las mejores estrategias para los postores y para los vendedores.

1.1. Subastas comunes

Nos vamos a centrar principalmente en cuatro tipos de subastas; dos abiertas, como son la
inglesa y la holandesa; y dos cerradas, la de oferta sellada al primer precio y la de oferta sellada
al segundo precio, también llamada de Vickrey. En las abiertas, cada postor puede observar
el comportamiento del resto de postores, mientras que en las cerradas no pueden observar ese
comportamiento.

La inglesa o de oferta abierta ascendente es la más común y consiste en que los postores
van aumentando el precio ofrecido, hasta que solo queda un postor dispuesto a pagar el precio
determinado, por lo que se le adjudica a este el objeto al precio final.

La holandesa o de oferta abierta descendente consiste en que el vendedor fija un precio,
normalmente bastante alto, y este precio va descendiendo hasta que aparece un postor dispuesto
a pagarlo, así se le adjudica el objeto al precio final.

La sellada al primer precio consiste en que los postores ofrecen un único precio en un sobre
cerrado, ganando el postor con precio más alto y pagando su propia oferta.

Por último, la de Vickrey consiste en el mismo formato que la anterior, pero ahora la persona
que gana, en lugar de pagar su propia oferta, paga la del siguiente más alto. Su nombre se debe
a William Vickrey, ya que este fue el primero en describir este tipo de subasta en la Universidad
de Columbia en 1961, aunque había sido utilizada por coleccionistas de sellos desde 1893.

Cabe observar que la holandesa y la de primer precio son equivalentes, ya que en ambas el
comprador elige su puja sin tener información útil del resto de postores y, en caso de ganar, en
ambas se paga una cantidad igual a la propia oferta. La inglesa, aunque es diferente al resto tiene
similitud con la de Vickrey. Más adelante estudiaremos esta similitud en profundidad.

1.2. Otras subastas

Existen una gran variedad de subastas. Hay subastas holandesas-inglesas híbridas, en las que
el precio del objeto va bajando hasta que hay un postor interesado y luego los demás postores
pueden superar ese precio. También, subastas en las que gana la persona que haya hecho una
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2 Capítulo 1. Introducción

mayor oferta antes de un determinado día y hora. Subastas que duran un tiempo aleatorio, por
ejemplo, hasta que se consume una vela.

Un tipo de subasta que también vamos a estudiar es al que hemos llamado mixtura, ya que es
una mixtura entre la sellada al primer precio y la de Vickrey. En esta subasta, los participantes
ofrecen un único precio y gana el postor con la oferta más alta, pero paga una combinación lineal
convexa entre su oferta y la segunda oferta más alta.

1.3. Valoraciones

Un motivo por el que se realizan subastas es porque hay productos que no tienen una valora-
ción única y, por tanto, un vendedor puede no tener idea sobre lo que los compradores estarían
dispuestos a pagar por determinados objetos. Esta falta de información es una característica muy
relevante de las subastas.

Se llama valoración al valor que para un postor tiene el objeto en venta en el momento de la
subasta. Se pueden dar dos situaciones. En la primera, el valor que el postor asigna al objeto no
cambia aunque el postor conociera las valoraciones que hacen los otros postores. Esta situación
se denomina de "valoraciones privadas". Este tipo es más recomendable cuando el valor que cada
postor asigna al objeto se basa en su propio consumo o uso.

La otra situación ocurre cuando el valor que el postor otorga al objeto cambia en función
de la información que recibe de los otros postores. La forma de modelar esta situación es decir
que el objeto tiene un valor común para todos los postores pero es deconocido por ellos y cada
uno tiene una estimación propia de ese valor, que puede modificarse al conocer las estimaciones
de otros postores. En este caso se habla de "valoraciones comunes". Este tipo es adecuado para
situaciones en las que el objeto puede ser revendido tras la subasta.

1.4. Precios de reserva y colusión

Los vendedores pueden también tener un valor para el objeto que está siendo subastado.
Así pues, tienen el derecho de no vender el objeto por un precio menor a una cierta cantidad
r > 0, llamada precio de reserva. De esta forma, evitan que el objeto pueda ser vendido por una
cantidad que ellos consideran demasiado baja.

Otra situación importante a considerar es la colusión, que consiste en que un grupo de postores
cooperan en conjunto para obtener beneficios en la subasta. Esta situación es bastante común
en las subastas y reduce los beneficios del vendedor. Una forma que tiene este de contrarrestar
esa pérdida es estableciendo precios de reserva.

En el trabajo estudiaremos el efecto que tienen ambas situaciones en la ganancia esperada por
el vendedor y el precio de reserva óptimo para maximizar el beneficio esperado por el vendedor.

1.5. Conceptos previos

Matemáticamente hablando, las subastas se consideran parte de la teoría de juegos. Un juego
(con información completa) está formado por:

Un conjunto de n jugadores.

Para cada jugador i ∈ N = {1, . . . , n}, un conjunto no vacío de acciones Ai.

Para cada jugador i ∈ N , una función de beneficio ui : A1 × · · · ×An −→ R.

Un equilibrio de Nash de un juego es un resultado del juego en el que ningún jugador se arrepiente
de su decisión, dado lo que el resto de jugadores han hecho. Matemáticamente, podemos definirlo



Teoría de las subastas - Cristina Padilla Apuntate 3

como un vector a∗ ∈ A1 × · · · ×An de acciones tal que para todo i y para todo ai ∈ Ai,

ui(a∗) ≥ ui(ai,a∗
−i),

donde (ai,a∗
−i) representa el vector de acciones tales que todas son iguales a la de a∗, excepto la

del jugador i, que es igual a ai.
En los juegos de información completa se supone que cada jugador tiene toda la información

acerca de sus oponentes, en particular, su función de beneficio. En las subastas esto no ocurre
porque los jugadores no tienen toda la información (no conocen los valores de los otros jugadores).
Así, las subastas se consideran un juego con información incompleta. Formalmente, un juego de
información incompleta consiste en:

Un conjunto de n jugadores, en este caso los compradores.

Para cada jugador i ∈ N , un conjunto no vacío de acciones Ai, en esta situación estas
acciones son las ofertas de los compradores.

Para cada jugador i ∈ N , un conjunto de señales Xi. En el caso de las valoraciones privadas
Xi es el valor del postor i; en las valoraciones comunes son las señales que poseen como
información privada los postores.

Para cada jugador i ∈ N , una función de beneficio ui : A1×· · ·×An×X1×· · ·×Xn −→ R.

Una función de distribución F sobre el conjunto producto de señales X1 × · · · × Xn.

Definición 1. Definimos una estrategia para el jugador i como una función βi : Xi −→ Ai de
clase C1 y estrictamente creciente, que lleva señales a acciones, en nuestro caso, a ofertas.

Vamos a dar también la definición de estrategia débilmente dominante, que será de gran ayuda
posteriormente.

Definición 2. Se dice que una estrategia βi domina débilmente a β′
i si para todo x ∈ X1×· · ·×Xn

y para todo a−i,
ui(βi(xi),a−i,x) ≥ ui(β

′
i(xi),a−i,x),

con desigualdad estricta para algún x y a−i. La estrategia βi es débilmente dominante si domina
débilmente a cualquier otra estrategia β′

i. Es decir, una estrategia es débilmente dominante si
al elegir esa estrategia obtenemos un resultado por lo menos tan bueno como al elegir otra
estrategia, sin importar lo que el resto de jugadores hagan. Además, existen al menos un conjunto
de acciones que realizan los oponentes para las que esa estrategia da un mejor resultado que el
resto. Además, si cada jugador tiene una estrategia débilmente dominante β∗

i , entonces diremos
que β∗=(β∗

1 , . . . , β
∗
n) es un equilibrio (débilmente) dominante.

El concepto de equilibrio dominante es muy fuerte porque la desigualdad ha de darse para
cualquier valor x ∈ X1 × · · · × Xn y para cualquier a−i. Un concepto más débil es el equilibrio
bayesiano de Nash, que es el que usaremos a lo largo del trabajo.

Definición 3. Un equilibrio bayesiano de Nash de un juego de información incompleta es un
vector de estrategias β∗ tal que para todo i, para todo xi ∈ Xi y para todo ai ∈ Ai,

E [ui(β
∗(X),X)|Xi = xi] ≥ E

[
ui(ai,β

∗
−i(X−i),X)|Xi = xi

]
Es decir, un equilibrio bayesiano de Nash se define como una estrategia que maximiza el beneficio
esperado para cada jugador, dados sus conocimientos y dadas las estrategias tomadas por el resto
de jugadores. Esto es, β es un equilibrio bayesiano de Nash si y solo si para cada jugador i, dejando
las estrategias del resto de jugadores fijas, la estrategia βi maximiza el beneficio esperado del
jugador i, dados sus conocimientos. Un equilibrio bayesiano de Nash es simétrico si βi = βj , para
todo i, j ∈ {1, . . . , n}.

Un análisis más detallado de los asuntos que vamos a tratar en el trabajo y con más informa-
ción puede encontrarse fundamentalmente en [1], aunque también se han consultado y utilizado
en distintas partes del trabajo [2], [3] y [4].



Capítulo 2

Valoraciones privadas

En este capítulo vamos a analizar la situación en la que las valoraciones son privadas, es decir,
cada postor asigna un valor al producto y toma la decisión de pujar en función de ese valor.

En el apartado 1.1 de la Introducción hemos explicado que la subasta holandesa y la de oferta
sellada al primer precio son equivalentes. Cuando las valoraciones son privadas, la inglesa y la
sellada al segundo precio también lo son. Por tanto, para este capítulo es suficiente considerar
las dos subastas de oferta sellada.

Una comparación superficial puede sugerir que el vendedor conseguiría más dinero por el
objeto si llevase a cabo la subasta al primer precio que con la de segundo precio, ya que en
la primera le pagan la oferta más grande y en la otra, la segunda más grande. En esta parte
del trabajo, vamos a estudiar estrategias de equilibrio para los postores y las ganancias de los
vendedores con los distintos formatos de subastas.

En primer lugar analizaremos las subastas como juegos de información completa, para más
adelante pasar a la situación más realista en la que se consideran como juegos de información
incompleta.

Para este capítulo, además de [1], también ha servido de gran ayuda [3].

2.1. Equilibrios de Nash de las subastas de oferta sellada

En esta sección analizaremos las subastas cerradas como juegos de información completa.
Es decir, buscamos equilibrios de Nash, que son las estrategias en las que ningún postor puede
aumentar su beneficio dado lo que el resto han ofertado. Si bien esta situación no es realista, nos
ayuda a entender mejor las distintas estrategias. En la siguiente sección estudiaremos el caso de
información incompleta.

Para el desarrollo de esta sección, he utilizado como referencia [4], donde se puede encontrar
una mayor explicación sobre estos equilibrios. Vamos a empezar estudiando los equilibrios de
Nash de la subasta de Vickrey.

2.1.1. Subasta de Vickrey

Empezamos desarrollando la forma que tiene la función de beneficio ui para cada comprador.
Considerando que cada postor oferta una cantidad bi tenemos,

ui(b1, . . . , bn) =

xi −máx
j ̸=i

bj si bi > máx
j ̸=i

bj

0 si bi < máx
j ̸=i

bj
(2.1)

Hemos escrito la función de beneficio suponiendo que no hay empates en las ofertas; pero si
lo hubiera en la puja más alta, el objeto se asigna a la persona que lo valora más.

4
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Siendo (x1, . . . , xn) los valores de los postores, supondremos x1 > . . . > xn. Este tipo de
subasta tiene varios equilibrios de Nash.

Un equilibrio es
(b1, . . . , bn) = (x1, . . . , xn),

es decir, las pujas de los postores son sus propias valoraciones. Como consideramos x1 >
· · · > xn, el jugador 1 obtiene el objeto al precio x2, así el beneficio de este es x1 − x2 > 0
y el beneficio de cualquier otro jugador es 0.

Si el comprador 1 cambiase su apuesta a un b′1 ≥ x2, el resultado sería exactamente el
mismo. Si cambiase su oferta a b′1 < x2, entonces perdería la subasta y tendría un beneficio
de 0.

Si cualquier otro jugador i bajase su apuesta o la aumentase hasta un precio como mucho
b1, entonces el jugador seguiría perdiendo. Si aumentase la oferta a un b′i > x1, entonces
ganaría el objeto pero obtendría un beneficio de xi − x1 < 0. Por lo que ningún jugador se
arrepiente de su decisión, al no obtener mayor beneficio de ninguna otra forma.

Otro equilibrio es
(b1, . . . , bn) = (x1, 0, . . . , 0).

Aquí, el jugador 1 obtiene el objeto de manera trivial y paga la segunda oferta más alta,
es decir, 0. Por tanto, obtiene un beneficio de x1 − 0 = x1. Ningún cambio del jugador
1 modifica su beneficio. Si cualquier otro jugador aumenta su oferta a b′i ≤ x1, entonces
obtendría el mismo beneficio. Si b′i > x1 ganaría el objeto, pero obtendría un beneficio
negativo xi − x1 < 0..

Además, también es un equilibrio

(b1, . . . , bn) = (x2, x1, 0, . . . , 0),

aquí el jugador 2 obtiene el objeto al precio x2 y todos los jugadores, incluyendo al jugador
2, tienen un beneficio de 0. Es un equilibrio porque si el jugador 1 aumentase su apuesta
hasta x1 o más ganaría, pero obtendría un beneficio de 0, ya que pagaría la oferta del
jugador 2, x1. Cualquier otro cambio, no afectaría el resultado.

Si el jugador 2 cambiase su apuesta a otra mayor que x2, el resultado no cambia. Si la
cambia a x2 o menos, perdería y su beneficio seguiría siendo de 0.

