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Abstract

La implementacién de una entropia que sea consistente con la dindmica de Ehrenfest de los
sistemas hibridos ha sido un gran problema al adoptar un acercamiento estadistico de los
mismos. En este trabajo de fin de grado se propone un alternativa a lo visto hasta ahora que
parece solucionar estos obstaculos, y se elaboran simulaciones computacionales para defender
dicha hipétesis en un ejemplo particular.
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Capitulo 1

Introduccion

Cuando se plantea el estudio de sistemas compuestos por elementos microscépicos, la
mecéanica cuantica ha proporcionado la solucién a multiples cuestiones fruto del comportamiento
de las particulas a estas escalas. La cuestién reside en que considerar un modelo puramente
cuantico aumenta la complejidad del problema hasta limites inabarcables, y es esta la motivacién
de encontrar modelos que sean mas eficientes. Cuando se imponen ciertas condiciones sobre el
sistema tales como grandes diferencias de masas, velocidades o escalas de tiempo, se abre la

puerta a un nuevo paradigma mas manejable.

De todas formas, la evolucién de estos sistemas se ve reflejada tanto en el ambito ma-
croscopico como en el microscopico, por lo que la importancia de encontrar un formalismo que
permita combinar ambos planos del sistema resulta crucial. Asi se introduce el concepto de los
sistemas hibridos cldsico-cuanticos (Sistemas Hibridos, SH ), los cuales contemplan un espacio de
fases hibrido donde los grados de libertad cldsicos y cuanticos evolucionan de manera acoplada.

Al encarar problemas practicos que requieren la utilizacion de dichos SH, como en el campo
de la simulacion de sistemas moleculares, resulta clave el enfoque estadistico y su implementacion
en los SH [1] [2]. Se contempla una densidad de probabilidad hibrida que definira la dindmica de
los SH, la cual funciona perfectamente con la dindmica de Ehrenfest pero es incompatible con
la formulacién de una entropia termodindmica [3]. La solucién propuesta en [1] para lidiar con
este gran inconveniente seria la de extraer los momentos estadisticos cuanticos de la distribucién

hibrida, los cuales vienen descritos por operadores del tipo matrices densidad [1] [5].

F <+~ {pA(b /317 ;52: }

De esta forma, se mantiene la idea de dominar la mecédnica con una ecuacién maestra,
salvo que en este caso se traduce en una familia de ecuaciones, una para cada momento. El
problema a superar es que dichos momentos dependen de los momentos de érdenes superiores,
asi que se presenta el dilema sobre como afrontar esta familia de infinitos elementos. La solucién
elegida consistira en truncar la familia de momentos y aplicar el formalismo de maxima entropia
para hallar aquellos estados que maximicen la desinformacién del sistema. Es importante no
confundir esta entropia con la mencionada en el parrafo anterior, ya que en este caso se hace
alusion a este término como una medida de la desinformacion que presenta un estado cuantico

con miultiples grados de libertad, no a la entropia termodinamica del sistema.

En [1] se propone este formalismo empleando, por sencillez, la entropia de Von Neumann
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linealizada. Lo que propone este trabajo es hacer uso de la entropia de Rényi como modelo de la
desinformacion de la parte cuantica del sistema en lugar de la aproximacién lineal de la entropia
de Von Neumann y comprobar si estas dos opciones difieren o no entre si. En el caso en el que la
dindmica evolucionase de forma similar considerando ambas entropias significaria que cualquier
desinformacién bien definida podria tomarse como véalida para el estudio de los sistemas hibridos,
lo que facilitaria en gran medida esta tarea al permitir escoger la mas conveniente. En el caso
contrario, si la dindmica difiere notablemente, daria pie a nuevas vias de estudio sobre la razén
subyacente en esta diferencia, y lo que implica, a nivel fisico, la eleccién de los diferentes modelos

de desinformacion.

En el capitulo 2 de este trabajo, se abordaré la teoria subyacente de los sistemas hibridos y
las sutilezas del método propuesto. Se hard hincapié en las bases de la dindamica de Ehrenfest y su
implementacién en la formulacion geométrica. Ademds se introducird el formalismo estadistico
y su principal notacion.

Ya en el capitulo 3 se entra de lleno en la formulacién estadistica del problema y en la
necesidad de trabajar con los momentos para poder combinar las nociones de una entropia
consistente con la dindmica de Ehrenfest. Esto conlleva una explicacién de la dindmica de los
mencionados momentos y se sienta ya por completo el marco tedrico del ejemplo a tratar.

Por dltimo, el capitulo 4 trata enteramente el ejemplo particular introducido en [1], en el
cual se desarrollan las ecuaciones extraidas en el capitulo anterior y se expanden al plantear la
entropia de Rényi como desinformacién del sistema. Se llegan a estudiar diversos modelos de
Rényi y estos se comparan con la aproximacién lineal de la entropia de Von Neumann que se
habia propuesto inicialmente.

Como conclusiones, en el capitulo 5 se trata en resumen lo que ha sido este proyecto
y se exponen las consecuencias de los resultados obtenidos. En adicién, se han dejado varios
apéndices al final del documento donde se desarrolla mas en profundidad el marco tedrico, se
recogen todas las imagenes de los resultados que no han podido exponerse y el cédigo de las

simulaciones realizadas para su obtencién.



Capitulo 2

Dinamica de Ehrenfest

Cuando tratamos de describir la evolucion en el tiempo de un sistema cudntico, la ecuacién
de Schrodinger nos da la informacién necesaria sobre como cambia un estado concreto W cuando

el sistema viene descrito por un hamiltoniano, H.

. d .
ih— |¥) = H|¥) (2.0.1)

Al lidiar con sistemas compuestos por multiples particulas, la complejidad del problema
aumenta notablemente, por lo que es necesario tomar ciertas aproximaciones que nos permitan
la resolucién del mismo. A grandes rasgos, el modelo de Ehrenfest se basa en la distincion del
sistema en dos conjuntos, el nuclear, conformado por nucleones y electrones muy ligados de capas
internas, y electrénico, constituido por unos pocos electrones externos. De este modo separaremos
tanto el estado general como el hamiltoniano de la forma que se expresa a continuacion:

0) = |Wn) @ [We); H=Hy+ H, (2.0.2)

La primera aproximacién que se impondra serd en relacion a la separabilidad de la funcién
de onda hibrida, tal y como se expresa en al ecuacion 2.0.2. Esta aproximacién se hace bajo la
asuncién de que la dispersién del paquete de onda asociado al niicleo es muy pequena [0].

Siendo €(t) la dispersién en el tiempo, esta tendrd una cota superior y serd de un valor
despreciable, €(t) < e < 1, lo que asegura que la funcién de onda nuclear se asemeja a una 9§
centrada en la posicion del nicleo. De manera més especifica, esta separacién de la funcién de
onda lleva a una perturbacion del orden O (%), donde L corresponde a la longitud caracteristica
del sistema molecular.

La separabilidad alcanzada tras imponer la primera aproximacién transforma la ecuacién
de Schrodinger para la funcién hibrida como un sistema de dos ecuaciones, una para el sistema
electrénico, y otra para el nuclear.

U, (z,t) = He(x,q)We(z,t) (2.0.3)

\i’N(Qa t) = Hn(z,q)¥n(g,1) (2.0.4)
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Se puede demostrar de forma sencilla la ortonormalidad de W, y(z,t) con respecto de

U, n(x,t), esta se deja en la seccién del apéndice B.1.

Ha de tenerse en cuenta que este razonamiento es posible tinicamente asumiendo separa-
bilidad de la funcién molecular en dos funciones de onda normalizadas, lo cual es factible como
condicién inicial, (V.|¥.) (t =0) = (¥n|¥n) (t =0) = 1.

El problema es que la separabilidad no se mantiene en el tiempo de forma general para
cualquier paquete de ondas, de forma que se tiende a aproximar la funcién de onda nuclear a
una gaussiana por comodidad, aunque esta se vaya deformando a medida que pasa el tiempo.
De esta forma si que se puede considerar que se cumplen las ecuaciones 2.0.3 y 2.0.4 para todo

instante.

Un(g,t) = (q_<q>)2> cxp <¢< P >q> (2.0.5)

1
ctvan: P ( Ae(t)? h

La segunda aproximacién corresponde a la bisqueda del limite clasico en el subsistema
nuclear. Se supondra, con bastante acierto, que la masa del conjunto nuclear serd mucho mayor
que la del conjunto electrénico, M > m. Esto permitird someter al nicleo a un tratamiento

cldsico mientras se mantiene el formalismo cudntico para los electrones. [(]

El tratamiento que recibe la funcién de onda nuclear sera la de expresarla en una expansion
de WKB [(]. Este consiste en desarrollar la acciéon como una serie de potencias de la constante
de Planck y truncar en un término de interés para lo que se trata de hallar. El procedimiento
mas detallado puede hallarse en el apéndice B.2.

De esta forma, se cuenta con al ecuacién de Schrodinger para la funciéon de onda de los

electrones externos:

d h2
ih—We(w,t) = He(w,q)We(w,t) = | =5 =V + V(2,q) | Ve(a,t) (2.0.6)

Mientras que para el ntcleo se contemplan las conocidas soluciones clasicas de las ecua-
ciones de Hamilton-Jacobi:

dr = pM’“ (2.0.7)
pr=—(Ve| Vg, V(z,q) [Ve) (2.0.8)

La expresién de la ecuacién 2.0.8 corresponde al gradiente de un potencial producto de
haber realizado el valor promedio del potencial electrénico, V(x,q) , con respecto al estado de
los electrones, U(x,q,t) = (V.| V(x,q)|Ve). Cabe destacar que el error asumido bajo las dos
aproximaciones previamente mencionadas serd del orden O [(%)2 + \/%} , por lo que la efectivi-

dad de las aproximaciones aumentard al considerar sistemas moleculares de mayores dimensiones.

2.1. Sistemas Hibridos

Una vez se conocen los sistemas clasicos y cudnticos asi como las caracteristicas de la
dindmica hamiltoniana en los mismos (expuestas en el anexo A) , no queda més que combinar

estos modelos para construir un sistema hibrido bien definido[7].
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Para empezar, es necesario construir el espacio de fases hibrido, lo cual seguird un ra-
zonamiento intuitivo en perspectiva con los apartados anteriores. Dada la separabilidad de los
estados nucleares y electrénicos que se ha asumido, se considerard una variedad diferenciable
hibrida, Mg, la cual se definira como el producto cartesiano entre una variedad clasica M¢ y
una variedad cudntica, M.

