w2s Universidad
A0 Zaragoza

1542

Trabajo Fin de Grado

Diseno de una CPU basica para la ejecucion de
programas BPF

Autor

Fernando Lahoz Bernad

Director

José Luis Briz Velasco

Dept. Informdtica e Ing. de Sistemas, Univ. Zaragoza

ESCUELA DE INGENIERIA Y ARQUITECTURA
2024

AGRADECIMIENTOS

En primer lugar, quiero comenzar dando las gracias a los profesores, en especial a
aquellos de las asignaturas del itinerario de Ingenieria de Computadores, que me han
enseniado las bases y han afianzado los conocimientos en el campo a lo largo del grado
para que este proyecto haya sido posible.

Muchas gracias a Javier Resano, Pablo Ibanez, Dario Suarez, Jesus Alastruey y
Rubén Gran, de los que he aprendido todo lo necesario sobre el disefio de procesadores.
También agradezco al profesor Denis Navarro su ayuda para introducirme el entorno
de desarrollo de Vivado y la comunicaciéon de componentes.

Y por ultimo agradecer a José Luis Briz, quien ha dirigido este proyecto y propuso
la idea original, ddndome la oportunidad de trabajar en un campo en desarrollo, muy
cerca de su equipo de investigacion.

Este trabajo ha sido parcialmente financiado por el Programa de Becas de colabora-
cién en departamentos universitarios convocadas por el Ministerio de Educacion y For-
macién Profesional Curso académico 2023/24, por el proyecto MCIN/AEI/10.13039/
501100011033 (PID2022-136454NB-C22), v por el grupo T58 23R - Gobierno de Ara-

gon.

IT

RESUMEN

La tecnologia BPF surgié como una alternativa flexible a los filtros de red y pro-
gramas de depuracion basados en modulos o alteraciones al codigo fuente del kernel de
Linux [1]. Se trata de un de una ISA pensada para ejecutar virtualmente el bytecode
de un programa por medio de un JIT compiler. Su uso se ha extendido mas alla del
filtrado de paquetes como una forma de ganar ancho de banda y reducir la latencia
introducida por el Sistema Operativo, hasta el punto de aparecer tarjetas de red capa-
ces de ejecutar programas BPF previamente traducidos a arquitecturas ya establecidas
en la industria. Esta idea hace que los programas se independicen del planificador del
kernel, obteniendo un jitter minimo apto para redes TSN [2].

En este contexto y en el ambito de investigacion en TSN se decide comprobar la
viabilidad de un procesador que ejecute directamente el repertorio de instrucciones
extendido de BPF a partir de un primer disefio para FPGA. Este proyecto comprende
las fases de andlisis, diseno, implementaciéon y pruebas de un core BPF que sirva de
acelerador para un procesador de propoésito general en un sistema baremetal, permi-
tiendo cargar programas BPF con su debido contexto, controlar el comienzo y fin de
la ejecucion e interactuar por medio de mapas accedidos desde memoria compartida,
de la misma forma que se hace en un entorno GNU/Linux.

Este TFG se divide en dos partes. La primera incluye el desarrollo de un procesador
segmentado multietapa capaz de ejecutar el repertorio de instrucciones eBPF, especi-
ficando su ruta de datos, unidades de control, componentes, interfaces de memoria y
sistemas adicionales en el lenguaje de descripciéon de hardware VHDL, ademas de la
ampliacion de un proyecto de compilador de ensamblador eBPF. La segunda consiste
en el diseno de un protocolo de comunicacién con el core como periférico, planteando
una distribucion del espacio de memoria y los registros de control y aportando una
solucién original al problema de transacciones atomicas con buses de ancho reducido.
Ademas, abarca la implementaciéon en VHDL de un sistema de entrada y salida que
implemente dicho protocolo para el procesador junto al desarrollo de una biblioteca en
C que abstraiga la interaccién con el periférico.

El resultado del trabajo es un SoC sintetizable para FPGA que contiene el pro-
cesador BPF acoplado a un procesador MicroBlaze [3], comunicados por un bus AXI

Lite [4] accesible desde memoria.

II1

ABSTRACT

The BPF technology emerged as a flexible alternative to network filtering and
debugging based on modules or direct instrumentation of the Linux kernel source code.
It is specified as an ISA, designed to virtually execute the bytecode of a program
through JIT compiling. Current BPF usage reaches well beyond packet filtering, as a
way to gain bandwidth and reduce the latency introduced by the Operating System,
with newly developed NIC which are capable of executing BPF programs previously
translated to architectures already established in the industry. This idea makes the
programs independent on the kernel scheduler, minimizing jitter and turning them

into suitable tools for TSN citebpf-tsn-building-blocks systems.

In this context, and within the scope of research in the field, this TFG test the
feasibility of a processor that directly executes the BPF ISA on first a design targeting
FPGA synthesis. This project encompasses the analysis, design, implementation and
testing stages of a BPF core that serves as an accelerator for a general purpose processor
in a baremetal system, allowing to load BPF programs with their proper context,
to control execution start and termination, also providing interaction through BPF
map structures accessed from shared memory, as performed in common GNU /Linux

environments.

This project is divided into two parts. The first one includes the development of
a multi-stage segmented processor, capable of executing the eBPF ISA, specifying in
VHDL its data path, control units, components, memory interfaces and additional
systems. Additionally, this part provides an extension of a eBPF assembly compiler
project. The second part consists of the design of a communication protocol with
the core considered a peripheral, proposing a memory organization, including control
registers and providing an original solution to the problem of atomic transactions on
buses with reduced datawidth. It also covers the VHDL design of an input and output
system that implements this protocol for the processor, along with the development of

a C library that provides an interface to interact with the peripheral.

The outcome and principal deliverable of this TFG is a synthesizable SoC for FPGA
which contains a BPF processor coupled to a MicroBlaze softcore, inter-communicated

by a memory-accessible AXI Lite bus.

IV

Indice

1. Introduccién
1.1. Motivacién y contexto

1.2. Objetivos y alcance

1.3.
1.4.
1.5.
1.6.

2. Fundamentos

2.1.
2.2.

2.3.
2.4.

3. Diseno de un procesador BPF basico

1.2.1.
1.2.2.
1.2.3.

Contribuciones
Metodologia y entorno de trabajo
Planificacién

Estructura del documento

Ruta de datos segmentada

BPF

2.2.1.
2.2.2.
2.2.3.
2.24.

Metodologia de depuracion y testing

Trabajos relacionados oL

Objetivos generales
Objetivos especificos

Alcance

W W N NN e

Mapas e e e
Hardware Offload

Arquitectura de Lenguaje Maquina

N T o o O ot ot ot G

©

3.1. Rutadedatos

3.2.

3.1.1.
3.1.2.
3.1.3.
3.1.4.
3.1.5.

Controlde PC 9
Busqueda de operandos 11
Escritura del resultado oL 12
Control de los bancos de etapa 12

Gestion de excepciones y detenciéon del procesador 13

Descripcion de componentes 14

3.2.1.

Banco de registros o 14

3.2.2. Verificador de saltos (Branch Checker)
3.2.3. Unidad Aritmética Logica (ALU)
3.2.4. Interfaz de memoria de datos
3.2.5. Unidad de funciones auxiliares (HFU)

3.3. Metodologia de pruebas

3.3.1.

Ensamblador . .

4. Integracion de un procesador BPF en un sistema baremetal

4.1. Procesador BPF como periférico L.

4.1.1.

MicroBlaze y protocolo AXIT

4.1.2. Moédulo de entrada-salida y memoria

4.2. Interaccién con el procesador

4.2.1. Registros de control
4.2.2. Escritura del programa y arranque
4.2.3. Accesos concurrentes a memoria compartida
4.2.4. Gestibn demapas

4.3. Metodologia de pruebas

4.4. Prueba de concepto . . .

5. Conclusiones y lineas abiertas

5.1. Diseno de un microprocesador para la ISA BPF

5.2. Lineas abiertas

Bibliografia

Siglas

Lista de figuras

Lista de tablas

Lista de listados de cédigo

Anexos

A. Dedicacién

B. Conjunto de Instrucciones eBPF

C. Descripciéon RTL de instrucciones en la ruta de datos

VI

19
19
19
20
20
22
22
23
24
25
26

29
29
30

31

35

39

41

43

44

47

49

55

. Control de la ruta de datos 59

D.1. Unidad de Control (CU) 59
D.2. Unidad de Riesgos (HU) 61
D.3. Unidad de Anticipacién (FU) 63
D.4. Unidad de Excepciones (EU) 65
. Detalles de implementacién por componente 67
E.1. Verificador de Saltos (BC) oL 67
E.2. Unidad Aritmética Logica (ALU) 68
E.3. Interfaz de memoria de datos 71
E.4. Unidad de funciones auxiliares (HFU) 74
E.5. Controlador AXT 75
. Funciones definidas por el usuario 77
. Pruebas de integracion 79
G.1. Programas de pruebao 79
G.2. Ejemplo de testbench 100
G.3. Ejemplos de visualizacién de senales 105
. Cbédigo de demostracion 109
H.1. Biblioteca de interacciéon con el periférico 109
H.2. Ejemplo de programa 116

VII

VIII

Capitulo 1

Introduccion

1.1. Motivaciéon y contexto

Berkeley Packet Filtering (BPF) es una tecnologia que permite ejecutar programas
a distintos niveles dentro de la pila de protocolos del kernel de Linux. Consiste en una
Arquitectura de Lenguaje Maquina (ALMA) (ISA) interpretada por un compilador
Just-In-Time (JIT) con el objetivo de ofrecer una forma segura y flexible de acceder a
un contexto privilegiado que, de otra forma, requeriria recompilar el kernel o confiar
en un modulo [1].

En los ultimos anos se ha visto su potencial més alla del simple filtrado de paquetes
para ganar ancho de banda y reducir la latencia introducida por el Sistema Operativo.
Como consecuencia, surge el concepto BPF Hardware Offload que busca reducir la
carga del procesador, delegando a la Tarjeta de Interfaz de Red (NIC) la ejecucion el
programa.

Este proyecto pretende explorar las opciones de diseno que aparecen a la hora de

desvirtualizar la arquitectura BPF.

1.2. Objetivos y alcance

1.2.1. Objetivos generales

Mediante la realizacion de este Trabajo de Fin de Grado (TFG) se persigue, por una
parte, la consolidacion y ampliacién de conocimientos y competencias relacionados con
arquitectura y organizacion de computadores y sistemas empotrados adquiridos durante
la titulacion. Por otra, se busca un acercamiento a la realidad y practica investigadora

e industrial en el campo.

1.2.2. Objetivos especificos

— Estudio de la tecnologia BPF, interfaces, aplicaciones e ISA.

— Diseno de un ntcleo BPF basico.

— Disenio de un nucleo BPF integrable en un sistema empotrado.

1.2.3. Alcance

— Implementacion en VHDL de un procesador BPF béasico auténomo.

— Implementacion en VHDL de un procesador BPF integrado con un procesador

softcore en un sistema baremetal sobre una Field-Programmable Gate Array (FP-
GA) Xilinx Kintek 7°.