Si cualquier otro jugador aumentase su oferta como mucho a x1, el resultado no cambia. Si
lo aumentan sobre x1, entonces ganarían pero pagando el precio x1 (la oferta del jugador
2), obteniendo un beneficio negativo.

Hemos visto tres equilibrios de la subasta de Vickrey. En el último equilibrio, la oferta del jugador
2 excede su valoración, b2 = x1 > x2. Además, si el jugador 1 aumentase su oferta hasta algún
valor inferior a x1, el beneficio del jugador 2 sería negativo, obtendría el objeto a un precio
superior a su valoración. Sin embargo, esta propiedad no afecta a que sea un equilibrio de Nash.
Pero sugiere que ese equilibrio es menos recomendable que el primero, en el que cada jugador
apuesta su valoración.

Esto son solo algunos ejemplos de equilibrios de Nash para la subasta de Vickrey, pero hay
muchos otros. Por ejemplo, no es difícil obtener todos los existentes cuando n = 2.

2.1.2. Subasta al primer precio

En este caso, la función de beneficio ui para cada comprador es

ui(b1, . . . , bn) =

xi − bi si bi > máx
j ̸=i

bj

0 si bi < máx
j ̸=i

bj
(2.2)
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Este tipo de subasta también tiene varios equilibrios de Nash. Veamos primero que en todos
ellos, el ganador es el jugador que valora más el objeto, es decir, el jugador 1.

Consideremos (b1, . . . , bn) en el que el jugador i ̸= 1 gana, apostando bi > b1. Si bi > x2,
entonces el beneficio del jugador i será xi− bi negativo, por lo que sería mejor reducir su oferta a
0. Si bi ≤ x2, entonces el jugador 1 puede apostar bi, en ese caso ganaría al resolverse los empates
para el jugador que más valore el objeto, y aumentaría su beneficio de 0 a x1 − bi. Por lo tanto,
ninguna situación en el que no gana el jugador 1 es un equilibrio de Nash.

Veamos ahora un teorema que caracteriza los equilibrios de Nash de la subasta al primer
precio.

Teorema 2.1. Un vector de ofertas (b1, . . . , bn) es un equilibrio de Nash de la subasta al primer
precio si y solo si

1. Las dos ofertas más altas son iguales.

2. Una de esas ofertas la realiza el jugador 1

3. La oferta más alta es por lo menos x2 y como mucho x1.

Demostración. Comencemos la demostración de izquierda a derecha, suponiendo que (b1, . . . , bn)
es un equilibrio de Nash de la subasta al primer precio.

Un vector de ofertas en las que las dos más altas no son iguales no es un equilibrio de Nash
porque el jugador con la oferta más alta la podría reducir levemente, seguiría ganando y pagaría
un precio más bajo. Además, una de ellas ha de ser del jugador 1, que es el que gana, como
hemos visto antes.

Por otra parte, si la oferta más alta es menor que x2, entonces el jugador 2 puede aumentar
su oferta entre la puja más alta y x2, ganando, y obteniendo un beneficio positivo. Por lo que en
equilibrio, la oferta más alta es como mínimo x2. Si la oferta más alta excede x1, el beneficio del
jugador 1 es negativo, y puede incrementar este beneficio reduciendo su apuesta. Por lo que en
equilibrio, la oferta más alta es como mucho x1.

Ahora veamos la demostración de derecha a izquierda. Cualquier vector de ofertas (b1, . . . , bn)
que cumple las condiciones del enunciado es un equilibrio de Nash porque:

Si el jugador 1 aumentase su oferta, seguiría ganando y reduciría su beneficio.

Si el jugador 1 disminuyese su oferta, perdería y obtendría un beneficio de 0.

Si cualquier otro jugador aumenta su oferta, o no afecta al resultado, o ganaría y obtendría
un beneficio negativo.

Si cualquier otro jugador descendiese su oferta, no afectaría el resultado.

En cualquier equilibrio en el que la oferta ganadora exceda x2, al menos una oferta de un
jugador excede su valoración. Esa oferta parece arriesgada porque le podría llevar al postor a
tener un beneficio negativo si ganase. En equilibrio no hay riesgo porque esa oferta no gana, pero
el hecho de que esa oferta tenga esa propiedad reduce la recomendación del equilibrio.

2.2. Formulación como un juego estratégico

Una vez hemos analizado las subastas desde el punto de vista de juego de información com-
pleta, pasamos a la situación de información incompleta, que es más realista, ya que analiza las
distintas estrategias sin saber cuál va a ser la apuesta de los demás jugadores. En este caso nece-
sitaremos, además de las funciones de beneficio, definir las señales Xi y su distribución aleatoria.
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En las subastas, estas señales Xi son valores reales y las representaremos mediante variables alea-
torias Xi. En este caso, al ser una subasta de valoraciones privadas, las señales son simplemente
Xi = xi, el valor que el jugador i le da al objeto. Podemos notar que Xi no incluye ninguna
información de los jugadores j ̸= i, recogiendo el hecho de que los jugadores no conocen (ni tie-
nen ninguna estimación) de cuánto valoran el objeto el resto de compradores. Además, debemos
dar una distribución de probabilidad a las señales; en este caso, hay que dar la distribución del
vector (X1, . . . , Xn). Aunque hay muchas maneras posibles de hacerlo, sin duda la más utilizada
es considerar (X1, . . . , Xn) como variables aleatorias independiente e idénticamente distribuidas
con distribución continua F y función de densdad continua f tal que E[Xi] < ∞. Para todo lo
que sigue utilizaremos la notación mβ

i (x) para referirnos al pago esperado que realiza el jugador
i cuando tiene valor x y se sigue la estrategia (β1, . . . , βn) y Rβ para referirnos a la ganancia del
vendedor cuando se sigue la estrategia (β1, . . . , βn).

Nos referiremos a la situación en la que la distribución de las valoraciones es la misma para
todos postores como una situación en la que participan postores simétricos.

Estamos interesados en comparar los resultados del equilibrio simétrico de una subasta con
los de otra. Dado que los postores son simétricos, nos preguntamos cuáles son las estrategias de
equilibrio simétrico de las subastas.

2.3. Subasta de Vickrey

Cada postor presenta una oferta bi y dadas estas ofertas, los beneficios son los mismos que
en (2.1). Cabe destacar que si hay un empate entre los máximos bi, entonces el objeto se asigna
al postor que valora más el objeto. Sin embargo, como las valoraciones son variables aleatorias
continuas e independientemente distribuidas, la probabilidad de que dos postores tengan la misma
valoración es 0. Además, como las estrategias β son estrictamente crecientes, la probabilidad de
que dos ofertas sean iguales es 0, por lo que en la práctica los empates no son un problema.

Veamos ahora un resultado de gran importancia en la teoría de las subastas.

Proposición 2.2. En la subasta de Vickrey βII
i (x) = x es una estrategia débilmente dominante

para el jugador i con i = 1, . . . , n.

Demostración. Consideremos un postor i y sea pi = máx
j ̸=i

bj el máximo de las ofertas rivales. Al

pujar xi, este postor ganará si xi > pi y obtendrá beneficio igual a xi − pi; y perderá si xi < pi
obteniendo beneficio 0 (el suceso xi = pi tiene probabilidad 0, por lo que no lo consideramos).
Veamos que independientemente de lo que hagan el resto de jugadores, el jugador i no se ve
beneficiado al cambiar su puja.

Supongamos que puja una cantidad zi < xi. Podremos distinguir entonces tres casos, si

xi > zi > pi, entonces ganaría igual y el beneficio seguiría siendo xi − pi.

pi > xi > zi, entonces perdería de igual forma.

xi > pi > zi, entonces perdería la subasta, mientras que si hubiese pujado su valor xi
habría ganado y tendría un beneficio positivo.

Por tanto, pujar un valor menor que xi nunca aumenta el beneficio y a veces lo disminuye. De
forma análoga, podemos argumentar el caso en el que oferta una cantidad zi > xi (ver Apén-
dice D.1). Con esto, concluimos que pujar la propia valoración xi es una estrategia débilmente
dominante.

Obtenemos directamente de la proposición anterior el siguiente corolario.

Corolario 2.3. En una subasta de oferta sellada al segundo precio, si todos los participantes
escogen la estrategia débilmente dominante de la Proposición 2.2, entonces:
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a) El postor con el valor más grande gana el objeto.

b) La ganancia del vendedor es el segundo valor más grande.

Ahora, cabe preguntarse cuánto espera pagar en equilibrio cada postor. Para ello, primero
vamos a definir una notación que usaremos en lo que sigue.

Dados (X1, . . . , Xn) variables aleatorias. Se define Y
(n)
j como el j-ésimo valor más grande de

(X1, . . . , Xn). Es decir, Y (n)
1 es el máximo de (X1, . . . , Xn), Y

(n)
2 es el segundo máximo, . . ., Y (n)

n

es el mínimo. Llamaremos G
(n)
j a la función de distribución de Y

(n)
j . En el caso particular en el

que (X1, . . . , Xn) están independiente e idénticamente distribuidas con función de distribución
F , se tiene

G
(n)
1 (y) = P

(
Y

(n)
1 ≤ y

)
= P (X1 ≤ y, . . . , Xn ≤ y) = F (y)n, para todo y ∈ R.

Vamos a calcular ahora mII
i (x) el pago esperado que realiza el postor i cuando su valor es x y

todos siguen la estrategia débilmente dominante de la Proposición 2.2. Por simetría, tomamos
i = n y vemos que el pago que va a realizar el postor n es igual a

máx{X1, . . . , Xn−1}1{máx{X1,...,Xn−1}<x} = Y
(n−1)
1 1{Y (n−1)

1 <x},

donde la función 1A representa el indicador del suceso A (con valor 1 si ocurre y 0 si no ocurre).
Por tanto,

mII
n (x) = G

(n−1)
1 (x)E

[
Y

(n−1)
1 | Y

(n−1)
1 < x

]
, (2.3)

que es la probabilidad de ganar por la esperanza de la segunda oferta más alta condicionada a
que x es la oferta más alta.

Proposición 2.4. En la subasta al segundo precio, si todos participantes siguen la estrategia de
la Proposición 2.2,

E
[
RII

]
= nE

[
mII(X)

]
= E

[
Y

(n)
2

]
=

∫ ∞

−∞
yn(n− 1)Fn−2(y)f(y)(1− F (y))dy.

Demostración. Para la primera igualdad cabe observar que

RII = mII
1 (X1) + · · ·+mII

n (Xn).

Así, es directo E
[
RII

]
= nE

[
mII(X)

]
, donde X es una variable aleatoria con distribución F .

Para la segunda igualdad podemos utilizar el apartado b) del corolario 2.3, de donde sigue
que E

[
RII

]
= E

[
Y

(n)
2

]
.

Para la última igualdad, desarrollamos E
[
Y

(n)
2

]
,

P
(
Y

(n)
2 ≤ y

)
= nFn−1(y)− Fn(y)(n− 1).

Así, la función de densidad,

d

dy
P
(
Y

(n)
2 ≤ y

)
= n(n− 1)Fn−2(y)f(y) (1− F (y)) .

Por lo tanto,

E
[
Y

(n)
2

]
=

∫ ∞

−∞
yn(n− 1)Fn−2(y)f(y)(1− F (y))dy.
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Como reflexión tras haber analizado este tipo de subasta, podemos explicar mejor la equiva-
lencia entre esta subasta y la inglesa. En la inglesa no puede ser óptimo permanecer tras haber
excedido la valoración, porque solo puede causar pérdidas, ni tampoco es óptimo retirarse antes
de que el precio alcance la valoración, porque entonces se puede estar renunciando a una ganan-
cia. Además, hemos visto que en la subasta de Vickrey lo mejor es pujar la propia valoración.
Por tanto, la estrategia óptima en ambos casos es pujar el valor o permanecer hasta el valor.
La equivalencia es débil porque las estrategias óptimas son iguales solo si las valoraciones son
privadas, como argumentaremos en el siguiente capítulo.

2.4. Subastas de oferta sellada al primer precio

Cada postor presenta una oferta bi y dadas estas ofertas, los beneficios son los mismos que
en (2.2). Los empates se resuelven como hemos explicado en la de Vickrey, pero de igual forma,
no son un problema para la práctica.

Esta subasta no tiene ninguna estrategia débilmente dominante, ya que cualquier valor que
decida apostar (en función de mi valoración) puede ser mejorado en función de lo que hagan los
oponentes. De hecho, pujar el propio valor no proporciona ningún beneficio, por lo que no es
muy buena estrategia. Vamos a empezar estudiando estrategias de equilibrio simétricas.

Supongamos que todos los postores excepto uno, digamos el n, siguen una estretegia simétrica,
creciente y diferenciable de equilibrio, β. Supongamos también que el postor n tiene un valor x
y puja b. Queremos determinar el b óptimo.

Podemos observar que no será óptimo escoger b >β(ω), ya que ganaría seguro, pero podría
pagar menos y seguir ganando. Además, un postor con valor 0, no pujaría nunca un valor positivo,
ya que tendría una pérdida.

Proposición 2.5. La subasta en sobre cerrado al primer precio tiene un único equilibrio simétrico
bayesiano de Nash, (β, . . . , β). Este equilibrio está dado por

β(x) = E
[
Y

(n−1)
1 | Y

(n−1)
1 < x

]
.

