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Resumen

En el campo del Análisis de Datos el uso de herramientas matemáticas tanto para el desarrollo de al-
goritmos como para evaluar la precisión de los procesos es fundamental. Tradicionalmente se emplean
métodos y conecptos basados en las áreas de Optimización, Álgebra Lineal y Estadística. En este Tra-
bajo de Fin de Grado exploraremos el Análisis Topológico de Datos a través de una de las herramientas
más utilizadas en esta disciplina: la homología persistente.

En el primer capítulo dedicaremos una seccion inicial a introducir el concepto de complejo simplicial
y hablaremos brevemente de alguna de las aplicaciones y propiedades de estos objetos. Continuaremos
construyendo los grupos de cadenas y consecuentemente los emplearemoss junto a los operadores borde
para definir los complejos de cadenas y grupos de homología.

Comenzaremos el segundo capítulo dando unos cuantos ejemplos de filtraciones y cómo relacionarlas
a fin de dar sentido a la definición de homología persistente, la cual presentaremos junto a un teorema
que determina su estructura. En una última sección daremos una manera sencilla de computar dicha
homología persistente a partir de la matriz del operador borde utilizando el concepto de barcoding, muy
útil a la hora de presentar la información obtenida mediante este proceso.

Finalmente, como cierre aplicaremos algunos de los conceptos tratados en las secciones anteriores
sobre un ejemplo real: Utilizaremos algunas de las herramientas existentes en Python para calcular la
distancia "bottleneck" entre imágenes de tejido de cáncer de próstata. De este modo pretendemos mostrar
una de las posibles utilidades de la homología persistente como herramienta para el análisis de datos.

En el esfuerzo de documentación para este trabajo se han seguido los libros [1], [2] según el curso
Geometry and Topology in Data Analysis impartido por Ulrich Bauer en la Universidad Técnica de
Múnich. Además se han complementado algunos conceptos algebraicos con [3].
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Chapter 1

Simplicial Homology

In this part we will give a brief explanation of the context in which we will apply our tools, and then
provide basic definitions coupled with some illustrative examples. In a final section we will construct
intuitively the idea of homology, from which the main tool in Topological Data Analysis emanates.

1.1 Introduction

Suppose we have a dataset to work with. As per usual in Data Analysis, one interprets the data sets as a
finite set of points in an euclidean space K.

We can construct from such a dataset structures following certain criteria (e.g: distance in a metric
space or any algorithm of our choice) associated to a topological space, and then study some topological
invariants in order to further understand the properties of our data.

This approach is somewhat different from traditional methods in Data Analysis. In this field, the
majority of tools employed come from the field of Statistics and Probability, with some Linear Algebra
and Optimization added into the mix for the creation of algorithms. In this context, the introduction of
topological concepts into the discipline opens up a different perspective for interpretation of our data, for
which traditional methods are not suited.

1.2 Simplicial complexes

Let us, as one usually does, introduce first the main objects of our study and a few concepts related to
them in order to have a basic understanding of the matters we will be dealing with.

Definition 1.1. An abstract simplicial complex K is a collection of finite sets closed under inclusion.
Every set S ∈ K is called a simplex, and every element v ∈ S is called a vertex.

Further definitions inmediately arise from this one:

1. A is a face of S if A⊆ S. In this context S is said to be a coface of A.

2. The dimension of a simplex is defined as:

dim(S) := #S−1

3. Naturally, simplices of dimension n are called n-simplices.

4. One defines subsequently the dimension of a simplicial complex K as the highest dimension of its
simplices.

5. If A is a face of S with dim(S) = dim(A)+1, then A is a facet of S.
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2 Chapter 1. Simplicial Homology

Example. The set
A =

{
{1},{2},{3},{1,2},{1,3},{2,3}

}
is an abstract simplicial complex. Observe that for each element a ∈ A every subset is itself contained in
A, thus A is closed under inclusion.

Abstract simplicial complexes are only one approach to define our concept. An alternative, more
visual and intuitive way to define a simplicial complex is geometrically, from points inside a certain
space X .

Definition 1.2. A geometric simplex σ of dimension n is the convex hull generated by a set of n+ 1
affinely independent points V in a real vector space K.

Dimension Shape
n = 0 Point
n = 1 Segment
n = 2 Triangle
n = 3 Tetrahedron

Table 1.1: Geometrical shapes of the simplices of dimensions n = 0,1,2,3.

1. Such generating points v ∈V are called the vertices of σ .

2. Given a simplex σ , τ is a face of σ if it is the convex hull of a subset U ⊆V .

3. A collection G of geometric simplices that only intersect over whole faces and is closed under the
face relation is called a geometric simplicial complex.
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Figure 1.1: To the left, an example of a geometrical simplicial complex and to the right of something that
is not a geometric simplicial complex.

Geometric and abstract simplicial complexes, as one can imagine, are related to each other. To clarify
this relation, we need another concept:

Definition 1.3. Let K be an abstract simplicial complex. Its vertex set is defined as the union of all its
simplices

VertK := ∪S∈KS

Remark. We will use from now on the same notation to refer to the set of vertices of geometric simplicial
complexes, whose definition is the natural one.

Example. For our previous example of an abstract simplicial complex we have:

A =
{
{1},{2},{3},{1,2},{1,3},{2,3}

}
, VertA =

{
1,2,3

}
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Definition 1.4. Given G a geometrical simplicial complex, the set of vertex sets of the simplices in G is
an abstract simplicial complex, called the vertex scheme of G.

Scheme(G) := {Vert(G) | S is a simplex of G}

A geometrical simplicial complex G whose vertex scheme is isomorphic to an abstract simplicial
complex A is called a geometric realization of A.

1
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Figure 1.2: A geometric realization of our example of an abstract simplicial complex A

The following proposition and proof gives us further insight on how to construct a geometric realiza-
tion of an abstract simplicial complex.

