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Capitulo 1

Introduccion

Uno de los retos de la computacion cudntica es la comunicacién entre nodos, tipicamente
sistemas de dos niveles o qubits, sin pérdidas de informacién [4]. Una de las plataformas experi-
mentales mas prometedoras en este aspecto son los circuitos superconductores [5]. En concreto,
un ejemplo paradigmatico para realizar conexiones entre qubits distantes son las linea de trans-
misién superconductoras. Al estudio de las interacciones entre estos dos sistemas se le denomina
electrodindmica cudntica en guias de onda [6].

Este trabajo de fin de grado se basa en el estudio de la interaccién entre guias de onda
superconductoras y circuitos LC, que actuardn como qubits. En concreto, se ha enfocado en el
uso de la aproximacién Markoviana [5], la cual es muy comin para describir la conexién entre
qubits [1, 6], y en los limites de su validez.

Para hacerlo, compararemos resultados numéricos exactos con la solucién analitica dada por
la aproximacién Markoviana para un emisor y dos emisores en el mismo punto y a distancia
finita de la guia.

En el Capitulo 2, comenzaremos obteniendo el hamiltoniano clasico del oscilador LC para
luego proceder a su cuantizacion, demostrando la similitud que tiene con el oscilador cuantico
armoénico. A continuacién, aplicaremos este mismo proceso a una linea de transmision, lo que
nos permitird describir el hamiltoniano de una linea de transmisién acoplada a un qubit.

En el Capitulo 3, nos enfocaremos en la evolucion del estado excitado del qubit utilizando
la ecuacion de Schrodinger. Este analisis también se extenderd al caso de dos qubits acoplados,
donde veremos cémo la introduccion del hamiltoniano efectivo facilita el estudio de la evolucién
del estado excitado en sistemas més complejos.

Finalmente, en el Capitulo 4 se presentaran los resultados de la simulacién del sistema,
considerando un qubit con diferentes frecuencias y acoplos a la linea de transmisién. Ademas,
se analizard el efecto de la distancia entre dos qubits sobre el decaimiento del estado excitado.



Capitulo 2

Modelizacion de una linea de

transmision

En este primer capitulo se introducira el modelo de este trabajo. Primero se realizard una
descripcién hamiltoniana de los subsistemas que lo componen, un oscilador LC y una linea de
transmision, para luego proceder a su cuantizaciéon. A continuacion, se presentard el modelo
a estudiar, un circuito donde se acoplan uno o mas LCs a la linea y se cuantizard el sistema
completo.

Una linea de transmisién en el contexto de la electrodindmica cudntica de circuitos (cQED)
es un modelo idealizado compuesto tnicamente por osciladores LC acoplados. Un oscilador LC
es un circuito superconductor formado tUnicamente por un condensador y un inductor como
muestra la figura (2.1). Trabajar con estos elementos permite no tener pérdidas de energia, ya
que son elementos no disipativos, lo que hace posible emplear el formalismo hamiltoniano, como
se explicara mas adelante. En este modelo, cada inductor se caracteriza por su inductancia, que
representa la capacidad del sistema para almacenar energia en un campo magnético. De manera
similar, cada condensador esta caracterizado por su capacitancia, que refleja la capacidad para
almacenar energia en un campo eléctrico.

Antes de llegar al marco cudntico, es necesario realizar una descripcion clasica del sistema.
Para ello, utilizamos las leyes de Kirchhoff para describir la corriente y el voltaje en cada nodo
de la linea de transmisién. Sin embargo, en lugar de enfocarnos dnicamente en la corriente y
el voltaje, nos interesa relacionar estas magnitudes con el flujo, ya que serd precisamente esta
cantidad la que se cuantificara.

Para entender mejor la relaciéon entre la intensidad de corriente y el flujo en los nodos
del circuito, es ttil analizar primero los casos del condensador y el inductor. En el caso del
condensador, la intensidad (I) estd relacionada con el flujo (¢) mediante la ecuacién

120@1:0& (2.1)

dt
donde C' es la capacitancia y V es el voltaje a través del condensador. La expresion indica que
la corriente a través del condensador es proporcional a la derivada segunda temporal del flujo.

Por otro lado, para un inductor, la relacion entre el voltaje y la corriente tiene la forma
V=rL4

dt >
relacionado con la corriente mediante

donde L es la inductancia. De esta relacion, se deduce que el flujo esta directamente

¢=LI (2.2)



Esto muestra cémo en un inductor, el flujo es una medida directa de la corriente que pasa a

través de él.

Figura 2.1: Representacion de un oscilador LC, formado por un inductor con inductancia L y
un condensador con capacitancia C. En el circuito, se senala el flujo del nodo como ¢.

Podemos aplicar la ley de Kirchoff de corrientes (KCL) al oscilador LC mostrado en la figura
(2.1) utilizando las ecuaciones (2.1) y (2.2) en el nodo del circuito, obteniendo

1
Cop=—0. 2.3
b= (23)
Para recuperar la ecuacién del movimiento de la ley de Kirchoff (2.3) mediante las ecuaciones

de Euler-Lagrange (2.4)
d (oL oL
a (oL _ ok 2.4
i (56,) = o6 24

el lagrangiano de nuestro circuito debe ser

L=—¢>— —. (2.5)

Como veremos mas adelante, es 1til trabajar en el formalismo hamiltoniano y por ello uti-
lizamos la transformada de Legendre, introduciendo el momento conjugado (p), que en nuestro
circuito coincide con la carga del condensador (Q = CV = C’gb)

oL .
Q=p=§5=0¢ (2.6)
El hamiltoniano del oscilador LC se puede expresar por tanto como
; 21,
%:Qqs—ﬁ:%—f—gcwgf). (2.7)

El hamiltoniano resultante es analogo al de un oscilador mecanico, con la diferencia de que
aqui trabajamos con flujo y carga en lugar de momento y posiciéon. En este caso, la capacitancia
tiene el papel de la masa en el oscilador clasico, mientras que la constante de fuerza es %, lo que

nos lleva a una frecuencia de w = —A—

VLC®
Procedemos a la cuantizacién de este circuito y en concreto se utiliza la cuantizacion canoénica,
donde imponemos relaciones de conmutacion, transformando asi las variables de carga y flujo
en operadores cudnticos(QQ — Q y ¢ — ¢). Como ya se podia ver con el hamiltoniano (2.7),

nuestro sistema es analogo a un oscilador armonico, por lo que, sus relaciones de conmutacién



deben seguir sus reglas de conmutacién [5].

