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Abstract

La implementación de una entroṕıa que sea consistente con la dinámica de Ehrenfest de los

sistemas h́ıbridos ha sido un gran problema al adoptar un acercamiento estad́ıstico de los

mismos. En este trabajo de fin de grado se propone un alternativa a lo visto hasta ahora que

parece solucionar estos obstáculos, y se elaboran simulaciones computacionales para defender

dicha hipótesis en un ejemplo particular.
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Caṕıtulo 1

Introducción

Cuando se plantea el estudio de sistemas compuestos por elementos microscópicos, la

mecánica cuántica ha proporcionado la solución a múltiples cuestiones fruto del comportamiento

de las part́ıculas a estas escalas. La cuestión reside en que considerar un modelo puramente

cuántico aumenta la complejidad del problema hasta ĺımites inabarcables, y es esta la motivación

de encontrar modelos que sean más eficientes. Cuando se imponen ciertas condiciones sobre el

sistema tales como grandes diferencias de masas, velocidades o escalas de tiempo, se abre la

puerta a un nuevo paradigma más manejable.

De todas formas, la evolución de estos sistemas se ve reflejada tanto en el ámbito ma-

croscópico como en el microscópico, por lo que la importancia de encontrar un formalismo que

permita combinar ambos planos del sistema resulta crucial. Aśı se introduce el concepto de los

sistemas h́ıbridos clásico-cuánticos (Sistemas Hı́bridos, SH ), los cuales contemplan un espacio de

fases h́ıbrido donde los grados de libertad clásicos y cuánticos evolucionan de manera acoplada.

Al encarar problemas prácticos que requieren la utilización de dichos SH, como en el campo

de la simulación de sistemas moleculares, resulta clave el enfoque estad́ıstico y su implementación

en los SH [1] [2]. Se contempla una densidad de probabilidad h́ıbrida que definirá la dinámica de

los SH, la cual funciona perfectamente con la dinámica de Ehrenfest pero es incompatible con

la formulación de una entroṕıa termodinámica [3]. La solución propuesta en [4] para lidiar con

este gran inconveniente seŕıa la de extraer los momentos estad́ısticos cuánticos de la distribución

h́ıbrida, los cuales vienen descritos por operadores del tipo matrices densidad [4] [5].

F ⇐⇒ {ρ̂0, ρ̂1, ρ̂2, · · ·}

De esta forma, se mantiene la idea de dominar la mecánica con una ecuación maestra,

salvo que en este caso se traduce en una familia de ecuaciones, una para cada momento. El

problema a superar es que dichos momentos dependen de los momentos de órdenes superiores,

aśı que se presenta el dilema sobre como afrontar esta familia de infinitos elementos. La solución

elegida consistirá en truncar la familia de momentos y aplicar el formalismo de máxima entroṕıa

para hallar aquellos estados que maximicen la desinformación del sistema. Es importante no

confundir esta entroṕıa con la mencionada en el párrafo anterior, ya que en este caso se hace

alusión a este término como una medida de la desinformación que presenta un estado cuántico

con múltiples grados de libertad, no a la entroṕıa termodinámica del sistema.

En [4] se propone este formalismo empleando, por sencillez, la entroṕıa de Von Neumann
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linealizada. Lo que propone este trabajo es hacer uso de la entroṕıa de Rényi como modelo de la

desinformación de la parte cuántica del sistema en lugar de la aproximación lineal de la entroṕıa

de Von Neumann y comprobar si estas dos opciones difieren o no entre śı. En el caso en el que la

dinámica evolucionase de forma similar considerando ambas entroṕıas significaŕıa que cualquier

desinformación bien definida podŕıa tomarse como válida para el estudio de los sistemas h́ıbridos,

lo que facilitaŕıa en gran medida esta tarea al permitir escoger la más conveniente. En el caso

contrario, si la dinámica difiere notablemente, daŕıa pie a nuevas v́ıas de estudio sobre la razón

subyacente en esta diferencia, y lo que implica, a nivel f́ısico, la elección de los diferentes modelos

de desinformación.

En el caṕıtulo 2 de este trabajo, se abordará la teoŕıa subyacente de los sistemas h́ıbridos y

las sutilezas del método propuesto. Se hará hincapié en las bases de la dinámica de Ehrenfest y su

implementación en la formulación geométrica. Además se introducirá el formalismo estad́ıstico

y su principal notación.

Ya en el caṕıtulo 3 se entra de lleno en la formulación estad́ıstica del problema y en la

necesidad de trabajar con los momentos para poder combinar las nociones de una entroṕıa

consistente con la dinámica de Ehrenfest. Esto conlleva una explicación de la dinámica de los

mencionados momentos y se sienta ya por completo el marco teórico del ejemplo a tratar.

Por último, el caṕıtulo 4 trata enteramente el ejemplo particular introducido en [4], en el

cual se desarrollan las ecuaciones extráıdas en el caṕıtulo anterior y se expanden al plantear la

entroṕıa de Rényi como desinformación del sistema. Se llegan a estudiar diversos modelos de

Rényi y estos se comparan con la aproximación lineal de la entroṕıa de Von Neumann que se

hab́ıa propuesto inicialmente.

Como conclusiones, en el caṕıtulo 5 se trata en resumen lo que ha sido este proyecto

y se exponen las consecuencias de los resultados obtenidos. En adición, se han dejado varios

apéndices al final del documento donde se desarrolla más en profundidad el marco teórico, se

recogen todas las imágenes de los resultados que no han podido exponerse y el código de las

simulaciones realizadas para su obtención.
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Caṕıtulo 2

Dinámica de Ehrenfest

Cuando tratamos de describir la evolución en el tiempo de un sistema cuántico, la ecuación

de Schrödinger nos da la información necesaria sobre como cambia un estado concreto Ψ cuando

el sistema viene descrito por un hamiltoniano, H.

iℏ
d

dt
|Ψ⟩ = Ĥ |Ψ⟩ (2.0.1)

Al lidiar con sistemas compuestos por múltiples part́ıculas, la complejidad del problema

aumenta notablemente, por lo que es necesario tomar ciertas aproximaciones que nos permitan

la resolución del mismo. A grandes rasgos, el modelo de Ehrenfest se basa en la distinción del

sistema en dos conjuntos, el nuclear, conformado por nucleones y electrones muy ligados de capas

internas, y electrónico, constituido por unos pocos electrones externos. De este modo separaremos

tanto el estado general como el hamiltoniano de la forma que se expresa a continuación:

|Ψ⟩ = |ΨN ⟩ ⊗ |Ψe⟩ ; Ĥ = ĤN + Ĥe (2.0.2)

La primera aproximación que se impondrá será en relación a la separabilidad de la función

de onda h́ıbrida, tal y como se expresa en al ecuación 2.0.2. Esta aproximación se hace bajo la

asunción de que la dispersión del paquete de onda asociado al núcleo es muy pequeña [6].

Siendo ϵ(t) la dispersión en el tiempo, esta tendrá una cota superior y será de un valor

despreciable, ϵ(t) ≤ ε ≪ 1 , lo que asegura que la función de onda nuclear se asemeja a una δ

centrada en la posición del núcleo. De manera más espećıfica, esta separación de la función de

onda lleva a una perturbación del orden O
(
ε
L

)
, donde L corresponde a la longitud caracteŕıstica

del sistema molecular.

La separabilidad alcanzada tras imponer la primera aproximación transforma la ecuación

de Schrödinger para la función h́ıbrida como un sistema de dos ecuaciones, una para el sistema

electrónico, y otra para el nuclear.

Ψ̇e(x, t) = He(x, q)Ψe(x, t) (2.0.3)

Ψ̇N (q, t) = HN (x, q)ΨN (q, t) (2.0.4)
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Se puede demostrar de forma sencilla la ortonormalidad de Ψe,N (x, t) con respecto de

Ψ̇e,N (x, t), esta se deja en la sección del apéndice B.1.

Ha de tenerse en cuenta que este razonamiento es posible únicamente asumiendo separa-

bilidad de la función molecular en dos funciones de onda normalizadas, lo cual es factible como

condición inicial, ⟨Ψe|Ψe⟩ (t = 0) = ⟨ΨN |ΨN ⟩ (t = 0) = 1.

El problema es que la separabilidad no se mantiene en el tiempo de forma general para

cualquier paquete de ondas, de forma que se tiende a aproximar la función de onda nuclear a

una gaussiana por comodidad, aunque esta se vaya deformando a medida que pasa el tiempo.

De esta forma śı que se puede considerar que se cumplen las ecuaciones 2.0.3 y 2.0.4 para todo

instante.

ΨN (q, t) =
1

(ϵ(t)
√
2π)

d
2

· exp
(
−(q− < q >)2

4ϵ(t)2

)
exp

(
i
< P >

ℏ
q

)
(2.0.5)

La segunda aproximación corresponde a la búsqueda del ĺımite clásico en el subsistema

nuclear. Se supondrá, con bastante acierto, que la masa del conjunto nuclear será mucho mayor

que la del conjunto electrónico, M ≫ m. Esto permitirá someter al núcleo a un tratamiento

clásico mientras se mantiene el formalismo cuántico para los electrones. [6]

El tratamiento que recibe la función de onda nuclear será la de expresarla en una expansión

de WKB [6]. Este consiste en desarrollar la acción como una serie de potencias de la constante

de Planck y truncar en un término de interés para lo que se trata de hallar. El procedimiento

más detallado puede hallarse en el apéndice B.2.

De esta forma, se cuenta con al ecuación de Schrödinger para la función de onda de los

electrones externos:

iℏ
d

dt
Ψe(x, t) = He(x, q)Ψe(x, t) =

[
− ℏ2

2m
∇2
x + V (x, q)

]
Ψe(x, t) (2.0.6)

Mientras que para el núcleo se contemplan las conocidas soluciones clásicas de las ecua-

ciones de Hamilton-Jacobi:

q̇k =
pk
M

(2.0.7)

ṗk = −⟨Ψe| ∇qkV (x, q) |Ψe⟩ (2.0.8)

La expresión de la ecuación 2.0.8 corresponde al gradiente de un potencial producto de

haber realizado el valor promedio del potencial electrónico, V (x, q) , con respecto al estado de

los electrones, U(x, q, t) = ⟨Ψe|V (x, q) |Ψe⟩. Cabe destacar que el error asumido bajo las dos

aproximaciones previamente mencionadas será del orden O
[(

ϵ
L

)2
+
√

m
M

]
, por lo que la efectivi-

dad de las aproximaciones aumentará al considerar sistemas moleculares de mayores dimensiones.

2.1. Sistemas Hı́bridos

Una vez se conocen los sistemas clásicos y cuánticos aśı como las caracteŕısticas de la

dinámica hamiltoniana en los mismos (expuestas en el anexo A) , no queda más que combinar

estos modelos para construir un sistema h́ıbrido bien definido[7].
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Acher Aĺıas Saura 2.2. OBSERVABLES HÍBRIDOS

Para empezar, es necesario construir el espacio de fases h́ıbrido, lo cual seguirá un ra-

zonamiento intuitivo en perspectiva con los apartados anteriores. Dada la separabilidad de los

estados nucleares y electrónicos que se ha asumido, se considerará una variedad diferenciable

h́ıbrida, MH , la cual se definirá como el producto cartesiano entre una variedad clásica MC y

una variedad cuántica, MQ.