Proposition 1.1. Given a d-dimensional abstract simplicial complex A , it is possible to construct a
geometric realization in R2d+1

Proof. For this proof we will use the following auxiliary lemma:

Lemma. Consider the moment curve M = {m(t) = (t, t2, ..., td) t ∈ R}. The points in M are in general
position, i.e, any subset of at most d +1 points is affinely independent.

Proof. (of the Lemma) Every hyperplane intersects the moment curve in a finite set of at most d points.
If a hyperplane intersects the curve in exactly d points, then the curve crosses the hyperplane at each
intersection point. Thus, every finite point set on the moment curve is in affine general position. (Check
in [4]).

Back to the proof of Proposition 1.1, we can construct an embedding of the vertices of A in gen-
eral linear position by mapping each d-dimensional complex into d + 1 distinct points of the 2d + 1-
dimensional moment curve φ : VertA−→R2d+1. Since by our Lemma we know its points are in general
position, any two collections of d +1 points in general position span disjoint affine subspaces.

The images of the vertices of A span geometric simplices in R2d+1. We get that

G = {conv(φ(S)) S ∈ A}

is a geometrical simplicial complex realizing A

Due to this relation, in many cases we will simply talk generically about simplicial complexes mean-
ing any of the definitions depending on the context.

The concept of simplicial complex is very broad and many shapes satisfy our definition. We will be
interested however in constructing simplicial complexes from a fixed set of points in a systematic way
so that the resulting complex is uniquely determined in order to study its properties.

Example. One such example which will be very useful later on is the Vietoris-Rips complex. It is
defined as follows:

Definition 1.5. Given (X ,d) a finite metric space, one defines the Vietoris-Rips complex at scale t as:

Ripst(X) := {Q⊆ X | Q ̸= /0 , diamQ≤ t}
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Figure 1.3: Ripst(X) for respectively t = 0,2,
√

5

Remark. Something to note about the Vietoris-Rips complex is that it does not admit empty skeletons:
if n points are connected pairwise, then the n− 1-dimensional simplex spanned by them is included in
the Vietoris-Rips complex. This makes it a clique complex: the maximal complex given its 1-simplices,
and thus it is only dependant on them. This does not happen for every such construction of complexes as
we will see in the next chapter.

Having defined and exemplified simplicial complexes, we will now delve into their properties when
we endow them with a topology.

Definition 1.6. Let K ⊆Rd be a finite geometric simplicial complex. The polyhedron |K| is the subspace
comprised of the union of all simplices in K endowed with the subspace topology.

Definition 1.7. A triangulation of a space X ⊆ Rd is a pair (K, f ) consisting of a geometric simplicial

complex K together with an homeomorphism |K| f−→ X .
If such a thing exists, then X is said to be triangulable.

The definition above implies that any triangulable topological space X can be studied via its trian-
gulation. Hence, one expects that finding certain properties of the triangulation will give us information
about different aspects of X .

This is already very useful as it is. However, if we stick to our definition we have that a topological
space admits many triangulations. We have to see which properties of a topological space are essential
in terms of its triangulations in order to simplify our study.

For this goal, let us first define relations between simplicial complexes.

Definition 1.8. For K,L two geometric simplicial complexes, a continuous map f : |K| → |L| that maps
each simplex of K affinely onto some simplex in L is called a simplicial map.

Remark. Let (K, f ), (L,g) be two triangulations of the same topological space X . Then, by definition,
we get |K| ∼= |L| by the homeomorphic simplicial map f ◦g−1.

The next remark gives us a natural result in regards to the relations between definitions of simplicial
complexes.

Remark. For K an abstract simplicial complex, its geometric realization is unique up to simplicial
homeomorphism.

We will now address a very important kind of relation between simplicial complexes.

Definition 1.9. A subdivision of K is a simplicial complex L such that |K|= |L| and every simplex of L
is contained in some simplex of K.

Example. The most straightforward example of subdivision of an abstract simplicial complex is the
barycentric subdivision.

Definition 1.10. The flag complex Flag(P) for a poset (P,≤) is the abstract simplicial complex where:

1. The vertex set is P.

2. Its simplices are the flags (or totally ordered subsets) of P.
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For any simplicial complex K, the face poset is defined as Pos(K) = (K,⊆). Then, for an abstract
simplicial complex A, its barycentric subdivision is defined as:

Sd(A) = Flag(Pos(A))

where the vertex set is A and the simplices are the flags of A.

A =
{
{1},{2},{3},{1,2},{1,3},{2,3}

}
Sd(A) =

{{
1
}
,
{

2
}
,
{

3
}
,
{
{1,2}

}
,
{
{1,3}

}
,{

{2,3}
}
,
{

1,{1,2}
}
,
{

1,{1,3}
}
,{

2,{1,2}
}
,
{

2,{2,3}
}
,
{

3,{2,3}
}
,{

3,{2,3}
}}

Figure 1.4: An example of abstract barycentric subdivision

The barycentric subdivision has a definition as well for geometrical simplicial complexes. For a
geometric simplicial complex G, we add as vertices the barycenters of every simplex in G, and as new
simplices we get those spanned by the barycenters of each flag. Formally:

Vert(Sd(G)) =
{

z(σ) z is the barycenter for σ ∈ G
}

Scheme(Sd(G)) =
{
{z(σ1),z(σ2), ...,z(σk)} {σ1,σ2, ...,σk} is totally ordered

}
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Figure 1.5: An example of geometric barycentric subdivision

One has that the geometric barycentric subdivision of a geometric realization is a geometric realiza-
tion of the abstract barycentric subdivision of its vertex scheme.
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{1,3}

{2,3}

Figure 1.6: Barycentric subdivision of the geometric realization of A

Even though this reduces the list of simplicial complexes quite a lot, it is still incredibly vast. We
would want to further classify them, and one way is through the usage of homotopy equivalence.

Definition 1.11. Two maps f ,g : X −→ Y are called homotopic, f ≃ g, if there is a continuous deforma-
tion from one to the other, i.e, there exists a continuous map F : X× [0,1]−→ Y with:

f (x) = F(x,0)
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g(x) = F(x,1)

Definition 1.12. Two spaces X ,Y are homotopy equivalent, X ≃ Y if there are maps f : X −→ Y and
g : Y −→ X such that g◦ f ≃ idX , f ◦g≃ idY .