El codigo fuente desarrollado para este proyecto estd a disponible en https://
github.com/uz-gaz/bpf 1.

1.3. Contribuciones

La consecucion de los objetivos anteriores ha generado las siguientes contribuciones:
— Disefio original de un procesador BPF

— Solucién original al disefio del subsistema de memoria de un procesador BPF que

soporta primitivas de acceso atémico.

— Solucién al problema de comparticiéon de memoria con un procesador de propésito

general sobre una FPGA.

— Modificaciéon y correccion de un programa ensamblador para soportar el reperto-

rio de instrucciones BPF maés reciente.

Este TFG contribuye a las metas 9.2 / 9.2.1; 9.4 / 9.4.1; 9.5 / 9.5.2 de los Objetivos

de Desarrollo Sostenible.

1.4. Metodologia y entorno de trabajo

El cédigo de este proyecto se ha desarrollado haciendo uso del editor Visual Studio
Code [5], con ayuda de la extensiéon Modern VHDL [6], con Git [7] como herramienta
de control de versiones.

Para la simulacion del c6digo VHDL del procesador se ha utilizado GHDL [8].
GTKWave [9] se ha empleado para visualizar los cronogramas con la evolucién de
las senales en cada simulacion. Al ser programas de linea de comandos el proceso de

simulacion se ha automatizado con scripts de Bash [10]. Durante el tiempo que se ha

2

https://github.com/uz-gaz/bpf_1
https://github.com/uz-gaz/bpf_1

trabajado en un sistema operativo Windows se ha utilizado MSYS2 [11] para emular
un entorno similar a Linux.

Con el paquete de software de Vivado 2024.1 [12] se ha podido evaluar el procesador,
integrarlo con un softcore, y desarrollar programas en C que permiten verificar su
funcionamiento.

Para elaborar esta memoria se ha utilizado Overleaf [13] como editor colaborativo
de IXTEX. Los diagramas de este documento son de elaboracién propia, creados con la
aplicaciéon web Diagrams.net [14].

La metodologia y entorno especifico de las partes experimentales se describen en
las Secs. 3.3, 4.3 y 4.4.

1.5. Planificacion

Este proyecto se ha planificado en dos partes: la primera dedicada al disefio e imple-
mentacién del procesador BPF y la segunda enfocada en su integracién como periférico
en un sistema baremetal. Las partes estan pensadas para dedicarles un mes de desarro-
llo a cada una. El trabajo es progresivo, con fases de andlisis, diseno, implementacion
y pruebas en cada uno de los sistemas desarrollados, y concluye con la elaboracion de
esta memoria. En el Anexo A aparece el diagrama de Gantt que muestra la distribucion

del trabajo a lo largo de las semanas.

1.6. Estructura del documento

Esta memoria de TFG se estructura como sigue. El Cap.2 introduce los conceptos
necesarios para el seguimientos de la memoria y sitta el proyecto dentro del estado
actual de la tecnologia BPF. El Cap. 3 esta enfocado en el disefio de un procesador
BPF, explicando el funcionamiento interno de la ruta de datos implementada y los
componentes que la conforman. El Cap. 4 trata sobre la creaciéon de un acelerador a
partir de este procesador BPF, la especificaciéon de un protocolo de interaccion basado
en registros y su conexioén con un procesador de propésito general dentro de un SoC

sintetizable en FPGA. Finalmente, el Cap. 5 recoge conclusiones y lineas futuras.

Capitulo 2

Fundamentos

2.1. Ruta de datos segmentada

El disefio de este procesador se basa en la arquitectura segmentada en cinco etapas
original del MIPS. Se considera necesario para el seguimiento de esta memoria entender

los siguientes conceptos bésicos, para los que remitimos p.ej. a [15] y [16]:

— Riesgos de datos, estructurales y de control.
— Anticipacién de operandos.

— Consolidacién de instrucciones.

2.2. BPF

2.2.1. Programas BPF y usos

Los programas del sistema Berkeley Packet Filtering (BPF) son objetos binarios
cargados por un usuario con privilegios limitados para actuar en distintos puntos
de la pila de protocolos de red del kernel, llamados hooks. Dependiendo del tipo
de programa especificado, este se puede ejecutar al recibir un paquete en un soc-
ket — SOCKET _FILTER-, al aplicar disciplinas de colas de Linux (queue discplines,
q_disc)1 — SCHED _CLS- o antes incluso de llegar al dominio del kernel — XDP—. La
gran variedad de hooks permiten utilizar programas BPF no solo para filtrado de pa-
quetes, sino como balanceador de carga, proteccion contra ataques de denegaciéon de
servicio, o acelerador de servicios [17]. También es posible usarlos para depurar funcio-

nalidades del kernel.

'Es el momento en el que se cargan las gdiscs que se hayan configurado mediante el comando tc
de Linux

2.2.2. Mapas

Los mapas representan regiones de memoria compartida entre los programas BPF
y de usuario. Se accede a sus elementos mediante funciones auxiliares, explicadas con
mayor profundidad en la Sec. 3.2.5. Los mapas también pueden ser de varios tipos,
segun se comporten como arrays de elementos contiguos, tablas hash, o estructuras
mas complicadas, como array de sockets u otros mapas.

Los mapas perduran mas que los programas. Si el usuario elimina un mapa mientras
hay un programa cargado que lo referencia, el kernel no lo elimina por completo hasta
que el programa, a su vez, se descargue. El binario de un programa que use un mapa
precisa ser modificado en tiempo de carga para reubicar las referencias al mapa.

El usuario maneja programas y mapas mediante comandos, utilizando la llamada
al sistema bpf () [18].

Remitimos a la documentacién oficial de BPF para Linux [19][20] para ampliar

informacion sobre los diferentes tipos de programas y mapas.

2.2.3. Hardware Offload

El objetivo del Hardware Offload es incrementar el rendimiento, eximiendo al ker-
nel, y en consecuencia al procesador principal, de ejecutar programas BPF en los hooks
mas bajos. Las NIC con soporte offload actiian como aceleradores. Permiten la carga
de programas BPF a través de recursos como XDP y qdisc para su ejecucion local,
con lo que escapan a la planificacion del kernel. Los mapas también pueden ser confi-
gurados como locales a las NIC para permitir el acceso rapido desde estos programas.
Con hardware offload es posible programar moldeadores de trafico (traffic shapers) y

encaminadores flexibles y 4giles de modificar, con una latencia y jitter minimos [2].

2.2.4. Arquitectura de Lenguaje Maquina

eBPF es el sucesor de lo que actualmente se conoce como Classic BPF?. Original-
mente, los programas BPF utilizaban dos registros y un conjunto de instrucciones de 32
bits. La versién extendida amplia el niimero de registros a 10 de propdsito general y un
Frame Pointer (FP) de solo lectura. Las instrucciones estan codificadas en 64 bits, que
incluyen dos registros — fuente y destino —, un offset y un inmediato, ademas de la clase
de la instruccién — salto, aritmética o memoria —y un cédigo de operacién (Fig. 2.1). El
Anexo B contiene una descripcién en pseudocodigo de las instrucciones consideradas

en este proyecto. La informacion detallada sobre la ISA se encuentra en [21].

2Siguiendo una practica habitual, este documento utiliza BPF para referirse a la versién extendida.
Para la version clasica se recomienda utilizar el acréonimo especifico cBPF

6

opcode |dst|src offset imm
8 4 4 16 32
"""""""""""""""""" class € { LD, LDX, ST, STX,
0 213 |4 7 ALU, JMP, JMP32, ALU64 }
class |s code
code € { ADD, SUB, MUL, DIV, ...,
3 1 4 JA, JEQ, JGT, JLT, ... }
0 23 41 ! source (s) € { IMM, REG }
class |size | mode

3 2 3 mode € { IMM, MEM, MEMSX, ATOMIC }

Figura 2.1: Formato de una instrucciéon BPF

2.3. Metodologia de depuracion y testing

Los testbenchs son el principal método de depuracion en VHDL. Son entidades
especificas para simulacién, que encapsulan a la entidad a probar y controlan el valor
de las senales con eventos de tiempo. Uno de los testbenchs del proyecto esta presente
en el Anexo G.2 a modo de ejemplo.

VHDL permite automatizar las comprobaciones, lo que es especialmente 1til en
pruebas de caja negra. Cuando lo que se pretende verificar es el comportamiento in-
terno, se trabaja con un visor de ondas para observar el valor de las senales en cada
instante de tiempo. El Anexo G.3 incluye ejemplos de visualizacion de senales.

Los tests desarrollados para este proyecto se describen junto a sus objetivos en las
Sec. 3.3 y 4.3.

2.4. Trabajos relacionados

El Hardware Offload es una préactica en auge. Empresas como Corigine y Netronome
tienen lineas de desarrollo de SmartNIC, cuyos drivers para Network Flow Processor
(NFP) ya han sido integrados en el kernel de Linux. Sus procesadores no implementan
la arquitectura BPF, sino que se basan en arquitecturas comerciales de uso extendido.
En su lugar cargan los programas ya traducidos en la memoria de instrucciones. Este
proyecto se basa en los documentos técnicos publicados por Corigine [22] para planificar
la disposicion de la RAM dentro del periférico. Estos documentos han sido necesarios
para entender el acceso a mapas locales a la NIC.

La ruta de datos del procesador disenada en este trabajo se inspira en los engines
de la plataforma eBPFlow [23]. Consiste en una implementacién sobre una NetF'PGA —

una FPGA especial para desarrollar dispositivos de red— de un NFP especializado para

7

programas BPF, con un procesador con ruta de datos segmentada en cinco etapas. Cabe
mencionar que esa implementacion necesita de software propio tanto para compilar los
programas BPF como para cargarlos en la FPGA. Este proyecto intenta acercarse a
esa idea de desarrollar un procesador especifico para la ISA BPF, pero més acorde con

la forma de interaccion propia de Linux.

Capitulo 3

Diseno de un procesador BPF
basico

El siguiente capitulo resume los detalles de diseno de un procesador BPF. El nticleo
(core) es capaz de ejecutar el repertorio completo de instrucciones eBPF, a excepcién
de aquellas de legado, las codificadas en 128 bits para acceso directo a mapas, y las lla-
madas a funcién (esto se justifica en la Sec. 3.2.5). También cuenta con la capacidad de

generar excepciones y gestionar sefiales externas para detener y reanudar la ejecucion.

3.1. Ruta de datos

La Fig. 3.1 contiene un diagrama completo de la ruta de datos disefiada, sobre la
que se recomienda apoyar la lectura. En el Anexo C se ha anadido la descripciéon RTL

elaborada con las acciones tomadas por cada instruccién.

3.1.1. Control de PC

El espacio de direccionamiento de las instrucciones BPF es de 64 bits. En cada
ciclo, PC apunta a la siguiente instruccion dentro de la memoria de instrucciones y se
incrementa en 1 para avanzar la ejecuciéon. La palabra leida se carga en el registro IR
y se decodifica al siguiente ciclo.