1 =9 1~ I o 1 5.9
20@ —|—2L¢> = 2mp —|—2mw:n
[p,Q] =ih < [z,p] = ih. (2.8)

Con estas relaciones de conmutacion, podemos resolver el sistema de la misma manera que lo
hacemos en el oscilador arménico cudntico, utilizando los operadores de creacién y aniquilacion.
Estos operadores definen un espacio de Fock que contiene una base de autoestados (|n)) del
oscilador, los cuales describen el nimero de excitaciones que tiene el sistema. El operador de
creacién (af) excita el estado, mientras que el operador de aniquilacién (a) lo desexcita [5].

aln) = Valn — 1),

(2.9)
aflny =vn+1n+1), ¥Yne{0,1,2,...}.
Estos operadores obedecen las relaciones de conmutacién bosénicas [a,a’] = 1. Dado que

hemos definido nuestro problema en funcién del flujo y la carga, podemos escribir los operadores

en funcién de estas variables.

~ h 5 ~f N FLCW ~f o~
¢—\/20w(a+a) Q=i 5 (@' —a) (2.10)

Sustituyendo en el hamiltoniano, se obtiene

2 1 1
H=05+ §Cw2$2 = hw(a'd + 3). (2.11)
El hamiltoniano presenta niveles de energia discretos, determinados por el nimero de fotones
en el sistema, dado por el operador ala.
Procedemos, entonces, a describir la linea de transmisién mostrada en la figura (2.2).

L,
g

Figura 2.2: Representacién de la linea de transmisién, formada por una serie de N osciladores
LC acoplados. Cada oscilador LC estd compuesto por un inductor con inductancia L, y un
condensador con capacidad C),. En el circuito, se senala el flujo en cada nodo entre inductores,
denotado como ¢,,, asi como la distancia entre nodos, representada como Azx.

Para conocer el hamiltoniano de la linea de transmisién, comenzamos de la misma manera
que en el caso del oscilador L.C, aplicando la ley de Kirchhoff para corrientes en el nodo n, lo

que nos permite obtener

(b — Pn—1) = i(<Z>n+1 — Pn)- (2.12)

Crbn, + 7

Ln—l



El lagrangiano para un sistema con N nodos debe tener la forma

N 1 9 N-—1 1 )
L= Zl §Cn¢’t - Z E(¢n+1 - ¢n) . (2‘13)
n= n=1

Nuestro siguiente objetivo es introducir el formalismo hamiltoniano. Para ello, definimos el
momento conjugado asociado a ér,. En nuestro sistema, el momento conjugado p,, se define como
Dp = 574” — Ch¢n, que corresponde a la carga de los condensadores (Q,, = C,V = Cnén), de
manera similar a lo que ocurre en el oscilador LC. A partir de ahora, utilizaremos esta notacion.

Por lo tanto, el hamiltoniano se expresa de la forma

N ‘ N QQ N1y
H= Z Qn¢n L= Z 20, E an-‘rl ¢n) . (2‘14)
n=1 n=1 n=1
Con el objetivo de diagonalizar nuestro hamiltoniano (2.14) , hacemos una descomposicién
de Fourier discreta, esto no es mas que hacer un cambio al espacio reciproco. De forma general,
para cualquier nodo con flujo ¢ y la carga de los condenadores (7, en la posiciéon x lo podremos

descomponer como

1 ikx 1 ikx
¢<x>=ﬁ§e’“ o Q) =\/N§e’f Qk- (2.15)

La transformacién de Fourier introducida define un conjunto de modos indexados por su
numero de onda k. Vamos a tomar unas condiciones periédicas de contorno en nuestro sistema
(¢N+1 = ¢1), que como resultado dan una restriccién en el nimero de ondas k = 27n/D dénde
D = nAx es la longitud total de la linea de transmision

Al introducir la transformacién (2.15) en nuestro hamiltoniano (2.14) la expresién completa
se vuelve compleja, por lo que veamos primero como transforma el término de la carga. Ademas,
se va a tomar que para todos los condensadores tenemos la misma capacitancia (C,, = C) y
todos los inductores tienen la misma inductancia (L, = L).

_ N 20 Z Qka‘/e i(k+k )z Z Qka/5k/ % Z QkQ—k (216)
k

n kk'

Se ha utilizado que, al tratarse de un sistema unidimensional con espaciamiento uniforme,

se puede expresar x, como x, = nAx. Ahora pasamos al término de las inductancias.

_ 2
Z (d)n ¢n+1) _ i (an . ¢n+1)2

2L, 2L
n
1 . 1 1
_ E zk‘zn tkTn+1 ik'xy, ik’ 41
= —€ e /— —=€ /
2L kk'< o VN ¢k> (\/N P VN ¢k>
_ 1 _ tkAz  —ikAz _ 1 -
=32 (2 e e ) rdk = 57 Ek (2 — 2cos(kAz)) dro_. (2.17)

Por tanto, el hamiltoniano nos queda

H= ZzCQkQ k+2 k¢k¢ ke (2.18)



2 _ _
donde definimos w? = 7 y w} = w?(2 — 2(cos(kAx)).
Para cuantizar el hamiltoniano de la linea de transmisién volvemos a utilizar la cuantizacion
candnica transformando el flujo y la carga en operadores. En nuestro caso las relaciones de

conmutacién [5] son
(D, Br] = [Qr, Q] = 0; (B> Q] = O - (2.19)

De nuevo, volvemos a tener que definir los operadores (2.9). Por ello, para cada modo de
oscilador arménico k en el sumatorio, introducimos los operadores de creacion (’dL) que excita el
modo k y aniquilacién (ax) que lo desexcita. Estos operadores deben cumplir las relaciones de
conmutacién bosénicas [ag, ay] = [aL,aL,] =0y [Zik,iiz,] = 0 - Los operadores escaleras deben

estar definidos en funcién del flujo y la carga

_ [Cur [~ i A o [Cux (~ i -
=\ 53 <¢k+cka—k>a a =\ 5~ (@f)—k kaQk>- (2.20)

O lo que es lo mismo,

N h ~ ~t A . hC’wk ~F A
P = 2Cwy, (ar+al,); Qr=1i 9 (@), — a_);
¢k = 5Coor (a_p+a,); Q_p=1 5 (@ — ). (2.21)
Sustituyendo el hamiltoniano nos queda
hwy, hw
=> — 1 “(+afay + apdl , + agay, +a a-g) Tk (2aa, + 20" G +2). (2.22)

k — ~ k
al a_p+1  afaet!
Nos damos cuenta que ), azak =>4 aT_ 04—k Y conseguimos finalmente la forma simplificada

del hamiltoniano

L (2.23)

H =) hu(@a +
k

Como se vera mas adelante, tanto (2.11) como (2.23), seran parte del hamiltoniano final del
sistema. El hamiltoniano nos permite estudiar la relacién de dispersién de la linea de transmisién,
donde la velocidad de grupo (vg) describe cémo se propagan los fotones a lo largo de la guia.
Esta velocidad se define como vy = ‘{;J—k’“.