Demostración. Sigamos con el contexto descrito anteriormente. El postor n ganará la subasta si
su oferta b es la mayor, es decir, si máx

j ̸=n
β (Xj) = β

(
Y

(n−1)
1

)
< b, donde tenemos la igualdad

anterior por ser β creciente. Esa desigualdad se cumple si y solo si Y (n−1)
1 < β−1(b). El beneficio

será (x−b)1{Y (n−1)
1 <β−1(b)}, con esperanza G

(n−1)
1

(
β−1(b)

)
(x−b). Derivando esta esperanza con

respecto a b, obtenemos

g
(n−1)
1 (β−1(b))

β′[β−1(b)]
(x− b)−G

(n−1)
1 (β−1(b)),

con g
(n−1)
1 la derivada de G

(n−1)
1 . Si imponemos que b = β(x) sea máximo, necesitamos que la

derivada anterior se anule bajo esta condición, es decir,

G
(n−1)
1 (x)β′(x) + g

(n−1)
1 (x)β(x) = g

(n−1)
1 (x)x,

que es equivalente a
d

dx

(
G

(n−1)
1 (x)β(x)

)
= xg

(n−1)
1 (x).

Como β(0) = 0, tenemos

β(x) =

∫ x

0

yg
(n−1)
1 (y)

G
(n−1)
1 (x)

dy. (2.4)



10 Capítulo 2. Valoraciones privadas

Ahora, sea J la función de distribución de la variable Y
(n−1)
1 condicionada al suceso Y

(n−1)
1 < x,

J(y) =


G

(n−1)
1 (y)

G
(n−1)
1 (x)

si 0 < y ≤ x

1 si y > x

Así, tenemos la función de densidad,

dJ

dy
(y) =


g
(n−1)
1 (y)

G
(n−1)
1 (x)

si 0 < y ≤ x

0 si y > x

(2.5)

Por tanto, vemos que
β(x) = E

[
Y

(n−1)
1 | Y

(n−1)
1 < x

]
.

Así, hemos visto que si (β, . . . , β) es un equilibrio simétrico, entonces ha de tener la forma
del enunciado. Veamos que, en efecto, β con la forma anterior es un equilibrio, es decir, que es
un máximo de la función de beneficio esperado.

Como β es creciente y continua, el postor con mayor valor será el que pujará más alto y ganará
la subasta. Como hemos argumentado antes, el postor n deberá pujar una cantidad b≤ β(ω).
Llamemos z =β−1(b) y calculemos el beneficio esperado Π(b, x) de este postor que tiene valor x,

Π(b, x) = G
(n−1)
1 (z)(x− β(z)) = G

(n−1)
1 (z)x−

∫ z

0
yg

(n−1)
1 (y)dy.

Integrando por partes, obtenemos,

Π(b, x) = G
(n−1)
1 (z)(x− z) +

∫ z

0
G

(n−1)
1 (y)dy. (2.6)

Con esto, tenemos,

Π(β(x), x)−Π(β(z), x) =

∫ x

0
G

(n−1)
1 (y)dy −G

(n−1)
1 (z)(x− z)−

∫ z

0
G

(n−1)
1 (y)dy

=

∫ z

x

(
G

(n−1)
1 (z)−G

(n−1)
1 (y)

)
dy ≥ 0.

Tenemos la última desigualdad tanto cuando z ≥ x como cuando z < x debido a que G
(n−1)
1 es

creciente. Por lo tanto, hemos demostrado que si el resto de postores siguen la estrategia β, el
postor n con valor x obtiene un mayor beneficio pujando β(x) que cualquier otro valor. Así, β
es una estrategia simétrica de equilibrio.

Podemos reescribir la estrategia anterior utilizando la integración por partes como sigue,

βI(x) =

∫ x

0

yg
(n−1)
1 (y)

G
(n−1)
1 (x)

dy = x−
∫ x

0

G
(n−1)
1 (y)

G
(n−1)
1 (x)

dy = x−
∫ x

0

(
F (y)

F (x)

)n−1

dy < x. (2.7)

Podemos observar que la oferta es menor que el valor. Además, como F (y) < F (x), cuando el
número n de postores tienda a infinito, la estrategia βI(x) tiende a x.

Con todo esto, en la subasta de oferta sellada al primer precio, el pago esperado por un
postor, digamos el n, con valor x y cuando todos siguen la estrategia de la Proposición 2.5 es,

mI
n(x) = G

(n−1)
1 (x)E

[
Y

(n−1)
1 | Y

(n−1)
1 < x

]
.

Cabe observar que el pago esperado por el postor es el mismo que el obtenido para la subasta
de Vickrey con la estrategia débilmente dominante de la Proposición 2.2.
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2.5. Subasta mixtura

Vamos a estudiar ahora una nueva posible subasta. En esta el ganador también será el que
puje la oferta más alta, pero lo que pagará lo vamos a definir como una combinación lineal
convexa de su oferta y de la segunda oferta más alta, siendo α ∈ (0, 1).

Así, si cada postor presenta una oferta bi, los beneficios son,

ui =

xi − αbi − (1− α)máx
j ̸=i

bj si bi > máx
j ̸=i

bj

0 si bi < máx
j ̸=i

bj

Ahora vamos a estudiar la forma de la estrategia de equilibrio simétrico.

Proposición 2.6. Esta subasta tiene un único equilibrio simétrico bayesiano de Nash, (β, . . . , β),
que está dado por

β(x) = x− 1(
G

(n−1)
1 (x)

) 1
α

∫ x

0

(
G

(n−1)
1 (y)

) 1
α
dy. (2.8)

Notar que los casos α ∼ 0 y α ∼ 1 corresponden a la subasta de Vickrey y a la de primer
precio y la estrategia coincide. En efecto, aunque la fórmula no esté definida para α = 0, podemos
extenderla por continuidad. Si α toma valores muy cercanos a 0, entonces

x−
∫ x

0

(
G

(n−1)
1 (y)

G
(n−1)
1 (x)

) 1
α

dy ∼ x,

debido a que G
(n−1)
1 es creciente y 1

α toma valores muy grandes. Por otro lado, si α ∼ 1, entonces

x−
∫ x

0

(
G

(n−1)
1 (y)

G
(n−1)
1 (x)

) 1
α

dy ∼ x−
∫ x

0

G
(n−1)
1 (y)

G
(n−1)
1 (x)

dy,

que coincide con (2.7).

Demostración. Supongamos que todos los postores excepto uno, digamos el n, siguen una es-
trategia simétrica de equilibrio β. Supongamos también que el postor n tiene un valor x y
puja b. El postor n ganará la subasta si su oferta b es la mayor, es decir, si máx

j ̸=n
β (Xj) =

β
(
Y

(n−1)
1

)
< b. Esa desigualdad se cumple si y solo si Y

(n−1)
1 < β−1(b). El beneficio será(

x− αb− (1− α)β
(
Y

(n−1)
1

))
1{Y (n−1)

1 <β−1(b)}, con esperanza

xG
(n−1)
1 (β−1(b))− αbG

(n−1)
1 (β−1(b))− (1− α)

∫ β−1(b)

0
β(y)g

(n−1)
1 (y)dy. (2.9)

Derivando con respecto a b, tenemos

x
g
(n−1)
1 (β−1(b))

β′[β−1(b)]
−α

[
G

(n−1)
1 (β−1(b)) + b

g
(n−1)
1 (β−1(b))

β′[β−1(b)]

]
−(1−α)β(β−1(b))g

(n−1)
1 (β−1(b))

1

β′[β−1(b)]
.

Si imponemos que b = β(x) sea máximo, necesitamos que la derivada anterior se anule bajo esta
condición, es decir,

x
g
(n−1)
1 (x)

β′(x)
− α

[
G

(n−1)
1 (x) + β(x)

g
(n−1)
1 (x)

β′(x)

]
− (1− α)β(x)g

(n−1)
1 (x)

1

β′(x)
= 0.
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Simplificando, obtenemos la ecuación diferencial ordinaria,

xg
(n−1)
1 (x)− αβ′(x)G

(n−1)
1 (x)− β(x)g

(n−1)
1 (x) = 0,

con solución

β(x) = x− 1(
G

(n−1)
1 (x)

) 1
α

∫ x

0

(
G

(n−1)
1 (y)

) 1
α
dy.

En el Apéndice A.1, se pueden encontrar los cálculos correspondientes para obtener la solución.
Hemos demostrado que si (β, . . . , β) es un equilibrio simétrico, entonces tiene que tener la

forma 2.8. Veamos ahora que β con la forma del enunciado es un equilibrio.
Llamemos z = β−1(b). El beneficio esperado Π(b, x) del postor con valor x y que puja z =

β−1(b) es el calculado en (2.9),

Π(b, x) = xG
(n−1)
1 (z)− αβ(z)G

(n−1)
1 (z)− (1− α)

∫ z

0
β(y)g

(n−1)
1 (y)dy.

Sustituyendo la forma de β, realizando Fubini, resolviendo integrales y simplificando (se encuen-
tran todos los cálculos detallados en el Apéndice A.2), la ecuación anterior se puede simplificar,

Π(b, x) = G
(n−1)
1 (z)(x− z) +

∫ z

0
G

(n−1)
1 (τ)dτ.

Observando esta ecuación, vemos que es igual a la ecuación (2.6), la del beneficio esperado
en la subasta al primer precio. Por tanto, se concluiría de igual forma la demostración.

Al pensar en este nuevo tipo de subasta, cabe plantearse si la estrategia simétrica de equilibrio
también es una combinación lineal convexa de las estrategias simétricas de equilibrio de las
subastas de primer y segundo precio. Más adelante veremos que no se cumple.

Estudiemos ahora la expresión que tiene el pago esperado por un postor, digamos el n, con
valor x, bajo la estrategia de la Proposición 2.6. Tal como hemos visto en la demostración anterior,
el beneficio esperado que obtiene el jugador con valor x es

∫ x
0 G

(n−1)
1 (τ)dτ. Además, sabemos que

el beneficio es el valor x1{Y (n−1)
1 <x} menos lo que se paga. Por lo tanto, tomando esperanzas,

mM
n (x) = xG

(n−1)
1 (x)−

∫ x

0
G

(n−1)
1 (τ)dτ = G

(n−1)
1 (x)E

[
Y

(n−1)
1 |Y (n−1)

1 < x
]
,

que coincide con la de primer y segundo precio bajo las estrategias analizadas. En consecuencia,
la ganancia esperada del vendedor E

[
RM

]
es también igual a la de E

[
RI
]

y E
[
RII

]
y coinciden

con E
[
Y

(n)
2

]
. Como veremos más adelante, esto no es una casualidad.

2.6. Ejemplo

Vamos a comparar los tres tipos de subastas en el caso particular en el que los valores tengan

distribución uniforme [0, 1], es decir, F (x) =


0 si 0 < x

x si 0 ≤ x ≤ 1

1 si x > 1

.

Empezamos calculando β(x) para los tres tipos de subastas.
En la de Vickrey, como la estrategia débilmente dominante es el propio valor, βII(x) = x.
En la de primer precio, sabíamos que la estrategia de equilibrio simétrico es

βI(x) = E
[
Y

(n−1)
1 |Y (n−1)

1 < x
]
=

∫ x

0

yg
(n−1)
1 (y)

G
(n−1)
1 (x)

dy =

∫ x

0
y(n− 1)

yn−2

xn−1
dy =

n− 1

n
x.
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La segunda igualdad la tenemos por (2.4) y para la tercera sustituimos la función de distribución.
En la mixtura, sabíamos que la estrategia de equilibrio simétrico es de la forma,

βM (x) = x− 1(
G

(n−1)
1 (x)

) 1
α

∫ x

0

(
G

(n−1)
1 (y)

) 1
α
dy = x− 1

(xn−1)
1
α

∫ x

0
(yn−1)

1
αdy =

n− 1

n− 1 + α
x,

(2.10)
donde utilizamos que con la distribución uniforme, G(n−1)

1 (x) = xn−1.
Analizando las tres estrategias de equilibrio podemos contestar la pregunta que nos había

surgido de si la estrategia de la mixtura era una combinación lineal convexa de la de Vickrey y
la de primer precio. Como podemos observar, la estrategia de la mixtura n−1

n−1+αx no es lineal en
α, por lo tanto, no puede ser combinación lineal convexa de la de Vickrey y la de primer precio.
Como en este caso particular no se cumple, en general, como es obvio, tampoco.

Podemos realizar gráficos para comparar estas tres estrategias dando valores a la n y con
α = 1

3 y α = 2
3 . Viendo las gráficas B.1 y B.2, que se encuentran en el Apéndice B.1 podemos

destacar que cuando hay 2 postores, para cada valor x la estrategia más alta es la de Vickrey
y la más baja la de primer precio, estando en el medio las de la mixtura. Observando la si-
guiente gráfica, en la que hay 5 compradores, vemos que el orden sigue siendo el mismo. Un
aspecto a destacar es que conforme aumenta el número de postores, las estrategias de cada ti-
po de subasta son cada vez más próximas para cada valor de x, de hecho tienden, a la de Vickrey.

Estudiemos ahora la ganancia esperada del vendedor en los tres tipos de subastas. Como
hemos argumentado anteriormente, esta ganancia esperada va a ser igual en los tres tipos de
subastas, de hecho va a ser igual a E

[
Y

(n)
2

]
. En el Apéndice B.2 se encuentran los cálculos de

cada una por separado para ver que efectivamente se cumple esta propiedad.
Como habíamos argumentado, la ganancia esperada del vendedor será la esperanza del se-

gundo valor más alto, E
[
Y

(n)
2

]
. Podemos calcularla utilizando que el segundo máximo con la ley

uniforme sigue una distribución β(n− 1, 2).

E
[
Y

(n)
2

]
=

n− 1

n+ 1
.

Además, calcularemos la varianza de la ganancia, que ya no coincidirá en las tres subastas. En la
de segundo precio, la ganancia del vendedor es el segundo valor más alto, como antes, al conocer
su distribución, podemos calcular la varianza

V ar
[
Y

(n)
2

]
=

2(n− 1)

(n+ 1)2(n+ 2)
.