MH = MC ×MQ. (2.1.1)

Ambas variedades clásica y cuántica siendo variedades simplécticas tal y como se ha de-

sarrollado en A.2. De esta forma, es posible recuperar los espacios de fases separados mediante

las aplicaciones de proyección.

πC : MH = MC ×MQ −→ MC (2.1.2)

πQ : MH = MC ×MQ −→ MQ (2.1.3)

Debida a esta propiedad de la variedad h́ıbrida tal y como ha sido definida, es posible

construir una forma simpléctica h́ıbrida como combinación lineal de las formas simplécticas de

las variedades clásica y cuántica separadas tras aplicarles los respectivos pullbacks.

ωH = π∗
CωC + π∗

QωQ (2.1.4)

Por último, destacar un cambio de notación para evitar confusiones más adelante. Visto ya

el tratamiento formal análogo que tienen las coordenadas de MQ y las canónicas y sus momentos

de MC , se empleará la siguiente notación:

Grados de libertad clásicos en MC =⇒ ξ ≡ (Qk, Pk) ∈ MC

Grados de libertad cuánticos en MQ =⇒ (qi, pi) ∈ MQ

2.2. Observables h́ıbridos

Ya en las ecuaciones de Ehrenfest se aprecia el acoplamiento entre los grados de libertad

clásicos y cuánticos, por consiguiente, carece de sentido definir un único observable sobre un

sistema h́ıbrido. En este caso se construye una familia de dichos observadores, indexada por el

punto en el espacio de fases clásico pero que actúa sobre los estados cuánticos.

O = {Ô(ξ) ∈ Lin(H) ∀ξ ∈ MC} (2.2.1)

Dando aśı lugar a una familia de funciones observables en la cual cada elemento queda

asociado a su respectivo observable en F .

F = {fO = ⟨Ψ| Ô(ξ) |Ψ⟩ ∈ C∞(MH)| Ô(ξ) ∈ Lin(H) ∀ξ ∈ MC} (2.2.2)

Más adelante se abordará la forma de determinar eficientemente este espacio de Hilbert H.
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Acher Aĺıas Saura 2.3. CORCHETE DE POISSON HÍBRIDO

2.3. Corchete de Poisson Hı́brido

La herramienta que se empleará para codificar la dinámica en apartados siguientes será

el corchete de Poisson definido sobre MH . Tal y como se muestra en los apartados del apéndice

A.2 y A.3 respectivamente, ambas variedades MC y MQ están dotadas de su propio corchete de

Poisson, por lo que resulta lógico pensar que la construcción del caso h́ıbrido será la suma de

los anteriores.

{·, ·}H = {·, ·}C + ℏ−1{·, ·}Q (2.3.1)

Al actuar sobre dos funciones observables h́ıbridas cualesquiera, fÂ(ξ) y fB̂(ξ), cada cor-

chete que conforma el h́ıbrido actuará consecuentemente sobre los grados de libertad clásicos y

cuánticos.

{fÂ(ξ), fB̂(ξ)}H = {fÂ(ξ), fB̂(ξ)}C + ℏ−1{fÂ(ξ), fB̂(ξ)}Q (2.3.2)

Donde,

{fÂ(ξ), fB̂(ξ)}C =
∑
k

(
f∂Qk

Â(Qk,Pk)
f∂Pk

B̂(Qk,Pk)
− f∂Qk

B̂(Qk,Pk)
f∂Pk

Â(Qk,Pk)

)
(2.3.3)

{fÂ(ξ), fB̂(ξ)}Q = fi[B̂(ξ),Â(ξ)] (2.3.4)

Es importante notar que {·, ·}C resulta en una dependencia cuártica con los grados de

libertad cuánticos, mientras que {·, ·}Q la mantiene cuadrática. Es por esto que es necesario

extender el álgebra para que esta sea cerrada al aplicar repetidamente {·, ·}H . A esta extensión

la denotaremos como O′.

Por último, de la misma forma que se contemplaba un campo vectorial hamiltoniano que

dicta la evolución temporal de los observables en los marcos clásico y cuántico, este también

aparece en el formalismo h́ıbrido.

XH = {·, fĤ(ξ)} =⇒ ḟ = XHf = {f, fĤ(ξ)} (2.3.5)

Por la linealidad de la construcción, es sencillo ver que, en efecto, la forma simpléctica

h́ıbrida define la ecuación de la dinámica de Hamilton en la variedad h́ıbrida.

iXfH
ωH = dfH (2.3.6)

Como ya se ha mencionado, las bases de esta sección se recogen en las secciones del apéndi-

ce A.2 y A.3.

2.4. Acercamiento estad́ıstico a un sistema de Ehrenfest

De la misma forma que en la que se estudia en el apartado A.4 del apéndice, a continuación

se explorará la forma en la que puede emplearse un tratamiento estad́ıstico para abordar un

6
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sistema caracterizado por una dinámica de Ehrenfest en vez de puramente clásica o cuántica.

En primer lugar, considerando el espacio de fases h́ıbrido, MH = MC×MQ, será necesario

definir una medida h́ıbrida. Para ello, y gracias a la estructura con la que MH ha sido definido,

se tendrá que la medida h́ıbrida será de la siguiente forma:

dµH = dµCdµQ = dQ⃗dP⃗ dq⃗dp⃗ (2.4.1)

En consecuencia, una vez especificada la medida del espacio h́ıbrido, el sistema estad́ıstico

requiere de una función de distribución h́ıbrida para que este quede bien definido.

FQC ∈ O |
∫
MH

dµHFQC(Q⃗, P⃗ , q⃗, p⃗) = 1 y FQC(Q⃗, P⃗ , q⃗, p⃗) ≥ 0 ∀ (Q⃗, P⃗ ) ∈ MC ; (q⃗, p⃗) ∈ MQ

(2.4.2)

Siguiendo un procedimiento similar al caso hamiltoniano, se contemplan ahora los obser-

vables h́ıbridos. Dada la naturaleza de dichos observables, siendo estos familias de observables

cuánticos indexados por los puntos en el espacio de fases clásico, es posible definir un operador

densidad de probabilidad sobre el espacio cuántico. Este operador también correspondeŕıa al

primer momento cuántico de una distribución condicionada, pero eso se abordará en más detalle

en caṕıtulos posteriores.

ρ̂(Q⃗, P⃗ ) =

∫
MQ

dµQFQC(Q⃗, P⃗ , q⃗, p⃗) |Ψ(q⃗, p⃗⟩ ⟨Ψ(q⃗, p⃗)| (2.4.3)

Notar que la forma de construir un valor esperado cuántico de la familia de observables

será como la traza del producto entre el operador densidad y el propio observable.

〈
Ô(Q⃗, P⃗ )

〉
Q
= Tr

(
ρ̂(Q⃗, P⃗ )Ô(Q⃗, P⃗ )

)
=

∫
MQ

dµQFQC(Q⃗, P⃗ , q⃗, p⃗)fÔ(Q⃗,P⃗ ) (2.4.4)

Dejando aśı la expresión para el valor esperado h́ıbrido como:

〈
Ô
〉
=

∫
MC

dµC

〈
Ô(Q⃗, P⃗ )

〉
Q
=

∫
MC

dµCTr
(
ρ̂(Q⃗, P⃗ )Ô(Q⃗, P⃗ )

)
(2.4.5)

De nuevo, la derivada temporal de la función de distribución h́ıbrida será de la forma:

ḞQC = {fĤ , FQC}H (2.4.6)

Como anotación final de este caṕıtulo, es posible realizar todo el desarrollo de la dinámica

h́ıbrida en formulación de mecánica geométrica utilizando proyectores en vez de estados en

cuanto a los grados de libertad cuánticos se refiere. La demostración es una ardua tarea y de

una fineza matemática que se escapa de los objetivos de este trabajo, y es por dicho motivo que

se deja como parte de la bibliograf́ıa [7].

Lo que śı es posible considerar es la formulación análoga del modelo de Ehrenfest en

términos de proyectores. La cuestión es definir una aplicación entre el espacio de estados cuántico,

MQ, y el espacio de proyectores de rango uno, D1(H), µ : MQ −→ D1(H).
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La finalidad de esta aplicación es la de pasar de considerar un rayo de infinitos estados a

un solo elemento del espacio proyectivo. Este punto queda definido como:

|Ψ⟩ ∈ MQ =⇒ µ(Ψ) = ρΨ =
|Ψ⟩ ⟨Ψ|
⟨Ψ|Ψ⟩

(2.4.7)

El cambio formal que se presenta en las ecuaciones de Ehrenfest, ya definidas con ante-

rioridad (ecuaciones 2.0.6, 2.0.7 y 2.0.8), se verá reflejado en el cálculo del valor esperado del

hamiltoniano electrónico y en que el estado del electrón pasa de estar descrito por la ecuación

de Schrödinger a la de von Neumann. Por consiguiente, las ecuaciones de Ehrenfest expresadas

en términos de proyectores quedan de la siguiente forma:

iℏρ̇Ψ = [He(x, q), ρΨ] (2.4.8)

q̇k =
pk
M

(2.4.9)

ṗk = ∇qkTr (He(x, q)ρΨ) (2.4.10)

Resulta de vital importancia remarcar cómo la evolución de tanto la parte cuántica como

de la clásica dependen de los grados cuánticos y clásicos, es decir, ambos subsistemas evolucio-

nan de forma acoplada.

Expresada en términos de los proyectores, ρΨ, la formulación de la mecánica de Ehrenfest es-

tad́ıstica es completamente análoga, aunque los grados de libertad cuánticos se parametrizan

con los proyectores. Aśı, la densidad de probabilidad h́ıbrida será una función de la forma

FQC(Q⃗, P⃗ , ρΨ).
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Caṕıtulo 3

Liouville y la dinámica estad́ıstica

El objetivo de este caṕıtulo es profundizar en el tratamiento estad́ıstico aplicado a un

sistema h́ıbrido y estudiar como se traducen las ecuaciones de la dinámica de Ehrenfest cuando

esta se extrapola a la función de distribución. Además será relevante más adelante considerar la

desinformación inherente del sistema estad́ıstico h́ıbrido para aplicar el formalismo de máxima

entroṕıa.

Otro punto a considerar es el hecho que, de ahora en adelante, resultará más conveniente

el uso de la formulación de proyectores para lidiar con el consecuente subsistema cuántico. De

esta forma, un punto en la variedad h́ıbrida vendrá dado por dos coordenadas, (ξ, ρΨ) ∈ MH , el

punto en el espacio de fases clásico, ξ ∈ MC , y el estado cuántico, ρΨ ∈ MQ.