MH = MC X MQ. (2.1.1)

Ambas variedades clédsica y cuantica siendo variedades simplécticas tal y como se ha de-
sarrollado en A.2. De esta forma, es posible recuperar los espacios de fases separados mediante
las aplicaciones de proyeccion.

o My = Mg x Mg — Mg (2.1.2)

TQ :MH:MC XMQ —>MQ (2.1.3)

Debida a esta propiedad de la variedad hibrida tal y como ha sido definida, es posible

construir una forma simpléctica hibrida como combinacién lineal de las formas simplécticas de
las variedades cldsica y cuantica separadas tras aplicarles los respectivos pullbacks.

WH = Towe + THWQ (2.1.4)

Por 1ltimo, destacar un cambio de notacion para evitar confusiones mas adelante. Visto ya
el tratamiento formal andlogo que tienen las coordenadas de Mg y las canénicas y sus momentos

de Mg, se empleard la siguiente notacién:

» Grados de libertad clésicos en Mo = £ = (Qk, Px) € M¢

» Grados de libertad cudnticos en Mg = (¢, pi) € Mg

2.2. Observables hibridos

Ya en las ecuaciones de Ehrenfest se aprecia el acoplamiento entre los grados de libertad
cldsicos y cudnticos, por consiguiente, carece de sentido definir un tnico observable sobre un
sistema hibrido. En este caso se construye una familia de dichos observadores, indexada por el
punto en el espacio de fases cldsico pero que actia sobre los estados cuanticos.

O ={0(¢) € Lin(H) V¢ € M¢} (2.2.1)

Dando asi lugar a una familia de funciones observables en la cual cada elemento queda
asociado a su respectivo observable en F.

F = {fo = (B0 [¥) € C*(Mu)| O(€) € Lin(H) ¥ € Mc}) (222)

Mas adelante se abordaré la forma de determinar eficientemente este espacio de Hilbert H.
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2.3. Corchete de Poisson Hibrido

La herramienta que se empleard para codificar la dindmica en apartados siguientes sera
el corchete de Poisson definido sobre Mp. Tal y como se muestra en los apartados del apéndice
A.2 y A.3 respectivamente, ambas variedades M¢c y Mg estan dotadas de su propio corchete de
Poisson, por lo que resulta logico pensar que la construccién del caso hibrido serd la suma de

los anteriores.

(dr={ Yo+ { Yo (2.3.1)

Al actuar sobre dos funciones observables hibridas cualesquiera, f A Y fé(g), cada cor-
chete que conforma el hibrido actuard consecuentemente sobre los grados de libertad clasicos y

cuénticos.
{fA(g)v fB(g)}H = {fA(g)v fB(g)}C + hil{f,@(ﬁ)v fg(g)}Q (2.3.2)
Donde,
{Faey faele =2 (fanA(Qk,Pk)fapkB(Qk»pk) - fanB(Qk,pk)faPkA(Qk,Pk)) (2.3.3)
k
{Faey Taete = Tipe.Aw) (2.3.4)

Es importante notar que {-,-}¢ resulta en una dependencia cudrtica con los grados de
libertad cudnticos, mientras que {-,-}¢ la mantiene cuadratica. Es por esto que es necesario
extender el dlgebra para que esta sea cerrada al aplicar repetidamente {-,-} . A esta extension
la denotaremos como O’.

Por 1ltimo, de la misma forma que se contemplaba un campo vectorial hamiltoniano que
dicta la evolucién temporal de los observables en los marcos clasico y cudntico, este también

aparece en el formalismo hibrido.

Xy = {'7fg(5)} = f =Xpuf= {f7 f[-”](g)} (2-3'5)

Por la linealidad de la construccién, es sencillo ver que, en efecto, la forma simpléctica
hibrida define la ecuacién de la dindmica de Hamilton en la variedad hibrida.

inHwH = de (2.3.6)

Como ya se ha mencionado, las bases de esta seccién se recogen en las secciones del apéndi-
ce A2y A3.

2.4. Acercamiento estadistico a un sistema de Ehrenfest

De la misma forma que en la que se estudia en el apartado A.4 del apéndice, a continuacién
se explorard la forma en la que puede emplearse un tratamiento estadistico para abordar un

6
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sistema caracterizado por una dindmica de Ehrenfest en vez de puramente clasica o cudntica.

En primer lugar, considerando el espacio de fases hibrido, My = M¢ x Mg, serd necesario
definir una medida hibrida. Para ello, y gracias a la estructura con la que My ha sido definido,
se tendra que la medida hibrida sera de la siguiente forma:

duy = ducdpug = dQdPdqdp (2.4.1)

En consecuencia, una vez especificada la medida del espacio hibrido, el sistema estadistico
requiere de una funcién de distribucién hibrida para que este quede bien definido.

—

FoceO |/M durFoc(Q,P,¢,p) =1 y Foc(Q,P,q,p) >0 Y (G, P) € Mg ; (§,7) € Mg
H
(2.4.2)

Siguiendo un procedimiento similar al caso hamiltoniano, se contemplan ahora los obser-
vables hibridos. Dada la naturaleza de dichos observables, siendo estos familias de observables
cuanticos indexados por los puntos en el espacio de fases cldsico, es posible definir un operador
densidad de probabilidad sobre el espacio cudntico. Este operador también corresponderia al
primer momento cuantico de una distribucion condicionada, pero eso se abordara en mas detalle

en capitulos posteriores.

Q

Notar que la forma de construir un valor esperado cuantico de la familia de observables
serd como la traza del producto entre el operador densidad y el propio observable.

Q
Dejando asi la expresién para el valor esperado hibrido como:

(0)= | auc(0@.P), = [ anem (3G P1OG.P)) (2.4.5)

De nuevo, la derivada temporal de la funcién de distribucién hibrida serd de la forma:

Foc = {fg: Foctn (2.4.6)

Como anotacién final de este capitulo, es posible realizar todo el desarrollo de la dindamica
hibrida en formulacién de mecanica geométrica utilizando proyectores en vez de estados en
cuanto a los grados de libertad cuanticos se refiere. La demostracién es una ardua tarea y de
una fineza matematica que se escapa de los objetivos de este trabajo, y es por dicho motivo que
se deja como parte de la bibliografia [7].

Lo que si es posible considerar es la formulacién analoga del modelo de Ehrenfest en
términos de proyectores. La cuestion es definir una aplicacién entre el espacio de estados cuantico,
Mg, vy el espacio de proyectores de rango uno, DY (H), p: Mg — D*(H).
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La finalidad de esta aplicacién es la de pasar de considerar un rayo de infinitos estados a

un solo elemento del espacio proyectivo. Este punto queda definido como:

W) (9]
(W|w)

W) € Mg — p(¥) = py = (2.4.7)

El cambio formal que se presenta en las ecuaciones de Ehrenfest, ya definidas con ante-
rioridad (ecuaciones 2.0.6, 2.0.7 y 2.0.8), se vera reflejado en el cdlculo del valor esperado del
hamiltoniano electrénico y en que el estado del electrén pasa de estar descrito por la ecuacion
de Schrédinger a la de von Neumann. Por consiguiente, las ecuaciones de Ehrenfest expresadas
en términos de proyectores quedan de la siguiente forma:

ihpy = [He(, q), pu] (2.4.8)
dx = % (2.4.9)
Pk = Vg, Tr (He(x, q)pw) (2.4.10)

Resulta de vital importancia remarcar cémo la evolucién de tanto la parte cuantica como
de la clasica dependen de los grados cuanticos y clésicos, es decir, ambos subsistemas evolucio-
nan de forma acoplada.

Expresada en términos de los proyectores, py, la formulacién de la mecénica de Ehrenfest es-
tadistica es completamente andloga, aunque los grados de libertad cuanticos se parametrizan
con los proyectores. Asi, la densidad de probabilidad hibrida serd una funcién de la forma

FQC(@ P, pw).



Capitulo 3

Liouville y la dinamica estadistica

El objetivo de este capitulo es profundizar en el tratamiento estadistico aplicado a un
sistema hibrido y estudiar como se traducen las ecuaciones de la dindmica de Ehrenfest cuando
esta se extrapola a la funcién de distribucién. Ademaés sera relevante mas adelante considerar la
desinformacién inherente del sistema estadistico hibrido para aplicar el formalismo de méxima

entropia.

Otro punto a considerar es el hecho que, de ahora en adelante, resultard més conveniente
el uso de la formulacién de proyectores para lidiar con el consecuente subsistema cudntico. De
esta forma, un punto en la variedad hibrida vendrd dado por dos coordenadas, (&, py) € My, el
punto en el espacio de fases clasico, £ € M¢, y el estado cudntico, py € Mg.

Como preludio, y a riesgo de resultar repetitivo, es importante insistir en la nociéon de
observable hibrido y en su funcién asociada. Como se ha mencionado anteriormente, para las
funciones de observables se escoge el valor esperado sobre el estado cuantico evaluado para cual-
quier punto clasico. Con la notacion establecida en el parrafo anterior, se tendra un observable

O(ﬁ ) € O con su funcién asociada fé(g) € F descrita por la siguiente ecuacién.

foe (he) = Tr (p0(&)) (3.0.1)

A continuacién, si se requiere calcular el valor esperado de dicha magnitud, se cuenta con
la medida de la variedad hibrida duy = dpge = dugdpc y la funcién de distribucion Foo (€, pw)
[1]. En consecuencia, el valor estimado de O(€) se representa como:

<O(£)> = /McxMQ dpqeFao(&, pu) foe (3.0.2)

A raiz de esta definicion, tiene cabida la introduccién del primer momento cuéntico de la
distribucién hibrida como familia de operadores que caracteriza por completo el valor esperado
de los operadores. Este primer momento viene dado por:

(&) :/M duqFoc(§, pw)pw (3.0.3)
Q

A partir de esta definicién es sencillo ver que no es necesario considerar érdenes superiores
en lo relativo a los momentos cuanticos cuando se trata de calcular el valor esperado de un
observable de la forma 3.0.1 [41]. Sustituyendo 3.0.1 en la ecuacién 3.0.2:
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(0©) = [ auc [ dugFacte.pn)e (w0(©) = [ dc T ( / duQFQc@,p@mO(s))
(3.0.4)

Implementando la definicién de 3.0.3 se obtiene la expresién del valor esperado del obser-

vable en términos del primer momento cuantico.