En la subasta al primer precio, a partir de la estrategia de equilibrio, podemos calcular la
ganancia del vendedor, que será el máximo de las pujas, n−1

n máx{X1, . . . , Xn}, y sabiendo que
el máximo con la ley uniforme sigue una distribución β(n, 1) podemos calcular la varianza,

(n− 1)2

n2
V ar

(
Y

(n)
1

)
=

(n− 1)2

n(n+ 1)2(n+ 2)
.

Como las ganancias esperadas del vendedor son iguales en ambos tipos de subastas, podemos
comparar las varianzas para ver cuál tiene más variabilidad. Así, obtenemos

V ar(RI) =
(n− 1)2

n(n+ 1)2(n+ 2)
<

2(n− 1)

(n+ 1)2(n+ 2)
= V ar(RII).

Por lo que la ganancia de la subasta al segundo precio es más variable que la del primer precio.
Finalmente, vamos a realizar los cálculos con la mixtura. Ahora, la ganancia del vendedor

será α veces la oferta del valor más alto más 1− α veces la del segundo valor más alto, es decir,
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α n−1
n−1+αY

(n)
1 + (1 − α) n−1

n−1+αY
(n)
2 . Como sabemos, las distribuciones que siguen el máximo y el

segundo máximo, podremos calcular la varianza de la ganancia.

V ar

(
α

n− 1

n− 1 + α
Y

(n)
1 + (1− α)

n− 1

n− 1 + α
Y

(n)
2

)
=

(n− 1)2(α2n+ 2n− 2nα− 2 + 2α)

(n− 1 + α)2(n+ 1)2(n+ 2)
.

Los cálculos correspondientes para obtener la expresión de esta varianza se encuentran en el
Apéndice B.3.

Para ver la forma que tiene esta varianza y poder compararla también, podemos considerar
situaciones con distinto número de compradores. Para ello, realizamos la gráfica B.3 en función
de alpha, que se encuentra en el Apéndice B.1.

A partir de la gráfica, podemos observar que la varianza de la ganancia de la mixtura es más
variable que la de primer precio y menos que la de segundo precio, para todos valores de α. Lo
cual tiene lógica, ya que 0 < α < 1, con α = 0, tenemos la subasta al segundo precio, y con
α = 1 la del primer precio.

Además, también podemos decir que conforme aumenta el número de postores, la varianza
de los ingresos del vendedor disminuye, en los tres tipos de subasta.

2.7. Teorema de equivalencia de ingresos

Como hemos visto en las secciones anteriores, los ingresos esperados por el vendedor son los
mismos en los tipos de subastas que hemos estudiado. En esta sección, se estudian las razones
que hay detrás de esta igualdad y, además, vamos a descubrir que la igualdad se exitiende a toda
una clase de subastas.

Se entiende por subasta estándar a aquella que asigna el objeto a la persona que ha apostado
más alto y trata las pujas con igualdad, por lo que las subastas estudiadas pertenecen a esta
clase. También definimos compradores neutrales al riesgo como aquellos que buscan maximizar
la función de beneficio, sin tener en cuenta el riesgo.

Denotemos cualquier formato de subasta estándar por A, el equilibrio simétrico de la subasta
por βA y el pago esperado en equilibrio por el comprador con valor x como mA(x).

Teorema 2.7 (Teorema de equivalencia de ingresos). Supongamos que los valores están inde-
pendientemente e idénticamente distribuidos y todos los compradores son neutrales al riesgo.
Entonces cualquier equilibrio simétrico y creciente de cualquier subasta estándar, tal que el pago
esperado de un comprador con valor 0 es 0, da lugar al mismo ingreso esperado por el vendedor.

Demostración. Utilizando la notación descrita previamente, supongamos que βA es tal que
mA(0) = 0.

Consideremos, sin pérdida de la generalidad, el jugador n y supongamos que los demás siguen
la estrategia de equilibrio βA. Veamos cuál es el beneficio esperado ΠA(z, x) de este postor con
valor x, pero que apuesta βA(z),

ΠA(z, x) = xG
(n−1)
1 (z)−mA

n (z).

Derivando e igualando a 0,
d

dz
ΠA(z, x) = xg

(n−1)
1 (z)− d

dz
mA

n (z) = 0.

En equilibrio es óptimo z = x, y así, yg(n−1)
1 (y) = d

dym
A
n (y), para todo y. Utilizando la condición

de que mA
n (0) = 0, tenemos

mA
n (x) =

∫ x

0
yg

(n−1)
1 (y)dy = G

(n−1)
1 (x)E

[
Y

(n−1)
1 | Y

(n−1)
1 < x

]
.

Por tanto, como la parte derecha de la igualdad, no depende del formato de subasta A, se concluye
la demostración.
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2.8. Precios de reserva

Por el teorema de equivalencia de ingresos, un vendedor neutral al riesgo cuyo objetivo
fuese maximizar las ganancias esperadas sería indiferente entre cualquier subasta estándar. Sin
embargo, los vendedores pueden tener un valor para dicho objeto y sería una desventaja utilizar
una subasta estándar, ya que el objeto sería asignado a la persona con puja más alta, incluso
aunque la apuesta fuese menor que el valor del vendedor. En muchas circunstancias, para evitar
ese problema, los vendedores se reservan el derecho de no vender el producto si el precio final de
la subasta es menor que una cierta cantidad r > 0, llamada precio de reserva.

Ahora vamos a estudiar el efecto que tiene este precio en las ganancias esperadas del vendedor
en las subastas al primer y segundo precio, donde A hace referencia a ambos tipos de subastas.

Como el precio al que el objeto es vendido tiene que ser al menos r, ningún comprador con
valor x < r puede tener un beneficio positivo. Así, consideraremos a los postores con valor x ≥ r.

2.8.1. Precios de reserva en la subasta de Vickrey

El objeto será vendido solo si el precio más alto es mayor que r y este comprador pagará
máx {Y (n)

2 , r}. En esta situación, la función de beneficio cuando los postores apuestan bi será,

ui =


xi −máx

j ̸=i
bj si r ≤ máx

j ̸=i
bj < bi

xi − r si máx
j ̸=i

bj < r ≤ bi

0 si bi < máx
j ̸=i

bj o si bi < r

En esta subasta, sigue siendo una estrategia débilmente dominante apostar el propio valor.
El pago de un postor, digamos el n, con valor r es r1{Y (n−1)

1 <r}, con esperanza rG
(n−1)
1 (r). El

pago de un postor con valor x > r es igual a r1{Y (n−1)
1 <r} + Y

(n−1)
1 1{r<Y

(n−1)
1 <x} con esperanza

igual a mII
n (x, r) = rG

(n−1)
1 +

∫ x
r yg

(n−1)
1 dy.

2.8.2. Precios de reserva en la subasta de primer precio

El objeto será vendido solo si la puja más alta es mayor que r y el comprador pagará su
propia oferta. La función de beneficio cuando los postores apuestan bi es,

ui =

xi − bi si bi > máx
j ̸=i

bj y si bi ≥ r

0 si bi < máx
j ̸=i

bj o si bi < r

De manera análoga a la Proposición 2.5, obtenemos que una estrategia de equilibrio simétrica
para cualquier postor, digamos el n, con valor x ≥ r,

βI(x) = E
[
máx{Y (n−1)

1 , r} | Y
(n−1)
1 < x

]
=

∫ x

0
máx(y, r)

g
(n−1)
1 (y)

G
(n−1)
1 (x)

dy

=

∫ r

0
r
g
(n−1)
1 (y)

G
(n−1)
1 (x)

dy +

∫ x

r
y
g
(n−1)
1 (y)

G
(n−1)
1 (x)

dy = r
G

(n−1)
1 (r)

G
(n−1)
1 (x)

+
1

G
(n−1)
1 (x)

∫ x

r
yg

(n−1)
1 (y)dy.

Por tanto, el pago esperado de un comprador, digamos el n, con valor x ≥ r es,

mI
n(x, r) = G

(n−1)
1 βI(x) = rG

(n−1)
1 (r) +

∫ x

r
yg

(n−1)
1 (y)dy.

Cabe destacar que al igual que antes, el pago esperado y, por tanto, los ingresos esperados
son iguales.
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2.8.3. Efectos de los ingresos con los precios de reserva

Para calcular la cantidad que gana el vendedor, calculamos primero la esperanza de lo que
paga cada jugador (que es igual en los dos tipos de subastas).

E
[
mA(X, r)

]
=

∫ w

r
mA(x, r)f(x)dx =

∫ w

r
rG

(n−1)
1 (r)f(x) +

∫ w

r

(∫ x

r
yg

(n−1)
1 (y)f(x)dy

)
dx

= rG
(n−1)
1 (r)(1− F (r)) +

∫ w

r
yg

(n−1)
1 (y)(1− F (y))dy, (2.11)

donde hemos aplicado Fubini en la última igualdad.
A partir de la ecuación anterior, podemos calcular el valor óptimo del precio de reserva para

el vendedor. Supongamos que el vendedor valora el producto en x0, de forma que si no lo vende
en la subasta, puede obtener x0 unidades monetarias por él. Así, el vendedor va a obtener

RA =
n∑

i=1

mA
i (Xi, r) + x01{X1,...,Xn≤r},

con esperanza
E
[
RA
]
= nE

[
mA(X, r)

]
+ x0G

(n)
1 (r).

Utilizando la expresión (2.11) y derivando con respecto a r, obtenemos

d

dr
E
[
RA
]
= n

[(
G

(n−1)
1 (r) + rg

(n−1)
1 (r)

)
(1− F (r))− rG

(n−1)
1 (r)f(r)− rg

(n−1)
1 (r)(1− F (r))

]
+ x0nG

(n−1)
1 (r)f(r) = nG

(n−1)
1 (r)(1− F (r)− rf(r)) + x0nG

(n−1)
1 (r)f(r).

Ahora consideremos la función de tasa de riesgo de F , λ(x) = f(x)
1−F (x) . Con esto, reformulamos,

d

dr
E
[
RA
]
= nG

(n−1)
1 (r)(1− F (r))(1− rλ(r)]) + x0nG

(n−1)
1 (r)(1− F (r))λ(r)

= nG
(n−1)
1 (r)(1− F (r))(1− (r − x0)λ(r)).

El precio óptimo debe satisfacer d
drE

[
RA
]
= 0, lo cual ocurre si y solo si r − 1

λ(r) = x0. Un
análisis más en profundidad de este precio de reserva se puede encontrar en el Apéndice C.

Ejemplo 2.1: Veamos un ejemplo en el que vamos a calcular el precio de reserva óptimo y la
respectiva ganancia esperada del vendedor. Para ello, vamos a tomar x0 = 0, n > 1 y F (x) = x,
la distribución uniforme en [0, 1].

Sustituyendo en la fórmula del precio de reserva, tenemos, r − 1−F (r)
f(r) = 0 si r = 1

2 . Puede
resultar llamativo, en este ejemplo y en general, que se ponga un precio de reserva positivo cuando
x0 = 0, es decir, cuando el vendedor se queda sin nada si no logra vender el objeto. Notemos que
si pusiese r = 0, entones seguro que lo vendería y sacaría un beneficio positivo. Sin embargo, lo
que ocurre es que la inclusión del precio de reserva hace que las pujas aumenten, por ejemplo,
en el caso de primer precio de E

[
Y

(n−1)
1 |Y (n−1)

1 < x
]

a E
[
máx {Y (n−1)

1 , r} |Y (n−1)
1 < x

]
y

este aumento le da un mayor beneficio, aunque corra el riesgo de quedarse sin vender el objeto.
Calculamos ahora la ganancia total esperada por el vendedor,

nE
[
mA(X, r)

]
= nrn(1− r) + n

∫ 1

r
y(n− 1)yn−2(1− y)dy =

n− 1

n+ 1
+

1

2n(n+ 1)
.

Podemos calcular ahora casos particulares con un determinado número de participantes. Si n = 2,
la ganancia del vendedor es 5/12 = 0.417. Si n = 5, la ganancia es 43/64 = 0.672. Si n = 10, la
ganancia del vendedor es 9217/11264 = 0.818.
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2.8.4. Colusión

Hasta ahora hemos estudiado propiedades de subastas suponiendo que cada postor actúa
de manera independiente. Sin embargo, en la realidad, hay veces que se hacen pactos entre
los postores para lograr un precio de venta más bajo. Esta práctica se considera fraudulenta y
en muchos sitios es ilegal porque reduce el beneficio del vendedor. El nombre colusión significa
"Pacto entre dos personas o grupos en contra de un tercero". En esta subsección vamos a explicar
los pactos en el caso particular de las subastas de Vickrey y cómo puede defenderse el vendedor
si conoce su existencia.

Supongamos, como hasta ahora, que hay n postores y que I de ellos (sin pérdida de la
generalidad) los postores 1, 2, . . . , I deciden pactar y formar lo que se llama cártel de colusión,
el resto de postores actúan de manera independiente y no conocen la existencia del cártel. La
forma de actuar del cártel consiste en que previamente a la subasta, cada uno dice su valor y el
participante que mayor valor tiene es el que puja en la subasta, el resto de miembros del cártel
hace una oferta muy baja (o nula). De esta forma, si el que ha apostado el valor máximo del
cártel gana la subasta, pagará el segundo precio más alto, que será el máximo de las ofertas de
los postores I + 1, . . . , n (ya que los otros miembros del cártel han pujado muy bajo), en vez del
máximo de los N−1 postores (todos menos él), que tendría que haber pagado en una subasta sin
pactos. Así, los miembros del pacto se ven beneficiados. Los que no están en el pacto no se ven
afectados por la existencia de este; si no ganan ahora, tampoco lo habrían hecho si se hubiesen
hecho todas las ofertas de forma independiente; si ahora ganan, pagarán exactamente lo mismo
que habrían pagado si no hubiera habido pacto. Así, la existencia del pacto beneficia a los que
pactan y no perjudica a los que no lo hacen, por lo que la pérdida correspondiente la asume el
vendedor, que puede recibir un precio más bajo.