Como preludio, y a riesgo de resultar repetitivo, es importante insistir en la noción de

observable h́ıbrido y en su función asociada. Como se ha mencionado anteriormente, para las

funciones de observables se escoge el valor esperado sobre el estado cuántico evaluado para cual-

quier punto clásico. Con la notación establecida en el párrafo anterior, se tendrá un observable

Ô(ξ) ∈ O con su función asociada fÔ(ξ) ∈ F descrita por la siguiente ecuación.

fÔ(ξ)(ρ̂ψ) = Tr
(
ρ̂ΨÔ(ξ)

)
(3.0.1)

A continuación, si se requiere calcular el valor esperado de dicha magnitud, se cuenta con

la medida de la variedad h́ıbrida dµH ≡ dµQC = dµQdµC y la función de distribución FQC(ξ, ρΨ)

[1]. En consecuencia, el valor estimado de Ô(ξ) se representa como:

〈
Ô(ξ)

〉
=

∫
MC×MQ

dµQCFQC(ξ, ρΨ)fÔ(ξ) (3.0.2)

A ráız de esta definición, tiene cabida la introducción del primer momento cuántico de la

distribución h́ıbrida como familia de operadores que caracteriza por completo el valor esperado

de los operadores. Este primer momento viene dado por:

ρ̂(ξ) =

∫
MQ

dµQFQC(ξ, ρΨ)ρΨ (3.0.3)

A partir de esta definición es sencillo ver que no es necesario considerar órdenes superiores

en lo relativo a los momentos cuánticos cuando se trata de calcular el valor esperado de un

observable de la forma 3.0.1 [4]. Sustituyendo 3.0.1 en la ecuación 3.0.2:

9



Acher Aĺıas Saura

〈
Ô(ξ)

〉
=

∫
MC

dµC

∫
MQ

dµQFQC(ξ, ρΨ)Tr
(
ρ̂ΨÔ(ξ)

)
=

∫
MC

dµC Tr

(∫
MQ

dµQFQC(ξ, ρΨ)ρ̂ΨÔ(ξ)

)
(3.0.4)

Implementando la definición de 3.0.3 se obtiene la expresión del valor esperado del obser-

vable en términos del primer momento cuántico.

〈
Ô(ξ)

〉
=

∫
MC

dµC Tr
(
ρ̂(ξ)Ô(ξ)

)
(3.0.5)

Separándose del desarrollo del caṕıtulo anterior, es posible considerar la distribución h́ıbri-

da, bajo un prisma puramente matemático, como una distribución bivariada. Esta nueva formu-

lación da lugar a dos nuevos conceptos:

Distribución marginal de probabilidad

Distribución condicionada de probabilidad

Durante este trabajo se tomará como marginal una distribución clásica y como condi-

cionada una distribución cuántica pues es el caso más natural f́ısicamente dados los tiempos

naturales de unos grados de libertad y otros (mucho más rápidos en el caso cuántico que en el

clásico), pero cabe remarcar que matemáticamente la elección inversa es también posible. Se de-

fine la distribución marginal clásica al integrar la distribución conjunta h́ıbrida sobre el espacio

cuántico.

FC(ξ) =

∫
MQ

dµQFQC(ξ, ρΨ) (3.0.6)

Dado que las coordenadas en el espacio proyectivo, ρΨ, corresponden a estados cuánticos,

no es dif́ıcil probar que la traza del primer momento cuántico corresponde a la distribución

marginal clásica.

Tr (ρ̂(ξ)) =

∫
MQ

dµQFQC(ξ, ρΨ) Tr (ρΨ)︸ ︷︷ ︸
=1

=

∫
MQ

dµQFQC(ξ, ρΨ) = ρ̂⊗0(ξ) = FC(ξ) (3.0.7)

Para la distribución condicionada cuántica, dado un punto fijo del espacio de fases clásico,

se tendrá una distribución condicionada cuántica FQ(ρΨ|ξ). Por definición de la distribución

bivariada, ha de cumplirse el siguiente resultado.

FQC(ξ, ρΨ) = FC(ξ)FQ(ρΨ|ξ) (3.0.8)

Al plantear la condición de normalización, será posible realizar una separación en la función

de distribución h́ıbrida siguiendo 3.0.8. Se introduce la traza de la variable cuántica, Tr (ρΨ),

por conveniencia para el desarrollo.

∫
MC

dµCFC(ξ)

∫
MQ

dµQFQ(ρΨ|ξ) =
∫
MC

dµCFC(ξ)

∫
MQ

dµQFQ(ρΨ|ξ) Tr (ρΨ)︸ ︷︷ ︸
=1

= 1 (3.0.9)
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Extrayendo la traza a toda la integral sobre el espacio de estados cuántico:

∫
MC

dµCTr

(
FC(ξ)

∫
MQ

dµQFQ(ρΨ|ξ)ρΨ

)
= 1 (3.0.10)

El teorema de Gleason [8] afirma que existe un operador densidad, ρ̂ξ, capaz de deter-

minar el valor esperado de cualquier observable del sistema cuántico, por lo que en este marco

será conveniente trabajar con dicho operador densidad ya que representa un estado puramente

cuántico. A partir de la ecuación 3.0.10 se puede definir este operador densidad como:

ρ̂ξ =

∫
MQ

dµQFQ(ρΨ|ξ)ρΨ, (3.0.11)

Pudiéndose interpretar ρ̂ξ como el primer momento cuántico de la distribución condicio-

nada.

Por consiguiente, el primer momento cuántico ρ̂(ξ), que no era un estado como tal ya

que no quedaba normalizado, queda definido mediante el producto de la distribución marginal

clásica y un operador densidad cuántico bien definido.

ρ̂(ξ) = FC(ξ)ρ̂ξ (3.0.12)

Desde los primeros estudios sobre sistemas h́ıbridos, el mecanismo más utilizado para

referirse a un estado h́ıbrido ha sido el primer momento cuántico de la distribución h́ıbrida, ρ̂(ξ),

ya que recoge la información necesaria sobre un estado cuántico y su peso global dictaminado

por la función de distribución h́ıbrida. Además, se ha comprobado que es el único momento

necesario para calcular el valor esperado de un observable h́ıbrido. Aún aśı, surge un problema

cuando se trata de describir la dinámica del sistema a partir de ρ̂(ξ), y esto se debe a que este

deja de ser suficiente para representar la evolución temporal, como veremos a continuación.

Notar que, debido a la naturaleza de la construcción de la distribución condicionada, el

requerimiento de momentos de mayor orden puede trasladarse de la distribución total FQC a la

condicionada FQ(ρΨ|ξ).

ρ̂⊗k(ξ) ⇐⇒ ρ̂⊗kξ (3.0.13)

Nótese que esto supone que, de forma efectiva, se está considerando una matriz densidad

generalizada sobre el espacio de Hilbert H
k︷ ︸︸ ︷

⊗ · · ·⊗H.

3.1. La necesidad de momentos de mayor orden

Ya se ha hecho mención del papel del corchete de Poisson h́ıbrido en la evolución de las

funciones observables (Ec. 2.3.5), pero existen ciertas sutilezas en la formulación de la dinámica

de los observables cuando se desarrolla en el marco de los proyectores. Si se considera una función

observable dependiente del tiempo f(ξ, ρΨ; t) = f(ξ(t), ρΨ(t)), es evidente que esta presenta una

dependencia lineal con los grados de libertad cuánticos (Ec. 3.0.1). Por consiguiente, al evaluar en
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el corchete h́ıbrido se tendrá la consiguiente progresión ascendente en lo relativo a la dependencia

con los grados de libertad cuánticos. Dada una función observable h́ıbrido C0(ξ, ρΨ; t), se le aplica

el corchete h́ıbrido reiteradamente:

C1 = {f, C0}H = {f, C0}C︸ ︷︷ ︸
∼Tr(ρ⊗2

Ψ ·)

+ℏ−1 {f, C0}Q︸ ︷︷ ︸
∼Tr(ρΨ·)

C2 = {f, C1}H = {f, {f, C0}C}C︸ ︷︷ ︸
∼Tr(ρ⊗3

Ψ ·)

+ℏ−1 {f, {f, C0}Q}Q︸ ︷︷ ︸
∼Tr(ρ⊗2

Ψ ·)

C3 ∼ Tr
(
ρ⊗4
Ψ ·
)
+Tr

(
ρ⊗3
Ψ ·
)

C4 ∼ Tr
(
ρ⊗5
Ψ ·
)
+Tr

(
ρ⊗4
Ψ ·
)

...

En consecuencia, al aplicar el corchete de Poisson, la parte correspondiente al corchete

clásico (Ec. 2.3.3) aumenta progresivamente el orden de la dependencia con los grados cuánticos.

Debido a esto, era necesario considerar una extensión del álgebra para que esta fuese cerrada.

Con los proyectores el orden de esta dependencia abarca todas las potencias de ρΨ, por lo que

al extender el álgebra se han de considerar todas las funciones f ∈ C∞(MH).

Dejando esto de lado, al proponer la expresión de la evolución temporal del valor esperado

de un observable arbitrario, esta queda:

d

dt

〈
Ô(ξ)

〉
(t) =

∫
MC×MQ

dµQCFQC(ξ, ρΨ)
d

dt
fÔ(ξ)(t) =

∫
MC×MQ

dµQCFQC(ξ, ρΨ){fÔ(ξ), fĤ(ξ)}H

=

∫
MC×MQ

dµQCFQC(ξ, ρΨ){fÔ(ξ), fĤ(ξ)}C + ℏ−1

∫
MC×MQ

dµQCFQC(ξ, ρΨ){fÔ(ξ), fĤ(ξ)}Q

(3.1.1)

Donde cada sumando corresponde a los siguientes valores esperados:

∫
MC×MQ

dµQCFQC(ξ, ρΨ){fÔ(ξ), fĤ(ξ)}C =
〈
f∂Qk

Ôf∂Pk
Ĥ

〉
−
〈
f∂Qk

Ĥf∂Pk
Ô

〉
(3.1.2)

∫
MC×MQ

dµQCFQC(ξ, ρΨ){fÔ(ξ), fĤ(ξ)}Q =
〈
fi[Ĥ,Ô](ξ)

〉
(3.1.3)

El término del conmutador, fi[Ĥ,Ô](ξ), se mantiene dentro del álgebra:

〈
fi[Ĥ,Ô](ξ)

〉
=

∫
MC

dµC Tr
(
i ρ̂(ξ)

[
Ĥ(ξ), Ô(ξ)

])
=

∫
MC

dµC Tr
(
i
[
ρ̂(ξ), Ĥ(ξ)

]
Ô(ξ)

)
(3.1.4)

Pero es en los términos clásicos donde se aprecia la aparición de momentos cuánticos de

órdenes superiores:
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〈
f∂Qk

Ôf∂Pk
Ĥ

〉
=

∫
MC

dµC

∫
MQ

dµQFQC(ξ, ρΨ) Tr
(
ρ̂Ψ∂Qk

Ô(ξ)
)

Tr
(
ρ̂Ψ∂Pk

Ĥ(ξ)
)

=

∫
MC

dµC

∫
MQ

dµQFQC(ξ, ρΨ) Tr
(
ρ̂Ψ ⊗ ρ̂Ψ∂Qk

Ô(ξ)⊗ ∂Pk
Ĥ(ξ)

)
=

∫
MC

dµCTr

((∫
MQ

dµQFQC(ξ, ρΨ) ρ̂Ψ ⊗ ρ̂Ψ

)
∂Qk

Ô(ξ)⊗ ∂Pk
Ĥ(ξ)

)

=

∫
MC

dµC Tr
(
ρ̂⊗2(ξ)∂Qk

Ô(ξ)⊗ ∂Pk
Ĥ(ξ)

)
(3.1.5)

Donde el segundo momento cuántico aparece por primera vez, notando que, aunque no

fuese relevante para el cálculo del valor esperado del observable, lo es para su evolución temporal.

