
Trabajo Fin de Grado

Diseño de una CPU básica para la ejecución de
programas BPF

Autor

Fernando Lahoz Bernad

Director

José Luis Briz Velasco
Dept. Informática e Ing. de Sistemas, Univ. Zaragoza

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2024

AGRADECIMIENTOS

En primer lugar, quiero comenzar dando las gracias a los profesores, en especial a
aquellos de las asignaturas del itinerario de Ingeniería de Computadores, que me han
enseñado las bases y han afianzado los conocimientos en el campo a lo largo del grado
para que este proyecto haya sido posible.

Muchas gracias a Javier Resano, Pablo Ibáñez, Darío Suárez, Jesús Alastruey y
Rubén Gran, de los que he aprendido todo lo necesario sobre el diseño de procesadores.
También agradezco al profesor Denis Navarro su ayuda para introducirme el entorno
de desarrollo de Vivado y la comunicación de componentes.

Y por último agradecer a José Luis Briz, quien ha dirigido este proyecto y propuso
la idea original, dándome la oportunidad de trabajar en un campo en desarrollo, muy
cerca de su equipo de investigación.

Este trabajo ha sido parcialmente financiado por el Programa de Becas de colabora-
ción en departamentos universitarios convocadas por el Ministerio de Educación y For-
mación Profesional Curso académico 2023/24, por el proyecto MCIN/AEI/10.13039/
501100011033 (PID2022-136454NB-C22), y por el grupo T58_23R - Gobierno de Ara-
gón.

I

II

RESUMEN

La tecnología BPF surgió como una alternativa flexible a los filtros de red y pro-
gramas de depuración basados en módulos o alteraciones al código fuente del kernel de
Linux [1]. Se trata de un de una ISA pensada para ejecutar virtualmente el bytecode
de un programa por medio de un JIT compiler. Su uso se ha extendido más allá del
filtrado de paquetes como una forma de ganar ancho de banda y reducir la latencia
introducida por el Sistema Operativo, hasta el punto de aparecer tarjetas de red capa-
ces de ejecutar programas BPF previamente traducidos a arquitecturas ya establecidas
en la industria. Esta idea hace que los programas se independicen del planificador del
kernel, obteniendo un jitter mínimo apto para redes TSN [2].

En este contexto y en el ámbito de investigación en TSN se decide comprobar la
viabilidad de un procesador que ejecute directamente el repertorio de instrucciones
extendido de BPF a partir de un primer diseño para FPGA. Este proyecto comprende
las fases de análisis, diseño, implementación y pruebas de un core BPF que sirva de
acelerador para un procesador de propósito general en un sistema baremetal, permi-
tiendo cargar programas BPF con su debido contexto, controlar el comienzo y fin de
la ejecución e interactuar por medio de mapas accedidos desde memoria compartida,
de la misma forma que se hace en un entorno GNU/Linux.

Este TFG se divide en dos partes. La primera incluye el desarrollo de un procesador
segmentado multietapa capaz de ejecutar el repertorio de instrucciones eBPF, especi-
ficando su ruta de datos, unidades de control, componentes, interfaces de memoria y
sistemas adicionales en el lenguaje de descripción de hardware VHDL, además de la
ampliación de un proyecto de compilador de ensamblador eBPF. La segunda consiste
en el diseño de un protocolo de comunicación con el core como periférico, planteando
una distribución del espacio de memoria y los registros de control y aportando una
solución original al problema de transacciones atómicas con buses de ancho reducido.
Además, abarca la implementación en VHDL de un sistema de entrada y salida que
implemente dicho protocolo para el procesador junto al desarrollo de una biblioteca en
C que abstraiga la interacción con el periférico.

El resultado del trabajo es un SoC sintetizable para FPGA que contiene el pro-
cesador BPF acoplado a un procesador MicroBlaze [3], comunicados por un bus AXI
Lite [4] accesible desde memoria.

III

ABSTRACT

The BPF technology emerged as a flexible alternative to network filtering and
debugging based on modules or direct instrumentation of the Linux kernel source code.
It is specified as an ISA, designed to virtually execute the bytecode of a program
through JIT compiling. Current BPF usage reaches well beyond packet filtering, as a
way to gain bandwidth and reduce the latency introduced by the Operating System,
with newly developed NIC which are capable of executing BPF programs previously
translated to architectures already established in the industry. This idea makes the
programs independent on the kernel scheduler, minimizing jitter and turning them
into suitable tools for TSN citebpf-tsn-building-blocks systems.

In this context, and within the scope of research in the field, this TFG test the
feasibility of a processor that directly executes the BPF ISA on first a design targeting
FPGA synthesis. This project encompasses the analysis, design, implementation and
testing stages of a BPF core that serves as an accelerator for a general purpose processor
in a baremetal system, allowing to load BPF programs with their proper context,
to control execution start and termination, also providing interaction through BPF
map structures accessed from shared memory, as performed in common GNU/Linux
environments.

This project is divided into two parts. The first one includes the development of
a multi-stage segmented processor, capable of executing the eBPF ISA, specifying in
VHDL its data path, control units, components, memory interfaces and additional
systems. Additionally, this part provides an extension of a eBPF assembly compiler
project. The second part consists of the design of a communication protocol with
the core considered a peripheral, proposing a memory organization, including control
registers and providing an original solution to the problem of atomic transactions on
buses with reduced datawidth. It also covers the VHDL design of an input and output
system that implements this protocol for the processor, along with the development of
a C library that provides an interface to interact with the peripheral.

The outcome and principal deliverable of this TFG is a synthesizable SoC for FPGA
which contains a BPF processor coupled to a MicroBlaze softcore, inter-communicated
by a memory-accessible AXI Lite bus.

IV

Índice

1. Introducción 1
1.1. Motivación y contexto . 1
1.2. Objetivos y alcance . 1

1.2.1. Objetivos generales . 1
1.2.2. Objetivos específicos . 1
1.2.3. Alcance . 2

1.3. Contribuciones . 2
1.4. Metodología y entorno de trabajo . 2
1.5. Planificación . 3
1.6. Estructura del documento . 3

2. Fundamentos 5
2.1. Ruta de datos segmentada . 5
2.2. BPF . 5

2.2.1. Programas BPF y usos . 5
2.2.2. Mapas . 6
2.2.3. Hardware Offload . 6
2.2.4. Arquitectura de Lenguaje Máquina 6

2.3. Metodología de depuración y testing 7
2.4. Trabajos relacionados . 7

3. Diseño de un procesador BPF básico 9
3.1. Ruta de datos . 9

3.1.1. Control de PC . 9
3.1.2. Búsqueda de operandos . 11
3.1.3. Escritura del resultado . 12
3.1.4. Control de los bancos de etapa 12
3.1.5. Gestión de excepciones y detención del procesador 13

3.2. Descripción de componentes . 14
3.2.1. Banco de registros . 14

V

3.2.2. Verificador de saltos (Branch Checker) 15
3.2.3. Unidad Aritmética Lógica (ALU) 15
3.2.4. Interfaz de memoria de datos 15
3.2.5. Unidad de funciones auxiliares (HFU) 16

3.3. Metodología de pruebas . 16
3.3.1. Ensamblador . 17

4. Integración de un procesador BPF en un sistema baremetal 19
4.1. Procesador BPF como periférico . 19

4.1.1. MicroBlaze y protocolo AXI . 19
4.1.2. Módulo de entrada-salida y memoria 20

4.2. Interacción con el procesador . 20
4.2.1. Registros de control . 22
4.2.2. Escritura del programa y arranque 22
4.2.3. Accesos concurrentes a memoria compartida 23
4.2.4. Gestión de mapas . 24

4.3. Metodología de pruebas . 25
4.4. Prueba de concepto . 26

5. Conclusiones y líneas abiertas 29
5.1. Diseño de un microprocesador para la ISA BPF 29
5.2. Líneas abiertas . 30

Bibliografía 31

Siglas 35

Lista de figuras 39

Lista de tablas 41

Lista de listados de código 43

Anexos 44

A. Dedicación 47

B. Conjunto de Instrucciones eBPF 49

C. Descripción RTL de instrucciones en la ruta de datos 55

VI

D. Control de la ruta de datos 59
D.1. Unidad de Control (CU) . 59
D.2. Unidad de Riesgos (HU) . 61
D.3. Unidad de Anticipación (FU) . 63
D.4. Unidad de Excepciones (EU) . 65

E. Detalles de implementación por componente 67
E.1. Verificador de Saltos (BC) . 67
E.2. Unidad Aritmética Lógica (ALU) . 68
E.3. Interfaz de memoria de datos . 71
E.4. Unidad de funciones auxiliares (HFU) 74
E.5. Controlador AXI . 75

F. Funciones definidas por el usuario 77

G. Pruebas de integración 79
G.1. Programas de prueba . 79
G.2. Ejemplo de testbench . 100
G.3. Ejemplos de visualización de señales . 105

H. Código de demostración 109
H.1. Biblioteca de interacción con el periférico 109
H.2. Ejemplo de programa . 116

VII

VIII

Capítulo 1

Introducción

1.1. Motivación y contexto

Berkeley Packet Filtering (BPF) es una tecnología que permite ejecutar programas
a distintos niveles dentro de la pila de protocolos del kernel de Linux. Consiste en una
Arquitectura de Lenguaje Máquina (ALMA) (ISA) interpretada por un compilador
Just-In-Time (JIT) con el objetivo de ofrecer una forma segura y flexible de acceder a
un contexto privilegiado que, de otra forma, requeriría recompilar el kernel o confiar
en un módulo [1].

En los últimos años se ha visto su potencial más allá del simple filtrado de paquetes
para ganar ancho de banda y reducir la latencia introducida por el Sistema Operativo.
Como consecuencia, surge el concepto BPF Hardware Offload que busca reducir la
carga del procesador, delegando a la Tarjeta de Interfaz de Red (NIC) la ejecución el
programa.

Este proyecto pretende explorar las opciones de diseño que aparecen a la hora de
desvirtualizar la arquitectura BPF.

1.2. Objetivos y alcance

1.2.1. Objetivos generales

Mediante la realización de este Trabajo de Fin de Grado (TFG) se persigue, por una
parte, la consolidación y ampliación de conocimientos y competencias relacionados con
arquitectura y organización de computadores y sistemas empotrados adquiridos durante
la titulación. Por otra, se busca un acercamiento a la realidad y práctica investigadora
e industrial en el campo.

1.2.2. Objetivos específicos

− Estudio de la tecnología BPF, interfaces, aplicaciones e ISA.

1

− Diseño de un núcleo BPF básico.

− Diseño de un núcleo BPF integrable en un sistema empotrado.

1.2.3. Alcance

− Implementación en VHDL de un procesador BPF básico autónomo.

− Implementación en VHDL de un procesador BPF integrado con un procesador
softcore en un sistema baremetal sobre una Field-Programmable Gate Array (FP-
GA) Xilinx Kintek 7©.

El código fuente desarrollado para este proyecto está a disponible en https://

github.com/uz-gaz/bpf_1.

1.3. Contribuciones

La consecución de los objetivos anteriores ha generado las siguientes contribuciones:

− Diseño original de un procesador BPF

− Solución original al diseño del subsistema de memoria de un procesador BPF que
soporta primitivas de acceso atómico.

− Solución al problema de compartición de memoria con un procesador de propósito
general sobre una FPGA.

− Modificación y corrección de un programa ensamblador para soportar el reperto-
rio de instrucciones BPF más reciente.

Este TFG contribuye a las metas 9.2 / 9.2.1; 9.4 / 9.4.1; 9.5 / 9.5.2 de los Objetivos
de Desarrollo Sostenible.

1.4. Metodología y entorno de trabajo

El código de este proyecto se ha desarrollado haciendo uso del editor Visual Studio
Code [5], con ayuda de la extensión Modern VHDL [6], con Git [7] como herramienta
de control de versiones.

Para la simulación del código VHDL del procesador se ha utilizado GHDL [8].
GTKWave [9] se ha empleado para visualizar los cronogramas con la evolución de
las señales en cada simulación. Al ser programas de línea de comandos el proceso de
simulación se ha automatizado con scripts de Bash [10]. Durante el tiempo que se ha

2

https://github.com/uz-gaz/bpf_1
https://github.com/uz-gaz/bpf_1

trabajado en un sistema operativo Windows se ha utilizado MSYS2 [11] para emular
un entorno similar a Linux.

Con el paquete de software de Vivado 2024.1 [12] se ha podido evaluar el procesador,
integrarlo con un softcore, y desarrollar programas en C que permiten verificar su
funcionamiento.

Para elaborar esta memoria se ha utilizado Overleaf [13] como editor colaborativo
de LATEX. Los diagramas de este documento son de elaboración propia, creados con la
aplicación web Diagrams.net [14].

La metodología y entorno específico de las partes experimentales se describen en
las Secs. 3.3, 4.3 y 4.4.

1.5. Planificación

Este proyecto se ha planificado en dos partes: la primera dedicada al diseño e imple-
mentación del procesador BPF y la segunda enfocada en su integración como periférico
en un sistema baremetal. Las partes están pensadas para dedicarles un mes de desarro-
llo a cada una. El trabajo es progresivo, con fases de análisis, diseño, implementación
y pruebas en cada uno de los sistemas desarrollados, y concluye con la elaboración de
esta memoria. En el Anexo A aparece el diagrama de Gantt que muestra la distribución
del trabajo a lo largo de las semanas.

1.6. Estructura del documento

Esta memoria de TFG se estructura como sigue. El Cap.2 introduce los conceptos
necesarios para el seguimientos de la memoria y sitúa el proyecto dentro del estado
actual de la tecnología BPF. El Cap. 3 está enfocado en el diseño de un procesador
BPF, explicando el funcionamiento interno de la ruta de datos implementada y los
componentes que la conforman. El Cap. 4 trata sobre la creación de un acelerador a
partir de este procesador BPF, la especificación de un protocolo de interacción basado
en registros y su conexión con un procesador de propósito general dentro de un SoC
sintetizable en FPGA. Finalmente, el Cap. 5 recoge conclusiones y líneas futuras.

3

4

Capítulo 2

Fundamentos

2.1. Ruta de datos segmentada

El diseño de este procesador se basa en la arquitectura segmentada en cinco etapas
original del MIPS. Se considera necesario para el seguimiento de esta memoria entender
los siguientes conceptos básicos, para los que remitimos p.ej. a [15] y [16]:

− Riesgos de datos, estructurales y de control.

− Anticipación de operandos.

− Consolidación de instrucciones.

2.2. BPF

2.2.1. Programas BPF y usos

Los programas del sistema Berkeley Packet Filtering (BPF) son objetos binarios
cargados por un usuario con privilegios limitados para actuar en distintos puntos
de la pila de protocolos de red del kernel, llamados hooks. Dependiendo del tipo
de programa especificado, este se puede ejecutar al recibir un paquete en un soc-
ket – SOCKET_FILTER–, al aplicar disciplinas de colas de Linux (queue discplines,
qdisc)1 – SCHED_CLS– o antes incluso de llegar al dominio del kernel – XDP–. La
gran variedad de hooks permiten utilizar programas BPF no solo para filtrado de pa-
quetes, sino como balanceador de carga, protección contra ataques de denegación de
servicio, o acelerador de servicios [17]. También es posible usarlos para depurar funcio-
nalidades del kernel.

1Es el momento en el que se cargan las qdiscs que se hayan configurado mediante el comando tc
de Linux

5

2.2.2. Mapas

Los mapas representan regiones de memoria compartida entre los programas BPF
y de usuario. Se accede a sus elementos mediante funciones auxiliares, explicadas con
mayor profundidad en la Sec. 3.2.5. Los mapas también pueden ser de varios tipos,
según se comporten como arrays de elementos contiguos, tablas hash, o estructuras
más complicadas, como array de sockets u otros mapas.

Los mapas perduran más que los programas. Si el usuario elimina un mapa mientras
hay un programa cargado que lo referencia, el kernel no lo elimina por completo hasta
que el programa, a su vez, se descargue. El binario de un programa que use un mapa
precisa ser modificado en tiempo de carga para reubicar las referencias al mapa.

El usuario maneja programas y mapas mediante comandos, utilizando la llamada
al sistema bpf() [18].

Remitimos a la documentación oficial de BPF para Linux [19][20] para ampliar
información sobre los diferentes tipos de programas y mapas.

2.2.3. Hardware Offload

El objetivo del Hardware Offload es incrementar el rendimiento, eximiendo al ker-
nel, y en consecuencia al procesador principal, de ejecutar programas BPF en los hooks
más bajos. Las NIC con soporte offload actúan como aceleradores. Permiten la carga
de programas BPF a través de recursos como XDP y qdisc para su ejecución local,
con lo que escapan a la planificación del kernel. Los mapas también pueden ser confi-
gurados como locales a las NIC para permitir el acceso rápido desde estos programas.
Con hardware offload es posible programar moldeadores de tráfico (traffic shapers) y
encaminadores flexibles y ágiles de modificar, con una latencia y jitter mínimos [2].

2.2.4. Arquitectura de Lenguaje Máquina

eBPF es el sucesor de lo que actualmente se conoce como Classic BPF2. Original-
mente, los programas BPF utilizaban dos registros y un conjunto de instrucciones de 32
bits. La versión extendida amplía el número de registros a 10 de propósito general y un
Frame Pointer (FP) de solo lectura. Las instrucciones están codificadas en 64 bits, que
incluyen dos registros – fuente y destino –, un offset y un inmediato, además de la clase
de la instrucción – salto, aritmética o memoria – y un código de operación (Fig. 2.1). El
Anexo B contiene una descripción en pseudocódigo de las instrucciones consideradas
en este proyecto. La información detallada sobre la ISA se encuentra en [21].

2Siguiendo una práctica habitual, este documento utiliza BPF para referirse a la versión extendida.
Para la versión clásica se recomienda utilizar el acrónimo específico cBPF

6

87

opcode srcdst offset imm

4 48 16 32

0 32 6316151211 31

class s code

modeclass size

0 2 3 74

0 2 3 74 5

3 2

3

3

41

class ∈ { LD, LDX, ST, STX,
 ALU, JMP, JMP32, ALU64 }

code ∈ { ADD, SUB, MUL, DIV, ...,
 JA, JEQ, JGT, JLT, ... }

source (s) ∈ { IMM, REG }

mode ∈ { IMM, MEM, MEMSX, ATOMIC }

Figura 2.1: Formato de una instrucción BPF

2.3. Metodología de depuración y testing

Los testbenchs son el principal método de depuración en VHDL. Son entidades
específicas para simulación, que encapsulan a la entidad a probar y controlan el valor
de las señales con eventos de tiempo. Uno de los testbenchs del proyecto está presente
en el Anexo G.2 a modo de ejemplo.

VHDL permite automatizar las comprobaciones, lo que es especialmente útil en
pruebas de caja negra. Cuando lo que se pretende verificar es el comportamiento in-
terno, se trabaja con un visor de ondas para observar el valor de las señales en cada
instante de tiempo. El Anexo G.3 incluye ejemplos de visualización de señales.

Los tests desarrollados para este proyecto se describen junto a sus objetivos en las
Sec. 3.3 y 4.3.

2.4. Trabajos relacionados

El Hardware Offload es una práctica en auge. Empresas como Corigine y Netronome
tienen líneas de desarrollo de SmartNIC, cuyos drivers para Network Flow Processor
(NFP) ya han sido integrados en el kernel de Linux. Sus procesadores no implementan
la arquitectura BPF, sino que se basan en arquitecturas comerciales de uso extendido.
En su lugar cargan los programas ya traducidos en la memoria de instrucciones. Este
proyecto se basa en los documentos técnicos publicados por Corigine [22] para planificar
la disposición de la RAM dentro del periférico. Estos documentos han sido necesarios
para entender el acceso a mapas locales a la NIC.

La ruta de datos del procesador diseñada en este trabajo se inspira en los engines
de la plataforma eBPFlow [23]. Consiste en una implementación sobre una NetFPGA –
una FPGA especial para desarrollar dispositivos de red– de un NFP especializado para

7

programas BPF, con un procesador con ruta de datos segmentada en cinco etapas. Cabe
mencionar que esa implementación necesita de software propio tanto para compilar los
programas BPF como para cargarlos en la FPGA. Este proyecto intenta acercarse a
esa idea de desarrollar un procesador específico para la ISA BPF, pero más acorde con
la forma de interacción propia de Linux.

8

Capítulo 3

Diseño de un procesador BPF
básico

El siguiente capítulo resume los detalles de diseño de un procesador BPF. El núcleo
(core) es capaz de ejecutar el repertorio completo de instrucciones eBPF, a excepción
de aquellas de legado, las codificadas en 128 bits para acceso directo a mapas, y las lla-
madas a función (esto se justifica en la Sec. 3.2.5). También cuenta con la capacidad de
generar excepciones y gestionar señales externas para detener y reanudar la ejecución.

3.1. Ruta de datos

La Fig. 3.1 contiene un diagrama completo de la ruta de datos diseñada, sobre la
que se recomienda apoyar la lectura. En el Anexo C se ha añadido la descripción RTL
elaborada con las acciones tomadas por cada instrucción.

3.1.1. Control de PC

El espacio de direccionamiento de las instrucciones BPF es de 64 bits. En cada
ciclo, PC apunta a la siguiente instrucción dentro de la memoria de instrucciones y se
incrementa en 1 para avanzar la ejecución. La palabra leída se carga en el registro IR
y se decodifica al siguiente ciclo.

La ISA BPF especifica salto no retardado. Las instrucciones de salto obtienen el
offset y el inmediato en la etapa de decodificación (ID), y calculan el valor potencial
de PC para salto tomado sumando uno de los dos a PC + 1. El valor decodificado
debe entenderse como el número de instrucciones saltadas: ja 1 evita la ejecución de
la siguiente instrucción, ja 0 es en efecto una NOP1, y ja -1 es un bucle infinito. Para
saltos incondicionales de 32 bits (jal) se utiliza el inmediato. Para el resto se emplea
el offset.

1Se entiende como NOP una instrucción sin efectos; no escribe en el banco de registros ni tiene
efectos colaterales.

9

PC

M
e
m

I
n
s
t

+
1

10

IR PC_1

+

10

10

AB token

I
D
_
o
p
c
o
d
e

I
D
_
d
s
t
_
r
e
g

I
D
_
s
r
c
_
r
e
g

I
D
_
o
f
f
s
e
t

I
D
_
i
m
m
3
2

I
D
_
3
2
b
_
j
u
m
p

R
e
g

B
a
n
k

r
A

r
B

r
Wd
i
n

w
r
_
e
n

w
r
_
R
0 AB

@

W
B
_
w
r
i
t
e
_
r
0

W
B
_
r
e
g
_
w
r
i
t
e 10

t
o
k
e
n

I
D
_
b
r
a
n
c
h

f
w

E
X
_
f
w
_
t
o
k
e
n

f
w

B
r
a
n
c
h

C
h
e
c
k
e
r

A
L
U

01

f
w

imm32offset opcodedstsrc

01

E
X
_
r
e
a
d
_
e
n

E
X
_
w
r
i
t
e
_
e
n

E
X
_
a
t
o
m
i
c
_
o
p

E
X
_
s
i
g
n
e
d
_
a
l
u

E
X
_
o
p

E
X
_
s
o
u
r
c
e

truncate 32b

E
X
_
a
l
u
6
4

E
X
_
f
o
r
c
e
_
i
m
m

E
X
_
c
a
l
l

E
X
_
b
r
a
n
c
h

10

I
D
_
j
u
m
p

dataC token

E
X
_
c
a
l
l

E
X
_
a
l
u
6
4

truncate

32b

10

E
X
_
a
d
d
r
_
c
a
l
c

s
i
g
n

E
X
_
w
r
i
t
e
_
e
n

dst

M
O
V

E
X
_
c
a
l
l

E
X
_
6
4
b
_
i
m
m

E
X
_
v
a
l
u
e
_
s
i
z
e

+

10

D
a
t
a

M
e
m

I
f
a
c
e

E
X
_
a
l
u
6
4

@

mem_val

d
a
t
a

t
o
k
e
n

w
r
_
e
n

r
d
_
e
n

o
p

M
E
M
_
w
r
i
t
e
_
e
n

M
E
M
_
r
e
a
d
_
e
n

s
z

a
t
o
m
i
c

M
E
M
_
a
t
o
m
i
c

E
X
_
a
t
o
m
i
c
_
o
p

M
E
M
_
v
a
l
u
e
_
s
i
z
e

dst ex_val

10
r
d
_
e
n

l
o
a
d
_
P
C

l
o
a
d
_
I
F

l
o
a
d
_
I
D

l
o
a
d
_
E
X

l
o
a
d
_
M
E
M

E
X
_
r
e
a
d
y

M
E
M
_
r
e
a
d
y

C
o
n
t
r
o
l

U
n
i
t

H
a
z
a
r
d

U
n
i
t

n
o
p

I
D
_
m
a
k
e
_
n
o
o
p

b
l
o
c
k
_
E
X

n
o
p

b
l
o
c
k
_
M
E
M

n
o
p

E
X
_
t
a
k
e
n
_
b
r
a
n
c
h

E
X
_
t
a
k
e
n
_
b
r
a
n
c
h

b
l
o
c
k
_
I
D

I
D
_
d
i
s
c
a
r
d
_
I
F

F
o
r
w
a
r
d
i
n
g

U
n
i
t

C
O
N
T
R
O
L

S
I
G
N
A
L
S

01M
E
M
_
c
a
l
l

H
e
l
p
e
r

F
u
n
c
t
i
o
n
s

U
n
i
t

d
o
u
t

p
1

p
2

p
3

p
4p
5

E
X
_
A

E
X
_
B

c
a
l
l

I
D
_
c
a
l
l

I
D
_
c
a
l
l

I
D
_
c
a
l
l
_
2

E
x
c
e
p
t
i
o
n

U
n
i
t

10

C
T
R
L
_
e
x
c
e
p
t
i
o
n

C
T
R
L
_
f
i
n
i
s
h

C
T
R
L
_
s
l
e
e
p

DECe
n

I
D

e
x
c
e
p
t
i
o
n
_
s
t
a
g
e

I
D
_
m
a
k
e
_
n
o
o
p

E
X
_
m
a
k
e
_
n
o
o
p

M
E
M
_
m
a
k
e
_
n
o
o
p

W
B
_
m
a
k
e
_
n
o
o
p

E
X
_
t
a
k
e
n
_
b
r
a
n
c
h

I
D
_
i
m
m
6
4

E
X
_
6
4
b
_
i
m
m

s
i
g
n

M
E
M
_
m
e
m
_
t
o
_
r
e
g

Figura
3.1:Esquem

a
com

pleto
de

la
ruta

de
datos

diseñada

10

La dirección definitiva de salto no se conoce hasta la etapa ID, por lo que es nece-
sario descartar la que actualmente está siendo leída en IF. Eso se consigue activando y
guardando la señal de control ID_discard_IF en el banco de etapa ID para que la apli-
que al siguiente ciclo y anule las señales de control. Los saltos condicionales se evalúan
(tomados o no) en la etapa EX, por lo que en caso de cumplir la condición de salto,
además de descartar IF, deben descartar la instrucción en ID (señal EX_taken_branch).