La ISA BPF especifica salto no retardado. Las instrucciones de salto obtienen el
offset y el inmediato en la etapa de decodificacién (ID), y calculan el valor potencial
de PC para salto tomado sumando uno de los dos a PC' + 1. El valor decodificado
debe entenderse como el nimero de instrucciones saltadas: ja 1 evita la ejecucién de
la siguiente instruccién, ja 0 es en efecto una NOP!, y ja -1 es un bucle infinito. Para
saltos incondicionales de 32 bits (jal) se utiliza el inmediato. Para el resto se emplea

el offset.

1Se entiende como NOP una instruccién sin efectos; no escribe en el banco de registros ni tiene
efectos colaterales.

Forwarding

Unit
i EX_taken_branch EX-branch
ID_ jump EX_alu64 EX_atomic_op —>>
ID_branch A\
1 A
! 0 1 S
Y] MEM_atomic
0 EX_fw_token Branch |nKv —
0 n:moxmﬂ_l_ EX_call o [~ VeH-ready
+ @Pmu_aal_ —>| 1 op atomic =
. 1 N/ 1 © token ©
10_32b_ jump H EX_write_en ..AM data 2
A r 5 S g
— £
B Data
—
+1 | 2 —>{@ Mem
(&) 3
o 5 Iface
s wr_en
rd_en |[&—
ID_opcode Token (&) Sz
rA A b/
ID_dst_reg _¢ rB B e MEM_value_size
Mem Re EX-call MEM_read_en
W —> m ID_src_reg —— g EX_atomic_op MEM_write_en
Inst Bank EX_source
ID_offset .. —>{rw wr_en EX_force_imm MOV EX_value_size
rd-en D_imm32 an__can " Bx-op
load_PC - \M/ x 4 al
_signed_alu p1 dout
ID_call EX_call 2 Helper > MEM_men_to_reg
load_IF EigD) EX_64b_1am >3 Functions
- EX_A—>{p4 Unit
H 5 MEM_call
EX_B—>{ P!
ID_discard_IF WB_write_ré 0
ID_make_noop WB_reg_write “
EX_taken_branch 1 ¥
EX_taken_branch EX_read_en load_EX load_MEM
) load_ID EX_write_en
Hazard Unit
block_ID
—
N CONTROL SIGNALS _ll_ _ll_ _ll_
Control Unit > > > >
nop nop
—
Exception block_EX block_MEM
Unit . 1D_make_noop
—=>exception_stage EX_make_noop

MEM_make_noop
WB_make_noop

ID

CTRL_exception >
CTRL_finish &
CTRL.sleep &———]

Figura 3.1: Esquema completo de la ruta de datos disenada

10

La direccion definitiva de salto no se conoce hasta la etapa ID, por lo que es nece-
sario descartar la que actualmente estd siendo leida en IF. Eso se consigue activando y
guardando la sefial de control ID_discard_IF en el banco de etapa ID para que la apli-
que al siguiente ciclo y anule las senales de control. Los saltos condicionales se evaliian
(tomados o no) en la etapa EX, por lo que en caso de cumplir la condicién de salto,
ademés de descartar IF, deben descartar la instruccién en ID (sefial EX_taken_branch).

El registro IR no contiene una instrucciéon valida al comenzar la ejecucién del
programa. Para evitar que se ejecute codigo con comportamiento indefinido la senal

ID discard del banco de etapa ID se resetea a activa.

3.1.2. Bisqueda de operandos

Las instrucciones pueden utilizar como operandos los valores de los registros A, B
o token?. Para evitar paradas por dependencias productor-consumidor, tanto la ALU
como el resto de bloques que los utilizan pueden leer el valor anticipado desde los bancos
de etapa MEM y WB; si asi lo requieren. El control de los multiplexores de anticipacion
lo controla la Forwarding Unit (FU). Adn asi, hay casos como el de una productora en
etapa MEM seguida de consumidora, que obligan a detener la instruccion en etapa ID.
Ese tipo de acciones las controla una Hazard Unit (HU). En los Anexos D.3 y D.2 se
detalla el funcionamiento de ambas unidades.

Las operaciones aritméticas y los saltos condicionales leen siempre el registro destino
desde A, pero el valor fuente puede venir tanto de B como del inmediato (extendido
de signo a 64 bits). Estas instrucciones tienen versiones de 32 bits. En estos casos se
truncan los 32 bits mas significativos de las entradas de la ALU y el Branch Checker
(BC), asi como la salida de la ALU.

Las instrucciones de acceso a memoria calculan la direccién sumando el offset (con
extension de signo) al registro fuente, en el caso de un store u operaciones aritméticas,
o al registro destino, en el caso de un load. El dato a escribir en memoria se puede
obtener del registro fuente o del inmediato, segiin la instruccion sea stx o st.

Existe ademas la instruccién 1d64, capaz de cargar un inmediato de 64 bits codifi-
cado en dos instrucciones. Para implementarla se ha reutilizado el camino de la ALU
inyectando una operacién mov.

Las funciones auxiliares se ejecutan en fase MEM, pero también reciben parte de
sus operandos del banco de etapa EX, con el fin de reutilizar recursos ya disponibles.

Lo hace con una doble fase de lectura:

2El token es un tercer parametro implicito en la instruccién atémica cmpxchg. Normalmente es
r0. También sirve como valor de salida del procesador, y para agilizar la lectura de los parametros de
funciones auxiliares (en cuyo caso es ri).

11

1. La primera vez carga rl, r2 y r3 en token(EX), A y B respectivamente. En la
etapa EX se encarga de trasladar esos valores a token(MEM), data y C, obtenidos

mediante anticipacién si fuera necesario.

2. La segunda vez carga r4, r5 en A y B. Como la FU no asegura que el valor
anticipado permanezca intacto durante mas de un ciclo, los parametros p4 y p5

siempre son leidos desde el banco de registros® (asegurado por la HU).

En la Tab. C.5 hay una descripcion RTL de este mismo proceso que puede facilitar

la comprensién.

3.1.3. Escritura del resultado

El resultado generado por las instrucciones se guarda en el banco de registros en la
etapa WB. El valor a escribir se obtiene de la salida de la interfaz de memoria, de la
Helper Function Unit (HFU) o del dato generado en EX, dependiendo de las seniales
de control.

Los componentes de la RAM incluyen registros internos para optimizar el tiempo
de ciclo. Por este motivo, el dato leido de memoria se almacena en un registro interno
de la interfaz de memoria de datos (mem_val) en lugar de en el banco de etapa WB.
Dicho interfaz asegura que el valor en mem_val esta disponible al ciclo siguiente, junto
con el resto de valores de WB. Si el dato leido de memoria se guardase en el banco de
etapa se generaria una latencia adicional de un ciclo.

Por lo general, el registro escrito corresponde al registro codificado como destino.
Sin embargo, las operaciones atomicas que tienen activado el flag FETCH escriben su
resultado en el registro fuente. Por ello, se multiplexa el registro destino en etapa EX.
Las funciones auxiliares y la instrucciéon cmpxchg escriben en rO de forma implicita,
por lo que se ha habilitado en el banco de registros una senal especifica para escribir

en r0.

3.1.4. Control de los bancos de etapa

Una instrucciéon en una etapa concreta consiste en los datos que transporta y las
seniales de control que la hacen efectiva en esa etapa y las siguientes. Para que la
informacién avance, los bancos de etapa tienen habitualmente su senal load activa,
salvo en ciertas circunstancias.

Por lo general, las etapas disenadas se ejecutan en un ciclo (i.e., la instruccién per-

manece un ciclo en esa etapa y progresa a la siguiente). Sin embargo, ha sido preciso

3Si una funcién auxiliar requiere méas de tres pardmetros siempre se pueden preparar p4-p5 antes
que p1-p3 y se elimina el ciclo de detencién.

12

diseniar etapas multiciclo para implementar algunas operaciones que reutilizan compo-
nentes de una etapa dada. Dado que disenamos una microarquitectura en orden, una
etapa multiciclo supone detener las instrucciones de las etapas anteriores. Por ello, las
unidades funcionales de las etapas multiciclo presentan una senal de salida ready que
detiene las instrucciones siguientes si esta inactiva. La senal se activa de nuevo en el
ultimo ciclo de uso de la unidad funcional que corresponda.

Detener una etapa implica lo siguiente:
1. Los bancos de las etapas anteriores mantienen sus valores (se inhibe su escritura).
2. Las etapas posteriores avanzan de la forma natural.

3. En consecuencia, el banco de entrada a la etapa bloqueante se mantiene mientras

que el de salida se escribe con las senales de control anuladas.

Si coincidiera que hay dos etapas detenidas a la vez, lo anterior solo se aplica a la

mas avanzada (ver Fig. 3.2).

3.1.5. Gestion de excepciones y detencién del procesador

Los programas BPF no generan excepciones. La ISA define la divisiéon entera de
modo que devuelve un cero si el denominador (registro fuente) es cero, sin producir
excepcion. El verificador de Linux comprueba durante la carga del programa los accesos
a direcciones no permitidas. No obstante, la ejecucion de codigo con comportamiento
indefinido puede resultar en un estado irrecuperable del procesador. Para evitarlo, se
decidié anadir una Exception Unit (EU) que interactie con el sistema de detencién en

los siguientes casos:
1. Decodificacion de una instruccién ilegal o no implementada.
2. Lecturas y escrituras en registros inexistentes, o escrituras r10 (solo lectura).
3. Acceso a zonas de memoria restringidas.
4. Llamadas a funciones auxiliares inexistentes.

El funcionamiento de la EU esta descrito con méas detalle en el Anexo D.4.

La detencién del procesador puede ocurrir por excepcion, senal externa para dormir
al procesador o ejecucion de la instruccion exit. Cuando se da una de estas situaciones
se elige la etapa bloqueante, y se activa una senal que detiene el avance de todas las
anteriores, permitiendo consolidar a las posteriores. Se toma como etapa bloqueante

bien la que ha generado la excepcién, o bien la etapa ID en el caso de fin de programa

13

blocked
| IF - EX

| MEM_ ready
addx64 r10 r8 -0x20 | IF | ID | EX MEM | WB
div r3 r4 IF | ID EX [EX | EX |MEM| WB
EX_ready
(a) La etapa MEM dura més que la etapa EX
MEM_ready

addx64 r10 r8 -ex26 | IF | ID | EX
div r3 r4 IF | ID EX [MEM| WB

[blockea 15%-reed

IF - ID

(b) La etapa EX dura més que la etapa MEM

Figura 3.2: Situaciones con etapas multiciclo ejecutadas simultaneamente

o procesador dormido. Si una etapa posterior genera excepcion mientras el procesador
esta en proceso de detencion, se convierte en la nueva etapa bloqueante, reemplazando
a la anterior.

Consolidar todas las instrucciones anteriores a la que ha generado excepcion tiene
como objetivo establecer un comportamiento bien definido (estado en orden del proce-
sador) frente a excepciones. Ademds, permite que la instruccién exit solo tenga que
llegar a etapa ID para actuar. Solo cuando han consolidado todas las instrucciones que
debian, se puede activar la sefial de salida que indica la excepcién, fin de programa
o que el procesador esta dormido. En ese momento, el procesador puede reiniciar la
ejecucion, por medio de la senal de reset, o reanudarla donde la dej6, en caso de estar

dormido.