En los cdlculos de la siguiente seccién pasaremos del espacio discreto al continuo (N —

0o, Az — 0) obteniendo

2 A2
Ahmowk = wc\/Q -2 (1 _k 2x +0 (Aaj)2> ~R wVEkEAZ? = wAz|k| = vg|k|. (2.24)
T—

Este paso implica una aproximacién a una linea de transmision éhmica con una relacion de
dispersién lineal. En la figura (2.3), se muestra la comparacién entre las relaciones de dispersién
discreta y continua en una guia de transmisiéon. Observamos que la aproximacién lineal (linea
azul) es adecuada para modos bajos, pero comienza a desviarse de la relacion de dispersién



(linea cian) al cruzar el valor de w, (linea naranja). Esta aproximacién y la restriccién impuesta

por w, se analizardn mas adelante.
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Figura 2.3: Comparacién entre la relacién de dispersién lineal (linea azul) y la de nuestro sistema
wy (linea cian) para un sistema con N = 1000 nodos y una separacién Az = 0,3. La linea naranja
indica el valor de corte we.

2.1. Acoplamiento de un circuito LC

Con la linea de transmisién cuantizada, vamos a acoplar los dos sistemas ya estudiados

anadiendo un emisor (oscilador LC) al nodo 0 como se muestra en la figura (2.4).

Az

L L L L L L
oo o1 o2 ®3 o)

1, i ic Tc Ic

Figura 2.4: Representacién de la linea de transmisién acoplada a un oscilador LC. La linea
de transmision esta formada por una serie de N circuitos LC acoplados. Cada circuito LC esta
compuesto por un inductor con inductancia L y un condensador con capacidad C. En el circuito,
se senala el flujo en cada nodo entre inductores, denotado como ¢,,, asi como la distancia entre
nodos, representada como Az. Se ha unido un oscilador LC externo que contiene un condensador
con capacidad de C'g y un inductor con inductancia Lg, se sefiala el flujo del circuito LC como

PR

De la misma manera que se hizo para las figuras (2.1) y (2.2), se quiere hacer uso de la ley de
Kirchoff de corrientes para conseguir llegar al lagrangiano del sistema. Sin embargo, ya tenemos



la descripcion de todos los nodos salvo uno, el nodo 0 donde se ha anadido el oscilador LC. Sobre
la linea de transmision, todos los nodos excepto el 0, tendran el lagrangiano descrito en (2.13),
mientras que el nodo del oscilador LC acoplado cumple el lagrangiano (2.5). Por tanto, solo nos
queda hacer una descripcién del nodo 0 donde se ha acoplado el oscilador LC. Aplicando la ley
de Kirchoff para este nodo nos queda

. . 1 1
C(do — or) + f(% —¢n-1) = f(¢1 — o). (2.25)
El lagrangiano de este sistema nos queda finalmente
Cén —¢nr1)? | Cldo—on)*  ¢% | Crél
L= ="~ Z TR 5 —aLet g (2.26)

n#0
Pasamos al formalismo hamiltoniano utilizando la transformada de Legendre y definiendo
los momentos conjugados

0L Conzo;  Qo=C(do—dr);  Qr= 9L (Cr+C)ér — Cop. (2.27)
OPn2o dpr

Qn;ﬁO =

Pudiendo despejear la derivada primera de los distintos flujos ¢

: Qn0 : Qo+ Qr : Qo Qo+ Qr
= : S U L =0 X0 RR 2.2
b0 o ®R T %o ot Cn (2.28)
El hamiltoniano nos queda expresado como
¢n+1 QR % QOQR Q5
. 2.2
(2,7)

(2,14)

No sorprende que el hamiltoniano que hemos obtenido lo podamos visualizar como tres
partes. Los dos primeros términos, corresponden al hamiltoniano obtenido en la seccién anterior
de la linea de transmisién (2.14). El tercer y cuarto término corresponden al hamiltoniano del
oscilador LC (2.7) que hemos acoplado en el nodo 0 de la linea de transmisién. Por dltimo, el
quinto y sexto término resultan de la interaccion entre los dos sistemas.

Recurrimos nuevamente a la descomposicién de Fourier discreta definida en (2.15) para
obtener la forma diagonal del hamiltoniano final. Realizando las mismas operaciones que se
hicieron en (2.16) y (2.17) e introduciendo la transformacién en los términos de acoplo obtenemos

2L tocs T oL
~—_———

(2,7)

_ 2 2
ZQ!;%% +Z[2 2cos(kAx)|prp—r, Q% | %

(2,18)

QRrQre™r™ QrQp e
t L eww T2 N

(k—k")zo

(2.30)

Se deben definir los operadores (2.9) e imponer las relaciones de conmutacién bosénicas
(2.19) para llegar a cuantizar el sistema. Hacemos uso de nuevo de las definiciones (2.21) donde

definimos w? = 7% v w? = w?(2 — 2(cos(kAx)). Igualmente para el emisor acoplado tenemos



. .« . . .« . 2 _ 1
que definir los operadores creacién y aniquilacién y la frecuencia wf = e

-~ h o~ . AN ﬁCRwR/\r -~
¢R—\/20RMR(bR+bR), Qr=1 5 (b — br)-

Introduciendo la cuantizacion en (2.30), el término (2.18) se transformara como lo hizo (2.22),

por su parte el término (2.7) trasnformara como lo hizo (2.11). Sin embargo, solo nos interesaran
los términos que contienen los operadores escalera ya que el otro término solo representa los

niveles de energia del estado fundamental. El hamiltoniano nos queda

M = S heafe + honbpbr — oy MO (@] 1) (B, ~ ba)
hC, foRw,r Zo [~ . R
‘Zkkfﬁ“’“f’“ K00 @l a1 (@l — ) (231)

