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Caṕıtulo 1

Introducción

Uno de los retos de la computación cuántica es la comunicación entre nodos, t́ıpicamente

sistemas de dos niveles o qubits, sin pérdidas de información [4]. Una de las plataformas experi-

mentales más prometedoras en este aspecto son los circuitos superconductores [5]. En concreto,

un ejemplo paradigmático para realizar conexiones entre qubits distantes son las ĺınea de trans-

misión superconductoras. Al estudio de las interacciones entre estos dos sistemas se le denomina

electrodinámica cuántica en gúıas de onda [6].

Este trabajo de fin de grado se basa en el estudio de la interacción entre gúıas de onda

superconductoras y circuitos LC, que actuarán como qubits. En concreto, se ha enfocado en el

uso de la aproximación Markoviana [5], la cual es muy común para describir la conexión entre

qubits [1, 6], y en los ĺımites de su validez.

Para hacerlo, compararemos resultados numéricos exactos con la solución anaĺıtica dada por

la aproximación Markoviana para un emisor y dos emisores en el mismo punto y a distancia

finita de la gúıa.

En el Caṕıtulo 2, comenzaremos obteniendo el hamiltoniano clásico del oscilador LC para

luego proceder a su cuantización, demostrando la similitud que tiene con el oscilador cuántico

armónico. A continuación, aplicaremos este mismo proceso a una ĺınea de transmisión, lo que

nos permitirá describir el hamiltoniano de una ĺınea de transmisión acoplada a un qubit.

En el Caṕıtulo 3, nos enfocaremos en la evolución del estado excitado del qubit utilizando

la ecuación de Schrödinger. Este análisis también se extenderá al caso de dos qubits acoplados,

donde veremos cómo la introducción del hamiltoniano efectivo facilita el estudio de la evolución

del estado excitado en sistemas más complejos.

Finalmente, en el Caṕıtulo 4 se presentarán los resultados de la simulación del sistema,

considerando un qubit con diferentes frecuencias y acoplos a la ĺınea de transmisión. Además,

se analizará el efecto de la distancia entre dos qubits sobre el decaimiento del estado excitado.
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Caṕıtulo 2

Modelización de una ĺınea de

transmisión

En este primer caṕıtulo se introducirá el modelo de este trabajo. Primero se realizará una

descripción hamiltoniana de los subsistemas que lo componen, un oscilador LC y una ĺınea de

transmisión, para luego proceder a su cuantización. A continuación, se presentará el modelo

a estudiar, un circuito donde se acoplan uno o más LCs a la ĺınea y se cuantizará el sistema

completo.

Una ĺınea de transmisión en el contexto de la electrodinámica cuántica de circuitos (cQED)

es un modelo idealizado compuesto únicamente por osciladores LC acoplados. Un oscilador LC

es un circuito superconductor formado únicamente por un condensador y un inductor como

muestra la figura (2.1). Trabajar con estos elementos permite no tener pérdidas de enerǵıa, ya

que son elementos no disipativos, lo que hace posible emplear el formalismo hamiltoniano, como

se explicará más adelante. En este modelo, cada inductor se caracteriza por su inductancia, que

representa la capacidad del sistema para almacenar enerǵıa en un campo magnético. De manera

similar, cada condensador está caracterizado por su capacitancia, que refleja la capacidad para

almacenar enerǵıa en un campo eléctrico.

Antes de llegar al marco cuántico, es necesario realizar una descripción clásica del sistema.

Para ello, utilizamos las leyes de Kirchhoff para describir la corriente y el voltaje en cada nodo

de la ĺınea de transmisión. Sin embargo, en lugar de enfocarnos únicamente en la corriente y

el voltaje, nos interesa relacionar estas magnitudes con el flujo, ya que será precisamente esta

cantidad la que se cuantificará.

Para entender mejor la relación entre la intensidad de corriente y el flujo en los nodos

del circuito, es útil analizar primero los casos del condensador y el inductor. En el caso del

condensador, la intensidad (I) está relacionada con el flujo (ϕ) mediante la ecuación

I = C
dV

dt
= Cϕ̈, (2.1)

donde C es la capacitancia y V es el voltaje a través del condensador. La expresión indica que

la corriente a través del condensador es proporcional a la derivada segunda temporal del flujo.

Por otro lado, para un inductor, la relación entre el voltaje y la corriente tiene la forma

V = LdI
dt , donde L es la inductancia. De esta relación, se deduce que el flujo está directamente

relacionado con la corriente mediante

ϕ = LI. (2.2)
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Esto muestra cómo en un inductor, el flujo es una medida directa de la corriente que pasa a

través de él.

L

ϕ

C

Figura 2.1: Representación de un oscilador LC, formado por un inductor con inductancia L y
un condensador con capacitancia C. En el circuito, se señala el flujo del nodo como ϕ.

Podemos aplicar la ley de Kirchoff de corrientes (KCL) al oscilador LC mostrado en la figura

(2.1) utilizando las ecuaciones (2.1) y (2.2) en el nodo del circuito, obteniendo

Cϕ̈ =
1

L
ϕ. (2.3)

Para recuperar la ecuación del movimiento de la ley de Kirchoff (2.3) mediante las ecuaciones

de Euler-Lagrange (2.4)
d

dt

(
∂L
∂ϕ̇i

)
=
∂L
∂ϕi

, (2.4)

el lagrangiano de nuestro circuito debe ser

L =
C

2
ϕ̇2 − ϕ2

2L
. (2.5)

Como veremos más adelante, es útil trabajar en el formalismo hamiltoniano y por ello uti-

lizamos la transformada de Legendre, introduciendo el momento conjugado (p), que en nuestro

circuito coincide con la carga del condensador (Q = CV = Cϕ̇).

Q = p =
∂L
∂ϕ̇i

= Cϕ̇. (2.6)

El hamiltoniano del oscilador LC se puede expresar por tanto como

H = Qϕ̇− L =
Q2

2C
+

1

2
Cω2ϕ2. (2.7)

El hamiltoniano resultante es análogo al de un oscilador mecánico, con la diferencia de que

aqúı trabajamos con flujo y carga en lugar de momento y posición. En este caso, la capacitancia

tiene el papel de la masa en el oscilador clásico, mientras que la constante de fuerza es 1
L , lo que

nos lleva a una frecuencia de ω = 1√
LC

.

Procedemos a la cuantización de este circuito y en concreto se utiliza la cuantización canónica,

donde imponemos relaciones de conmutación, transformando aśı las variables de carga y flujo

en operadores cuánticos(Q → Q̂ y ϕ → ϕ̂). Como ya se pod́ıa ver con el hamiltoniano (2.7),

nuestro sistema es análogo a un oscilador armónico, por lo que, sus relaciones de conmutación
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deben seguir sus reglas de conmutación [5].

1

2C
Q̂2 +

1

2L
ϕ̂2 ⇐⇒ 1

2m
p̂2 +

1

2
mω2x̂2

[ϕ̂, Q̂] = ih̄ ⇐⇒ [x̂, p̂] = ih̄. (2.8)

Con estas relaciones de conmutación, podemos resolver el sistema de la misma manera que lo

hacemos en el oscilador armónico cuántico, utilizando los operadores de creación y aniquilación.

Estos operadores definen un espacio de Fock que contiene una base de autoestados (|n⟩) del

oscilador, los cuales describen el número de excitaciones que tiene el sistema. El operador de

creación (â†) excita el estado, mientras que el operador de aniquilación (â) lo desexcita [5].