3.2. Descripcién de componentes

3.2.1. Banco de registros

Este componente consiste en un array de registros de 64 bits con dos puertos de
lectura (A y B), y uno de escritura (W). Se ha diseniado especificamente para adaptarse a
las necesidades de la ruta de datos BPF. Asi, permite en todo momento leer el registro
r0 como token y dato de salida del procesador, activa la escritura en r0 a través de una
senal dedicada (wr_RO), y presenta dos entradas adicionales para extraer los parametros
de las funciones auxiliares de acuerdo al protocolo explicado en la Sec. 3.1.2.

La lectura de A y B es asincrona, mientras que la escritura es sincrona con el flanco

de bajada del reloj. Todos los registros del procesador se escriben en flanco de subida,

14

a excepcion del banco de registros que lo hace en flanco de bajada. De esta forma, la
operacion de escritura de la etapa WB y la lectura de operandos de la etapa ID se
pueden llevar a cabo en el mismo ciclo. De otra forma, seria necesario un banco de

etapa adicional desde el que anticipar el dato de posibles consumidoras.

3.2.2. Verificador de saltos (Branch Checker)

Este bloque se encarga de comparar los operandos A y B para determinar si un
salto es tomado o no. BPF cuenta con 9 operaciones de comparacién, que se pueden
implementar reutilizando la salida de tres comparadores con las operaciones =, <y &
(Anexo E.1). Se calculan los resultados de todas las comparaciones con légica adicional,

y al final se elige la que corresponde segun el c6digo de operacion.

3.2.3. Unidad Aritmética Légica (ALU)

BPF tiene 17 tipos de operaciones aritméticas. Cada una de ellas se calcula en
paralelo a partir de los operandos A y B y el resultado final es multiplexado (como en
el BC). Las funciones y operadores aritméticos de biblioteca en VHDL suelen ser aptos
para su sintesis en FPGA. No obstante, las operaciones division y médulo son mas
complejas y requieren utilizar un componente dedicado.

Se ha hecho uso de un divisor multiciclo de Xilinx para nimeros naturales de 64
bits, generado a partir de un Divider Generator LogiCORE™ IP 4 . El mismo divisor
genera como resultados el cociente y el resto, y se puede utilizar para calcular divisiones
de naturales (div, mod, div32, mod32) o enteros (sdiv, smod, sdiv32, smod32).

El Anexo E.2 describe el trabajo que ha requerido su integracion en la ALU.

3.2.4. Interfaz de memoria de datos

El objetivo de este componente es controlar las operaciones atémicas y de acceso
a memoria, y abstraer a la ruta de datos de los dispositivos de memoria empleados.
También comprueba la direccién de memoria introducida y notifica excepciones a la
EU si corresponde a un espacio de memoria inaccesible.

La memoria empleada es BRAM, generada a partir de un Block Memory Generator
LogiCORE™ IP, que permite lecturas y escrituras en un ciclo (a frencuencias habituales
de FPGA, 50-400 MHz), por lo que loads y stores tienen latencia 1 5. Las operaciones

atomicas se implementan en dos fases: leer y modificar-escribir. Una maquina de estados

4E] entorno de Vivado permite incluir bloques combinacionales predisefiados y configurables —
Intelectual Properties (IP) — dentro del cédigo VHDL.

5Cuando se accede a memoria compartida la latencia total de la instruccién puede variar por el
tiempo que se tarda en adquirir control del bus de memoria.

15

se encarga de controlar los ciclos de lectura y sobre-escritura y ganar acceso al bus
de memoria. En el proceso intervienen selectores de bytes, mascaras de escritura y

multiplexacién, que se explican con mas detalle en el Anexo E.3.

3.2.5. Unidad de funciones auxiliares (HFU)

La ISA BPF contempla dos tipos de llamadas a funcién: de usuario y auxiliares.
Las funciones de usuario son las habituales, las que se incluyen directamente en el
c6digo del programa. Las funciones auxiliares son un conjunto limitado de operaciones
ajenas al codigo (ejecutadas por el kernel, médulos del procesador, aceleradores...) que
permiten ampliar las funcionalidades del conjunto de instrucciones de BPF.

La HFU es la unidad encargada de ejecutar las funciones auxiliares o controlar
su invocacion. Esta disenada como una maquina de estados que avanza en paralelo
junto con las etapas del procesador. De este modo, solo hay que modificar la HFU
para anadir soporte a nuevas funciones, sin tocar la ruta de datos. En esta versién solo
se implementa la funcién bpf_map_lookup_elem, que es la minima utilidad necesaria
para interactuar con los mapas (la gestion de mapas se explica en la Sec. 4.2.4).

La HFU permite consultar el nimero de operandos de una funciéon a partir de su
id y comunica una excepcion a la EU si la funciéon no estd implementada. También
permite generar errores de ejecucién. Obtiene sus operandos en la etapa MEM, pero
también puede ejecutar acciones en EX siempre que no los necesite.

La versiéon final de este procesador no implementa llamadas a funciones de usua-
rio, porque ni el verificador del kernel las permite ni el backend LLVM las compila
correctamente®. Versiones més actuales del kernel permiten su uso bajo determinadas
condiciones [24], por lo que se ha considerado incluirlas en posibles proyectos futuros
con este procesador. En el Anexo F se detallan las consideraciones necesarias para

anadirlas a la ruta de datos.

3.3. Metodologia de pruebas

Los componentes de la ruta de datos se traducen en entidades dentro del codigo
VHDL. Para cada una de las entidades se ha elaborado un testbench con varios tests
unitarios. El procesador en su conjunto se ha evaluado con tests de integracion.

Los tests unitarios son pruebas de caja negra que comprueban automaticamente la

correccion de las salidas generadas por las combinaciones de entradas mas significativas.

6Fl cédigo fuente de un programa BPF suele requerir marcar las funciones como inline para poder
compilar.

16

Los tests de integracién consisten en un conjunto de programas BPF precargados
en una memoria de instrucciones simulada para ser ejecutados por el procesador en
conjunto. Son pruebas de caja blanca, en los que se verifica manualmente el valor de
las senales en cada ciclo de ejecucién. A continuacién, se detalla los programas de

prueba elaborados:

— Test de decodificacién: Su objetivo es comprobar que el procesador reconoce
correctamente todas las instrucciones del repertorio y genera y propaga las senales

de control correspondientes a cada una, sin generar excepciones (Anexo G.1).

— Test de memoria: Verifica el comportamiento de todas las operaciones de me-
moria y atomicas, incluida la detencién de etapas multiciclo y la anticipacion de

operandos en casos problematicos (Anexo G.2).

— Test de ALU: Traslada las pruebas unitarias de la ALU a cédigo BPF a un
entorno con anticipacién. Verifica exhaustivamente las operaciones de divisién y

moédulo ante las senales externas reset y sleep (Anexo G.3).

— Test de control: Contiene todas las instrucciones de salto para evaluar el control
de PC, el descarte de instrucciones y el fin de ejecucion (también por excepciones)
(Anexo G.4).

— Test de HFU: Asume una HFU de pruebas, con funciones con diferente nimero

de operandos para comprobar detenciones, anticipacion y generacion de errores
(Anexo G.5).

Componentes como el divisor y las BRAM no estan disponibles para simulacion fue-
ra del entorno de Vivado, por lo que ha sido necesario crear entidades (no sintetizables”)

que emulen su comportamiento.

3.3.1. Ensamblador

Generalmente, los programas BPF se escriben en C, haciendo uso de la biblio-
teca libbpf [25] para facilitar al programador escribir c6digo de usuario y BPF que
interactien entre si de forma coherente. Para los programas de prueba interesa poder
escribir las instrucciones especificas y obtener su traducciéon en binario. Los compi-
ladores ofrecen intrinsecos, pero anaden instrucciones adicionales (si no se optimiza),
pueden alteran el orden (con optimizacién) y resultan poco practicos para escribir un

programa completo.

"En VHDL es muy sencillo crear de memorias RAM y divisores para simulacién, no asi para sintesis
en FPGA.

17

La solucién es utilizar un compilador de lenguaje ensamblador. A falta de ensam-
bladores consolidados se utiliz6 un proyecto de cédigo libre disponible en github [26],
pero presentaba bugs y no abarca el repertorio de instrucciones mas reciente, por lo
que ha sido necesario parchearlo. El resultado es un ensamblador capaz de traducir a

binario el repertorio completo presente en el Anexo B.

18

Capitulo 4

Integraciéon de un procesador BPF
en un sistema baremetal

Este capitulo trata las consideraciones tomadas para interactuar con el core como
periférico acelerador desde un procesador de proposito general. El resultado es un SoC
sintetizable para FPGA que contiene el procesador BPF acoplado a un procesador

MicroBlaze, comunicados por un bus AXI Lite accesible desde memoria.

4.1. Procesador BPF como periférico

4.1.1. MicroBlaze y protocolo AXI

MicroBlaze es un microprocesador software (softcore) sintetizable para FPGA [3].
En la configuracién elegida, su interfaz de memoria consiste en dos buses de acceso
a memoria local, que usa para alojar y ejecutar programas compilados, y un interfaz
AXT [4] primario® con el que es capaz de acceder a otros chips de memoria y comunicarse
con periféricos mapeados en el espacio de direcciones. Por lo tanto, conectar el core
BPF con el MicroBlaze requiere anadir una interfaz AXI secundaria.

Los buses AXI funcionan con un protocolo semisincrono, en el que ambos dispositi-
vos utilizan la misma frecuencia de reloj. Las transacciones implican un envio de datos
en ambas direcciones (primario pregunta y secundario responde). Cada envio requiere
que el emisor notifique la validez de los datos y que el receptor informe si esta listo
para recibirlos (el orden de senalizacién no se tiene en cuenta).

En particular, el bus de memoria para este MicroBlaze es de 32 bits. Las direc-
ciones son truncadas a la direccién multiplo de 4 més baja (se lee toda la palabra) y
permite escrituras a nivel de byte mediante una mascara. Implementaciones més re-

cientes permiten usar un bus de 64 bits. No obstante, se ha elegido el de 32 bits por

Los buses AXI utilizan terminologia maestro-esclavo para referirse a los nodos. En este docu-
mento se ha optado por los calificativos primario y secundario para diferenciar nodo activo y pasivo
respectivamente.

19

compatibilidad con la mayorfa de placas de desarrollo con FPGAZ. En la Sec. 4.2.3 se

explican los problemas que conlleva esa decision.

4.1.2. Mobdulo de entrada-salida y memoria

El procesador BPF es solo una parte de un periférico que lo integra junto a un
IOMM. Este IOMM controla los chips de memoria empleados por el procesador, una
unidad de mapas y la interfaz de conexion con el exterior (en este caso el bus AXI).
Se comunica con el core BPF a través interfaces (como la vista en la Sec. 3.2.4) que
abstraen los protocolos especificos. Gracias a la existencia de este modulo el mismo
procesador puede ser utilizado en combinacién con otro IOMM, permitiendo que el
periférico utilice un bus diferente, tenga mas memoria o soporte mas de un core.