(0() = | dpe (4©009) (3.0.5)

Separandose del desarrollo del capitulo anterior, es posible considerar la distribucién hibri-
da, bajo un prisma puramente matemético, como una distribucion bivariada. Esta nueva formu-

lacién da lugar a dos nuevos conceptos:

= Distribucién marginal de probabilidad

= Distribucién condicionada de probabilidad

Durante este trabajo se tomara como marginal una distribucién clasica y como condi-
cionada una distribucién cuantica pues es el caso mas natural fisicamente dados los tiempos
naturales de unos grados de libertad y otros (mucho més rapidos en el caso cudntico que en el
cldsico), pero cabe remarcar que matematicamente la eleccién inversa es también posible. Se de-
fine la distribuciéon marginal clasica al integrar la distribuciéon conjunta hibrida sobre el espacio

cuantico.

Fe(§) :/M duqFoc(§, pw) (3.0.6)
Q

Dado que las coordenadas en el espacio proyectivo, py, corresponden a estados cuénticos,
no es dificil probar que la traza del primer momento cudntico corresponde a la distribucién

marginal cléasica.

TT(ﬁ(S))Z/M dMQFQC(&,Oq/)Tf(pw)Z/M dugFoc (€, pw) = p%°(€) = Fe(€)  (3.0.7)
Q M Q

Para la distribucién condicionada cuédntica, dado un punto fijo del espacio de fases clasico,
se tendra una distribucién condicionada cudntica Fg(pw|€). Por definicién de la distribucion
bivariada, ha de cumplirse el siguiente resultado.

Foc(&, pw) = Fe(§)Fo(pwl) (3.0.8)

Al plantear la condicién de normalizacién, serd posible realizar una separacién en la funcién
de distribucién hibrida siguiendo 3.0.8. Se introduce la traza de la variable cuantica, T (py),
por conveniencia para el desarrollo.

[ ducro© [ duoFolple) = [ duckol©) [ duoFalpule)Trip) =1 (309)
Me Mo Mo ——

M,
Q 1
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Extrayendo la traza a toda la integral sobre el espacio de estados cuantico:

Mc

dpc'Tr <FC(5) /M dMQFQ(P\ﬂE)P\I/) =1 (3.0.10)
Q

El teorema de Gleason [8] afirma que existe un operador densidad, p¢, capaz de deter-
minar el valor esperado de cualquier observable del sistema cuantico, por lo que en este marco
serd conveniente trabajar con dicho operador densidad ya que representa un estado puramente
cudntico. A partir de la ecuacién 3.0.10 se puede definir este operador densidad como:

/35=/ duFo(pwlé)pw, (3.0.11)
Mq

Pudiéndose interpretar p¢ como el primer momento cuantico de la distribucién condicio-
nada.

Por consiguiente, el primer momento cudntico p(£), que no era un estado como tal ya
que no quedaba normalizado, queda definido mediante el producto de la distribucién marginal
clasica y un operador densidad cuédntico bien definido.

p(&) = Fo(&)pe (3.0.12)

Desde los primeros estudios sobre sistemas hibridos, el mecanismo més utilizado para
referirse a un estado hibrido ha sido el primer momento cudntico de la distribucién hibrida, p(&),
ya que recoge la informacién necesaria sobre un estado cudntico y su peso global dictaminado
por la funcién de distribucién hibrida. Ademads, se ha comprobado que es el Gnico momento
necesario para calcular el valor esperado de un observable hibrido. Adn asi, surge un problema
cuando se trata de describir la dindmica del sistema a partir de p(&), y esto se debe a que este

deja de ser suficiente para representar la evolucién temporal, como veremos a continuacion.

Notar que, debido a la naturaleza de la construccién de la distribucién condicionada, el
requerimiento de momentos de mayor orden puede trasladarse de la distribucién total Fgc a la
condicionada Fg(pwlf).

Rk Rk
pER(E) = pbf (3.0.13)
Noétese que esto supone que, de forma efectiva, se estd considerando una matriz densidad

k
—
generalizada sobre el espacio de Hilbert H® - - - ® H.

3.1. La necesidad de momentos de mayor orden

Ya se ha hecho mencién del papel del corchete de Poisson hibrido en la evolucién de las
funciones observables (Ec. 2.3.5), pero existen ciertas sutilezas en la formulacién de la dindmica
de los observables cuando se desarrolla en el marco de los proyectores. Si se considera una funcién
observable dependiente del tiempo f (&, pw;t) = f(&(t), pw(t)), es evidente que esta presenta una
dependencia lineal con los grados de libertad cuanticos (Ec. 3.0.1). Por consiguiente, al evaluar en

11
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el corchete hibrido se tendré la consiguiente progresion ascendente en lo relativo a la dependencia
con los grados de libertad cuanticos. Dada una funcién observable hibrido Cy(&, py;t), se le aplica
el corchete hibrido reiteradamente:

Cy ={f,Co}u = {f, Co}c +h~" {f,Co}q
N—— ——

~Tr(pg?) ~Tr(py-)

Co = {fv Cl}H = {fv {fa CO}C}C +ht {fa {f7 CO}Q}Q

~
~Tr(pg*) ~Tx(py™)

Cy ~ Tr (py") + Tr (o)

Ca~ Tr (py™) + Tr (o)

En consecuencia, al aplicar el corchete de Poisson, la parte correspondiente al corchete
clésico (Ec. 2.3.3) aumenta progresivamente el orden de la dependencia con los grados cuénticos.
Debido a esto, era necesario considerar una extensién del algebra para que esta fuese cerrada.
Con los proyectores el orden de esta dependencia abarca todas las potencias de py, por lo que
al extender el dlgebra se han de considerar todas las funciones f € C°(Mp).

Dejando esto de lado, al proponer la expresion de la evolucién temporal del valor esperado
de un observable arbitrario, esta queda:

R d
9 {0©) 1) = /McxMQ Qo Fac €. pw) - foe (1) = /MCXMQ dhacFac(é ) o fae b

:/M Ny duQCFQC(gva){fé(g)vff[(g)}c+h_1/ duQcFQo (& pu){foe): fae e
cxMqg

MCXMQ
(3.1.1)
Donde cada sumando corresponde a los siguientes valores esperados:
/McxMQ dNQCFQC(f»P\I/){fO(g)a fg(g)}c = <fanOf8pkH> - <fangf3Pko> (3.1.2)
d F 57 fA ’fA = fz 7O 3.1.3
/McxMQ ractac (& pu)lfoe) faeta < [H,O](§)> (3.1.3)

El término del conmutador, fl.[ 1,0](6)7 ¢ mantiene dentro del dlgebra:

(Haoye) = [ e ™ (i€ [©.0€)]) = [ e (i [pe). 0] 06©)) (314

Pero es en los términos cldsicos donde se aprecia la aparicién de momentos cudnticos de
ordenes superiores:

12
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(Fog,0fom ) = / dpc / dgFac(&, py) Tr (puda,0(€)) Tr (pudp, H(E))
Mc Mq

/ / dpgFoc(é, pw) Tr (pq/ ® pug, O(¢) ® aPkﬁ(§)>
Q

/ dpcTr (( duQFoc (&, pw) pu @ p\lf) 00,0(¢) ® 3Pkﬁ(§)>

:/ duc Tr

Donde el segundo momento cudntico aparece por primera vez, notando que, aunque no

(£)00,0(6) © Op A (©))
(3.1.5)

fuese relevante para el cdlculo del valor esperado del observable, lo es para su evolucién temporal.

La expresion del segundo momento es la siguiente:

56 = | dugFacte.p)pw  pu (3.1.6)
Q
Este razonamiento se puede generalizar para el k-ésimo momento cuantico de la distribu-
cién:
FA o fA :/ ducTr (2% () (01() @ - - - ® Ok(€ 3.1.7
<ol<5) ok(s>> Mo ( ”( 1(8) ”)) (3.1.7)
k

~ /_/_

P40 = [ duoFoc(e ) s (3.08)
Q

3.2. Dinamica de los momentos

En el caso de calcular la derivada temporal de orden k del valor esperado de un observa-
ble es donde se manifiesta el principal inconveniente de la dindmica hibrida. Al generalizar el
desarrollo que da lugar a la ecuacién 3.1.1, se observa que esta siempre va a depender de todos
los momentos cudnticos hasta k-ésimo orden y del momento cuantico de orden inmediatamente

superior, p®**+1(¢), siendo esto debido al corchete de Poisson clésico.

d* /. A
27 (0©) (1) = F(Z(©), -+, %), 0(), H (&) (3:2.1)

Se explica en la seccién del apéndice A.4 que es posible trasladar la dependencia temporal
de las funciones observables a la propia distribucién del sistema.

Foc (& pw)fo(§s puit) <= Foc (&, pwit) f5(E, pw) (3.2.2)

Esto es extremadamente 1til ya que la dindmica de los observables deja de estar gobernada
por la evolucion de sus funciones asociadas y pasa a regirse por la evolucion de la distribucién.
Las implicaciones de esta proposiciéon son las de pasar de contar con una ecuacién diferencial

para cada observable a manejar Unicamente una ecuacién maestra para la distribucién hibrida

13
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(Ec. 2.4.6).