â|n⟩ =
√
n|n− 1⟩,

â†|n⟩ =
√
n+ 1|n+ 1⟩, ∀n ∈ {0, 1, 2, . . . }.

(2.9)

Estos operadores obedecen las relaciones de conmutación bosónicas [â, â†] = 1. Dado que

hemos definido nuestro problema en función del flujo y la carga, podemos escribir los operadores

en función de estas variables.

ϕ̂ =

√
h̄

2Cω
(â+ â†) Q̂ = i

√
h̄Cω

2
(â† − â) (2.10)

Sustituyendo en el hamiltoniano, se obtiene

H =
Q̂2

2C
+

1

2
Cω2ϕ̂2 = h̄ω(â†â+

1

2
). (2.11)

El hamiltoniano presenta niveles de enerǵıa discretos, determinados por el número de fotones

en el sistema, dado por el operador a†a.

Procedemos, entonces, a describir la ĺınea de transmisión mostrada en la figura (2.2).

ϕn−1 ϕn

Cn

Ln ϕn+1

∆x

· · · · · ·

Figura 2.2: Representación de la ĺınea de transmisión, formada por una serie de N osciladores
LC acoplados. Cada oscilador LC está compuesto por un inductor con inductancia Ln y un
condensador con capacidad Cn. En el circuito, se señala el flujo en cada nodo entre inductores,
denotado como ϕn, aśı como la distancia entre nodos, representada como ∆x.

Para conocer el hamiltoniano de la ĺınea de transmisión, comenzamos de la misma manera

que en el caso del oscilador LC, aplicando la ley de Kirchhoff para corrientes en el nodo n, lo

que nos permite obtener

Cnϕ̈n +
1

Ln−1
(ϕn − ϕn−1) =

1

Ln
(ϕn+1 − ϕn). (2.12)
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El lagrangiano para un sistema con N nodos debe tener la forma

L =
N∑

n=1

1

2
Cnϕ̇i

2 −
N−1∑
n=1

1

2Ln
(ϕn+1 − ϕn)

2. (2.13)

Nuestro siguiente objetivo es introducir el formalismo hamiltoniano. Para ello, definimos el

momento conjugado asociado a ϕ̇n. En nuestro sistema, el momento conjugado pn se define como

pn = ∂L
∂ϕ̇n

= Cnϕ̇n, que corresponde a la carga de los condensadores (Qn = CnV = Cnϕ̇n), de

manera similar a lo que ocurre en el oscilador LC. A partir de ahora, utilizaremos esta notación.

Por lo tanto, el hamiltoniano se expresa de la forma

H =

N∑
n=1

Qnϕ̇n − L =

N∑
n=1

Q2
n

2Cn
+

N−1∑
n=1

1

2Ln
(ϕn+1 − ϕn)

2. (2.14)

Con el objetivo de diagonalizar nuestro hamiltoniano (2.14) , hacemos una descomposición

de Fourier discreta, esto no es más que hacer un cambio al espacio rećıproco. De forma general,

para cualquier nodo con flujo ϕ y la carga de los condenadores Q, en la posición x lo podremos

descomponer como

ϕ(x) =
1√
N

∑
k

eikxϕk; Q(x) =
1√
N

∑
k

eikxQk. (2.15)

La transformación de Fourier introducida define un conjunto de modos indexados por su

número de onda k. Vamos a tomar unas condiciones periódicas de contorno en nuestro sistema

(ϕN+1 = ϕ1), que como resultado dan una restricción en el número de ondas k = 2πn/D dónde

D = n∆x es la longitud total de la ĺınea de transmisión

Al introducir la transformación (2.15) en nuestro hamiltoniano (2.14) la expresión completa

se vuelve compleja, por lo que veamos primero como transforma el término de la carga. Además,

se va a tomar que para todos los condensadores tenemos la misma capacitancia (Cn = C) y

todos los inductores tienen la misma inductancia (Ln = L).

∑
n

Q2
n

2Cn
=

1

N

1

2C

∑
n

∑
k,k′

QkQk′e
−i(k+k′)xn =

1

2C

∑
k

QkQk′δk′=−k =
1

2C

∑
k

QkQ−k. (2.16)

Se ha utilizado que, al tratarse de un sistema unidimensional con espaciamiento uniforme,

se puede expresar xn como xn = n∆x. Ahora pasamos al término de las inductancias.

∑
n

(ϕn − ϕn+1)
2

2Ln
=

1

2L

∑
n

(ϕn − ϕn+1)
2

=
1

2L

∑
n,k,k′

(
1√
N
eikxnϕk −

1√
N
eikxn+1ϕk

)(
1√
N
eik

′xnϕk′ −
1√
N
eik

′xn+1ϕk′

)
=

1

2L

∑
k

(
2− eik∆x − e−ik∆x

)
ϕkϕ−k =

1

2L

∑
k

(2− 2 cos(k∆x))ϕkϕ−k. (2.17)

Por tanto, el hamiltoniano nos queda

H =
∑
k

1

2C
QkQ−k +

∑
k

Cω2
k

2
ϕkϕ−k, (2.18)
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donde definimos ω2
c = 1

LC y ω2
k = ω2

c (2− 2(cos(k∆x)).

Para cuantizar el hamiltoniano de la ĺınea de transmisión volvemos a utilizar la cuantización

canónica transformando el flujo y la carga en operadores. En nuestro caso las relaciones de

conmutación [5] son

[ϕ̂k, ϕ̂k′ ] = [Q̂k, Q̂k′ ] = 0; [ϕ̂k, Q̂k′ ] = δk,k′ . (2.19)

De nuevo, volvemos a tener que definir los operadores (2.9). Por ello, para cada modo de

oscilador armónico k en el sumatorio, introducimos los operadores de creación (â†k) que excita el

modo k y aniquilación (âk) que lo desexcita. Estos operadores deben cumplir las relaciones de

conmutación bosónicas [âk, âk′ ] = [â†k, â
†
k′ ] = 0 y [âk, â

†
k′ ] = δk,k′ . Los operadores escaleras deben

estar definidos en función del flujo y la carga

âk =

√
Cωk

2h̄

(
ϕ̂k +

i

Cωk
Q̂−k

)
, â†k =

√
Cωk

2h̄

(
ϕ̂−k −

i

Cωk
Q̂k

)
. (2.20)

O lo que es lo mismo,

ϕ̂k =

√
h̄

2Cωk
(âk + â†−k); Q̂k = i

√
h̄Cωk

2
(â†k − â−k);

ϕ̂−k =

√
h̄

2Cωk
(â−k + â†k); Q̂−k = i

√
h̄Cωk

2
(â†−k − âk). (2.21)

Sustituyendo el hamiltoniano nos queda

H ==
∑
k

h̄ωk

4
(+â†kâk + â−kâ

†
−k︸ ︷︷ ︸

â†−kâ−k+1

+ âkâ
†
k︸︷︷︸

â†kâk+1

+â†−kâ−k) =
∑
k

h̄ωk

4
(2â†kâk + 2â†−kâ−k + 2). (2.22)

Nos damos cuenta que
∑

k a
†
kak =

∑
k a

†
−ka−k y conseguimos finalmente la forma simplificada

del hamiltoniano

H =
∑
k

h̄ωk(â
†
kâk +

1

2
). (2.23)

Como se verá más adelante, tanto (2.11) como (2.23), serán parte del hamiltoniano final del

sistema. El hamiltoniano nos permite estudiar la relación de dispersión de la ĺınea de transmisión,

donde la velocidad de grupo (vg) describe cómo se propagan los fotones a lo largo de la gúıa.