La expresión del segundo momento es la siguiente:

ρ̂⊗2(ξ) =

∫
MQ

dµQFQC(ξ, ρΨ)ρΨ ⊗ ρΨ (3.1.6)

Este razonamiento se puede generalizar para el k-ésimo momento cuántico de la distribu-

ción:

〈
fÔ1(ξ)

· · · fÔk(ξ)

〉
=

∫
MC

dµCTr
(
ρ̂⊗k(ξ)

(
Ô1(ξ)⊗ · · · ⊗ Ôk(ξ)

))
(3.1.7)

ρ̂⊗k(ξ) =

∫
MQ

dµQFQC(ξ, ρΨ)

k︷ ︸︸ ︷
ρΨ ⊗ · · · ⊗ ρΨ (3.1.8)

3.2. Dinámica de los momentos

En el caso de calcular la derivada temporal de orden k del valor esperado de un observa-

ble es donde se manifiesta el principal inconveniente de la dinámica h́ıbrida. Al generalizar el

desarrollo que da lugar a la ecuación 3.1.1, se observa que esta siempre va a depender de todos

los momentos cuánticos hasta k-ésimo orden y del momento cuántico de orden inmediatamente

superior, ρ̂⊗k+1(ξ), siendo esto debido al corchete de Poisson clásico.

dk

dtk

〈
Ô(ξ)

〉
(t) = F (ρ̂⊗0(ξ), · · ·, ρ̂⊗k+1(ξ), Ô(ξ), Ĥ(ξ)) (3.2.1)

Se explica en la sección del apéndice A.4 que es posible trasladar la dependencia temporal

de las funciones observables a la propia distribución del sistema.

FQC(ξ, ρΨ)fÔ(ξ, ρΨ; t) ⇐⇒ FQC(ξ, ρΨ; t)fÔ(ξ, ρΨ) (3.2.2)

Esto es extremadamente útil ya que la dinámica de los observables deja de estar gobernada

por la evolución de sus funciones asociadas y pasa a regirse por la evolución de la distribución.

Las implicaciones de esta proposición son las de pasar de contar con una ecuación diferencial

para cada observable a manejar únicamente una ecuación maestra para la distribución h́ıbrida
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(Ec. 2.4.6).

Ahora bien, habiendo visto como los observables y su dinámica dependen de los infinitos

momentos de la distribución FQC(ξ, ρΨ; t), es lógico tratar de determinar como se comportan

dichos momentos estad́ısticos a lo largo de un intervalo temporal.

ρ̂⊗k(ξ; t) =

∫
MQ

dµQFQC(ξ, ρΨ; t)

k︷ ︸︸ ︷
ρΨ ⊗ · · · ⊗ ρΨ (3.2.3)

Por consiguiente, la dinámica de la distribución se verá reflejada como un sistema de

infinitas ecuaciones, cada una correspondiente a la evolución de un momento determinado:

ḞQC(ξ, ρΨ; t) ⇐⇒
{
˙̂ρ⊗0(ξ; t), ˙̂ρ(ξ; t), ˙̂ρ⊗2(ξ; t), · · · , ˙̂ρ⊗k(ξ; t), · · ·

}
(3.2.4)

Comenzando por el primer momento, la derivada temporal de este elemento será:

d

dt
ρ̂(ξ; t) =

∫
MQ

dµQ
d

dt
FQC(ξ, ρΨ; t)ρΨ =

∫
MQ

dµQ{fĤ , FQC}H(ξ, ρΨ)ρΨ

= iℏ−1
[
ρ̂(ξ), Ĥ

]
+

∫
MQ

dµQ{fĤ , FQC}C(ξ, ρΨ)ρΨ
(3.2.5)

La expresión del corchete clásico se puede deducir a partir de desarrollar el corchete clásico

y manipulando ligeramente la traza. Por ello, un concepto necesario para deducir la expresión de
˙̂ρ(ξ; t) es el de la traza parcial. Al realizar la traza parcial sobre un operador con descomposición

en productos tensoriales tal y como los momentos, se obtiene un momento de menor orden.

Trp

(
ρ̂⊗k(ξ)

)
= Trp

 k︷ ︸︸ ︷
ρ̂(ξ)⊗ · · · ⊗ ρ̂(ξ)

 =

k−p︷ ︸︸ ︷
ρ̂(ξ)⊗ · · · ⊗ ρ̂(ξ) = ρ̂⊗k−p(ξ) (3.2.6)

Será útil para lidiar con la expresión del corchete clásico el poder expresar la variable

cuántica en términos de la traza, dado que los puntos de la subvariedad cuántica, ρΨ, son

estados puros, tal y como se muestra a continuación:

ρΨ = Tr1 (ρΨ ⊗ ρΨ) (3.2.7)

De esta forma,

∫
MQ

dµQ{fH , FQC}Cρψ =

∫
MQ

dµQTr1

(
∂QĤ(ξ) ∂P FQCρψ ⊗ ρψ − ∂P Ĥ(ξ) ∂QFQCρψ ⊗ ρψ

)
= Tr1

(
∂QĤ(ξ) ∂P

∫
MQ

dµQFQCρψ ⊗ ρψ − ∂P Ĥ(ξ) ∂Q

∫
MQ

dµQFQCρψ ⊗ ρψ

)
= Tr1

(
∂QĤ(ξ) ∂Pρ(ξ)

⊗2 − ∂P Ĥ(ξ)∂Qρ(ξ)
⊗2
)

= Tr1

(
∂QĤ(ξ)∂Pρ(ξ)

⊗2 − ∂P Ĥ(ξ)∂Qρ(ξ)
⊗2
)
= Tr1{Ĥ(ξ)⊗ I, ρ̂⊗2(ξ)}C

(3.2.8)
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Recordando que ahora la dependencia temporal ya no se encuentra en el observable, sino

en la distribución y sus momentos.

Generalizando la expresión de ˙̂ρ(ξ; t) al k-ésimo momento se tiene:

˙̂ρ⊗k(ξ; t) = iℏ−1
[
Ĥk(ξ), ρ̂⊗k(ξ; t)

]
+Tr1

{Ĥ(ξ)⊗
k︷ ︸︸ ︷

I⊗ · · · ⊗ I, ρ̂⊗k+1(ξ; t)}C

 (3.2.9)

Donde, Ĥk(ξ) =

k︷ ︸︸ ︷
Ĥ(ξ)⊗ I⊗ · · · ⊗ I+ · · ·+

k︷ ︸︸ ︷
I⊗ · · · ⊗ I⊗ Ĥ(ξ)

Vistas aśı las expresiones de las derivadas temporales de los infinitos momentos cuánticos

de la distribución h́ıbrida, se plantea la ecuación de Liouville en forma de un sistema de infinitas

ecuaciones acopladas.

A efectos prácticos, pasar de una ecuación maestra a una colección de infinitas ecuaciones

no parece una solución eficiente que simplifique el problema. Es por ello que es posible argu-

mentar que la evolución de la distribución en intervalos finitos de tiempo solo se refleja en un

número finito de momentos. De esta forma, restringir la solución a un tiempo máximo lo suficien-

temente pequeño permite quedarse únicamente con las ecuaciones diferenciales de los primeros

k momentos de la distribución.

No obstante, surge un inconveniente fruto de la construcción inherente de la evolución

generalizada de los momentos mostrada en 3.2.9. Al acotar las ecuaciones necesarias hasta un

k-ésimo momento en función del tiempo máximo de evolución elegido, también es requerida una

dependencia con el (k + 1)-ésimo momento.

˙̂ρ⊗k(ξ; t) = F (ρ̂⊗k(ξ; t), ρ̂⊗k+1(ξ; t)) (3.2.10)

Para liberar el nuevo sistema truncado de una dependencia que escapa de las considera-

ciones tomadas al acotar el tiempo de evolución, se tomará el formalismo de Máxima Entroṕıa

como criterio para elegir ρ̂⊗k+1(ξ; t). El argumento radica en que, dado que f́ısicamente no se

aprecian los efectos de ρ̂⊗k+1(ξ; t) en los valores esperados de los observables, se tomará aquel

que proporcione un mayor nivel de desinformación en el sistema. El objetivo con esta decisión

es la de elegir el caso más general posible y minimizar todo lo posible el error cometido en el

truncamiento. Es importante destacar que esta entroṕıa actúa únicamente como una herramien-

ta matemática, no como una entroṕıa termodinámica, por lo que se tiene una mayor libertad al

tratar con esta.

Además, es necesario tratar de fijar los grados de libertad de ρ̂⊗k+1(ξ; t) que dependan de

ρ̂⊗k(ξ; t). Para ello se utilizan las propias ligaduras del sistema, aśı como aquellas impuestas por

la traza, pureza, o algunas más espećıficas como la desigualdad de Cauchy-Schwartz. De esta

forma, se fijan cierto número de grados de libertad mientras que a los restantes se les aplica el

ya mencionado formalismo de Máxima Entroṕıa.

En consecuencia, la expresión más adecuada de la ecuación 3.2.9 seŕıa el siguiente:
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˙̂ρ⊗k(ξ; t) = iℏ−1
[
Ĥk(ξ), ρ̂⊗k(ξ; t)

]
+Tr1

{Ĥ(ξ)⊗
k︷ ︸︸ ︷

I⊗ · · · ⊗ I, ρ̂⊗k+1
MaxEnt(ξ; t)}C

 (3.2.11)

A continuación, será conveniente aplicar la dinámica desarrollada en estos caṕıtulos a un

ejemplo sencillo para estudiar su comportamiento y verificar las hipótesis planteadas.
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Caṕıtulo 4

Ejemplo particular y aplicación

El simple sistema que se utilizará como ejemplo será el de un solo q-bit [4], por lo que es

posible emplear una base ampliamente conocida como las matrices de Pauli, {σ̂j}j=0,1,2,3, como

base del espacio de proyectores, P1.

σ̂0 =
1√
2

(
1 0

0 1

)
σ̂1 =

1√
2

(
0 1

1 0

)
σ̂2 =

1√
2

(
0 −i

i 0

)
σ̂3 =

1√
2

(
1 0

0 −1

)
(4.0.1)

De esta forma, es posible expresar la matriz densidad de 3.0.11 como combinación lineal

de la base.

ρ̂ξ =
3∑
j=0

µj σ̂j , (4.0.2)

donde las variables µj corresponden a las coordenadas de ρ̂ξ en la base de matrices de Pauli.

A continuación, es necesario tomar una decisión sobre el ĺımite temporal que se impone

al sistema para considerar la aproximación del truncamiento en la dependencia de momentos.

En este caso, dado que el objetivo es observar el comportamiento de la mecánica y no tratar

de representar un sistema concreto con precisión, se optará por restringir la evolución temporal

hasta el segundo momento, ρ̂⊗2
ξ . Ciertamente, esta decisión provocará un error a tener en cuenta

en los resultados, pero simplificará los cálculos y simulaciones en gran medida.

Si se toma en consideración la definición de ρ̂⊗2
ξ expresada en la ecuación 3.1.6 (Esta

corresponde a ρ̂(ξ)⊗2, pero es análoga por 3.0.12), se observa que el segundo momento se sale

de P1, por lo que es necesario tomar P2 ≡ P1 ⊗ P1 como espacio en el que definir ρ̂⊗2
ξ .

Como elección de base para P2 se tomará la base simétrica de productos tensoriales entre

las matrices de Pauli de la base de P1.

Base de P2 :

{
1

2
(σ̂j ⊗ σ̂k + σ̂k ⊗ σ̂j)

}
j≤k=0,1,2,3

(4.0.3)

Por lo tanto, al considerar la expresión general del segundo momento cuántico condicionado

se tendŕıa:
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ρ̂⊗2
ξ = µ00 (σ̂0 ⊗ σ̂0) +

1

2

3∑
k=1

µ0k (σ̂0 ⊗ σ̂k + σ̂k ⊗ σ̂0) +
1

2

3∑
j≤k=1

µjk (σ̂j ⊗ σ̂k + σ̂k ⊗ σ̂j) (4.0.4)

Teniendo en cuanta la naturaleza estad́ıstica de los operadores densidad ρ̂ξ y ρ̂⊗2
ξ , se

obtiene como consecuencia directa interpretar las coordenadas de dichas matrices como los

valores esperados de todos los puntos de MQ, ρψ, correspondientes a estados puros.