Para llegar a nuestro hamiltoniano de estudio definimos el acoplo entre linea de transmision y

hiw = g/ 575- Eldltimo término en (2.31) tiene una dependencia

oscilador LC como g =
con el acoplo o« grpgr. Al trabajar con acoplos pequenos, el término es negligible frente el
resto. Ademds, utilizando la aproximacién de onda rotante [5], los términos a};bk y a_rbr son

despreciables

H = hwpdldx + hwrblbe + > gre™™ (@fbr +a_xbj). (2.32)
k k

Como se ha uilizado anteriormente, los sumatorios en k son tanto en valores positivos como
en negativos, por lo tanto, cambiando el término ), @_j = ), @i, obtenemos

H = Z hwka};ak + hwREEBR + Z gkeik’”oaﬁR + g;’;e_ikmoaki)\;%. (2.33)
k k

A partir de ahora trabajaremos en unidades naturales, donde h = 1. Nos damos cuenta
de que el cambio al espacio reciproco no solo se realiza para llegar a la forma diagonal del
hamiltoniano, sino que ademas permite que cada modo de onda con un numero de onda k puede
tratarse de manera independiente. En lugar de resolver una ecuacién diferencial global dificil de
resolver, como en el caso de la ecuacion de Schrodinger en el espacio real, se va a resolver una
ecuacion diferencial para cada k, lo que simplifica considerablemente el problema.

Podemos generalizar (2.33) a un nimero de M emisores

H = Zwkakak—i—wRZbTb —i—nge“"“" Tb + gre “‘“"aka (2.34)
k,n



Capitulo 3

Resolucion del hamiltoniano

Para describir la dindmica del sistema en el régimen cudntico utilizaremos la ecuacion de
Schrodinger (3.1)

zgtm = H|D). (3.1)

Ya tenemos la descripcién de cudl es nuestro hamiltoniano (2.34), pero ahora debemos pensar
en cémo debe ser la funcién de onda cuya evolucién queremos analizar. En nuestro caso, las
funciones de ondas que nos interesan tienen algunas propiedades que podemos explotar a la
hora de formular su expresion.

Como el hamiltoniano conserva el nimero de excitaciones, podemos trabajar en una seccién
del espacio de Hilbert con un nimero de excitaciones constante. En nuestro caso nos limitare-
mos al espacio de una excitacién. La funcién de onda que nos interesa conocer tiene que ser
aquella que excita una vez el campo. Como los operadores de creaciéon son justamente los que
excitan los modos, estos operadores deberan estar actuando sobre el estado vacio (el de no tener
excitaciones), por tanto, nuestra funcién de onda serd de la forma

T) =" rd@f]0) + > dnd}0).
k n

Los coeficientes que aparecen en la expresion (cx) describen las amplitudes de un estado
excitado en cada uno de los modos k de la linea de transmisién y d,, describe el estado excitado
del resonador n.

Como solo estamos trabajando en el espacio de una excitacién, solo tenemos dos niveles |0)
y |1) y por lo tanto los emisores se comportan como sistemas de dos niveles o qubits si quieres.

En esta seccién se quiere hacer un anélisis de la evolucién del sistema con el acoplo de uno

y dos cirucitos LC a nuestra linea de transmision.

3.1. Solo un emisor

Para un solo emisor el hamiltoniano es de la forma (2.33), la funcién de onda con la que
trabajaremos serd por tanto
B) =" ciay |0y + dbT|0).
k

10



Con todo esto, la ecuacién de Schrodinger nos queda de la forma

> ¢ |0) + db' [0) = —i ( > wrajdreral, 0) + > widgardd' [0) + Y epwrblbal, |0)
k kk’ k k

+wrdbBb 0) + 3 gre*albepal, 10) + Y gre™aLbdbf [0)
kK k
+ > gre M agbicpal, 0y + > gie *abldb! [0) ) :
k k
Queremos encontrar una expresion que nos indique cémo evoluciona el circuito LC. Esto se
logra proyectando la ecuacién de Schrodinger sobre (0]b, 1o que nos permite analizar la dindmica

del resonador LC, representada por el coeficiente d. Utilizando las respectivas relaciones de

conmutacién para obtener el orden normal, obtenemos

d = —iwgrd — i Z greF R ey, (3.2)
k

Vemos que hay una dependencia con los coeficientes ¢, por lo que debemos proyectar (0]ay
para obtener su dependencia, que de nuevo aplicando las relaciones de conmutacién nos queda

Cp = —iwpCL — ig,’;efik"md. (3.3)

Para simplificar el célculo hacemos el cambio d = de’™®r! y ¢, = c,e'*!, obteniendo una
expresién para d y una ¢ genérica

d=—i Z gre heR G ellWr—wr)t, (3.4)
k

n = —igpeFrR el Wk mwr)t, (3.5)

Integramos la ecuacién (3.5),
. t ~ . /
T —igkemR/ dt'd(t’)ez(“”“_wR)t . (3.6)
0
Introduciendo este resultado en la ecuacién (3.4), obteniendo
* t . . ,
dt) = =3 Jgel? / d(t)eim—o0 -t gy (3.7)
A 0
Vamos a hacer un cambio de variable, siendo este 7 =t — ', que nos da como resultado
P t ~ .
dt) == |gel / d(t — 7)e!@R=wR)T g7 (3.8)
. 0

Esta ecuacién nos estd describiendo la evolucion del estado excitado del emisor. Nos estd
diciendo que el estado del emisor en el tiempo ¢ depende de su estado en todos los tiempos
anteriores ¢ — 7. Debido a su complejidad, vamos a tomar lo que se llama la aproximacién

Markoviana. Esta aproximacién nos dice que la dindmica de la linea de transmisién ocurre en
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una escala de tiempo mucho mas corta que el decaimiento del estado excitado. Esto implica que
podemos hacer una descripcion del oscilador LC sin tener en cuenta las interacciones pasadas
con la linea de transmisién.