Esta velocidad se define como vg = dωk
dk .

En los cálculos de la siguiente sección pasaremos del espacio discreto al continuo (N →
∞, ∆x→ 0) obteniendo

ĺım
∆x→0

ωk = ωc

√
2− 2

(
1− k2∆x2

2
+O (∆x)2

)
≈ ωc

√
k2∆x2 = ωc∆x|k| = vg|k|. (2.24)

Este paso implica una aproximación a una ĺınea de transmisión óhmica con una relación de

dispersión lineal. En la figura (2.3), se muestra la comparación entre las relaciones de dispersión

discreta y continua en una gúıa de transmisión. Observamos que la aproximación lineal (ĺınea

azul) es adecuada para modos bajos, pero comienza a desviarse de la relación de dispersión
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(ĺınea cian) al cruzar el valor de ωc (ĺınea naranja). Esta aproximación y la restricción impuesta

por ωc se analizarán más adelante.

Figura 2.3: Comparación entre la relación de dispersión lineal (ĺınea azul) y la de nuestro sistema
ωk (ĺınea cian) para un sistema con N = 1000 nodos y una separación ∆x = 0,3. La ĺınea naranja
indica el valor de corte ωc.

2.1. Acoplamiento de un circuito LC

Con la ĺınea de transmisión cuantizada, vamos a acoplar los dos sistemas ya estudiados

añadiendo un emisor (oscilador LC) al nodo 0 como se muestra en la figura (2.4).

LR CR

L ϕ0

C

ϕR

L ϕ1

C

L ϕ2

C

L ϕ3

C

L ϕ4

C

L

∆x

· · · · · ·

Figura 2.4: Representación de la ĺınea de transmisión acoplada a un oscilador LC. La ĺınea
de transmisión esta formada por una serie de N circuitos LC acoplados. Cada circuito LC está
compuesto por un inductor con inductancia L y un condensador con capacidad C. En el circuito,
se señala el flujo en cada nodo entre inductores, denotado como ϕn, aśı como la distancia entre
nodos, representada como ∆x. Se ha unido un oscilador LC externo que contiene un condensador
con capacidad de CR y un inductor con inductancia LR, se señala el flujo del circuito LC como
ϕR

De la misma manera que se hizo para las figuras (2.1) y (2.2), se quiere hacer uso de la ley de

Kirchoff de corrientes para conseguir llegar al lagrangiano del sistema. Sin embargo, ya tenemos
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la descripción de todos los nodos salvo uno, el nodo 0 donde se ha añadido el oscilador LC. Sobre

la ĺınea de transmisión, todos los nodos excepto el 0, tendrán el lagrangiano descrito en (2.13),

mientras que el nodo del oscilador LC acoplado cumple el lagrangiano (2.5). Por tanto, solo nos

queda hacer una descripción del nodo 0 donde se ha acoplado el oscilador LC. Aplicando la ley

de Kirchoff para este nodo nos queda

C(ϕ̈0 − ϕ̈R) +
1

L
(ϕ0 − ϕN−1) =

1

L
(ϕ1 − ϕ0). (2.25)

El lagrangiano de este sistema nos queda finalmente

L =
∑
n ̸=0

Cϕ̇2n
2

−
∑
n

(ϕn − ϕn+1)
2

2Ln
+
C(ϕ̇0 − ϕ̇R)

2

2
−

ϕ2R
2LR

+
CRϕ̇

2
R

2
. (2.26)

Pasamos al formalismo hamiltoniano utilizando la transformada de Legendre y definiendo

los momentos conjugados

Qn̸=0 =
∂L

∂ϕ̇n̸=0

= Cϕ̇n̸=0; Q0 = C(ϕ̇0 − ϕ̇R); QR =
∂L
∂ϕ̇R

= (CR +C)ϕ̇R −Cϕ̇0. (2.27)

Pudiendo despejear la derivada primera de los distintos flujos ϕ̇

ϕ̇n̸=0 =
Qn ̸=0

C
; ϕ̇R =

Q0 +QR

CR
; ϕ̇0 =

Q0

C
+
Q0 +QR

CR
. (2.28)

El hamiltoniano nos queda expresado como

H ==
∑
n

Q2
n

2C
+
∑
n

(ϕn − ϕn+1)
2

2Ln︸ ︷︷ ︸
(2,14)

+
Q2

R

2CR
+

ϕ2R
2LR︸ ︷︷ ︸

(2,7)

+
QoQR

CR
+

Q2
0

2CR
. (2.29)

No sorprende que el hamiltoniano que hemos obtenido lo podamos visualizar como tres

partes. Los dos primeros términos, corresponden al hamiltoniano obtenido en la sección anterior

de la ĺınea de transmisión (2.14). El tercer y cuarto término corresponden al hamiltoniano del

oscilador LC (2.7) que hemos acoplado en el nodo 0 de la ĺınea de transmisión. Por último, el

quinto y sexto término resultan de la interacción entre los dos sistemas.

Recurrimos nuevamente a la descomposición de Fourier discreta definida en (2.15) para

obtener la forma diagonal del hamiltoniano final. Realizando las mismas operaciones que se

hicieron en (2.16) y (2.17) e introduciendo la transformación en los términos de acoplo obtenemos

H =
∑
k

QkQ−k

2C
+
∑
k

[2− 2 cos(k∆x)]ϕkϕ−k

2L︸ ︷︷ ︸
(2,18)

+
Q2

R

2CR
+

ϕ2R
2LR︸ ︷︷ ︸

(2,7)

+
∑
k

QRQke
ikx0

2CR

√
N

+
∑
k,k′

QkQk′e
i(k−k′)x0

NCR
. (2.30)

Se deben definir los operadores (2.9) e imponer las relaciones de conmutación bosónicas

(2.19) para llegar a cuantizar el sistema. Hacemos uso de nuevo de las definiciones (2.21) donde

definimos ω2
c = 1

LC y ω2
k = ω2

c (2 − 2(cos(k∆x)). Igualmente para el emisor acoplado tenemos
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que definir los operadores creación y aniquilación y la frecuencia ω2
R = 1

LRCR

ϕ̂R =

√
h̄

2CRωR
(̂bR + b̂†R); Q̂R = i

√
h̄CRωR

2
(̂b†R − b̂R).