El registro IR no contiene una instrucción válida al comenzar la ejecución del
programa. Para evitar que se ejecute código con comportamiento indefinido la señal
ID_discard del banco de etapa ID se resetea a activa.

3.1.2. Búsqueda de operandos

Las instrucciones pueden utilizar como operandos los valores de los registros A, B

o token2. Para evitar paradas por dependencias productor-consumidor, tanto la ALU
como el resto de bloques que los utilizan pueden leer el valor anticipado desde los bancos
de etapa MEM y WB, si así lo requieren. El control de los multiplexores de anticipación
lo controla la Forwarding Unit (FU). Aún así, hay casos como el de una productora en
etapa MEM seguida de consumidora, que obligan a detener la instrucción en etapa ID.
Ese tipo de acciones las controla una Hazard Unit (HU). En los Anexos D.3 y D.2 se
detalla el funcionamiento de ambas unidades.

Las operaciones aritméticas y los saltos condicionales leen siempre el registro destino
desde A, pero el valor fuente puede venir tanto de B como del inmediato (extendido
de signo a 64 bits). Estas instrucciones tienen versiones de 32 bits. En estos casos se
truncan los 32 bits más significativos de las entradas de la ALU y el Branch Checker
(BC), así como la salida de la ALU.

Las instrucciones de acceso a memoria calculan la dirección sumando el offset (con
extensión de signo) al registro fuente, en el caso de un store u operaciones aritméticas,
o al registro destino, en el caso de un load. El dato a escribir en memoria se puede
obtener del registro fuente o del inmediato, según la instrucción sea stx o st.

Existe además la instrucción ld64, capaz de cargar un inmediato de 64 bits codifi-
cado en dos instrucciones. Para implementarla se ha reutilizado el camino de la ALU
inyectando una operación mov.

Las funciones auxiliares se ejecutan en fase MEM, pero también reciben parte de
sus operandos del banco de etapa EX, con el fin de reutilizar recursos ya disponibles.
Lo hace con una doble fase de lectura:

2El token es un tercer parámetro implícito en la instrucción atómica cmpxchg. Normalmente es
r0. También sirve como valor de salida del procesador, y para agilizar la lectura de los parámetros de
funciones auxiliares (en cuyo caso es r1).

11

1. La primera vez carga r1, r2 y r3 en token(EX), A y B respectivamente. En la
etapa EX se encarga de trasladar esos valores a token(MEM), data y C, obtenidos
mediante anticipación si fuera necesario.

2. La segunda vez carga r4, r5 en A y B. Como la FU no asegura que el valor
anticipado permanezca intacto durante más de un ciclo, los parámetros p4 y p5

siempre son leídos desde el banco de registros3 (asegurado por la HU).

En la Tab. C.5 hay una descripción RTL de este mismo proceso que puede facilitar
la comprensión.

3.1.3. Escritura del resultado

El resultado generado por las instrucciones se guarda en el banco de registros en la
etapa WB. El valor a escribir se obtiene de la salida de la interfaz de memoria, de la
Helper Function Unit (HFU) o del dato generado en EX, dependiendo de las señales
de control.

Los componentes de la RAM incluyen registros internos para optimizar el tiempo
de ciclo. Por este motivo, el dato leído de memoria se almacena en un registro interno
de la interfaz de memoria de datos (mem_val) en lugar de en el banco de etapa WB.
Dicho interfaz asegura que el valor en mem_val está disponible al ciclo siguiente, junto
con el resto de valores de WB. Si el dato leído de memoria se guardase en el banco de
etapa se generaría una latencia adicional de un ciclo.

Por lo general, el registro escrito corresponde al registro codificado como destino.
Sin embargo, las operaciones atómicas que tienen activado el flag FETCH escriben su
resultado en el registro fuente. Por ello, se multiplexa el registro destino en etapa EX.
Las funciones auxiliares y la instrucción cmpxchg escriben en r0 de forma implícita,
por lo que se ha habilitado en el banco de registros una señal específica para escribir
en r0.

3.1.4. Control de los bancos de etapa

Una instrucción en una etapa concreta consiste en los datos que transporta y las
señales de control que la hacen efectiva en esa etapa y las siguientes. Para que la
información avance, los bancos de etapa tienen habitualmente su señal load activa,
salvo en ciertas circunstancias.

Por lo general, las etapas diseñadas se ejecutan en un ciclo (i.e., la instrucción per-
manece un ciclo en esa etapa y progresa a la siguiente). Sin embargo, ha sido preciso

3Si una función auxiliar requiere más de tres parámetros siempre se pueden preparar p4-p5 antes
que p1-p3 y se elimina el ciclo de detención.

12

diseñar etapas multiciclo para implementar algunas operaciones que reutilizan compo-
nentes de una etapa dada. Dado que diseñamos una microarquitectura en orden, una
etapa multiciclo supone detener las instrucciones de las etapas anteriores. Por ello, las
unidades funcionales de las etapas multiciclo presentan una señal de salida ready que
detiene las instrucciones siguientes si está inactiva. La señal se activa de nuevo en el
último ciclo de uso de la unidad funcional que corresponda.

Detener una etapa implica lo siguiente:

1. Los bancos de las etapas anteriores mantienen sus valores (se inhibe su escritura).

2. Las etapas posteriores avanzan de la forma natural.

3. En consecuencia, el banco de entrada a la etapa bloqueante se mantiene mientras
que el de salida se escribe con las señales de control anuladas.

Si coincidiera que hay dos etapas detenidas a la vez, lo anterior solo se aplica a la
más avanzada (ver Fig. 3.2).

3.1.5. Gestión de excepciones y detención del procesador

Los programas BPF no generan excepciones. La ISA define la división entera de
modo que devuelve un cero si el denominador (registro fuente) es cero, sin producir
excepción. El verificador de Linux comprueba durante la carga del programa los accesos
a direcciones no permitidas. No obstante, la ejecución de código con comportamiento
indefinido puede resultar en un estado irrecuperable del procesador. Para evitarlo, se
decidió añadir una Exception Unit (EU) que interactúe con el sistema de detención en
los siguientes casos:

1. Decodificación de una instrucción ilegal o no implementada.

2. Lecturas y escrituras en registros inexistentes, o escrituras r10 (solo lectura).

3. Acceso a zonas de memoria restringidas.

4. Llamadas a funciones auxiliares inexistentes.

El funcionamiento de la EU está descrito con más detalle en el Anexo D.4.
La detención del procesador puede ocurrir por excepción, señal externa para dormir

al procesador o ejecución de la instrucción exit. Cuando se da una de estas situaciones
se elige la etapa bloqueante, y se activa una señal que detiene el avance de todas las
anteriores, permitiendo consolidar a las posteriores. Se toma como etapa bloqueante
bien la que ha generado la excepción, o bien la etapa ID en el caso de fin de programa

13

div r3 r4

addx64 r10 r8 -0x20 IF ID EX MEM MEM MEM MEM

IF ID EX EX EX EX

MEM MEM WB

MEM WBEX EX

MEM_ready

EX_ready

blocked

IF - EX

div r3 r4

addx64 r10 r8 -0x20 IF ID EX MEM

IF ID EX EX EX EX

MEM WB

MEM WB

MEM_ready

EX_ready
blocked

IF - ID

(a) La etapa MEM dura más que la etapa EX

div r3 r4

addx64 r10 r8 -0x20 IF ID EX MEM MEM MEM MEM

IF ID EX EX EX EX

MEM MEM WB

MEM WBEX EX

MEM_ready

EX_ready

blocked

IF - EX

div r3 r4

addx64 r10 r8 -0x20 IF ID EX MEM

IF ID EX EX EX EX

MEM WB

MEM WB

MEM_ready

EX_ready
blocked

IF - ID

(b) La etapa EX dura más que la etapa MEM

Figura 3.2: Situaciones con etapas multiciclo ejecutadas simultáneamente

o procesador dormido. Si una etapa posterior genera excepción mientras el procesador
está en proceso de detención, se convierte en la nueva etapa bloqueante, reemplazando
a la anterior.

Consolidar todas las instrucciones anteriores a la que ha generado excepción tiene
como objetivo establecer un comportamiento bien definido (estado en orden del proce-
sador) frente a excepciones. Además, permite que la instrucción exit solo tenga que
llegar a etapa ID para actuar. Solo cuando han consolidado todas las instrucciones que
debían, se puede activar la señal de salida que indica la excepción, fin de programa
o que el procesador está dormido. En ese momento, el procesador puede reiniciar la
ejecución, por medio de la señal de reset, o reanudarla donde la dejó, en caso de estar
dormido.

3.2. Descripción de componentes

3.2.1. Banco de registros

Este componente consiste en un array de registros de 64 bits con dos puertos de
lectura (A y B), y uno de escritura (W). Se ha diseñado específicamente para adaptarse a
las necesidades de la ruta de datos BPF. Así, permite en todo momento leer el registro
r0 como token y dato de salida del procesador, activa la escritura en r0 a través de una
señal dedicada (wr_R0), y presenta dos entradas adicionales para extraer los parámetros
de las funciones auxiliares de acuerdo al protocolo explicado en la Sec. 3.1.2.

La lectura de A y B es asíncrona, mientras que la escritura es síncrona con el flanco
de bajada del reloj. Todos los registros del procesador se escriben en flanco de subida,

14

a excepción del banco de registros que lo hace en flanco de bajada. De esta forma, la
operación de escritura de la etapa WB y la lectura de operandos de la etapa ID se
pueden llevar a cabo en el mismo ciclo. De otra forma, sería necesario un banco de
etapa adicional desde el que anticipar el dato de posibles consumidoras.

3.2.2. Verificador de saltos (Branch Checker)

Este bloque se encarga de comparar los operandos A y B para determinar si un
salto es tomado o no. BPF cuenta con 9 operaciones de comparación, que se pueden
implementar reutilizando la salida de tres comparadores con las operaciones =, < y &
(Anexo E.1). Se calculan los resultados de todas las comparaciones con lógica adicional,
y al final se elige la que corresponde según el código de operación.

3.2.3. Unidad Aritmética Lógica (ALU)

BPF tiene 17 tipos de operaciones aritméticas. Cada una de ellas se calcula en
paralelo a partir de los operandos A y B y el resultado final es multiplexado (como en
el BC). Las funciones y operadores aritméticos de biblioteca en VHDL suelen ser aptos
para su síntesis en FPGA. No obstante, las operaciones división y módulo son más
complejas y requieren utilizar un componente dedicado.

Se ha hecho uso de un divisor multiciclo de Xilinx para números naturales de 64
bits, generado a partir de un Divider Generator LogiCORE™ IP 4 . El mismo divisor
genera como resultados el cociente y el resto, y se puede utilizar para calcular divisiones
de naturales (div, mod, div32, mod32) o enteros (sdiv, smod, sdiv32, smod32).
El Anexo E.2 describe el trabajo que ha requerido su integración en la ALU.

3.2.4. Interfaz de memoria de datos

El objetivo de este componente es controlar las operaciones atómicas y de acceso
a memoria, y abstraer a la ruta de datos de los dispositivos de memoria empleados.
También comprueba la dirección de memoria introducida y notifica excepciones a la
EU si corresponde a un espacio de memoria inaccesible.

La memoria empleada es BRAM, generada a partir de un Block Memory Generator
LogiCORE™ IP, que permite lecturas y escrituras en un ciclo (a frencuencias habituales
de FPGA, 50-400 MHz), por lo que loads y stores tienen latencia 1 5. Las operaciones
atómicas se implementan en dos fases: leer y modificar-escribir. Una máquina de estados

4El entorno de Vivado permite incluir bloques combinacionales prediseñados y configurables –
Intelectual Properties (IP) – dentro del código VHDL.

5Cuando se accede a memoria compartida la latencia total de la instrucción puede variar por el
tiempo que se tarda en adquirir control del bus de memoria.

15

se encarga de controlar los ciclos de lectura y sobre-escritura y ganar acceso al bus
de memoria. En el proceso intervienen selectores de bytes, máscaras de escritura y
multiplexación, que se explican con más detalle en el Anexo E.3.

3.2.5. Unidad de funciones auxiliares (HFU)

La ISA BPF contempla dos tipos de llamadas a función: de usuario y auxiliares.
Las funciones de usuario son las habituales, las que se incluyen directamente en el
código del programa. Las funciones auxiliares son un conjunto limitado de operaciones
ajenas al código (ejecutadas por el kernel, módulos del procesador, aceleradores...) que
permiten ampliar las funcionalidades del conjunto de instrucciones de BPF.

La HFU es la unidad encargada de ejecutar las funciones auxiliares o controlar
su invocación. Está diseñada como una máquina de estados que avanza en paralelo
junto con las etapas del procesador. De este modo, solo hay que modificar la HFU
para añadir soporte a nuevas funciones, sin tocar la ruta de datos. En esta versión solo
se implementa la función bpf_map_lookup_elem, que es la mínima utilidad necesaria
para interactuar con los mapas (la gestión de mapas se explica en la Sec. 4.2.4).

La HFU permite consultar el número de operandos de una función a partir de su
id y comunica una excepción a la EU si la función no está implementada. También
permite generar errores de ejecución. Obtiene sus operandos en la etapa MEM, pero
también puede ejecutar acciones en EX siempre que no los necesite.

La versión final de este procesador no implementa llamadas a funciones de usua-
rio, porque ni el verificador del kernel las permite ni el backend LLVM las compila
correctamente6. Versiones más actuales del kernel permiten su uso bajo determinadas
condiciones [24], por lo que se ha considerado incluirlas en posibles proyectos futuros
con este procesador. En el Anexo F se detallan las consideraciones necesarias para
añadirlas a la ruta de datos.

3.3. Metodología de pruebas

Los componentes de la ruta de datos se traducen en entidades dentro del código
VHDL. Para cada una de las entidades se ha elaborado un testbench con varios tests
unitarios. El procesador en su conjunto se ha evaluado con tests de integración.

Los tests unitarios son pruebas de caja negra que comprueban automáticamente la
corrección de las salidas generadas por las combinaciones de entradas más significativas.

6El código fuente de un programa BPF suele requerir marcar las funciones como inline para poder
compilar.

16

Los tests de integración consisten en un conjunto de programas BPF precargados
en una memoria de instrucciones simulada para ser ejecutados por el procesador en
conjunto. Son pruebas de caja blanca, en los que se verifica manualmente el valor de
las señales en cada ciclo de ejecución. A continuación, se detalla los programas de
prueba elaborados:

− Test de decodificación: Su objetivo es comprobar que el procesador reconoce
correctamente todas las instrucciones del repertorio y genera y propaga las señales
de control correspondientes a cada una, sin generar excepciones (Anexo G.1).

− Test de memoria: Verifica el comportamiento de todas las operaciones de me-
moria y atómicas, incluida la detención de etapas multiciclo y la anticipación de
operandos en casos problemáticos (Anexo G.2).

− Test de ALU: Traslada las pruebas unitarias de la ALU a código BPF a un
entorno con anticipación. Verifica exhaustivamente las operaciones de división y
módulo ante las señales externas reset y sleep (Anexo G.3).

− Test de control: Contiene todas las instrucciones de salto para evaluar el control
de PC, el descarte de instrucciones y el fin de ejecución (también por excepciones)
(Anexo G.4).

− Test de HFU: Asume una HFU de pruebas, con funciones con diferente número
de operandos para comprobar detenciones, anticipación y generación de errores
(Anexo G.5).

Componentes como el divisor y las BRAM no están disponibles para simulación fue-
ra del entorno de Vivado, por lo que ha sido necesario crear entidades (no sintetizables7)
que emulen su comportamiento.

3.3.1. Ensamblador

Generalmente, los programas BPF se escriben en C, haciendo uso de la biblio-
teca libbpf [25] para facilitar al programador escribir código de usuario y BPF que
interactúen entre sí de forma coherente. Para los programas de prueba interesa poder
escribir las instrucciones específicas y obtener su traducción en binario. Los compi-
ladores ofrecen intrínsecos, pero añaden instrucciones adicionales (si no se optimiza),
pueden alteran el orden (con optimización) y resultan poco prácticos para escribir un
programa completo.

7En VHDL es muy sencillo crear de memorias RAM y divisores para simulación, no así para síntesis
en FPGA.

17

La solución es utilizar un compilador de lenguaje ensamblador. A falta de ensam-
bladores consolidados se utilizó un proyecto de código libre disponible en github [26],
pero presentaba bugs y no abarca el repertorio de instrucciones más reciente, por lo
que ha sido necesario parchearlo. El resultado es un ensamblador capaz de traducir a
binario el repertorio completo presente en el Anexo B.

18

Capítulo 4

Integración de un procesador BPF
en un sistema baremetal

Este capítulo trata las consideraciones tomadas para interactuar con el core como
periférico acelerador desde un procesador de propósito general. El resultado es un SoC
sintetizable para FPGA que contiene el procesador BPF acoplado a un procesador
MicroBlaze, comunicados por un bus AXI Lite accesible desde memoria.

4.1. Procesador BPF como periférico

4.1.1. MicroBlaze y protocolo AXI

MicroBlaze es un microprocesador software (softcore) sintetizable para FPGA [3].
En la configuración elegida, su interfaz de memoria consiste en dos buses de acceso
a memoria local, que usa para alojar y ejecutar programas compilados, y un interfaz
AXI [4] primario1 con el que es capaz de acceder a otros chips de memoria y comunicarse
con periféricos mapeados en el espacio de direcciones. Por lo tanto, conectar el core
BPF con el MicroBlaze requiere añadir una interfaz AXI secundaria.

Los buses AXI funcionan con un protocolo semisíncrono, en el que ambos dispositi-
vos utilizan la misma frecuencia de reloj. Las transacciones implican un envío de datos
en ambas direcciones (primario pregunta y secundario responde). Cada envío requiere
que el emisor notifique la validez de los datos y que el receptor informe si está listo
para recibirlos (el orden de señalización no se tiene en cuenta).

En particular, el bus de memoria para este MicroBlaze es de 32 bits. Las direc-
ciones son truncadas a la dirección múltiplo de 4 más baja (se lee toda la palabra) y
permite escrituras a nivel de byte mediante una máscara. Implementaciones más re-
cientes permiten usar un bus de 64 bits. No obstante, se ha elegido el de 32 bits por

1Los buses AXI utilizan terminología maestro-esclavo para referirse a los nodos. En este docu-
mento se ha optado por los calificativos primario y secundario para diferenciar nodo activo y pasivo
respectivamente.

19

compatibilidad con la mayoría de placas de desarrollo con FPGA2. En la Sec. 4.2.3 se
explican los problemas que conlleva esa decisión.

4.1.2. Módulo de entrada-salida y memoria

El procesador BPF es solo una parte de un periférico que lo integra junto a un
IOMM. Este IOMM controla los chips de memoria empleados por el procesador, una
unidad de mapas y la interfaz de conexión con el exterior (en este caso el bus AXI).
Se comunica con el core BPF a través interfaces (como la vista en la Sec. 3.2.4) que
abstraen los protocolos específicos. Gracias a la existencia de este módulo el mismo
procesador puede ser utilizado en combinación con otro IOMM, permitiendo que el
periférico utilice un bus diferente, tenga más memoria o soporte más de un core.

La Fig. 4.1 muestra el esquema del IOMM desarrollado. Este cuenta con varios
módulos de memoria. Cada uno de ellos es un chip diferente de BRAM, de manera
que el procesador pueda leer instrucciones a la vez que realiza operaciones de memoria.
Con esto también se logra que el acceso a memoria no compartida no precise arbitraje.

La memoria de instrucciones tiene capacidad para 4096 instrucciones (32 KB) por-
que es el tamaño máximo para cualquier programa BPF en Linux.

La memoria no compartida contiene el espacio de pila del programa – 512 Bytes, es
el tamaño de pila de los programas BPF en Linux – y una región de 2 KB adicionales
para el contexto. Por ejemplo, un programa XDP accede al paquete con un puntero
recibido a través de r1. Esta región extra sirve para albergar dicho paquete3.

El tamaño dedicado a la memoria compartida es de 28 KB, para completar un es-
pacio de memoria en el dispositivo de 64 KB (en la Sec. 4.2 se muestra su distribución).

4.2. Interacción con el procesador

El MicroBlaze puede interactuar con el core BPF por medio de lecturas y escrituras
a las direcciones de memoria donde se encuentra mapeado este último. La Fig. 4.2
muestra la distribución escogida para las zonas de memoria y las direcciones en las que
se ha decidido situar los registros de control. A las direcciones mostradas se les debe
sumar la dirección base del periférico, que varía dependiendo de la configuración del
bus AXI. El Anexo E.5 detalla el diseño del controlador AXI implementado en este
proyecto.

2Algunas placas incluyen un microprocesador de propósito general cuyo uso se prefiere al de un
softcore y cuyo bus AXI no puede ser configurado, como es el caso de los SoC de la serie Zynq.

3El contexto es dependiente del tipo de programa BPF y no está limitado a paquetes

20

CORE

Mem Unshared Mem Shared

Control Reg

Map Unit

Data Mem Iface

Mem Inst

Inst Mem Iface Map Access Iface

AXI_CONTROLLER

IO/MEM

Arb
Arb

Figura 4.1: Esquema simplificado del módulo de entrada-salida y memoria del periférico

Mem Inst

Mem Packet

Mem Stack

Control

Reserved

End of Transaction

Mem Shared

h0000

h8000

h8800

h8A00

h8B00

h8FFC

h9000

hFFFF

32KB

2KB

512B

256B

28KB

PC

FP

BPF_CORE_CTRL

BPF_CORE_INPUT

BPF_CORE_OUTPUT

MAP_REG_0 MAP_REG_1

64b

... ...

Figura 4.2: Espacio de direcciones del periférico

21

4.2.1. Registros de control

Los registros de control del procesador permiten controlar su arranque, parada y
reinicio, además de poder cargar valores en el banco de registros y leer la salida del
programa. Las señales se explican en detalle en la Tab. 4.1.

Tabla 4.1: Descripción de los bits dentro del registro de control BPF_CORE_CTRL

Bit Señal Acceso Descripción
Valor

en
reset

3:0 reg_dst r/w Número de registro sobre el que escribir. Valores
mayores a 10 no tienen ningún efecto.

0

4 reg_write r/w Cuando esta señal está activa el registro
reg_dst queda escrito con el valor presente
en BPF_CORE_INPUT.

0

5 sleep r/w

Cuando esta señal está activa el procesador inicia
la detención del pipeline. Cuando es desactivada la
ejecución se retoma con normalidad desde la ins-
trucción en la que se quedó detenido.

Advertencia: No se debe considerar que el procesa-
dor está detenido con solo activar la señal. Para ello
hay que comprobar el estado de la señal sleeping.

1

6 sleeping r

El procesador activa esta señal para indicar que el
pipeline ha quedado detenido. Siempre está desac-
tivada en caso de que sleep también lo esté.

Advertencia: El programa en curso puede termi-
nar o generar excepciones mientras el procesador
está en proceso de detención, en cuyo caso esta se-
ñal no se activa.

0

7 exception r El procesador activa esta señal para indicar
que ha ocurrido una excepción. En ese caso,
BPF_CORE_OUTPUT contiene el número de instrucción
que provocó la excepción.

0

8 finish r El procesador activa esta señal para indicar que el
programa ha finalizado satisfactoriamente. En ese
caso, BPF_CORE_OUTPUT contiene el valor devuelto
por el programa (r0).

0

9 reset r/w Cuando esta señal está activa reinicia el estado del
procesador, PC apunta a la primera instrucción y
el valor de los registros queda en 0. Los valores en
memoria no se ven alterados.

1

4.2.2. Escritura del programa y arranque

Con las herramientas disponibles, el proceso de cargar y ejecutar un programa se
resume en:

22

1. Dormir al procesador y activar reset.

2. Escribir el programa en la memoria de instrucciones.

3. Desactivar reset.

4. Escribir el valor inicial del FP en r10.

5. Despertar al procesador.

El resultado de la ejecución se obtiene por encuesta. El MicroBlaze tiene soporte a
interrupciones, de modo que notificar el fin de programa mediante interrupción sería
la opción más sensata, al menos de cara a introducir soporte en un sistema operativo.
No obstante, se ha decido simplificar el protocolo para un primer acercamiento.

4.2.3. Accesos concurrentes a memoria compartida

Cuando se escribe en memoria no compartida desde la interfaz AXI el procesador
BPF debe estar detenido, de lo contrario la operación no producirá ningún cambio. En
el caso de leer en esta zona de memoria con el procesador en marcha, no se asegura
que el dato leído sea correcto.

Si el acceso es a memoria compartida, entra en juego el modelo de memoria. BPF no
tiene definido un modelo de memoria. Más bien es dependiente del modelo de memoria
de la plataforma en la que se ejecuta [27]. El procesador BPF diseñado en este TFG
garantiza que las instrucciones de memoria son atómicas en memoria compartida, por
medio de un árbitro que limita el acceso al bus y permite bloquearlo hasta completar
la operación. De esta forma la interacción con los elementos de un mapa se reduce a
operaciones de memoria y no requiere incluir nuevas funciones auxiliares. Sin embargo,
esta garantía no se puede aplicar a los accesos externos, debido a que el bus AXI es de
32 bits y las operaciones de 64 bits requieren dos transacciones.

Una forma de permitir accesos atómicos desde el exterior sería hacer visible un
semáforo desde el bus AXI que permita bloquear las operaciones de memoria del core
BPF hasta completar las transacciones necesarias. El problema de esta alternativa es
que el tiempo de ejecución de los programas pasa a depender en gran medida de la
carga de la CPU – justamente lo que se pretende evitar con el Hardware Offload.

La solución escogida no implica bloqueos y proporciona más independencia al pro-
cesador BPF:

− Lecturas y escrituras menores a 32 bits se ejecutan en una única transacción.

23

− Cuando se lee un dato de 32 bits, el IOMM almacena la dirección y carga la
palabra de 64 bits en el que está contenido en un búfer. Si la siguiente transacción
es la lectura de la otra mitad de la palabra (cuando la dirección guardada y la
actual únicamente se diferencian en el tercer bit menos significativo), el dato es
leído desde el búfer, en lugar de volver a acceder a memoria. Cualquier transacción
distinta a esta invalida el búfer.

− Cuando se escribe un dato de 32 bits, el IOMM almacena la dirección y lo guarda
en un búfer sin escribirlo en memoria. Si la siguiente transacción es la escritura
de la otra mitad de la palabra, el dato guardado y el actual se escriben en una
única operación. Cualquier transacción distinta a esta vacía el búfer y obliga a
escribir el dato en memoria antes de continuar con la transacción actual.

− Se puede forzar la invalidación o el vaciado del búfer escribiendo cualquier valor
en la dirección anterior a la dirección base de la memoria compartida. (End of
Transaction). Esto evita problemas cuando dos transacciones distintas de 32 bits
se confunden con una de 64 bits emulada.

El arbitraje implicado utiliza un sistema con prioridad LRU, con el fin de evitar
inanición. Su lógica interna se puede observar en la Fig. 4.3.