Al tomar esta aproximacién, el limite de la integral de ¢ es ahora infinito, ya que t > 7y
la amplitud es aproximadamente d(t — 7) & d(t). Para resolver el limite y la integral se va a
introducir una parte imaginaria a la diferencia de frecuencias y que luego se hard tender a cero.
Con esto conseguimos que el limite del tiempo esté bien definido.

t t ] ei(wR—wk—i-ie)t
lim [ @r=“s)7dr = lim lim [ @Rk T r — lim | lim - :
t—o0 J e—0t—00 J e—0 |t—o0 i(wg — wg + 7€)
z(wR Wk te—et 1
= lim | lim
e—~0 [t—oo Z(WR Wk) z(wR Wi + ZE)
— lim wR wk) — Zé)]
0 | (wg — wp) + i€ 0% (wp —wg)? + €2
. (Wg — wg €
=1l i . 3.9
el [(wR—wk)2+62 T (wr — wg)? + €2 (39)
() e

Y por definicién, la parte imaginaria es el valor principal de la integral P y la parte real es
una delta de Dirac. Por tanto, nuestra solucion es

t

. 1
lim [ dr e @R = 16(wRr — wy) + iP () : (3.10)
t—o0 0 WR — Wk

La ecuacion de la evolucion del estado excitado del emisor ahora nos queda como
J(t) = —d(t) Z\ 1 |76(wp — wr) + iP L —d(t) L +iA (3.11)
= d 9k Kk~ WR on—wi )|~ 5 ) :

donde hemos definido I' y A respectivamente como I' = 23, |gk[?0(wr, — wr) vy A =
L/27P [(|gx|?/wr—wg)- El término T'/2 provoca un decaimiento exponencial en la amplitud d(t)
como resultado de la interaccién con la linea de transmision. Por otro lado, la parte imaginaria A
representa un desplazamiento en la frecuencia del sistema. Esto significa que, en lugar de oscilar
a la frecuencia wg, el sistema oscilard a una frecuencia corregida por A. A este desplazamiento
se le conoce como el desplazamiento de Lamb.

Obtenemos la dindmica después de aplicar la aproximaciéon Markoviana resolviendo (3.8)
d(t) = d(0)e (3 H8);  q(t) = d(0)e HETiAFwR), (3.12)

Debemos conocer cémo calcular los parametros I' y A. Para ello, vamos a definir la densidad
espectral (J(w)), que nos describe lo fuerte que es la interaccién entre un modo de nuestra linea

de transmision con frecuencia w y el emisor

w) =2m Z\gk|2(5(wk —w). (3.13)
k
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Esta definicién podemos relacionarla con I' de la forma

g =7 |gk[*5(wr —wr) = J(;R)- (3.14)
k

Se estd evaluando (3.13) en la frecuencia de nuestro emisor, obteniendo asi el decaimiento
del estado excitado del emisor dentro de la aproximacién Markoviana.

En una linea de transmisién éhmica, podemos calcular la tasa de decaimiento y el desplaza-
miento de Lamb analiticamente. La frecuencia de los modos (wy) sigue una relacién lineal (2.24)

con el nimero de onda |k|

r
2

2 D kmax
™ [Zk:\gk|25(wk — WR) ] = 77* [Z wrd (Wi, — WR)] = %% e wrd(wk — wr)dk

)

kmax O
= gz |:/ wké(wk — wR)dk‘ —|—/ wké(wk - wR)dk}
0 _klllax

= — / wrd(wp — wg)dk -l—/ w_rd(wg — wr)dk| = = / wrd(wg — wgr)dk

4 Lo 0 2 Lo

2 We 2
_ 9 Wk . _ 9 wr
= 9 /0 vy (5(wk wR)dwk 21)9 . (3.15)

El procedimiento que se ha realizado se basa en tomar el sistema lo suficientemente grande,
es decir, hacer tender el nimero de osciladores a infinito, lo que provoca que los valores de k se

aproximen entre si, permitiendo que la suma pueda aproximarse por una integral. Para realizar
D
212

obteniendo la transformacién ), — % f dk. Ademsds, se ha utilizado de nuevo la separacién

esta conversién, multiplicamos por la densidad de estados en el espacio reciproco, que es

entre k positivas y negativas, teniendo la ventaja que la frecuencia de los modos cumple wy =
w_y,. Por 1ltimo, se ha realizado el cambio de variable de k a w usando wy, = vgk|.

Para el célculo de A deberemos utilizar la expresién completa que nos daba (3.10), intro-
duciendo de la misma manera que en (3.9) una diferencia en la parte imaginaria pero esta vez

pasando al continuo.

t )
- + 1A = Z|gk| |:hm / i(WR—wWk TdT:| Z|gk| [tlir&ig% ez(wR—wk+zg)7—dT

0
oy, . clwrRTwrtemet i|gk|*dk

- Z|gk| lim lim — —— =1lim  ——————

e=0t—00 i(wWR —wy +1€) 0 p (wr — wg + ie)

zD —ie|g|2dk (wr — wi)|gx|*dk
= lim 2 2 + 2 2
27‘( e—0 (wR —wk) +e€ (wR _wk) +e

B iD92 . widk

/ wkdk L P wkdk :|

>o WR — Wk k<0 WR — Wk

ig” [—w/wd(w wR)dw—l—P/ e ] (3.16)

271'119 WR — W
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La primera integral que debemos resolver es idéntica a la que ya resolvimos en (3.15), mientras

que para la segunda aplicamos las relaciones de Kramers-Kronig

flwr) = £P [ L8 Rif(wp)) = 1P [ UL, §[f(wp)] = —1P [ ML (317)

W—WR

Donde R simboliza la parte real y & la parte imaginaria. Estas relaciones nos permiten
relacionar la parte imaginaria con la parte real de la integral. En nuestro caso la funcion es

f(w) = w, por tanto
wR w Wr—W
de modo que
g WR

r
— ) = . .1
5 +1iA 20, (3.18)

3.2. Dos emisores

Extendamos el cdlculo de un emisor para varios, esta vez el hamiltoniano adoptard la forma

H = Zwkakak + ZwaT bn, + Z ngelkz” Tb + gre “”””aka

n=1 k n=1

Podremos describir entonces la excitacién como
2 A~
= " cap]0) + > dnb}0).
k n=1
Siguiendo el mismo procedimiento que hemos seguido en el caso de un emisor, obtenemos
Z . 1 ~
1) ==l (st )+ 7 (G2 ) ) h)
. 1 -
_ Z|gk’2€zk(x17m) (Wé(wk _ WR) + P ()) dg(t) (3.19)
k Wg — WR
2 , 1 =
*Z!9k| md(wk —wgr) +iP | ———— | ) da(t)
k Wk — WR
4 1 -
_ Z’gk‘Qezk(mfm) (775(0% —wR) +iP <>> di (). (3.20)
k Wi — WR

Podemos representar estas expresiones como un sistema de ecuaciones diferenciales

le(t) . I‘11 — 1A FT i1 Cil(t)
< da1) ) - ( % — iy =12 — Ay ) ( da(t) ) ’ (3.21)

donde Ty = 23, [gr?e™ ™) mw6 (wy — wr) y Aij = 34 |gs 2@ P (L), Los térmi-
nos en la diagonal nos hablan de las interacciones del emisor individualmente, siendo I';; el

decaimiento exponencial (I') y A;; el desplazamiento de la frecuencia (A) definidos previamente
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para un solo emisor. Lo mas interesante al anadir un emisor adicional se encuentra en los térmi-

ik(zj=i) La incorporacién de este

nos no diagonales, que agregan una dependencia de la forma e
término nos permite definir un decaimiento colectivo I'12, que refleja la influencia mutua en el
desplazamiento exponencial.