In particular, two simplicial complexes K, L are homotopy equivalent if there are simplicial maps
f : |K| −→ |L|, g : |L| −→ |K| such that g◦ f ≃ id|K|, f ◦g≃ id|L|

Remark. Homotopy equivalence ≃ is, as one may suspect, an equivalence relation.

Definition 1.13. Let i : A ↪→ X be an inclusion and r : X −→ A a retraction such that r ◦ i = idA. Then A
is a retract of X .

If also i◦ r ≃ idX , the homotopy is a deformation retraction and A a deformation retract of X . More-
over, if A is fixed throughout the deformation retraction then we say it is a strong deformation retraction
and A is a strong deformation retract of X .

Homotopy equivalency is rich enough as a topic on its own. However, we will focus our attention on
a different aspect of our objects. This aspect will be realised in the concept of simplicial homology and
will nontheless be an invariant under homotopy.

1.3 Homology groups

Consider a simplicial complex K. As we stated at the end of the previous section, our goal is to find an
invariant under homotopy that gives us information about the inherent structure of our complex. This
will be achieved in the concept of homology group of a simplicial complex K.

Going further, two different but somewhat equivalent procedures can be followed. One can either
provide an orientation for the vertices of the d-simplices up to even permutation and define the d-chain
group as the free abelian group generated by the oriented d-chains, which is equivalent to define the
d-chain group as a module over Z. Alternatively, one can define a d-chain space as the vector space over
F2, that is, a Z2-module.

Both approaches are means to the same end, providing their own advantages and disadvantages. We
will focus in this chapter on the algebraic approach of chain groups, but we will be recurring to the chain
spaces later on for easier computations. For the equivalent definitions with vector spaces over F2 see [1].

As a first step, we will need to dotate our simplicial complex K with a group structure in order to be
able to operate within it.

Definition 1.14. Let K be a simplicial complex. The d-th chain group of K is the free abelian group
generated by the d-simplices of K. It is denoted by Cd(K).

Remark. What we denote by σ and −σ can be interpreted as the orientation of the simplex σ the
following way:

Suppose that we have a specific order for the vertex set of a d-simplex σ . For any given set of d +1
vertices {vi}d

i=0 there are d! possible orderings, meaning that imposing an order right away would get us
many different elements.

However, since all possible orderings are equivalent up to even permutations to either (v0,v1, ...,vd)
or (v1,v0, ...,vd) we can consider that a d-simplex σ is positively oriented if the order of its vertices is
equivalent to the order (v0,v1, ...,vd) and negatively oriented if its order is equivalent to (v1,v0, ...,vd).

Having already defined group structures for our simplicial complex K, one defines a d-chain of K as
any subset of d-simplices of K.

Now that we have as many chain groups as dimensions of simplices in a complex, by relating sim-
plices with their faces, we have a map that connects the d-th chain groups to their immediate superior
and inferior.
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Figure 1.7: This simplicial complex has marked as blue and red two different 1-chains

Definition 1.15. Let K be a simplicial complex, Cd(K), Cd−1(K) its respective d-chain and d−1-chain
groups. We define the d-th boundary homomorphism of K as the map:

∂d : Cd(K)−→Cd−1(K) , (v0,v1, ...,vd) 7−→
d

∑
i=0

(−1)i(v0,v1, ...,vi−1,vi+1, ...,vd)

For the case d = 0 one takes as C−1(K) the zero group.

Proposition 1.2. ∂d is indeed a group homomorphism.

Now we have in (Cd(K),∂d)d a set of abelian groups and a set of homomorphisms that join them
consecutively.

...
∂d+2−−→Cd+1(K)

∂d+1−−→Cd(K)
∂d−→Cd−1(K)

∂d−1−−→ ...

As with any group homomorphism, from ∂d some subgroups of Cd(K) can be derived. We will be
interested in the next two in particular.

Definition 1.16. The d-th cycle group of K, Zd(K) is defined as

Zd(K) := ker∂d ⊂Cd(K)

Elements of Zd(K) are called d-cycles of K. Zd(K) is the group whose elements are all the cycles of
d-chains of K.

The d-th boundary group of K, Bd(K) is defined as

Bd(K) = Im∂d+1

Elements of Bd(K) are called d-boundaries of K. It is the group of d-chains of K for which ∃φ ∈Cd+1(K)
such that τ = ∂d+1(φ), that is, those d-chains which bound a larger d +1-chain in the complex.

The following statement is easily deduced:

Remark. Bd(K)⊆ Zd(K), i.e, ∂d ◦∂d+1 = 0.

This property is essential to our set (Cd(K),∂d)d , so much so that from now on we will refer to any
sequence of modules together with homomorphisms that follow this defining property as a complex. In
particular, (Cd(K),∂d)d is the chain complex of K.

Having defined both the cycle group and the boundary subgroup, it is natural to study the quotient
group and try to give an interpretation to it. One has that every two d-cycles of K describe the same hole
whenever they differ by a d-boundary.

We have then that the equivalence relation set by the boundary group give us the number of d-
dimensional holes of a simplicial complex K.

This gives us finally the definition of homology.
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Figure 1.8: In red a 1-boundary, in blue a 1-cycle and in green a 1-chain which is neither a boudnary nor
a cycle

Definition 1.17. The d-th homology of K is defined as

Hd(K) := Zd(K)/Bd(K)

This quotient groups give us insight into the shape of our simplicial complex by way of its rank. Since
Hd(K) is a finitely generated abelian group, we know that it is isomorphic to Zp1

a1 ⊕ ...⊕Zpk
ak ⊕Zn for

some prime numbers p1, ..., pk, a1, ...,ak ∈ Z. The rank of the free abelian group above Zn is called the
d-th Betti number of K, denoted βd(k)

This remark will clarify the meaning of what we have devised throughout the section.