µj = E (µj(ρψ)) ; µjk = E (µj(ρψ)µk(ρψ)) (4.0.5)

Para lidiar con la complejidad que conlleva tratar con el momento de segundo orden,

será necesario recurrir a ciertas restricciones impuestas sobre las coordenadas fruto de diversas

condiciones.

En primer lugar, dado que ρ̂ξ y ρ̂⊗2
ξ son operadores densidad bien definidos, su traza ha

de estar normalizada. 
Tr (ρ̂ξ) = 1 =⇒ µ0 =

√
2
2

Tr
(
ρ̂⊗2
ξ

)
= 1 =⇒ µ00 =

1
2

Adicionalmente, es posible extraer otra relación entre coordenadas a ráız de la expresión

?? mediante la identificación de términos por inspección.

Tr1

(
ρ̂⊗2
ξ

)
=

2√
2
µ00σ̂j +

1√
2

3∑
k=1

µ0kσ̂k =
3∑
j=0

µj σ̂j = ρ̂ξ (4.0.6)

De esta forma, se tiene que:

µj =
µ0j√
2

(4.0.7)

Otra propiedad aprovechable de los operadores densidad es su pureza. Cualquier matriz

densidad bien definida ha de tener una pureza menor o igual a la unidad, lo que se traduce a

P (ρ̂ξ) = Tr
(
ρ̂2ξ

)
≤ 1 y P

(
ρ̂⊗2
ξ

)
= Tr

((
ρ̂⊗2
ξ

)2)
≤ 1. Las restricciones que se pueden extraer

concernientes a las coordenadas son las siguientes:


P (ρ̂ξ) ≤ 1 =⇒

∑3
j=1 µ

2
j ≤ 1

2

P
(
ρ̂⊗2
ξ

)
≤ 1 =⇒ µ2

00 +
1
2

∑3
k=1 µ

2
0k +

1
2

∑3
j≤k=1 µ

2
jk ≤ 1 =⇒

∑3
k=1 µ

2
0k +

∑3
j≤k=1 µ

2
jk ≤

3
2

A partir de las definiciones de las coordenadas como valores esperados en 4.0.5 se pueden

deducir algunas consecuencias útiles. Aśı como:

µjj − µ2
j = E

(
µ2
j (ρψ)

)
− E (µj(ρψ))

2 = E
(
(µj(ρψ)− µj)

2
)
≥ 0 (4.0.8)
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Además, como ya se ha establecido que µj(ρψ) ∈ MQ son estados puros, estos deben

cumplir la igualdad estricta referida a la pureza, por lo que:

3∑
j=1

µjj =
3∑
j=1

E
(
µ2
j (ρψ)

)
= E

 3∑
j=1

µ2
j (ρψ)

 = E
(
1

2

)
=

1

2
(4.0.9)

Por último, las coordenadas de los momentos deben cumplir la desigualdad de Cauchy-

Schwartz:

|µij − µiµj | ≤
√(

µii − µ2
i

) (
µjj − µ2

j

)
(4.0.10)

A continuación, es imprescindible remarcar el cambio de notación para las coordenadas

del segundo momento. Esto se debe a la necesidad de incluir estas variables como parte de

simulaciones numéricas donde la indexación es relevante. En consecuencia, se tendrá:

µ00 = λ0

µ01 = λ1

µ02 = λ2

µ03 = λ3

µ12 = λ4

µ23 = λ5

µ13 = λ6

µ11 = λ7

µ22 = λ8

µ33 = λ9

Inicialmente se planteó la utilización de una entroṕıa de Von Neumann como expresión

de la desinformación a maximizar. Esto conllevaŕıa ciertos problemas que dificultaŕıan en gran

medida los cálculos, resultando en la pérdida de exactitud por la necesidad de aproximaciones.

S = −Tr
(
ρ̂⊗2
ξ log

(
ρ̂⊗2
ξ

))
(4.0.11)

Dada la estructura de la expresión 4.0.11, es necesaria la expansión en serie del logaritmo,

log
(
ρ̂⊗2
ξ

)
=
(
I− ρ̂⊗2

ξ

)
+ 1

2

(
I− ρ̂⊗2

ξ

)2
+ · · ·, lo cual ya introduce imprecisiones adicionales en los

potenciales cálculos posteriores. Tomando únicamente los términos de orden lineal en la entroṕıa,

esta se puede aproximar tal que aśı:

S ≃ 1− Tr

((
ρ̂⊗2
ξ

)2)
(4.0.12)

La contribución llevada a cabo en este trabajo es la de escoger una entroṕıa de Rényi como

representante matemático de la desinformación. Es importante recordar que esta “entroṕıa”no es

más que una herramienta con la que se busca el estado de máxima desinformación del momento

de orden cuadrático. Es por ello que, al no ser necesario lidiar con su equivalente termodinámi-

co, se pueden considerar diferentes expresiones para la entroṕıa siempre que estas estén bien

definidas.

Se define la entroṕıa de Rényi como una familia de estas indexadas por un parámetro α:

Sα =
1

1− α
log
[
Tr
((

ρ̂⊗2
ξ

)α)]
=

1

1− α
log

[
3∑

k=0

Λαk

]
(4.0.13)
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Donde {Λk}k=0,1,2,3 corresponden a los autovalores de ρ̂⊗2
ξ . Por consiguiente, para encon-

trar el estado que maximice Sα se habrá de estudiar el comportamiento de los autovalores con

respecto a las coordenadas cuadráticas, Λk = Λk (λj) ∀j = 0, 1, . . . , 9. En este caso particular,

solo se considerarán las entroṕıas correspondientes a α > 1 =⇒ 1
1−α < 0, por lo que será necesa-

rio minimizar los autovalores para maximizar la entroṕıa. El ĺımite α → 1 se corresponde con la

entroṕıa de von Neumann. Se considerará el comportamiento del modelo de Rényi para varios

valores del parámetro α, y se compararán.

En primer lugar, era necesario calcular los autovalores {Λk} ∈ R del segundo momento,

dado que la estructura de la entroṕıa de Rényi (4.0.13) permite trasladar el estudio de su

monotońıa a la de estos parámetros. Durante la realización de esta tarea, se observaron la

aparición de estructuras repetidas y reconocibles en la forma de los autovalores, las cuales se

denotaron como P̃ y C.

Λ0 = 0 (4.0.14)

Λ1 =
−P̃

3 3

√
C +

√∣∣∣C2 − P̃
27

∣∣∣ −
3

√√√√√C +

√√√√∣∣∣∣∣C2 − P̃

27

∣∣∣∣∣+ 1

3
(4.0.15)

Λ2 = Λ3 =
−P̃

3 3

√
C +

√∣∣∣C2 − P̃
27

∣∣∣ +
3

√√√√√C +

√√√√∣∣∣∣∣C2 − P̃

27

∣∣∣∣∣+ 1

3
(4.0.16)

Aśı pues, el objetivo era el de optimizar los autovalores a partir de estas dos variables, y

una vez obtenidos los valores que maximizan la entroṕıa, despejar las coordenadas haciendo uso

del resto de restricciones.

P̃ = P̃
(
ρ̂⊗2
ξ

)
=

6∑
i=1

λ2
i (4.0.17)

C = C
(
ρ̂⊗2
ξ

)
= − (λ1λ2λ4 + λ1λ3λ6 + λ2λ3λ5) + λ4λ5λ6 (4.0.18)

Uno de los pasos clave para resolver este problema es el de analizar cuidadosamente las

restricciones y tratar de simplificar todo lo posible las expresiones. Ya se ha sustituido la ex-

presión 4.0.9, y es por ello que no aparece una dependencia con {λ7, λ8, λ9}. Otra medida de

gran relevancia será la de considerar sub-esferas de Bloch para los elementos de la base de

P2, de forma que es equivalente escoger cualquier punto de estas esferas. Esto permite simpli-

ficar parcialmente las coordenadas y reducir el número de incógnitas. Aśı pues, se consideran

las coordenadas {λ1, λ2, λ3} como representantes de los puntos de la sub-esfera formada por

los elementos de la base
{
1
2 (σ̂0 ⊗ σ̂k + σ̂k ⊗ σ̂0)

}
k=1,2,3

, y las coordenadas {λ4, λ5, λ6} los de{
1
2 (σ̂j ⊗ σ̂k + σ̂k ⊗ σ̂j)

}
j<k=2,3

.

Como se ha mostrado en 4.0.7, las coordenadas {λ1, λ2, λ3} quedan fijas porque están

ligadas a las de ρ̂ξ. Haciendo uso de la pureza del primer momento y 4.0.7, se tiene que:
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3∑
k=1

λk ≤ 1 =⇒ P̃
(
ρ̂⊗2
ξ

)
≥ 1 (4.0.19)

Si se tiene en cuenta la pureza de ρ̂⊗2
ξ , se puede deducir la cota superior del parámetro P̃ .

1 ≤ P̃
(
ρ̂⊗2
ξ

)
≤ 4

3
(4.0.20)

Quedan tres grados de libertad {λ4, λ5, λ6}. Gracias a esto, se han elegido tres casos

diferentes que simplifican el problema. Para acotar el parámetro C
(
ρ̂⊗2
ξ

)
en cada caso, se

supondrá una dependencia simétrica de {λ1, λ2, λ3} en el sumatorio de 4.0.19, λk ≤
√
3
3 ; ∀k =

1, 2, 3 , sin pérdida de generalidad para lo que se trata de hallar.

1. λ4 = λ; λ5 = λ6 = 0 =⇒ C = −λ1λ2λ =⇒ −1
3 ≤ C ≤ 1

3

2. λ4 = λ5 = λ; λ6 = 0 =⇒ C = −λ1λ2λ− λ2λ3λ =⇒ −2
3 ≤ C ≤ 2

3

3. λ4 = λ5 = λ6 = λ =⇒ C = −λ1λ2λ− λ2λ3λ− λ1λ3λ+ λ3 =⇒ −2 ≤ C ≤ 2

La construcción de estas cotas en los parámetros que maximizan la entroṕıa es necesa-

rio, ya que los métodos numéricos implementados en el código que permiten hallar los valores

exactos precisan el rango de valores en el que tiene sentido evaluar los parámetros acorde con

las restricciones impuestas sobre el problema. Otro aspecto a considerar es que en el cuerpo del

documento solo se discutirán los resultados del primer caso por razones de simplicidad tanto

numérica como de extensión. Se pueden hallar los datos relativos a los casos 2 y 3 en C.3 y C.4.

También recordar que el proceso para hallar P̃ y C es necesario realizarlo en cada paso

temporal, ya que el estado cuántico va a evolucionar de forma acoplada con la distribución

cuántica. Para facilitar la compresión del trabajo llevado a cabo, se mostrará en un esquema las

iteraciones del ciclo.