Los acoplamientos entre emisores no dependen del signo de 1 — x2, es decir, de la direccién
en la que ocurre la propagacion. Esto se debe a que las sumas sobre k£ incluyen tanto valores
positivos como negativos, lo que cierra un ciclo en el plano complejo. Dado que la suma total no
varia con el signo de k, la direccién en que se realiza la suma no es importante. Como resultado,
la expresion puede simplificarse para que dependa Unicamente de la distancia entre x; y x2, sin
importar el signo de la diferencia, es decir, 3, e*(@1722) = 3~ ~th(@1=22) — S~ ciklori—z2]|

Se procede entonces al célculo de los coeficientes de la matriz de (3.21)
an . o Z| |2 ik|zn—2m| 5( - )+ P 1
9 nm = gkl € oWk — WR t Wi — WR

D 2 zk|$n—zm|dk
= [/dk\gklz ikl =l (wy, — wr) +277/|gk|

2 .
g ‘ |
Am k>0 L0
wkeiklﬂﬁn—l‘m‘ wkeik‘l‘n—xm|
k>0 Wk — WR k<0 Wk — WR
g9’ . ,
= — 7'['/ wk <6’Ll€‘$n—l"m| _I_ e—lk‘wn—$m|> 5(Wk _ wR)dk
am k>0
+iP k )
: 2 cos(k|zn — wm|)dk
9 7r/ wi2 cos(k|zy — 2m|)o(wy, — wgr)dk + iP wi2 cos(k|zn — Tm)
Am k>0 k>0 W — WR
g° w cos(w/vg|Ty — T |)dw
= 20g7r W/wCOS(w/Ug|ZEn —:Em|)) (w wR)dw —i—zP/ wg . '

(3.22)

Se han seguido los mismos pasos utilizados en la resolucién de (3.16). Se ha realizado el paso
al continuo utilizando la densidad de estados, dividiendo la integral en términos con k positivos
y negativos y finalmente se ha cambiado la variable de integracion de k a w.

Podemos obtener la forma que tiene la parte real ( m ), ya que es el primer término de (3.22)

I 2 WR
;m = 2gvgwR cos <%\:cn — :cm\> . (3.23)

En la parte imaginaria usamos de nuevo (3.17), la funcién es f(w) = we™/VslTn=om|  asf que

A _ e P/WCOS(W/U9|3:R — Tpp|)dw _ 92173/ R[f(w)]dw
nm 2uyT W — WR 2ug w— WR
2 2 ' 2
_ f%g[f(wR)] _ 29%3 [weieniaten=enl] = 92ZR $in (wi/vg|Tn — Tml) . (3.24)
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La expresion final viene dada por

an
2

r
+iApm = 5 [cos (Wr/vg|Tn — Tm|) + isin (Wr/vg|Tn — Tm])] - (3.25)

3.3. Hamiltoniano efectivo

Para realizar la simulacién, la manera en que hemos formulado nuestro hamiltoniano no es
adecuada desde el punto de vista computacional. Sin embargo, como nuestro objetivo es ver la
desexcitacion del oscilador LC, en realidad solo trabajamos en el subespacio de una excitacion.

T
En este caso, el estado se describe por un vector |¢)) = (X Y) que contiene las amplitudes de
la excitacién en los modos de la linea de transmisién (Y = ¢) o en los emisores (X = dp,).
El hamiltoniano se puede escribir como una matriz de bloques que agrupa las contribuciones

H= ( Hew | © ) , (3.26)

de los diferentes subespacios [3]

CT | Hpp

donde Hep es la matriz que describe las energias de los modos de los emisores, Hpy, es la
matriz que describe las energias de los modos de la linea de transmisién y C' es la matriz de
acoplamiento entre los emisores y la linea de transmision teniendo la forma C,; = gkeikxn.
Para realizar el andlisis de la evolucién temporal del estado excitado, retomamos la ecuacion

de Schrédinger (3.1), con el estado |¢) definido y el hamiltoniano (3.26), obteniendo

X = —iH,X —iClY (3.27)
Y = —iH,,Y —iCX. (3.28)

Lo que nos ha provocado un sistema de ecuaciones diferenciales acopladas. Para resolverlo
utilizamos la transformada de Laplace que convertird el sistema en uno de ecuaciones algebréicas.

X(s) = / Tetedt Y(s) = / ety ()t (3.29)
0 0
Obteniendo
sX — X(0) = —iHenX —iCTY;  sY = Y(0) = —iCX —iHy,D.

Y eso te lleva a aislar )(s) tomando Y =0

—iC

YO = i,

X(s) (3.30)

usando (3.27) obtenemos la ecuacién para la dindmica de los emisores en el espacio de
Laplace,donde podemos identificar unos términos que actian como hamiltoniano, ya que en el
espacio de Laplace la ecuacién de Schrédinger para un estado W(t) es (s) = (s+iH)~*¥(0). Por
lo tanto, el hamiltoniano efectivo (Heff = Hem + C(is — Hpy) 1CT) es aquel hamiltoniano que
actia como tal pero tiene una dependencia con s. Este hamiltoniano describe cémo los emisores
se comportan cuando estan acoplados a la linea de transmision, el término H,,, representa la
energia de los emisores por si solos, mientras que el término C(is — th)_lCT representa las

correcciones a la energia debido a la interaccién con la linea de transmision.
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Para resolver la dindmica tendriamos que invertir la transformada de Laplace, para todas
las energias. Sin embargo, en el contexto la aproximacién Markoviana, la cual nos llevaba a una
emisién espontdnea en la frecuencia wg (3.18) implica asumir que la frecuencia més relevante de

s . / . [eixe . . . cto
la dindmica es wg y que el término = Hon del Hamiltoniano se puede aproximar por on—Ho

De esta manera la transformada inversa de Laplace resulta en un decaimiento exponencial

o0 ESt - rrMark
X(t) = —— _X(0)ds = X(0)e Her"t, 3.31
0= | it Ods = X0 (3.31)

Para construir la matriz del hamiltoniano efectivo calculamos C(iwg—iHp,)~*CT, obteniendo