4.2.4. Gestión de mapas

Los mapas de BPF dejan libre a la implementación el tipo de mapas soportados, así
como el límite en el tamaño de la clave y el valor de cada elemento. La unidad de mapas
del IOMM soporta mapas de tipo array de hasta 64 bits de clave y/o valor. Actúa como
una base de datos con información sobre los mapas cargados. Cuando la HFU requiere
calcular la dirección de un elemento cualquiera en un mapa, consulta a la unidad
de mapas el identificador del mapa y esta le devuelve un registro con la información
descrita en la Tab. 4.2. El Anexo E.4 muestra los detalles de implementación de una
HFU que permite la búsqueda de elementos a partir de dicha información.

Estos registros se pueden escribir desde el bus AXI. La gestión del espacio de memo-
ria ante la creación y destrucción de nuevos mapas es responsabilidad del software, que
se debe encargar de preparar los registros con la información correcta. El Anexo H.1
contiene el código fuente de un ejemplo de biblioteca elaborada en este proyecto para
acceder al periférico, e incluye funciones para configurar hasta dos mapas.

24

bus_frame
req_0

PRIO_1

req_1

PRIO_0

granted_0

granted_1

PRIO_0

granted_0

granted_1

PRIO_0

(a) Lógica combinacional del árbitro

bus_frame
req_0

PRIO_1

req_1

PRIO_0

granted_0

granted_1

PRIO_0

granted_0

granted_1

PRIO_1

(b) Estados del árbitro

Figura 4.3: Árbitro con prioridad LRU

Tabla 4.2: Descripción de los valores contenidos en un registro de control de mapa
(MAP_REG_X)

Bit Señal Acceso Descripción
Valor

en
reset

11:0 base_ptr r/w Dirección de la palabra de 64 bits a partir de
la cual está alojado el mapa en memoria. La
dirección es local al dispositivo y omite los 3
bits menos significativos.

0

13:12 key_size r/w Tamaño de las claves, representado por el lo-
garitmo en base 2 del tamaño en bytes.

0

15:14 value_size r/w Tamaño de los valores, representado por el lo-
garitmo en base 2 del tamaño en bytes.

0

30:16 max_entries r/w Número máximo de entradas que puede conte-
ner el mapa.

0

31 valid r/w Esta señal debe estar activa para indicar que
el mapa está correctamente cargado.

0

4.3. Metodología de pruebas

En esta fase del desarrollo únicamente se han realizado pruebas de integración. A
los programas de pruebas de la Sec. 3.3 se han añadido dos nuevos:

− Test de IOMM: Su objetivo es comprobar el correcto funcionamiento del IOMM
ante todo tipo de transacciones AXI. Comprueba la carga de un programa (Ane-
xo G.6), la activación del procesador, el acceso concurrente a memoria compartida
con solicitudes de arbitraje que coinciden en un mismo ciclo y el estado del búfer
ante transacciones de distintos tamaños.

− Test de mapas: Verifica el valor devuelto por las llamadas a la función bpf_lookup_elem.
Desde el bus AXI se carga un mapa en la HFU y, con el core en marcha, se mo-
difica el tamaño de los elementos del mapa y se altera su id (Anexo G.7).

25

Ambas pruebas requieren testbenchs específicos para generar las transacciones del
bus. Los programas que no necesitan interacción externa se pueden seguir verificando
usando un testbench de carga de programa (Anexo G.8).

4.4. Prueba de concepto

Alcanzada esta etapa del desarrollo, el periférico está listo para ser probado desde
el MicroBlaze. El circuito a sintetizar se muestra en la Fig 4.4. Como componentes
auxiliares se han incluido un LogiCORE™ IP Clocking Wizard, que divide o multiplica
la frecuencia de reloj, una memoria local al MicroBlaze para contener el ejecutable y
una salida de UART para depuración conectada mediante una LogiCORE™ IP AXI
UART Lite interface.

La prueba de concepto consiste en un programa en C que carga un programa BPF
previamente compilado a la memoria de instrucciones, lo ejecuta y aporta retroalimen-
tación a través de la UART. Un ejemplo de programa y de biblioteca de interacción
con el acelerador están disponibles en el Anexo H.

Desde el entorno de Vivado es posible ejecutar una simulación del diseño utilizando
un testbench capaz de emular una terminal conectada a la UART, utilizando el paquete
textio de la biblioteca estándar de VHDL.

La síntesis en FPGA queda fuera de el alcance de este proyecto. No obstante, se
proporciona la vista de implementación del diseño en una Xilinx Kintek 7© (Fig. 4.5)
con el fin de distinguir visualmente el uso de recursos de cada componente. En ella se
observa claramente que el componente que hace uso de más celdas lógicas es la ALU,
donde el divisor representa más del 80 % del área utilizada.

26

BPF_AXI_Peripheral_0

BPF_AXI_Peripheral_v1_0

S_AXI

S_AXI_aclk

S_AXI_aresetn

axi_uartlite_0

AXI Uartlite

S_AXI
UART

s_axi_aclk

s_axi_aresetn
interrupt

clk_wiz_1

Clocking Wizard

CLK_IN1_D

reset

clk_out1

locked

microblaze_0

MicroBlaze

INTERRUPT DLMB

ILMB

M_AXI_DP

Clk

Reset

microblaze_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

microblaze_0_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

reset

rst_clk_wiz_1_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0] rs232_uart

sys_diff_clock

Figura 4.4: Diagrama de bloques generado por Vivado del circuito a sintetizar

(a) Identificación de componentes en el diseño implementado

■ MicroBlaze
■ Mem Inst
■ Mem Shared
■ Mem Unshared
■ Ruta de datos
■ IOMM
■ ALU

(b) Vista alejada

Figura 4.5: Vista de dispositivo del diseño implementado

27

28

Capítulo 5

Conclusiones y líneas abiertas

5.1. Diseño de un microprocesador para la ISA BPF

El esfuerzo de diseño realizado confirma que la ISA BPF ha sido concebida para
su ejecución a través de un compilador JIT, y no a través de un hardware específico,
aunque se trata en todo caso de una ISA tipo RISC muy simple. Un ejemplo entre
otros es que load y atomic cambien el uso de los registros, que prioriza la semántica
a cambio de complicar la decodificación. En cualquier caso, esto no representa una
complicación real ni compromete el tiempo de ciclo, más sensible a la implementación
del divisor, multiplicador y subsistema de acceso a memoria. Por otra parte, el uso de
dos registros facilitan la gestión de mecanismos como la anticipación de operandos.

El interfaz de memoria ha estado especialmente marcado por el enfoque en el con-
cepto offload. Para poder descargar al procesador principal tiene que diseñarse nece-
sariamente con carácter de acelerador o coprocesador, lo que significa que la memoria
o bien se comparte o bien requiere transferencias anfitrión - dispositivo, con los pro-
blemas y limitaciones que ello implica. En el caso de BPF es preciso además acceder
a una región que permita la compartición de mapas con el procesador principal. Este
carácter de acelerador / coprocesador lleva implícita la necesidad de diseñar interfaces
de memoria que permitan la conexión con buses estándar, en este caso AXI, dado el
contexto y el entorno de desarrollo.

BPF es una arquitectura abierta a cambios, que ha obligado a seleccionar las ca-
pacidades del procesador a partir de un conjunto de instrucciones bien establecido,
descartando funcionalidades de legado y otros aspectos por definir en pos de un pro-
cesador lo más sencillo posible. Por otro lado, la existencia de funciones auxiliares y el
enfoque que se les ha dado en el proyecto aportan una forma escalable de ampliar las
funcionalidades del procesador.

Todos estos aspectos nos han llevado al diseño de una organización del procesador
y la interfaz de memoria que consideramos original, al menos como punto de partida

29

de futuras optimizaciones.

5.2. Líneas abiertas

Este TFG supone un punto de partida novedoso que abre varias vías de continua-
ción, entre las que consideramos más interesantes a corto o medio plazo las siguientes:

− Continuar la versión sintetizable en FPGA, buscando especialmente la reducción
del tiempo de ciclo.

− Sabemos que se han diseñado bajo demanda NIC con soporte IEEE 802.1As para
sincronización temporal, que incluyen una FPGA para implementar mecanismos
TSN. Sería interesante poder integrar la versión sintetizable en uno de estos
dispositivos para probar sus posibilidades para filtrado de paquetes.

− Ampliar el soporte para tipos adicionales de mapas.

− Mejorar la carga de programas mediante DMA y añadir soporte a interrupciones.

− Realizar una selección de programas / filtros BPF y estudiar sus características
para determinar el posible beneficio de incorporar mecanismos de ocultación de
latencia, predicción de saltos o explotación del paralelismo a nivel de instrucción.

30

Bibliografía

[1] “eBPF,” https://ebpf.io/.

[2] F. Fejes, P. Antal, and M. Kerekes, “The TSN Building Blocks in Linux,” arXiv
e-prints, p. arXiv:2211.14138, Nov. 2022. doi: 10.48550/arXiv.2211.14138

[3] “MicroBlaze processor reference guide (UG984),” https://docs.amd.com/r/en-
US/ug984-vivado-microblaze-ref.

[4] “AMBA AXI and ACE protocol specifcation.” https://documentation-service.arm.
com/static/5f915b62f86e16515cdc3b1c.

[5] “Visual Studio Code,” https://code.visualstudio.com/.

[6] “Modern VHDL support for Visual Studio Code,” https://marketplace.
visualstudio.com/items?itemName=rjyoung.vscode-modern-vhdl-support.

[7] “Git: Free and open source distributed version control system,” https://git-scm.
com.

[8] “GHDL: free and open-source analyzer, compiler, simulator and (experimental)
synthesizer for VHDL,” https://ghdl.github.io/ghdl/.

[9] “GTKWave is a fully featured GTK+ based wave viewer,” https://gtkwave.
sourceforge.net/.

[10] “Bash is the GNU project’s shell — the Bourne Again Shell,” https://www.gnu.
org/software/bash/.

[11] “MSYS2: Software distribution and building platform for Windows,” https://
www.msys2.org/.

[12] “Vivado is the design software for AMD adaptive SoCs and FPGAs,” https://
www.xilinx.com/products/design-tools/vivado.html.

[13] “Overleaf, the online LaTeX editor,” https://www.overleaf.com.

31

https://ebpf.io/
https://docs.amd.com/r/en-US/ug984-vivado-microblaze-ref
https://docs.amd.com/r/en-US/ug984-vivado-microblaze-ref
https://documentation-service.arm.com/static/5f915b62f86e16515cdc3b1c
https://documentation-service.arm.com/static/5f915b62f86e16515cdc3b1c
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=rjyoung.vscode-modern-vhdl-support
https://marketplace.visualstudio.com/items?itemName=rjyoung.vscode-modern-vhdl-support
https://git-scm.com
https://git-scm.com
https://ghdl.github.io/ghdl/
https://gtkwave.sourceforge.net/
https://gtkwave.sourceforge.net/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.msys2.org/
https://www.msys2.org/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.overleaf.com

[14] “dagrams.net: security-first diagramming for teams,” https://www.diagrams.net/.

[15] D. A. Patterson and J. L. Hennessy, Computer Organization and Design RISC-
V Edition: The Hardware Software Interface, 1st ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2017. ISBN 0128122757

[16] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 6th ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2017. ISBN 0128119055

[17] F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, and G. Antichi,
“Automatic kernel offload using BPF,” in Proceedings of the 19th Workshop
on Hot Topics in Operating Systems, ser. HOTOS ’23. New York, NY, USA:
Association for Computing Machinery, 2023. doi: 10.1145/3593856.3595888. ISBN
9798400701955 p. 143–149. [Online]. Available: https://doi.org/10.1145/3593856.
3595888

[18] “bpf - perform a command on an extended BPF map or program,” https://man7.
org/linux/man-pages/man2/bpf.2.html.

[19] “Program types (Linux),” https://ebpf-docs.dylanreimerink.nl/linux/program-
type/.

[20] “Map types (Linux),” https://ebpf-docs.dylanreimerink.nl/linux/map-type/.

[21] “BPF Instruction Set Architecture (ISA),” https://www.kernel.org/doc/html/
latest/bpf/standardization/instruction-set.html.

[22] “Corigine eBPF technical papers,” https://www.corigine.com/technologylist-24.
html.

[23] R. D. G. Pacífico, L. F. S. Duarte, L. F. M. Vieira, B. Raghavan, J. A. M. Nacif, and
M. A. M. Vieira, “eBPFlow: A hardware/software platform to seamlessly offload
network functions leveraging eBPF,” IEEE/ACM Transactions on Networking,
vol. 32, no. 2, pp. 1319–1332, 2024. doi: 10.1109/TNET.2023.3318251

[24] “BPF architecture - BPF to BPF calls,” https://docs.cilium.io/en/stable/bpf/
architecture/#bpf-to-bpf-calls.

[25] “libbpf overview,” https://docs.kernel.org/bpf/libbpf/libbpf_overview.html.

[26] “eBPF bytecode assembler and compiler,” https://github.com/emilmasoumi/
ebpf-assembler.

32

https://www.diagrams.net/
https://doi.org/10.1145/3593856.3595888
https://doi.org/10.1145/3593856.3595888
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://ebpf-docs.dylanreimerink.nl/linux/program-type/
https://ebpf-docs.dylanreimerink.nl/linux/program-type/
https://ebpf-docs.dylanreimerink.nl/linux/map-type/
https://www.kernel.org/doc/html/latest/bpf/standardization/instruction-set.html
https://www.kernel.org/doc/html/latest/bpf/standardization/instruction-set.html
https://www.corigine.com/technologylist-24.html
https://www.corigine.com/technologylist-24.html
https://docs.cilium.io/en/stable/bpf/architecture/#bpf-to-bpf-calls
https://docs.cilium.io/en/stable/bpf/architecture/#bpf-to-bpf-calls
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://github.com/emilmasoumi/ebpf-assembler
https://github.com/emilmasoumi/ebpf-assembler

[27] J. Corbet, “Concurrency management in BPF,” LWN.net, 2019. [Online].
Available: https://lwn.net/Articles/779120/

[28] “Classic BPF vs eBPF,” https://www.kernel.org/doc/html/latest/bpf/classic_
vs_extended.html.

[29] M. K. Alexei Starovoitov, Joe Stringer, “eBPF syscall,” https://docs.kernel.org/
userspace-api/ebpf/syscall.html.

[30] “Network Flow Processor (NFP) kernel driver,” https://docs.kernel.org/
networking/device_drivers/ethernet/netronome/nfp.html.

[31] “GitHub,” https://github.com/.

[32] “IEEE standard for information technology - Portable Operating System Interface
(POSIX(R)),” IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004), pp. 1–
3874, 2008. doi: 10.1109/IEEESTD.2008.4694976

33

https://lwn.net/Articles/779120/
https://www.kernel.org/doc/html/latest/bpf/classic_vs_extended.html
https://www.kernel.org/doc/html/latest/bpf/classic_vs_extended.html
https://docs.kernel.org/userspace-api/ebpf/syscall.html
https://docs.kernel.org/userspace-api/ebpf/syscall.html
https://docs.kernel.org/networking/device_drivers/ethernet/netronome/nfp.html
https://docs.kernel.org/networking/device_drivers/ethernet/netronome/nfp.html
https://github.com/

34

Siglas

ALMA Arquitectura de Lenguaje Máquina. 1

ALU Arithmetic Logic Unit. 11, 15, 17, 26, 39, 68–71, VII

AXI Advanced eXtensible Interface. 19, 20, 23–25, 39, 75, III, IV, VI, VII

BC Branch Checker. 11, 15, 67, VII

BPF Berkeley Packet Filtering. 1–3, 5–9, 13–17, 19, 20, 23, 24, 26, 29, 30, 39, 43, 47,
49, 67, 68, 77, 100, III, IV, VI

BRAM Block Read Only Memory. 15, 17, 20, 71, 73

cBPF Classic Berkeley Packet Filter. 6

CPU Central Processing Unit. 23

CU Control Unit. 59–61, VII

DMA Direct Memory Access. 30

eBPF Extended Berkeley Packet Filter. 6, 9, III, IV

EU Exception Unit. 13, 15, 16, 65, 71, 74, VII

EX Execution (stage). 11, 12, 14, 16, 39, 61, 63, 74, 78, 105, 106

FC Frame Counter. 77

FP Frame Pointer. 6, 23, 77

FPGA Field-Programmable Gate Array. 2, 3, 7, 8, 15, 17, 19, 20, 26, 30, III, IV

FU Forwarding Unit. 11, 12, 63, VII

HFU Helper Function Unit. 12, 16, 17, 24, 25, 39, 43, 55, 74, 93, VI, VII

35

HU Hazard Unit. 11, 12, 59, 61, 63, 74, 77, VII

ID Instruction Decode (stage). 9, 11, 13–15, 59, 61, 63, 74, 78, 105

IF Instruction Fetch (stage). 11, 105

IOMM Input-Output and Memory Module. 20, 24, 25, 43, 98, 105

IP Intelectual Property. 15, 39, 68

IR Instruction Register. 9, 11, 65

ISA Instruction Set Architecture. 1, 6, 8, 9, 13, 16, 29, III, IV

JIT Just-In-Time. 1, 29, III, IV

LRU Least Recently Used. 24, 25, 39

MEM Memory Access (stage). 11, 12, 14, 16, 41, 61, 63, 71, 74

MIPS Microprocessor without Interlocked Pipeline Stages. 5

NFP Network Flow Processor. 7

NIC Network Interface Card. 1, 6, 7, 30, IV

PC Program Counter. 9, 17, 77

RAM Read Only Memory. 7, 12, 17

RTL Register Transfer Language. 9, 12, 41, 42, 55–58, 77, 78, VI

SFU Stack Frame Unit. 77, 78

SoC System on Chip. 3, 19, 20, III, IV

SP Stack Pointer. 39, 77, 78

TFG Trabajo de Fin de Grado. 1–3, 23, 30, 47, III, IV

TSN Time-Sensitive Networking. 30, 47, III, IV

UART Universal Asynchronous Receiver-Transmitter. 26

VHDL Very High Description Language. 2, 7, 15–17, 26, 68, III, IV

36

WB Write Back (stage). 11, 12, 15, 41, 63, 71

XDP eXpress Data Packet. 5, 6, 20

37

38

Lista de figuras

2.1. Formato de una instrucción BPF . 7

3.1. Esquema completo de la ruta de datos diseñada 10
3.2. Situaciones con etapas multiciclo ejecutadas simultáneamente 14

4.1. Esquema simplificado del módulo de entrada-salida y memoria del peri-
férico . 21

4.2. Espacio de direcciones del periférico . 21
4.3. Árbitro con prioridad LRU . 25
4.4. Diagrama de bloques generado por Vivado del circuito a sintetizar . . . 27
4.5. Vista de dispositivo del diseño implementado 27

A.1. Diagrama de de Gantt con la distribución del trabajo realizado a lo largo
de las semanas de trabajo . 48

E.1. Camino de la ALU diseñado para la ejecución de divisiones. DIV es una
representación simplificada de un Divider Generator LogiCORE™ IP . 68

E.2. Autómata de la ALU con soporte a división sin latencia de iniciación . 70
E.3. Autómata de la ALU con soporte a división con latencia de iniciación . 70
E.4. Ruta de datos de la interfaz de memoria de datos 72
E.5. Autómata de control de la interfaz de memoria de datos 72
E.6. Autómata de la HFU implementada con soporte para bpf_lookup_elem 74
E.7. Autómata de control de la interfaz AXI Lite 75
E.8. Autómata de control del búfer de memoria 76

F.1. Infraestructura de shadow SP . 78
F.2. Sistema de guardado y recuperación del marco de pila 78

G.1. Posibles etapas EX de una división . 106
G.2. Comparación en el número de etapas descartadas entre saltos incondi-

cionales (jump) y condicionales(branch) 106
G.3. Fin de ejecución por excepción en el último load 106

39

G.4. Coincidencia en la petición de acceso al bus de memoria compartida y
cambios de prioridad . 106

G.5. Fases de carga, ejecución y fin de programa visualizadas con las señales
del registro de control . 107

40

Lista de tablas

4.1. Descripción de los bits dentro del registro de control BPF_CORE_CTRL . . 22
4.2. Descripción de los valores contenidos en un registro de control de mapa

(MAP_REG_X) . 25

A.1. Horas de dedicación al proyecto . 47

B.1. Instrucciones aritméticas de 64 bits . 49
B.2. Instrucciones aritméticas de 32 bits . 50
B.3. Instrucciones de Byteswap . 51
B.4. Instrucciones atómicas . 51
B.5. Instrucciones de memoria . 52
B.6. Instrucciones de salto de 64 bits . 52
B.7. Instrucciones de salto de 32 bits . 53

C.1. Descripción de operandos RTL . 55
C.2. Descripción de macros auxiliares para RTL 55
C.3. Descripción RTL de instrucciones atómicas, acceso a memoria y carga

de inmediato . 56
C.4. Descripción RTL de instrucciones aritméticas 57
C.5. Descripción RTL de instrucciones de salto 58

D.1. Señales de control por tipo de instrucción (I) 59
D.2. Señales de control por tipo de instrucción (II) 60
D.3. Señales que indican registro consumido 60
D.4. Condiciones de detención por riesgo de datos 62
D.5. Condiciones de posible anticipación desde banco MEM 63
D.6. Condiciones de posible anticipación desde banco WB 63
D.7. Fuente de lectura anticipada del operando A 64
D.8. Fuente de lectura anticipada del operando B 64
D.9. Fuente de lectura anticipada del token 64
D.10.Codificaciones de instrucción válidas 66

41

F.1. Posibles acciones RTL para soportar funciones de usuario 78

42

Lista de listados de código

G.1. Test de decodificación (test_decode.s) 79
G.2. Test de memoria (test_mem.s) . 81
G.3. Test de ALU (test_alu.s) . 84
G.4. Test de control (test_branch.s) . 89
G.5. Test de HFU (test_call.s) . 93
G.6. Test de IOMM (test_io_mem.s) . 98
G.7. Test de mapas (test_map.s) . 99
G.8. Testbench que permite simular la carga y ejecución de un programa BPF

(program_test.vhd) . 100
H.1. Biblioteca para interactuar con el procesador BPF (ebpf_lib.c). . . . 109
H.2. Ejemplo de programa principal (main.c). 116

43

44

Anexos

45

Anexos A

Dedicación

El diagrama de de Gantt con la distribución del trabajo realizado se muestra en la
Fig. A.1. El tiempo dedicado al desarrollo de las partes del proyecto – procesador BPF
e integración en un sistema baremetal – corresponde a aproximadamente un tercio
del tiempo total de trabajo para cada una, dejando el último tercio dedicado a la
elaboración de esta memoria. La Tab. A.1 muestra el tiempo total trabajado.

Este TFG se apoya en un trabajo previo de investigación acerca de la infraestructu-
ra que permite el uso de BPF dentro del kernel de Linux. Dicho trabajo formaba parte
del trabajo de asignatura Laboratorio de Sistemas Empotrados, y solamente se enfo-
caba en analizar la arquitectura BPF, su implementación dentro del kernel de Linux
y sus posibles aplicaciones dentro del campo de trabajo sobre TSN. Adicionalmente,
establecía un diseño primitivo de la ruta de datos del procesador BPF, sin concretar el
diseño de los componentes y omitiendo gran parte de las funcionalidades. Este trabajo
previo está reflejado en la primera columna de tiempo del diagrama de Gantt (Fig. A.1)
y no está contabilizado en la horas de dedicación (Tab. A.1).

Tabla A.1: Horas de dedicación al proyecto

Categoría Procesador BPF Integración Categoría Global
Análisis 10h 15h Análisis 25h
Diseño 10h 17h Diseño 27h

Implementación 47h 50h Implementación 97h
Pruebas 24h 28h Pruebas 52h

Documento 52h
Anexos 38h

TOTAL 291h

47

A
n
á
lisis

p
re

via
m

e
n

te
Ju

n
 3

 - 9
Ju

n
 1

0
 - 1

6
Ju

n
 1

7
 - 2

3
Ju

n
 2

4
 - 3

0
Ju

l 1
 - 7

Ju
l 8

 - 1
4

Ju
l 1

5
 - 2

1
Ju

l 2
2

 - 2
8

Ju
l 2

9
 - A

g
o

 4
A

g
o

 5
 - 1

1
A

g
o

 1
2

 - 1
8

A
g

o
 1

9
 - 2

5
A

g
o

 2
6

 - S
e

p
 1

S
e

p
 2

 - 6

E
stu

d
io

 d
e

 B
P

F

A
n

á
lisis d

e
 IP

s d
e

 X
ilin

x

A
p

re
n

d
iza

je
 e

n
 e

l u
so

 d
e

 b
u

se
s

E
stu

d
io

 d
e

 la
 in

te
rfa

z A
X

I L
ite

D
ise

ñ
o

C
o

m
p

o
n

e
n

te
s y ru

ta
 d

e
 d

a
to

s

C
o

n
tro

l d
e

 la
 ru

ta
 d

e
 d

a
to

s

In
te

g
ra

ció
n

 d
e

 la
 d

ivisió
n

In
te

rfa
z d

e
 m

e
m

o
ria

 d
e

 d
a

to
s

S
iste

m
a

 d
e

 te
rm

in
a

ció
n

 y e
x

ce
p

cio
n

e
s

F
u

n
cio

n
e

s A
u

x
ilia

re
s

S
iste

m
a

 d
e

 m
e

m
o

ria
 y e

n
tra

d
a

-sa
lid

a

C
o

n
tro

la
d

o
r A

X
I L

ite

Im
p
le
m
e
n
ta
ció

n

C
o

m
p

o
n

e
n

te
s y ru

ta
 d

e
 d

a
to

s

C
o

n
tro

l d
e

 la
 ru

ta
 d

e
 d

a
to

s

In
te

g
ra

ció
n

 d
e

 la
 d

ivisió
n

In
te

rfa
z d

e
 m

e
m

o
ria

 d
e

 d
a

to
s

S
iste

m
a

 d
e

 te
rm

in
a

ció
n

 y e
x

ce
p

cio
n

e
s

F
u

n
cio

n
e

s A
u

x
ilia

re
s

S
iste

m
a

 d
e

 m
e

m
o

ria
 y e

n
tra

d
a

-sa
lid

a

C
o

n
tro

la
d

o
r A

X
I L

ite

P
ru
e
b
a
s

T
e

st u
n

ita
rio

s

E
n

sa
m

b
la

d
o

r B
P

F

T
e

sts d
e

 in
te

g
ra

ció
n

P
ru

e
b

a
 d

e
 co

n
ce

p
to

M
e
m
o
ria

R
e

d
a

cció
n

D
ia

g
ra

m
a

s

T
a

b
la

s

Figura
A

.1:D
iagram

a
de

de
G

antt
con

la
distribución

deltrabajo
realizado

a
lo

largo
de

las
sem

anas
de

trabajo

48

Anexos B

Conjunto de Instrucciones eBPF

Las tablas mostradas a continuación contienen una descripción en pseudocódigo de
las instrucciones BPF reconocidas por el procesador. Los nombres de las instrucciones
son los reconocidos por el ensamblador utilizado para traducir los programas de prue-
bas. No existe una norma establecida sobre las abreviaturas de las instrucciones BPF
por lo que podrían variar de cara a usar otro ensamblador.

Las instrucciones de 32 bits utilizan únicamente los 32 bits menos significativos de
los registros fuente y usan un inmediato sin extensión de signo. Si además la operación
es aritmética, los 32 bits más significativos del registro destino quedan truncados, salvo
si la operación es mov32sx8 o mov32sx16.