La Fig. 4.1 muestra el esquema del IOMM desarrollado. Este cuenta con varios
modulos de memoria. Cada uno de ellos es un chip diferente de BRAM, de manera
que el procesador pueda leer instrucciones a la vez que realiza operaciones de memoria.
Con esto también se logra que el acceso a memoria no compartida no precise arbitraje.

La memoria de instrucciones tiene capacidad para 4096 instrucciones (32 KB) por-
que es el tamano maximo para cualquier programa BPF en Linux.

La memoria no compartida contiene el espacio de pila del programa — 512 Bytes, es
el tamano de pila de los programas BPF en Linux — y una regiéon de 2 KB adicionales
para el contexto. Por ejemplo, un programa XDP accede al paquete con un puntero
recibido a través de rl. Esta region extra sirve para albergar dicho paquete®.

El tamano dedicado a la memoria compartida es de 28 KB, para completar un es-

pacio de memoria en el dispositivo de 64 KB (en la Sec. 4.2 se muestra su distribucion).

4.2. Interaccién con el procesador

El MicroBlaze puede interactuar con el core BPF por medio de lecturas y escrituras
a las direcciones de memoria donde se encuentra mapeado este ultimo. La Fig. 4.2
muestra la distribucion escogida para las zonas de memoria y las direcciones en las que
se ha decidido situar los registros de control. A las direcciones mostradas se les debe
sumar la direccién base del periférico, que varia dependiendo de la configuracion del
bus AXI. El Anexo E.5 detalla el disenio del controlador AXI implementado en este

proyecto.

2Algunas placas incluyen un microprocesador de propésito general cuyo uso se prefiere al de un
softcore y cuyo bus AXI no puede ser configurado, como es el caso de los SoC de la serie Zynq.
3El contexto es dependiente del tipo de programa BPF y no estd limitado a paquetes

20

CORE

I

Data Mem Iface

Control Reg Inst Mem Iface

¢

E%jAXI_CONTROLLER

Map Access Iface

~ Arb
/$\ /$ Arb
Map Unit
Mem Inst Mem Unshared Mem Shared
I0/MEM

Figura 4.1: Esquema simplificado del médulo de entrada-salida y memoria del periférico

PC > hoooo
32KB Mem Inst
h8oeo
2KB Mem Packet 64b
rgseg | BPF_CORE_CTRL
12B
P Mem Stack " |_BPF_CORE_INPUT
2568 Control BPF_CORE_OUTPUT
o h8Boo ., MAP_REG_0 MAP_REG_1
End of Transaction [h8FFC
hooo0
28KB Mem Shared
hFFFF

21

Figura 4.2: Espacio de direcciones del periférico

4.2.1. Registros de control

Los registros de control del procesador permiten controlar su arranque, parada y
reinicio, ademés de poder cargar valores en el banco de registros y leer la salida del

programa. Las senales se explican en detalle en la Tab. 4.1.

Tabla 4.1: Descripcion de los bits dentro del registro de control BPF_CORE_CTRL

Valor
Bit | Senal Acceso | Descripcion en
reset

3:0 | reg_dst r/w Ntmero de registro sobre el que escribir. Valores 0
mayores a 10 no tienen ningtn efecto.

4 reg_write | r/w Cuando esta senal estd activa el registro 0
reg_dst queda escrito con el valor presente
en BPF_CORE_INPUT.

Cuando esta senal estd activa el procesador inicia
la detencion del pipeline. Cuando es desactivada la
ejecuciéon se retoma con normalidad desde la ins-
truccion en la que se quedd detenido.

5 sleep r/w d d
Advertencia: No se debe considerar que el procesa-
dor esta detenido con solo activar la sefial. Para ello
hay que comprobar el estado de la senal sleeping.

El procesador activa esta sefial para indicar que el
pipeline ha quedado detenido. Siempre esta desac-
tivada en caso de que sleep también lo esté.

6 sleeping | r Advertencia: El programa en curso puede termi- 0
nar o generar excepciones mientras el procesador
estd en proceso de detencién, en cuyo caso esta se-
nal no se activa.

7 exception | r El procesador activa esta senal para indicar 0
que ha ocurrido una excepcién. En ese caso,
BPF_CORE_QUTPUT contiene el nimero de instruccién
que provocd la excepcién.

8 finish r El procesador activa esta sefial para indicar que el 0
programa ha finalizado satisfactoriamente. En ese
caso, BPF_CORE_OUTPUT contiene el valor devuelto
por el programa (r0).

9 reset r/w Cuando esta senal estd activa reinicia el estado del 1
procesador, PC apunta a la primera instruccién y
el valor de los registros queda en 0. Los valores en
memoria no se ven alterados.

4.2.2. Escritura del programa y arranque

Con las herramientas disponibles, el proceso de cargar y ejecutar un programa se

resume en:

22

1. Dormir al procesador y activar reset.

2. Escribir el programa en la memoria de instrucciones.
3. Desactivar reset.

4. Escribir el valor inicial del FP en r10.

5. Despertar al procesador.

El resultado de la ejecuciéon se obtiene por encuesta. El MicroBlaze tiene soporte a
interrupciones, de modo que notificar el fin de programa mediante interrupcion seria
la opciéon mas sensata, al menos de cara a introducir soporte en un sistema operativo.

No obstante, se ha decido simplificar el protocolo para un primer acercamiento.

4.2.3. Accesos concurrentes a memoria compartida

Cuando se escribe en memoria no compartida desde la interfaz AXI el procesador
BPF debe estar detenido, de lo contrario la operacién no producird ningin cambio. En
el caso de leer en esta zona de memoria con el procesador en marcha, no se asegura
que el dato leido sea correcto.

Si el acceso es a memoria compartida, entra en juego el modelo de memoria. BPF no
tiene definido un modelo de memoria. Mas bien es dependiente del modelo de memoria
de la plataforma en la que se ejecuta [27]. El procesador BPF diseniado en este TFG
garantiza que las instrucciones de memoria son atémicas en memoria compartida, por
medio de un arbitro que limita el acceso al bus y permite bloquearlo hasta completar
la operacién. De esta forma la interaccion con los elementos de un mapa se reduce a
operaciones de memoria y no requiere incluir nuevas funciones auxiliares. Sin embargo,
esta garantia no se puede aplicar a los accesos externos, debido a que el bus AXI es de
32 bits y las operaciones de 64 bits requieren dos transacciones.

Una forma de permitir accesos atémicos desde el exterior seria hacer visible un
semaforo desde el bus AXI que permita bloquear las operaciones de memoria del core
BPF hasta completar las transacciones necesarias. El problema de esta alternativa es
que el tiempo de ejecucion de los programas pasa a depender en gran medida de la
carga de la CPU — justamente lo que se pretende evitar con el Hardware Offload.

La solucion escogida no implica bloqueos y proporciona mas independencia al pro-
cesador BPF:

— Lecturas y escrituras menores a 32 bits se ejecutan en una Unica transaccion.

23

— Cuando se lee un dato de 32 bits, el IOMM almacena la direccién y carga la
palabra de 64 bits en el que esta contenido en un bufer. Si la siguiente transaccion
es la lectura de la otra mitad de la palabra (cuando la direccién guardada y la
actual unicamente se diferencian en el tercer bit menos significativo), el dato es
leido desde el bifer, en lugar de volver a acceder a memoria. Cualquier transaccion

distinta a esta invalida el bufer.

— Cuando se escribe un dato de 32 bits, el [IOMM almacena la direcciéon y lo guarda
en un bufer sin escribirlo en memoria. Si la siguiente transaccion es la escritura
de la otra mitad de la palabra, el dato guardado y el actual se escriben en una
unica operacion. Cualquier transaccién distinta a esta vacia el bufer y obliga a

escribir el dato en memoria antes de continuar con la transaccién actual.

— Se puede forzar la invalidacion o el vaciado del bifer escribiendo cualquier valor
en la direccién anterior a la direccién base de la memoria compartida. (End of
Transaction). Esto evita problemas cuando dos transacciones distintas de 32 bits

se confunden con una de 64 bits emulada.

El arbitraje implicado utiliza un sistema con prioridad LRU, con el fin de evitar

inanicién. Su légica interna se puede observar en la Fig. 4.3.

4.2.4. Gestion de mapas

Los mapas de BPF dejan libre a la implementacion el tipo de mapas soportados, asi
como el limite en el tamano de la clave y el valor de cada elemento. La unidad de mapas
del IOMM soporta mapas de tipo array de hasta 64 bits de clave y/o valor. Actia como
una base de datos con informacion sobre los mapas cargados. Cuando la HFU requiere
calcular la direccion de un elemento cualquiera en un mapa, consulta a la unidad
de mapas el identificador del mapa y esta le devuelve un registro con la informacién
descrita en la Tab. 4.2. El Anexo E.4 muestra los detalles de implementacién de una

HFU que permite la bisqueda de elementos a partir de dicha informacion.

Estos registros se pueden escribir desde el bus AXI. La gestion del espacio de memo-
ria ante la creacion y destruccion de nuevos mapas es responsabilidad del software, que
se debe encargar de preparar los registros con la informacién correcta. El Anexo H.1
contiene el codigo fuente de un ejemplo de biblioteca elaborada en este proyecto para

acceder al periférico, e incluye funciones para configurar hasta dos mapas.

24

PRIO_0O

granted_©
req6 oo [bus_frame
req_1 [}
granted_o
granted_1 PRIO_O -
PRIO_1 granted_1
(a) Logica combinacional del drbitro (b) Estados del drbitro

Figura 4.3: Arbitro con prioridad LRU

Tabla 4.2: Descripcion de los valores contenidos en un registro de control de mapa
(MAP_REG_X)

Valor
Bit Senal Acceso | Descripcion en

reset
11:0 | base_ptr r/w Direccion de la palabra de 64 bits a partir de 0

la cual estd alojado el mapa en memoria. La
direccién es local al dispositivo y omite los 3
bits menos significativos.

13:12 | key_size r/w Tamano de las claves, representado por el lo- 0
garitmo en base 2 del tamafo en bytes.

15:14 | value_size | r/w Tamano de los valores, representado por el lo- 0
garitmo en base 2 del tamaifio en bytes.

30:16 | max_entries | r/w Numero maximo de entradas que puede conte- 0
ner el mapa.

31 valid r/w Esta senal debe estar activa para indicar que 0

el mapa esta correctamente cargado.

4.3. Metodologia de pruebas

En esta fase del desarrollo iinicamente se han realizado pruebas de integracion. A

los programas de pruebas de la Sec. 3.3 se han anadido dos nuevos:

— Test de IOMM: Su objetivo es comprobar el correcto funcionamiento del IOMM
ante todo tipo de transacciones AXI. Comprueba la carga de un programa (Ane-
x0 G.6), la activacion del procesador, el acceso concurrente a memoria compartida
con solicitudes de arbitraje que coinciden en un mismo ciclo y el estado del bifer

ante transacciones de distintos tamanos.