Para analizar esta situación desde un punto de vista matemático, notemos que en la práctica
solo se realizan N − I + 1 apuestas reales, las de los N − I compradores que no están en el
cártel y la del que ofertado el máximo del cártel. Los valores de los N − I que están fuera del
cártel tienen, como siempre, distribución F ; sin embargo, el valor del máximo del cártel ya no
tiene distribución F , sino lo correspondiente a Y

(I)
1 , el máximo de los valores de los I miembros

del cártel. Es decir, tenemos N − I + 1 postores independientes pero no todos tienen la misma
distribución. Es inmediato ver que, en esta situación la estrategia de apostar cada uno su propio
valor sigue siendo débilmente dominante.

Veamos cuánto va a pagar el postor del cártel si tiene valor x,

mC(x) = G
(n−I)
1 (x)E

[
Y

(n−I)
1 |Y (n−I)

1 < x
]
.

A partir de la fórmula (2.5) de la Proposición 2.5, E
[
Y

(n−I)
1 |Y (n−I)

1 < x
]
=
∫ x
−∞ y

g
(n−I)
1 (y)

G
(n−I)
1 (x)

dy

y, por tanto, como el jugador del cártel puja con distribución Y
(I)
1 , la esperanza de lo que va a

pagar es,

E[mC(X)] = E
[
G

(n−I)
1 (X)E

[
Y

(n−I)
1 |Y (n−I)

1 < X
]]

=

∫ ∞

−∞
G

(n−I)
1 (x)E

[
Y

(n−I)
1 |Y (n−I)

1 < x
]
g
(I)
1 (x)dx =

∫ ∞

−∞

∫ x

−∞
yg

(n−I)
1 (y)g

(I)
1 (x)dydx

=

∫ ∞

−∞

(∫ ∞

y
g
(I)
1 (x)dx

)
yg

(n−I)
1 (y)dy =

∫ ∞

−∞

(
1−G

(I)
1 (y)

)
yg

(n−I)
1 (y)dy.

Por otra parte, lo que pagan los N − I postores de fuera del cártel no varía respeto al caso en el
que no haya colusión y es igual a

∫∞
−∞ yg

(n−1)
1 (y)(1−G1(y))dy. Por lo tanto, la ganancia esperada

del vendedor en este caso es,

E[R] =

∫ ∞

−∞

(
1−G

(I)
1 (y)

)
yg

(n−I)
1 (y)dy + (N − I)

∫ ∞

−∞
yg

(n−1)
1 (y)(1−G1(y))dy.
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Ejemplo 2.2: Sea X una variable aleatoria con distribución uniforme en [0, 1]. En este caso,
el jugador del cártel paga una cantidad con valor esperado,

E [mC(X)] = (n− I)

∫ 1

0

(
1− yI

)
yn−Idy = (n− I)

(
1

n− I + 1
− 1

n+ 1

)
=

(n− I)I

(n− I + 1)(n+ 1)
.

Y los de fuera del cártel, n−1
n(n+1) , que se obtiene a partir del ejemplo la sección 2.6.

En efecto, el jugador del cártel paga menos que los de fuera, ya que 1
I

(n−I)I
(n−I+1)(n+1) <

n−1
n(n+1) .

Por tanto, la ganancia esperada del vendedor es

E [R] =
(n− I)I

(n− I + 1)(n+ 1)
+(n−I)

n− 1

n(n+ 1)
=

(n− I)(n2 + I − 1)

n(n− I + 1)(n+ 1)
<

n− 1

n+ 1
, para todo I > 1,

por lo que la ganancia esperada del vendedor es menor que cuando los jugadores no cooperaban,
como cabía esperar.

Como hemos visto, la presencia del cártel supone una pérdida para el vendedor. Una forma
que tiene el vendedor de contrarrestar la pérdida es utilizar el precio de reserva adaptado a esta
situación. Veamos cuál es la ganancia del vendedor cuando asigna un precio de reserva r. El
objeto es vendido si y solo si el valor más alto, Y

(n)
1 es mayor que el precio de reserva r. Si

además, ZI = segundo máximo de (Y I
1 , XI+1, . . . , Xn) es mayor que r, entonces como estamos

en la subasta de Vickrey, el objeto es vendido por ZI ; si no, es vendido por el precio de reserva
r.

Denotemos HI a la función de distribución de ZI con función de densidad hI .
Por simplicidad consideremos que el vendedor no recibe nada si el objeto no se vende, esto es

x0 = 0. El precio de venta que el vendedor recibe es r1{ZI≤r≤Y
(n)
1 } + ZI1{ZI≥r}, con esperanza

igual a rP
(
ZI ≤ r ≤ Y

(n)
1

)
+
∫ ω
r zhI(z)dz. El cálculo de la probabilidad se encuentra en el

Apéndice D.2 y se obtiene P
(
ZI ≤ r ≤ Y

(n)
1

)
= HI(r)−G

(n)
1 (r). Por lo que el precio de venta

esperado es,

r
(
HI(r)−G

(n)
1 (r)

)
+

∫ ω

r
zhI(z)dz.

El precio de reserva óptimo r debe satisfacer la ecuación de la derivada igualada a 0,

HI(r)−G
(n)
1 (r) + r

(
hI(r)− g

(n)
1 (r)

)
− rhI(r) = HI(r)−G

(n)
1 (r)− rg

(n)
1 (r) = 0. (2.12)

Ejemplo 2.3: Supongamos que hay n compradores con valores Xi que están uniforme e
independientemente distribuidos en [0, 1]. Además, vamos a suponer que I de ellos participan en
la colusión y cooperan juntos, sin pérdida de generalidad, los postores 1, . . . , I.

Supongamos que el vendedor establece un precio de reserva r. Podemos encontrar el precio
óptimo resolviendo la ecuación (2.12). Para ello, primero calculemos la distribución de ZI , que
es HI . (Los cálculos desarrollados se encuentran en el Apéndice D.3.1).

HI(t) = P
(
segundo máximo{Y I

1 , XI+1, . . . , Xn} ≤ t
)
= tn−I + (n− I)tn−1(1− t).

Así, podemos sustituir en la ecuación (2.12) y resolverla,

rn−I + (n− I)rn−1(1− r)− rn − nrn = 0.

Esta ecuación tiene una única raíz. Se encuentra en el Apéndice D.3.2 la demostración y un
programa en R que calcula la raíz para cada valor de n y de I. También se encuentra en el
Apéndice D.3.2 el precio de reserva óptimo para distintos valores de n y de I. Observándolos
concluimos que el precio de reserva aumenta según aumentan los participantes que realizan
colusión, como cabía esperar.



Capítulo 3

Extensiones

Hasta ahora hemos supuesto, entre otras hipótesis, neutralidad al riesgo, se busca maximizar
el beneficio esperado, y valores privados, la situación en la que los valores del resto de postores no
afectarían a uno concreto aunque los conociese. En este capítulo vamos a relajar estas condiciones.
En la primera sección estudiaremos el efecto que tiene relajar la hipótesis de neutralidad al riesgo
en la ganancia esperada en la subasta de Vickrey y al primer precio. En la segunda sección,
supondremos valoraciones comunes y estudiaremos las estrategias de equilibrio en la subasta al
primer precio y en la inglesa.

3.1. Compradores aversos al riesgo

Introduzcamos primero el término de función de utilidad. Esta función describe las preferen-
cias en distintas cantidades de distintos bienes.

La hipótesis de neutralidad al riesgo del capítulo 2 quiere decir que la función de utilidad de
cada postor es la identidad, es decir, es igual a su beneficio. Sin embargo, esto puede no ser así
y la utilidad puede ser una función del beneficio que no sea la identidad. De hecho, en este caso
en el que los compradores son aversos al riesgo, la función de utilidad u : R+ −→ R es cóncava,
satisfaciendo u(0) = 0, u′ > 0 y u′′ < 0. Además, supondremos que esta función es continua y
diferenciable. Ahora, cada postor busca maximizar su utilidad esperada en lugar de sus beneficios
esperados. Supondremos que todos los compradores tienen la misma función de utilidad u, de
forma que en la subasta al primer precio la función de beneficio cuando apuestan bi es,

ui =

u(xi − bi) si bi > máx
j ̸=i

bj

0 si bi < máx
j ̸=i

bj

y en la de Vickrey,

ui =

u(xi −máx
j ̸=i

bj) si bi > máx
j ̸=i

bj

0 si bi < máx
j ̸=i

bj

Proposición 3.1. Con valores simétricos e independientemente distribuidos, la ganancia espe-
rada en la subasta al primer precio es mayor que en la de Vickrey.

Demostración. Primero cabe notar que con aversión al riesgo la estrategia de apostar el propio
valor sigue siendo débilmente dominante en la subasta de Vickrey. Por lo tanto, la ganancia
esperada será la misma que en la situación de neutralidad al riesgo.

Para analizar la subasta al primer precio, supongamos que las estrategias de equilibrio en esta
situación son dadas por una función creciente y diferenciable, γ : [0, ω] −→ R+ tal que γ(0) = 0.
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Dado un valor x, el problema de cada postor es elegir z ∈ [0, ω] y apostar una cantidad
γ(z) para maximizar la utilidad esperada, G(n−1)

1 (z)u(x− γ(z)). Para maximizar, derivamos con
respecto a z,

g
(n−1)
1 (z)u(x− γ(z))−G

(n−1)
1 (z)u′ (x− γ(z)) γ′(z) = 0.

En un equilibrio simétrico debe ser óptimo, z = x,

γ′(x) =
u(x− γ(x))

u′(x− γ(x))

g
(n−1)
1 (x)

G
(n−1)
1 (x)

. (3.1)

Con neutralidad al riesgo tenemos u(x) = x y la ecuación anterior se transforma en,

β′(x) = (x− β(x))
g
(n−1)
1 (x)

G
(n−1)
1 (x)

,

donde β(.) denota la estrategia de equilibrio con compradores neutrales al riesgo.
Vamos a demostrar ahora que u(x−γ(x))

u′(x−γ(x)) > x− γ(x).
Como u es continua en [0, x− γ(x)] y diferenciable en (0, x− γ(x)), por el Teorema del Valor

Medio,
u(x− γ(x))− u(0)

x− γ(x)
= u′(a),

para a ∈ (0, x− γ(x)).
Como u′′ < 0, entonces u′ es decreciente, así u′(a) > u′ (x− γ(x)). Teniendo en cuenta

también que u(0) = 0,
u(x− γ(x))

u′(x− γ(x))
> x− γ(x), (3.2)

ya que u′ > 0 y x−γ(x) > 0. Ahora, continuamos con la demostración y usando (3.2) obtenemos,

γ′(x) > (x− γ(x))
g
(n−1)
1 (x)

G
(n−1)
1 (x)

, para todo x ∈ (0, ω).

En el Apéndice D.4 se demuestra que la desigualdad anterior implica β(x) < γ(x) , por lo menos
para un intervalo (x2, x3) ⊂ (0, ω).

Entonces, podemos concluir que en la subasta al primer precio, la aversión al riesgo causa un
aumento en la estrategia de equilibrio. Como las ofertas incrementan, las ganancias esperadas
también. Usando el teorema de equivalencia de ingresos y que las ganancias esperadas en la
subasta al segundo precio no se ven afectadas por la aversión al riesgo, deducimos que la ganancia
esperada en la subasta al primer precio es mayor que en la de al segundo precio.

Ejemplo 3.1: Consideremos un ejemplo con dos compradores y función de utilidad u(x) =
xα, con α ∈ (0, 1).

La estrategia simétrica de equilibrio en la subasta al primer precio es la solución de la ecuación
diferencial (3.1),

γ′(x) =
u(x− γ(x))

u′(x− γ(x))

g
(n−1)
1 (x)

G
(n−1)
1 (x)

=
(x− γ(x))α

α(x− γ(x))α−1

(n− 1) (F (x))n−2 f(x)

(F (x))n−1
. (3.3)

De donde obtenemos, simplificando y con n = 2,

γ′(x)F (x) =

(
x− γ(x)

α

)
f(x).
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Como podemos observar es una ecuación diferencial ordinaria de la forma γ′(x)+p(x)γ(x) = q(x),

γ′(x) +
1

α

f(x)

F (x)
γ(x) =

x

α

f(x)

F (x)
.

Para resolverla utilizamos F
1
α (x) como factor integrante (obtenido en el Apéndice D.5.1) y

multiplicamos toda la ecuación por este,

γ′(x)F
1
α (x) +

1

α
γ(x)F

1
α
−1(x)f(x) =

x

α
F

1
α
−1(x)f(x).

Cabe observar que la parte izquiera de la igualdad es la derivada de la función γ(x)F
1
α (x), así

reescribimos,

d

dx

[
γ(x)F

1
α (x)

]
=

x

α
F

1
α
−1(x)f(x).

Por tanto, integrando de 0 a x, y teniendo en cuenta que γ(0) = 0, obtenemos

γ(x)F
1
α (x) =

1

α

∫ x

0
τF

1
α
−1(τ)f(τ)dτ.

Definimos Fα = F
1
α , que es función de distribución por serlo F y podemos calcular su función

de densidad fα(x) =
1
αF

1
α
−1(x)f(x). Así, podemos reescribir la ecuación anterior,

γ(x) =
1

Fα(x)

∫ x

0
τfα(τ)dτ,

que tiene la misma forma que la estrategia simétrica de equilibrio de la subasta al primer precio
con postores neutrales al riesgo, que aparece en (2.4).

Podemos concluir que la estrategia de equilibrio con 2 postores con función de utilidad u(z) =
zα cuyos valores siguen la distribución F es la misma que la estrategia de equilibrio con 2 postores
neutrales al riesgo cuyos valores siguen la distribución Fα.