Ahora bien, habiendo visto como los observables y su dinamica dependen de los infinitos
momentos de la distribucién Fgco (€, pw;t), es légico tratar de determinar como se comportan
dichos momentos estadisticos a lo largo de un intervalo temporal.

k
~ —_—
I GHE /M dugFoo(§, puit) py @ -+ @ py (3.2.3)
Q

Por consiguiente, la dinamica de la distribucién se verd reflejada como un sistema de

infinitas ecuaciones, cada una correspondiente a la evolucién de un momento determinado:

Foc(€, pust) = {5®°(€;t), HE:1), FERED), -, PR ED), } (3.2.4)

Comenzando por el primer momento, la derivada temporal de este elemento sera:

d d
dtﬁ(ﬁ;t)—/M dﬂthFQC(fap\If?t)P\If—/M dug{fe Foctu (&, pw)pw
Q Q
) (3.2.5)
=i [p€) 7]+ [ duotty Facho(é.pulpo
Q

La expresion del corchete cléasico se puede deducir a partir de desarrollar el corchete clasico
y manipulando ligeramente la traza. Por ello, un concepto necesario para deducir la expresion de
,5(5 ;1) es el de la traza parcial. Al realizar la traza parcial sobre un operador con descomposicién

en productos tensoriales tal y como los momentos, se obtiene un momento de menor orden.

k k—p
Ty (5°4(€)) = Ty | P& @ @ plE) | =) @ p(&) = J™ 7 (¢) (3.2.6)

Sera util para lidiar con la expresién del corchete clasico el poder expresar la variable
cudntica en términos de la traza, dado que los puntos de la subvariedad cudntica, pg, son

estados puros, tal y como se muestra a continuacion:

pu = Tr1 (py @ pw) (3.2.7)

De esta forma,

/M du{fu, Foctepy = /M dpQTry (%ﬁ(f) Op Foopy @ py — OpH(E) 0gFopy ® Pw)
Q Q

= Tr, (aQﬁI(g) dp /

Mg Mq
= Ty (9H (€) pp(§)*? — 0pH()op(€)*?)

= Ty (90 H(€)0pp(6)*” — OpH(€)d0p(&)*) = T {H() © 1.6"()}o
(3.2.8)
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Recordando que ahora la dependencia temporal ya no se encuentra en el observable, sino

en la distribuciéon y sus momentos.

Generalizando la expresiéon de ﬁ({ ;1) al k-ésimo momento se tiene:

k
(s t) =it [AR©), M & 0| + T [ () @Te e T 3% (& 1) (3.2.9)

k k

Donde, H*(§) = HE) ®1® - @I+ +1® - @ 1@ H()

Vistas asi las expresiones de las derivadas temporales de los infinitos momentos cuanticos
de la distribucién hibrida, se plantea la ecuacién de Liouville en forma de un sistema de infinitas

ecuaciones acopladas.

A efectos préacticos, pasar de una ecuacién maestra a una coleccion de infinitas ecuaciones
no parece una solucién eficiente que simplifique el problema. Es por ello que es posible argu-
mentar que la evolucién de la distribucion en intervalos finitos de tiempo solo se refleja en un
numero finito de momentos. De esta forma, restringir la solucién a un tiempo maximo lo suficien-
temente pequeno permite quedarse Unicamente con las ecuaciones diferenciales de los primeros

k momentos de la distribucion.

No obstante, surge un inconveniente fruto de la construccién inherente de la evolucién
generalizada de los momentos mostrada en 3.2.9. Al acotar las ecuaciones necesarias hasta un
k-ésimo momento en funcién del tiempo maximo de evolucién elegido, también es requerida una

dependencia con el (k 4 1)-ésimo momento.

PEREst) = F(p=H(&:1), p2F 1 (651) (3.2.10)

Para liberar el nuevo sistema truncado de una dependencia que escapa de las considera-
ciones tomadas al acotar el tiempo de evolucién, se tomard el formalismo de Mdzima Entropia
como criterio para elegir ﬁ®k+1(§ ;t). El argumento radica en que, dado que fisicamente no se
aprecian los efectos de [)®k+1(§ ;t) en los valores esperados de los observables, se tomara aquel
que proporcione un mayor nivel de desinformacion en el sistema. El objetivo con esta decisién
es la de elegir el caso méas general posible y minimizar todo lo posible el error cometido en el
truncamiento. Es importante destacar que esta entropia actiia inicamente como una herramien-
ta matemadtica, no como una entropia termodindmica, por lo que se tiene una mayor libertad al
tratar con esta.

Ademds, es necesario tratar de fijar los grados de libertad de p®*+1(¢;t) que dependan de
PP (&;t). Para ello se utilizan las propias ligaduras del sistema, asi como aquellas impuestas por
la traza, pureza, o algunas mas especificas como la desigualdad de Cauchy-Schwartz. De esta
forma, se fijan cierto nimero de grados de libertad mientras que a los restantes se les aplica el
ya mencionado formalismo de Mdxima Entropia.

En consecuencia, la expresién més adecuada de la ecuacién 3.2.9 seria el siguiente:
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k
PR ) = in (AR, 70| + T [ e Te - e L&l | (B211)

A continuacién, serd conveniente aplicar la dindmica desarrollada en estos capitulos a un

ejemplo sencillo para estudiar su comportamiento y verificar las hipotesis planteadas.
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Capitulo 4
Ejemplo particular y aplicacion

El simple sistema que se utilizard como ejemplo serd el de un solo g-bit [1], por lo que es
posible emplear una base ampliamente conocida como las matrices de Pauli, {¢};=0,1,2,3, como

base del espacio de proyectores, P;.

. 1 (1 0 . 1 (0 1 . 1 (0 — . 1 (1 0
00:\/§<0 1) 01:\/§<1 0) 02:\/§<i 0) 0'3:\/§<0 _1> (4.0.1)

De esta forma, es posible expresar la matriz densidad de 3.0.11 como combinacién lineal
de la base.

3
pe =D 1ibj, (4.0.2)
j=0

donde las variables p; corresponden a las coordenadas de p¢ en la base de matrices de Pauli.

A continuacién, es necesario tomar una decisién sobre el limite temporal que se impone
al sistema para considerar la aproximacién del truncamiento en la dependencia de momentos.
En este caso, dado que el objetivo es observar el comportamiento de la mecéanica y no tratar
de representar un sistema concreto con precision, se optard por restringir la evolucién temporal
hasta el segundo momento, ,5?2. Ciertamente, esta decisién provocara un error a tener en cuenta
en los resultados, pero simplificard los célculos y simulaciones en gran medida.

Si se toma en consideracién la definicion de ﬁ?Q expresada en la ecuacién 3.1.6 (Esta
corresponde a p(£)®2 pero es andloga por 3.0.12), se observa que el segundo momento se sale
de Py, por lo que es necesario tomar Py = P ® P1 como espacio en el que definir ﬁ?Q.

Como eleccién de base para Py se tomard la base simétrica de productos tensoriales entre

las matrices de Pauli de la base de P;.

1
Base de Ps : {2 (6 @6+ 0, ® &j)} (4.0.3)
J<k=0,1,2,3

Por lo tanto, al considerar la expresién general del segundo momento cudntico condicionado

se tendria:
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3 3
1 1
ﬁ?Q = oo (60 ® 6¢) + 2]; l,u(]k (60 ® ) + 01 @ 6¢) + B ‘<Ek lujk (5']‘ ® 6k + O ®6j) (4.0.4)
e j_ e

Teniendo en cuanta la naturaleza estadistica de los operadores densidad p¢ y ﬁ?Q, se
obtiene como consecuencia directa interpretar las coordenadas de dichas matrices como los

valores esperados de todos los puntos de Mg, py, correspondientes a estados puros.

g =E(ui(pp)) s pie = E(ui(py) k(o)) (4.0.5)

Para lidiar con la complejidad que conlleva tratar con el momento de segundo orden,
serd necesario recurrir a ciertas restricciones impuestas sobre las coordenadas fruto de diversas

condiciones.

En primer lugar, dado que p¢ y ﬁ?2 son operadores densidad bien definidos, su traza ha
de estar normalizada.

Tr (pg) =1 = p1o = 2

Tr (%) = 1= o=}

Adicionalmente, es posible extraer otra relacién entre coordenadas a raiz de la expresién

77 mediante la identificaciéon de términos por inspeccién.

3
2

Try <A®2> = —=000; E HokOk = E Wio; = p, (4.0.6)
\f it \f —~ par JjY7 3

De esta forma, se tiene que:

_ Hoj

Uj_\/i

Otra propiedad aprovechable de los operadores densidad es su pureza. Cualquier matriz

(4.0.7)

densidad bien definida ha de tener una pureza menor o igual a la unidad, lo que se traduce a
P(pe) = Tr (p£> <1lyP <A®2) =Tr ((?2) > < 1. Las restricciones que se pueden extraer

concernientes a las coordenadas son las siguientes:

~ 3
Ppe) <1=>_ 4 <3

~®2 3 3 3 3
P (P? ) <= o+ 5 Yonet g + 5 2 janmt Mo S 1= D0y i + X jcpmr 15, < 3

A partir de las definiciones de las coordenadas como valores esperados en 4.0.5 se pueden
deducir algunas consecuencias utiles. Asi como:

i — 13 = E (13(pp) — E (115(ps))” = E ((15(py) = 115)°) = 0 (4.0.8)
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Ademas, como ya se ha establecido que p;j(py) € Mg son estados puros, estos deben

cumplir la igualdad estricta referida a la pureza, por lo que:

3
D i => E(u3p) =E > 1i(py) | =E <;> = % (4.0.9)
: =~

Por dltimo, las coordenadas de los momentos deben cumplir la desigualdad de Cauchy-
Schwartz:

|pij — pipig| < \/(/m — p?) (,Ujj - u?) (4.0.10)

A continuacion, es imprescindible remarcar el cambio de notacién para las coordenadas
del segundo momento. Esto se debe a la necesidad de incluir estas variables como parte de
simulaciones numéricas donde la indexacién es relevante. En consecuencia, se tendra:

Hoo = Ao p23 = As
Ho1 = A1 p13 = g
Ho2 = A2 p11 = A7
Ho3 = A3 p22 = Ag
H12 = Ag H33 = Ag

Inicialmente se planted la utilizacién de una entropia de Von Neumann como expresion
de la desinformacién a maximizar. Esto conllevaria ciertos problemas que dificultarian en gran

medida los célculos, resultando en la pérdida de exactitud por la necesidad de aproximaciones.

S = _Tr (ﬁ§21og (ﬁ?Q)) (4.0.11)

Dada la estructura de la expresion 4.0.11, es necesaria la expansion en serie del logaritmo,

2
log ([)?2> = (]I — ﬁ?2> —i—% (]I — ﬁ?Q) + -+, lo cual ya introduce imprecisiones adicionales en los
potenciales calculos posteriores. Tomando tinicamente los términos de orden lineal en la entropia,

esta se puede aproximar tal que asi:

So1—Tr <(ﬁ§2)2> (4.0.12)

La contribucién llevada a cabo en este trabajo es la de escoger una entropia de Rényi como
representante matematico de la desinformacion. Es importante recordar que esta “entropia”no es
m&s que una herramienta con la que se busca el estado de maxima desinformacién del momento
de orden cuadratico. Es por ello que, al no ser necesario lidiar con su equivalente termodinami-
co, se pueden considerar diferentes expresiones para la entropia siempre que estas estén bien
definidas.