Tabla B.1: Instrucciones aritméticas de 64 bits

Ensamblador Pseudocódigo
add dst imm dst += imm
add dst src dst += src
sub dst imm dst -= imm
sub dst src dst -= src
mul dst imm dst *= imm
mul dst src dst *= src
div dst imm dst /= imm [unsigned]
div dst src dst /= src [unsigned]
sdiv dst imm dst /= imm [signed]
sdiv dst src dst /= src [signed]
mod dst imm dst %= imm [unsigned]
mod dst src dst %= src [unsigned]
smod dst imm dst %= imm [signed]
smod dst src dst %= src [signed]
or dst imm dst |= imm
or dst src dst |= src
and dst imm dst &= imm
and dst src dst &= src
lsh dst imm dst <<= imm

49

lsh dst src dst <<= src
rsh dst imm dst >>= imm [logical]
rsh dst src dst >>= src [logical]
arsh dst imm dst >>= imm [arithmetic]
arsh dst src dst >>= src [arithmetic]
neg dst dst = dst
xor dst imm dst ^= imm
xor dst src dst ^= src
mov dst imm dst = imm
mov dst src dst = src
movsx8 dst imm dst = *(int8_t *) imm
movsx8 dst src dst = *(int8_t *) src
movsx16 dst imm dst = *(int16_t *) imm
movsx16 dst src dst = *(int16_t *) src
movsx32 dst imm dst = *(int32_t *) imm
movsx32 dst src dst = *(int32_t *) src

Tabla B.2: Instrucciones aritméticas de 32 bits

Ensamblador Pseudocódigo
add32 dst imm dst += imm
add32 dst src dst += src
sub32 dst imm dst -= imm
sub32 dst src dst -= src
mul32 dst imm dst *= imm
mul32 dst src dst *= src
div32 dst imm dst /= imm [unsigned]
div32 dst src dst /= src [unsigned]
sdiv32 dst imm dst /= imm [signed]
sdiv32 dst src dst /= src [signed]
mod32 dst imm dst %= imm [unsigned]
mod32 dst src dst %= src [unsigned]
smod32 dst imm dst %= imm [signed]
smod32 dst src dst %= src [signed]
or32 dst imm dst |= imm
or32 dst src dst |= src
and32 dst imm dst &= imm
and32 dst src dst &= src
lsh32 dst imm dst <<= imm
lsh32 dst src dst <<= src
rsh32 dst imm dst >>= imm [logical]
rsh32 dst src dst >>= src [logical]
arsh32 dst imm dst >>= imm [arithmetic]
arsh32 dst src dst >>= src [arithmetic]
neg32 dst dst = dst
xor32 dst imm dst ^= imm
xor32 dst src dst ^= src

50

mov32 dst imm dst = imm
mov32 dst src dst = src
mov32sx8 dst imm dst = *(int8_t *) imm
mov32sx8 dst src dst = *(int8_t *) src
mov32sx16 dst imm dst = *(int16_t *) imm
mov32sx16 dst src dst = *(int16_t *) src

Tabla B.3: Instrucciones de Byteswap

Ensamblador Pseudocódigo
le16 dst dst = host_to_little_endian16(dst)
le32 dst dst = host_to_little_endian32(dst)
le64 dst dst = host_to_little_endian64(dst)
be16 dst dst = host_to_big_endian16(dst)
be32 dst dst = host_to_big_endian32(dst)
be64 dst dst = host_to_big_endian64(dst)
bswap16 dst dst = byte_swap16(dst)
bswap32 dst dst = byte_swap32(dst)
bswap64 dst dst = byte_swap64(dst)

Tabla B.4: Instrucciones atómicas

Ensamblador Pseudocódigo
addx32 dst src off *(uint32_t *) (dst + off16) += src
addx64 dst src off *(uint64_t *) (dst + off16) += src
andx32 dst src off *(uint32_t *) (dst + off16) &= src
andx64 dst src off *(uint64_t *) (dst + off16) &= src
orx32 dst src off *(uint32_t *) (dst + off16) |= src
orx64 dst src off *(uint64_t *) (dst + off16) |= src
xorx32 dst src off *(uint32_t *) (dst + off16) ^= src
xorx64 dst src off *(uint64_t *) (dst + off16) ^= src
addfx32 dst src off src = atomic_fetch_add32(dst + off16, src)
addfx64 dst src off src = atomic_fetch_add64(dst + off16, src)
andfx32 dst src off src = atomic_fetch_and32(dst + off16, src)
andfx64 dst src off src = atomic_fetch_and64(dst + off16, src)
orfx32 dst src off src = atomic_fetch_or32(dst + off16, src)
orfx64 dst src off src = atomic_fetch_or64(dst + off16, src)
xorfx32 dst src off src = atomic_fetch_xor32(dst + off16, src)
xorfx64 dst src off src = atomic_fetch_xor64(dst + off16, src)
xchgx32 dst src off src = atomic_xchg32(dst + off16, src)
xchgx64 dst src off src = atomic_xchg64(dst + off16, src)
cmpxchgx32 dst src off r0 = atomic_cmpxchg32(dst + off16, r0, src)
cmpxchgx64 dst src off r0 = atomic_cmpxchg64(dst + off16, r0, src)

51

Tabla B.5: Instrucciones de memoria

Ensamblador Pseudocódigo
ld64 dst imm dst = imm [64b immediate]
ldx8 dst src off dst = *(uint8_t *) (src + off)
ldx16 dst src off dst = *(uint16_t *) (src + off)
ldx32 dst src off dst = *(uint32_t *) (src + off)
ldx64 dst src off dst = *(uint64_t *) (src + off)
ldxs8 dst src off dst = *(int8_t *) (src + off)
ldxs16 dst src off dst = *(int64_t *) (src + off)
ldxs32 dst src off dst = *(int32_t *) (src + off)
st8 dst off imm *(uint8_t *) (dst + off) = imm
st16 dst off imm *(uint16_t *) (dst + off) = imm
st32 dst off imm *(uint32_t *) (dst + off) = imm
st64 dst off imm *(uint64_t *) (dst + off) = imm
stx8 dst src off *(uint8_t *) (dst + off) = src
stx16 dst src off *(uint16_t *) (dst + off) = src
stx32 dst src off *(uint32_t *) (dst + off) = src
stx64 dst src off *(uint64_t *) (dst + off) = src
stxx8 dst src off *(uint8_t *) (dst + off16) += src
stxx16 dst src off *(uint16_t *) (dst + off16) += src
stxx32 dst src off *(uint32_t *) (dst + off16) += src
stxx64 dst src off *(uint64_t *) (dst + off16) += src

Tabla B.6: Instrucciones de salto de 64 bits

Ensamblador Pseudocódigo
ja off PC += off ; Jump Always
jeq dst imm off PC += off if dst == imm
jeq dst src off PC += off if dst == src
jgt dst imm off PC += off if dst > imm
jgt dst src off PC += off if dst > src
jge dst imm off PC += off if dst >= imm
jge dst src off PC += off if dst >= src
jlt dst imm off PC += off if dst < imm
jlt dst src off PC += off if dst < src
jle dst imm off PC += off if dst <= imm
jle dst src off PC += off if dst <= src
jset dst imm off PC += off if dst & imm
jset dst src off PC += off if dst & src
jne dst imm off PC += off if dst != imm
jne dst src off PC += off if dst != src
jsgt dst imm off PC += off if dst > imm [signed]
jsgt dst src off PC += off if dst > src [signed]
jsge dst imm off PC += off if dst >= imm [signed]
jsge dst src off PC += off if dst >= src [signed]
jslt dst imm off PC += off if dst < imm [signed]
jslt dst src off PC += off if dst < src [signed]

52

jsle dst imm off PC += off if dst <= imm [signed]
jsle dst src off PC += off if dst <= src [signed]
call imm r0 = f(r1, r2, ..., r5); Function call
rel imm r0 = f(r1, r2, ..., r5); Relative function call
exit return r0; Return from function or exit program

Tabla B.7: Instrucciones de salto de 32 bits

Ensamblador Pseudocódigo
jal imm PC += imm ; Jump Always (Long Offset)
jeq32 dst imm off PC += off if dst == imm
jeq32 dst src off PC += off if dst == src
jgt32 dst imm off PC += off if dst > imm
jgt32 dst src off PC += off if dst > src
jge32 dst imm off PC += off if dst >= imm
jge32 dst src off PC += off if dst >= src
jlt32 dst imm off PC += off if dst < imm
jlt32 dst src off PC += off if dst < src
jle32 dst imm off PC += off if dst <= imm
jle32 dst src off PC += off if dst <= src
jset32 dst imm off PC += off if dst & imm
jset32 dst src off PC += off if dst & src
jne32 dst imm off PC += off if dst != imm
jne32 dst src off PC += off if dst != src
jsgt32 dst imm off PC += off if dst > imm [signed]
jsgt32 dst src off PC += off if dst > src [signed]
jsge32 dst imm off PC += off if dst >= imm [signed]
jsge32 dst src off PC += off if dst >= src [signed]
jslt32 dst imm off PC += off if dst < imm [signed]
jslt32 dst src off PC += off if dst < src [signed]
jsle32 dst imm off PC += off if dst <= imm [signed]
jsle32 dst src off PC += off if dst <= src [signed]

53

54

Anexos C

Descripción RTL de instrucciones
en la ruta de datos

Las tablas mostradas a continuación contienen una descripción algorítmica del ca-
mino seguido por los valores a través de los bancos de etapa. Las instrucciones están
categorizadas según su clase y código. La columna other indica la condición que debe
cumplir una instrucción para seguir ese camino, con prioridad de selección de arriba
hacia abajo. La Tab. C.1 describe los operandos utilizados. A estos operandos se han
añadido las macros auxiliares de la Tab. C.2 con el fin de simplificar el esquema.

Cuando se escribe X <op> Y se pretende indicar que el valor asignado es el resultado
de la operación aritmética o lógica (trabajando en modo de 32 o 64 bits) aplicada a
X e Y. La etiqueta <size> hace referencia a la señal de control value_size.

Tabla C.1: Descripción de operandos RTL

Operador Descripción
<- Asignación de valor a un registro.
:= Asignación de un alias para un valor.
[] Acceso indexado a un contenedor.
Efecto colateral sobre otra etapa.

if/else Acción o valor condicional.
atomic Acción atómica.

Tabla C.2: Descripción de macros auxiliares para RTL

Macro Descripción
Concat(low, high) Concatena los bits de ambas palabras.

SX(x, size) Devuelve x extendido de signo (a 64 bits, si no se indica tamaño).
Tr(x, size) Devuelve el valor de x truncado al tamaño indicado.
fw(operand) Indica que el operando pasa por el sistema de anticipación (for-

warding).
HFU_Set_Code(id) Notifica a la HFU la id de la función que se va a ejecutar.

HFU(p1..p5) Devuelve el valor de la función ejecutada por la HFU.
Byte_Swap(x, width) Devuelve el valor de x con los width bytes menos significativos

cambiados de endian.
Write(&dst, x, size) Escribe en dst el valor de x los según el tamaño de palabra.

55

Tabla
C

.3:D
escripción

RT
L

de
instrucciones

atóm
icas,acceso

a
m

em
oria

y
carga

de
inm

ediato

Class
Code

Other
IF

ID
EX

MEM
WB

LD
IMM

IR
<-

Mem_Inst[PC],
PC

<-
PC

+
1

PC
<-

PC
+

1,
##DISCARD

IF
C

<-
Concat(ID_imm32,

EX_imm32)
ex_val

<-
C

Reg_Bank[dst]
<-

ex_val

LDX
MEM

A
<-

Reg_Bank[dst]
C

<-
fw(A)

+
SX(offset)

mem_val
<-

Mem_Data[C]
Reg_Bank[dst]

<-
mem_val

MEMSX
A

<-
Reg_Bank[dst]

C
<-

fw(A)
+

SX(offset)
mem_val

<-
SX(Mem_Data[C],

<size>)
Reg_Bank[dst]

<-
mem_val

ST
MEM

A
<-

Reg_Bank[dst]
C

<-
fw(A)

+
SX(offset),

data
<-

SX(EX_imm32)
Write(Mem_Data[C],

data,
<size>)

STX

MEM
A

<-
Reg_Bank[dst],

B
<-

Reg_Bank[src]
C

<-
fw(A)

+
SX(offset),

data
<-

fw(B)
Write(Mem_Data[C],

data,
<size>)

ATOMIC
¬FETCH

A
<-

Reg_Bank[dst],
B

<-
Reg_Bank[src]

C
<-

fw(A)
+

SX(offset),
data

<-
fw(B)

result
:=

Mem_Data[C]
<op>data,

Write(Mem_Data[C],
result,

<size>)

FETCH
A

<-
Reg_Bank[dst],

B
<-

Reg_Bank[src]
C

<-
fw(A)

+
SX(offset),

data
<-

fw(B)

atomic
{

mem_val
<-

Tr(Mem_Data[C],
<size>),

result
:=

Mem_Data[C]
<op>data,

Write(Mem_Data[C],
result,

<size>)
}

Reg_Bank[dst]
<-

mem_val

CMPXCHG
EX_token

<-
Reg_Bank[r0],

A
<-

Reg_Bank[dst],
B

<-
Reg_Bank[src]

MEM_token
<-

fw(EX_token),
C

<-
fw(A)

+
SX(offset),

data
<-

fw(B)

atomic
{

mem_val
<-

Tr(Mem_Data[C],
<size>),

if
(MEM_token

=
Mem_Data[C])

{
Write(Mem_Data[C],

data,
<size>)

}
}

Reg_Bank[r0]
<-

mem_val

56

Ta
bl

a
C

.4
:D

es
cr

ip
ci

ón
RT

L
de

in
st

ru
cc

io
ne

s
ar

itm
ét

ic
as

Cl
as

s
Co

de
Ot

he
r

IF
ID

EX
ME

M
WB

AL
U

EN
D

TO
_L

E

IR
<-

Me
m_

In
st

[P
C]

,
PC

<-
PC

+
1

##
DI

SC
AR

D
ID

EN
D

TO
_B

E
A

<-
Re

g_
Ba

nk
[d

st
]

wi
dt

h
:=

SX
(E

X_
im

m3
2)

,
C

<-
By

te
_S

wa
p(

A,
wi

dt
h)

ex
_v

al
=

C
Re

g_
Ba

nk
[d

st
]

<-
ex

_v
al

MO
V

B
<-

Re
g_

Ba
nk

[s
rc

]

op
_B

:=
if

(s
ou

rc
e

=
RE

G)
fw

(B
)

el
se

SX
(E

X_
im

m3
2)

,

C
<-

SX
(o

p_
B,

<s
iz

e>
)

ex
_v

al
=

C
Re

g_
Ba

nk
[d

st
]

<-
ex

_v
al

de
fa

ul
t

A
<-

Re
g_

Ba
nk

[d
st

],
B

<-
Re

g_
Ba

nk
[s

rc
]

op
_B

:=
if

(s
ou

rc
e

=
RE

G)
fw

(B
)

el
se

SX
(E

X_
im

m3
2)

,

C
<-

fw
(A

)
<o

p3
2>

op
_B

ex
_v

al
=

C
Re

g_
Ba

nk
[d

st
]

<-
ex

_v
al

AL
U6

4
EN

D
A

<-
Re

g_
Ba

nk
[d

st
]

wi
dt

h
:=

SX
(E

X_
im

m3
2)

,
C

<-
By

te
_S

wa
p(

A,
wi

dt
h)

ex
_v

al
=

C
Re

g_
Ba

nk
[d

st
]

<-
ex

_v
al

MO
V

B
<-

Re
g_

Ba
nk

[s
rc

]

op
_B

:=
if

(s
ou

rc
e

=
RE

G)
fw

(B
)

el
se

SX
(E

X_
im

m3
2)

,

C
<-

SX
(o

p_
B,

<s
iz

e>
)

ex
_v

al
=

C
Re

g_
Ba

nk
[d

st
]

<-
ex

_v
al

de
fa

ul
t

A
<-

Re
g_

Ba
nk

[d
st

],
B

<-
Re

g_
Ba

nk
[s

rc
]

op
_B

:=
if

(s
ou

rc
e

=
RE

G)
fw

(B
)

el
se

SX
(E

X_
im

m3
2)

,

C
<-

fw
(A

)
<o

p6
4>

op
_B

ex
_v

al
=

C
Re

g_
Ba

nk
[d

st
]

<-
ex

_v
al

57

Tabla
C

.5:D
escripción

RT
L

de
instrucciones

de
salto

Class
Code

Other
IF

ID
EX

MEM
WB

JMP

CALL
src

=
r0

IR
<-

Mem_Inst[PC],
PC

<-
PC

+
1

//
call

ID
stage

1
EX_token

<-
Reg_Bank[r1],

A
<-

Reg_Bank[r2],
B

<-
Reg_Bank[r3],

HFU_Set_Code(ID_imm32),

PC
<-

PC
+

1,
##DISCARD

IF

//
call

ID
stage

2
A

<-
Reg_Bank[r4]

B
<-

Reg_Bank[r5]

//
call

EX
stage

MEM_token
<-

fw(EX_token)
data

<-
fw(A)

C
<-

fw(B)

ex_val
<-

HFU(token,data,C,A,B)
Reg_Bank[r0]

<-
ex_val

EXIT

JA
PC

<-
PC

+
1

+
offset,

##DISCARD
IF

default
A

<-
Reg_Bank[dst],

B
<-

Reg_Bank[src],
PC_taken

<-
PC

+
1

+
offset

op_B
:=

if
(source

=
REG)

fw(B)
else

SX(EX_imm32),

if
(fw(A)

<op64>
op_B)

{
PC

<-
PC_taken,

##DISCARD
IF,

##DISCARD
ID

}

JMP32
JA

PC
<-

PC
+

1
+

imm32,
##DISCARD

IF

default
A

<-
Reg_Bank[dst],

B
<-

Reg_Bank[src],
PC_taken

<-
PC

+
offset

op_B
:=

if
(source

=
REG)

fw(B)
else

SX(EX_imm32),

if
(fw(A)

<op32>
op_B)

{
PC

<-
PC_taken,

##DISCARD
IF,

##DISCARD
ID

}

58

Anexos D

Control de la ruta de datos

D.1. Unidad de Control (CU)

La CU es la encargada de generar las señales de control durante la etapa ID. Las
Tab. D.1 y D.2 contienen el valor de estas señales para cada tipo de instrucción. Adicio-
nalmente, indica los registros que van a ser consumidos para informar a la HU, lógica
presente en la Tabla D.3.

Tabla D.1: Señales de control por tipo de instrucción (I)

Class Code Other jump branch 32b_jump call 64b_imm alu64 alu_en addr_calc write_en read_en atomic
LD IMM 0 0 - 0 1 1 0 0 0 0 0

LDX MEM 0 0 - 0 0 1 0 1 0 1 0
MEMSX 0 0 - 0 0 1 0 1 0 1 0

ST MEM 0 0 - 0 0 1 0 1 1 0 0

STX

MEM 0 0 - 0 0 1 0 1 1 0 0

ATOMIC
¬FETCH 0 0 - 0 0 1 0 1 1 0 1
FETCH 0 0 - 0 0 1 0 1 1 1 1
CMPXCHG 0 0 - 0 0 1 0 1 1 1 1

ALU

END TO_LE 0 0 - 0 0 - - 0 0 0 0
END TO_BE 0 0 - 0 0 1 1 0 0 0 0
MOV 0 0 - 0 0 0 1 0 0 0 0
default 0 0 - 0 0 0 1 0 0 0 0

ALU64
END 0 0 - 0 0 1 1 0 0 0 0
MOV 0 0 - 0 0 1 1 0 0 0 0
default 0 0 - 0 0 1 1 0 0 0 0

JMP

CALL src=r0 0 0 - 1 0 1 0 0 0 0 0
EXIT 0 0 - 0 0 - 0 0 0 0 0
JA 1 0 0 0 0 - 0 0 0 0 0
default 0 1 0 0 0 1 0 0 0 0 0

JMP32 JA 1 0 1 0 0 - 0 0 0 0 0
default 0 1 0 0 0 0 0 0 0 0 0

59

Tabla D.2: Señales de control por tipo de instrucción (II)

Class Code Other force_imm sign_ext value_size mem_to_reg reg_write write_r0 discard_IF finish
LD IMM 1 0 64b 0 1 0 1 0

LDX MEM - 0 opcode.size 1 1 0 0 0
MEMSX - 1 opcode.size 1 1 0 0 0

ST MEM 1 - opcode.size - 0 0 0 0

STX

MEM 0 - opcode.size - 0 0 0 0

ATOMIC
¬FETCH 0 - opcode.size - 0 0 0 0
FETCH 0 0 opcode.size 1 1 0 0 0
CMPXCHG 0 0 opcode.size 1 0 1 0 0

ALU

END TO_LE 0 0 - 0 0 0 0 0
END TO_BE 1 0 - 0 1 0 0 0
MOV 0 1 code(offset)1 0 1 0 0 0
default 0 0 - 0 1 0 0 0

ALU64
END 1 0 - 0 1 0 0 0
MOV 0 1 code(offset) 0 1 0 0 0
default 0 0 - 0 1 0 0 0

JMP

CALL src=r0 - - 64b 0 0 1 1 0
EXIT - - - - 0 0 0 1
JA - - - - 0 0 0 0
default 0 - - - 0 0 0 0

JMP32 JA - - - - 0 0 0 0
default 0 - - - 0 0 0 0

Tabla D.3: Señales que indican registro consumido

Class Code Other DST SRC Token
LD IMM 0 0 0

LDX MEM 1 1 0
MEMSX 1 1 0

ST MEM 1 0 0

STX

MEM 1 1 0

ATOMIC
¬FETCH 1 1 0
FETCH 1 1 0
CMPXCHG 1 1 1

ALU

END TO_LE 1 0 0
END TO_BE 1 0 0
MOV 0 1 0

default
s = REG
and ¬NEG 1 1 0

else 1 0 0

ALU64

END 1 0 0
MOV 0 1 0

default
s = REG
and ¬NEG 1 1 0

else 1 0 0

JMP

CALL src = r0 0 0 0
EXIT 0 0 0
JA 0 0 0

default
s = REG 1 1 0
else 1 0 0

JMP32
JA 0 0 0

default
s = REG 1 1 0
else 1 0 0

1El tamaño en bytes de la palabra para las instrucciones MOV se codifica como un número dentro
del offset (8, 16 o 32). La señal de control value_size utiliza una codificación en 2 bits, por lo que la
CU debe codificarlo.

60

D.2. Unidad de Riesgos (HU)

La HU funciona como detector de riesgos de datos para provocar que la instrucción
decodificada quede detenida hasta poder obtener sus operandos correctamente. Los
riesgos de control y estructurales son notificados propiamente por los componentes que
los provocan y quedan fuera de la responsabilidad de la HU.

Los riesgos que debe detectar son los siguientes:

− Token (r0), registro fuente o registro destino no están listos para anticipación.
Esto ocurre cuando el dato se produce en etapa MEM y la consumidora es la
siguiente instrucción. Para cuando la consumidora está en etapa EX el valor aún
no habrá sido producido, por lo que es necesario detenerla un ciclo en etapa ID.

− Parámetros 1, 2 o 3 de una función auxiliar no están listos para anticipación
(causa análoga).

− Parámetros 4 o 5 de una función auxiliar no pueden ser obtenidos directamente
del banco de registros. Estos valores no pasan por el sistema de anticipación y
deben estar disponibles para leer del banco de registros cuando la instrucción
call alcanza la etapa EX. Este caso se da independientemente de que el dato se
produzca en EX o MEM.

La Tab. D.4 muestra las condiciones para cada riesgo en base a señales del proce-
sador. Las señales ID_use_dst, ID_use_src, ID_use_r0 las produce la CU, como se
ve en el anexo D.1. Además, se sabe que una instrucción es productora en etapa MEM
porque escribe el dato en mem_val (activa la señal de control EX_mem_to_reg) o porque
es una llamada a función auxiliar (EX_call).

61

Tabla
D

.4:C
ondiciones

de
detención

por
riesgo

de
datos

Hazard
description

Hazard
condition

Is
EX

producer
Is

ID
consumer

Is
result

ready
on

MEM

r0
not

ready
EX_reg_write

and
EX_dst

=
0

and
ID_use_r0

and
EX_mem_producer

EX_write_r0
and

ID_use_r0
and

EX_mem_producer

dst
not

ready
EX_reg_write

and
EX_dst

=
ID_dst

and
ID_use_dst

and
EX_mem_producer

EX_write_r0
and

ID_dst
=

0
and

ID_use_dst
and

EX_mem_producer

src
not

ready
EX_reg_write

and
EX_dst

=
ID_src

and
ID_use_src

and
EX_mem_producer

EX_write_r0
and

ID_src
=

0
and

ID_use_src
and

EX_mem_producer
r1,

r2
or

r3
not

ready
EX_reg_write

and
EX_dst

∈
(0,

3]
and

EX_dst
≤

ID_num_params
and

ID_call
and

EX_mem_producer
r4

or
r5

not
ready

EX_reg_write
and

EX_dst
∈

(3,
5]

and
EX_dst

≤
ID_num_params

and
ID_call

62

D.3. Unidad de Anticipación (FU)

La FU se encarga de proveer a la etapa EX de los operandos necesarios en caso de
que el valor requerido no estuviera disponible para lectura en ID. A diferencia de la
HU, la FU ignora si realmente se utiliza el valor, pero asegura que en caso de usarlo se
proporciona el valor correcto. Las Tab. D.5 y D.6 contienen la lógica para determinar
si los bancos de etapa MEM o WB contienen un posible valor de los operandos. El
origen de lectura de cada operando se decide con la lógica de las Tab. D.7, D.8 y D.9.
Cuando más de una condición aparece asignada a una señal significa que la activa con
independencia del resto de condiciones (puerta or lógica).

Tabla D.5: Condiciones de posible anticipación desde banco MEM

Signal
Activation condition

Is MEM producer Is EX consumer

A_from_MEM
MEM_reg_write and MEM_dst = 2 and EX_call
MEM_reg_write and MEM_dst = EX_dst and not EX_call
MEM_write_r0 and EX_dst = 0 and not EX_call

B_from_MEM
MEM_reg_write and MEM_dst = 3 and EX_call
MEM_reg_write and MEM_dst = EX_src and not EX_call
MEM_write_r0 and EX_src = 0 and not EX_call

token_from_MEM
MEM_reg_write and MEM_dst = 1 and EX_call
MEM_reg_write and MEM_dst = 0 and not EX_call
MEM_write_r0 and not EX_call

Tabla D.6: Condiciones de posible anticipación desde banco WB

Signal
Activation condition

Is WB producer Is EX consumer

A_from_WB
WB_reg_write and WB_dst = 2 and EX_call
WB_reg_write and WB_dst = EX_dst and not EX_call
WB_write_r0 and EX_dst = 0 and not EX_call

B_from_WB
WB_reg_write and WB_dst = 3 and EX_call
WB_reg_write and WB_dst = EX_src and not EX_call
WB_write_r0 and EX_src = 0 and not EX_call

token_from_WB
WB_reg_write and WB_dst = 1 and EX_call
WB_reg_write and WB_dst = 0 and not EX_call
WB_write_r0 and not EX_call

63

Tabla D.7: Fuente de lectura anticipada del operando A

fw_A_from A_from_MEM A_from_WB WB_mem_to_reg
FROM_MEM_C 1 -2 -
FROM_WB_EX_VAL 0 1 0
FROM_WB_MEM_VAL 0 1 1
NO_FW 0 0 -

Tabla D.8: Fuente de lectura anticipada del operando B

fw_B_from B_from_MEM B_from_WB WB_mem_to_reg
FROM_MEM_C 1 - -
FROM_WB_EX_VAL 0 1 0
FROM_WB_MEM_VAL 0 1 1
NO_FW 0 0 -

Tabla D.9: Fuente de lectura anticipada del token

fw_token_from token_from_MEM token_from_WB WB_mem_to_reg
FROM_MEM_C 1 - -
FROM_WB_EX_VAL 0 1 0
FROM_WB_MEM_VAL 0 1 1
NO_FW 0 0 -

2Se debe priorizar el valor del registro más reciente, por lo que se ignora si se usa en una etapa
posterior.