— Test de mapas: Verifica el valor devuelto por las llamadas a la funcion bpf _lookup_elem.
Desde el bus AXI se carga un mapa en la HFU y, con el core en marcha, se mo-

difica el tamano de los elementos del mapa y se altera su id (Anexo G.7).

25

Ambas pruebas requieren testbenchs especificos para generar las transacciones del
bus. Los programas que no necesitan interaccion externa se pueden seguir verificando

usando un testbench de carga de programa (Anexo G.8).

4.4. Prueba de concepto

Alcanzada esta etapa del desarrollo, el periférico esta listo para ser probado desde
el MicroBlaze. El circuito a sintetizar se muestra en la Fig 4.4. Como componentes
auxiliares se han incluido un LogiCORE™ IP Clocking Wizard, que divide o multiplica
la frecuencia de reloj, una memoria local al MicroBlaze para contener el ejecutable y
una salida de UART para depuracién conectada mediante una LogiCORE™ [P AXI
UART Lite interface.

La prueba de concepto consiste en un programa en C que carga un programa BPF
previamente compilado a la memoria de instrucciones, lo ejecuta y aporta retroalimen-
tacion a través de la UART. Un ejemplo de programa y de biblioteca de interaccion
con el acelerador estan disponibles en el Anexo H.

Desde el entorno de Vivado es posible ejecutar una simulacién del diseno utilizando
un testbench capaz de emular una terminal conectada a la UART, utilizando el paquete
textio de la biblioteca estandar de VHDL.

La sintesis en FPGA queda fuera de el alcance de este proyecto. No obstante, se
proporciona la vista de implementacién del disefio en una Xilinx Kintek 7° (Fig. 4.5)
con el fin de distinguir visualmente el uso de recursos de cada componente. En ella se
observa claramente que el componente que hace uso de mas celdas logicas es la ALU,

donde el divisor representa més del 80 % del 4rea utilizada.

26

siaze 0 microblaze_0_local_memory
microblaze_
m I
||+ rerrupt . P DLMB+ I .
W o M Bl i
ICroblaze =, i
MicroBlaze

rst_clk_wiz_1_100M

Lsync_ck m_ H 4 s00_Axt
reset [reset_in bus_struct_reset[0:0] F——=ACLK
Qaux_reset_in peripheral_reset[0:0] = axi_uartite_0
sys_diff_clock —n
= mb_debug_sys_rst interconnect_aresetn[0:0Nh)_ ALK < oo A1 ..
locked peripheral_ AREsETN IS - L UART o [15232 _uart
MOL_AXI [s _axi_aclk
)_ACLK [FEay™ =
Processor System Reset Y ey
clk_wiz_1 L_ACLK AXT Uartlite
i MO1_ARESETN
|||+ ek a0 clk_outt
AXTInterconnect BPF_AXI_Peripheral_0
Clocking Wizard | s

L s Axi_ack RTL

S_AXI_aresein

BPF_AXI_Peripheral v1_0

Figura 4.4: Diagrama de bloques generado por Vivado del circuito a sintetizar

; MicroBlaze
5 Mem Inst
B Mem Shared
B Mem Unshared
Ruta de datos
B IOMM
H ALU
| d
il " T
L
i
l|| | L" I:%_‘Eii:
i/ - !
LN L=
(a) Identificacién de componentes en el diseno implementado (b) Vista alejada

Figura 4.5: Vista de dispositivo del disenio implementado

27

28

Capitulo 5

Conclusiones y lineas abiertas

5.1. Diseno de un microprocesador para la ISA BPF

El esfuerzo de diseno realizado confirma que la ISA BPF ha sido concebida para
su ejecucion a través de un compilador JIT, y no a través de un hardware especifico,
aunque se trata en todo caso de una ISA tipo RISC muy simple. Un ejemplo entre
otros es que load y atomic cambien el uso de los registros, que prioriza la seméntica
a cambio de complicar la decodificacion. En cualquier caso, esto no representa una
complicacion real ni compromete el tiempo de ciclo, més sensible a la implementacion
del divisor, multiplicador y subsistema de acceso a memoria. Por otra parte, el uso de
dos registros facilitan la gestion de mecanismos como la anticipaciéon de operandos.

El interfaz de memoria ha estado especialmente marcado por el enfoque en el con-
cepto offload. Para poder descargar al procesador principal tiene que disenarse nece-
sariamente con caracter de acelerador o coprocesador, lo que significa que la memoria
o bien se comparte o bien requiere transferencias anfitrién - dispositivo, con los pro-
blemas y limitaciones que ello implica. En el caso de BPF es preciso ademas acceder
a una regiéon que permita la comparticion de mapas con el procesador principal. Este
caracter de acelerador / coprocesador lleva implicita la necesidad de disenar interfaces
de memoria que permitan la conexién con buses estandar, en este caso AXI, dado el
contexto y el entorno de desarrollo.

BPF es una arquitectura abierta a cambios, que ha obligado a seleccionar las ca-
pacidades del procesador a partir de un conjunto de instrucciones bien establecido,
descartando funcionalidades de legado y otros aspectos por definir en pos de un pro-
cesador lo més sencillo posible. Por otro lado, la existencia de funciones auxiliares y el
enfoque que se les ha dado en el proyecto aportan una forma escalable de ampliar las
funcionalidades del procesador.

Todos estos aspectos nos han llevado al diseno de una organizaciéon del procesador

y la interfaz de memoria que consideramos original, al menos como punto de partida

29

de futuras optimizaciones.

5.2. Lineas abiertas

Este TFG supone un punto de partida novedoso que abre varias vias de continua-

cion, entre las que consideramos mas interesantes a corto o medio plazo las siguientes:

— Continuar la versién sintetizable en FPGA, buscando especialmente la reduccién

del tiempo de ciclo.

— Sabemos que se han disenado bajo demanda NIC con soporte IEEE 802.1As para
sincronizacién temporal, que incluyen una FPGA para implementar mecanismos
TSN. Serfa interesante poder integrar la versién sintetizable en uno de estos

dispositivos para probar sus posibilidades para filtrado de paquetes.
— Ampliar el soporte para tipos adicionales de mapas.
— Mejorar la carga de programas mediante DMA y afiadir soporte a interrupciones.

— Realizar una seleccién de programas / filtros BPF y estudiar sus caracteristicas
para determinar el posible beneficio de incorporar mecanismos de ocultacion de

latencia, prediccién de saltos o explotacion del paralelismo a nivel de instruccion.

30

Bibliografia

[10]

[11]

[12]

[13]

“eBPF,” https://ebpf.io/.

F. Fejes, P. Antal, and M. Kerekes, “The TSN Building Blocks in Linux,” arXiv
e-prints, p. arXiv:2211.14138, Nov. 2022. doi: 10.48550/arXiv.2211.14138

“MicroBlaze processor reference guide (UG984),” https://docs.amd.com/r/en-
US/ug984-vivado-microblaze-ref.

“AMBA AXI and ACE protocol specifcation.” https://documentation-service.arm.
com/static/5{915b62{86e16515cde3blc.

“Visual Studio Code,” https://code.visualstudio.com/.

“Modern VHDL support for Visual Studio Code,” https://marketplace.

visualstudio.com /items?itemName=rjyoung.vscode-modern-vhdl-support.

“Git: Free and open source distributed version control system,” https://git-scm.
com.
“GHDL: free and open-source analyzer, compiler, simulator and (experimental)

synthesizer for VHDL,” https://ghdl.github.io/ghdl/.

“GTKWave is a fully featured GTK+ based wave viewer,” https://gtkwave.

sourceforge.net/.

“Bash is the GNU project’s shell — the Bourne Again Shell,” https://www.gnu.
org/software/bash/.

“MSYS2: Software distribution and building platform for Windows,” https://

www.msys2.org/.

“Vivado is the design software for AMD adaptive SoCs and FPGAs,” https://

www.xilinx.com/products/design-tools/vivado.html.
“Overleaf, the online LaTeX editor,” https://www.overleaf.com.

31

https://ebpf.io/
https://docs.amd.com/r/en-US/ug984-vivado-microblaze-ref
https://docs.amd.com/r/en-US/ug984-vivado-microblaze-ref
https://documentation-service.arm.com/static/5f915b62f86e16515cdc3b1c
https://documentation-service.arm.com/static/5f915b62f86e16515cdc3b1c
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=rjyoung.vscode-modern-vhdl-support
https://marketplace.visualstudio.com/items?itemName=rjyoung.vscode-modern-vhdl-support
https://git-scm.com
https://git-scm.com
https://ghdl.github.io/ghdl/
https://gtkwave.sourceforge.net/
https://gtkwave.sourceforge.net/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.msys2.org/
https://www.msys2.org/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.overleaf.com

[14]

[15]

[16]

[17]

[25]

2]

“dagrams.net: security-first diagramming for teams,” https://www.diagrams.net/.

D. A. Patterson and J. L. Hennessy, Computer Organization and Design RISC-
V' Edition: The Hardware Software Interface, 1st ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2017. ISBN 0128122757

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 6th ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2017. ISBN 0128119055

F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, and G. Antichi,
“Automatic kernel offload using BPF,” in Proceedings of the 19th Workshop
on Hot Topics in Operating Systems, ser. HOTOS '23. New York, NY, USA:
Association for Computing Machinery, 2023. doi: 10.1145/3593856.3595888. ISBN
9798400701955 p. 143-149. [Online|. Available: https://doi.org/10.1145/3593856.
3595888

“bpf - perform a command on an extended BPF map or program,” https://man?7.

org/linux/man-pages/man2/bpf.2.html.

“Program types (Linux),” https://ebpf-docs.dylanreimerink.nl/linux/program-
type/.

“Map types (Linux),” https://ebpf-docs.dylanreimerink.nl/linux/map-type/.

“BPF Instruction Set Architecture (ISA),” https://www.kernel.org/doc/html/
latest /bpf/standardization/instruction-set.html.

“Corigine eBPF technical papers,” https://www.corigine.com/technologylist-24.
html.

R. D. G. Pacifico, L. F. S. Duarte, L. F. M. Vieira, B. Raghavan, J. A. M. Nacif, and
M. A. M. Vieira, “eBPFlow: A hardware/software platform to seamlessly offload
network functions leveraging eBPF,” IEEE/ACM Transactions on Networking,
vol. 32, no. 2, pp. 1319-1332, 2024. doi: 10.1109/TNET.2023.3318251

“BPF architecture - BPF to BPF calls,” https://docs.cilium.io/en/stable/bpf/
architecture/#bpf-to-bpf-calls.

“libbpf overview,” https://docs.kernel.org/bpf/libbpf/libbpf overview.html.

7

“eBPF bytecode assembler and compiler,” https://github.com/emilmasoumi/

ebpf-assembler.