Introduciendo la cuantizacion en (2.30), el término (2.18) se transformará como lo hizo (2.22),

por su parte el término (2.7) trasnformara como lo hizo (2.11). Sin embargo, solo nos interesarán

los términos que contienen los operadores escalera ya que el otro término solo representa los

niveles de enerǵıa del estado fundamental. El hamiltoniano nos queda

H =
∑

k h̄ωkâ
†
kâk + h̄ωRb̂

†
Rb̂R −

∑
k

h̄
√
CRCωkωc

2CR

√
D

eikx0(â†k − â−k)(̂b
†
R − b̂R)

−
∑

k,k′
h̄C

√
ωkωk′

NDCR
ei(k−k′)x0(â†k − â−k)(â

†
k′ − â−k′). (2.31)

Para llegar a nuestro hamiltoniano de estudio definimos el acoplo entre ĺınea de transmisión y

oscilador LC como gk = h̄
√
CRCωkωc

2CR

√
D

= g
√

wk
2D . El último término en (2.31) tiene una dependencia

con el acoplo ∝ gkgk′ . Al trabajar con acoplos pequeños, el término es negligible frente el

resto. Además, utilizando la aproximación de onda rotante [5], los términos a†kb
†
R y a−kbR son

despreciables

H =
∑
k

h̄ωkâ
†
kâk + h̄ωRb̂

†
Rb̂R +

∑
k

gke
ikx0(â†k b̂R + â−k b̂

†
R). (2.32)

Como se ha uilizado anteriormente, los sumatorios en k son tanto en valores positivos como

en negativos, por lo tanto, cambiando el término
∑

k â−k =
∑

k âk, obtenemos

H =
∑
k

h̄ωkâ
†
kâk + h̄ωRb̂

†
Rb̂R +

∑
k

gke
ikx0 â†k b̂R + g∗ke

−ikx0 âk b̂
†
R. (2.33)

A partir de ahora trabajaremos en unidades naturales, donde h̄ = 1. Nos damos cuenta

de que el cambio al espacio rećıproco no solo se realiza para llegar a la forma diagonal del

hamiltoniano, sino que además permite que cada modo de onda con un número de onda k puede

tratarse de manera independiente. En lugar de resolver una ecuación diferencial global dificil de

resolver, como en el caso de la ecuación de Schrödinger en el espacio real, se va a resolver una

ecuación diferencial para cada k, lo que simplifica considerablemente el problema.

Podemos generalizar (2.33) a un número de M emisores

H =
∑
k

ωka
†
kak + ωR

∑
n

b†nbn +
∑
k,n

gke
ikxna†kbn + g∗ke

−ikxnakb
†
n. (2.34)
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Caṕıtulo 3

Resolución del hamiltoniano

Para describir la dinámica del sistema en el régimen cuántico utilizaremos la ecuación de

Schrödinger (3.1)

i
∂

∂t
|Ψ⟩ = H|Ψ⟩. (3.1)

Ya tenemos la descripción de cuál es nuestro hamiltoniano (2.34), pero ahora debemos pensar

en cómo debe ser la función de onda cuya evolución queremos analizar. En nuestro caso, las

funciones de ondas que nos interesan tienen algunas propiedades que podemos explotar a la

hora de formular su expresión.

Como el hamiltoniano conserva el número de excitaciones, podemos trabajar en una sección

del espacio de Hilbert con un número de excitaciones constante. En nuestro caso nos limitare-

mos al espacio de una excitación. La función de onda que nos interesa conocer tiene que ser

aquella que excita una vez el campo. Como los operadores de creación son justamente los que

excitan los modos, estos operadores deberán estar actuando sobre el estado vaćıo (el de no tener

excitaciones), por tanto, nuestra función de onda será de la forma

|Ψ⟩ =
∑
k

ckâ
†
k|0⟩+

∑
n

dnb̂
†
n|0⟩.

Los coeficientes que aparecen en la expresión (ck) describen las amplitudes de un estado

excitado en cada uno de los modos k de la ĺınea de transmisión y dn describe el estado excitado

del resonador n.

Como solo estamos trabajando en el espacio de una excitación, solo tenemos dos niveles |0⟩
y |1⟩ y por lo tanto los emisores se comportan como sistemas de dos niveles o qubits si quieres.

En esta sección se quiere hacer un análisis de la evolución del sistema con el acoplo de uno

y dos cirucitos LC a nuestra ĺınea de transmision.

3.1. Solo un emisor

Para un solo emisor el hamiltoniano es de la forma (2.33), la función de onda con la que

trabajaremos será por tanto

|Ψ⟩ =
∑
k

ckâ
†
k|0⟩+ db̂†|0⟩.
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Con todo esto, la ecuación de Schrödinger nos queda de la forma

∑
k

ċkâ
†
k |0⟩+ ḋb̂† |0⟩ = −i

(∑
kk′

ωkâ
†
kâkck′ â

†
k′ |0⟩+

∑
k

ωkâ
†
kâkdb̂

† |0⟩+
∑
k

ckωRb̂
†b̂â†k |0⟩

+ ωRdb̂
†b̂b̂† |0⟩+

∑
k,k′

gke
ikxâ†k b̂ck′ â

†
k′ |0⟩+

∑
k

gke
ikxâ†k b̂db̂

† |0⟩

+
∑
k

g∗ke
−ikxâk b̂

†ck′ â
†
k′ |0⟩+

∑
k

g∗ke
−ikxâk b̂

†db̂† |0⟩

)
.

Queremos encontrar una expresión que nos indique cómo evoluciona el circuito LC. Esto se

logra proyectando la ecuación de Schrödinger sobre ⟨0|̂b, lo que nos permite analizar la dinámica

del resonador LC, representada por el coeficiente d. Utilizando las respectivas relaciones de

conmutación para obtener el orden normal, obtenemos

ḋ = −iωRd− i
∑
k

gke
ikxRck. (3.2)

Vemos que hay una dependencia con los coeficientes ck, por lo que debemos proyectar ⟨0|âk
para obtener su dependencia, que de nuevo aplicando las relaciones de conmutación nos queda

ċk = −iωkck − ig∗ke
−ikxRd. (3.3)

Para simplificar el cálculo hacemos el cambio d̃ = deiωRt y c̃k = cke
iωkt, obteniendo una

expresión para d̃ y una c̃k genérica

˙̃
d = −i

∑
k

g∗ke
−ikxR c̃ke

i(ωR−ωk)t; (3.4)

˙̃ck = −igkeikxR d̃ei(ωk−ωR)t. (3.5)

Integramos la ecuación (3.5),

c̃k = −igkeikxR

∫ t

0
dt′d̃(t′)ei(ωk−ωR)t′ . (3.6)

Introduciendo este resultado en la ecuación (3.4), obteniendo

˙̃
d(t) = −

∑
k

|gk|2
∫ t

0
d̃(t′)ei(ωR−ωk)(t−t′)dt′. (3.7)

Vamos a hacer un cambio de variable, siendo este τ = t− t′, que nos da como resultado

˙̃
d(t) = −

∑
k

|gk|2
∫ t

0
d̃(t− τ)ei(ωR−ωk)τdτ. (3.8)

Esta ecuación nos está describiendo la evolución del estado excitado del emisor. Nos está

diciendo que el estado del emisor en el tiempo t depende de su estado en todos los tiempos

anteriores t − τ . Debido a su complejidad, vamos a tomar lo que se llama la aproximación

Markoviana. Esta aproximación nos dice que la dinámica de la ĺınea de transmisión ocurre en
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una escala de tiempo mucho más corta que el decaimiento del estado excitado. Esto implica que

podemos hacer una descripción del oscilador LC sin tener en cuenta las interacciones pasadas

con la ĺınea de transmisión.

Al tomar esta aproximación, el ĺımite de la integral de t es ahora infinito, ya que t ≫ τ y

la amplitud es aproximadamente d̃(t − τ) ≈ d̃(t). Para resolver el ĺımite y la integral se va a

introducir una parte imaginaria a la diferencia de frecuencias y que luego se hará tender a cero.

Con esto conseguimos que el ĺımite del tiempo esté bien definido.