Se define la entropia de Rényi como una familia de estas indexadas por un pardmetro a:

3

D AR

k=0

(4.0.13)

1 22\ 1
5= L gn e (57')] - Lo
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Donde {Aj}r=0,1,2,3 corresponden a los autovalores de [)?2. Por consiguiente, para encon-
trar el estado que maximice S, se habrd de estudiar el comportamiento de los autovalores con
respecto a las coordenadas cuadraticas, Ay, = Ag (N;) V5 =0,1,...,9. En este caso particular,
solo se consideraran las entropias correspondientes a o > 1 = ﬁ < 0, por lo que sera necesa-
rio minimizar los autovalores para maximizar la entropia. El limite o« — 1 se corresponde con la
entropia de von Neumann. Se considerard el comportamiento del modelo de Rényi para varios
valores del pardmetro «, y se compararan.

En primer lugar, era necesario calcular los autovalores {A;x} € R del segundo momento,
dado que la estructura de la entropia de Rényi (4.0.13) permite trasladar el estudio de su
monotonia a la de estos pardmetros. Durante la realizacién de esta tarea, se observaron la
aparicién de estructuras repetidas y reconocibles en la forma de los autovalores, las cuales se
denotaron como Py C.

Ag=0 (4.0.14)

A= + (4.0.15)

— 4.0.16
3 (£0.16)

Asi pues, el objetivo era el de optimizar los autovalores a partir de estas dos variables, y
una vez obtenidos los valores que maximizan la entropia, despejar las coordenadas haciendo uso

del resto de restricciones.

6
p=p (p§>2> =3 (4.0.17)
i=1
c=cC (ﬁ?2> = — (M dads + AMAsAe + AoAsAs) + AadsAg (4.0.18)

Uno de los pasos clave para resolver este problema es el de analizar cuidadosamente las
restricciones y tratar de simplificar todo lo posible las expresiones. Ya se ha sustituido la ex-
presién 4.0.9, y es por ello que no aparece una dependencia con {\7, Ag, Ag}. Otra medida de
gran relevancia serd la de considerar sub-esferas de Bloch para los elementos de la base de
Ps, de forma que es equivalente escoger cualquier punto de estas esferas. Esto permite simpli-
ficar parcialmente las coordenadas y reducir el nimero de incégnitas. Asi pues, se consideran
las coordenadas {A1, A2, A3} como representantes de los puntos de la sub-esfera formada por
los elementos de la base {% (60 ® 0k + 01 ® 60)},6:172’3, y las coordenadas {\4, A5, A6} los de
{306,060k +61©6))}; 4 py

Como se ha mostrado en 4.0.7, las coordenadas {\1, A2, A3} quedan fijas porque estan
ligadas a las de p¢. Haciendo uso de la pureza del primer momento y 4.0.7, se tiene que:
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3
Y M<1=P <;3§2) >1 (4.0.19)
k=1
Si se tiene en cuenta la pureza de ,5?2, se puede deducir la cota superior del parametro P.

1< P (p?2> < % (4.0.20)

Quedan tres grados de libertad {\4, A5, A\¢}. Gracias a esto, se han elegido tres casos

diferentes que simplifican el problema. Para acotar el parametro C ([)?2) en cada caso, se

supondra una dependencia simétrica de {1, A2, A3} en el sumatorio de 4.0.19, A\; < @; Vk =

1,2,3 , sin pérdida de generalidad para lo que se trata de hallar.
L. =X =X=0 = C=-\A = %gCg%

2. ==X =0 = C=-A— )\ = ;2<C§%

3M=X=X=X = C=-X2A— XA - A+ = -2<C<2

La construccion de estas cotas en los parametros que maximizan la entropia es necesa-
rio, ya que los métodos numéricos implementados en el cédigo que permiten hallar los valores
exactos precisan el rango de valores en el que tiene sentido evaluar los parametros acorde con
las restricciones impuestas sobre el problema. Otro aspecto a considerar es que en el cuerpo del
documento solo se discutiran los resultados del primer caso por razones de simplicidad tanto
numérica como de extensién. Se pueden hallar los datos relativos a los casos 2 y 3 en C.3y C.4.

También recordar que el proceso para hallar Py C' es necesario realizarlo en cada paso
temporal, ya que el estado cuantico va a evolucionar de forma acoplada con la distribucién
cuantica. Para facilitar la compresién del trabajo llevado a cabo, se mostrard en un esquema las
iteraciones del ciclo.

{P, C}Ma:):Ent (t)
{A0, A1, Ao, Az} (t) = () — {0, A1, A2, A3} (T + At)

{)\4, )\5, )\G}MaxEnt (t)

Para concretar la forma en la que se calcula la evolucién temporal de las coordenadas, en
este ejemplo particular se toma el Hamiltoniano y las expresiones de las derivadas temporales,

frj (i), de [4].

H(¢)=H(Q,P)= % (Q* + P*) 60+ E1(Q, P)71(Q, P) + E2(Q, P)72(Q, P) (4.0.21)

Donde:
T1(Q, P) = 60 + sin(Q)o1 + cos(Q)os | E1(Q, P) = ﬁ
72(Q, P) = 69 — sin(Q)1 — cos(Q)d3 ’ FE»(Q,P) = FE1(Q,P) +1+ %
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La evolucién temporal de las coordenadas se da como:

3
f10(§) = > {Hw(&), mx(§)}e (4.0.22)
k=0

3
(15(€) = k() Hi(€) + %{HO(g),Mj(f)}C + ) {He(©),min(©}es Vi=1,2,3 (4.0.23)
=1

kl

Donde cabe destacar que cj;, corresponden a las constantes de estructura de u(2) en co-
rrespondencia con la base elegida. Ademads, se tiene que p;(§) = Fo(§)u; v pin(§) = Fo (&) jk,
por lo que las derivadas temporales se desarrollan mediante la regla de la cadena, dando asi
f10(€) = Fo(&) v 1j(6) = Fo(§uj + Fofuy.

Por ultimo, para la resolucion de la ecuacién diferencial se considerard una distribucion

clasica inicial:

Fo(§) = e 5 (4.0.24)

0.011
0.010

0.009

&
0.0 -05 @
ey 05 e ey 05 e

0.0

1.0 1.0

Figura 4.0.1: Condiciones iniciales de Fp y la pureza a t =0

Para determinar la evolucion de las coordenadas del primer momento cuantico, se ha
elaborado un integrador en un entorno de Python que calcula los valores de dichos pardmetros
en cada instancia temporal en todos los puntos del supuesto espacio de fases clésico (C.1). Esto
resulté ser una tarea bastante mas complicada de lo que inicialmente se tenia en cuenta ya que,
dada la complejidad de los célculos y las limitaciones del propio lenguaje, solo se ha podido
implementar mediante el método de Euler (en vez de alguno mds preciso como un RK4), lo
que conlleva imprecisiones inherentes pero permite realizar los calculos en intervalos de tiempo

razonables.

Ahora bien, una vez se ha calculado la evolucién del subsistema cudntico, se ha de selec-
cionar aquello pueda proporcionar informacion relevante acerca del mismo. En este caso, se cree
que representar la pureza y su evolucién sobre el espacio de fases clasico puede reflejar de manera
ma4s intuitiva cémo varia el sistema. Con la finalidad de aligerar esta parte, solo se muestran los

resultados de uno de los casos propuestos, el caso 1.
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Figura 4.0.3: a = T
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Figura 4.04: a = % Figura 4.0.5: a = %

Figura 4.0.6: F¢ y pureza a tiempo ¢t = 24 considerando entropia de Rényi a diferentes valores
de o
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Figura 4.0.7: Fo y pureza a tiempo t = 24 considerando entropia de Von Neumann

Una vez construido el integrador, fue sencillo modificar la expresiéon de la entropia para
que se ajustase a un elemento determinado dentro de la familia de entropias de Rényi (a =
2, Tiv %, g), o a la aproximacion lineal de la entropia de Von Neumann (4.0.12). Es asi como se
obtuvieron las graficas 4.0.6 y 4.0.7. Ciertamente, se aprecia cualitativamente como, a medida
que se acerca al limite de « — 1, la pureza del sistema modelado con Rényi se va acercando
cada vez mas al propuesto por la aproximacion lineal. De todas formas, en todos los modelos
se aprecia claramente como en los primeros instantes se mantienen fuertes similitudes en las
purezas representadas con cada modelo. A nivel cuantitativo, es notable como existen puntos
del espacio de fases lineal donde la pureza supera la unidad, pero se considera aceptable atribuir
estos fendmenos que fisicamente no tienen sentido a la implementacién del método de Euler en
el integrador. Por tanto, se consideraran problemas fruto del método numérico y no de la teoria
subyacente. Vistos los resultados de este ejemplo, es factible estipular que cualquier modelo de
desinformacion bien definido es viable para un sistema hibrido, por lo que uno de los objetivos
futuros en esta linea seria tratar de encontrar el modelo méas éptimo para tratar los SH. De todas
formas, se desde este proyecto se anima a estudiar dichos sistemas bajo diferentes modelos de
desinformacién a los propuestos con el fin de reforzar o desmentir los resultados expuestos.
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Capitulo 5

Conclusiones

La finalidad de este trabajo era el de desarrollar un método consistente para el estudio de
SH bajo un acercamiento estadistico, de tal forma que la dindmica de Erhenfest fuese compatible
con la formulacién de la entropia del sistema. Las notables contribuciones de proyectos anteriores
[1] muestran que para lograr este propdsito es necesario abordar la funcién de distribucién desde
sus momentos estadisticos. Estos momentos estan acoplados entre si, lo cual supone un problema
cuando se trata de considerar un conjunto finito de estos, debido a la dependencia con 6rdenes
superiores excluidos del conjunto. Para solucionarlo se tomé una desinformacién con forma de
entropia de Von Neumann la cual, al maximizarla, eliminaria los grados de libertad dependientes

de dichos érdenes superiores.

La aportacién de este proyecto es la de proponer una forma de entropia de Rényi para
la desinformacién. Esto se debe a las grandes dificultades que se presentan al utilizar la de
Von Neumann, y la necesidad de adoptar una aproximacién lineal. Al tomar en consideracién
estos factores, se tomé el relevo del ejemplo presentado en [1] y se desarrollaron las ecuaciones

presentadas en mencionado articulo.