{λ0, λ1, λ2, λ3} (t) =⇒
{P̃ , C}MaxEnt (t)

⇕
{λ4, λ5, λ6}MaxEnt (t)

=⇒ {λ0, λ1, λ2, λ3} (t+∆t)

Para concretar la forma en la que se calcula la evolución temporal de las coordenadas, en

este ejemplo particular se toma el Hamiltoniano y las expresiones de las derivadas temporales,

µ̇j(xi), de [4].

Ĥ(ξ) = Ĥ(Q,P ) =
1

2

(
Q2 + P 2

)
σ̂0 + E1(Q,P )π̂1(Q,P ) + E2(Q,P )π̂2(Q,P ) (4.0.21)

Donde:

π̂1(Q,P ) = σ̂0 + sin(Q)σ̂1 + cos(Q)σ̂3

π̂2(Q,P ) = σ̂0 − sin(Q)σ̂1 − cos(Q)σ̂3
;

E1(Q,P ) = 1
1+Q2

E2(Q,P ) = E1(Q,P ) + 1 + Q2

10
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La evolución temporal de las coordenadas se da como:

µ̇0(ξ) =
3∑

k=0

{Hk(ξ), µk(ξ)}C (4.0.22)

µ̇j(ξ) =
∑
kl

cjklµk(ξ)Hl(ξ) +
1

2
{H0(ξ), µj(ξ)}C +

3∑
k=1

{Hk(ξ), µjk(ξ)}C ; ∀j = 1, 2, 3 (4.0.23)

Donde cabe destacar que cjk corresponden a las constantes de estructura de u(2) en co-

rrespondencia con la base elegida. Además, se tiene que µj(ξ) = FC(ξ)µj y µjk(ξ) = FC(ξ)µjk,

por lo que las derivadas temporales se desarrollan mediante la regla de la cadena, dando aśı

µ̇0(ξ) = ḞC(ξ) y µ̇j(ξ) = ḞC(ξ)µj + FC µ̇j .

Por último, para la resolución de la ecuación diferencial se considerará una distribución

clásica inicial:

FC(ξ) =
1

2π
e

−(Q2+P2)
5 (4.0.24)

Figura 4.0.1: Condiciones iniciales de FC y la pureza a t = 0

Para determinar la evolución de las coordenadas del primer momento cuántico, se ha

elaborado un integrador en un entorno de Python que calcula los valores de dichos parámetros

en cada instancia temporal en todos los puntos del supuesto espacio de fases clásico (C.1). Esto

resultó ser una tarea bastante más complicada de lo que inicialmente se teńıa en cuenta ya que,

dada la complejidad de los cálculos y las limitaciones del propio lenguaje, solo se ha podido

implementar mediante el método de Euler (en vez de alguno más preciso como un RK4), lo

que conlleva imprecisiones inherentes pero permite realizar los cálculos en intervalos de tiempo

razonables.

Ahora bien, una vez se ha calculado la evolución del subsistema cuántico, se ha de selec-

cionar aquello pueda proporcionar información relevante acerca del mismo. En este caso, se cree

que representar la pureza y su evolución sobre el espacio de fases clásico puede reflejar de manera

más intuitiva cómo vaŕıa el sistema. Con la finalidad de aligerar esta parte, solo se muestran los

resultados de uno de los casos propuestos, el caso 1.

22
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Figura 4.0.2: α = 2 Figura 4.0.3: α = 7
4

Figura 4.0.4: α = 3
2

Figura 4.0.5: α = 5
4

Figura 4.0.6: FC y pureza a tiempo t = 24 considerando entroṕıa de Rényi a diferentes valores

de α

Figura 4.0.7: FC y pureza a tiempo t = 24 considerando entroṕıa de Von Neumann

Una vez construido el integrador, fue sencillo modificar la expresión de la entroṕıa para

que se ajustase a un elemento determinado dentro de la familia de entroṕıas de Rényi (α =

2, 74 ,
3
2 ,

5
4), o a la aproximación lineal de la entroṕıa de Von Neumann (4.0.12). Es aśı como se

obtuvieron las gráficas 4.0.6 y 4.0.7. Ciertamente, se aprecia cualitativamente como, a medida

que se acerca al ĺımite de α −→ 1, la pureza del sistema modelado con Rényi se va acercando

cada vez más al propuesto por la aproximación lineal. De todas formas, en todos los modelos

se aprecia claramente como en los primeros instantes se mantienen fuertes similitudes en las

purezas representadas con cada modelo. A nivel cuantitativo, es notable como existen puntos

del espacio de fases lineal donde la pureza supera la unidad, pero se considera aceptable atribuir

estos fenómenos que f́ısicamente no tienen sentido a la implementación del método de Euler en

el integrador. Por tanto, se considerarán problemas fruto del método numérico y no de la teoŕıa

subyacente. Vistos los resultados de este ejemplo, es factible estipular que cualquier modelo de

desinformación bien definido es viable para un sistema h́ıbrido, por lo que uno de los objetivos

futuros en esta ĺınea seŕıa tratar de encontrar el modelo más óptimo para tratar los SH. De todas

formas, se desde este proyecto se anima a estudiar dichos sistemas bajo diferentes modelos de

desinformación a los propuestos con el fin de reforzar o desmentir los resultados expuestos.
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Caṕıtulo 5

Conclusiones

La finalidad de este trabajo era el de desarrollar un método consistente para el estudio de

SH bajo un acercamiento estad́ıstico, de tal forma que la dinámica de Erhenfest fuese compatible

con la formulación de la entroṕıa del sistema. Las notables contribuciones de proyectos anteriores

[4] muestran que para lograr este propósito es necesario abordar la función de distribución desde

sus momentos estad́ısticos. Estos momentos están acoplados entre śı, lo cual supone un problema

cuando se trata de considerar un conjunto finito de estos, debido a la dependencia con órdenes

superiores excluidos del conjunto. Para solucionarlo se tomó una desinformación con forma de

entroṕıa de Von Neumann la cual, al maximizarla, eliminaŕıa los grados de libertad dependientes

de dichos órdenes superiores.

La aportación de este proyecto es la de proponer una forma de entroṕıa de Rényi para

la desinformación. Esto se debe a las grandes dificultades que se presentan al utilizar la de

Von Neumann, y la necesidad de adoptar una aproximación lineal. Al tomar en consideración

estos factores, se tomó el relevo del ejemplo presentado en [4] y se desarrollaron las ecuaciones

presentadas en mencionado art́ıculo.

Al representar las ecuaciones, se ha determinado que las similitudes entre los diferentes

modelos son suficientes como para afirmar que, en intervalos pequeños de tiempo, cualquier

desinformación es válida. Es cierto que el ejemplo tratado en este documento es sencillo a

nivel fundamental, ya que las limitaciones impuestas por los cálculos, las simulaciones y los

métodos numéricos empleados no han permitido abarcar problemas de mayor magnitud. Es por

este motivo que se incentiva a futuras investigaciones en la materia a considerar sistemas más

complejos y mejorar y optimizar toda la parte computacional involucrada, ya que es seguro que

será determinante para extraer conclusiones con mucha mayor precisión y exactitud.
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as an approximation to full quantum dynamics,” The Journal of Chemical Physics, vol. 105,

p. 1074, July 1996.

[7] J. Clemente-Gallardo, “The Geometrical Formulation of Quantum Mechanics,” Revista de

la Real Academia de Ciencias de Zaragoza, vol. 67, p. 51, 2012.

[8] A. Gleason, “Measures on the Closed Subspaces of a Hilbert Space,” Indiana University

Mathematics Journal, vol. 6, no. 4, pp. 885–893, 1957.

[9] M. Nakahara, Geometry, Topology and Physics, Second Edition. Taylor &amp; Francis,

June 2003.

[10] R. Abraham and J. E. Marsden, Foundations of Mechanics. American Mathematical Soc.,

2008.

25



Apéndice A

Dinámica de Hamilton

El formalismo de Hamilton para el estudio de la mecánica de un sistema nos será de gran

utilidad para abordar este problema, como ya se ha mencionado con anterioridad. Para facilitar

el consecuente razonamiento y agilizar su uso a lo largo de este trabajo, se habrá de recordar

los conceptos más básicos.

A.1. Espacio de fases clásico

Un sistema visto bajo el prisma del formalismo hamiltoniano se ve definido por una va-

riedad diferenciable M de dimensión dM = 2n. A cada punto en este espacio se le etiqueta con

una tupla de 2n componentes reales que serán categorizadas en dos conjuntos, las coordenadas

generalizadas, q⃗ = (q1, ..., qn), y los momentos asociados, p⃗ = (p1, ..., pn). Por consiguiente, un

punto del espacio de fases P ∈ M se expresará de la siguiente forma:

P ≡ (q⃗, p⃗) = (q1, ..., qn, p1, ..., pn); qk, pk ∈ R (A.1.1)

Estas coordenadas y sus momentos presentan una dependencia temporal, lo cual implica

que la evolución de cualquier sistema descrito por el formalismo de Hamilton se verá represen-

tada por una trayectoria en el espacio de fases.

Como último apunte, esta trayectoria no es aleatoria cuando se trata de un sistema ha-

miltoniano, sino que viene determinada por una función espećıfica del sistema. A la función que

guarda toda la información sobre la dinámica de un sistema la llamaremos función de Hamilton,

o hamiltoniano, H : M −→ R; H ∈ C∞(M).

Para saber como evolucionan en el tiempo las coordenadas generalizadas y sus momentos

hemos de recurrir a las conocidas como Ecuaciones de Hamilton [9].

q̇k =
∂H(q, p)

∂pk
(A.1.2)
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ṗk =
∂H(q, p)

∂qk
(A.1.3)

Otro apartado importante a tener en cuenta seŕıan aquellas magnitudes funciones de las

coordenadas y momentos en el espacio de fases a las que denotaremos como Observables,

f : M −→ R; f ∈ C∞(M). La evolución temporal de los observables se deduce de la inmediata

aplicación de la regla de la cadena.

d

dt
f(q⃗(t), p⃗(t)) = ḟ(q⃗(t), p⃗(t)) =

n∑
k=1

(
∂f

∂qk
q̇k +

∂f

∂pk
ṗk

)
=

n∑
k=1

(
∂f

∂qk

∂H

∂pk
− ∂f

∂pk

∂H

∂qk

)
(A.1.4)

Conviene definir la siguiente estructura algebraica para aligerar la notación de ahora en

adelante, el conocido como Corchete de Poisson: {·, ·}C : C∞(M) × C∞(M) −→ C∞(M). Las

propiedades de esta estructura son:

Antisimétrico −→ {f, g}C = −{g, f}C ∀f, g ∈ C∞(M)

Cumple la identidad de Jacobi −→ {f, {g, h}C}C + {h, {f, g}C}C + {g, {h, f}C}C = 0

∀f, g, h ∈ C∞(M)

Cumple la regla de Leibniz −→ {f, gh}C = {f, g}Ch+ g{f, h}C ∀f, g, h ∈ C∞(M)

Por consiguiente, la evolución temporal de un observable arbitrario descrito mediante el

uso de los corchetes de Poisson se expresará de la siguiente forma:

ḟ(q⃗(t), p⃗(t)) = {f,H}C =
n∑
k=1

(
∂f

∂qk

∂H

∂pk
− ∂f

∂pk

∂H

∂qk

)
(A.1.5)

A.2. Variedades simplécticas y mecánica geométrica

Resulta de gran utilidad recurrir al formalismo geométrico para estudiar la mecánica de un

sistema hamiltoniano, y es por eso que se debe abordar los aspectos esenciales para el posterior

desarrollo de la dinámica.