64

D.4. Unidad de Excepciones (EU)

La EU se encarga de centralizar la gestión de errores en el procesador. Los compo-
nentes externos pueden indicarle errores en una etapa determinada. A su vez, se asegura
de que no se ejecute ninguna instrucción ilegal o no implementada. La Tab. D.10 mues-
tra los distintos valores que puede tener IR para ser considerada instrucción válida. La
tabla se apoya en las condiciones auxiliares que se muestran a continuación:

writable := reg < 10

readable := reg ≤ 10

atomic_op := imm[7:4] ∈ {ADD, OR, AND, XOR} and imm[..] = 0

atomic_fetch := imm[0] = 1 and imm[7:4] ∈ {ADD, OR, AND, XOR, XCHG}

and imm[..] = 0

atomic_cmpxchg := imm[0] = 1 and imm[7:4] = CMPXCHG and imm[..] = 0

regular_op := code ∈ {ADD, SUB, MUL, DIV, MOD, OR,

AND, LSH, RSH, NEG, XOR, ARSH}

signed_op := code ∈ {DIV, MOD}

branch_op := code ∈ {JEQ, JGT, JGE, JSET, JNE, JSGT, JSGE,

JLT, JLE, JSLT, JSLE}

mov_size := ((offset[3] = 1 xor offset[4] = 1) xor offset[5] = 1)

and offset[..] = 0

end_size_ok := ((imm[4] = 1 xor imm[5] = 1) xor imm[6] = 1)

and imm[..] = 0

65

Tabla
D

.10:C
odificaciones

de
instrucción

válidas

Valid
combinations

Class
Source

Inst.
Code

Mem.
Size

Mem.
Mode

Dst
Src

Offset
Immediate

LD
-

-
64b

IMM
writable

0
0

-
LDX

-
-

-
MEM

writable
readable

-
0

LDX
-

-
-

MEMSX
writable

readable
-

0
ST

-
-

-
MEM

readable
readable

-
-

STX
-

-
-

MEM
readable

readable
-

0
STX

-
-

32b/64b
ATOMIC

readable
readable

-
atomic_op

STX
-

-
32b/64b

ATOMIC
readable

writable
-

atomic_fetch
STX

-
-

32b/64b
ATOMIC

readable
readable

-
atomic_cmpxchg

ALU
-

regular_op
-

-
writable

readable
0

-
ALU

-
signed_op

-
-

writable
readable

1
-

ALU
-

MOV
-

-
writable

readable
mov_size_ok

-
ALU

-
END

-
-

writable
readable

0
end_size_ok

ALU64
-

regular_op
-

-
writable

readable
0

-
ALU64

-
signed_op

-
-

writable
readable

1
-

ALU64
-

MOV
-

-
writable

readable
mov_size_ok

-
ALU64

0
END

-
-

writable
readable

0
end_size_ok

JMP
0

JA
-

-
0

0
-

0
JMP

-
branch_op

-
-

readable
readable

-
-

JMP
0

EXIT
-

-
0

0
0

0
JMP

0
CALL

-
-

0
0

3
0

-
JMP32

0
JA

-
-

0
0

0
-

JMP32
-

branch_op
-

-
readable

readable
-

-

3Elregistro
fuente

indica
siuna

instrucción
CALL

es
una

invocación
a

función
de

usuario
(src

=
1)

o
a

una
función

auxiliar
(src

=
0).

66

Anexos E

Detalles de implementación por
componente

E.1. Verificador de Saltos (BC)

La implementación del Verificador de Saltos genera una señal por cada condición de
salto posible en BPF. Hay 3 condiciones básicas que emplean componentes dedicadas
(=, > y &). El resto son derivadas de ellas según la lógica siguiente:

same_sign := (op_64b and A(63) = B(63)) or

(not op_64b and A(31) = B(31))

eq := A = B

ne := not eq

lt := A < B

le := lt or eq

gt := not lt and not eq

ge := not lt

slt := (same_sign and lt) or (not same_sign and gt)

sle := (same_sign and le) or (not same_sign and ge)

sgt := (same_sign and gt) or (not same_sign and lt)

sge := (same_sign and ge) or (not same_sign and le)

set := (A & B) != 0

El resultado es multiplexado a partir de todas las condiciones, utilizando el código
de operación como selector.

67

E.2. Unidad Aritmética Lógica (ALU)

La implementación de cada una de las operaciones aritméticas de BPF en VHDL
es trivial usando la biblioteca estándar, salvo para la división y el módulo, que son las
únicas cuya función no es sintetizable como circuito combinacional. Por ello, la ALU
precisa de un divisor multiciclo. Los divisores que provee Xilinx como IP permiten
elegir el tipo y tamaño de los operandos. La configuración elegida es un divisor de
naturales de 64 bits, con salidas para el cociente y el resto (la alternativa es un resultado
fraccionario). Con él se pueden implementar todas las versiones de la operación de
división y módulo que ofrece BPF.

La Fig. E.1 muestra la ruta de datos correspondiente al camino de la división y el
módulo dentro de la ALU, diseñada para soportar operaciones con o sin signo, de 32
o 64 bits y tratar divisiones entre 0 como caso aparte. Si un operando es negativo y
se ejecuta la división natural, se trata como si fuera positivo, pero se niega en caso
de ser una división entera. El resultado de una división entera únicamente se niega si
los signos de los operandos son distintos. La operación módulo en BPF está definida
igual que en el lenguaje C, por lo aprovecha la misma lógica que la división para negar
valores.

Este procesador no tiene lanzamiento concurrente de instrucciones a fase de ejecu-
ción, por lo que el divisor siempre va a estar disponible cuando llega una nueva opera-
ción. El autómata de la Fig. E.2 asume esto. Sin embargo, durante la configuración del
divisor se puede establecer una latencia de iniciación, pensada para ahorrar recursos.
A cambio, el procesador ya no puede asumir que el divisor está siempre disponible.
Como el sistema de anticipación de operandos solo garantiza que el valor anticipado
es correcto durante el primer ciclo que se usa, la ALU debe guardar los operandos en

DIV

N

D

Q

R

< 0

A

alu64

B

< 0

= 0

negate 1

0

div_by_0

negate

0

1

negate 1

0

0

1negate

1

0

0

0

1A

div_bus

mod_bus

A

signed

update_neg_result

go

valid

ready

valid_operands ready_operands

valid_result

Figura E.1: Camino de la ALU diseñado para la ejecución de divisiones. DIV es una
representación simplificada de un Divider Generator LogiCORE™ IP

68

caso de que el divisor no esté disponible. Este comportamiento más complejo es el se
ha incluido en el core y su autómata se puede ver en la Fig. E.3.

Algo que se puede observar en los autómatas es el estado dedicado para reset. Su
objetivo es mantener activa la señal reset del divisor durante al menos dos ciclos, tal y
como requiere.

Otra decisión de diseño de la ALU fue utilizar el multiplicador en un ciclo que se
genera por defecto. Utilizar un multiplicador secuencial permitiría reducir el tiempo
de ciclo en el caso de que la multiplicación fuera el camino crítico. Como no es posible
identificar este camino crítico desde la fase de diseño, en esta primera versión se ha
decidido dejar el multiplicador por defecto.

69

INIT
RESET

/
reset_divider

DIVIDING

NOT valid_result /

await_div

use_divider
/

valid_operands,
await_div,

update_negate_result

use_divider := op_alu ∈ {DIV, MOD} AND NOT div_by_0 AND alu_en

reset /

reset_divider

NOT reset

reset / reset_divider

valid_result /
NOT await_div

INIT
RESET

/
reset_divider

DIVIDING

reset /

reset_divider

NOT reset

reset / reset_divider

valid_result /
NOT await_div

SAVED

use_divider AND
ready_operands

/
NOT use_saved_operands,

valid_operands,
await_div,

update_negate_result

use_divider AND

NOT ready_operands

/
save_operands,

await_div,
update_negate_result

ready_operands
/

use_saved_operands,
valid_operands,

await_div
reset /

reset_divider

NOT valid_result /

await_div

Figura E.2: Autómata de la ALU con soporte a división sin latencia de iniciación

INIT
RESET

/
reset_divider

DIVIDING

NOT valid_result /

await_div

use_divider
/

valid_operands,
await_div,

update_negate_result

use_divider := op_alu ∈ {DIV, MOD} AND NOT div_by_0 AND alu_en

reset /

reset_divider

NOT reset

reset / reset_divider

valid_result /
NOT await_div

INIT
RESET

/
reset_divider

DIVIDING

reset /

reset_divider

NOT reset

reset / reset_divider

valid_result /
NOT await_div

SAVED

use_divider AND
ready_operands

/
NOT use_saved_operands,

valid_operands,
await_div,

update_negate_result

use_divider AND

NOT ready_operands

/
save_operands,

await_div,
update_negate_result

ready_operands
/

use_saved_operands,
valid_operands,

await_div
reset /

reset_divider

NOT valid_result /

await_div

Figura E.3: Autómata de la ALU con soporte a división con latencia de iniciación

70

E.3. Interfaz de memoria de datos

Este componente tiene la responsabilidad de llevar a cabo todas las operaciones que
requieren acceso a memoria, incluidas las operaciones atómicas, a la vez que abstrae la
interacción con los bloques de memoria. La ruta de datos que se observa en la Fig. E.4 y
su correspondiente autómata de control (Fig. E.5) están diseñados para interactuar con
módulos de BRAM direccionables a palabras de 64 bits. Aunque en el esquema se vea
un módulo de BRAM, en realidad este módulo no está presente dentro del componente,
tal y como ha aparecido en la Fig 4.1. El bloque ha sido añadido para representar que
las señales conectadas corresponden a las que interactúan con el bus de memoria.

La BRAM permite lecturas y escrituras con latencia de un ciclo, por lo que so-
lamente las operaciones atómicas son multiciclo. Los accesos a memoria compartida
también pueden durar más de un ciclo si no se obtiene del árbitro durante el primer
ciclo.

Las lecturas son siempre de 8 bytes y alineadas, por lo que se usa el tamaño del valor
y los bits menos significativos de la dirección para seleccionar el valor de salida (bloque
Byte Select). Esta operación se produce en la etapa WB (por la latencia de un ciclo),
por lo que es necesario almacenar previamente los datos de selección (sel_info).

Las escrituras también son alineadas, pero se permite elegir cuáles de los 8 bytes
van a ser escritos, mediante una máscara. Las escrituras de palabras menores a 64 bits
no alineadas requieren corregir la posición de los bytes (bloque Byte Xchg). Además,
es preciso generar una máscara de escritura a partir de los datos de selección (bloque
Size to Mask).

Las operaciones atómicas se realizan en dos fases: lectura y modificación-escritura.
El autómata de control se encarga de bloquear las etapas anteriores generando la señal
ready, de mantener el acceso al bus de memoria con la señal bus_frame si se está
accediendo a memoria compartida y de multiplexar el dato de entrada a la BRAM
(store_modified). La ruta de datos incluye una ALU de 64 bits con las operaciones
add, or, and y xor. Cuando la instrucción es de 32 bits se debe alinear data con el
valor leído de memoria. Para implementar la instrucción xchg, la ALU permite el paso
data. En el caso de cmpxchg, la ALU sirve como multiplexor entre data y el dato de
memoria, activado con el resultado de comparar el dato de memoria con token.

La interfaz de memoria de datos también se encarga de comprobar si las direccio-
nes corresponden al espacio de memoria compartido o no compartido, con el fin de
notificarlo al autómata (señal shared). Si la dirección no corresponde a ninguno de
ellos, pasa a estado de error, donde notifica a la EU que la etapa MEM ha generado
excepción.

71

BRAM
1

0

ALU

sz
op
xchgdata

token

op

sz

addr

do_write do_read

do_save

@

din

doutstore_modified

Byte

Xchg

Byte

Select
mem_val

=

<<32

<<32
sz

sel_info

Size

to Mask

enwe

sel_info

sel_info

do_save

sel_info

Figura E.4: Ruta de datos de la interfaz de memoria de datos

INIT
/

request = shared

MODIFY_WRITE
/

bus_frame = shared,

do_write,
store_modified,

ready

ERROR

error

write_en AND
atomic

/

do_read,
do_save,
NOT ready

NOT read_en AND
write_en AND

NOT atomic
/

do_write,
NOT store_modified,

ready

read_en AND

NOT write_en

/

do_read,

do_save,

ready

shared AND

NOT granted

/

NOT ready

1
2

3

4

5

Figura E.5: Autómata de control de la interfaz de memoria de datos

72

El esquema de la ruta de datos (Fig E.4) muestra un registro a la salida de la
BRAM. Se trata de un registro retardado, que guarda el dato de entrada un ciclo
después de que su señal load esté activa. Su salida es el valor de entrada si load está
activa, o contenido guardado en caso contrario.

73

E.4. Unidad de funciones auxiliares (HFU)

La HFU es un componente que permite implementar funciones auxiliares mediante
circuitos secuenciales que avanzan en sincronía a las etapas de la ruta de datos del
procesador. Utiliza la etapa ID para decodificar el id de la función, a partir del cual
se decide el siguiente estado. En caso de que no exista la función indicada, avisa a la
EU de error. También permite la consulta del número de parámetros que recibe una
función, para informar de su consumo a la HU.

Esta versión únicamente implementa la función bpf_lookup_elem, que devuelve un
puntero al valor del elemento buscado a partir de la id del mapa y la clave del elemento.
La HFU ejecuta esta función por completo en la etapa MEM, en dos fases: consulta
de los datos del mapa en la unidad de mapas y cálculo de la dirección del elemento.
El autómata de la Fig. E.6 muestra el avance de la función y su sincronización con el
avance de las etapas ID y EX.

El cálculo de la dirección del elemento se realiza a partir de los datos del registro
de mapa, descritos en la Tab. 4.2, aplicando el siguiente cálculo:

elem_ptr = (base_ptr * 8) + (truncate(key, key_size) << value_size)

LOOKUP_MEM_REQ
/

map_request,
await_MEM

LOOKUP_EXINIT

go_ID AND

function_id = 0

LOOKUP_MEM

go_EX

map_granted
/

map_ena,
save_map_info

map_granted

go_ID AND

function_id = 0

ERROR ID
/

error_ID

go_ID AND

function_id ≠ 0

Figura E.6: Autómata de la HFU implementada con soporte para bpf_lookup_elem

74

E.5. Controlador AXI

Este componente implementa una interfaz AXI Lite secundaria para conectar el
periférico con el exterior y permitir las transacciones de memoria y control explicadas
en la Sec. 4.2. Para comprender en detalle las señales que conforman la interfaz AXI Lite
se remite al Cap. B1 de la especificación del protocolo AXI [4].

Para la mayoría de las transacciones, el controlador funciona como decodificador de
la dirección, permitiendo leer o escribir en el bloque correspondiente. Sin embargo, la
inclusión de transacciones atómicas de 64 bits en un bus de 32 bits complica el diseño.
Su comportamiento está determinado por dos autómatas: uno principal para traducir
las transacciones en señales de control (Fig. E.7) y otro auxiliar para controlar el estado
del búfer de memoria compartida (Fig. E.8).

Los estados del búfer representan la última operación sobre memoria compartida
que se realizó desde el bus: EMPTY, si no ha afectado al búfer; STORE_0/1, si se trata
de una escritura; y LOAD_0/1, si se trata de una lectura. El cero y el uno que com-
plementan al estado señalan que la palabra accedida son los 4 bytes más o menos
significativos. Los estados del búfer permiten al autómata principal determinar si es
preciso escribir el contenido del búfer de escritura en memoria (trasladándose a los
estados de flush). También sirven para saber si una lectura debe acceder a memoria o
extraer el dato del búfer de lectura. El autómata auxiliar se encarga de actualizar el
estado del búfer, pero solo lo hace en los ciclos que el autómata principal lo indica con
la señal update_buffer_state (UBS).

INIT
/

req_state

FLUSH AND READ
/

from_saved_ch,
req_state

READ ACK
/

rvalid

WRITE ACK
/

bvalid

FLUSH AND WRITE
/

from_saved_ch,
req_state

awvalid AND wvalid /

awready, wready,
do_write, UBS

request AND

NOT granted

request AND

NOT granted

request AND

NOT granted

arvalid /
arready,

do_read, UBS

rready bready

arvalid AND flush_n_read /

arready, do_write,
save_axi_ch

do_read, UBS do_write, UBS

awvalid AND wvalid AND

flush_n_write /

awready, wready,
do_write,

save_axi_ch

Figura E.7: Autómata de control de la interfaz AXI Lite

75

E
M
P
T
Y

S
T
O
R
E
_
0

S
T
O
R
E
_
1

L
O
A
D
_
0

L
O
A
D
_
1

1

P
A
R
A

H
I
G
H

0

P
A
R
A

L
O
W

w
r
_
s
h
a
r
e
d
_
0

/

w
r
_
s
a
v
e
_
s
h
a
r
e
d

w
r
_
s
h
a
r
e
d
_
1

/

w
r
_
s
a
v
e
_
s
h
a
r
e
d

w
r
_
s
h
a
r
e
d
_
0

A
N
D

N
O
T

s
a
m
e
_
a
d
d
r
a

/

w
r
_
s
a
v
e
_
s
h
a
r
e
d

w
r
_
s
h
a
r
e
d
_
1

A
N
D

N
O
T

s
a
m
e
_
a
d
d
r
a

/

w
r
_
s
a
v
e
_
s
h
a
r
e
d

r
d
_
s
h
a
r
e
d
_
1

r
d
_
s
h
a
r
e
d
_
0

s
h
a
r
e
d
_
f
l
u
s
h

O
R

n
o
_
b
u
f
f
e
r
e
d
_
a
c
t
i
o
n

r
d
_
s
h
a
r
e
d
_
0

A
N
D

N
O
T

s
a
m
e
_
a
d
d
r
a

r
d
_
s
h
a
r
e
d
_
1

A
N
D

N
O
T

s
a
m
e
_
a
d
d
r
a

r
d
_
s
h
a
r
e
d
_
1

r
d
_
s
h
a
r
e
d
_
0

r
d
_
s
h
a
r
e
d
_
0r
d
_
s
h
a
r
e
d
_
1

w
r
_
s
h
a
r
e
d
_
1

/

w
r
_
s
a
v
e
_
s
h
a
r
e
d

w
r
_
s
h
a
r
e
d
_
0

/

w
r
_
s
a
v
e
_
s
h
a
r
e
d

(
w
r
_
s
h
a
r
e
d
_
1

A
N
D

s
a
m
e
_
a
d
d
r
a
)

/

w
r
i
t
e
_
6
4
b

w
r
_
s
h
a
r
e
d
_
0

/

w
r
_
s
a
v
e
_
s
h
a
r
e
d

n
o
_
m
e
m
_
a
c
c
e
s
s

s
h
a
r
e
d
_
f
l
u
s
h

O
R

n
o
_
b
u
f
f
e
r
e
d
_
a
c
t
i
o
n

s
h
a
r
e
d
_
f
l
u
s
h

O
R

n
o
_
b
u
f
f
e
r
e
d
_
a
c
t
i
o
n

(
w
r
_
s
h
a
r
e
d
_
0

A
N
D

s
a
m
e
_
a
d
d
r
a
)

/

w
r
i
t
e
_
6
4
b

w
r
_
s
h
a
r
e
d
_
1

/

w
r
_
s
a
v
e
_
s
h
a
r
e
d

n
o
_
m
e
m
_
a
c
c
e
s
s

s
h
a
r
e
d
_
f
l
u
s
h

O
R

n
o
_
b
u
f
f
e
r
e
d
_
a
c
t
i
o
n

r
d
_
s
h
a
r
e
d
_
1

A
N
D

s
a
m
e
_
a
d
d
r
a

/

n
o
_
m
e
m
_
a
c
c
e
s
s

r
d
_
s
h
a
r
e
d
_
1

A
N
D

s
a
m
e
_
a
d
d
r
a

/

n
o
_
m
e
m
_
a
c
c
e
s
s

Figura
E.8:A

utóm
ata

de
controldelbúfer

de
m

em
oria

76

Anexos F

Funciones definidas por el usuario

Como se explica en la Sec. 3.2.5, el procesador BPF no implementa las llamadas a
funciones de usuario, aunque aparecen en el anexo B como instrucción rel. Este anexo
explica las consideraciones de diseño que se deben tomar para incluirlas en la ruta de
datos actual.

Las llamadas a funciones son saltos relativos a PC que guardan la información del
FP y el PC de retorno (PC + 1), con el fin de crear un nuevo marco de pila. Como
BPF limita a 8 los marcos de pila activos [24], ambos valores podrían ser guardados
en un pequeño banco de 8 registros, la Stack Frame Unit (SFU), indexada por la
cantidad actual de marcos activos (FC). PC se guarda codificado en 12 bits, porque los
programas tienen un tamaño máximo permitido de 4096 instrucciones, y para el FP
se usan 6 bits, aprovechando que la pila siempre tiene un tamaño de 512 bytes y está
alineada a 8 bytes (64 posibles posiciones de FP).

La arquitectura de BPF no tiene un Stack Pointer (SP) visible al programador, por
lo que el marco de pila debe ser deducido a partir de las escrituras en el espacio de
pila. Se considera que el SP cambia cuando se escribe en una dirección más baja (BPF
usa una pila descendente). Si el programa intentase leer de zonas todavía no escritas
incurre en comportamiento indefinido, lo que no está permitido por el verificador de
Linux, por lo que es seguro utilizar este método.

Para soportar este tipo de llamadas, es preciso añadir comportamiento especial a
la instrucción exit en caso de estar dentro de una función (cuando el FC es mayor a
cero). Esta instrucción debe ser capaz de recuperar el estado anterior a la llamada a
función. La HU también debe ser modificada para detectar riesgos de datos producidos
por alteraciones en el SP.

La Tab. F.1 contiene una posible descripción RTL del comportamiento de las ins-
trucciones a lo largo de las etapas. Se han añadido las Fig. F.1 y F.2 como borradores
de lo que podría ser la infraestructura a añadir.

77

Tabla F.1: Posibles acciones RTL para soportar funciones de usuario
Class Code Other IF ID EX MEM WB

JMP CALL src = 1
IR <- Mem_Inst[PC],
PC <- PC + 1

PC <- PC + 1 + imm32,
SFU(FC + 1).ret_PC <- PC + 1,
SFU(FC + 1).saved_FP <- Reg_Bank[r10],
FC <- FC + 1,

##DISCARD IF1

C <- SP, ex_val <- C Reg_Bank[r10] <- ex_val

EXIT FC > 0
IR <- Mem_Inst[PC],
PC <- PC + 1

PC <- SFU(FC).ret_PC,
A <- Reg_Bank[r10],

##DISCARD IF

SP <- fw(A),
C <- SFU(FC).saved_FP,
FC <- FC - 1,

ex_val <- C Reg_Bank[r10] <- ex_val

S
P

addr_of_store_in_stack

MIN

old frame

new frame

FP

frame_counter

saved_FP

6

ret_PC

12

+1

load_FP

-1
1

0

EX_exit

Stack Frame Unit (SFU)

FP

D
E
C

en PC + 1

ID_rel

Stack Memory

FP'
1

0EX_operand_A

GENERA RIESGOS DE DATOS
PORQUE NO SE SABE SI ES
ESPACIO DE PILA HASTA MEM

-> permite usar la SFU
 dos etapas seguidas

Figura F.1: Infraestructura de shadow SP

S
P

addr_of_store_in_stack

MIN

old frame

new frame

FP

frame_counter

saved_FP

6

ret_PC

12

+1

load_FP

-1
1

0

EX_exit

Stack Frame Unit (SFU)

FP

D
E
C

en PC + 1

ID_rel

Stack Memory

FP'
1

0EX_operand_A

GENERA RIESGOS DE DATOS
PORQUE NO SE SABE SI ES
ESPACIO DE PILA HASTA MEM

-> permite usar la SFU
 dos etapas seguidas

Figura F.2: Sistema de guardado y recuperación del marco de pila

1Descartar la siguiente instrucción permite usar la SFU tanto en la etapa ID como EX.