Al representar las ecuaciones, se ha determinado que las similitudes entre los diferentes
modelos son suficientes como para afirmar que, en intervalos pequenos de tiempo, cualquier
desinformacion es valida. Es cierto que el ejemplo tratado en este documento es sencillo a
nivel fundamental, ya que las limitaciones impuestas por los calculos, las simulaciones y los
métodos numéricos empleados no han permitido abarcar problemas de mayor magnitud. Es por
este motivo que se incentiva a futuras investigaciones en la materia a considerar sistemas més
complejos y mejorar y optimizar toda la parte computacional involucrada, ya que es seguro que

serd determinante para extraer conclusiones con mucha mayor precisién y exactitud.
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Apéndice A

Dinamica de Hamilton

El formalismo de Hamilton para el estudio de la mecanica de un sistema nos sera de gran
utilidad para abordar este problema, como ya se ha mencionado con anterioridad. Para facilitar
el consecuente razonamiento y agilizar su uso a lo largo de este trabajo, se habrd de recordar

los conceptos mas bésicos.

A.1. Espacio de fases clasico

Un sistema visto bajo el prisma del formalismo hamiltoniano se ve definido por una va-
riedad diferenciable M de dimensién dp; = 2n. A cada punto en este espacio se le etiqueta con
una tupla de 2n componentes reales que serdn categorizadas en dos conjuntos, las coordenadas
generalizadas, ¢ = (q1,...,qn), vy los momentos asociados, p = (p1,...,pn). Por consiguiente, un
punto del espacio de fases P € M se expresara de la siguiente forma:

P=(q.9) = (q1,sqn,P1,-:Pn); G Pk €R (A.1.1)

Estas coordenadas y sus momentos presentan una dependencia temporal, lo cual implica
que la evolucién de cualquier sistema descrito por el formalismo de Hamilton se vera represen-

tada por una trayectoria en el espacio de fases.

Como ultimo apunte, esta trayectoria no es aleatoria cuando se trata de un sistema ha-
miltoniano, sino que viene determinada por una funcién especifica del sistema. A la funcién que
guarda toda la informacion sobre la dindmica de un sistema la llamaremos funciéon de Hamilton,
o hamiltoniano, H : M — R; H € C*(M).

Para saber como evolucionan en el tiempo las coordenadas generalizadas y sus momentos

hemos de recurrir a las conocidas como Ecuaciones de Hamilton [9].

. _ 0H(q,p)

Al12
ik o ( )
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. 0H(q,p)
Pk = 2an (A.1.3)
Otro apartado importante a tener en cuenta serfan aquellas magnitudes funciones de las
coordenadas y momentos en el espacio de fases a las que denotaremos como Observables,
f:M—R; feC>®M).Laevolucién temporal de los observables se deduce de la inmediata

aplicacién de la regla de la cadena.

@t = fato ey S (O 8L\ (05 0 of o
370,50 = £@0.50) = 3 (5Lt plin) = > (5= gt 00} ()

Conviene definir la siguiente estructura algebraica para aligerar la notacién de ahora en
adelante, el conocido como Corchete de Poisson: {-,-}c : C®(M) x C*®(M) — C*(M). Las
propiedades de esta estructura son:

» Antisimétrico — {f,g9}c = —{9, f}c Vf,g € C°(M)

» Cumple la identidad de Jacobi — {f,{g,h}c}c + {h,{f,9}c}c + {9.{h, f}c}c = 0O
Vf,g,h € C®(M)

» Cumple la regla de Leibniz — {f,gh}c = {f,9}ch + g{f, h}c Vf,g,h € C°(M)

Por consiguiente, la evolucién temporal de un observable arbitrario descrito mediante el
uso de los corchetes de Poisson se expresara de la siguiente forma:

o). o) = (e =3 (g0 - 2108 ) (A15)

A.2. Variedades simplécticas y mecanica geométrica

Resulta de gran utilidad recurrir al formalismo geométrico para estudiar la mecanica de un
sistema hamiltoniano, y es por eso que se debe abordar los aspectos esenciales para el posterior
desarrollo de la dindmica.

Considerando un sistema fisico, este se supondra embebido en el espacio vectorial R™. A
continuacién, se contemplan ambos fibrados tangente y cotangente del mismo, los cuales presen-
tan un homeomorfismo con el espacio lineal simpléctico, tal y como dicta el teorema de Darboux.

TR" ~ T*R" ~ R*" (A.2.1)

Al describir T*R"™ bajo el atlas construido en coordenadas de Darboux, (g, p;), es posible

construir la siguiente 1-forma [9], conocida como Forma de Liouville.
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0 = Zpidqi (A.2.2)

Cuando se considera la derivada exterior de dicha 1-forma se encuentra una relacién con la
forma simpléctica candnica [9] asociada al anteriormente mencionado espacio lineal simpléctico,

(RQ”, w) :

w=—df = dg’' Adp (A.2.3)
i
Las principales caracteristicas de esta 2-forma o forma simpléctica son:

m wes cerrada =— dw =0

= w es no degenerada

Estas propiedades de la 2-forma aseguran la posible construccion de un elemento de volu-

men o una medida, €2, en la variedad simpléctica.

mn VECES n veces

Q=wA - Aw=doN " Ndb (A.2.4)

A continuacién, es conveniente redefinir la dindmica Hamiltoniana tanto cldsica como
cudntica en términos geométricos, ya que se hard uso de esta formulacién para demostrar que el

elemento de volumen, €2, cumple el teorema de Liouville.

En primer lugar, se observa que es posible describir un campo vectorial a partir de los
corchetes de Poisson introducidos con anterioridad. Este campo vectorial viene asociado a una
funcién determinada, y en este caso serd el campo vectorial hamiltoniano el que serd de mayor

interés para tratar la dindmica del sistema.

En el caso clésico se parte de una variedad simpléctica denotada como Mg = (R?",w). Si
la dindmica esta caracterizada por una funcién hamiltoniana, H, el campo vectorial asociado,

Xy, sera:

H(q,p) — Xu ={,H}c (A.2.5)

De forma equivalente, podemos escribir una ecuacion implicita ara el campo Xy a partir
de la forma simpléctica:
ixyw=dH (A.2.6)

Una vez construido el campo vectorial hamiltoniano, se puede probar que las curvas inte-
grales del campo vectorial definido en A.2.5 son solucién de las ecuaciones de Hamilton A.1.2 y
A.1.3.
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A.3. Sistemas cuanticos

Hasta ahora tUnicamente se han tratado sistemas hamiltonianos clasicos y su respectiva
formulacion en términos de mecanica geométrica, pero es inevitable notar que un sistema hibrido
se compone por uno clasico y uno cuantico. Por ello, y aunque sea andlogo en varios aspectos,
es imprescindible apuntar algunas caracteristicas de la dindmica geométrica hamiltoniana en
sistemas cudnticos. El formalismo geométrico para la Mecanica cuantica se ha desarrollado des-
de finales de los anos 70 del siglo pasado [10], y sus caracteristicas mas improtantes pueden

resumirse como se desarrolla a continuacion.

En primer lugar, es necesario tomar un espacio de Hilbert como el equivalente cuantico al
espacio de fases. En el caso de restringir la dimensién del espacio de Hilbert al caso finito, este
serd isomorfo a C™, lo cual serd de gran utilidad y se tomara asi durante el resto del trabajo,
H=C"

Como no resulta conveniente contar con un espacio de fases real en el &mbito cldsico y uno
complejo en el cudntico, se realifica el espacio cudntico construyendo una variedad diferenciable
real, Mg ~ R?", que recogers los estados cuanticos |¥). Por consiguiente, los estados cuanti-
cos vendran descritos por coordenadas reales, (¢;,p;) € R?", que representan la parte real y la
imaginaria de las coordenadas complejas del antes mencionado espacio de Hilbert. Notar que,
aunque sea formalmente andlogo, las coordenadas cudnticas no se corresponden a las coorde-
nadas candnicas y sus momentos asociados del caso cldsico. Para concluir la realificacion, cabe
destacar que el producto escalar hermitico se puede desglosar en una estructura Kéhler, (g,w, J).
Expresando las formas que caracterizan la estructura Kahler de la realificacion en funcién de las
coordenadas (g;, p;):

= g =dq; ® dqi + dpy, ® dpr, — Estructura Riemanniana
= w =dg; N dpr. — Forma simpléctica

v J =0, ®dg — 0y, ® dpr, — Estructura compleja

De forma que el producto escalar hermitico queda definido en funcién de g y de w:

<\Ijl‘\112> - g(X‘If17X‘I/2) + iw(X‘Ifle\Pz) (A'3'1)

Donde (Xy,, Xy,) son los campos vectoriales asociados a los estados (¥, Wy) respectiva-
mente. Nétese que estamos usando el hecho de que el espacio de estados es una variedad lineal
para asumir que el espacio tangente en todos los puntos es isomorfo a la propia variedad.

Para tratar los observables cudnticos, O € Lin(#) de una forma anédloga a los observables
clésicos, les asociaremos una funcién que se corresponderda con el valor esperado del observable

que acttia sobre M.
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0= fo = (U]|O|T) (A.3.2)

Serd con las funciones de dichos observables con las que se describird la dindmica. De
forma andloga al razonamiento clasico, se define un corchete de Poisson cuantico que codifica la
evolucién temporal de las funciones observables en funcién del hamiltoniano del sistema.

fo=n"fo, fr}e (A.3.3)

Ademsds, partiendo desde la ecuaciéon de Heisenberg, ih% = [0, H], es posible transfor-
marla a formulaciéon geométrica para llegar al siguiente resultado:

fo =1"fumo) <= {fo. futo = fimoy (A.3.4)

Mecanica geométrica en un sistema cuantico

En el caso cudntico se consideraba el espacio de Hilbert y su isomorfismo con C”, y su
producto hermitico, dejando asi una variedad diferenciable (C", (:|-)). Tras el proceso de realifi-
cacién, el espacio de Hilbert pasaba a uno real y la estructura algebraica se veia registrada en
una estructura Khiler, dejando asf{ una variedad simpléctica Mg = (R*", (¢g,w, J)). Para tratar
los observables se les asociaba sus valores esperados como funciones observables, por lo que el
campo vectorial hamiltoniano quedara definido como:

H— X, =0 futo (A.3.5)

Andlogamente al caso clasico, las curvas integrales de este campo vectorial serdn la solu-
cién de la ecuacion que describe la mecénica.

ix;,w=dfg (A.3.6)

Puede comprobarse [10] que las curvas integrales de este campo vectorial coinciden con
las soluciones de la ecuacion de Schrodinger.