[Cliwr — iHpn) ' Clm = > |grl*/(wr — wy) e =m), (3.32)
P

Para el caso de dos emisores nos queda

lgw|? lgi |2e™klz2 o1
HMark wr 0 + Zk WR—Wk zk WR— zwk (3 33)
2 ,—ik|z] —xz2a| . .
0 wgr 3 lgi|Ze™* 1 721 D lakl®
k WR—1W k dwr—iwy

La forma de la segunda matriz no nos permite operar con ella, por lo que calculamos

Z i|gk| — lim Z i| gk _ — lfm Z ilgr|” (wr ;ch i€)
WR — W €0 = e—0 p

- WR — Wy, + i€ (wrp —wi)” + €2

o lg1* (wr —wi) |, . i |
—ilim R Dy

(wr — wi) 24 e wr —wg)” + €2

2 (Wk WR) 21, €
= lim lim . 3.34
Z|gk\ Ll oo 1 e Zlgk! o on w1 2 (3.34)
) o (wrp—w
o) R

Este céalculo ya lo hemos realizado antes, ya que se corresponde con (3.22), por lo que el

hamiltoniano efectivo lo podemos expresar como

'y ; Ty ;

WR 0 . + ZAH + ’LA12

Mk — —i| 2 e . (3.35)
0 WR 72 + ZAQl 5 + ’LAQQ

Haber definido de esta manera el hamiltoniano efectivo bajo la aproximacién Markoviana nos
permite describir de manera muy sencilla la evolucién de nuestro estado excitado, ya que solo
serd necesario hacer la diagonalizacién de (3.35), es decir, nos hemos evitado hacer la resolucién
de las ecuaciones diferenciales acopladas. Ademads, la parte real de estos autovalores son los

decaimientos colectivos de la aproximacién Markoviana, la dindmica nos vendra dada por

dy, (t) = d(0)e™ P+t (3.36)

Donde Ay = wg + & [cos (Wr/Vg|Tn — T |) £ isin (Wr/vg|Tn — m|)]-
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Capitulo 4

Resultados

En este capitulo vamos a presentar los resultados simulando el sistema que hemos presentado

en las secciones anteriores.

4.1. Solo un emisor

Partiendo de la expresion obtenida para la evoluciéon del sistema en el limite markoviano
(3.12), se quiere conocer en qué condiciones este limite es aplicable. Por lo tanto, analizaremos el
sistema utilizando tanto esta expresiéon como simulaciones numéricas. Para obtener la dindamica
del sistema hemos diagonalizado numéricamente el hamiltoniano (3.26). El estado inicial que
consideraremos en este analisis es aquel en el que el oscilador LC se encuentra en su estado
excitado (d,=1), mientras que la linea de transmisién permanece en su estado fundamental
(¢, =0).

Lo primero que queremos analizar es como afecta el parametro g, que representa el acopla-
miento entre el oscilador LC y la linea de transmision, a la evolucion del circuito LC. En la
figura (4.2) se representa el decaimiento del estado excitado del circuito LC acoplado a la gufa.
La evolucién del estado usando el hamiltoniano (|1(t)|?) se muestra con lineas sélidas, mientras

que la evolucién bajo el limite markoviano (|d(t)|?) se representa con lineas discontinuas.
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Figura 4.1: Emisién esponténea de un fotén debido al oscilador LC para diferentes acoplos (g).
Se han utilizado N = 1000 osciladores L.C distribuidos a lo largo de una linea de transmisién con
una longitud total de D = 300, lo que resulta en una distancia entre nodos (Ax) de Az = 0,3.
La velocidad de grupo esta fijada en v, = ¢ = 1 debido a que usamos unidades naturales. La
frecuencia del modo del emisor (wg) se fija, obteniendo asi una frecuencia de w. = 3,333wpg para
los modos de la linea de transmision.

En la figura (4.1) como era esperable por la dependencia de I' con el acoplo (3.18), a mayor
acoplo decae mas rapido el estado excitado. Sin embargo, lo interesante es que al aumentar el
acoplo la aproximacién Markoviana empieza a diferir de la simulacién numérica aunque aun
captura el comportamiento cualitativamente.

Dado que el decaimiento I' en el limite markoviano depende de la frecuencia de los modos del
circuito LC, es interesante analizar como esta frecuencia influye en la validez de dicho limite. Con
la informacién obtenida de la grafica anterior, vamos a realizar la simulacién con un acoplamiento
de g = 0,1, ya que es lo suficientemente grande como para ver la influencia entre la linea de

transmision y el circuito LC, pero sin dejar de cumplir con el limite markoviano.
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Figura 4.2: Emision esponténea de un fotén debido al circuito LC para diferentes frecuencias de
los modos del circuito LC (wg). El acoplo utilizado ha sido de g=0.1 y el resto de los parametros
son los mismos que en la figura (4.1).

Se aprecia un mayor decaimiento al incrementar wg, lo cual es coherente con la dependencia
de ' (3.18). Sin embargo, a medida que wr aumenta, se muestra una diferencia entre la apro-
ximacion Markoviana y la simulacién numérica, aunque ambas mantienen una similitud en su
forma general. Esto se debe a la aproximacion a linea de transmisién éhmica que se ha hecho al
realizar los cdlculos de la resolucién (3.15), en la figura (2.3) podemos observar que a frecuencias
bajas y sin superar nuestro valor w, la aproximacién lineal y la relacién de dispersion de nuestro

sistema son iguales, sin embargo al aproximar al valor w,, la aproximacién deja de ser buena.

4.2. Dos emisores

En cuanto a los resultados obtenidos para el acoplo de dos emisores se deben determinar los
autovalores del hamiltoniano efectivo para analizar su evolucién. En el caso de nuestro hamilto-
niano completo, nos enfocamos en el autoestado |+) = %(H} +10)).

Tener dos emisores nos permite analizar como se influyen mutuamente, especialmente en
funcién de la distancia entre ellos. Por ello, simularemos el sistema para diferentes posiciones
relativas de los emisores,en concreto, para distancias relativas de 0 y 60Ax. Se representa por
tanto el decaimiento del estado |+) para diferentes acoplos.
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Figura 4.3: Emisién espontanea de fotones debido a los osciladores LC cuando se encuentran
en la misma posicién para diferentes acoplos (g) y en el estado |+). Se han utilizado N = 2000
modos el resto de los pardmetros son los mismos que en la figura (4.1)

1.0 4
[d(t)]?