Remark. For d = 0,1,2 the Betti number counts connected components, holes and voids of K respec-
tively.

As we said at the beginning of the section, simplicial homology is an invariant under homotopy and
is as such compatible with all our preliminary classifications of simplicial complexes.

As an end to this chapter, we will prove the next theorem, which will show how to go from a sim-
plicial map to a map between chain complexes, and from it subsequently to a homomorphism between
homology groups.

Theorem 1.1. Let f : K −→ L be a simplicial map. Then, we can induce a homomorphism between
homology groups H∗( f ) : H∗(K)−→ H∗(L).

Proof. We will begin by inducing a map f d
♯ : Cd(K)−→Cd(L) from f . Consider the map:

f d
♯ (σ) =

{
f (σ) if f (σ) is a d-simplex
0 otherwise

as this is well-defined for all d over the basis formed by the d-simplices and thus can be extended to the
whole d-chain group. We will abuse the notation and simply write f♯.

We have to see that indeed f♯ is compatible with the structure of chain complexes, that is, that the
following diagram commutes:

... Cd+1(K) Cd(K) Cd−1(K) ...

... Cd+1(L) Cd(L) Cd−1(L) ...

f d+1
♯

∂ K
d+1

f d
♯

∂ K
d

f d−1
♯

∂ K
d−1

∂ L
d+1 ∂ L

d ∂ L
d−1
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Let’s see that ∂ L ◦ f♯(σ) = f♯ ◦∂ K(σ).
Let σ = {v0,v1, ...,vk} and τi = {v0,v1, ..., v̂i, ...,vd} be its i-th facet. We have

∂
L ◦ f♯(σ) = ∑

i
(−1)i f♯(τi)

Let γ = f (σ) and consider each case:

• dimγ = dimσ :

Then we have by definition γ = f♯(σ) and each facet of σ is bijectively mapped to one of γ , so

∂
L ◦ f♯(σ) = ∂

L(γ) = ∑
i
(−1)i f♯(τi) = f♯(∑

i
(−1)i

τi) = f♯ ◦∂
K(σ)

• dimγ = dimσ −1

Then f♯(σ) = 0 and f (vi) = f (v j) for two unique i, j with i ̸= j, meaning f (τi) = ± f (τ j). All
other facets go to a k−2-simplex that dies out, meaning:

f♯(∂ K(σ)) = f♯(∑
l
(−1)l

τl) = ∑
l
(−1)l f♯(τl) = ∑

l ̸= j
(−1)l f♯(τl)± (−1) j f♯(τl) =

(−1)i f♯(τi)± (−1) j f (τ j)

Now, for each case we have:

(a) (−1)i = (−1) j:
In this case both i, j are of the same parity, in any case making vi and v j separated by an odd
number of permutations. Therefore f (τi) =− f (τ j) and

(−1)i f♯(τi)± (−1) j f (τ j) = f (τi)− f (τ j) = 0

(b) (−1)i ̸= (−1) j: (w.l.o.g. (−1) j = 1)
In this case i, j are of distinct parity, and thus vi and v j are separated by an even number of
permutations, inducing the same orientation. Hence f (τi) = f (τ j) and

(−1)i f♯(τi)± (−1) j f (τ j) =− f (τi) f (τ j) = 0

making f♯ ◦∂ K(σ) = 0.

• dimγ ≤ dimσ −2

Again we have f♯(σ) = 0 but now each facet of σ is mapped to a lower-dimensional simplex, and
so the other end amounts to:

f♯(∂ K(σ)) = f♯(∑
i
(−1)i

τi) = ∑
i
(−1)i f♯(τi) = 0

Now that we have checked that f♯ is a chain map, we have to see that it maps cycles to cycles and
boundaries to boundaries.

Note that for θ ∈ Zd(K), by definition ∂ K
d (θ) = 0 and thus ∂ L ◦ f♯(θ) = f♯ ◦∂ K(θ), meaning that we

have f♯(θ) ∈ Zd(L).
For a boundary τ = ∂ K

d (σ) we have f♯(τ) = f♯ ◦ ∂ K(σ) = ∂ L ◦ f♯(σ) = ∂ L( f♯(θ)), making f♯(τ)
again a boundary in Cd−1(L).

Therefore, the induced map

f ∗♯ : H∗(K)−→ H∗(L)(K) , θ +Bd(K) 7−→ f♯(θ)+Bd(L)

is a homomorphism.

If instead of working over Z-modules we do it over Z2, then f ∗♯ is a linear map. If f were as well a
homotopy equivalence then it can be proven that the induced homomorphism f ∗♯ is an isomorphism.





Chapter 2

Persistent homology

In the previous chapter we defined the concept of homology of a simplicial complex. Now, we must see
how to apply it to our context in the field of Data Analysis.

As we have hinted at before, our approach to study the point clouds resulting from our data will be
to construct a series of simplicial complexes following a determined parametric criterion and study the
way their homology develops as our parameter changes, this is what we will call persistent homology.

Related to persistent homology, we will introduce our main tool, which consists of a combinatorial
encoding from which we will be able to recover the homology groups and Betti numbers for every
different simplicial realization of our data.

In this chapter we will put in mathematical terms such concepts and give some interesting properties
of them.

2.1 Filtrations and Interleavings

First in this section, let us define the systematic way of constructing simplicial complexes we alluded to
in the previous chapter and will be using from now on.

Definition 2.1. A filtration of simplicial complexes (indexed over R) is a family K• = {Kt}t∈R of simpli-
cial complexes such that s≤ t implies Ks ⊆ Kt .

Example. The Vietoris-Rips complex from Example 1.2 parametrized over R: Rips• = {Ripst}t∈R is a
filtration.

Let’s now see another example of such a construction:

Definition 2.2. Let F = (Fi)i∈I be a collection of sets. The nerve of F is the collection:

NrvF :=
{

J ⊆ I :
⋂
j∈J

Fj ̸= /0, J ̸= /0 f inite
}

Proposition 2.1. The nerve of a set F is an abstract simplicial complex.