32

https://www.diagrams.net/
https://doi.org/10.1145/3593856.3595888
https://doi.org/10.1145/3593856.3595888
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://ebpf-docs.dylanreimerink.nl/linux/program-type/
https://ebpf-docs.dylanreimerink.nl/linux/program-type/
https://ebpf-docs.dylanreimerink.nl/linux/map-type/
https://www.kernel.org/doc/html/latest/bpf/standardization/instruction-set.html
https://www.kernel.org/doc/html/latest/bpf/standardization/instruction-set.html
https://www.corigine.com/technologylist-24.html
https://www.corigine.com/technologylist-24.html
https://docs.cilium.io/en/stable/bpf/architecture/#bpf-to-bpf-calls
https://docs.cilium.io/en/stable/bpf/architecture/#bpf-to-bpf-calls
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://github.com/emilmasoumi/ebpf-assembler
https://github.com/emilmasoumi/ebpf-assembler

[27]

[28]

[29]

[31]

[32]

J. Corbet, “Concurrency management in BPF,” LWN.net, 2019. [Online].
Available: https://lwn.net/Articles/779120/

“Classic BPF vs eBPF,” https://www.kernel.org/doc/html/latest/bpf/classic__

vs extended.html.

M. K. Alexei Starovoitov, Joe Stringer, “eBPF syscall,” https://docs.kernel.org/
userspace-api/ebpf/syscall.html.

“Network Flow Processor (NFP) kernel driver,” https://docs.kernel.org/

networking /device _drivers/ethernet /netronome/nfp.html.
“GitHub,” https://github.com/.

“IEEE standard for information technology - Portable Operating System Interface
(POSIX(R)),” IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004), pp. 1-
3874, 2008. doi: 10.1109/IEEESTD.2008.4694976

33

https://lwn.net/Articles/779120/
https://www.kernel.org/doc/html/latest/bpf/classic_vs_extended.html
https://www.kernel.org/doc/html/latest/bpf/classic_vs_extended.html
https://docs.kernel.org/userspace-api/ebpf/syscall.html
https://docs.kernel.org/userspace-api/ebpf/syscall.html
https://docs.kernel.org/networking/device_drivers/ethernet/netronome/nfp.html
https://docs.kernel.org/networking/device_drivers/ethernet/netronome/nfp.html
https://github.com/

34

Siglas

ALMA Arquitectura de Lenguaje Maquina. 1
ALU Arithmetic Logic Unit. 11, 15, 17, 26, 39, 6871, VII

AXI Advanced eXtensible Interface. 19, 20, 23-25, 39, 75, III, IV, VI, VII

BC Branch Checker. 11, 15, 67, VII

BPF Berkeley Packet Filtering. 1-3, 5-9, 13-17, 19, 20, 23, 24, 26, 29, 30, 39, 43, 47,
49, 67, 68, 77, 100, I11, TV, VI

BRAM Block Read Only Memory. 15, 17, 20, 71, 73

cBPF Classic Berkeley Packet Filter. 6
CPU Central Processing Unit. 23

CU Control Unit. 59-61, VII
DMA Direct Memory Access. 30

eBPF Extended Berkeley Packet Filter. 6, 9, I1I, IV
EU Exception Unit. 13, 15, 16, 65, 71, 74, VII

EX Execution (stage). 11, 12, 14, 16, 39, 61, 63, 74, 78, 105, 106

FC Frame Counter. 77
FP Frame Pointer. 6, 23, 77
FPGA Field-Programmable Gate Array. 2, 3, 7, 8, 15, 17, 19, 20, 26, 30, III, IV

FU Forwarding Unit. 11, 12, 63, VII

HFU Helper Function Unit. 12, 16, 17, 24, 25, 39, 43, 55, 74, 93, VI, VII

35

HU Hazard Unit. 11, 12, 59, 61, 63, 74, 77, VII

ID Instruction Decode (stage). 9, 11, 13-15, 59, 61, 63, 74, 78, 105
IF Instruction Fetch (stage). 11, 105

IOMM Input-Output and Memory Module. 20, 24, 25, 43, 98, 105
IP Intelectual Property. 15, 39, 68

IR Instruction Register. 9, 11, 65

ISA Instruction Set Architecture. 1, 6, 8, 9, 13, 16, 29, III, IV
JIT Just-In-Time. 1, 29, III, IV
LRU Least Recently Used. 24, 25, 39

MEM Memory Access (stage). 11, 12, 14, 16, 41, 61, 63, 71, 74

MIPS Microprocessor without Interlocked Pipeline Stages. 5

NFP Network Flow Processor. 7

NIC Network Interface Card. 1, 6, 7, 30, IV
PC Program Counter. 9, 17, 77

RAM Read Only Memory. 7, 12, 17

RTL Register Transfer Language. 9, 12, 41, 42, 55-58, 77, 78, VI

SFU Stack Frame Unit. 77, 78
SoC System on Chip. 3, 19, 20, III, IV

SP Stack Pointer. 39, 77, 78

TFG Trabajo de Fin de Grado. 1-3, 23, 30, 47, III, IV

TSN Time-Sensitive Networking. 30, 47, I1I, IV
UART Universal Asynchronous Receiver-Transmitter. 26

VHDL Very High Description Language. 2, 7, 15-17, 26, 68, III, IV

36

WB Write Back (stage). 11, 12, 15, 41, 63, 71

XDP eXpress Data Packet. 5, 6, 20

37

38

Lista de figuras

2.1.

3.1.
3.2.

4.1.

4.2.
4.3.
4.4.
4.5.

Al

E.1.

E.2.
E.3.
E.4.
E.5.
E.6.
E.7.
E.8.

F.1.
F.2.

G.1.
G.2.

G.3.

Formato de una instruccion BP¥ 0000 7
Esquema completo de la ruta de datos disenada 10
Situaciones con etapas multiciclo ejecutadas simultaneamente 14
Esquema simplificado del médulo de entrada-salida y memoria del peri-

férico 21
Espacio de direcciones del periférico 21
Arbitro con prioridad LRU 25
Diagrama de bloques generado por Vivado del circuito a sintetizar . . . 27
Vista de dispositivo del diseno implementado 27

Diagrama de de Gantt con la distribucion del trabajo realizado a lo largo

de las semanas de trabajo oL 48

Camino de la ALU disenado para la ejecucién de divisiones. DIV es una

representacion simplificada de un Divider Generator LogiCORE™ I[P . 68

Autémata de la ALU con soporte a division sin latencia de iniciaciéon . 70
Autéomata de la ALU con soporte a division con latencia de iniciaciéon . 70
Ruta de datos de la interfaz de memoria de datos 72
Autoémata de control de la interfaz de memoria de datos 72
Autémata de la HFU implementada con soporte para bpf _lookup_elem 74

Autémata de control de la interfaz AXT Lite 75
Autoémata de control del bufer de memoria0 76
Infraestructura de shadow SP 78
Sistema de guardado y recuperacion del marco de pila 78
Posibles etapas EX de una divisiéono 000 106
Comparaciéon en el nimero de etapas descartadas entre saltos incondi-

cionales (jump) y condicionales(branch) 106
Fin de ejecucién por excepcién en el ultimo load 106

39

G.4. Coincidencia en la peticion de acceso al bus de memoria compartida y
cambios de prioridado
G.5. Fases de carga, ejecucion y fin de programa visualizadas con las senales

del registro de control Lo

40

Lista de tablas

4.1. Descripcion de los bits dentro del registro de control BPF_CORE_CTRL . . 22
4.2. Descripcion de los valores contenidos en un registro de control de mapa

(MAP_REG X) . . .« o oo 25
A.1. Horas de dedicacion al proyecto 47
B.1. Instrucciones aritméticas de 64 bits 49
B.2. Instrucciones aritméticas de 32 bits L. 50
B.3. Instrucciones de Byteswap 51
B.4. Instrucciones atémicas 51
B.5. Instrucciones de memoria L 52
B.6. Instrucciones de salto de 64 bits 52
B.7. Instrucciones de salto de 32 bitso 53
C.1. Descripcion de operandos RTL 55
C.2. Descripcion de macros auxiliares para RTL 55
C.3. Descripcion RTL de instrucciones atémicas, acceso a memoria y carga

de inmediato 56
C.4. Descripcion RTL de instrucciones aritméticas 57
C.5. Descripcion RTL de instrucciones de salto 58
D.1. Senales de control por tipo de instruccion (I) 59
D.2. Senales de control por tipo de instruccion (II) 60
D.3. Senales que indican registro consumido 60
D.4. Condiciones de detencion por riesgo de datos 62
D.5. Condiciones de posible anticipaciéon desde banco MEM 63
D.6. Condiciones de posible anticipacién desde banco WB 63
D.7. Fuente de lectura anticipada del operando A 64
D.8. Fuente de lectura anticipada del operando B 64
D.9. Fuente de lectura anticipada del token 64
D.10.Codificaciones de instruccion validas L. 66

41

F.1. Posibles acciones RTL para soportar funciones de usuario

42

Lista de listados de cédigo

G.1.
G.2.
G.3.
GA4.
G.5.
G.6.
G.7.
G.8.

H.1.
H.2.

Test de decodificacién (test_decode.s) 79
Test de memoria (test_mem.s) 81
Test de ALU (test_alu.s) 84
Test de control (test_branch.s) 89
Test de HFU (test_call.s) 93
Test de IOMM (test_io_mem.s) 98
Test de mapas (test_map.s) 99
Testbench que permite simular la carga y ejecucién de un programa BPF

(program_test.vhd) 100
Biblioteca para interactuar con el procesador BPF (ebpf_lib.c). . . . 109
Ejemplo de programa principal (main.c). 116

43

44

Anexos

45

Anexos A

Dedicacion

El diagrama de de Gantt con la distribucion del trabajo realizado se muestra en la
Fig. A.1. El tiempo dedicado al desarrollo de las partes del proyecto — procesador BPF
e integracion en un sistema baremetal — corresponde a aproximadamente un tercio
del tiempo total de trabajo para cada una, dejando el ultimo tercio dedicado a la
elaboracion de esta memoria. La Tab. A.1 muestra el tiempo total trabajado.

Este TFG se apoya en un trabajo previo de investigacién acerca de la infraestructu-
ra que permite el uso de BPF dentro del kernel de Linux. Dicho trabajo formaba parte
del trabajo de asignatura Laboratorio de Sistemas Empotrados, y solamente se enfo-
caba en analizar la arquitectura BPF, su implementacion dentro del kernel de Linux
y sus posibles aplicaciones dentro del campo de trabajo sobre TSN. Adicionalmente,
establecia un diseno primitivo de la ruta de datos del procesador BPF, sin concretar el
diseno de los componentes y omitiendo gran parte de las funcionalidades. Este trabajo
previo esta reflejado en la primera columna de tiempo del diagrama de Gantt (Fig. A.1)

y no estd contabilizado en la horas de dedicacién (Tab. A.1).