78

Anexos G

Pruebas de integración

G.1. Programas de prueba

Listado G.1: Test de decodificación (test_decode.s)
1 ; 64 bit ALU instructions
2 add r6 64
3 add r6 r4
4 sub r6 64
5 sub r6 r4
6 mul r6 64
7 mul r6 r4
8 div r6 64
9 div r6 r4
10 sdiv r6 64
11 sdiv r6 r4
12 or r6 64
13 or r6 r4
14 and r6 64
15 and r6 r4
16 lsh r6 64
17 lsh r6 r4
18 rsh r6 64
19 rsh r6 r4
20 neg r6
21 mod r6 64
22 mod r6 r4
23 smod r6 64
24 smod r6 r4
25 xor r6 64
26 xor r6 r4
27 mov r6 64
28 mov r6 r4
29 movsx8 r6 64
30 movsx8 r6 r4
31 movsx16 r6 64
32 movsx16 r6 r4
33 movsx32 r6 64
34 movsx32 r6 r4
35 arsh r6 64
36 arsh r6 r4
37
38 ; 32 bit ALU instructions
39 add32 r3 32
40 add32 r3 r2
41 sub32 r3 32
42 sub32 r3 r2
43 mul32 r3 32
44 mul32 r3 r2
45 div32 r3 32
46 div32 r3 r2
47 sdiv32 r3 32
48 sdiv32 r3 r2

79

49 or32 r3 32
50 or32 r3 r2
51 and32 r3 32
52 and32 r3 r2
53 lsh32 r3 32
54 lsh32 r3 r2
55 rsh32 r3 32
56 rsh32 r3 r2
57 neg32 r3
58 mod32 r3 32
59 mod32 r3 r2
60 smod32 r3 32
61 smod32 r3 r2
62 xor32 r3 32
63 xor32 r3 r2
64 mov32 r3 32
65 mov32 r3 r2
66 mov32sx8 r3 32
67 mov32sx8 r3 r2
68 mov32sx16 r3 32
69 mov32sx16 r3 r2
70 arsh32 r3 32
71 arsh32 r3 r2
72
73 ; Byteswap instructions
74 le16 r7
75 le32 r7
76 le64 r7
77 be16 r7
78 be32 r7
79 be64 r7
80 bswap16 r7
81 bswap32 r7
82 bswap64 r7
83
84 ; Atomic operations
85 addx32 r1 r5 54
86 addx64 r1 r5 54
87 andx32 r1 r5 54
88 andx64 r1 r5 54
89 orx32 r1 r5 54
90 orx64 r1 r5 54
91 xorx32 r1 r5 54
92 xorx64 r1 r5 54
93 addfx32 r1 r5 54
94 addfx64 r1 r5 54
95 andfx32 r1 r5 54
96 andfx64 r1 r5 54
97 orfx32 r1 r5 54
98 orfx64 r1 r5 54
99 xorfx32 r1 r5 54
100 xorfx64 r1 r5 54
101 xchgx32 r1 r5 54
102 xchgx64 r1 r5 54
103 cmpxchgx32 r1 r5 54
104 cmpxchgx64 r1 r5 54
105
106 ; Memory instructions
107 ld64 r7 -10
108 ldx8 r7 r9 101
109 ldx16 r7 r9 101
110 ldx32 r7 r9 101
111 ldx64 r7 r9 101
112 ldxs8 r7 r9 101
113 ldxs16 r7 r9 101
114 ldxs32 r7 r9 101
115 st8 r7 101 80
116 st16 r7 101 80
117 st32 r7 101 80
118 st64 r7 101 80
119 stx8 r7 r9 101
120 stx16 r7 r9 101
121 stx32 r7 r9 101

80

122 stx64 r7 r9 101
123
124 ; 64 bit Jump instructions
125 ja L1; Uses offset
126 L1: jeq r1 12 L2
127 L2: jeq r1 r10 L3
128 L3: jgt r1 12 L4
129 L4: jgt r1 r10 L5
130 L5: jge r1 12 L6
131 L6: jge r1 r10 L7
132 L7: jlt r1 12 L8
133 L8: jlt r1 r10 L9
134 L9: jle r1 12 L10
135 L10: jle r1 r10 L11
136 L11: jset r1 12 L12
137 L12: jset r1 r10 L13
138 L13: jne r1 12 L14
139 L14: jne r1 r10 L15
140 L15: jsgt r1 12 L16
141 L16: jsgt r1 r10 L17
142 L17: jsge r1 12 L18
143 L18: jsge r1 r10 L19
144 L19: jslt r1 12 L20
145 L20: jslt r1 r10 L21
146 L21: jsle r1 12 L22
147 L22: jsle r1 r10 L23
148 L23: call 12
149 ;rel 12 ; User defined function (Not supported in this processor)
150
151 ; 32 bit Jump instructions
152 jal L24 ; Uses immediate
153 L24: jeq32 r1 12 L25
154 L25: jeq32 r1 r10 L26
155 L26: jgt32 r1 12 L27
156 L27: jgt32 r1 r10 L28
157 L28: jge32 r1 12 L29
158 L29: jge32 r1 r10 L30
159 L30: jlt32 r1 12 L31
160 L31: jlt32 r1 r10 L32
161 L32: jle32 r1 12 L33
162 L33: jle32 r1 r10 L34
163 L34: jset32 r1 12 L35
164 L35: jset32 r1 r10 L36
165 L36: jne32 r1 12 L37
166 L37: jne32 r1 r10 L38
167 L38: jsgt32 r1 12 L39
168 L39: jsgt32 r1 r10 L40
169 L40: jsge32 r1 12 L41
170 L41: jsge32 r1 r10 L42
171 L42: jslt32 r1 12 L43
172 L43: jslt32 r1 r10 L44
173 L44: jsle32 r1 12 L45
174 L45: jsle32 r1 r10 L46
175 L46:
176
177 exit

Listado G.2: Test de memoria (test_mem.s)
1 ; == Test STORE + LOAD ==
2
3 st64 r10 -0x00 327 ;
4 ldx64 r0 r10 -0x00 ; r0 = 327
5
6
7 st32 r10 -0x08 4123;
8 ldx32 r1 r10 -0x08 ; r1 = 4123
9
10 st32 r10 -0x0C 543 ;
11 ldx32 r2 r10 -0x0C ; r2 = 543
12
13
14 st16 r10 -0x10 999 ;

81

15 ldx16 r3 r10 -0x10 ; r3 = 999
16
17 st16 r10 -0x12 66 ;
18 ldx16 r4 r10 -0x12 ; r4 = 66
19
20 st16 r10 -0x14 3232;
21 ldx16 r5 r10 -0x14 ; r5 = 3232
22
23 st16 r10 -0x16 756 ;
24 ldx16 r6 r10 -0x16 ; r6 = 756
25
26
27 st8 r10 -0x18 11 ;
28 ldx8 r0 r10 -0x18 ; r0 = 11
29
30 st8 r10 -0x19 22 ;
31 ldx8 r1 r10 -0x19 ; r1 = 22
32
33 st8 r10 -0x1A 33 ;
34 ldx8 r2 r10 -0x1A ; r2 = 33
35
36 st8 r10 -0x1B 44 ;
37 ldx8 r3 r10 -0x1B ; r3 = 44
38
39 st8 r10 -0x1C 55 ;
40 ldx8 r4 r10 -0x1C ; r4 = 55
41
42 st8 r10 -0x1D 66 ;
43 ldx8 r5 r10 -0x1D ; r5 = 66
44
45 st8 r10 -0x1E 77 ;
46 ldx8 r6 r10 -0x1E ; r6 = 77
47
48 st8 r10 -0x1F 88 ;
49 ldx8 r7 r10 -0x1F ; r7 = 88
50
51 ; == Test STORE + LOADSX ==
52
53 ld64 r9 -327 ;
54 stx64 r10 r9 -0x00 ;
55 ldx64 r0 r10 -0x00 ; r0 = -327
56
57
58 ld64 r9 -4123 ;
59 stx32 r10 r9 -0x08 ;
60 ldxs32 r1 r10 -0x08 ; r1 = -4123
61
62 ld64 r9 -543 ;
63 stx32 r10 r9 -0x0C ;
64 ldxs32 r2 r10 -0x0C ; r2 = -543
65
66
67 ld64 r9 -999 ;
68 stx16 r10 r9 -0x10 ;
69 ldxs16 r3 r10 -0x10 ; r3 = -999
70
71 ld64 r9 -66 ;
72 stx16 r10 r9 -0x12 ;
73 ldxs16 r4 r10 -0x12 ; r4 = -66
74
75 ld64 r9 -3232 ;
76 stx16 r10 r9 -0x14 ;
77 ldxs16 r5 r10 -0x14 ; r5 = -3232
78
79 ld64 r9 -756 ;
80 stx16 r10 r9 -0x16 ;
81 ldxs16 r6 r10 -0x16 ; r6 = -756
82
83
84 ld64 r9 -11 ;
85 stx8 r10 r9 -0x18 ;
86 ldxs8 r0 r10 -0x18 ; r0 = -11
87

82

88 ld64 r9 -22 ;
89 stx8 r10 r9 -0x19 ;
90 ldxs8 r1 r10 -0x19 ; r1 = -22
91
92 ld64 r9 -33 ;
93 stx8 r10 r9 -0x1A ;
94 ldxs8 r2 r10 -0x1A ; r2 = -33
95
96 ld64 r9 -44 ;
97 stx8 r10 r9 -0x1B ;
98 ldxs8 r3 r10 -0x1B ; r3 = -44
99
100 ld64 r9 -55 ;
101 stx8 r10 r9 -0x1C ;
102 ldxs8 r4 r10 -0x1C ; r4 = -55
103
104 ld64 r9 -66 ;
105 stx8 r10 r9 -0x1D ;
106 ldxs8 r5 r10 -0x1D ; r5 = -66
107
108 ld64 r9 -77 ;
109 stx8 r10 r9 -0x1E ;
110 ldxs8 r6 r10 -0x1E ; r6 = -77
111
112 ld64 r9 -88 ;
113 stx8 r10 r9 -0x1F ;
114 ldxs8 r7 r10 -0x1F ; r7 = -88
115
116 ; == Test STORE + ADD + LOAD ==
117
118 ld64 r8 -24 ;
119 st64 r10 -0x20 3 ;
120 addx64 r10 r8 -0x20 ;
121 ldx64 r0 r10 -0x20 ; r0 = -21
122
123 st32 r10 -0x28 3 ;
124 addx32 r10 r8 -0x28 ;
125 ldx32 r1 r10 -0x28 ; r1 = 0xFFFFFFFFFFFFFFEB
126
127 st32 r10 -0x2C 3 ;
128 addx32 r10 r8 -0x2C ;
129 ldxs32 r2 r10 -0x2C ; r2 = -21
130
131
132 ld64 r3 -53 ;
133 st64 r10 -0x30 66 ;
134 addfx64 r10 r3 -0x30 ; r3 = 66
135 ldx64 r6 r10 -0x30 ; r6 = 13
136
137 ld64 r4 -53 ;
138 st32 r10 -0x38 64 ;
139 addfx32 r10 r4 -0x38 ; r4 = 64
140 ldx32 r7 r10 -0x38 ; r7 = 11
141
142 ld64 r5 -53 ;
143 st32 r10 -0x3C 62 ;
144 addfx32 r10 r5 -0x3C ; r5 = 62
145 ldxs32 r8 r10 -0x3C ; r8 = 9
146
147 ; == Test STORE + OR|AND|XOR + LOAD ==
148
149 ; Same operands as in test_alu
150
151 ld64 r9 72057851736457312 ;
152 ld64 r8 562950893143040 ;
153 stx64 r10 r8 -0x40 ;
154 orx64 r10 r9 -0x40 ;
155 ldx64 r0 r10 -0x40 ; r0 = 72620802629403744
156
157 ld64 r9 72057851736457312 ;
158 ld64 r8 72620544931070976 ;
159 stx64 r10 r8 -0x50 ;
160 andfx64 r10 r9 -0x50 ; r9 = 72620544931070976

83

161 ldx64 r0 r10 -0x50 ; r0 = 72057594038124544
162
163 ld64 r9 72057851736457312 ;
164 ld64 r8 72620544931070976 ;
165 stx64 r10 r8 -0x60 ;
166 xorfx64 r10 r9 -0x60 ; r9 = 72620544931070976
167 ldx64 r0 r10 -0x60 ; r0 = 563208591279200
168
169 ; == Test STORE + XCHG|CMPXCHG + LOAD ==
170
171 st64 r10 -0xA0 3 ;
172 mov r9 24 ;
173 xchgx64 r10 r9 -0xA0 ; r9 = 3
174 ldx64 r8 r10 -0xA0 ; r8 = 24
175 mov r1 r9 ; (!) wait for xchgx64 to finish MEM stage,
176 ; then consume r9 from MEM-WB buffer
177
178
179 st64 r10 -0xA0 7 ;
180 mov r9 35 ;
181 mov r0 7 ; Equal -> exchange
182 cmpxchgx64 r10 r9 -0xA0 ; r0 = 7 (!) get r0 from MEM
183 mov r2 r0 ; (!) stop 1 cycle and wait for cmpxchgx64 to finish
184 ; MEM stage, then consume r0 from MEM-WB buffer
185 ldx64 r8 r10 -0xA0 ; r8 = 35
186
187 st64 r10 -0xA0 -32 ;
188 mov r0 -34 ; Not Equal -> not exchange
189 mov r9 981 ;
190 cmpxchgx64 r10 r9 -0xA0 ; r0 = -32 (!) get r0 from WB
191 ldx64 r8 r10 -0xA0 ; r8 = -32
192 add r0 r1 ; (!) wait for cmpxchgx64 to finish MEM stage, then
193 ; consume r0 from MEM-WB buffer -> r0 = -32 + 3 = -29
194
195 exit

Listado G.3: Test de ALU (test_alu.s)
1 ; == Test ADD ==
2
3 mov r0 24 ; A
4 mov r1 5 ; B
5 add r0 r1 ; r0 = 29
6
7 mov r2 -1 ; A
8 add r2 1 ; r2 = 0
9
10 mov r3 -67 ; A
11 add r3 -2131 ; r3 = -2198
12
13 mov r0 24 ; A
14 mov r1 5 ; B
15 add32 r0 r1 ; r0 = 29
16
17 mov r2 -1 ; A
18 add32 r2 1 ; r2 = 0
19
20 mov r3 -67 ; A
21 add32 r3 -2131 ; r3 = 00000000FFFFF76A (-2198)
22
23 ; == Test SUB ==
24
25 mov r0 24 ; A
26 mov r1 5 ; B
27 sub r0 r1 ; r0 = 19
28
29 mov r2 -1 ; A
30 sub r2 1 ; r2 = -2
31
32 mov r3 -67 ; A
33 sub r3 -2131 ; r3 = 2064
34
35 mov r0 24 ; A

84

36 mov r1 5 ; B
37 sub32 r0 r1 ; r0 = 19
38
39 mov r2 -1 ; A
40 sub32 r2 1 ; r2 = 00000000FFFFFFFE (-2)
41
42 mov r3 -67 ; A
43 sub32 r3 -2131 ; r3 = 2064
44
45 ; == Test MUL ==
46
47 mov r0 24 ; A
48 mov r1 5 ; B
49 mul r0 r1 ; r0 = 120
50
51 mov r2 -1 ; A
52 mul r2 1 ; r2 = -1
53
54 mov r3 -67 ; A
55 mul r3 -2131 ; r3 = 142777
56
57 mov r0 24 ; A
58 mov r1 5 ; B
59 mul32 r0 r1 ; r0 = 120
60
61 mov r2 -2 ; A
62 mul32 r2 1 ; r2 = 00000000FFFFFFFE (-2)
63
64 mov r3 -67 ; A
65 mul32 r3 -2131 ; r3 = 142777
66
67 ; == Test DIV ==
68
69 mov r0 100 ; A
70 mov r1 7 ; B
71 div r0 r1 ; r0 = 14
72
73 mov r0 100 ; A
74 mov r1 -7 ; B
75 div r0 r1 ; r0 = 0
76
77 mov r0 -100 ; A
78 mov r1 7 ; B
79 div r0 r1 ; r0 = 2 635 249 153 387 078 788
80
81 mov r0 -100 ; A
82 mov r1 -7 ; B
83 div r0 r1 ; r0 = 0
84
85 mov r0 100 ; A
86 mov r1 0 ; B
87 div r0 r1 ; r0 = 0
88
89 mov r0 -100 ; A
90 mov r1 0 ; B
91 div r0 r1 ; r0 = 0
92
93
94 mov r0 100 ; A
95 sdiv r0 7 ; r0 = 14
96
97 mov r0 100 ; A
98 sdiv r0 -7 ; r0 = -14
99
100 mov r0 -100 ; A
101 sdiv r0 7 ; r0 = -14
102
103 mov r0 -100 ; A
104 sdiv r0 -7 ; r0 = 14
105
106 mov r0 100 ; A
107 sdiv r0 0 ; r0 = 0
108

85

109 mov r0 -100 ; A
110 sdiv r0 0 ; r0 = 0
111
112
113 mov r0 100 ; A
114 mov r1 7 ; B
115 div32 r0 r1 ; r0 = 14
116
117 mov r0 100 ; A
118 mov r1 -7 ; B
119 div32 r0 r1 ; r0 = 0
120
121 mov r0 -100 ; A
122 mov r1 7 ; B
123 div32 r0 r1 ; r0 = 613 566 742
124
125 mov r0 -100 ; A
126 mov r1 -7 ; B
127 div32 r0 r1 ; r0 = 0
128
129 mov r0 100 ; A
130 mov r1 0 ; B
131 div32 r0 r1 ; r0 = 0
132
133 mov r0 -100 ; A
134 mov r1 0 ; B
135 div32 r0 r1 ; r0 = 0
136
137
138 mov r0 100 ; A
139 sdiv32 r0 7 ; r0 = 14
140
141 mov r0 100 ; A
142 sdiv32 r0 -7 ; r0 = 00000000FFFFFFF2
143
144 mov r0 -100 ; A
145 sdiv32 r0 7 ; r0 = 00000000FFFFFFF2
146
147 mov r0 -100 ; A
148 sdiv32 r0 -7 ; r0 = 14
149
150 mov r0 100 ; A
151 sdiv32 r0 0 ; r0 = 0
152
153 mov r0 -100 ; A
154 sdiv32 r0 0 ; r0 = 0
155
156 ; == Test MOD ==
157
158 mov r0 100 ; A
159 mov r1 7 ; B
160 mod r0 r1 ; r0 = 2
161
162 mov r0 100 ; A
163 mov r1 -7 ; B
164 mod r0 r1 ; r0 = 100
165
166 mov r0 -100 ; A
167 mov r1 7 ; B
168 mod r0 r1 ; r0 = 0
169
170 mov r0 -100 ; A
171 mov r1 -7 ; B
172 mod r0 r1 ; r0 = -100 (full dividend, as div equals 0)
173
174 mov r0 100 ; A
175 mov r1 0 ; B
176 mod r0 r1 ; r0 = 100
177
178 mov r0 -100 ; A
179 mov r1 0 ; B
180 mod r0 r1 ; r0 = -100
181

86

182
183 mov r0 100 ; A
184 smod r0 7 ; r0 = 2
185
186 mov r0 100 ; A
187 smod r0 -7 ; r0 = -2
188
189 mov r0 -100 ; A
190 smod r0 7 ; r0 = -2
191
192 mov r0 -100 ; A
193 smod r0 -7 ; r0 = 2
194
195 mov r0 100 ; A
196 smod r0 0 ; r0 = 100
197
198 mov r0 -100 ; A
199 smod r0 0 ; r0 = -100
200
201
202 mov r0 100 ; A
203 mov r1 7 ; B
204 mod32 r0 r1 ; r0 = 2
205
206 mov r0 100 ; A
207 mov r1 -7 ; B
208 mod32 r0 r1 ; r0 = 100
209
210 mov r0 -100 ; A
211 mov r1 7 ; B
212 mod32 r0 r1 ; r0 = 2
213
214 mov r0 -100 ; A
215 mov r1 -7 ; B
216 mod32 r0 r1 ; r0 = 00000000FFFFFF9C
217
218 mov r0 100 ; A
219 mov r1 0 ; B
220 mod32 r0 r1 ; r0 = 100
221
222 mov r0 -100 ; A
223 mov r1 0 ; B
224 mod32 r0 r1 ; r0 = 00000000FFFFFF9C
225
226
227 mov r0 100 ; A
228 smod32 r0 7 ; r0 = 2
229
230 mov r0 100 ; A
231 smod32 r0 -7 ; r0 = 00000000FFFFFFFE
232
233 mov r0 -100 ; A
234 smod32 r0 7 ; r0 = 00000000FFFFFFFE
235
236 mov r0 -100 ; A
237 smod32 r0 -7 ; r0 = 2
238
239 mov r0 100 ; A
240 smod32 r0 0 ; r0 = 100
241
242 mov r0 -100 ; A
243 smod32 r0 0 ; r0 = 00000000FFFFFF9C (PC + 1: 163)
244
245
246 ; == Test OR | AND | XOR ==
247
248 ; 0000000100000000000000000011110000000000000001111000000001100000
249 ; or 0000000000000010000000000000000000111000000000110000010000000000
250 ; --
251 ; 0000000100000010000000000011110000111000000001111000010001100000
252
253 ld64 r9 72057851736457312
254 ld64 r8 562950893143040

87

255 or r9 r8 ; r9 = 72620802629403744
256
257
258 ; 0000000100000000000000000011110000000000000001111000000001100000
259 ; and 0000000100000010000000000000000000111000000000110000010000000000
260 ; --
261 ; 0000000100000000000000000000000000000000000000110000000000000000
262
263 ld64 r8 72057851736457312 ;
264 ld64 r9 72620544931070976 ;
265 and r9 r8 ; r9 = 72057594038124544
266
267
268 ; 0000000100000000000000000011110000000000000001111000000001100000
269 ; xor 0000000100000010000000000000000000111000000000110000010000000000
270 ; --
271 ; 0000000000000010000000000011110000111000000001001000010001100000
272
273 ld64 r9 72057851736457312 ;
274 ld64 r8 72620544931070976 ;
275 xor r9 r8 ; r9 = 563208591279200
276
277
278 ; == Test LSH | RSH ==
279
280 mov r0 100 ; A
281 lsh r0 2 ; r0 = 400
282
283 mov r0 800 ; A
284 rsh r0 1027 ; r0 = (800 >> 3) = 100
285
286
287 ; == Test ARSH ==
288
289 ld64 r0 0x00000FF0000000FF ; A
290 arsh r0 8 ; r0 = 0x0000000FF0000000
291
292 ld64 r0 0x80000FF0000000FF ; A
293 arsh r0 8 ; r0 = 0xFF80000FF0000000
294
295
296 ld64 r0 0x00000FF00000FFFF ; A
297 arsh32 r0 8 ; r0 = 0x00000000000000FF
298
299 ld64 r0 0x80000FF0800000FF ; A
300 arsh32 r0 8 ; r0 = 0x00000000FF800000
301
302
303 ; == Test MOVSX ==
304
305 movsx8 r6 0xFD ; r6 = -3
306 movsx8 r6 0x7D ; r6 = 125
307 movsx16 r6 0xFFFD ; r6 = -3
308 movsx16 r6 0x7FFD ; r6 = 32 765
309 movsx32 r6 0xFFFFFFFD ; r6 = -3
310 movsx32 r6 0x700000FD ; r6 = 1 879 048 445
311
312 mov32sx8 r6 0xFD ; r6 = 00000000FFFFFFFD
313 mov32sx8 r6 0x7D ; r6 = 125
314 mov32sx16 r6 0xFFFD ; r6 = 00000000FFFFFFFD
315 mov32sx16 r6 0x7FFD ; r6 = 32 762
316
317
318 ; == Test END ==
319
320 ld64 r7 0x0102030405060708 ;
321 bswap16 r7 ; r7 = 0000000000000807
322
323 ld64 r7 0x0102030405060708 ;
324 bswap32 r7 ; r7 = 0000000008070605
325
326 ld64 r7 0x0102030405060708 ;
327 bswap64 r7 ; r7 = 0807060504030201

88

328
329
330 ld64 r7 0x0102030405060708 ;
331 be16 r7 ; r7 = 0000000000000807
332
333 ld64 r7 0x0102030405060708 ;
334 be32 r7 ; r7 = 0000000008070605
335
336 ld64 r7 0x0102030405060708 ;
337 be64 r7 ; r7 = 0807060504030201
338
339 ld64 r7 0x0102030405060708 ;
340 le16 r7 ; do nothing
341 le32 r7 ; do nothing
342 le64 r7 ; do nothing
343
344 exit

Listado G.4: Test de control (test_branch.s)
1 ; == Test Jump Always ==
2 L0:
3 ja L1 ; Jump Always
4 mov r0 -1
5 mov r1 -1
6 mov r2 -1
7
8 L1:
9 jal L2 ; Jump Always (Long)
10 mov r0 -1
11 mov r1 -1
12 mov r2 -1
13
14 ; == Test EQ ==
15 L2:
16 mov r8 23
17 jeq r8 24 L2 ; Not taken (if fail infinite loop)
18 mov r9 23
19 jeq r8 r9 L3 ; Taken
20 mov r0 -1
21 mov r1 -1
22 mov r2 -1
23
24 ; == Test NE ==
25 L3:
26 mov r8 23
27 jne r8 23 L3 ; Not taken
28 mov r9 24
29 jne r8 r9 L4 ; Taken
30 mov r0 -1
31 mov r1 -1
32 mov r2 -1
33
34 ; == Test GT ==
35 L4:
36 mov r8 23
37 jgt r8 23 L4 ; Not taken
38
39 mov r8 14
40 mov r9 15
41 jgt r8 r9 L4 ; Not taken
42
43 mov r8 16
44 mov r9 7
45 jgt r8 r9 L5 ; Taken
46 mov r0 -1
47 mov r1 -1
48 mov r2 -1
49
50 ; == Test GE ==
51 L5:
52 mov r8 23
53 jge r8 23 L6 ; Taken

89

54 mov r0 -1
55 mov r1 -1
56 mov r2 -1
57 L6:
58 mov r8 14
59 mov r9 15
60 jge r8 r9 L6 ; Not taken
61
62 mov r8 16
63 mov r9 7
64 jge r8 r9 L7 ; Taken
65 mov r0 -1
66 mov r1 -1
67 mov r2 -1
68
69 ; == Test SGT ==
70 L7:
71 mov r8 23
72 jsgt r8 23 L7 ; Not taken
73
74 mov r8 14
75 mov r9 15
76 jsgt r8 r9 L7 ; Not taken
77
78 mov r8 16
79 mov r9 7
80 jsgt r8 r9 L8 ; Taken
81 mov r0 -1
82 mov r1 -1
83 mov r2 -1
84
85 L8:
86 mov r8 -23
87 mov r9 -17
88 jsgt r8 r9 L8 ; Not taken
89
90 mov r8 -42
91 jsgt r8 -52 L9 ; Taken
92 mov r0 -1
93 mov r1 -1
94 mov r2 -1
95
96
97 ; == Test SGE ==
98 L9:
99 mov r8 23
100 jsge r8 23 L10 ; Taken
101 mov r0 -1
102 mov r1 -1
103 mov r2 -1
104 L10:
105 mov r8 14
106 mov r9 15
107 jsge r8 r9 L10 ; Not taken
108
109 mov r8 16
110 mov r9 7
111 jsge r8 r9 L11 ; Taken
112 mov r0 -1
113 mov r1 -1
114 mov r2 -1
115
116 L11:
117 mov r8 -23
118 mov r9 -17
119 jsge r8 r9 L11 ; Not taken
120
121 mov r8 -42
122 jsge r8 -52 L12 ; Taken
123 mov r0 -1
124 mov r1 -1
125 mov r2 -1
126

90

127 ; == Test LT ==
128 L12:
129 mov r8 23
130 jlt r8 23 L12 ; Not taken
131
132 mov r8 14
133 mov r9 15
134 jlt r8 r9 L13 ; Taken
135 mov r0 -1
136 mov r1 -1
137 mov r2 -1
138
139 L13:
140 mov r8 16
141 mov r9 7
142 jlt r8 r9 L13 ; Not taken
143
144 ; == Test LE ==
145 L14:
146 mov r8 23
147 jle r8 23 L15 ; Taken
148 mov r0 -1
149 mov r1 -1
150 mov r2 -1
151 L15:
152 mov r8 14
153 mov r9 15
154 jle r8 r9 L16 ; Taken
155 mov r0 -1
156 mov r1 -1
157 mov r2 -1
158 L16:
159 mov r8 16
160 mov r9 7
161 jle r8 r9 L16 ; Not taken
162
163 ; == Test SLT ==
164 L17:
165 mov r8 23
166 jslt r8 23 L18 ; Not taken
167
168 mov r8 14
169 mov r9 15
170 jslt r8 r9 L18 ; Taken
171 mov r0 -1
172 mov r1 -1
173 mov r2 -1
174 L18:
175 mov r8 16
176 mov r9 7
177 jslt r8 r9 L18 ; Not taken
178
179
180 L19:
181 mov r8 -23
182 mov r9 -17
183 jslt r8 r9 L20 ; Taken
184 mov r0 -1
185 mov r1 -1
186 mov r2 -1
187 L20:
188 mov r8 -42
189 jslt r8 -52 L20 ; Not taken
190
191 ; == Test SLE ==
192 L21:
193 mov r8 23
194 jsle r8 23 L22 ; Taken
195 mov r0 -1
196 mov r1 -1
197 mov r2 -1
198 L22:
199 mov r8 14