Proof. Let us prove that the nerve is closed under inclusion.
Let J ∈ NrvF and take K ⊆ J. If J ∈ NrvF , then

⋂
j∈J Fj ̸= /0 and J is finite.

Now, K ⊆ J, so as a consequence we have that K is again finite and
⋂

k∈K Fk ⊇
⋂

j∈J Fj ̸= /0, hence⋂
k∈K Fk ̸= /0 and K ∈ NrvF .

Definition 2.3. Let (X ,d) be a metric space with X ⊂ Rd a finite point set. The Čech complex of X for
radius r is the nerve complex of the balls centered at the points in X :

Čechr(X) := {Q⊂ X :
⋂
x∈Q

Dr(x) ̸= /0}

11
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Figure 2.1: Čechr(X) for respectively r = 0,1,
√

5
2

Notice that for both the Čech and Vietoris-Rips complexes as we scale up the parameters t and r
respectively, new simplices keep being added and our new resulting complexes are susceptible to change
their structure, all while being computed from the same datacloud. That core idea behind a filtration will
be our focus.

The Čech and Vietoris-Rips filtrations are just two very useful examples. Another one, which will be
the one we use in Chapter 3 is the so-called level set filtrations.

Definition 2.4. Let f : Rd −→R be a function. The superlevel set of f for a parameter t ∈R is the subset
of Rd

L( f )t =
{

x ∈ Rd : f (x)≥ t
}

Note that s≤ t implies Lt( f )⊆ Ls( f ).
In an analogous way one can define the sublevel set of f .

t1

t2

f (x) = esin(3x)

Lt1( f )

Lt2( f )

Figure 2.2: An example of superlevel set for f : R−→ R for two different parameters t1, t2

If f is restricted to a finite domain K ⊆ Rd (a datacloud for example) one can define the superlevel
set filtration L( f )• as:

L( f )t =
{

conv(X) f (x)≥ t,∀x ∈ X
}

Going back to the Čech and Vietoris-Rips filtrations, consider them both computed from the same
data cloud X (That is the case represented in Figures 1.3 and 2.1)

Even though they are different, they are close to each other in a sense that we will precise now.

Definition 2.5. Two filtrations K•,L• are δ -interleaved for δ ≥ 0 if Kt ⊆ Lt+δ and Lt ⊆ Kt+δ ∀t ∈ R.
The interleaving distance between K• and L• is defined as:

dI(K•,L•) = in f{δ ≥ 0 : K•, L• are δ − interleaved}
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Back to our example, it is quick to see that Čecht(X) ⊆ Rips2t(X). For the other inclusion we have
theorem formulated by Jung in 1901, but first we will give a preliminary result that is used in the proof:

Proposition 2.2. (Special Karush-Kuhn-Tucker conditions) Let P,Q,E ⊂ R be disjoint finite sets of
points. Let S be a sphere that encloses Q, contains P, and excludes E. Then S is the smallest such
sphere iff its center is an affine combination of the points x ∈ Q∪P∪E,

z = ∑
x

λxx , 1 = ∑
x

λx

such that

1. λx = 0 whenever x does not lie on S.

2. λx ≤ 0 whenever x ∈ E.

3. λx ≥ 0 whenever x ∈ Q.

Theorem 2.1. Let Q ⊂ Rd be a set with diameter t. Then Q is contained in a closed ball with radius
r ≤ ϑ t for ϑ =

√
d

2(d+1)

Proof. Let S be the smallest enclosing sphere of our set Q with center z and radius r. We will prove that
S is contained in the ball of radius ϑ t

The special Karush-Kuhn-Tucker conditions imply that z can be expressed as an affine combination
∑

n
i=1 λiqi for q1, ...,qn affinely independent points lying in Q, therefore n≤ d +1.

Now, let xi = qi− z, we have ||xi||= r for all i = 0, ...,n and ∑
n
i=1 λixi = 0. Thus, we have

diam(Q)2 ≥ ||xi− xk||2 = ||xi||2 + ||xk||2−2 < xi,xk >= 2(r2−< xi,xk >)

For a fixed k we have

2r2 =
n

∑
i=1

λi2r2 =
n

∑
i=1

λi(||xi− xk||2−2 < xi,xk >) =

= λk||xk− xk||2 +
n

∑
i=1,i ̸=k

λi||xi− xk||2−2
n

∑
i=1

λi < xi,xk >=

=
n

∑
i=1,i̸=k

λi||xi− xk||2−2 <
n

∑
i=1

λixi,xk >=
n

∑
i=1,i ̸=k

λi||xi− xk||2

Thus, summing for 1≤ k ≤ n we get

n(2r2) =
n

∑
i,k=1,i̸=k

λi||xi− xk||2 ≤
n

∑
i,k=1,i ̸=k

λidiam(Q)2 =
n

∑
k=1,

(1−λk)diam(Q)2 = (n−1)diam(Q)2

Since n≤ d +1 we have

r ≤ diam(Q)

√
d

2(d +1)
= t

√
d

2(d +1)

Corollary. We have that
Čecht(X)⊆ Rips2t(X)⊆ Čechϑ2t

which does not give us an interleaving distance for our filtrations. However, if we reparametrize them
by t = eλ , since we have that 2et+log2ϑ = 2ϑ t ≥ 2t, the logarithmic Čech and Vietoris-Rips filtrations
Čeche• , Rips2e• verify

Čecheλ (X)⊆ Rips2eλ (X)⊆ Rips2eλ+log(2ϑ)(X) , Rips2eλ (X)⊆ Čech2eλ+log2ϑ

and so they are log2ϑ -interleaved.
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As we have now defined what a filtration is, now we want to compute the homology groups of each
simplicial complex involved in the process. This will be what we call persistent homology, and will
allow us to observe which of them last longer throughout the filtration and thus is more inherent to the
point structure.