LR g=0.01
ol g=0.03
-g g=0.05
© g=0.07
+~
% 0.8 --- g=0.1
a g
]
T 2
c lw(t)]
9 0.7 — g=0.01
[%]
- —— g=0.03
3 — g=0.05
) — g=0.07
& o6 0'1

— g=o0.

0.5 A

Tiempo [t wg]

Figura 4.4: Emision espontdnea de fotones debido a los osciladores LC cuando se encuentran
cuando se encuentran el primero en x=0 y el segundo en x=60 Ax para diferentes acoplos (g) y
en el estado |+). Los pardmetros para la simulacién son los mismos que los utiliados en (4.3).
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Con estas dos figuras observamos la influencia que tienen los emisores uno sobre el otro. En
la figura (4.3) los decaimientos colectivos son el doble de rapidos que los de un solo emisor, a
este fenémeno se le conoce como superradiancia de Dicke [2]. Ademds, como se han escogido
acoplos pequenos donde la aproximacién Markoviana es véalida, la simulacién numérica coincide
con la dindmica que da el hamiltoniano efectivo bajo la aproximacién Markoviana.

Sin embargo, al separar los dos emisores (4.4), comenzamos a observar c6mo interactian
entre si, pudiendo identificar claramente el punto en el que ambos emisores empiezan a influirse
mutuamente. En este caso, el decaimiento colectivo esta vez es mas lento que el de un emisor
independiente, teniendo esta vez el fenémeno de subradiancia.

Al igual que hicimos para un solo emisor acoplado y debido a la dependencia que vuelve
a aparecer en el hamiltoniano efectivo con la frecuencia del emisor (3.35), representamos el
decaimiento para el estado |+) para distintas frecuencias del emisor wg con las mismas distancias
relativas que se han utilizado para el andlisis con los diferentes acoplos.

1.0 1 |d(t)|2
;-;:0.10
e
?— 084 =020
X w=0.30
[}
E o =0.40
W 0.6 '
o --- =050
]
°
c lw()]?
© 0.4 1 e
.E — ®=0.10
% — =020
o 0.2 _ %}:0.30
—_ ;‘;}:0.40
——— L\JR -]
0.0 3 0.30

0 20 40 60 80 100 120 140
Tiempo [t wg]

Figura 4.5: Emisién espontanea de fotones debido a los osciladores LC cuando se encuentran
en la misma posicién para diferentes acoplos (g) y en el estado |+). Se han utilizado N = 2000
nodos y un acoplo de g = 0,1 el resto de los pardmetros son los mismos que en la figura (4.3).

22



1.04

|d(t)]?

& -0.10

& =0.20

e
=]
.

=0.30

;‘,’;:0.40

-_— {;ﬁ_ =0.50

o
o
L

[@(t)]?

— =0.10

(=]
S
L

=

Poblacidn del estado |+>

— 3=020

e
8]
.

— ®=0.30

— %-040

--- ¥-0.50
0.0 +

T
0 20 40 60 80 100 120 140
Tiempo [t wg]

Figura 4.6: Emisién espontanea de fotones debido a los osciladores LC cuando se encuentran
cuando se encuentran el primero en x=0 y el segundo en x=60 Az para diferentes frecuencias
de los emisores (wg) y en el estado |+). Los pardmetros para la simulacién son los mismos que
los utiliados en (4.6).

La informacién que nos dan las gréaficas (4.5) y (4.6) es una recopilacién de los conceptos que
ya hemos ido comentando a lo largo del trabajo. En el caso de la figura (4.5) tenemos de nuevo
un decaimiento colectivo que es doble que el de un emisor. Ademads, como estamos alejados del
valor que toma w., no observamos una mala coincidencia con la aproximacion Markoviana. Por
ultimo, en la figura (4.6) volvemos a ver un decaimiento mds lento que para un emisor y la

separacion que vefamos en (4.4) cuando los emisores empiezan a interactuar.
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Capitulo 5

Conclusiones

El objetivo de este trabajo ha sido el estudio de la emision espontanea del primer estado
excitado de osciladores acoplados a una guia de ondas. En primer lugar, logramos realizar la
cuantizacién candnica del hamiltoniano de una linea de transmisién acoplada a un oscilador
LC, imponiendo las relaciones de conmutacién bosonicas y utilizando la aproximaciéon de onda
rotante. Dentro de dicha aproximacién restringimos la dindmica al subespacio de una excitacion.
Con el hamiltoniano obtenido, pudimos comenzar el estudio de la evolucién del estado excitado,
resolviendo numéricamente la ecuacién de Schrédinger y utilizando la aproximacién Markoviana
para obtener una solucién analitica a las ecuaciones diferenciales resultantes.

Asimismo, definimos el concepto de hamiltoniano efectivo y comprobamos que, a pesar de
utilizar formalismos distintos, se llegaba a la misma fisica que tiene nuestro modelo dentro de
la aproximaciéon Markoviana.

En el caso de un oscilador LC acoplado a una linea de transmisién, evaluamos cémo varia la
emisién espontanea con el acoplamiento y determinamos los limites en los que la aproximacion
Markoviana sigue siendo valida. Observamos que, a medida que el acoplamiento aumenta, los
efectos de la memoria del emisor respecto a la linea de transmisién se hacen més evidentes, lo
que conduce a una disminucién en la validez de la aproximacién Markoviana, ya que, esta los
desprecia.

También analizamos el comportamiento al variar la frecuencia del oscilador LC, comproban-
do no solo los limites de la aproximacion Markoviana, sino también si es apropiado modelar
la linea de transmisién como 6hmica en este contexto. El modelo se comporta como si la rela-
cién de dispersion fuese lineal hasta el valor de w. cerca del cual deja de ser asi. Justamente
esta aproximacién es la que hemos utilizado para los céalculos analiticos en la aproximacién
Markoviana.

Finalmente, hemos simulado nuestro modelo con el acoplamiento de dos osciladores LC a la
linea de transmisién. La adicién de un segundo emisor introduce una nueva dindmica, ya que
su interaccién depende de la distancia entre ellos. Observamos que la evolucion de los estados
se divide en dos fases: en la primera, los emisores no interactian entre si y su comportamien-
to sigue la dindmica de un solo emisor acoplado a la guia; en la segunda, cuando comienzan
a interaccionar, la dindmica cambia, ajustdndose a los autovalores del hamiltoniano efectivo.
Hemos comprobado que estos comportamientos son predecibles dentro del régimen en el que la
aproximacion Markoviana es valida, hasta que, por las mismas razones que para el caso de un

solo emisor, esta aproximacién deja de ser adecuada.
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