ĺım
t→∞

∫ t

0
ei(ωR−ωk)τdτ = ĺım

ϵ→0
ĺım
t→∞

∫ t

0
ei(ωR−ωk+iϵ)τdτ = ĺım

ϵ→0

[
ĺım
t→∞

ei(ωR−ωk+iϵ)t

i(ωR − ωk + iϵ)

]t
0

= ĺım
ϵ→0

[
ĺım
t→∞

ei(ωR−ωk)te−ϵt

i(ωR − ωk)− ϵ
− 1

i(ωR − ωk + iϵ)

]

= ĺım
ϵ→0

[
i

(ωR − ωk) + iϵ

]
= ĺım

ϵ→0

[
i [(ωR − ωk)− iϵ)]

(ωR − ωk)2 + ϵ2

]
= i ĺım

ϵ→0

[
(ωR − ωk)

(ωR − ωk)2 + ϵ2

]
︸ ︷︷ ︸

P
(

1
ωR−ωk

)
+ ĺım

ϵ→0

[
ϵ

(ωR − ωk)2 + ϵ2

]
︸ ︷︷ ︸

πδ(ωR−ωk)

. (3.9)

Y por definición, la parte imaginaria es el valor principal de la integral P y la parte real es

una delta de Dirac. Por tanto, nuestra solución es

ĺım
t→∞

∫ t

0
dτ ei(ωR−ωk)τ = πδ(ωR − ωk) + iP

(
1

ωR − ωk

)
. (3.10)

La ecuación de la evolución del estado excitado del emisor ahora nos queda como

˙̃
d(t) = −d̃(t)

∑
k

|gk|2
[
πδ(ωk − ωR) + iP

(
1

ωR − ωk

)]
= −d̃(t)

[
Γ

2
+ i∆

]
, (3.11)

donde hemos definido Γ y ∆ respectivamente como Γ = 2
∑

k|gk|2δ(ωk − ωR) y ∆ =

L/2πP
∫
(|gk|2/ωR−ωk). El término Γ/2 provoca un decaimiento exponencial en la amplitud d̃(t)

como resultado de la interacción con la ĺınea de transmisión. Por otro lado, la parte imaginaria ∆

representa un desplazamiento en la frecuencia del sistema. Esto significa que, en lugar de oscilar

a la frecuencia ωR, el sistema oscilará a una frecuencia corregida por ∆. A este desplazamiento

se le conoce como el desplazamiento de Lamb.

Obtenemos la dinámica después de aplicar la aproximación Markoviana resolviendo (3.8)

d̃(t) = d̃(0)e−t(Γ
2
+i∆); d(t) = d(0)e−t(Γ

2
+i(∆+ωR)). (3.12)

Debemos conocer cómo calcular los parámetros Γ y ∆. Para ello, vamos a definir la densidad

espectral (J(ω)), que nos describe lo fuerte que es la interacción entre un modo de nuestra ĺınea

de transmisión con frecuencia ω y el emisor

J(ω) = 2π
∑
k

|gk|2δ(ωk − ω). (3.13)

12



Esta definićıón podemos relacionarla con Γ de la forma

Γ

2
= π

∑
k

|gk|2δ(ωk − ωR) =
J(ωR)

2
. (3.14)

Se está evaluando (3.13) en la frecuencia de nuestro emisor, obteniendo aśı el decaimiento

del estado excitado del emisor dentro de la aproximación Markoviana.

En una ĺınea de transmisión óhmica, podemos calcular la tasa de decaimiento y el desplaza-

miento de Lamb anaĺıticamente. La frecuencia de los modos (ωk) sigue una relación lineal (2.24)

con el número de onda |k|

Γ

2
= π

[∑
k

|gk|2δ(ωk − ωR)

]
= π

g2

2D

[∑
k

ωkδ(ωk − ωR)

]
=
πg2

2D

D

2π

∫ kmax

−kmax

ωkδ(ωk − ωR)dk

=
g2

4

[∫ kmax

0
ωkδ(ωk − ωR)dk +

∫ 0

−kmax

ωkδ(ωk − ωR)dk

]
=

g2

4

[∫ kmax

0
ωkδ(ωk − ωR)dk +

∫ kmax

0
ω−kδ(ωk − ωR)dk

]
=
g2

2

[∫ kmax

0
ωkδ(ωk − ωR)dk

]
=

g2

2

∫ ωc

0

ωk

vg
δ(ωk − ωR)dωk =

g2ωR

2vg
. (3.15)

El procedimiento que se ha realizado se basa en tomar el sistema lo suficientemente grande,

es decir, hacer tender el número de osciladores a infinito, lo que provoca que los valores de k se

aproximen entre śı, permitiendo que la suma pueda aproximarse por una integral. Para realizar

esta conversión, multiplicamos por la densidad de estados en el espacio rećıproco, que es D
2π ,

obteniendo la transformación
∑

k → D
2π

∫
dk. Además, se ha utilizado de nuevo la separación

entre k positivas y negativas, teniendo la ventaja que la frecuencia de los modos cumple wk =

w−k. Por último, se ha realizado el cambio de variable de k a ω usando ωk = vg|k|.
Para el cálculo de ∆ deberemos utilizar la expresión completa que nos daba (3.10), intro-

duciendo de la misma manera que en (3.9) una diferencia en la parte imaginaria pero esta vez

pasando al continuo.

Γ

2
+ i∆ =

∑
k

|gk|2
[
ĺım
t→∞

∫ t

0
ei(ωR−ωk)τdτ

]
=
∑
k

|gk|2
[
ĺım
t→∞

ĺım
ε→0

∫ t

0
ei(ωR−ωk+iε)τdτ

]

=
∑
k

|gk|2 ĺım
ε→0

ĺım
t→∞

ei(ωR−ωk)te−εt − 1

i(ωR − ωk + iε)
= ĺım

ε→0

∑
k

i|gk|2dk
(ωR − ωk + iε)

=
iD

2π
ĺım
ε→0

[∫
−iε|gk|2dk

(ωR − ωk)2 + ε2
+

∫
(ωR − ωk)|gk|2dk
(ωR − ωk)2 + ε2

]
=
iDg2

4πD

[
−iπ

∫
ωkδ(ωk − ωR)dk + P

∫
ωkdk

ωR − ωk

]
=
ig2

4π

[
−iπ

(∫
k>0

ωkδ(ωk − ωR)dk

)
− iπ

(∫
k<0

ωkδ(ωk − ωR)dk

)
+P

∫
k>0

ωkdk

ωR − ωk
+ P

∫
k<0

ωkdk

ωR − ωk

]
=

ig2

2πvg

[
−iπ

∫
ωδ(ω − ωR)dω + P

∫
ωdω

ωR − ω

]
. (3.16)
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La primera integral que debemos resolver es idéntica a la que ya resolvimos en (3.15), mientras

que para la segunda aplicamos las relaciones de Kramers-Kronig

f(ωR) =
1
iπP

∫ f(ω)dω
ω−ωR

; ℜ[f(ωR)] =
1
πP
∫ ℑ[f(ω)]dω

ω−ωR
; ℑ[f(ωR)] = − 1

πP
∫ ℜ[f(ω)]dω

ω−ωR
. (3.17)

Donde ℜ simboliza la parte real y ℑ la parte imaginaria. Estas relaciones nos permiten

relacionar la parte imaginaria con la parte real de la integral. En nuestro caso la función es

f(ω) = ω, por tanto

P
∫

ωdω

ωR − ω
= P

∫
ℜ[f(ω)]dω
ωR − ω

= −πℑ[f(ωR)] = 0,

de modo que

Γ

2
+ i∆ =

g2ωR

2vg
. (3.18)

3.2. Dos emisores

Extendamos el cálculo de un emisor para varios, esta vez el hamiltoniano adoptará la forma

H =
∑
k

ωkâ
†
kâk +

2∑
n=1

ωRb̂
†
nb̂n +

∑
k

2∑
n=1

gke
ikxn â†k b̂n + g∗ke

−ikxn âk b̂
†
n.