2.2 Persistent homology

In order to give a more easy to follow explanation of persistent homology, this next two sections are
written approaching homology as built from the chain space over Z2. In Section 1.3 we have constructed
homology working over Z, the constructions for Z2 are similar but in case of doubt, see [1] and [2] for
more details.

Definition 2.6. A persistence module is a map from a totally ordered set T that assigns:

1. t 7→Vt where all Vt are modules over the same ring R

2. s≤ t 7→Vs −→Vt : for every ordered pair a morphism between R-modules

The next remark gives us interpretations of concepts in the previous section under our new lens.

Remark. A simplicial filtration K• indexed over R induces, together with inclusion maps between steps,
a persistence module for chain spaces R−→Cd(K•) sending elements and ordered pairs:

r 7→Cd(Kr)

r ≤ s 7→Cd(Kr) ↪→Cd(Ks)

Some clarification is needed in order to understand what we have in our hands right now. As we can
construct a chain complex over each element of our filtration, we as well have a relation between chain
complexes throughout the filtration.

...
∂d+2−−→Cd+1(K j−1)

∂d+1−−→Cd(K j−1)
∂d−→Cd−1(K j−1)

∂d−1−−→ ...

↓ ι j−1

...
∂d+2−−→Cd+1(K j)

∂d+1−−→Cd(K j)
∂d−→Cd−1(K j)

∂d−1−−→ ...

↓ ι j

...
∂d+2−−→Cd+1(K j+1)

∂d+1−−→Cd(K j+1)
∂d−→Cd−1(K j+1)

∂d−1−−→ ...

Similarly, via the inclusions present in the filtration we have induced maps between homologies
∀d ∈ N∪{0}

Hd(K j−1)

↓ ι
∗
j−1

Hd(K j)

↓ ι
∗
j

Hd(K j+1)

Now we can present the definition of persistent homology.
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Definition 2.7. The persistent homology of a simplicial filtration K• is the persistence module

R−→ H∗(K•)

assigning to each real number r the homology of its corresponding step of the filtration and to ordered
pairs the induced linear maps from the inclusions .

r 7→ H∗(Kr)

r ≤ s 7→ H∗(Kr) ↪→ H∗(Ks)

Note that the map between homologies of the filtration isn’t an inclusion but the induced chain map
from the inclusion, which may not, and many times will not, be injective.

By following our linear maps, in persistence homology we find a tool to study the development of
topological holes in a filtration. As the Betti numbers β∗ of the complexes grow or shrink with every
step holes are being created and removed. This, paired with a given basis of the homology, allows us to
identify the holes that are characteristic of the data cloud’s structure, those that persist for long periods,
from those that arise occasionally and can be considered as noise.

Finally, in the next section we will show a way to encode the information about the lifespan of these
holes throughout the filtration. All will be based in the next fundamental theorem, which we will prove
for the case of discrete persistence modules, i.e., those indexed by a discrete totally ordered set.

Definition 2.8. Let M1,M2 : N −→ VectZ2 be persistence modules. The direct sum M1⊕M2 : N −→
VectZ2 is the persistence module with

(M1⊕M2)(i) = (M1)(i)⊕ (M2)(i)

and
(M1⊕M2)(i≤ j) = (M1)(i≤ j)⊕ (M2)(i≤ j)

Theorem 2.2. (Structure theorem for persistence modules) Let (M,α) be a persistence module over a
field F such that ∀ j ≥ 0 the module Mi is finite-dimensional and ∀ j≫ 0 all α j are invertible. Then there
exists a unique pair consisting of:

1. A finite set Bar(M,α) of intervals [i, j) with i ∈ Z≥0, j ∈ Z≥0∪{+∞}

2. A function µ : Bar(M,α)−→ Z>0

such that (M, ι)∼=
⊕

[i, j]∈Bar(M,α)(I
i, j,ci, j)µ[i, j], where (Ii, j,ci, j) is the persistence module of the form:

0−→ 0−→ ...−→
i
F id−−→

i+1
F id−−→

i+2
...

id−→
j
F−−→

j+1
0−→ ...

Proof. Consider a persistence module (M, ι) satisfying the above conditions. Let n be the largest integer
such that i j is invertible ∀ j ≥ n. Take the truncation of the persistence module

M0
ι1−→M1

ι2−→M2
ι1−→M3

ι4−→ ...
ιn−→Mn

From this persistence module we construct the graded ring M =
⊕n

i=0 Mi and define the shift map
t : M −→M as:

(x0,x1, ...,xn) 7→ t(x0,x1, ...,xn) = (0,α0(x0),α1(x1), ...,αn−1(xn−1))

Now, we have that M is a graded module over the polynomial ring F[t]. Since F is a field, we have
that polynomial rings over a field are principal ideal domains. Therefore, we have that M is a finitely
generated module over a principal ideal domain and so its structure is well known. It is of the form:
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M =
⊕

i

(t iF[t])µ[i,+∞)
⊕
[i, j)

(t iF[t]/ < t j >)µ[i, j)

Hence, by defining the set of coefficients present in this sum we can observe that at a given step k
our persistence module will have a module which will correspond to the k-th degree elements, being of
the form

Mk =
⊕

k∈[i, j)
Fµ[i, j)

and the maps between steps of the persistence module are those given by applying t, i.e. the corre-
sponding α .

Although the filtrations we have seen so far are indexed over R, one can see that for most of the
values the resulting simplicial complexes are the same. Only for a finite number of values we get an
actual change in the structure. For this reason, our filtration can be discretised by reindexing to only keep
the critical steps and so they are proved to have such a structure.

Remark. For this proof to work the field condition for our persistence module is essential. This means
that Z-modules are not suitable for this proof

The structure theorem allows us to state this final definition, as we have now a way to relate :

Definition 2.9. Let i, j ∈ I with i≤ j. The (i, j)-persistent homology is defined as

H i, j
∗ =

Zi
∗

B j
∗∩Zi

∗
=

ker∂ i
∗

im∂
j
∗ ∩ ker∂ i

∗

That is, cycles in Ki quotiented by those who become boundaries in K j. Equivalence classes are those
non-bounding cycles that "persist" throughout the marked steps of the filtration.