Considerando un sistema f́ısico, este se supondrá embebido en el espacio vectorial Rn. A
continuación, se contemplan ambos fibrados tangente y cotangente del mismo, los cuales presen-

tan un homeomorfismo con el espacio lineal simpléctico, tal y como dicta el teorema de Darboux.

TRn ∼ T ∗Rn ∼ R2n (A.2.1)

Al describir T ∗Rn bajo el atlas construido en coordenadas de Darboux, (qi, pi), es posible

construir la siguiente 1-forma [9], conocida como Forma de Liouville.
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θ =
∑
i

pidq
i (A.2.2)

Cuando se considera la derivada exterior de dicha 1-forma se encuentra una relación con la

forma simpléctica canónica [9] asociada al anteriormente mencionado espacio lineal simpléctico,(
R2n, ω

)
:

ω = −dθ =
∑
i

dqi ∧ dpi (A.2.3)

Las principales caracteŕısticas de esta 2-forma o forma simpléctica son:

ω es cerrada =⇒ dω = 0

ω es no degenerada

Estas propiedades de la 2-forma aseguran la posible construcción de un elemento de volu-

men o una medida, Ω, en la variedad simpléctica.

Ω = ω ∧
n veces︷︸︸︷
· · · ∧ ω = dθ ∧

n veces︷︸︸︷
· · · ∧ dθ (A.2.4)

A continuación, es conveniente redefinir la dinámica Hamiltoniana tanto clásica como

cuántica en términos geométricos, ya que se hará uso de esta formulación para demostrar que el

elemento de volumen, Ω, cumple el teorema de Liouville.

En primer lugar, se observa que es posible describir un campo vectorial a partir de los

corchetes de Poisson introducidos con anterioridad. Este campo vectorial viene asociado a una

función determinada, y en este caso será el campo vectorial hamiltoniano el que será de mayor

interés para tratar la dinámica del sistema.

En el caso clásico se parte de una variedad simpléctica denotada como MC = (R2n, ω). Si

la dinámica está caracterizada por una función hamiltoniana, H, el campo vectorial asociado,

XH , será:

H(q, p) −→ XH = {·, H}C (A.2.5)

De forma equivalente, podemos escribir una ecuación impĺıcita ara el campo XH a partir

de la forma simpléctica:

iXH
ω = dH (A.2.6)

Una vez construido el campo vectorial hamiltoniano, se puede probar que las curvas inte-

grales del campo vectorial definido en A.2.5 son solución de las ecuaciones de Hamilton A.1.2 y

A.1.3.
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A.3. Sistemas cuánticos

Hasta ahora únicamente se han tratado sistemas hamiltonianos clásicos y su respectiva

formulación en términos de mecánica geométrica, pero es inevitable notar que un sistema h́ıbrido

se compone por uno clásico y uno cuántico. Por ello, y aunque sea análogo en varios aspectos,

es imprescindible apuntar algunas caracteŕısticas de la dinámica geométrica hamiltoniana en

sistemas cuánticos. El formalismo geométrico para la Mecánica cuántica se ha desarrollado des-

de finales de los años 70 del siglo pasado [10], y sus caracteŕısticas más improtantes pueden

resumirse como se desarrolla a continuación.

En primer lugar, es necesario tomar un espacio de Hilbert como el equivalente cuántico al

espacio de fases. En el caso de restringir la dimensión del espacio de Hilbert al caso finito, este

será isomorfo a Cn, lo cual será de gran utilidad y se tomará aśı durante el resto del trabajo,

H = Cn.

Como no resulta conveniente contar con un espacio de fases real en el ámbito clásico y uno

complejo en el cuántico, se realifica el espacio cuántico construyendo una variedad diferenciable

real, MQ ∼ R2n, que recogerá los estados cuánticos |Ψ⟩. Por consiguiente, los estados cuánti-

cos vendrán descritos por coordenadas reales, (qi, pi) ∈ R2n, que representan la parte real y la

imaginaria de las coordenadas complejas del antes mencionado espacio de Hilbert. Notar que,

aunque sea formalmente análogo, las coordenadas cuánticas no se corresponden a las coorde-

nadas canónicas y sus momentos asociados del caso clásico. Para concluir la realificación, cabe

destacar que el producto escalar hermı́tico se puede desglosar en una estructura Kähler, (g, ω, J).

Expresando las formas que caracterizan la estructura Kähler de la realificación en función de las

coordenadas (qi, pi):

g = dqk ⊗ dqk + dpk ⊗ dpk −→ Estructura Riemanniana

ω = dqk ∧ dpk −→ Forma simpléctica

J = ∂pk ⊗ dqk − ∂qk ⊗ dpk −→ Estructura compleja

De forma que el producto escalar hermı́tico queda definido en función de g y de ω:

⟨Ψ1|Ψ2⟩ = g(XΨ1 , XΨ2) + iω(XΨ1 , XΨ2) (A.3.1)

Donde (XΨ1 , XΨ2) son los campos vectoriales asociados a los estados (Ψ1,Ψ2) respectiva-

mente. Nótese que estamos usando el hecho de que el espacio de estados es una variedad lineal

para asumir que el espacio tangente en todos los puntos es isomorfo a la propia variedad.

Para tratar los observables cuánticos, O ∈ Lin(H) de una forma análoga a los observables

clásicos, les asociaremos una función que se corresponderá con el valor esperado del observable

que actúa sobre MQ.
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O =⇒ fO = ⟨Ψ|O |Ψ⟩ (A.3.2)

Será con las funciones de dichos observables con las que se describirá la dinámica. De

forma análoga al razonamiento clásico, se define un corchete de Poisson cuántico que codifica la

evolución temporal de las funciones observables en función del hamiltoniano del sistema.

ḟO = ℏ−1{fO, fH}Q (A.3.3)

Además, partiendo desde la ecuación de Heisenberg, iℏdOdt = [O,H], es posible transfor-

marla a formulación geométrica para llegar al siguiente resultado:

ḟO = ℏ−1fi[H,O] ⇐⇒ {fO, fH}Q = fi[H,O] (A.3.4)

Mecánica geométrica en un sistema cuántico

En el caso cuántico se consideraba el espacio de Hilbert y su isomorfismo con Cn, y su

producto hermı́tico, dejando aśı una variedad diferenciable (Cn, ⟨·|·⟩). Tras el proceso de realifi-

cación, el espacio de Hilbert pasaba a uno real y la estructura algebraica se véıa registrada en

una estructura Khäler, dejando aśı una variedad simpléctica MQ = (R2n, (g, ω, J)). Para tratar

los observables se les asociaba sus valores esperados como funciones observables, por lo que el

campo vectorial hamiltoniano quedará definido como:

Ĥ −→ XfH = ℏ−1{·, fH}Q (A.3.5)

Análogamente al caso clásico, las curvas integrales de este campo vectorial serán la solu-

ción de la ecuación que describe la mecánica.

iXfH
ω = dfH (A.3.6)

Puede comprobarse [10] que las curvas integrales de este campo vectorial coinciden con

las soluciones de la ecuación de Schrödinger.

Para concluir, se puede demostrar de forma breve de que la derivada de Lie sobre el cam-

po vectorial hamiltoniano deja invariante la forma simpléctica. Para el siguiente desarrollo, se

utilizará H o fH indistintamente, ya que la demostración solo requiera de que el campo sea

hamiltoniano. Aśı, dada la derivada de Lie, esta puede ser expresada como:

LXH
ω = (iXH

d+ diXH
)ω (A.3.7)

El primer sumando, iXH
dω, se anula porque la forma simpléctica es cerrada, dω = 0.

El segundo sumando, diXH
ω, se anula directamente al sustituir la ecuación A.2.6, dejando aśı
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d(dH) = 0.

Por consiguiente, la derivada de Lie sobre el elemento de volumen es directamente nula.

LXH
Ω = LXH

(ω ∧
n veces︷︸︸︷
· · · ∧ ω) = 0 (A.3.8)

Este resultado quiere decir que, siempre que la dinámica de un sistema descrito en una

variedad simpléctica sea hamiltoniana, se cumple el teorema de Liouville.

Ω(t = 0) = Ω(t) ∀t (A.3.9)

A.4. Formulación estad́ıstica en dinámica Hamiltoniana

Ya se ha mencionado con anterioridad que la validez del modelo dinámico de Ehrenfest se

basa en dos factores: la diferencia de masas entre los sistemas nuclear y electrónico, y la magni-

tud de la dispersión del paquete nuclear con respecto a la longitud caracteŕıstica del problema.

Esto lleva a pensar que conviene tomar sistemas con una gran cantidad de nucleones y electrones

para contemplar una dinámica h́ıbrida más sólida. Aún aśı, esto conlleva la necesidad de pasar

al formalismo estad́ıstico para ser capaces de estudiar las consecuencias macroscópicas de dicha

dinámica. Por ende, se cree conveniente dar un breve repaso sobre este tema con el fin de agilizar

su posterior uso.

Si se considera un sistema hamiltoniano descrito por el espacio de fases y una serie de obser-

vables, rápidamente se nota que existen ciertos observables que no dependen de las coordenadas

y momentos individuales de cada componente, sino que adquieren un enfoque macroscópico.

Por consiguiente, resulta de vital importancia conocer la forma de construir estos observables

macroscópicos a partir de los microscópicos. Es aqúı donde el concepto de la Función de distri-

bución hace su aparición.

Dado un observable f(q(t), p(t)) ≡ f(q, p; t), construiremos su observable macroscópico

asociado de la siguiente forma:

⟨f⟩ (t) =
∫
M

dqdpF (q, p; 0)f(q, p; t) =

∫
M

dqdpF (q, p;−t)f(q, p; 0) (A.4.1)

Donde F (q, p) es la ya mencionada función de distribución, la cual debe ser definida po-

sitiva, F (q, p) ≥ 0, y cumplir la condición de normalización:

∫
M

dqdpF (q, p) = 1 (A.4.2)
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El cambio de paradigma que tiene lugar al adoptar este enfoque se refleja en la interpreta-

ción del espacio de fases como herramienta que describe el sistema. Anteriormente, cada punto

del espacio de fases (q, p) a un tiempo t constitúıa una descripción del sistema, mientras que

ahora se aboga por un formalismo estad́ıstico de microestados, en el que cada punto (q(t), p(t))

se asocia a un microestado pesado por la función de distribución.

Aśı bien, la complejidad del sistema se reduciŕıa en gran medida si fuese posible transferir

la evolución de los muchos observables a la evolución de una única función de distribución. Esto

es posible debido en gran medida a que la medida, dqdp, se mantiene en el tiempo, como ya se

ha demostrado en el apartado A.2. Esto asegura el cumplimiento del teorema de Liouville sobre

la medida, lo que a grandes rasgos implica dq(t = 0)dp(t = 0) = dq(t)dp(t) ∀t.

Por consiguiente, al expresar los puntos del espacio de fases en función del operador de

evolución temporal y una condición inicial:

(q(t), p(t)) = ϕ∗
t (q(0), p(0)) ⇐⇒ ϕ∗

−t(q(t), p(t)) = (q(0), p(0)) (A.4.3)

De esta forma, si realizamos dicho cambio de variable en la ecuación A.4.1, y habiendo

dejado claro que esto es posible gracias al cumplimiento del teorema de Liouviulle, se transfiere

la dependencia temporal a la función de distribución F (q, p).