91

200 mov r9 15
201 jsle r8 r9 L23 ; Taken
202 mov r0 -1
203 mov r1 -1
204 mov r2 -1
205 L23:
206 mov r8 16
207 mov r9 7
208 jsle r8 r9 L23 ; Not taken
209
210 L24:
211 mov r8 -23
212 mov r9 -17
213 jslt r8 r9 L25 ; Taken
214 mov r0 -1
215 mov r1 -1
216 mov r2 -1
217 L25:
218 mov r8 -42
219 jslt r8 -52 L25 ; Not taken
220
221 ja L26
222
223
224 ; == END OF TEST ==
225 L_end:
226 exit
227 mov r0 -2
228 mov r1 -2
229 mov r2 -2
230
231 ; == SET ==
232 L26:
233 mov r8 23
234 jset r8 1 L27 ; Taken
235 mov r0 -1
236 mov r1 -1
237 mov r2 -1
238 L27:
239 mov r8 8
240 mov r9 4
241 jset r8 r9 L27; Not taken
242
243 mov r8 -1
244 mov r9 75
245 jset r8 r9 L28; ; Taken
246 mov r0 -1
247 mov r1 -1
248 mov r2 -1
249
250
251 ; == 32 bit cases ==
252
253 ; == Test SGT ==
254 L28:
255 mov32 r8 -23
256 mov32 r9 -17
257 jsgt32 r8 r9 L28 ; Not taken
258
259 mov32 r8 -42
260 jsgt32 r8 -52 L29 ; Taken
261 mov r0 -1
262 mov r1 -1
263 mov r2 -1
264
265
266 ; == Test SGE ==
267 L29:
268 mov32 r8 -23
269 mov32 r9 -17
270 jsge r8 r9 L29 ; Not taken
271
272 mov32 r8 -42

92

273 jsge32 r8 -52 L30 ; Taken
274 mov r0 -1
275 mov r1 -1
276 mov r2 -1
277
278 ; == Test SLT ==
279 L30:
280 mov32 r8 -23
281 mov32 r9 -17
282 jslt32 r8 r9 L31 ; Taken
283 mov r0 -1
284 mov r1 -1
285 mov r2 -1
286 L31:
287 mov32 r8 -42
288 jslt32 r8 -52 L31 ; Not taken
289
290 ; == Test SLE ==
291 L32:
292 mov32 r8 -23
293 mov32 r9 -17
294 jslt32 r8 r9 L33 ; Taken
295 mov r0 -1
296 mov r1 -1
297 mov r2 -1
298 L33:
299 mov32 r8 -42
300 jslt32 r8 -52 L33 ; Not taken
301
302
303
304 ; == some edge cases ==
305
306 ; taken branch after taken branch
307 jeq r0 r0 L34
308 jeq r1 r1 L_error
309
310 L34:
311 ; unconditional jump after taken branch
312 jeq r2 r2 L35
313 jeq r3 r3 L_error
314
315 L35:
316 ja L_end
317
318 L_error:
319 mov r0 -1
320 mov r1 -1
321 mov r2 -1
322
323 ; Program ends at tag L_end
324 ; If this is reached exception will be generated
325 call -1

Listado G.5: Test de HFU (test_call.s)
1 ; Warning! This test only works with "hfu/Test_HFU.vhd" instead of actual
2 ; HFU entity. In order to test it using "launch-core-testbench.sh" it
3 ; has to be executed using --hfu=Test_HFU option
4
5 mov r1 0x000A0000
6 mov r2 0x0000B000
7 mov r3 0x00000C00
8 mov r4 0x000000D0
9 mov r5 0x0000000F
10
11 call 0 ; does not receive parameters -> r0 = -1
12
13 call 1 ; receives 1 parameter -> r0 = r1 = 0x000A0000
14
15 mov r8 16
16 div r8 4 ; Test if stays on INIT_S state
17 call 2 ; receives 2 parameters -> r0 = r1|r2 = 0x000AB000

93

18
19 mov r8 16
20 st8 r10 0x00 2 ; Test if stays on FUNCTION3_EX_S
21 ; tate while st8 blockes pipeline
22 call 3 ; receives 3 parameters -> r0 = r1|r2|r3 = 0x000ABC00
23
24 call 4 ; receives 4 parameters -> r0 = r1|r2|r3|r4 = 0x000ABCD0
25
26 call 5 ; receives 5 parameters -> r0 = r1|r2|r3|r4|r5 = 0x000ABCDF
27
28
29 ;-- 1 parameter dependency ---
30 mov r1 0x00010000
31 call 1 ; r0 = 0x00010000 ; get r1 from MEM, don’t stop
32 mov r8 r0 ; get r0 from WB, don’t stop
33 mov r9 r0 ; get r0 from RegBank, don’t stop
34
35 st64 r10 0x00 0x00020000
36 ldx64 r1 r10 0x00
37 call 1 ; r0 = 0x00020000
38 ; get r1 from WB, stop on ID stage while ldx64 is on MEM
39
40 mov r1 0x00030000
41 st64 r10 0x00 0xFFFFFFFF
42 ldx64 r2 r10 0x00
43 call 1 ; r0 = 0x00030000
44 ; get r1 from RegBank, don’t stop because of r2
45
46 ;-- 2 parameters dependency --
47 mov r2 0x0000F000
48
49 mov r1 0x00010000
50 call 2 ; r0 = 0x0001F000
51 ; get r1 from MEM, don’t stop
52 mov r8 r0 ; get r0 from WB, don’t stop
53 mov r9 r0 ; get r0 from RegBank, don’t stop
54
55 st64 r10 0x00 0x00020000
56 ldx64 r1 r10 0x00
57 call 2 ; r0 = 0x0002F000
58 ; get r1 from WB, stop on ID stage while ldx64 is on MEM
59
60 mov r1 0x00030000
61 st64 r10 0x00 0xFFFFFFFF
62 ldx64 r3 r10 0x00
63 call 2 ; r0 = 0x0003F000
64 ; get r1 from RegBank, don’t stop because of r3
65
66
67 mov r1 0x000F0000
68
69 mov r2 0x00001000
70 call 2 ; r0 = 0x000F1000
71 ; get r2 from MEM, don’t stop
72 mov r8 r0 ; get r0 from WB, don’t stop
73 mov r9 r0 ; get r0 from RegBank, don’t stop
74
75 st64 r10 0x00 0x00002000
76 ldx64 r2 r10 0x00
77 call 2 ; r0 = 0x000F2000
78 ; get r2 from WB, stop on ID stage while ldx64 is on MEM
79
80 mov r2 0x00003000
81 st64 r10 0x00 0xFFFFFFFF
82 ldx64 r3 r10 0x00
83 call 2 ; r0 = 0x000F3000
84 ; get r2 from RegBank, don’t stop because of r3
85
86
87 ;-- 3 parameters dependency --
88 mov r2 0x0000F000
89 mov r3 0x00000F00
90

94

91 mov r1 0x00010000
92 call 3 ; r0 = 0x0001FF00
93 ; get r1 from MEM, don’t stop
94 mov r8 r0 ; get r0 from WB, don’t stop
95 mov r9 r0 ; get r0 from RegBank, don’t stop
96
97 st64 r10 0x00 0x00020000
98 ldx64 r1 r10 0x00
99 call 3 ; r0 = 0x0002FF00
100 ; get r1 from WB, stop on ID stage while ldx64 is on MEM
101
102 mov r1 0x00030000
103 st64 r10 0x00 0xFFFFFFFF
104 ldx64 r4 r10 0x00
105 call 3 ; r0 = 0x0003FF00
106 ; get r1 from RegBank, don’t stop because of r4
107
108
109 mov r1 0x000F0000
110 mov r3 0x00000F00
111
112 mov r2 0x00001000
113 call 3 ; r0 = 0x000F1F00
114 ; get r2 from MEM, don’t stop
115 mov r8 r0 ; get r0 from WB, don’t stop
116 mov r9 r0 ; get r0 from RegBank, don’t stop
117
118 st64 r10 0x00 0x00002000
119 ldx64 r2 r10 0x00
120 call 3 ; r0 = 0x000F2F00
121 ; get r2 from WB, stop on ID stage while ldx64 is on MEM
122
123 mov r2 0x00003000
124 st64 r10 0x00 0xFFFFFFFF
125 ldx64 r4 r10 0x00
126 call 3 ; r0 = 0x000F3F00
127 ; get r2 from RegBank, don’t stop because of r4
128
129
130 mov r1 0x000F0000
131 mov r2 0x0000F000
132
133 mov r3 0x00000100
134 call 3 ; r0 = 0x000FF100
135 ; get r3 from MEM, don’t stop
136 mov r8 r0 ; get r0 from WB, don’t stop
137 mov r9 r0 ; get r0 from RegBank, don’t stop
138
139 st64 r10 0x00 0x00000200
140 ldx64 r3 r10 0x00
141 call 3 ; r0 = 0x000FF200
142 ; get r3 from WB, stop on ID stage while ldx64 is on MEM
143
144 mov r3 0x00000300
145 st64 r10 0x00 0xFFFFFFFF
146 ldx64 r4 r10 0x00
147 call 3 ; r0 = 0x000FF300
148 ; get r3 from RegBank, don’t stop because of r4
149
150 ;-- 4 parameters dependency --
151 mov r2 0x0000F000
152 mov r3 0x00000F00
153 mov r4 0x000000F0
154
155 mov r1 0x00010000
156 call 4 ; r0 = 0x0001FFF0
157 ; get r1 from MEM, don’t stop
158 mov r8 r0 ; get r0 from WB, don’t stop
159 mov r9 r0 ; get r0 from RegBank, don’t stop
160
161 st64 r10 0x00 0x00020000
162 ldx64 r1 r10 0x00
163 call 4 ; r0 = 0x0002FFF0

95

164 ; get r1 from WB, stop on ID stage while ldx64 is on MEM
165
166 mov r1 0x00030000
167 st64 r10 0x00 0xFFFFFFFF
168 ldx64 r5 r10 0x00
169 call 4 ; r0 = 0x0003FFF0
170 ; get r1 from RegBank, don’t stop because of r5
171
172
173 mov r1 0x000F0000
174 mov r3 0x00000F00
175 mov r4 0x000000F0
176
177 mov r2 0x00001000
178 call 4 ; r0 = 0x000F1FF0
179 ; get r2 from MEM, don’t stop
180 mov r8 r0 ; get r0 from WB, don’t stop
181 mov r9 r0 ; get r0 from RegBank, don’t stop
182
183 st64 r10 0x00 0x00002000
184 ldx64 r2 r10 0x00
185 call 4 ; r0 = 0x000F2FF0
186 ; get r2 from WB, stop on ID stage while ldx64 is on MEM
187
188 mov r2 0x00003000
189 st64 r10 0x00 0xFFFFFFFF
190 ldx64 r5 r10 0x00
191 call 4 ; r0 = 0x000F3FF0
192 ; get r2 from RegBank, don’t stop because of r5
193
194
195 mov r1 0x000F0000
196 mov r2 0x0000F000
197 mov r4 0x000000F0
198
199 mov r3 0x00000100
200 call 4 ; r0 = 0x000FF1F0
201 ; get r3 from MEM, don’t stop
202 mov r8 r0 ; get r0 from WB, don’t stop
203 mov r9 r0 ; get r0 from RegBank, don’t stop
204
205 st64 r10 0x00 0x00000200
206 ldx64 r3 r10 0x00
207 call 4 ; r0 = 0x000FF2F0
208 ; get r3 from WB, stop on ID stage while ldx64 is on MEM
209
210 mov r3 0x00000300
211 st64 r10 0x00 0xFFFFFFFF
212 ldx64 r5 r10 0x00
213 call 4 ; r0 = 0x000FF3F0
214 ; get r3 from RegBank, don’t stop because of r5
215
216
217 mov r1 0x000F0000
218 mov r2 0x0000F000
219 mov r3 0x00000F00
220
221 mov r4 0x00000010
222 call 4 ; r0 = 0x000FFF10
223 ; get r4 from RegBank, stop while mov is on EX stage
224 mov r8 r0 ; get r0 from WB, don’t stop
225 mov r9 r0 ; get r0 from RegBank, don’t stop
226
227 st64 r10 0x00 0x00000020
228 ldx64 r4 r10 0x00
229 call 4 ; r0 = 0x000FFF20
230 ; get r4 from WB, stop on ID stage while ldx64 is on MEM
231
232 mov r4 0x00000030
233 st64 r10 0x00 0xFFFFFFFF
234 ldx64 r5 r10 0x00
235 call 4 ; r0 = 0x000FFF30
236 ; get r4 from RegBank, don’t stop because of r5

96

237
238 ;-- 5 parameters dependency --
239 mov r2 0x0000F000
240 mov r3 0x00000F00
241 mov r4 0x000000F0
242 mov r5 0x0000000F
243
244 mov r1 0x00010000
245 call 5 ; r0 = 0x0001FFF0
246 ; get r1 from MEM, don’t stop
247 mov r8 r0 ; get r0 from WB, don’t stop
248 mov r9 r0 ; get r0 from RegBank, don’t stop
249
250 st64 r10 0x00 0x00020000
251 ldx64 r1 r10 0x00
252 call 5 ; r0 = 0x0002FFFF
253 ; get r1 from WB, stop on ID stage while ldx64 is on MEM
254
255 mov r1 0x00030000
256 st64 r10 0x00 0xFFFFFFFF
257 ldx64 r6 r10 0x00
258 call 5 ; r0 = 0x0003FFFF
259 ; get r1 from RegBank, don’t stop because of r6
260
261
262 mov r1 0x000F0000
263 mov r3 0x00000F00
264 mov r4 0x000000F0
265 mov r5 0x0000000F
266
267 mov r2 0x00001000
268 call 5 ; r0 = 0x000F1FFF
269 ; get r2 from MEM, don’t stop
270 mov r8 r0 ; get r0 from WB, don’t stop
271 mov r9 r0 ; get r0 from RegBank, don’t stop
272
273 st64 r10 0x00 0x00002000
274 ldx64 r2 r10 0x00
275 call 5 ; r0 = 0x000F2FFF
276 ; get r2 from WB, stop on ID stage while ldx64 is on MEM
277
278 mov r2 0x00003000
279 st64 r10 0x00 0xFFFFFFFF
280 ldx64 r6 r10 0x00
281 call 5 ; r0 = 0x000F3FFF
282 ; get r2 from RegBank, don’t stop because of r6
283
284
285 mov r1 0x000F0000
286 mov r2 0x0000F000
287 mov r4 0x000000F0
288 mov r5 0x0000000F
289
290 mov r3 0x00000100
291 call 5 ; r0 = 0x000FF1FF
292 ; get r3 from MEM, don’t stop
293 mov r8 r0 ; get r0 from WB, don’t stop
294 mov r9 r0 ; get r0 from RegBank, don’t stop
295
296 st64 r10 0x00 0x00000200
297 ldx64 r3 r10 0x00
298 call 5 ; r0 = 0x000FF2FF
299 ; get r3 from WB, stop on ID stage while ldx64 is on MEM
300
301 mov r3 0x00000300
302 st64 r10 0x00 0xFFFFFFFF
303 ldx64 r6 r10 0x00
304 call 5 ; r0 = 0x000FF3FF
305 ; get r3 from RegBank, don’t stop because of r6
306
307
308 mov r1 0x000F0000
309 mov r2 0x0000F000

97

310 mov r3 0x00000F00
311 mov r5 0x0000000F
312
313 mov r4 0x00000010
314 call 5 ; r0 = 0x000FFF1F
315 ; get r4 from RegBank, stop while mov is on EX stage
316 mov r8 r0 ; get r0 from WB, don’t stop
317 mov r9 r0 ; get r0 from RegBank, don’t stop
318
319 st64 r10 0x00 0x00000020
320 ldx64 r4 r10 0x00
321 call 5 ; r0 = 0x000FFF2F
322 ; get r4 from WB, stop on ID stage while ldx64 is on MEM
323
324 mov r4 0x00000030
325 st64 r10 0x00 0xFFFFFFFF
326 ldx64 r6 r10 0x00
327 call 5 ; r0 = 0x000FFF3F
328 ; get r4 from RegBank, don’t stop because of r6
329
330
331 mov r1 0x000F0000
332 mov r2 0x0000F000
333 mov r3 0x00000F00
334 mov r4 0x000000F0
335
336 mov r5 0x00000001
337 call 5 ; r0 = 0x000FFFF1
338 ; get r5 from RegBank, stop while mov is on EX stage
339 mov r8 r0 ; get r0 from WB, don’t stop
340 mov r9 r0 ; get r0 from RegBank, don’t stop
341
342 st64 r10 0x00 0x00000002
343 ldx64 r5 r10 0x00
344 call 5 ; r0 = 0x000FFFF2
345 ; get r5 from WB, stop on ID stage while ldx64 is on MEM
346
347 mov r5 0x00000003
348 st64 r10 0x00 0xFFFFFFFF
349 ldx64 r6 r10 0x00
350 call 5 ; r0 = 0x000FFFF3
351 ; get r5 from RegBank, don’t stop because of r6
352
353
354 call -1 ; generates exception in MEM stage

Listado G.6: Test de IOMM (test_io_mem.s)
1 ; This program copies content from BPF_MEM_PACKET_BASE (h8000) up to
2 ; BPF_FRAME_POINTER (h89F8) into shared memory (h9000).
3
4 ; It requires being tested using test_io_mem.vhd testbench, which includes:
5
6
7 ; Control test:
8 ; - Write control signals
9 ; - Read control signals, input and output
10
11 ; Concurrency test:
12 ; - Concurrent 1 step write
13 ; - Concurrent 1 step read
14
15 ; - Concurrent flush and write
16 ; - Concurrent flush and read
17
18 ; Buffered read test:
19 ; - Read lower 32b + higher 32b of same addr
20 ; - Read higher 32b + lower 32b of same addr
21 ; - Read lower 32b + lower 32b of same addr
22 ; - Read higher 32b + higher 32b of same addr
23
24 ; - Read lower 32b + higher 32b of different addr
25 ; - Read higher 32b + lower 32b of different addr

98

26 ; - Read lower 32b + lower 32b of different addr
27 ; - Read higher 32b + higher 32b of different addr
28
29 ; Buffered write test:
30 ; - Write lower 32b + higher 32b of same addr
31 ; - Write higher 32b + lower 32b of same addr
32 ; - Write lower 32b + lower 32b of same addr
33 ; - Write higher 32b + higher 32b of same addr
34
35 ; - Write lower 32b + higher 32b of different addr
36 ; - Write higher 32b + lower 32b of different addr
37 ; - Write lower 32b + lower 32b of different addr
38 ; - Write higher 32b + higher 32b of different addr
39
40 ; Forced flushed test:
41 ; - Write 32b + FLUSH
42 ; - Write <32b + FLUSH
43 ; - Read lower 32b + FLUSH + Read higher 32b (same addr)
44
45
46 mov r0 0x8000
47
48 L1: ldx64 r1 r0 0x0000
49 stx64 r0 r1 0x1000
50
51 add r0 8
52 jlt r0 0x8A00 L1
53
54
55 mov r0 0x9000
56 ld64 r2 0x0001000000010000
57
58 L2: addx64 r0 r2 0x0000 ; Add both halves
59
60 add r0 8
61 jlt r0 0x9A00 L2
62
63 exit

Listado G.7: Test de mapas (test_map.s)
1 ; This test requires being tested using test_map.vhd testbench
2
3 ; Map with 32-bit values
4 mov r9 0
5 loop:
6 mov r1 1 ; map id <- 1
7 mov r2 r9 ; map key <- 0..100
8 call 0 ; lookup_elem(1, i);
9
10 jeq r0 0 null
11
12 ldx32 r3 r0 0x00
13 ldx32 r4 r0 0x04 ; next elem
14
15 ja loop_guard
16 null:
17 mov r3 -1
18 mov r4 -1
19
20 loop_guard:
21 add r9 1
22 jlt r9 100 loop
23
24 mov r1 1 ;
25 mov r2 100 ; ! out of bounds
26 call 0 ; lookup_elem(0, 100) -> NULL
27
28 mov r1 0 ; ! map 0 should not exist
29 mov r2 45 ;
30 call 0 ; lookup_elem(0, 45) -> NULL
31
32 ;-- Dummy Loop to change map settings --;

99

33 mov r9 0
34 dummy_loop_0:
35 le64 r7 ; NOOP
36 le64 r7 ; NOOP
37 add r9 1
38 jlt r9 10 dummy_loop_0
39 ;----------------------;
40
41 ; Map with 8-bit values
42 mov r1 0 ; ! map 0 should have replaced map 1 (same data)
43 mov r2 45 ;
44 call 0 ; lookup_elem(0, 45)
45
46 ldx32 r3 r0 0x00
47 ldx32 r4 r0 0x04 ; next elem
48
49 ;-- Dummy Loop to change map settings --;
50 mov r9 0
51 dummy_loop_1:
52 le64 r7 ; NOOP
53 le64 r7 ; NOOP
54 add r9 1
55 jlt r9 10 dummy_loop_1
56 ;----------------------;
57
58 ; Map with 16-bit values
59 mov r1 0 ;
60 mov r2 45 ;
61 call 0 ; lookup_elem(0, 45)
62
63 ldx32 r3 r0 0x00
64 ldx32 r4 r0 0x04 ; next elem
65
66 ;-- Dummy Loop to change map settings --;
67 mov r9 0
68 dummy_loop_2:
69 le64 r7 ; NOOP
70 le64 r7 ; NOOP
71 add r9 1
72 jlt r9 10 dummy_loop_2
73 ;----------------------;
74
75 ; Map with 64-bit values
76 mov r1 0 ;
77 mov r2 45 ;
78 call 0 ; lookup_elem(0, 45)
79
80 ldx64 r3 r0 0x00
81 ldx64 r4 r0 0x04 ; next elem
82
83
84 mov r1 1 ; ! map 1 should not exist
85 mov r2 66 ;
86 call 0 ; lookup_elem(0, 66) -> NULL
87
88 ; END WITH EXCEPTION: derreferencing NULL pointer
89 ldx32 r3 r0 0x00

G.2. Ejemplo de testbench

Listado G.8: Testbench que permite simular la carga y ejecución de un programa BPF
(program_test.vhd)

1 --
2 -- Project Name: A basic processor core for running BPF programs
3 -- Author: Fernando Lahoz Bernad
4 --
5 -- Description: Testbench for testing loading of a BPF program and it’s
6 -- execution.
7 --
8

100

9 library ieee;
10 use ieee.std_logic_1164.all;
11 use ieee.std_logic_unsigned.all;
12 use ieee.numeric_std.all;
13
14 use work.bpf.all;
15
16 entity BPF_Peripheral_Testbench is
17 end BPF_Peripheral_Testbench;
18
19 architecture Behavioral of BPF_Peripheral_Testbench is
20
21 component BPF_AXI_Peripheral is
22 port (
23 -- AXI slave interface
24 S_AXI_aclk : in std_logic;
25 S_AXI_aresetn : in std_logic; -- This Signal is Active LOW
26
27 S_AXI_awaddr : in std_logic_vector(31 downto 0);
28 S_AXI_awprot : in std_logic_vector(2 downto 0);
29 S_AXI_awvalid : in std_logic;
30 S_AXI_awready : out std_logic;
31
32 S_AXI_wdata : in std_logic_vector(31 downto 0);
33 S_AXI_wstrb : in std_logic_vector(3 downto 0);
34 S_AXI_wvalid : in std_logic;
35 S_AXI_wready : out std_logic;
36
37 S_AXI_bresp : out std_logic_vector(1 downto 0);
38 S_AXI_bvalid : out std_logic;
39 S_AXI_bready : in std_logic;
40
41 S_AXI_araddr : in std_logic_vector(31 downto 0);
42 S_AXI_arprot : in std_logic_vector(2 downto 0);
43 S_AXI_arvalid : in std_logic;
44 S_AXI_arready : out std_logic;
45
46 S_AXI_rdata : out std_logic_vector(31 downto 0);
47 S_AXI_rresp : out std_logic_vector(1 downto 0);
48 S_AXI_rvalid : out std_logic;
49 S_AXI_rready : in std_logic
50);
51 end component;
52
53 -- RAM from which instructions are being loaded
54 component Inst_RAM is
55 port (
56 clk : in std_logic;
57 addr : in std_logic_vector (11 downto 0);
58 input : in std_logic_vector (63 downto 0);
59 write_en : in std_logic;
60 read_en : in std_logic;
61 output : out std_logic_vector (63 downto 0)
62);
63 end component;
64
65 function vec32(input_vector: std_logic_vector) return std_logic_vector is
66 constant target_length : integer := 32;
67 variable output_vector : std_logic_vector(target_length-1 downto 0);
68 variable input_length : integer := input_vector’length;
69 begin
70 if input_length < target_length then
71 -- Zero-extend the input vector to 32 bits
72 output_vector := (others => ’0’);
73 output_vector(input_length-1 downto 0) := input_vector;
74 else
75 -- Truncate or keep the input vector to 32 bits
76 output_vector := input_vector(target_length-1 downto 0);
77 end if;
78 return output_vector;
79 end function;
80
81 constant CLK_PERIOD : time := 10 ns;

101

82 constant NUM_CLKS : natural := 10000;
83
84 signal clk, reset : std_logic;
85 signal cycles : natural := 0;
86
87 signal instruction : std_logic_vector(63 downto 0);
88 signal inst_addr : std_logic_vector(11 downto 0);
89
90 signal S_AXI_awaddr : std_logic_vector(31 downto 0);
91 signal S_AXI_awprot : std_logic_vector(2 downto 0);
92 signal S_AXI_awvalid : std_logic;
93 signal S_AXI_awready : std_logic;
94
95 signal S_AXI_wdata : std_logic_vector(31 downto 0);
96 signal S_AXI_wstrb : std_logic_vector(3 downto 0);
97 signal S_AXI_wvalid : std_logic;
98 signal S_AXI_wready : std_logic;
99
100 signal S_AXI_bresp : std_logic_vector(1 downto 0);
101 signal S_AXI_bvalid : std_logic;
102 signal S_AXI_bready : std_logic;
103
104 signal S_AXI_araddr: std_logic_vector(31 downto 0);
105 signal S_AXI_arprot : std_logic_vector(2 downto 0);
106 signal S_AXI_arvalid : std_logic;
107 signal S_AXI_arready : std_logic;
108
109 signal S_AXI_rdata : std_logic_vector(31 downto 0);
110 signal S_AXI_rresp : std_logic_vector(1 downto 0);
111 signal S_AXI_rvalid : std_logic;
112 signal S_AXI_rready : std_logic;
113
114 begin
115
116 tested_unit: BPF_AXI_Peripheral
117 port map (
118 S_AXI_aclk => clk,
119 S_AXI_aresetn => not reset,
120
121 S_AXI_awaddr => S_AXI_awaddr,
122 S_AXI_awprot => S_AXI_awprot,
123 S_AXI_awvalid => S_AXI_awvalid,
124 S_AXI_awready => S_AXI_awready,
125
126 S_AXI_wdata => S_AXI_wdata,
127 S_AXI_wstrb => S_AXI_wstrb,
128 S_AXI_wvalid => S_AXI_wvalid,
129 S_AXI_wready => S_AXI_wready,
130
131 S_AXI_bresp => S_AXI_bresp,
132 S_AXI_bvalid => S_AXI_bvalid,
133 S_AXI_bready => S_AXI_bready,
134
135 S_AXI_araddr => S_AXI_araddr,
136 S_AXI_arprot => S_AXI_arprot,
137 S_AXI_arvalid => S_AXI_arvalid,
138 S_AXI_arready => S_AXI_arready,
139
140 S_AXI_rdata => S_AXI_rdata,
141 S_AXI_rresp => S_AXI_rresp,
142 S_AXI_rvalid => S_AXI_rvalid,
143 S_AXI_rready => S_AXI_rready
144);
145
146 program_buffer: Inst_RAM
147 port map (
148 clk => clk,
149 addr => inst_addr,
150 input => (63 downto 0 => ’0’),
151 write_en => ’0’,
152 read_en => ’1’,
153 output => instruction
154);