Lo que pagan los postores en la subasta al primer precio neutrales al riesgo cuando hay 2 pos-
tores y con distribución Fα es mN (x) = Fα(x)β(x). Y lo que pagan los postores en la subasta al
primer precio aversos al riesgo cuando hay 2 postores y con distribución F es mR(x) = F (x)γ(x).
En esta situación teníamos que β(x) = γ(x), pero como Fα ≤ F , tenemos que mN (x) ≤ mR(x).
Así, la ganancia esperada con postores aversos al riesgo es mayor que con postores neutrales.

Ejemplo 3.2: Vamos a realizar generalizar la situación anterior con un número n de com-
pradores, la misma función de utilidad u(x) = xα con α ∈ (0, 1) y ahora vamos a especificar la
función de distribución, F (x) = x, 0 < x < 1. En este caso, la ecuación a resolver a partir de
(3.3) es

γ′(x) =
(x− γ(x))

α

(n− 1)

x
, con γ(0) = 0.

La solución de esta ecuación diferencial ordinaria se obtiene de manera muy similar a como lo
hemos hecho en el Ejemplo anterior, el desarrollo se encuentra en el Apéndice D.6,

γ(x) =
(n− 1)

n− 1 + α
x >

(n− 1)

n
x,

que es lo que se puja cuando no hay aversión al riesgo. Así, la ganancia esperada del vendedor
en esta situación,

(n− 1)

n− 1 + α
E
[
Y

(n)
1

]
=

(n− 1)

(n− 1 + α)

n

(n+ 1)
,

que es mayor que la ganancia cuando no hay aversión al riesgo.
Cabe destacar que, aunque no están relacionadas, la estrategia de equilibrio en este ejemplo

γ(x) = (n−1)
n−1+αx es igual a la estrategia de equilibrio de la mixtura, que obtuvimos en la ecuación

(2.10) de la sección Ejemplo 2.6.
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3.2. Subastas con valoraciones comunes

En esta sección, los postores no conocen el valor exacto del objeto porque depende también de
las señales del resto de postores. Para conocer el valor, tienen que realizar estimaciones durante
la subasta o incluso al acabarla, debido a que en esos momentos pueden obtener información útil
sobre las señales de los postores. Uno de estos eventos es el anuncio de que el postor ha ganado
la subasta. Esta estructura es la de valoraciones comunes.

La información privada del postor i se resume como los valores que toma la variable aleatoria
Xi ∈ [0, ω] y se llama la señal del postor i. Supondremos que la función de densidad conjunta de
las señales f , definida en [0, ω]n, es una función simétrica en sus argumentos.

Para modelar esta situación vamos a realizar una versión sencilla. Supondremos que el valor
real del objeto es común para todos los postores y se puede calcular a partir la función u :
X1 × · · · × Xn −→ R+, de forma que sabiendo las señales de cada postor, se puede obtener el
valor real del objeto u(x1, . . . , xn), que es aleatorio al ser aleatorias las señales de cada postor.
Además, definimos la función

v(x, y) = E
[
u(X1, . . . , Xn)|X1 = x, Y

(n−1)
1 = y

]
,

como la esperanza de la valoración cuando la señal que recibe el postor 1 es x y la señal más
grande entre el resto de postores es y. Esta función es la misma para todos los postores.

Afiliación
En este capítulo vamos a permitir que las señales de los postores estén correlacionadas. De

hecho, supondremos que las señales X1, . . . , Xn están positivamente afiliadas. La afiliación es
una forma fuerte de correlación positiva y, ampliamente, significa que si un conjunto de Xi es
grande, entonces es más probable que el resto de Xj sean también grandes. Vamos a ver tres
implicaciones de afiliación que nos son sufucientes para argumentar este capítulo.

Primero, si las variables X1, . . . , Xn están afiliadas, entonces las variables X1, Y
(n−1)
1 , Y

(n−1)
2 ,

. . . , Y
(n−1)
n−1 también están afiliadas.

Sea G
(n−1)
1 (.|x) la distribución de Y

(n−1)
1 condicionada a X1 = x. Entonces, el hecho de que

X1 y Y
(n−1)
1 estén afiliadas implica que si x′ > x, entonces G(n−1)

1 (.|x′) domina G
(n−1)
1 (.|x)

en términos de la tasa de riesgo inversa, esto es, para todo y,

g
(n−1)
1 (y|x′)

G
(n−1)
1 (y|x′)

≥ g
(n−1)
1 (y|x)

G
(n−1)
1 (y|x)

. (3.4)

Por último, si γ es una función creciente, entonces x′ > x implica

E
[
γ
(
Y

(n−1)
1

)
|X1 = x′

]
≥ E

[
γ
(
Y

(n−1)
1

)
|X1 = x

]
. (3.5)

De la ecuación (3.4) obtenemos que v(x, y) es no decreciente en x. De hecho, supondremos que
es estrictamente creciente en x y que v(0, 0) = 0.

3.2.1. Subasta al primer precio

Vamos a estudiar de forma más desarrollada la subasta al primer precio. Empezaremos estu-
diando la estrategia simétrica de equilibrio de este formato de subasta.

Supongamos que todos los postores, excepto, digamos el n, siguen la estrategia β creciente y
diferenciable. Llamemos en esta sección G(.|x) a la distribución de Y (n−1)

1 condicionado a X1 = x
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y sea g(.|x) la función de densidad asociada. El beneficio esperado del comprador n con señal x,
y que apuesta β(z),

Π(z, x) =

∫ z

0
(v(x, y)− β(z))g(y|x)dy =

∫ z

0
v(x, y)g(y|x)dy − β(z)G(z|x).

Derivando e igualando a 0,

v(x, z)g(z|x)− β′(z)G(z|x)− β(z)g(z|x) = 0.

En un equilibrio simétrico, lo óptimo será z = x, así,

β′(x) = (v(x, x)− β(x))
g(x|x)
G(x|x)

, (3.6)

con la condición β(0) = 0. La solución de esa ecuación diferencial con la condición β(0) = 0, la
recogemos en la siguiente proposición.

Proposición 3.2. La estrategia simétrica de equilibrio en la subasta al primer precio está dada
por

βI(x) =

∫ x

0
v(y, y)dL(y|x),

donde L(y|x) = e

(
−
∫ x
y

g(t|t)
G(t|t)dt

)
.

Demostración. Podemos encontrar en el Apéndice D.7 la demostración de que L(.|x) es una
función de distribución con soporte [0, x].

Ahora, si x′ > x, se tiene L(y|x′) ≤ L(y|x). Por lo que la distribución L(y|x′) domina
estocásticamente a la distribución L(.|x).

Sabemos que L(y|x) es una función de distribución, digamos de una variable aleatoria Y en
[0, x], así βI(x) es la esperanza de una función de Y . Además, como L(.|x′) domina estocásti-
camente a L(.|x) cuando x′ > x, tenemos que la esperanza de una función creciente de Y es
más grande cuando Y tiene la distribución L(.|x′) que cuando tiene la distribución L(.|x). Como
v(y, y) es una función creciente de Y , tenemos βI(x′) > βI(x) y así βI es creciente en x.

Ahora consideremos a un comprador que apuesta βI(z) cuando su señal es x. El beneficio
esperado se puede escribir como,

Π(z, x) =

∫ z

0
v(x, y)g(y|x)dy − βI(z)G(z|x).

Derivando con respecto a z, tenemos,

d

dz
Π(z, x) = v(x, z)g(z|x)− βI′(z)G(z|x)− βI(z)g(z|x).

Lo que es lo mismo,

d

dz
Π(z, x) = G(z|x)

[
(v(x, z)− βI(z))

g(z|x)
G(z|x)

− βI′(z)

]
.

Si z < x, debido a la afiliación tenemos, g(z|x)
G(z|x) ≥ g(z|z)

G(z|z) . Además, si z < x, también v(x, z) >

v(z, z). Con esto, obtenemos,

d

dz
Π(z, x) > G(z|x)

[
(v(z, z)− βI(z))

g(z|z)
G(z|z)

− βI′(z)

]
= 0,

por (3.6). De manera similar, si z > x, d
dzΠ(z, x) < 0. Así, el beneficio se maximiza con z = x.
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3.2.2. Subasta inglesa

Para hacer posible el estudio de la teoría que hay detrás de la subasta inglesa en este modelo
de valores comunes, en lugar de estudiar las normas de la subasta real, nos vamos a enfocar en
un modelo aproximado, que nos permita un mejor estudio.

En este modelo, el vendedor fija el precio a 0 y gradualmente lo va aumentando. El precio
actual es observado por todos y, además, los postores muestran su voluntad de comprar, levan-
tando una mano, sosteniendo un cartel o presionando un botón que controla una luz. Lo más
importante de esto es que en cualquier momento el grupo de postores activos es comúnmente
conocido y que los postores activos tienen la información de a qué precio se han ido retirando los
demás. Los postores pueden abandonar la subasta a cualquier precio, pero una vez que lo hacen
no pueden volver a participar. La subasta termina cuando hay solo un postor activo.

En la vida real, en la subasta inglesa los posotres no tienen por qué saber las personas que
continúan o que ya se han retirado en cada momento, ni el precio al que lo hacen. Pero, en este
capítulo vamos a centrarnos en este modelo aproximado.

Con valores comunes ya no son equivalentes la subasta inglesa y la de Vickrey. La diferencia
es que en la inglesa los postores saben los precios a los que los participantes se van retirando.
Esto permite a los postores activos modificar sus estimaciones sobre el valor real del objeto. Sin
embargo, con la subasta al segundo precio no se dispone de esta información debido a su propio
formato.

Una estrategia simétrica de equilibrio es una colección β=
(
βn, βn−1, . . . , β2

)
de n−1 funciones

tales que βk : [0, 1] × Rn−k
+ −→ R+, para 1 < k ≤ n, donde βk(x, pk+1, . . . , pn) es el precio al

que el comprador k abandonará si el número de postores activos es k, su propia señal es x y los
precios a los que los n− k postores abandonaron son pk+1 ≥ pk+2 ≥ · · · ≥ pn.

Ahora consideremos las siguientes estrategias para los postores, cuando todos están activos,
sea

βn(x) = u(x, . . . , x), (3.7)

siendo βn(.) continua y creciente.
Supongamos que el comprador n es el primero en abandonar la subasta al precio pn y sea xn

la única señal tal que βn(xn) = pn. Cuando este se retira, supongamos que los restantes n − 1
postores activos siguen la estrategia

βn−1(x, pn) = u(x, . . . , x, xn),

donde βn(xn) = pn. La función βn−1(., pn) también es continua y creciente.
Así, siguiendo recursivamente para todo k tal que 2 ≤ k < n, supongamos que los postores

n, n − 1, . . . , k + 1 se han retirado de la subasta a los precios pn, pn−1, . . . , pk+1. Los postores
restantes activos siguen la estrategia

βk(x, pk+1, . . . , pn) = u(x, . . . , x, xk+1, . . . , xn), (3.8)

donde βk+1(xk+1, pk+2, . . . , pn) = pk+1.
Enunciamos sin demostración, el siguiente resultado.

Proposición 3.3. La estrategia β definida en 3.7 y 3.8 es una estrategia simétrica de equilibrio
en la subasta inglesa.

Ejemplo 3.3: Vamos a considerar u(x1, . . . , xn) =
x1+···+xn

n , es decir, cuando los postores
evalúan el objeto con valores x1, . . . , xn, el valor “real” es el promedio.

Siguiendo la estrategia de la proposición anterior con x1 > · · · > xn, dado un valor x, cuando
todos están activos pn = βn(xn) = u(xn, . . . , xn) = xn, por lo que el postor n se retirará cuando
el precio de la subasta alcance a su valor xn.
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En cuanto al postor n − 1, si el postor n se ha ido en pn(= xn), entonces el postor n− 1 se
retirará cuando

pn−1 = β(n−1)(xn−1, pn) = u(xn−1, . . . , xn−1, xn) =
(n− 1)xn−1 + xn

n
,

es decir, si el precio alcanza (n−1)xn−1+xn

n . El postor n− 2 se irá en

pn−2 = βn−2(xn−2, pn−1, pn) =
(n− 2)xn−2 + xn−1 + xn

n
.

El postor 2 abandonará en

p2 = β2(x2, p3, . . . , pn) =
2x2 + x3 + · · ·+ xn

n
,

y este es el precio que pagará el postor 1, ganador de la subasta y, por tanto, lo que recibe el
comprador. Es decir, la esperanza de lo que cobra el vendedor es

1

n
E
[
2Y

(n)
2 + Y

(n)
3 + · · ·+ Y (n)

n

]
=

1

n
E
[
Y

(n)
1 + Y

(n)
2 + · · ·+ Y (n)

n

]
+

1

n

(
−E

(
Y

(n)
1

)
+ E

(
Y

(n)
2

))
= E(X) +

1

n

(
E
(
Y

(n)
2

)
− E

(
Y

(n)
1

))
.

Si suponemos Xi uniformes en [0, 1] independientes, entonces la esperanza de lo que va a
ganar el vendedor es igual a 1

2 + 1
n(

n−1
n+1 − n

n+1) =
1
2 − 1

n(n+1) .
Un ejemplo de la subasta inglesa dando valores reales se encuentra en el Apéndice D.8.1.
Analicemos ahora la subasta al primer precio, tenemos que cada uno apuesta

βI(x) =

∫ x

0
v(y, y)dL(y|x),

donde
L(y|x) = e

(
−
∫ x
y

g(t|t)
G(t|t)dt

)
.

Como G(.|x) es la distribución condicionada de máx(X2, . . . , Xn) dado X1 = x y estamos supo-
niendo independencia, G(t|t) = G(t), la función de distribución del máximo de (X2, . . . , Xn), es
decir,

(
G

(n−1)
1 (t)

)
y

L(y|x) = e

(
−
∫ x
y

g(t)
G(t)

dt
)
= e

ln
(

G(y)
G(x)

)
=

G(y)

G(x)
.