Podremos describir entonces la excitación como

|Ψ⟩ =
∑
k

ckâ
†
k|0⟩+

2∑
n=1

dnb̂
†
n|0⟩.

Siguiendo el mismo procedimiento que hemos seguido en el caso de un emisor, obtenemos

˙̃
d1(t) = −

∑
k

|gk|2
(
πδ(ωk − ωR) + iP

(
1

ωk − ωR

))
d̃1(t)

−
∑
k

|gk|2eik(x1−x2)

(
πδ(ωk − ωR) + iP

(
1

ωk − ωR

))
d̃2(t) (3.19)

˙̃
d2(t) = −

∑
k

|gk|2
(
πδ(ωk − ωR) + iP

(
1

ωk − ωR

))
d̃2(t)

−
∑
k

|gk|2eik(x2−x1)

(
πδ(ωk − ωR) + iP

(
1

ωk − ωR

))
d̃1(t). (3.20)

Podemos representar estas expresiones como un sistema de ecuaciones diferenciales(
˙̃
d1(t)
˙̃
d2(t)

)
=

(
−Γ11

2 − i∆11 −Γ12
2 − i∆12

−Γ21
2 − i∆21 −Γ22

2 − i∆22

)(
d̃1(t)

d̃2(t)

)
, (3.21)

donde Γij = 2
∑

k|gk|2eik(xj−xi)πδ(ωk − ωR) y ∆ij =
∑

k|gk|2eik(xj−xi)P( 1
ωk−ωR

). Los térmi-

nos en la diagonal nos hablan de las interacciones del emisor individualmente, siendo Γii el

decaimiento exponencial (Γ) y ∆ii el desplazamiento de la frecuencia (∆) definidos previamente

14



para un solo emisor. Lo más interesante al añadir un emisor adicional se encuentra en los térmi-

nos no diagonales, que agregan una dependencia de la forma eik(xj−xi). La incorporación de este

término nos permite definir un decaimiento colectivo Γ12, que refleja la influencia mutua en el

desplazamiento exponencial.

Los acoplamientos entre emisores no dependen del signo de x1 − x2, es decir, de la dirección

en la que ocurre la propagación. Esto se debe a que las sumas sobre k incluyen tanto valores

positivos como negativos, lo que cierra un ciclo en el plano complejo. Dado que la suma total no

vaŕıa con el signo de k, la dirección en que se realiza la suma no es importante. Como resultado,

la expresión puede simplificarse para que dependa únicamente de la distancia entre x1 y x2, sin

importar el signo de la diferencia, es decir,
∑

k e
ik(x1−x2) =

∑
k e

−ik(x1−x2) =
∑

k e
ik|x1−x2|.

Se procede entonces al cálculo de los coeficientes de la matriz de (3.21)

Γnm

2
+ i∆nm =

∑
k

|gk|2eik|xn−xm|
(
πδ(ωk − ωR) + iP

(
1

ωk − ωR

))

=
D

2π

[∫
dk|gk|2eik|xn−xm|πδ(ωk − ωR) + iP

∫
|gk|2eik|xn−xm|dk

ωk − ωR

]

=
g2

4π

[
π

∫
k>0

ωke
ik|xn−xm|δ(ωk − ωR)dk + π

∫
k<0

ωke
ik|xn−xm|δ(ωk − ωR)dk

+ iP
∫
k>0

ωke
ik|xn−xm|

ωk − ωR
dk + iP

∫
k<0

ωke
ik|xn−xm|

ωk − ωR
dk
]

=
g2

4π

[
π

∫
k>0

ωk

(
eik|xn−xm| + e−ik|xn−xm|

)
δ(ωk − ωR)dk

+ iP
∫
k>0

ωk

(
eik|xn−xm| + e−ik|xn−xm|) dk

ωk − ωR

]

=
g2

4π

[
π

∫
k>0

ωk2 cos(k|xn − xm|)δ(ωk − ωR)dk + iP
∫
k>0

ωk2 cos(k|xn − xm|)dk
ωk − ωR

]

=
g2

2vgπ

[
π

∫
ω cos(ω/vg|xn − xm|))δ(ω − ωR)dω + iP

∫
ω cos(ω/vg|xn − xm|)dω

ω − ωR

]
.

(3.22)

Se han seguido los mismos pasos utilizados en la resolución de (3.16). Se ha realizado el paso

al continuo utilizando la densidad de estados, dividiendo la integral en términos con k positivos

y negativos y finalmente se ha cambiado la variable de integración de k a ω.

Podemos obtener la forma que tiene la parte real (Γnm
2 ), ya que es el primer término de (3.22)

Γnm

2
=

g2

2vg
ωR cos

(
ωR

vg
|xn − xm|

)
. (3.23)

En la parte imaginaria usamos de nuevo (3.17), la función es f(ω) = ωeiω/vg |xn−xm|, aśı que

∆nm =
g2

2vgπ
P
∫
ω cos(ω/vg|xn − xm|)dω

ω − ωR
=

g2

2vg

1

π
P
∫

ℜ[f(ω)]dω
ω − ωR

=
g2

2vg
ℑ[f(ωR)] =

g2

2vg
ℑ
[
ωRe

iωR/vg |xn−xm|
]
=
g2ωR

2vg
sin (ωR/vg|xn − xm|) . (3.24)

15



La expresión final viene dada por

Γnm

2
+ i∆nm =

Γ

2
[cos (ωR/vg|xn − xm|) + i sin (ωR/vg|xn − xm|)] . (3.25)

3.3. Hamiltoniano efectivo

Para realizar la simulación, la manera en que hemos formulado nuestro hamiltoniano no es

adecuada desde el punto de vista computacional. Sin embargo, como nuestro objetivo es ver la

desexcitación del oscilador LC, en realidad solo trabajamos en el subespacio de una excitación.

En este caso, el estado se describe por un vector |ψ⟩ =
(
X Y

)T
que contiene las amplitudes de

la excitación en los modos de la ĺınea de transmisión (Y = ck) o en los emisores (X = dn).

El hamiltoniano se puede escribir como una matriz de bloques que agrupa las contribuciones

de los diferentes subespacios [3]

H =

(
Hem C

C† Hph

)
, (3.26)

donde Hem es la matriz que describe las enerǵıas de los modos de los emisores, Hph es la

matriz que describe las enerǵıas de los modos de la ĺınea de transmisión y C es la matriz de

acoplamiento entre los emisores y la ĺınea de transmisión teniendo la forma Cnk = gke
ikxn .