2.3 Computation of persistence homology: Persistence barcodes

While the usefulness of persistent homology is clear, we have not yet given a way to easily compute it so
that we can actually work with it. With the aid of the structure theorem for persistence modules we can
recover the persistent homology from a certain finite set of intervals and a multiplicity function.

In the following section we will give an algorithm to compute this structural multiset: the persistence
barcode, an elaborate on the details of this construction.

First, one needs a certain kind of filtration in order to apply our algorithm.

Definition 2.10. Let K be a simplicial complex. A simplexwise filtration K• of K is a filtration {Ki}1≤i≤n

such that Ki = Ki−1∪{σi} for 1≤ i≤ n, where K = Kn and σi ∈ K is a simplex.

The following proposition is of importance for our purpose, as it tells us how to go from a regular
filtration to a simplexwise one.

Proposition 2.3. One can turn a regular filtration into a simplexwise filtration by decomposing each step
into adding a single simplex following any order that verifies:

σa goes before σb =⇒ σa ∈ Ki,σb /∈ Ki∨dimσa ≤ dimσb

From a simplexwise filtration we then construct the following object:

Definition 2.11. The d-th boundary matrix Dd of a simplexwise filtration K• is the matrix of the boundary
map ∂d(K) with respect to the ordered basis {σi}1≤i≤n. It is filled as follows:

(Dd)i, j = 1⇔ σi ⊆ σ j
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Remark. Note that in the previous definition not all indexes are present. Only those corresponding to
those of dimension d and d−1 appear in the matrix and this may lead to confusion.

To fix this, we will abuse the notation a bit and will write ∂ : C∗ −→C∗ referring to the collection of
all boundary maps of the chain complex of K, and respectively D to the n×n matrix containing all facet
relations, i.e, Di, j = 1⇔ σi is a facet of σ j.

1

2

3

4

5

6

7 8
9

10



0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0


Figure 2.3: To the left a simplexwise filtration of a simplicial complex and to the right its boundary
matrix D

The choice of ordered basis in our context will be given by the filtration chosen (Rips, Čech,...etc.)
as well as any order satisfying the criteria for a simplexwise decomposition. This ordering of the basis is
nonimportant in terms of the homology itself, since a different basis should still span the same homology,
but is nontheless neccesary in order to implement our method for computing the barcode.

The following algorithm takes the matrix D and returns its reduced form R, from which we will
construct the persistence barcode of the simplexwise filtration. This algorithm is similar to that used
for obtaining the Smith normal form of a matrix for coefficients in Z2, but in our case it respects the
placement of pivots in order for us to be able to extract as well a basis for the homology.

Remark. In the algorithm the notation used corresponds to:

1. For M an I× I matrix and i ∈ I, Mi is the ith column of M.

2.
pivotMi = min

{
j ∈ I : mik = 0∀k > j

}
3.

pivotsM =
{

pivotMi : i ∈ I
}
\
{

0
}

Algorithm 1. (Matrix reduction algorithm):
INPUT: D : n×n matrix
OUTPUT: R reduced
R← D,
while ∃i < j : pivotRi = pivotR j do

R j← Ri +R j

end while
return R
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Some explanation is needed in order to interpret this result.
Every zero column Ri of the reduced matrix R represents a cycle in the step Ki, as we, via the

operations being made to D in the algorithm, have been able to nullify its boundaries by adding elements
already present in the filtration. As such, finding a nonzero entry in a certain row i signifies that σi is a
boundary in the j-th simplicial complex of the filtration K j.

The meaning behind finding a pivot in row i at column R j is that the addition of σi creates a homology
class that disappears once we add σ j.

Thus, intervals [i, j) represent homology classes that appear in Ki and disappear from K j on, while
intervals [ j,∞) represent persisting homology classes born in K j

From the output of this algorithm we get a reduced matrix R whose pivots are unique. This matrix is
very rich in information and allows us to define the persistent barcode as we present next.

Definition 2.12. Let K• be a simplexwise filtration. The persistence barcode of K• is the collection of
intervals

Barc(H∗(K•)) = {[i, j) : R j ̸= 0, i = pivotR j}∪{[ j,∞) : R j = 0, j /∈ pivotsR}

where R is the reduced matrix produced by the matrix reduction algorithm.
The homological dimension d of a bar [a,b) in Barc(H∗(K•)) is the dimension of the simplex σa

Example. The barcoding of the boundary matrix D of the simplexwise filtration presented in Figure 2.3
will help clarify this procedure:



0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



Barc(H0(K)) =
{
[1,+∞), [2,6), [3,7), [4,5)

}
Barc(H1(K)) =

{
[8,+∞), [9,10)

}
Barc(H2(K)) = /0

Figure 2.4: The reduced matrix from the previous example together with its barcode

The algorithm has performed the following operations to reduce R:

R8← R5 +R8

R8← R7 +R8

R8← R6 +R8

R9← R7 +R9

R9← R6 +R9

Check how the operations work out in the end to get an intuition of the workings behind our algo-
rithm.

The running time for our algorithm is at most cubic to the number of simplices in the filtration. Note
that the matrix D is sparse but this does not imply that R is, although very often that is the case.

As we announced, barcoding is not only useful for representation. The following proposition tells us
how to interpret the persistence barcode in order to extract information from it:



Topological Data Analysis - Daniel Garcés Paniagua 19

Proposition 2.4. Let K• be a simplexwise filtration.

1. For i ∈ N, βd(Ki) is equal to the number of bars I ∈ Barc(H∗(K•)) of dimension d such that i ∈ I

2. For i ≤ j ∈ N, the rank of the linear map Hd(Ki) −→ Hd(Ki) is equal to the number of bars
I ∈ Barc(H∗(K•)) of dimension d such that i, j ∈ I

Notice we haven’t computed homology. The next proposition tells us how to obtain the persistent
homology of K• from the persistence barcode.