Para concluir, se puede demostrar de forma breve de que la derivada de Lie sobre el cam-
po vectorial hamiltoniano deja invariante la forma simpléctica. Para el siguiente desarrollo, se
utilizara H o fpy indistintamente, ya que la demostracién solo requiera de que el campo sea
hamiltoniano. Asi, dada la derivada de Lie, esta puede ser expresada como:

CXHw = (iXHd + diXH>w (A.3.7)

El primer sumando, ix,dw, se anula porque la forma simpléctica es cerrada, dw = 0.
El segundo sumando, dix,w, se anula directamente al sustituir la ecuacion A.2.6, dejando asi
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d(dH) = 0.

Por consiguiente, la derivada de Lie sobre el elemento de volumen es directamente nula.

n veces

Lx, Q=Lx, (WA - Aw)=0 A.3.8
H H

Este resultado quiere decir que, siempre que la dindmica de un sistema descrito en una
variedad simpléctica sea hamiltoniana, se cumple el teorema de Liouville.

Qt=0)=Qt) vt (A.3.9)

A.4. Formulacion estadistica en dinamica Hamiltoniana

Ya se ha mencionado con anterioridad que la validez del modelo dindmico de Ehrenfest se
basa en dos factores: la diferencia de masas entre los sistemas nuclear y electrénico, y la magni-
tud de la dispersién del paquete nuclear con respecto a la longitud caracteristica del problema.
Esto lleva a pensar que conviene tomar sistemas con una gran cantidad de nucleones y electrones
para contemplar una dindmica hibrida méas sélida. Aun asi, esto conlleva la necesidad de pasar
al formalismo estadistico para ser capaces de estudiar las consecuencias macroscopicas de dicha
dindmica. Por ende, se cree conveniente dar un breve repaso sobre este tema con el fin de agilizar
su posterior uso.

Si se considera un sistema hamiltoniano descrito por el espacio de fases y una serie de obser-
vables, rapidamente se nota que existen ciertos observables que no dependen de las coordenadas
y momentos individuales de cada componente, sino que adquieren un enfoque macroscépico.
Por consiguiente, resulta de vital importancia conocer la forma de construir estos observables
macroscopicos a partir de los microscopicos. Es aqui donde el concepto de la Funcion de distri-

bucion hace su aparicion.

Dado un observable f(q(t),p(t)) = f(g,p;t), construiremos su observable macroscépico

asociado de la siguiente forma:

(f) (@)= /M dqdpF(q,p;0)f(q,p;t) = /M dqdpF (q,p; —t) f(q,p; 0) (A.4.1)

Donde F(q,p) es la ya mencionada funcién de distribucion, la cual debe ser definida po-

sitiva, F(q,p) > 0, y cumplir la condicién de normalizacién:

/ dgdpF(q,p) =1 (A.4.2)
M
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El cambio de paradigma que tiene lugar al adoptar este enfoque se refleja en la interpreta-
cién del espacio de fases como herramienta que describe el sistema. Anteriormente, cada punto
del espacio de fases (¢,p) a un tiempo t constituia una descripcién del sistema, mientras que
ahora se aboga por un formalismo estadistico de microestados, en el que cada punto (g(t),p(t))
se asocia a un microestado pesado por la funcién de distribucién.

Asi bien, la complejidad del sistema se reduciria en gran medida si fuese posible transferir
la evolucién de los muchos observables a la evolucion de una tnica funcion de distribucién. Esto
es posible debido en gran medida a que la medida, dqdp, se mantiene en el tiempo, como ya se
ha demostrado en el apartado A.2. Esto asegura el cumplimiento del teorema de Liouville sobre
la medida, lo que a grandes rasgos implica dq(t = 0)dp(t = 0) = dq(t)dp(t) Vt.

Por consiguiente, al expresar los puntos del espacio de fases en funcién del operador de

evolucién temporal y una condicién inicial:

(q(t), p(t)) = ¢;(9(0),p(0)) <= ¢~(q(t), p(t)) = (4(0),p(0)) (A.4.3)

De esta forma, si realizamos dicho cambio de variable en la ecuacién A.4.1, y habiendo
dejado claro que esto es posible gracias al cumplimiento del teorema de Liouviulle, se transfiere
la dependencia temporal a la funcién de distribucién F(q, p).

(fH)= /M dqdpF'(q,p) f(q,p;t) = /M dqdpF (q,p;t) f(q,p) (A.4.4)

Donde se tendré que:

F(q,p;t) = ¢~ [F(q,p)] (A.4.5)

Por ultimo, viendo que la dependencia de F'(gq, p;t) con el operador evolucién temporal va
con ¢*,, asi la derivada temporal de la funcién de distribucién sera:

F={HF} (A.4.6)



Apéndice B

Notas adicionales sobre la dinamica
de Ehrenfest

B.1. Demostracién de ortogonalidad

Se puede demostrar la ortogonalidad de los estados electronico y nuclear con respecto a

sus propias derivadas temporales de la siguiente formas:

(We|We) = (Un[UN) =1 (B.1.1)

Al derivar B.1.1, se obtiene que:

(i

Por consiguiente, al considerar la derivada temporal de la funciéon de onda hibrida:

sz> - <¢1N‘\11N> ~0 (B.1.2)

4
dt

De tal forma que la ecuacién de Schrédinger hibrida puede expresarse en términos de am-

W) = (e [en)) = ) o) + )

\ifN> (B.1.3)

bas funciones.

i (e ) W) + (W) [ ) ) = (He + Fin ) 190) [9) (B.1.4)

Para finalizar, se obtienen ambas ecuaciones proyectando sobre cada estado, segin cual

interese. Al proyectar sobre (V| y (V.| respectivamente:

ih[¥e) = (x| (He+ Hx ) [98) [Ve) = He(, ) [¥e) = <—§ivi + (x| V(,0) |\PN>> )
(B.1.5)



Acher Alias Saura B.2. EXPANSION EN SERIE WKB

| - A h2
i ¥ ) = (W] (He + Ay ) 190 |¥) = Hx(,) [0n) = (—sz + (V| V(2 q) \\Pe>) V)
(B.1.6)
B.2. Expansion en serie WKB
En primer lugar, esta se escribird en funcién de la acciéon como una exponencial:
t
Un(q.t) = A(g, t)exp <i5(%’ )> (B.2.1)

A continuacién, dada la complejidad de la accién como funcién analitica, estase desarrolla
como una serie de potencias de la constante de Planck, .

Al considerar que el término de orden cero es dominante en la expansién en serie de la
accién, es posible expresar la funcién de onda nuclear como la exponencial de dicho término méas

el resto de contribuciones en forma de infinitésimo.

Un(g,t) = Alg, t)exp <ZSO(§t)> +0 < E) (B.2.3)

Al introducir dicha expresion en la funcién de Schrodiner para la funcién de onda nuclear
2.0.6, se obtiene que la accién sigue una ecuaciéon del tipo Hamilton-Jacobi y la amplitud una
ecuacion de continuidad.

05 | 1
5 T gap VS (el Ve, q) [¥e) =0 (B.2.4)
A2 VS
— Ve (AQX/)) =0 (B.2.5)



Apéndice C

Datos adicionales del ejemplo
particular

C.1. Espacio de fases clasico computacional

Discretizacion del espacio cartesiano

1.00 1@ ) = = & = £ = & &
0751 @ & & & i & & & i i
@ ® ] @ & ® & & & i

0.50
o ® ™ ® @ ® ® ® ™ W

0.25
o & & 5 @ & @ 0 ™ o

= 0.00 A
o @ & & @ @ & & ® i

—0.25 A
& & & & @ ® & & @ i
=050 7—g & & & i e & i B o
=075 1w & & @ @ @ i & ] ]
-1.00 & = & 2 = @ & = = @

T T T T T T T T T
-1.00 -0.v5 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X

Figura C.1.1: Discretizacién del espacio de fases clasico para céalculo numérico
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C.2. Caso1l

C.2.1. Entropia de Rényi con parametro o = 2

110
0.011 -
0.010 100
0.95
0.009
0.90
-1.0
&
0.0 0.0 -0.5 ©
Gey 05 i Gey 05 it

1.0

1.0

Figura C.2.1: F¢ y pureza a tiempo ¢t = 0 considerando entropia de Rényi con oo = 2

0.011 1.001

0.010 1.000
0.999

0.009

-1.0 -1.0
-0.5 & —0.5
0.0 -0.5 0.0
E'}'e)( 0.5 1.0 EYEX 0.5 10

1.0 1.0

Figura C.2.2: Fo y pureza a tiempo t = 1 considerando entropia de Rényi con oo = 2

0.011
0.010
0.009
-1.0 :
—0.5 ~ & 2
0.0 > 05 © 0.0
Gey 03 -1.0 Bey 03 -1.0

1.0 10

Figura C.2.3: F¢ y pureza a tiempo t = 5 considerando entropia de Rényi con av = 2
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0.011
0.010
0.009

0.0 0.0

ey OS5 -1.0 Gey M9 g 10

Figura C.2.4: Fo y pureza a tiempo t = 10 considerando entropia de Rényi con o = 2

1.03
0.011 1.02
1.01
0.010 i
0.009 =

0.98

-1.0
—-0.5

e ;
0.0 -05 © 0.0

Hay 02 19 ~LO Foy 05 10 ~LO

Figura C.2.5: Fo y pureza a tiempo t = 15 considerando entropia de Rényi con o = 2

0.011
0.010

0.009

0.0 0.0

Gey 02 10 ~LO Se y Lo

0.5

Figura C.2.6: F¢ y pureza a tiempo t = 20 considerando entropia de Rényi con o = 2
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0.011 08
1.02

0.010 1.00
0.98 1.00

0.96
0.009 T
0.008 10 0.96

0.0

0.0
Gy 09 ~10 ey 05

1.0 =1.0

Figura C.2.7: F¢ y pureza a tiempo t = 24 considerando entropia de Rényi con o = 2