Para realizar el análisis de la evolución temporal del estado excitado, retomamos la ecuación

de Schrödinger (3.1), con el estado |ψ⟩ definido y el hamiltoniano (3.26), obteniendo

Ẋ = −iHemX − iC†Y (3.27)

Ẏ = −iHphY − iCX. (3.28)

Lo que nos ha provocado un sistema de ecuaciones diferenciales acopladas. Para resolverlo

utilizamos la transformada de Laplace que convertirá el sistema en uno de ecuaciones algebráicas.

X (s) =

∫ ∞

0
e−stx(t)dt; Y(s) =

∫ ∞

0
e−sty(t)dt. (3.29)

Obteniendo

sX − X (0) = −iHemX − iC†Y; sY − Y(0) = −iCX − iHphY.

Y eso te lleva a aislar Y(s) tomando Y = 0

Y(s) =
−iC

s+ iHph
X (s) (3.30)

usando (3.27) obtenemos la ecuación para la dinámica de los emisores en el espacio de

Laplace,donde podemos identificar unos términos que actúan como hamiltoniano, ya que en el

espacio de Laplace la ecuación de Schrödinger para un estado Ψ(t) es Ψ(s) = (s+iH)−1Ψ(0). Por

lo tanto, el hamiltoniano efectivo (Heff = Hem + C(is−Hph)
−1C†) es aquel hamiltoniano que

actúa como tal pero tiene una dependencia con s. Este hamiltoniano describe cómo los emisores

se comportan cuando están acoplados a la ĺınea de transmisión, el término Hem representa la

enerǵıa de los emisores por śı solos, mientras que el término C(is − Hph)
−1C† representa las

correcciones a la enerǵıa debido a la interacción con la ĺınea de transmisión.
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Para resolver la dinámica tendŕıamos que invertir la transformada de Laplace, para todas

las enerǵıas. Sin embargo, en el contexto la aproximación Markoviana, la cual nos llevaba a una

emisión espontánea en la frecuencia ωR (3.18) implica asumir que la frecuencia más relevante de

la dinámica es ωR y que el término C†C
is−Hph

del Hamiltoniano se puede aproximar por C†C
ωR−Hph

.

De esta manera la transformada inversa de Laplace resulta en un decaimiento exponencial

X(t) =

∫ ∞

0

est

s+ iHMark
eff

X (0)ds = X(0)e−iHMark
eff t. (3.31)

Para construir la matriz del hamiltoniano efectivo calculamos C(iωR−iHph)
−1C†, obteniendo

[C(iωR − iHph)
−1C†]n,m =

∑
k

|gk|2/(ωR − ωk)e
ik(xn−xm). (3.32)

Para el caso de dos emisores nos queda

HMark
eff =

(
ωR 0

0 ωR

)
+

( ∑
k

|gk|2
ωR−ωk

∑
k

|gk|2eik|x2−x1|

iωR−iωk∑
k

|gk|2e−ik|x1−x2|

iωR−iωk

∑
k

|gk|2
iωR−iωk

)
. (3.33)

La forma de la segunda matriz no nos permite operar con ella, por lo que calculamos

∑
k

i|gk|2

ωR − ωk
= ĺım

ε→0

∑
k

i|gk|2

ωR − ωk + iϵ
= ĺım

ε→0

∑
k

i|gk|2 (ωR − ωk − iϵ)

(ωR − ωk)
2 + ϵ2

= i ĺım
ε→0

∑
k

|gk|2 (ωR − ωk)

(ωR − ωk)
2 + ϵ2

+ ĺım
ε→0

∑
k

|gk|2ϵ
(ωR − ωk)

2 + ϵ2

= i
∑
k

|gk|2 ĺım
ε→0

(ωk − ωR)

(ωR − ωk)
2 + ϵ2︸ ︷︷ ︸

P
(

1
ωR−ωk

)
∑
k

|gk|2 ĺım
ε→0

ϵ

(ωR − ωk)
2 + ϵ2︸ ︷︷ ︸

πδ(ωR−ωk)

. (3.34)

Este cálculo ya lo hemos realizado antes, ya que se corresponde con (3.22), por lo que el

hamiltoniano efectivo lo podemos expresar como

HMark
eff =

(
ωR 0

0 ωR

)
− i

(
Γ11
2 + i∆11

Γ12
2 + i∆12

Γ21
2 + i∆21

Γ22
2 + i∆22

)
. (3.35)

Haber definido de esta manera el hamiltoniano efectivo bajo la aproximación Markoviana nos

permite describir de manera muy sencilla la evolución de nuestro estado excitado, ya que solo

será necesario hacer la diagonalización de (3.35), es decir, nos hemos evitado hacer la resolución

de las ecuaciones diferenciales acopladas. Además, la parte real de estos autovalores son los

decaimientos colectivos de la aproximación Markoviana, la dinámica nos vendrá dada por

dλ±(t) = d(0)e−iλ±t. (3.36)

Donde λ± = ωR + Γ
2 [cos (ωR/vg|xn − xm|)± i sin (ωR/vg|xn − xm|)].
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Caṕıtulo 4

Resultados

En este caṕıtulo vamos a presentar los resultados simulando el sistema que hemos presentado

en las secciones anteriores.

4.1. Solo un emisor

Partiendo de la expresión obtenida para la evolución del sistema en el ĺımite markoviano

(3.12), se quiere conocer en qué condiciones este ĺımite es aplicable. Por lo tanto, analizaremos el

sistema utilizando tanto esta expresión como simulaciones numéricas. Para obtener la dinámica

del sistema hemos diagonalizado numéricamente el hamiltoniano (3.26). El estado inicial que

consideraremos en este análisis es aquel en el que el oscilador LC se encuentra en su estado

excitado (dn=1), mientras que la ĺınea de transmisión permanece en su estado fundamental

(ck = 0).

Lo primero que queremos analizar es cómo afecta el parámetro g, que representa el acopla-

miento entre el oscilador LC y la ĺınea de transmisión, a la evolución del circuito LC. En la

figura (4.2) se representa el decaimiento del estado excitado del circuito LC acoplado a la gúıa.

La evolución del estado usando el hamiltoniano (|ψ(t)|2) se muestra con ĺıneas sólidas, mientras

que la evolución bajo el ĺımite markoviano (|d(t)|2) se representa con ĺıneas discontinuas.
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Figura 4.1: Emisión espontánea de un fotón debido al oscilador LC para diferentes acoplos (g).
Se han utilizado N = 1000 osciladores LC distribuidos a lo largo de una ĺınea de transmisión con
una longitud total de D = 300, lo que resulta en una distancia entre nodos (∆x) de ∆x = 0,3.
La velocidad de grupo esta fijada en vg = c = 1 debido a que usamos unidades naturales. La
frecuencia del modo del emisor (ωR) se fija, obteniendo aśı una frecuencia de ωc = 3,333ωR para
los modos de la ĺınea de transmisión.

En la figura (4.1) como era esperable por la dependencia de Γ con el acoplo (3.18), a mayor

acoplo decae más rápido el estado excitado. Sin embargo, lo interesante es que al aumentar el

acoplo la aproximación Markoviana empieza a diferir de la simulación numérica aunque aún

captura el comportamiento cualitativamente.

Dado que el decaimiento Γ en el ĺımite markoviano depende de la frecuencia de los modos del

circuito LC, es interesante analizar cómo esta frecuencia influye en la validez de dicho ĺımite. Con

la información obtenida de la gráfica anterior, vamos a realizar la simulación con un acoplamiento

de g = 0,1, ya que es lo suficientemente grande como para ver la influencia entre la ĺınea de

transmisión y el circuito LC, pero sin dejar de cumplir con el ĺımite markoviano.
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Figura 4.2: Emisión espontánea de un fotón debido al circuito LC para diferentes frecuencias de
los modos del circuito LC (wR). El acoplo utilizado ha sido de g=0.1 y el resto de los parámetros
son los mismos que en la figura (4.1).