Proposition 2.5. Let K• be a simplexwise filtration, I = [i, j) or [i,∞) and F(I)• : N −→ VectZ2 the
persistence module

F(I)t =

{
F i f t ∈ I
0 otherwise

, F(I)s≤t =

{
IdF i f s, t ∈ I
0 otherwise

Then
H∗(K•)∼=

⊕
I∈Barc(H∗(K•))

F(I)•

Proof. It is a special case of the structure theorem for persistent modules. If we consider the finite set in
the statement of the theorem as a multiset where repetition of intervals is given by the function µ , then
we have Barc(H∗(K•)) = Bar(H∗(K•), ι∗)

One other very important property of persistence barcodes is that they are stable invariants. Small
perturbations of the data generating them won’t lead to drastic changes on the resulting barcode.

As when talking about interleavings of filtrations, we need a notion of distance for barcodes to make
such a claim as stability.

Definition 2.13. Let B,B′ be barcodes. A δ -matching between barcodes B and B′, noted γ : B ↛ B′ is a
bijection γ ′ : U −→U ′ between subsets U ⊆ B, U ′ ⊆ B′ such that the following holds:

1. If a bar [b,d) of any barcode is unmatched, then d−b < 2δ

2. If [b,d) ∈ B is matched to [b′,d′) ∈ B′, then

b ∈ [b′−δ ,b′+δ ]∧d ∈ [d′−δ ,d′+δ ]

Definition 2.14. The bottleneck distance between barcodes B and B′ is defined as

dbot(B,B′) := in f{δ ∈ [0,∞) : ∃ B−→ B′,δ −matching}

The bottleneck distance is symmetric. For barcodes B1,B2 and B3, a δ1-matching γ1 : B1 −→ B2 and a
δ2-matching γ2 : B2 −→ B3, the composition γ2 ◦ γ1 : B1 −→ B3 is a (δ1 + δ2)-matching. It follows that
bottleneck distance satisfies the triangle inequality.

Persistence modules are stable with respect to the bottleneck distance. Proofs for certain cases of
persistence modules can be found in [2], although we will not go delve further.

To see how the bottleneck distance of a persistence barcode relates to the interleaving distance, we
give without proof the following theorem:

Theorem 2.3. Let H∗(K•), H∗(L•) be persistent homologies of filtrations K• and L• respectively. Then,

dbot(BarcH∗(K•),H∗(L•))≤ dI(K•,L•)

Proof. See [6].





Chapter 3

An example of barcoding and bottleneck
distance

As to give closure to our work, we will dedicate this final part to present an example of the usage of the
main libraries and fundamental tools of Topological Data Analysis.

To make it more interesting, we have based our example on the study used in the paper by Paul
Lawson et al that can be found here [7]. The abstract of this paper reads:

[...] The Gleason score is currently the most powerful prognostic predictor of patient outcomes;
however, it suffers from problems in reproducibility and consistency due to the high intra-observer and
inter-observer variability amongst pathologists. In addition, the Gleason system lacks the granularity
to address potentially prognostic architectural features beyond Gleason patterns. We evaluate prostate
cancer for architectural subtypes using techniques from topological data analysis applied to prostate
cancer glandular architecture. In this work we demonstrate the use of persistent homology to capture
architectural features independently of Gleason patterns.[...] Our results indicate the ability of per-
sistent homology to cluster prostate cancer histopathology images into unique groups with dominant
architectural patterns consistent with the continuum of Gleason patterns. [...]

In this study, they compute sublevel set filtrations out of samples of a dataset with a total of 5.182
images of stained prostate cancer tissue. They combine this with other methods of classification in order
find subtypes in their architecture. This paper is a good example of a real-life application of Topological
Data Analysis that mixes both TDA and traditional techniques.

Back to our example, we have taken a 512× 512 image from the mentioned dataset and wish to
construct a sublevel set filtration from it. To do so, we will sue the Lower Star Image Filtration function
found in the Ripster.py package [8], itself included in the library GUDHI for Python. To apply it we
have to first convert our image to greyscale as we will use the intensity function f which ranges from 0 to
255, where the lower the number the darker the pixel. In addition to this, in order to reduce the number
of connected components, we add some blur to the image.

Figure 3.1: On the left the original image and on the right its conversion to greyscale after blurring

From the resulting image, a simplicial complex is constructed by assigning to each pixel a vertex

21
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and connecting it to each adjacent pixel. The corresponding pixel gives a value of f for each vertex and
edges are assigned the value corresponding to the maximum of its endpoints, this way we can construct
adjacency simplicial complexes with respect to a sublevel set filtration of f . As our example will be only
centered in connected components we will only add 0 and 1-simplices.

Figure 3.2: An example of our simplicial complex constructed for a 3×3 image

We compute the superlevel set filtration of this function f and get its persistence barcode in the
shape of a persistence diagram, where points represent intervals with beginning and endpoints those
corresponding to its coordinates.

Figure 3.3: The persistence diagram of our image of tissue

The blue dot in the upper left corner corresponds to the final connected component that absorbs all
others when our simplicial complex becomes connected.

We will now repeat the process with two other images, one that resembles the original and one that
is clearly different.

Figure 3.4: Images 1, 2 and 3

Using the bottleneck function we get the overlapped persistence diagrams. This show the distances
between matched intervals as a segment in red, the one that determines the bottleneck distance, and some
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other green segment, corresponding to those matched bars with distance lower than the bottleneck. Note
that in this process the points corresponding to infinite death time are ignored.

Figure 3.5: Matching of the persistence diagrams for images 1 and 2. Their bottleneck distance is
12.512161254882812

Figure 3.6: Matching of the persistence diagrams for images 1 and 3. Their bottleneck distance is
43.21422576904297

Figure 3.7: Matching of the persistence diagrams for images 2 and 3. Their bottleneck distance is
41.813507080078125

As we can see, the bottleneck distance is able to differentiate images. This and many more appli-
cations make persistent homology a very relevant tool and explain the amount of research effort being
poured into TDA as of today.
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