⟨f⟩ (t) =
∫
M

dqdpF (q, p)f(q, p; t) =

∫
M

dqdpF (q, p; t)f(q, p) (A.4.4)

Donde se tendrá que:

F (q, p; t) = ϕ∗
−t [F (q, p)] (A.4.5)

Por último, viendo que la dependencia de F (q, p; t) con el operador evolución temporal va

con ϕ∗
−t, aśı la derivada temporal de la función de distribución será:

Ḟ = {H,F} (A.4.6)
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Apéndice B

Notas adicionales sobre la dinámica

de Ehrenfest

B.1. Demostración de ortogonalidad

Se puede demostrar la ortogonalidad de los estados electrónico y nuclear con respecto a

sus propias derivadas temporales de la siguiente forma:

⟨Ψe|Ψe⟩ = ⟨ΨN |ΨN ⟩ = 1 (B.1.1)

Al derivar B.1.1, se obtiene que:

〈
Ψ̇e

∣∣∣Ψe

〉
=
〈
Ψ̇N

∣∣∣ΨN

〉
= 0 (B.1.2)

Por consiguiente, al considerar la derivada temporal de la función de onda h́ıbrida:

d

dt
|Ψ⟩ = d

dt
(|Ψe⟩ |ΨN ⟩) =

∣∣∣Ψ̇e

〉
|ΨN ⟩+ |Ψe⟩

∣∣∣Ψ̇N

〉
(B.1.3)

De tal forma que la ecuación de Schrödinger h́ıbrida puede expresarse en términos de am-

bas funciones.

iℏ
(∣∣∣Ψ̇e

〉
|ΨN ⟩+ |Ψe⟩

∣∣∣Ψ̇N

〉)
=
(
Ĥe + ĤN

)
|Ψe⟩ |ΨN ⟩ (B.1.4)

Para finalizar, se obtienen ambas ecuaciones proyectando sobre cada estado, según cual

interese. Al proyectar sobre ⟨ΨN | y ⟨Ψe| respectivamente:

iℏ
∣∣∣Ψ̇e

〉
= ⟨ΨN |

(
Ĥe + ĤN

)
|ΨN ⟩ |Ψe⟩ = He(x, q) |Ψe⟩ =

(
− ℏ2

2m
∇2
x + ⟨ΨN |V (x, q) |ΨN ⟩

)
|Ψe⟩

(B.1.5)
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iℏ
∣∣∣Ψ̇N

〉
= ⟨Ψe|

(
Ĥe + ĤN

)
|Ψe⟩ |ΨN ⟩ = HN (x, q) |ΨN ⟩ =

(
− ℏ2

2M
∇2
q + ⟨Ψe|V (x, q) |Ψe⟩

)
|ΨN ⟩

(B.1.6)

B.2. Expansión en serie WKB

En primer lugar, esta se escribirá en función de la acción como una exponencial:

ΨN (q, t) = A(q, t)exp

(
i
S(q, t)

ℏ

)
(B.2.1)

A continuación, dada la complejidad de la acción como función anaĺıtica, estase desarrolla

como una serie de potencias de la constante de Planck, ℏ.

S(q, t) = S0(q, t) + S1(q, t)ℏ+ S2(q, t)ℏ2 + S3(q, t)ℏ3 + ... (B.2.2)

Al considerar que el término de orden cero es dominante en la expansión en serie de la

acción, es posible expresar la función de onda nuclear como la exponencial de dicho término más

el resto de contribuciones en forma de infinitésimo.

ΨN (q, t) = A(q, t)exp

(
i
S0(q, t)

ℏ

)
+O

(√
m

M

)
(B.2.3)

Al introducir dicha expresión en la función de Schrödiner para la función de onda nuclear

2.0.6, se obtiene que la acción sigue una ecuación del tipo Hamilton-Jacobi y la amplitud una

ecuación de continuidad.

∂S0

∂t
+

1

2M
∇2
qS0 + ⟨Ψe|V (x, q) |Ψe⟩ = 0 (B.2.4)

∂A2

∂t
+∇q

(
A2∇qS0

M

)
= 0 (B.2.5)
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Apéndice C

Datos adicionales del ejemplo

particular

C.1. Espacio de fases clásico computacional

Figura C.1.1: Discretización del espacio de fases clásico para cálculo numérico
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C.2. Caso 1

C.2.1. Entroṕıa de Rényi con parámetro α = 2

Figura C.2.1: FC y pureza a tiempo t = 0 considerando entroṕıa de Rényi con α = 2

Figura C.2.2: FC y pureza a tiempo t = 1 considerando entroṕıa de Rényi con α = 2

Figura C.2.3: FC y pureza a tiempo t = 5 considerando entroṕıa de Rényi con α = 2
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Figura C.2.4: FC y pureza a tiempo t = 10 considerando entroṕıa de Rényi con α = 2

Figura C.2.5: FC y pureza a tiempo t = 15 considerando entroṕıa de Rényi con α = 2

Figura C.2.6: FC y pureza a tiempo t = 20 considerando entroṕıa de Rényi con α = 2
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Figura C.2.7: FC y pureza a tiempo t = 24 considerando entroṕıa de Rényi con α = 2

C.2.2. Entroṕıa de Rényi con parámetro α = 7
4

Figura C.2.8: FC y pureza a tiempo t = 0 considerando entroṕıa de Rényi con α = 7
4

Figura C.2.9: FC y pureza a tiempo t = 1 considerando entroṕıa de Rényi con α = 7
4
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Figura C.2.10: FC y pureza a tiempo t = 5 considerando entroṕıa de Rényi con α = 7
4

Figura C.2.11: FC y pureza a tiempo t = 10 considerando entroṕıa de Rényi con α = 7
4

Figura C.2.12: FC y pureza a tiempo t = 15 considerando entroṕıa de Rényi con α = 7
4
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Figura C.2.13: FC y pureza a tiempo t = 20 considerando entroṕıa de Rényi con α = 7
4

Figura C.2.14: FC y pureza a tiempo t = 24 considerando entroṕıa de Rényi con α = 7
4

C.2.3. Entroṕıa de Rényi con parámetro α = 3
2

Figura C.2.15: FC y pureza a tiempo t = 0 considerando entroṕıa de Rényi con α = 3
2
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Figura C.2.16: FC y pureza a tiempo t = 1 considerando entroṕıa de Rényi con α = 3
2

Figura C.2.17: FC y pureza a tiempo t = 5 considerando entroṕıa de Rényi con α = 3
2

Figura C.2.18: FC y pureza a tiempo t = 10 considerando entroṕıa de Rényi con α = 3
2
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Acher Aĺıas Saura C.2. CASO 1

Figura C.2.19: FC y pureza a tiempo t = 15 considerando entroṕıa de Rényi con α = 3
2

Figura C.2.20: FC y pureza a tiempo t = 20 considerando entroṕıa de Rényi con α = 3
2

Figura C.2.21: FC y pureza a tiempo t = 24 considerando entroṕıa de Rényi con α = 3
2
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Acher Aĺıas Saura C.2. CASO 1

C.2.4. Entroṕıa de Rényi con parámetro α = 5
4

Figura C.2.22: FC y pureza a tiempo t = 0 considerando entroṕıa de Rényi con α = 5
4

Figura C.2.23: FC y pureza a tiempo t = 1 considerando entroṕıa de Rényi con α = 5
4

Figura C.2.24: FC y pureza a tiempo t = 5 considerando entroṕıa de Rényi con α = 5
4
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Acher Aĺıas Saura C.2. CASO 1

Figura C.2.25: FC y pureza a tiempo t = 10 considerando entroṕıa de Rényi con α = 5
4

Figura C.2.26: FC y pureza a tiempo t = 15 considerando entroṕıa de Rényi con α = 5
4

Figura C.2.27: FC y pureza a tiempo t = 20 considerando entroṕıa de Rényi con α = 5
4
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Acher Aĺıas Saura C.2. CASO 1

Figura C.2.28: FC y pureza a tiempo t = 24 considerando entroṕıa de Rényi con α = 5
4

C.2.5. Aproximación lineal de la entroṕıa de Von Neumann

Figura C.2.29: FC y pureza a tiempo t = 0 considerando la aproximación lineal de la entroṕıa

de Von Neumann

Figura C.2.30: FC y pureza a tiempo t = 1 considerando la aproximación lineal de la entroṕıa

de Von Neumann
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Acher Aĺıas Saura C.2. CASO 1

Figura C.2.31: FC y pureza a tiempo t = 5 considerando la aproximación lineal de la entroṕıa

de Von Neumann

Figura C.2.32: FC y pureza a tiempo t = 10 considerando la aproximación lineal de la entroṕıa

de Von Neumann

Figura C.2.33: FC y pureza a tiempo t = 15 considerando la aproximación lineal de la entroṕıa

de Von Neumann
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Acher Aĺıas Saura C.2. CASO 1

Figura C.2.34: FC y pureza a tiempo t = 20 considerando la aproximación lineal de la entroṕıa

de Von Neumann

Figura C.2.35: FC y pureza a tiempo t = 24 considerando la aproximación lineal de la entroṕıa

de Von Neumann
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Acher Aĺıas Saura C.3. CASO 2

C.3. Caso 2

Figura C.3.1: Pureza del caso 2 a tiempo t = 0 considerando entroṕıa de Rényi con α = 2

Figura C.3.2: Pureza del caso 2 a tiempo t = 1 considerando entroṕıa de Rényi con α = 2
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Acher Aĺıas Saura C.3. CASO 2

Figura C.3.3: Pureza del caso 2 a tiempo t = 5 considerando entroṕıa de Rényi con α = 2

Figura C.3.4: Pureza del caso 2 a tiempo t = 10 considerando entroṕıa de Rényi con α = 2
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Acher Aĺıas Saura C.3. CASO 2

Figura C.3.5: Pureza del caso 2 a tiempo t = 15 considerando entroṕıa de Rényi con α = 2

Figura C.3.6: Pureza del caso 2 a tiempo t = 20 considerando entroṕıa de Rényi con α = 2
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Acher Aĺıas Saura C.4. CASO 3

Figura C.3.7: Pureza del caso 2 a tiempo t = 24 considerando entroṕıa de Rényi con α = 2

C.4. Caso 3

Figura C.4.1: Pureza del caso 3 a tiempo t = 0 considerando entroṕıa de Rényi con α = 2
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Acher Aĺıas Saura C.4. CASO 3

Figura C.4.2: Pureza del caso 3 a tiempo t = 1 considerando entroṕıa de Rényi con α = 2

Figura C.4.3: Pureza del caso 3 a tiempo t = 5 considerando entroṕıa de Rényi con α = 2
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Acher Aĺıas Saura C.4. CASO 3

Figura C.4.4: Pureza del caso 3 a tiempo t = 10 considerando entroṕıa de Rényi con α = 2

Figura C.4.5: Pureza del caso 3 a tiempo t = 15 considerando entroṕıa de Rényi con α = 2

28



Acher Aĺıas Saura C.4. CASO 3

Figura C.4.6: Pureza del caso 3 a tiempo t = 20 considerando entroṕıa de Rényi con α = 2

Figura C.4.7: Pureza del caso 3 a tiempo t = 24 considerando entroṕıa de Rényi con α = 2
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Apéndice D

Código de la simulación

computacional

A continuación se deja un enlace a Github donde se recoge el código empleado para cons-

truir las simulaciones de este trabajo de fin de grado, se advierte de que los tiempos de compilado

son largos, 40 minutos como mı́nimo.

https://github.com/Achertron/TFG
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