Se aprecia un mayor decaimiento al incrementar ωR, lo cual es coherente con la dependencia

de Γ (3.18). Sin embargo, a medida que ωR aumenta, se muestra una diferencia entre la apro-

ximación Markoviana y la simulación numérica, aunque ambas mantienen una similitud en su

forma general. Esto se debe a la aproximación a ĺınea de transmisión óhmica que se ha hecho al

realizar los cálculos de la resolución (3.15), en la figura (2.3) podemos observar que a frecuencias

bajas y sin superar nuestro valor ωc la aproximación lineal y la relación de dispersión de nuestro

sistema son iguales, sin embargo al aproximar al valor ωc, la aproximación deja de ser buena.

4.2. Dos emisores

En cuanto a los resultados obtenidos para el acoplo de dos emisores se deben determinar los

autovalores del hamiltoniano efectivo para analizar su evolución. En el caso de nuestro hamilto-

niano completo, nos enfocamos en el autoestado |+⟩ = 1√
2
(|1⟩+ |0⟩).

Tener dos emisores nos permite analizar cómo se influyen mutuamente, especialmente en

función de la distancia entre ellos. Por ello, simularemos el sistema para diferentes posiciones

relativas de los emisores,en concreto, para distancias relativas de 0 y 60∆x. Se representa por

tanto el decaimiento del estado |+⟩ para diferentes acoplos.
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Figura 4.3: Emisión espontánea de fotones debido a los osciladores LC cuando se encuentran
en la misma posición para diferentes acoplos (g) y en el estado |+⟩. Se han utilizado N = 2000
modos el resto de los parámetros son los mismos que en la figura (4.1)

Figura 4.4: Emisión espontánea de fotones debido a los osciladores LC cuando se encuentran
cuando se encuentran el primero en x=0 y el segundo en x=60 ∆x para diferentes acoplos (g) y
en el estado |+⟩. Los parámetros para la simulación son los mismos que los utiliados en (4.3).
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Con estas dos figuras observamos la influencia que tienen los emisores uno sobre el otro. En

la figura (4.3) los decaimientos colectivos son el doble de rápidos que los de un solo emisor, a

este fenómeno se le conoce como superradiancia de Dicke [2]. Además, como se han escogido

acoplos pequeños donde la aproximación Markoviana es válida, la simulación numérica coincide

con la dinámica que da el hamiltoniano efectivo bajo la aproximación Markoviana.

Sin embargo, al separar los dos emisores (4.4), comenzamos a observar cómo interactúan

entre śı, pudiendo identificar claramente el punto en el que ambos emisores empiezan a influirse

mutuamente. En este caso, el decaimiento colectivo esta vez es más lento que el de un emisor

independiente, teniendo esta vez el fenómeno de subradiancia.

Al igual que hicimos para un solo emisor acoplado y debido a la dependencia que vuelve

a aparecer en el hamiltoniano efectivo con la frecuencia del emisor (3.35), representamos el

decaimiento para el estado |+⟩ para distintas frecuencias del emisor ωR con las mismas distancias

relativas que se han utilizado para el análisis con los diferentes acoplos.

Figura 4.5: Emisión espontánea de fotones debido a los osciladores LC cuando se encuentran
en la misma posición para diferentes acoplos (g) y en el estado |+⟩. Se han utilizado N = 2000
nodos y un acoplo de g = 0,1 el resto de los parámetros son los mismos que en la figura (4.3).
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Figura 4.6: Emisión espontánea de fotones debido a los osciladores LC cuando se encuentran
cuando se encuentran el primero en x=0 y el segundo en x=60 ∆x para diferentes frecuencias
de los emisores (ωR) y en el estado |+⟩. Los parámetros para la simulación son los mismos que
los utiliados en (4.6).

La información que nos dan las gráficas (4.5) y (4.6) es una recopilación de los conceptos que

ya hemos ido comentando a lo largo del trabajo. En el caso de la figura (4.5) tenemos de nuevo

un decaimiento colectivo que es doble que el de un emisor. Además, como estamos alejados del

valor que toma ωc, no observamos una mala coincidencia con la aproximación Markoviana. Por

último, en la figura (4.6) volvemos a ver un decaimiento más lento que para un emisor y la

separación que véıamos en (4.4) cuando los emisores empiezan a interactuar.
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Caṕıtulo 5

Conclusiones

El objetivo de este trabajo ha sido el estudio de la emisión espontánea del primer estado

excitado de osciladores acoplados a una gúıa de ondas. En primer lugar, logramos realizar la

cuantización canónica del hamiltoniano de una ĺınea de transmisión acoplada a un oscilador

LC, imponiendo las relaciones de conmutación bosónicas y utilizando la aproximación de onda

rotante. Dentro de dicha aproximación restringimos la dinámica al subespacio de una excitación.

Con el hamiltoniano obtenido, pudimos comenzar el estudio de la evolución del estado excitado,

resolviendo numéricamente la ecuación de Schrödinger y utilizando la aproximación Markoviana

para obtener una solución anaĺıtica a las ecuaciones diferenciales resultantes.

Asimismo, definimos el concepto de hamiltoniano efectivo y comprobamos que, a pesar de

utilizar formalismos distintos, se llegaba a la misma f́ısica que tiene nuestro modelo dentro de

la aproximación Markoviana.

En el caso de un oscilador LC acoplado a una ĺınea de transmisión, evaluamos cómo vaŕıa la

emisión espontánea con el acoplamiento y determinamos los ĺımites en los que la aproximación

Markoviana sigue siendo válida. Observamos que, a medida que el acoplamiento aumenta, los

efectos de la memoria del emisor respecto a la ĺınea de transmisión se hacen más evidentes, lo

que conduce a una disminución en la validez de la aproximación Markoviana, ya que, esta los

desprecia.

También analizamos el comportamiento al variar la frecuencia del oscilador LC, comproban-

do no solo los ĺımites de la aproximación Markoviana, sino también si es apropiado modelar

la ĺınea de transmisión como óhmica en este contexto. El modelo se comporta como si la rela-

ción de dispersión fuese lineal hasta el valor de ωc cerca del cual deja de ser aśı. Justamente

esta aproximación es la que hemos utilizado para los cálculos anaĺıticos en la aproximación

Markoviana.

Finalmente, hemos simulado nuestro modelo con el acoplamiento de dos osciladores LC a la

ĺınea de transmisión. La adición de un segundo emisor introduce una nueva dinámica, ya que

su interacción depende de la distancia entre ellos. Observamos que la evolución de los estados

se divide en dos fases: en la primera, los emisores no interactúan entre śı y su comportamien-

to sigue la dinámica de un solo emisor acoplado a la gúıa; en la segunda, cuando comienzan

a interaccionar, la dinámica cambia, ajustándose a los autovalores del hamiltoniano efectivo.

Hemos comprobado que estos comportamientos son predecibles dentro del régimen en el que la

aproximación Markoviana es válida, hasta que, por las mismas razones que para el caso de un

solo emisor, esta aproximación deja de ser adecuada.
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