El estudio desarrollado de cuánto es v(x, x) se encuentra en el Apéndice D.8.2, en el que
vemos v(x, x) = x

(
1
n + 1

2

)
. Por lo que,

βI(x) =

∫ x

0

(
1

2
+

1

n

)
y
g(y)

G(x)
dy =

(
1

2
+

1

n

)
E
[
Y

(n−1)
1 |Y (n−1)

1 < x
]
.

Es decir, se apuesta como con valores privados pero multiplicando por
(
1
2 + 1

n

)
. La esperanza de

lo que gana el vendedor es E
[
βI
(
Y

(n−1)
1

)]
, que es como con valores privados pero multiplicando

por
(
1
2 + 1

n

)
, es decir,

(
1
2 + 1

n

)
n−1
n+1 , que es igual a la inglesa.

Aunque no hayamos estudiado la teoría de la subasta de Vickrey, su estrategia de equilibrio
es βII(x) = v(x, x) =

(
1
2 + 1

n

)
x, que se obtiene a partir de la de primer precio. Como lo que

gana el vendedor es la segunda apuesta más alta, tenemos,

E
[
RII

]
=

(
1

2
+

1

n

)
E
[
Y

(n)
2

]
=

(
1

2
+

1

n

)
n− 1

n+ 1
,

que es igual a la de primer precio y a la inglesa. Esto se debe a que las señales son independientes.
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Apéndice A

Demostración equilibrio mixtura

A.1. Ecuación diferencial

Queremos resolver, en primer lugar, la ecuación diferencial ordinaria

xg
(n−1)
1 (x)− αβ′(x)G

(n−1)
1 (x)− β(x)g

(n−1)
1 (x) = 0.

Lo que es lo mismo

β′(x) +
g
(n−1)
1 (x)

αG
(n−1)
1 (x)

β(x) =
xg

(n−1)
1 (x)

αG
(n−1)
1 (x)

,

que tiene la forma β′(x) + p(x)β(x) = q(x). En el curso de ecuaciones diferenciales ordinarias,
vimos que se puede resolver encontrando un factor integrante µ(x), que se puede calcular como
sigue

µ(x) = e
∫
p(x)dx = e

(
1
α

∫ g
(n−1)
1 (x)

G
(n−1)
1 (x)

dx

)
=
(
G

(n−1)
1 (x)

) 1
α
.

Así, multiplicamos la ecuación diferencial ordinaria por este factor, obteniendo

β′(x)
(
G

(n−1)
1 (x)

) 1
α
+

1

α
β(x)g

(n−1)
1 (x)

(
G

(n−1)
1 (x)

) 1
α
−1

=
1

α
xg

(n−1)
1 (x)

(
G

(n−1)
1 (x)

) 1
α
−1

.

Lo que es lo mismo,

d

dx

[
β(x)

(
G

(n−1)
1 (x)

) 1
α

]
=

1

α
xg

(n−1)
1 (x)

(
G

(n−1)
1 (x)

) 1
α
−1

.

Así pues,

β(x)
(
G

(n−1)
1 (x)

) 1
α
=

1

α

∫ x

0
yg

(n−1)
1 (y)

(
G

(n−1)
1 (y)

) 1
α
−1

dy.

Integrando por partes y despejando obtenemos la estrategia del enunciado,

β(x) = x− 1(
G

(n−1)
1 (x)

) 1
α

∫ x

0

(
G

(n−1)
1 (y)

) 1
α
dy.

A.2. Ecuación de beneficio esperado

Por otra parte, el beneficio esperado Π(b, x) del postor con valor x y que puja z = β−1(b) es
el calculado en (2.9),

Π(b, x) = xG
(n−1)
1 (z)− αβ(z)G

(n−1)
1 (z)− (1− α)

∫ z

0
β(y)g

(n−1)
1 (y)dy.
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Sustituyendo la forma de β,

Π(b, x) = xG
(n−1)
1 (z)− αG

(n−1)
1 (z)

z − 1(
G

(n−1)
1 (z)

) 1
α

∫ z

0

(
G

(n−1)
1 (y)

) 1
α
dy



− (1− α)

∫ z

0

y − 1(
G

(n−1)
1 (y)

) 1
α

∫ y

0

(
G

(n−1)
1 (τ)

) 1
α
dτ

 g
(n−1)
1 (y)dy.

Desarrollando obtenemos,

Π(b, x) = xG
(n−1)
1 (z)− αG

(n−1)
1 (z)z +

α(
G

(n−1)
1 (z)

) 1
α
−1

∫ z

0

(
G

(n−1)
1 (y)

) 1
α
dy

− (1− α)

∫ z

0
yg

(n−1)
1 (y)dy −

∫ z

0

g
(n−1)
1 (y)(

G
(n−1)
1 (y)

) 1
α

[∫ y

0

(
G

(n−1)
1 (τ)

) 1
α
dτ

]
dy

 .

Realizando Fubini,

Π(b, x) = xG
(n−1)
1 (z)− αG

(n−1)
1 (z)z +

α(
G

(n−1)
1 (z)

) 1
α
−1

∫ z

0

(
G

(n−1)
1 (y)

) 1
α
dy

− (1− α)

∫ z

0
yg

(n−1)
1 (y)dy + (1− α)

∫ z

0

(
G

(n−1)
1 (τ)

) 1
α

[∫ z

τ
g
(n−1)
1 (y)

(
G

(n−1)
1 (y)

)− 1
α
dy

]
dτ.

Resolviendo la última integral tenemos,

Π(b, x) = xG
(n−1)
1 (z)− αG

(n−1)
1 (z)z +

α(
G

(n−1)
1 (z)

) 1
α
−1

∫ z

0

(
G

(n−1)
1 (y)

) 1
α
dy

− (1− α)

∫ z

0
yg

(n−1)
1 (y)dy

+ (1− α)

∫ z

0

α
(
G

(n−1)
1 (τ)

) 1
α
(
G

(n−1)
1 (z)

)1− 1
α

α− 1
−

α
(
G

(n−1)
1 (τ)

) 1
α
(
G

(n−1)
1 (τ)

)1− 1
α

α− 1

 dτ.

Desarrollando el último término,

Π(b, x) = xG
(n−1)
1 (z)− αG

(n−1)
1 (z)z + α

(
G

(n−1)
1 (z)

)1− 1
α

∫ z

0

(
G

(n−1)
1 (y)

) 1
α
dy

− (1− α)

∫ z

0
yg

(n−1)
1 (y)dy −

∫ z

0
α
(
G

(n−1)
1 (τ)

) 1
α
(
G

(n−1)
1 (z)

)1− 1
α
dτ +

∫ z

0
αG

(n−1)
1 (τ)dτ.

Simplificando,

Π(b, x) = xG
(n−1)
1 (z)− αG

(n−1)
1 (z)z − (1− α)

∫ z

0
yg

(n−1)
1 (y)dy +

∫ z

0
αG

(n−1)
1 (τ)dτ.

Ahora resolviendo la primera integral por partes,

Π(b, x) = xG
(n−1)
1 (z)− αG

(n−1)
1 (z)z − (1− α)zG

(n−1)
1 (z) + (1− α)

∫ z

0
G

(n−1)
1 (τ)dτ

+

∫ z

0
αG

(n−1)
1 (τ)dτ.
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Sacando factor común y eliminando lo que se puede simplificar,

Π(b, x) = G
(n−1)
1 (z)(x− z) +

∫ z

0
G

(n−1)
1 (τ)dτ.



Apéndice B

Desarrollo de la sección Ejemplo

B.1. Gráficas del Ejemplo

Figura B.1: Gráfica de las estrategias de los distintos tipos de subastas con 2 postores.

Figura B.2: Gráfica de las estrategias de los distintos tipos de subastas con 5 postores.
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Figura B.3: Gráfica de la varianza de la ganancia del vendedor en la mixtura en función de alpha
para distinto número de compradores.

B.2. Ganancia esperada

Como hemos argumentado anteriormente, la ganancia esperada del vendedor va a ser igual en
los tres tipos de subastas, de hecho va a ser igual a E

[
Y

(n)
2

]
. Vamos a realizar aquí los cálculos

de cada una por separado para ver que efectivamente se cumple esta propiedad.
En la subasta de Vickrey la ganancia del vendedor es el segundo valor más alto, por lo que

la ganancia esperada se calcula exactamente igual que como hemos hecho argumentado en el
Ejemplo.

Veamos ahora la subasta al primer precio. A partir de la estrategia de equilibrio, podemos
calcular la ganancia del vendedor, que será el máximo de las pujas, n−1

n máx{X1, . . . , Xn}, y
sabiendo que el máximo con la ley uniforme sigue una distribución β(n, 1), la ganancia esperada
será

n− 1

n
E
[
Y

(n)
1

]
=

n− 1

n+ 1
.

Finalmente, vamos a realizar los cálculos con la mixtura. Ahora, la ganancia del vendedor será
α veces la oferta del valor más alto más 1 − α veces la del segundo valor más alto, es decir,
α n−1

n−1+αY
(n)
1 + (1 − α) n−1

n−1+αY
(n)
2 . Como sabemos, las distribuciones que siguen el máximo y el

segundo máximo, podemos calcular la esperanza,

E
[
RM

]
= α

n− 1

n− 1 + α
E
[
Y

(n)
1

]
+ (1− α)

n− 1

n− 1 + α
E
[
Y

(n)
2

]
=

n− 1

n+ 1
.

B.3. Varianza de la ganancia en la mixtura

Vamos a realizar también aquí los cálculos correspondientes para obtener la varianza de la
ganancia del vendedor en la subasta mixtura. Hay que tener en cuenta que el máximo y el segundo
máximo no son independientes, por tanto, debemos calcular primero la covarianza de estos dos.

Cov
(
Y

(n)
1 , Y

(n)
2

)
= E

[
Y

(n)
1 Y

(n)
2

]
− E

[
Y

(n)
1

]
E
[
Y

(n)
2

]
.

Para calcular la esperanza del producto tenemos que conocer la función de densidad conjunta,
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f(x, y) = n(n− 1)xn−21{x<y}.

Así,

E
[
Y

(n)
1 Y

(n)
2

]
=

∫ 1

0

∫ y

0
xyn(n− 1)xn−2dxdy =

n− 1

n+ 2
.

Con esto,

Cov
(
Y

(n)
1 , Y

(n)
2

)
=

n− 1

n+ 2
− n(n− 1)

(n+ 1)2
=

n− 1

(n+ 2)(n+ 1)2
.

Sabiendo la covarianza, podemos obtener de manera directa la varianza,

V ar

(
α

n− 1

n− 1 + α
Y

(n)
1 + (1− α)

n− 1

n− 1 + α
Y

(n)
2

)
= α2 (n− 1)2)

(n− 1 + α)2
V ar(Y

(n)
1 ) + (1− α)2

(n− 1)2

(n− 1 + α)2
V ar(Y

(n)
2 )

+
2α(1− α)(n− 1)2

(n− 1 + α)2
Cov(Y

(n)
1 , Y

(n)
2 )

=
α2(n− 1)2n+ 2(1− α)2(n− 1)3)

(n− 1 + α)2(n+ 1)2(n+ 2)
+

2α(1− α)(n− 1)3

(n− 1 + α)2(n+ 1)2(n+ 2)

=
(n− 1)2

(n− 1 + α)2(n+ 1)2(n+ 2)
[α2n+ 2n− 2nα− 2 + 2α].



Apéndice C

Análisis precio reserva

Analicemos más en profundidad el signo de ϕ(r) = 1−(r−x0)λ(r). En primer lugar, notemos
que si r ≤ x0, entonces ϕ(r) > 0 y, por tanto, la ganancia esperada del vendedor es creciente en
r, así que nunca se elegirá r ≤ x0.

Figura C.1: Gráfica de las intersecciones de las funciones con distintos λ(r) .

Cuando r > x0 el signo de ϕ(r) depende de 1− (r−x0)λ(r). Veamos primero cuándo se anula
esta función. Eso sucederá cuando r−x0 sea igual a 1

λ(r) . La función λ(x) puede tener una forma
arbitraria (con la condición de que sea mayor o igual que 0 y que tenga integral infinita ). Por lo
tanto, la igualdad anterior se puede cumplir para varias r, para una sola o para ninguna.

Para realizar la Figura C.1, hemos asignado un valor cualquiera x0 = 3. Para realizar las dis-
tintas funciones 1

λ(r) , hemos buscado funciones de distribución tales que 1
λ(r) =

1−F (r)
f(r) satisfaciese

alguna situación. Para la función azul, hemos utilizado F (x) = 1− 1
x+1 , con función de densidad

f(x) = 1
(x+1)2

y λ(r) = 1
r+1 . Para la función amarilla, F (x) = 1 − e−0.1x, f(x) = 0.1e−0.1x y

λ(r) = 0.1.
El caso de que no se cumpla para ninguna significaría que el beneficio es creciente en r y que

no se alcanzará máximo (en el caso de ω finito, la función crecerá hasta r = ω, pero en ese punto
es discontinua porque su ganancia esperada es 0). Este caso es el de la función azul que, como
vemos en la Figura C.1, no tiene ningún punto de corte con r − x0.

Ejemplo : Podemos realizar un ejemplo en el que no se alcanza máximo, utilizándose la
misma función de distribución que para la gráfica de la función azul.
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Sea X variable aleatoria definida en [0,∞) con función de distribución F (x) = 1− 1
x+1 , x >

0 (caso particular de la ditribución de Pareto) y con función de densidad f(x) = 1
(x+1)2

. Por tanto,

tendremos λ(x) =
1

(x+1)2

1
x+1

= 1
x+1 . Sea x0 = 1, se tiene que 1− (r− x0)λ(r) = 1− (r−1)

r+1 = 2
r+1 > 0

para todo r, por lo que la ganancia esperada crece con r. La razón es que la distribución de
Pareto tiene cola pesada y el vendedor espera valores muy altos de las pujas, que crecen con el
valor de r.