C.2.2. Entropia de Rényi con parametro a =

PR

110
0.011 1.05
0.010 100
0.95
0.009
0.20
-1.0
0.0 i -05 © 0.0
& 05 157 0.5 S
e x 10 L0 VX jg; =t
Figura C.2.8: F¢ y pureza a tiempo t = 0 considerando entropia de Rényi con o = %

0.011 1.002

0.010 L.000

0.298
0.009

0.0
ey 03 -1.0 Eey 05 -1.0

0.0

10 10

-3

Figura C.2.9: F¢ y pureza a tiempo ¢t = 1 considerando entropfa de Rényi con a = ;
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0.011
0.010
0.009
0.0 0.0
ey 05 — Gey 05 1o

1.0 1.0

Figura C.2.10: F¢ y pureza a tiempo ¢ = 5 considerando entropia de Rényi con o = ;Z

1.04
0.011
1.02
1.00
0.010
0.98 1.00
0.009 036 0.98
1.0
-1.0
-0.5 - E
0.0 -05 < 0.0
Ej 0.5 57 0.5 =
e x 10 ~LO /e x 10 L0
Figura C.2.11: Fo y pureza a tiempo t = 10 considerando entropia de Rényi con o = ;Z

0,011 1.050
1.025
0.010
1.000
0.009 0.975
0.008 0.950
-1.0
-0.5 & =
0.0 -0.5 @ 0.0
Gey 05 ~1.0 Gey 03 1.0

1.0

Figura C.2.12: F¢ y pureza a tiempo ¢t = 15 considerando entropia de Rényi con a = ;Z

14



Acher Alias Saura C.2. CASO1

0.012 115

0.011 —
105

0.010 oY

0.009 0.95

0.008 1.0

0.0 0.0
Gey: 09 -1.0 bay 05 -10

1.0 1.0

-3

Figura C.2.13: Fo y pureza a tiempo ¢ = 20 considerando entropia de Rényi con o =

0.012

0.011 1.05

0.010
1.00

0.009
0.95
0.008

2
-05 <

0.0 0.0

ey 05 - Gey 05

1.0 : 10 -1.0

NS

Figura C.2.14: Fo y pureza a tiempo t = 24 considerando entropia de Rényi con a =

’, 3 . ’ _ 3
C.2.3. Entropia de Rényi con parametro o = 3

0.011
0.010
0.009
-1.0
&
0.0 0.0 -05 ©
beg U2 ig. TLO ey 05 1o 10

. . . . . . s 3
Figura C.2.15: Fo y pureza a tiempo ¢ = 0 considerando entropia de Rényi con a = 5
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0.011 1.002
0.010 1.000
0.998
0.009
0.0 z 0.0
Ej, 0.5 157 0.5
/e x 10 "10 /e x 10 ~10
Figura C.2.16: F¢ y pureza a tiempo ¢ = 1 considerando entropia de Rényi con o = %
1.02
0.011 1.01 1.01
1.00
0.010 0.99 1.00
0.98
0.009 0.99
1.0
0.0 & 0.0
L7 0.5 Ej, 0.5
e 10 10 ek yp: L
Figura C.2.17: F y pureza a tiempo t = 5 considerando entropia de Rényi con a = %
1.04
1.04
RO 1.02 1.02
1.00
0.010
0.98 1.00
0.009 P30 T
1.0
-1.0
70_5 .
0.0 -0.5 Q’\a 0.0
Gey ©° ., -10 Gex 9% 5 -10
Figura C.2.18: F¢ y pureza a tiempo ¢t = 10 considerando entropia de Rényi con a = %
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0011 1.050
1.025
0.010
1.000
0.009 0.975
0.008 0.950
0.0 0.0
Gey 0 L, -10 Gex 0% ., -1
3

Figura C.2.19: F¢ y pureza a tiempo ¢ = 15 considerando entropia de Rényi con o = 3

0.012 115 1.10
1.10
0.011
— 1.05
0.010 iide
1.00
0.009 0.95
0.95

0.008 1.0

0.0

0.0
0.5

ey 05 Lo -LO Geyp O Lo -0

. . . o . ; P 3
Figura C.2.20: Fo y pureza a tiempo ¢ = 20 considerando entropia de Rényi con o = 3

0.012

0:011 1.05

0.010
1.00
0.009
0.95
0.008

; -1.0
—N ; —05

0.0 : 0.0

Gey 9 ., -10 Geyx 05 ., -10

)
-0.5 ©

w

Figura C.2.21: F¢ y pureza a tiempo ¢ = 24 considerando entropia de Rényi con @ = 3
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C.2.4. Entropia de Rényi con parametro a = %

1.04 110
0.011 1.02 -~
1.00
0.010 T 0.98 1.00
0.96
0.95
0.009
1.0
0.90
&
0.0 0.5 © 0.0
Hey 05 i o) 05 Lo -0

1.0

Figura C.2.22: F y pureza a tiempo t = 0 considerando entropia de Rényi con a = %

0.011 1.002
0.010 1.000

0.998
0.009

0.0

0.0
E}-E‘)( 0.5 1.0 -1.0 '55)(

0.5
fig; =0

Figura C.2.23: F y pureza a tiempo t = 1 considerando entropia de Rényi con o = g

[ 1.02
0.011 0L 1.01
1.00
0.010 _— 1.00
0.98
0.009 0.99

10

0.0

Gey 03 10 -LO

0.0
.E;fe)( 0.5 _1.0

Figura C.2.24: F¢ y pureza a tiempo t = 5 considerando entropia de Rényi con o = ?l
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. 1.04
1.04
R 102 1.02
1.00
0.010
0.98 Loo
0.009 0.96 .
1.0
S & /) 4
0.0 A —05 © 0.0
ey 05 1o -0 ey 05 Lo L0

ot

Figura C.2.25: Fo y pureza a tiempo ¢ = 10 considerando entropia de Rényi con o = §

— 1.050
1.025
0.010
1.000
0.009 S
0.008 0.950
-1.0 .
-0.5 @
0.0 0.0 -05 €
Gex 02 . -10 Gex 95 . -10

ot

Figura C.2.26: F¢ y pureza a tiempo t = 15 considerando entropia de Rényi con o = 2

W~

0.012
0.011
0.010
0.009
0.008
0.0 0.0
ey 03 10 -0 ey 03 10 -lO

ot

Figura C.2.27: Fo y pureza a tiempo ¢ = 20 considerando entropia de Rényi con o = 7
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C.2. CASO1

0.012

0.011

0.010

0.009

0.008

0.0
ey 05 -1.0

Figura C.2.28: F¢ y pureza a tiempo ¢ = 24 considerando entropia de Rényi con @ =

110
105
1.00

0.95

&
0.0 -0.5 ©

.E-)‘E)r 0.5 Lo =g

ot

C.2.5. Aproximacion lineal de la entropia de Von Neumann

0.011

0.010

0.009

-1.0

-0.5 &
0.0 05 ©

E-}'e)r 0.5 Lo ~1.0
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102
1.00
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0.0 4
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'EJ'-E‘)( 0.5 Lo _1.0

Figura C.2.29: F¢ y pureza a tiempo t = 0 considerando la aproximacion lineal de la entropia

de Von Neumann

0.011
0.010

0.009

0.0

'53"&:)( 0.5 10 ~LO

1.002

1.000

0.998

0.0
Fog: 05 -1.0

Figura C.2.30: F¢ y pureza a tiempo ¢t = 1 considerando la aproximacion lineal de la entropia

de Von Neumann
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0.011
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0.009

0.0

ey 03 10 -LO

&
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Gey 05 10 -LO

Figura C.2.31: F¢o y pureza a tiempo t = 5 considerando la aproximacion lineal de la entropia

de Von Neumann
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Figura C.2.32: F¢ y pureza a tiempo t = 10 considerando la aproximacion lineal de la entropia

de Von Neumann
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Figura C.2.33: Fo y pureza a tiempo t = 15 considerando la aproximacién lineal de la entropia

de Von Neumann
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Figura C.2.34: Fo y pureza a tiempo t = 20 considerando la aproximacién lineal de la entropia

de Von Neumann
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Figura C.2.35: Fo y pureza a tiempo t = 24 considerando la aproximacion lineal de la entropia

de Von Neumann
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C.3. Caso 2
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Figura C.3.1: Pureza del caso 2 a tiempo ¢t = 0 considerando entropia de Rényi con oo = 2
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0.0
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Figura C.3.2: Pureza del caso 2 a tiempo t = 1 considerando entropia de Rényi con o = 2
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Figura C.3.3: Pureza del caso 2 a tiempo ¢t = 5 considerando entropia de Rényi con o« = 2
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Figura C.3.4: Pureza del caso 2 a tiempo ¢t = 10 considerando entropia de Rényi con o = 2
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Figura C.3.5: Pureza del caso 2 a tiempo ¢t = 15 considerando entropia de Rényi con o« = 2
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Figura C.3.6: Pureza del caso 2 a tiempo t = 20 considerando entropia de Rényi con o = 2
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Figura C.3.7: Pureza del caso 2 a tiempo t = 24 considerando entropia de Rényi con o« = 2
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Figura C.4.1: Pureza del caso 3 a tiempo ¢t = 0 considerando entropia de Rényi con o« = 2
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Figura C.4.2: Pureza del caso 3 a tiempo t = 1 considerando entropia de Rényi con v = 2

1.005

1.000

0.995

0.0

&ék' 0.5 - -1.0

Figura C.4.3: Pureza del caso 3 a tiempo t = 5 considerando entropia de Rényi con o = 2
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Figura C.4.4: Pureza del caso 3 a tiempo ¢t = 10 considerando entropia de Rényi con o« = 2
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Figura C.4.5: Pureza del caso 3 a tiempo t = 15 considerando entropia de Rényi con o = 2
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Figura C.4.6: Pureza del caso 3 a tiempo t = 20 considerando entropia de Rényi con o« = 2

1.04
1.02

1.00

0.98

0.96

0.0
ey 05

1.0

Figura C.4.7: Pureza del caso 3 a tiempo t = 24 considerando entropia de Rényi con o = 2
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Apéndice D

Cdédigo de la simulacién

computacional

A continuacién se deja un enlace a Github donde se recoge el c6digo empleado para cons-
truir las simulaciones de este trabajo de fin de grado, se advierte de que los tiempos de compilado

son largos, 40 minutos como minimo.

https://github.com/Achertron/TFG
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