102

155
156 CLK_PROC: process
157 begin
158 if (cycles /= NUM_CLKS) then
159 clk <= ’0’;
160 wait for CLK_PERIOD / 2;
161 clk <= ’1’;
162 cycles <= cycles + 1;
163 wait for CLK_PERIOD / 2;
164 else
165 wait;
166 end if;
167 end process;
168
169 --
170
171 TEST_PROC: process
172 begin
173 reset <= ’1’;
174
175 S_AXI_awaddr <= x"00000000";
176 S_AXI_awvalid <= ’0’;
177
178 S_AXI_wdata <= x"00000000";
179 S_AXI_wstrb <= "0000";
180 S_AXI_wvalid <= ’0’;
181
182 S_AXI_araddr <= x"00000000";
183 S_AXI_arvalid <= ’0’;
184
185 -- Always ready
186 S_AXI_bready <= ’1’;
187 S_AXI_rready <= ’1’;
188
189 -- Unused
190 S_AXI_arprot <= "000";
191 S_AXI_awprot <= "000";
192
193 wait on clk until clk = ’1’;
194 reset <= ’0’;
195
196 -- Step 1: load program --
197 inst_addr <= x"000";
198 wait for CLK_PERIOD / 8;
199 while instruction /= (63 downto 0 => ’0’) loop
200 -- lower 32 bit
201 S_AXI_awaddr <= BPF_MEM_INST_BASE_U32 + (inst_addr & "000");
202 S_AXI_awvalid <= ’1’;
203
204 S_AXI_wdata <= instruction(31 downto 0);
205 S_AXI_wstrb <= "1111";
206 S_AXI_wvalid <= ’1’;
207
208 wait until S_AXI_awready = ’1’ and S_AXI_wready = ’1’;
209 wait on clk until clk = ’1’;
210
211 S_AXI_awvalid <= ’0’;
212 S_AXI_wvalid <= ’0’;
213
214 wait until S_AXI_bvalid = ’1’;
215 wait on clk until clk = ’1’;
216
217 -- higher 32 bit
218 S_AXI_awaddr <= BPF_MEM_INST_BASE_U32 + (inst_addr & "100");
219 S_AXI_awvalid <= ’1’;
220
221 S_AXI_wdata <= instruction(63 downto 32);
222 S_AXI_wstrb <= "1111";
223 S_AXI_wvalid <= ’1’;
224
225 wait until S_AXI_awready = ’1’ and S_AXI_wready = ’1’;
226 wait on clk until clk = ’1’;
227

103

228 S_AXI_awvalid <= ’0’;
229 S_AXI_wvalid <= ’0’;
230
231 wait until S_AXI_bvalid = ’1’;
232 wait on clk until clk = ’1’;
233
234 inst_addr <= inst_addr + "01";
235 wait for CLK_PERIOD / 8;
236
237 end loop;
238
239 -- Step 2: load frame pointer (FP) --
240
241 S_AXI_awaddr <= BPF_CORE_CTRL_U32;
242 S_AXI_awvalid <= ’1’;
243
244 S_AXI_wdata <= vec32("000011" & "1010"); -- reset = 0; sleep = 1; write FP
245 S_AXI_wstrb <= "1111";
246 S_AXI_wvalid <= ’1’;
247
248 wait until S_AXI_awready = ’1’ and S_AXI_wready = ’1’;
249 wait on clk until clk = ’1’;
250
251 S_AXI_awvalid <= ’0’;
252 S_AXI_wvalid <= ’0’;
253
254 wait until S_AXI_bvalid = ’1’;
255 wait on clk until clk = ’1’;
256
257 S_AXI_awaddr <= BPF_CORE_INPUT_U32;
258 S_AXI_awvalid <= ’1’;
259
260 S_AXI_wdata <= vec32(BPF_FRAME_POINTER);
261 S_AXI_wstrb <= "1111";
262 S_AXI_wvalid <= ’1’;
263
264 wait until S_AXI_awready = ’1’ and S_AXI_wready = ’1’;
265 wait on clk until clk = ’1’;
266
267 S_AXI_awvalid <= ’0’;
268 S_AXI_wvalid <= ’0’;
269
270 wait until S_AXI_bvalid = ’1’;
271 wait on clk until clk = ’1’;
272
273 -- Step 3: execute --
274
275 S_AXI_awaddr <= BPF_CORE_CTRL_U32;
276 S_AXI_awvalid <= ’1’;
277
278 S_AXI_wdata <= vec32("000000" & "0000"); -- reset = 0; sleep = 0; don’t write
279 S_AXI_wstrb <= "1111";
280 S_AXI_wvalid <= ’1’;
281
282 wait until S_AXI_awready = ’1’ and S_AXI_wready = ’1’;
283 wait on clk until clk = ’1’;
284
285 S_AXI_awvalid <= ’0’;
286 S_AXI_wvalid <= ’0’;
287
288 wait until S_AXI_bvalid = ’1’;
289 wait on clk until clk = ’1’;
290
291 -- -- -- -- --
292
293 wait;
294
295 end process;
296
297 end Behavioral;

104

G.3. Ejemplos de visualización de señales

Los tests de integración se comprueban manualmente observando el valor de las
señales con un visor de ondas (p. ej. GTKWave). A continuación se muestran algunos
ejemplos de comportamientos del procesador que deben ser verificados ante ciertas
situaciones:

− La división es una operación multiciclo. En etapa EX debe bloquear el avance de
etapas anteriores y permitir el de las posteriores, tal y como muestra la Fig. G.1a.
No obstante, si la división es entre cero deja de ser multiciclo, como se ve en la
Fig. G.1b.

− Como se menciona en la Sec. 3.1.1, los saltos incondicionales descartan la ins-
trucción en etapa IF y los condicionales tomados también descartan la etapa
ID. La Fig. G.2 corresponde al comienzo del test de control, donde aparece este
comportamiento de los saltos y se puede observar el primer descarte obligatorio
producido después de reiniciar el core.

− En caso de generarse una excepción el procesador devuelve el número de instruc-
ción que la provocó. El programa del test de mapas está pensado para acabar en
excepción leyendo de un puntero nulo. En la Fig. G.3 se puede comprobar que la
instrucción causante es el último load.

− Una parte del test de IOMM tiene por objetivo asegurar el acceso en exclusión
mutua al bus de memoria compartida. Un árbitro se encarga de otorgar acceso
y decidir en caso de solicitudes simultáneas, priorizando al solicitante menos
reciente para evitar inanición. En la Fig. G.4 se ve un caso de coincidencia de
solicitudes y varios casos de cambios en la prioridad del árbitro.

− La Fig. G.5 muestra el proceso de carga del programa a la memoria de instruc-
ciones y el arranque del core siguiendo el proceso explicado en la Sec. 4.2.2.

105

(a) División normal (multiciclo) (b) División entre cero

Figura G.1: Posibles etapas EX de una división

Figura G.2: Comparación en el número de etapas descartadas entre saltos incondicio-
nales (jump) y condicionales(branch)

Figura G.3: Fin de ejecución por excepción en el último load

Figura G.4: Coincidencia en la petición de acceso al bus de memoria compartida y
cambios de prioridad

106

Figura G.5: Fases de carga, ejecución y fin de programa visualizadas con las señales
del registro de control

107

108

Anexos H

Código de demostración

H.1. Biblioteca de interacción con el periférico

Listado H.1: Biblioteca para interactuar con el procesador BPF (ebpf_lib.c).
1 #include <stddef.h>
2 #include <stdint.h>
3 #include <string.h>
4 #include <sys/_types.h>
5
6 /**
7 * "platform.h" is automatically generated by Xilinx IDE from exported hardware.
8 * It contains XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR.
9 */
10 #include "platform.h"
11
12 #include "xparameters.h"
13
14
15 // -- //
16 // AXI bus access //
17 // -- //
18
19 uint8_t bpf_axi_read_8b(size_t addr)
20 {
21 return *(volatile uint8_t *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + addr);
22 }
23
24 uint16_t bpf_axi_read_16b(size_t addr)
25 {
26 return *(volatile uint16_t *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + addr);
27 }
28
29 uint32_t bpf_axi_read_32b(size_t addr)
30 {
31 return *(volatile uint32_t *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + addr);
32 }
33
34 uint64_t bpf_axi_read_64b(size_t addr)
35 {
36 // This is will trigger two AXI transactions
37 return *(volatile uint64_t *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + addr);
38 }
39
40 void bpf_axi_write_8b(size_t addr, uint8_t value)
41 {
42 *(volatile uint8_t *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + addr) = value;
43 }
44
45 void bpf_axi_write_16b(size_t addr, uint16_t value)
46 {
47 *(volatile uint16_t *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + addr) = value;
48 }

109

49
50 void bpf_axi_write_32b(size_t addr, uint32_t value)
51 {
52 *(volatile uint32_t *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + addr) = value;
53 }
54
55 void bpf_axi_write_64b(size_t addr, uint64_t value)
56 {
57 // This is will trigger two AXI transactions
58 *(volatile uint64_t *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + addr) = value;
59 }
60
61
62 // -- //
63 // Core control and program loading //
64 // -- //
65
66 // Address space constants
67 enum bpf_peripheral_address
68 {
69 BPF_MEM_INST_BASE = 0x0000,
70 BPF_MEM_PACKET_BASE = 0x8000,
71 BPF_MEM_STACK_BASE = 0x8800,
72 BPF_MEM_SHARED_BASE = 0x9000,
73
74 // End Of Transaction
75 BPF_MEM_SHARED_FLUSH_BUFFER = 0x8FFF,
76
77 BPF_CORE_CTRL = 0x8A00,
78 BPF_CORE_INPUT = 0x8A08,
79 BPF_CORE_OUTPUT = 0x8A10,
80
81 BPF_MAP_BASE = 0x8A18,
82
83 BPF_FRAME_POINTER = 0x89F8
84 };
85
86
87 struct bpf_core_ctrl_reg
88 {
89 unsigned reg_dst : 4;
90 unsigned reg_write : 1;
91 unsigned sleep : 1;
92 unsigned sleeping : 1;
93 unsigned exception : 1;
94 unsigned finish : 1;
95 unsigned reset : 1;
96 uint64_t __padding : 54;
97 };
98
99 /**
100 * @brief Reads control register from BPF_CORE_CTRL.
101 */
102 struct bpf_core_ctrl_reg bpf_core_get_ctrl_reg()
103 {
104 struct bpf_core_ctrl_reg ctrl_reg;
105 uint64_t value = bpf_axi_read_64b(BPF_CORE_CTRL);
106 memcpy(&ctrl_reg, &value, sizeof(uint64_t));
107 return ctrl_reg;
108 }
109
110 /**
111 * @brief Writes control register on BPF_CORE_CTRL.
112 */
113 void bpf_core_set_ctrl_reg(struct bpf_core_ctrl_reg ctrl_reg)
114 {
115 uint64_t value;
116 memcpy(&value, &ctrl_reg, sizeof(uint64_t));
117 bpf_axi_write_64b(BPF_CORE_CTRL, value);
118 }
119
120
121

110

122 typedef uint64_t bpf_instruction_t;
123
124 /**
125 * @brief Loads a program into instruction memory.
126 *
127 * @param program Instruction buffer.
128 * @param length Size of buffer.
129 *
130 * @return Zero for a successful call. On error, -1 is returned.
131 */
132 int bpf_load_program(bpf_instruction_t* program, int length)
133 {
134 struct bpf_core_ctrl_reg ctrl_reg = bpf_core_get_ctrl_reg();
135 if (!(ctrl_reg.finish || ctrl_reg.exception || ctrl_reg.sleeping))
136 return -1;
137
138 for (int i = 0; i < length; ++i)
139 bpf_axi_write_64b(BPF_MEM_INST_BASE + 8*i, program[i]);
140
141 return 0;
142 }
143
144 /**
145 * @brief Resets processor state, sets initial parameters and
146 * starts program execution.
147 */
148 void bpf_start_program()
149 {
150 struct bpf_core_ctrl_reg ctrl_reg;
151
152 // Start over
153 ctrl_reg.reset = 1;
154 bpf_core_set_ctrl_reg(ctrl_reg);
155
156 // Load frame pointer
157 ctrl_reg.reset = 0;
158 ctrl_reg.sleep = 1;
159 ctrl_reg.reg_write = 1;
160 ctrl_reg.reg_dst = 10;
161 bpf_core_set_ctrl_reg(ctrl_reg);
162 bpf_axi_write_64b(BPF_CORE_INPUT, BPF_FRAME_POINTER);
163
164 // Start execution
165 ctrl_reg.sleep = 0;
166 ctrl_reg.reg_write = 0;
167 bpf_core_set_ctrl_reg(ctrl_reg);
168 }
169
170 /**
171 * @brief Sets ‘sleep‘ flag and awaits for processor to stop.
172 */
173 void bpf_sleep_program()
174 {
175 struct bpf_core_ctrl_reg ctrl_reg = bpf_core_get_ctrl_reg();
176 if (ctrl_reg.finish || ctrl_reg.exception || ctrl_reg.sleeping)
177 return;
178
179 ctrl_reg.reset = 0;
180 ctrl_reg.sleep = 1;
181 ctrl_reg.reg_write = 0;
182 bpf_core_set_ctrl_reg(ctrl_reg);
183
184 // Await until processor stops
185 while (!(ctrl_reg.finish || ctrl_reg.exception || ctrl_reg.sleeping))
186 ctrl_reg = bpf_core_get_ctrl_reg();
187 }
188
189 /**
190 * @brief Sets ‘sleep‘ flag for processor to resume execution.
191 * Does nothing if processor is already awaken.
192 * Fails when trying to resume a completed program.
193 *
194 * @return Zero for a successful call. On error, -1 is returned.

111

195 */
196 int bpf_awake_program()
197 {
198 struct bpf_core_ctrl_reg ctrl_reg = bpf_core_get_ctrl_reg();
199 if (ctrl_reg.finish || ctrl_reg.exception)
200 return -1;
201
202 ctrl_reg.sleep = 0;
203 bpf_core_set_ctrl_reg(ctrl_reg);
204
205 return 0;
206 }
207
208
209 enum bpf_program_end_cause
210 {
211 BPF_FINISH = 0,
212 BPF_EXCEPTION = -1
213 };
214
215 /**
216 * @brief Blocks execution until the BPF program finishes.
217 *
218 * @return ‘BPF_FINISH‘ or ‘BPF_EXCEPTION‘, depending on
219 * what caused termination.
220 */
221 int bpf_await_program()
222 {
223 struct bpf_core_ctrl_reg ctrl_reg = bpf_core_get_ctrl_reg();
224 while (!(ctrl_reg.finish || ctrl_reg.exception || ctrl_reg.sleeping))
225 ctrl_reg = bpf_core_get_ctrl_reg();
226
227 if (ctrl_reg.finish)
228 return BPF_FINISH;
229 else
230 return BPF_EXCEPTION;
231 }
232
233 /**
234 * @brief Reads program result. In case of exception, it returns the PC value
235 * of the instruction that generated it.
236 */
237 uint64_t bpf_core_get_program_result()
238 {
239 return bpf_axi_read_64b(BPF_CORE_OUTPUT);
240 }
241
242
243 // -- //
244 // BPF maps management //
245 // -- //
246
247 enum bpf_map_type
248 {
249 BPF_MAP_TYPE_ARRAY
250 };
251
252 struct bpf_map_entry
253 {
254 unsigned base_ptr : 12;
255 unsigned key_size : 2;
256 unsigned val_size : 2;
257 unsigned max_entries : 15;
258 unsigned valid : 1;
259 };
260
261 // Returns map entry associated with that ID. Should not be called by user.
262 struct bpf_map_entry _bpf_map_get_entry(size_t id)
263 {
264 struct bpf_map_entry map_reg;
265 uint32_t value = bpf_axi_read_32b(BPF_MAP_BASE + (4 * id));
266 memcpy(&map_reg, &value, sizeof(uint32_t));
267 return map_reg;

112

268 }
269
270 // Sets map entry associated with that ID. Should not be called by user.
271 void _bpf_map_set_entry(struct bpf_map_entry map_reg, size_t id)
272 {
273 uint32_t value;
274 memcpy(&value, &map_reg, sizeof(uint32_t));
275 bpf_axi_write_32b(BPF_MAP_BASE, value + (4 * id));
276 }
277
278 // With only two maps, allocator can be implemented as a state machine.
279 enum bpf_map_alloc_state
280 {
281 BPF_MAP_ALLOC_STATE_HALF_TOP,
282 BPF_MAP_ALLOC_STATE_HALF_BOT,
283 BPF_MAP_ALLOC_STATE_FULL,
284 BPF_MAP_ALLOC_STATE_EMPTY
285 };
286
287 const unsigned BPF_MAP_MAX_SIZE = 3584 * 8; // bytes
288 unsigned bpf_map_next_ptr_v = 0;
289 enum bpf_map_alloc_state bpf_map_alloc_state_v = 0;
290
291 // Compacts size in bytes to its base 2 logarithm.
292 unsigned _bpf_compact_size(unsigned sz)
293 {
294 switch (sz) {
295 case 8: return 0;
296 case 16: return 1;
297 case 32: return 2;
298 case 64: return 3;
299 default: return 0;
300 }
301 }
302
303 // Creates a bit mask from a compacted size.
304 uint64_t _bpf_mask_from_size(unsigned sz)
305 {
306 switch (sz) {
307 case 0: return 0x00000000000000FF;
308 case 1: return 0x000000000000FFFF;
309 case 2: return 0x00000000FFFFFFFF;
310 case 3: return 0xFFFFFFFFFFFFFFFF;
311 default: return 0;
312 }
313 }
314
315 /**
316 * @brief Loads a map into the map unit with the specified configuration.
317 * Fails if it is not possible to create a new map.
318 *
319 * @param type Must be BPF_MAP_TYPE_ARRAY.
320 * @param key_size Size in bytes of element key.
321 * @param val_size Size in bytes of element value.
322 * @param max_entries Max number of entries.
323 *
324 * @return ID of the generated map for a successful call.
325 * On error, -1 is returned.
326 */
327 int bpf_create_map(enum bpf_map_type type, unsigned key_size,
328 unsigned val_size, unsigned max_entries)
329 {
330 struct bpf_map_entry map_reg;
331 unsigned aux_next_ptr, id;
332 map_reg.base_ptr = bpf_map_next_ptr_v / 8;
333
334 if (type != BPF_MAP_TYPE_ARRAY)
335 return -1;
336
337 // next base pointer, aligned to 8 bytes
338 aux_next_ptr = bpf_map_next_ptr_v + (val_size * max_entries / 8) * 8;
339 if (aux_next_ptr > BPF_MAP_MAX_SIZE)
340 return -1;

113

341
342 switch (bpf_map_alloc_state_v) {
343 case BPF_MAP_ALLOC_STATE_EMPTY:
344
345 id = 0;
346 bpf_map_next_ptr_v = aux_next_ptr;
347 if (bpf_map_next_ptr_v == BPF_MAP_MAX_SIZE)
348 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_FULL;
349 else
350 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_HALF_TOP;
351
352 break;
353 case BPF_MAP_ALLOC_STATE_HALF_TOP:
354
355 id = 1;
356 bpf_map_next_ptr_v = aux_next_ptr;
357 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_FULL;
358
359 break;
360 case BPF_MAP_ALLOC_STATE_HALF_BOT:
361
362 id = 0;
363 bpf_map_next_ptr_v = aux_next_ptr;
364 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_FULL;
365
366 break;
367 case BPF_MAP_ALLOC_STATE_FULL:
368 return -1;
369 default:
370 return -1;
371 }
372
373 map_reg.valid = 1;
374 map_reg.key_size = _bpf_compact_size(key_size);
375 map_reg.val_size = _bpf_compact_size(val_size);
376 map_reg.max_entries = max_entries;
377 _bpf_map_set_entry(map_reg, id);
378
379 return id;
380 }
381
382
383 /**
384 * @brief Removes a map from the map unit by its ID.
385 * Fails if map does not exist.
386 *
387 * @param id Targeted map.
388 *
389 * @return Zero for a successful call. On error, -1 is returned.
390 */
391 int bpf_delete_map(unsigned id)
392 {
393 struct bpf_map_entry map_reg;
394
395 if (id >= 2)
396 return -1;
397
398 switch (bpf_map_alloc_state_v) {
399 case BPF_MAP_ALLOC_STATE_EMPTY:
400 return -1;
401 case BPF_MAP_ALLOC_STATE_HALF_TOP:
402
403 if (id != 0)
404 return -1;
405
406 bpf_map_next_ptr_v = 0;
407 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_EMPTY;
408
409 break;
410 case BPF_MAP_ALLOC_STATE_HALF_BOT:
411
412 if (id != 1)
413 return -1;

114

414
415 bpf_map_next_ptr_v = 0;
416 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_EMPTY;
417
418 break;
419 case BPF_MAP_ALLOC_STATE_FULL:
420
421 map_reg = _bpf_map_get_entry(id);
422
423 if (id == 1)
424 {
425 bpf_map_next_ptr_v = map_reg.base_ptr * 8;
426 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_HALF_TOP;
427 }
428 else // id == 0
429 {
430 bpf_map_next_ptr_v = 0;
431 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_HALF_BOT;
432 }
433 break;
434 default:
435 return -1;
436 }
437
438 map_reg.valid = 0;
439 _bpf_map_set_entry(map_reg, id);
440
441 return 0;
442 }
443
444 /**
445 * @brief Looks for an element inside a map.
446 *
447 * @param id Targeted map.
448 * @param key Search key for an element.
449 *
450 * @return Memory address of searched element.
451 * When element is not found, NULL is returned.
452 */
453 void *bpf_lookup_elem(unsigned id, uint64_t key)
454 {
455 struct bpf_map_entry map_reg;
456 uint64_t key_masked;
457 size_t elem_ptr;
458
459 if (id >= 2)
460 return NULL;
461
462 map_reg = _bpf_map_get_entry(id);
463
464 if (!map_reg.valid)
465 return NULL;
466
467 key_masked = key & _bpf_mask_from_size(map_reg.key_size);
468
469 if (key_masked >= map_reg.max_entries)
470 return NULL;
471
472 elem_ptr = (map_reg.base_ptr * 8) + (key_masked << map_reg.val_size);
473
474 return (void *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + elem_ptr);
475 }

115

H.2. Ejemplo de programa

Listado H.2: Ejemplo de programa principal (main.c).
1 #include <stddef.h>
2 #include <stdint.h>
3 #include <string.h>
4 #include <stdbool.h>
5 #include <sys/_intsup.h>
6
7 #include "xil_printf.h"
8
9 #include "ebpf_lib.h"
10
11 #define PRINT_ENABLE 1
12
13 #define PRINT(fmt, ...) \
14 { \
15 if (PRINT_ENABLE) \
16 xil_printf(fmt, ##__VA_ARGS__); \
17 }
18
19 bpf_instruction_t program[] =
20 {
21 #include "programs/test_mem.txt"
22 };
23
24 int main()
25 {
26 int end_cause;
27 uint64_t result;
28
29 init_platform();
30
31 PRINT("Loading program...\n\r");
32
33 if (bpf_load_program(program, sizeof(program)/sizeof(bpf_instruction_t)) < 0)
34 {
35 PRINT("FAIL\n\r");
36 goto exit_point;
37 }
38
39 PRINT("OK\n\r");
40 PRINT("Start of execution\n\r");
41
42 bpf_start_program();
43
44 end_cause = bpf_await_program();
45 result = bpf_core_get_program_result();
46
47 if (end_cause == BPF_FINISH)
48 {
49 PRINT("Program finished with result: %llx\n\r", result);
50 }
51 else {
52 PRINT("Program threw an exception at PC = %llu\n\r", result);
53 }
54
55 exit_point:
56 cleanup_platform();
57 return 0;
58 }

116

	Introducción
	Motivación y contexto
	Objetivos y alcance
	Objetivos generales
	Objetivos específicos
	Alcance

	Contribuciones
	Metodología y entorno de trabajo
	Planificación
	Estructura del documento

	Fundamentos
	Ruta de datos segmentada
	BPF
	Programas BPF y usos
	Mapas
	Hardware Offload
	Arquitectura de Lenguaje Máquina

	Metodología de depuración y testing
	Trabajos relacionados

	Diseño de un procesador BPF básico
	Ruta de datos
	Control de PC
	Búsqueda de operandos
	Escritura del resultado
	Control de los bancos de etapa
	Gestión de excepciones y detención del procesador

	Descripción de componentes
	Banco de registros
	Verificador de saltos (Branch Checker)
	Unidad Aritmética Lógica (ALU)
	Interfaz de memoria de datos
	Unidad de funciones auxiliares (HFU)

	Metodología de pruebas
	Ensamblador

	Integración de un procesador BPF en un sistema baremetal
	Procesador BPF como periférico
	MicroBlaze y protocolo AXI
	Módulo de entrada-salida y memoria

	Interacción con el procesador
	Registros de control
	Escritura del programa y arranque
	Accesos concurrentes a memoria compartida
	Gestión de mapas

	Metodología de pruebas
	Prueba de concepto

	Conclusiones y líneas abiertas
	Diseño de un microprocesador para la ISA BPF
	Líneas abiertas

	Bibliografía
	Siglas
	Lista de figuras
	Lista de tablas
	Lista de listados de código
	Anexos
	Dedicación
	Conjunto de Instrucciones eBPF
	Descripción RTL de instrucciones en la ruta de datos
	Control de la ruta de datos
	Unidad de Control (CU)
	Unidad de Riesgos (HU)
	Unidad de Anticipación (FU)
	Unidad de Excepciones (EU)

	Detalles de implementación por componente
	Verificador de Saltos (BC)
	Unidad Aritmética Lógica (ALU)
	Interfaz de memoria de datos
	Unidad de funciones auxiliares (HFU)
	Controlador AXI

	Funciones definidas por el usuario
	Pruebas de integración
	Programas de prueba
	Ejemplo de testbench
	Ejemplos de visualización de señales

	Código de demostración
	Biblioteca de interacción con el periférico
	Ejemplo de programa