Sin embargo, si λ(x) es no decreciente, entonces 1
λ(x) será decreciente o constante. En esta

situación, tendremos garantizado que existe un único corte entre r−x0 y 1
λ(r) , es decir, un único

valor de r que cumple la igualdad y para el que se alcanza el máximo del beneficio esperado
por el vendedor; por lo menos exisistirá este r si ω es lo suficientemente grande como para que
se produzca el corte entre las dos funciones. Fijándonos en la Figura C.1, vemos que la función
constante, amarilla, solo corta una vez con r−x0, lo mismo pasaría si la función fuese decreciente.
También, cabe observar que si ω = 10, entonces este corte no aparecería, por lo que no existiría
precio de reserva óptimo.

Cabe destacar que el precio de reserva óptimo no depende del número de personas que
participan en la subasta.



Apéndice D

Cálculos y demostraciones desarrolladas

D.1. Demstración análoga de la Proposición 2.2

Se puede argumentar de forma análoga que ofertar una cantidad zi > xi tampoco aumenta
el beneficio nunca . Podemos distinguir tres casos, si

zi > xi > pi, entonces ganaría de igual forma y el beneficio seguiría siendo xi − pi.

pi > zi > xi, entonces perdería de igual forma.

zi > pi > xi, entonces ganaría la subasta, pero tendría un beneficio negativo, una pérdida,
ya que tendría que pagar un precio más alto que el de su valoración.

Por tanto, pujar un valor más alto tampoco aumenta nunca el beneficio y a veces lo disminuye.

D.2. Colusión con precio de reserva

Vamos a realizar el cálculo de la probabilidad P
(
ZI ≤ r ≤ Y

(n)
1

)
. Para ello, llamemos A =

P
(
Y

(n)
1 ≥ r

)
y B = P

(
ZI ≤ r

)
, queremos calcular P (A ∩B).

Podemos observar que BC ⊆ A, así

P (A ∩B) = P (A)− P
(
BC
)
= P

(
Y

(n)
1 ≥ r

)
− P

(
ZI > r

)
= HI(r)−G

(n)
1 (r).

Por tanto, obtenemos
P
(
ZI ≤ r ≤ Y

(n)
1

)
= HI(r)−G

(n)
1 (r).

D.3. Ejemplo 2.3

D.3.1. Desarrollo función HI(t)

Veamos primero el desarrollo de la función de distribución HI(t).

HI(t) = P
(
segundo máximo{Y I

1 , XI+1, . . . , Xn} ≤ t
)
= P

(
Y I
1 ≤ t,XI+1 ≤ t, . . . ,Xn ≤ t

)
+ P

(
Y I
1 > t,XI+1 ≤ t, . . . ,Xn ≤ t

)
+ P

(
Y I
1 ≤ t,XI+1 > t, . . . ,Xn ≤ t

)
+ · · ·

+ P
(
Y I
1 ≤ t,XI+1 ≤ t, . . . ,Xn > t

)
= F I(t)Fn−I(t) + (1− F I(t))Fn−I(t) + (n− I)F I(t)Fn−I−1(t)(1− F (t))

= Fn(t) + Fn−I(t)(1− F I(t)) + (n− I)Fn−1(t)(1− F (t))

= Fn−I(t) + (n− I)Fn−1(t)(1− F (t)) = tn−I + (n− I)tn−1(1− t).

35



36 Capítulo D. Cálculos y demostraciones desarrolladas

D.3.2. Solución ecuación de grado n

Ahora queremos encontrar la solución de la siguiente ecuación,

rn−I + (n− I)rn−1(1− r)− rn − nrn = 0.

Veamos que esta ecuación tiene una única raíz,

rn−I
(
1 + (n− I)rI−1(1− r)− (n+ 1)rI

)
= 0,

se cumple la igualdad a 0, si r = 0 o si

1 + (n− I)rI−1(1− r)− (n+ 1)rI = 0.

Estudiemos ahora

φ(r) = (2n− I + 1)rI − (n− I)rI−1 − 1.

Tenemos que φ(0) < 0 y φ(1) = n > 0, por lo que, como es continua, existe al menos un r ∈ (0, 1)
tal que φ(r) = 0.

Estudiemos ahora el signo de la derivada,

φ′(r) = (2n− I + 1)IrI−1 − (n− I)(I − 1)rI−2 = rI−2 ((2n− I + 1)Ir − (n− I)(I − 1)) .

Por lo que tenemos que estudiar (2n − I + 1)Ir − (n − I)(I − 1). En r = 0, esa función es
negativa; toma el valor 0 en r1 = nI−n−I2+I

2nI−I2+I
< 1 y luego sigue positiva. Por tanto, φ(r) es

primero decreciente, entre 0 y el punto r1, y luego creciente. Por lo que existirá un único punto r
para el que φ(r) = 0. Así, hemos argumentado que la ecuación rn−I+(n−I)rn−1(1−r)−rn−nrn

tiene una única raíz r > 0, que será el precio de reserva óptimo.
No se puede calcular de forma explícita esta raíz, pero podemos relizar un programa en R

que calcule la raíz para cada valor de n y de I. El programa se puede observar en la Figura D.1.
Mediante el programa en R podemos obtener el precio de reserva óptimo para distintos valores

de n y de I.
Si n = 2, I = 2, el precio de reserva óptimo es 0.577>0.5, siendo 0.5 el precio óptimo cuando

los jugadores respetan las normas.

Si n = 100, I = 4, el precio óptimo es e−6.

Si n = 100, I = 35, el precio óptimo es e−6.

Si n = 100, I = 60, el precio óptimo es 0.92.

Si n = 100, I = 80, el precio óptimo es 0.944.

Figura D.1: Programa en RStudio para el cálculo de la raíz de la ecuación para cada valor de n
y de I.
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D.4. Parte demostración Proposición 3.1

Sea ϕ(x) = γ(x) − β(x) una función de clase C1 que verifica ϕ(0) = 0. Además, para todo
x ∈ (0, ω) se tiene

β′(x) = (x− β(x))
g
(n−1)
1 (x)

G
(n−1)
1 (x)

γ′(x) > (x− γ(x))
g
(n−1)
1 (x)

G
(n−1)
1 (x)

,

de donde ϕ′(x) > −ϕ(x)
g
(n−1)
1 (x)

G
(n−1)
1 (x)

para todo x ∈ (0, ω). Veamos en primer lugar que ϕ(x) ≥ 0

para todo x ∈ (0, ω). Supongamos que es falso y existe un x1 ∈ (0, ω) con ϕ(x1) < 0. Como ϕ
es continua, ϕ−1(−∞, 0) es abierto y, por tanto, existe un entorno de x1 tal que ϕ(x) < 0 en ese
entorno. Sea x0 = sup{x < x1 : ϕ(x) ≥ 0}. El conjunto anterior es no vacío y, por continuidad,
ϕ(x0) = 0 y x0 ≥ 0. Así, tenemos el intervalo [x0, x1], que cumple ϕ(x0) = 0, ϕ(x) < 0 para todo

x ∈ (x0, x1]. Como teníamos ϕ′(x) > −ϕ(x)
g
(n−1)
1 (x)

G
(n−1)
1 (x)

y ϕ(x) < 0, debe ser ϕ′(x) > 0 para todo

x ∈ (x0, x1], lo que es una contradicción porque

ϕ(x1) = ϕ(x0) + (x1 − x0)ϕ
′(x) > 0, para algún x ∈ (x0, x1).

Por lo tanto, no existe ningún x1 ∈ (0, ω) tal que ϕ(x1) < 0. Con esto, hemos probado que
ϕ(x) ≥ 0 para todo x ∈ (0, ω). Ahora vamos a probar que existe un intervalo (x2, x3) tal que
ϕ(x) > 0 para todo x ∈ (x2, x3), que es suficiente para que la ganancia esperada sea mayor.

Para ver que existe tal intervalo, en primer lugar, sabiendo que ϕ(x) ≥ 0 para todo x ∈ (0, ω),
descartamos ϕ(x) = 0 para todo x ∈ (0, ω) porque en ese caso, ϕ′(x) = 0, lo que contradice

0 = ϕ′(x) > −ϕ(x)
g
(n−1)
1 (x)

G
(n−1)
1 (x)

= 0.

Sea entonces y ∈ (0, ω) tal que ϕ(y) > 0. Razonando como antes, por ser ϕ continua,
ϕ−1(0,∞) es un abierto y, por tanto, existe un entorno de y, (x2, x3) ∈ ϕ−1(0,∞), es decir,
ϕ(x) > 0 para todo x ∈ (x2, x3).

D.5. Cálculo factor integrante Ejemplo 3.1

En esta sección del Apéndice vamos a calcular dos factores integrantes, que usaremos distintas
partes del trabajo.

Estudiemos la ecuación diferencial del Ejemplo 3.1. Tenemos la siguiente ecuación

γ′(x) +
1

α

f(x)

F (x)
γ(x) =

x

α

f(x)

F (x)
,

que tiene la forma γ′(x) + p(x)γ(x) = q(x). Por lo que, como antes, se puede encontrar el factor
integrante,

µ(x) = e
∫
p(x)dx = e

1
α

∫ f(x)
F (x)

dx
= F

1
α (x).

D.6. Ejemplo 3.2

Tenemos la ecuación diferencial ordinal con la forma γ′(x) + p(x)γ(x) = q(x),

γ′(x) +
(n− 1)

α

γ(x)

x
=

n− 1

α
.
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Por lo tanto, para resolverla calculamos el factor integrante µ(x),

µ(x) = e
∫
p(x)dx = e

n−1
α

∫
1
x
dx = x

n−1
α .

Por lo que multiplicando toda la ecuación por el factor integrante x
n−1
α ,

γ′(x)x
n−1
α +

(n− 1)

α
γ(x)x

n−1
α

−1 =
n− 1

α
x

n−1
α ,

lo que se simplifica a
d

dx

(
γ(x)x

n−1
α

)
=

n− 1

α
x

n−1
α .

Integrando a ambos lados,

γ(x)x
n−1
α =

n− 1

α

∫ x

0
τ

n−1
α dτ =

(n− 1)

n− 1 + α
x

(n−1)
α

+1.

Y así,

γ(x) =
(n− 1)

n− 1 + α
x.

D.7. L(.|x) función de distribución

Veamos que L(.|x) es una función de distribución con soporte [0, x].
Debido a la propiedad de la tasa de riesgo inversa de la afiliación, tenemos para todo t > 0,

g(t|t)
G(t|t)

≥ g(t|0)
G(t|0)

.

Así pues,

−
∫ x

0

g(t|t)
G(t|t)

dt ≤ −
∫ x

0

g(t|0)
G(t|0)

dt = lnG(0|0)− lnG(x|0) = −∞,

de donde podemos deducir, L(0|x) ≤ e−∞ = 0 y L(0|x) = 0 .
Además, L(x|x) = 1 y L(.|x) es no decreciente, por lo que podemos decir que L(.|x) es una

función de distribución.

D.8. Ejemplo 3.3

D.8.1. Ejemplo con valores reales

Podemos realizar un ejemplo concreto dando valores reales. Por ejemplo, supongamos que hay
5 postores participando en la subasta, cuyas señales son x1 =0.8, x2 =0.77, x3 =0.53, x4 =0.35,
x5 =0.12. Entonces, podemos calcular los precios a los que abandonaría la subasta cada postor.

Como hemos visto el postor 5 se retira cuando p5 = x5, por tanto p5 = 0.12.
Para el postor 4 recalculamos,

p4 =
4x4 + x5

5
= 0.304.

El postor 3 abandonará con,

p3 =
3x3 + x4 + x5

5
= 0.412.

Y el postor 2,

p2 =
2x2 + x3 + x4 + x5

5
= 0.508.

Este es el precio que pagaría el postor 1 al ganar la subasta.
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D.8.2. Cálculo de v(x, x)

Veamos cómo se obtiene la expresión de v(x, x). Sabemos que
v(x, y) = E

[
u(X1, . . . , Xn)|X1 = x, Y

(n−1)
1 = y

]
y, como u(X1, . . . , Xn) =

X1+···+Xn
n ,

v(x, x) =E

[
X1 + · · ·+Xn

n

∣∣∣∣X1 = x,máx{X2, . . . , Xn} = x

]
=

E

[
X1

n

∣∣∣∣X1 = x,máx{X2, . . . , Xn} = x

]
+ E

[
X2 + · · ·+Xn

n

∣∣∣∣X1 = x,máx{X2, . . . , Xn} = x

]
=

x

n
+

n− 1

n
E

[
X2

∣∣∣∣máx{X2, . . . , Xn} = x

]
=

x

n
+

n− 1

n
E

[
X2

∣∣∣∣máx{X2, . . . , Xn} = x,máx{X2, . . . , Xn} = X2

]
P

(
máx{X2, . . . , Xn} = X2

∣∣∣∣máx{X2, . . . , Xn} = x

)
+

n− 1

n
E

[
X2

∣∣∣∣máx{X2, . . . , Xn} = x,máx{X2, . . . , Xn} > X2

]
P

(
máx{X2, . . . , Xn} > X2

∣∣∣∣máx{X2, . . . , Xn} = x

)
=

x

n
+

n− 1

n
x

1

n− 1
+

n− 1

n

x

2

n− 2

n− 1
=

x

n
+

x

n
+

x(n− 2)

2n
= x

(
1

n
+

1

2

)
.
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