Tabla A.1: Horas de dedicacién al proyecto

Categoria Procesador BPF | Integracion Categoria Global
Anélisis 10h 15h Anélisis 25h

Diseno 10h 17h Diseno 27h
Implementacion 47h 50h Implementacion 97h
Pruebas 24h 28h Pruebas 52h
Documento 52h

Anexos 38h

TOTAL 291h

47

previamente Jun3-9 Jun10-16 Jun17-23 Jun 24 -30 Jul1-7 Jul8-14 Jul15-21 Jul22-28 Jul29-Ago4 Ago5-11 Ago12-18 Ago19-25 Ago26-Sep1 Sep2-6

Estudio de BPF [|
An s de IPs de Xilinx I S AR I
>U_‘m3%Nm‘_m en el uso de buses " YT RRANRRRY FPRRRRRRRRRRY RARNRIRRRRSURSRIN FRNRRSRRRRRNAR S I

Estudio de la interfaz AXI Lite

Componentes y ruta de datos
Control de la ruta de datos
Integracion de la division

Interfaz de memoria de datos

Disefio

Sistema de terminacién y excepciones [YITTITTrIIT. T S A | PR]

Funciones Auxiliares []
Sistema de memoria y entrada-salida [TCTEET T ECTEE FEECPOH]
Controlador AXI Lite

Componentes y ruta de datos

Control de la ruta de datos
Integracién de la divisién L PP PP |

Interfaz de memoria de datos " TR -

Implementacién
Sistema de terminacion y excepciones

Funciones Aux

Sistema de memoria y entrada-salida
Controlador AXI Lite

Test unitarios
Ensamblador BPF

Pruebas
Tests de integracion
Prueba de concepto
Redaccién
Memoria Diagramas
Tablas

Figura A.1: Diagrama de de Gantt con la distribucion del trabajo realizado a lo largo de las semanas de trabajo

48

Anexos B

Conjunto de Instrucciones eBPF

Las tablas mostradas a continuacién contienen una descripcion en pseudocddigo de
las instrucciones BPF reconocidas por el procesador. Los nombres de las instrucciones
son los reconocidos por el ensamblador utilizado para traducir los programas de prue-
bas. No existe una norma establecida sobre las abreviaturas de las instrucciones BPF
por lo que podrian variar de cara a usar otro ensamblador.

Las instrucciones de 32 bits utilizan inicamente los 32 bits menos significativos de
los registros fuente y usan un inmediato sin extension de signo. Si ademas la operacion
es aritmética, los 32 bits més significativos del registro destino quedan truncados, salvo

si la operacion es mov32sx8 o mov32sx16.

Tabla B.1: Instrucciones aritméticas de 64 bits

Ensamblador Pseudocédigo

add dst imm dst += imm

add dst src dst += src

sub dst imm dst -= imm

sub dst src dst -= src

mul dst imm dst *= imm

mul dst src dst *= src

div dst imm dst /= imm [unsigned]
div dst src dst /= src [unsigned]
sdiv dst imm dst /= imm [signed]
sdiv dst src dst /= src [signed]
mod dst imm dst %= imm [unsigned]
mod dst src dst %= src [unsigned]
smod dst imm dst %= imm [signed]
smod dst src dst %= src [signed]
or dst imm dst |= imm

or dst src dst |= src

and dst imm dst &= imm

and dst src dst &= src

lsh dst imm dst <<= imm

49

1sh
rsh
rsh
arsh
arsh
neg
Xor
Xor
mov
mov
movsx8
movsx8
movsxl
movsxl
movsx3
movsx3

dst
dst
dst
dst
dst
dst
dst
dst
dst
dst

6
6
2
2

src
imm
src
imm
src

imm
src
imm
src
dst imm
dst src
dst imm
dst src
dst imm
dst src

dst <<
dst >>
dst >>
dst >>
dst >>
dst =
dst ~=
dst ~=
dst =
dst =
dst =
dst =
dst =
dst =
dst =
dst =

= src
= imm
= src
= imm
= src
dst
imm
src
imm
src

*(int8_t *) imm
*(int8_t *) src
*(int16_t *) imm
*(int16_t *) src
*(int32_t *) imm
*(int32_t *) src

[logicall
[logicall
[arithmetic]
[arithmetic]

Tabla B.2: Instrucciones aritméticas de 32 bits

Ensamblador Pseudocédigo

add32 dst imm dst += imm

add32 dst src dst += src

sub32 dst imm dst -= imm

sub32 dst src dst -= src

mul32 dst imm dst *= imm

mul32 dst src dst *= src

div32 dst imm dst /= imm [unsigned]
div32 dst src dst /= src [unsigned]
sdiv32 dst imm dst /= imm [signed]
sdiv32 dst src dst /= src [signed]
mod32 dst imm dst %= imm [unsigned]
mod32 dst src dst %= src [unsigned]
smod32 dst imm dst %= imm [signed]
smod32 dst src dst %= src [signed]
or32 dst imm dst |= imm

or32 dst src dst |= src

and32 dst imm dst &= imm

and32 dst src dst &= src

1sh32 dst imm dst <<= imm

1sh32 dst src dst <<= src

rsh32 dst imm dst >>= imm [logical]
rsh32 dst src dst >>= src [logicall]
arsh32 dst imm dst >>= imm [arithmetic]
arsh32 dst src dst >>= src [arithmetic]
neg32 dst dst = dst

xor32 dst imm dst "= imm

xor32 dst src dst "= src

50

mov32 dst imm dst = imm
mov32 dst src dst = src
mov32sx8 dst imm | dst = *(int8_t *) imm
mov32sx8 dst src | dst = *(int8_t *) src
mov32sx16 dst imm | dst = *(intl6_t *) imm
mov32sx16 dst src | dst = *(intl6_t *) src

Tabla B.3: Instrucciones de Byteswap

Ensamblador | Pseudocédigo

lel6 dst dst = host_to_little_endian16(dst)
le32 dst dst = host_to_little_endian32(dst)
le64 dst dst = host_to_little_endian64(dst)

bel6 dst dst = host_to_big_endian16(dst)
be32 dst dst = host_to_big_endian32(dst)
be64 dst dst = host_to_big_endian64(dst)
bswapl6 dst | dst = byte_swapl6(dst)
bswap32 dst | dst = byte_swap32(dst)
bswap64 dst | dst = byte_swap64(dst)

Tabla B.4: Instrucciones atémicas

Ensamblador Pseudocédigo

addx32 dst src off | *(uint32_t *) (dst + off16) += src

addx64 dst src off | *(uint64_t *) (dst + off16) += src

andx32 dst src off | *(uint32_t *) (dst + off16) &= src

andx64 dst src off | *(uint64_t *) (dst + offl16) &= src

orx32 dst src off | *(uint32_t *) (dst + off16) |= src

orx64 dst src off | *(uint64_t *) (dst + off16) |= src

xorx32 dst src off | *(uint32_t *) (dst + off16) = src

xorx64 dst src off | *(uint64_t *) (dst + off16) ~= src
addfx32 dst src off | src = atomic_fetch_add32(dst + off16, src)
addfx64 dst src off | src = atomic_fetch_add64(dst + offl16, src)
andfx32 dst src off | src = atomic_fetch_and32(dst + off16, src)
andfx64 dst src off | src = atomic_fetch_and64(dst + off16, src)
orfx32 dst src off | src = atomic_fetch_or32(dst + off16, src)
orfx64 dst src off | src = atomic_fetch_or64(dst + off16, src)
xorfx32 dst src off | src = atomic_fetch_xor32(dst + offl16, src)
xorfx64 dst src off | src = atomic_fetch_xor64(dst + offl16, src)

xchgx32 dst src off | src = atomic_xchg32(dst + offl16, src)
xchgx64 dst src off | src = atomic_xchg64(dst + off16, src)
cmpxchgx32 dst src off | r0 = atomic_cmpxchg32(dst + off16, r0, src)

cmpxchgx64 dst src off | rO = atomic_cmpxchg64(dst + off16, r0, src)

51

Tabla B.5: Instrucciones de memoria

Ensamblador Pseudocédigo

1d64 dst imm dst = imm [64b immediate]

1dx8 dst src off | dst = *(uint8_t *) (src + off)

1dx16 dst src off | dst = *(uintl6_t *) (src + off)

1dx32 dst src off | dst = *(uint32_t *) (src + off)

1dx64 dst src off | dst = *(uint64_t *) (src + off)

1dxs8 dst src off | dst = *(int8_t *) (src + off)

ldxs16 dst src off | dst = *(int64_t *) (src + off)

1dxs32 dst src off | dst = *(int32_t *) (src + off)

st8 dst off imm | *(uint8_t *) (dst + off) = imm

st16 dst off imm | *(uint16_t *) (dst + off) = imm

st32 dst off imm | *(uint32_t *) (dst + off) = imm

st64 dst off imm | *(uint64_t *) (dst + off) = imm

stx8 dst src off | *(uint8_t *) (dst + off) = src

stx16 dst src off | *(uint16_t *) (dst + off) = src

stx32 dst src off | *(uint32_t *) (dst + off) = src

stx64 dst src off | *(uint64_t *) (dst + off) = src

stxx8 dst src off | *(uint8_t *) (dst + off16) += src

stxx16 dst src off | *(uintl6_t *) (dst + offl16) += src

stxx32 dst src off | *(uint32_t *) (dst + off16) += src

stxx64 dst src off | *(uint64_t *) (dst + offl6) += src
Tabla B.6: Instrucciones de salto de 64 bits

Ensamblador Pseudocédigo

ja off PC += off ; Jump Always

jeq dst imm off | PC += off if dst == imm

jeq dst src off | PC += off if dst == src

jgt dst imm off | PC += off if dst > imm

jgt dst src off | PC += off if dst > src

jge dst imm off | PC += off if dst >= imm

jge dst src off | PC += off if dst >= src

jlt dst imm off | PC += off if dst < imm

jlt dst src off | PC += off if dst < src

jle dst imm off | PC += off if dst <= imm

jle dst src off | PC += off if dst <= src

jset dst imm off | PC += off if dst & imm

jset dst src off | PC += off if dst & src

jne dst imm off | PC += off if dst != imm

jne dst src off | PC += off if dst != src

jsgt dst imm off | PC += off if dst > imm [signed]

jsgt dst src off | PC += off if dst > src [signed]

jsge dst imm off | PC += off if dst >= imm [signed]

jsge dst src off | PC += off if dst >= src [signed]

jslt dst imm off | PC += off if dst < imm [signed]

jslt dst src off | PC += off if dst < src [signed]

52

jsle dst imm off
jsle dst src off

call imm
rel imm

exit

PC += off if dst <=
PC += off if dst <=
r0 = £(r1, r2, ...,
r0 = f(r1, r2, ...,

return r0; Return from function or exit program

imm

SrcC

r5); Function call
r5); Relative function call

[signed]
[signed]

Tabla B.7: Instrucciones de salto de 32 bits

Ensamblador

Pseudocédigo

jal imm

jeq32 dst imm
jeq32 dst src
jgt32 dst imm
jgt32 dst src
jge32 dst imm
jge32 dst src
jlt32 dst imm
jlt32 dst src
jle32 dst imm
jle32 dst src
jset32 dst imm
jset32 dst src
jne32 dst imm
jne32 dst src
jsgt32 dst imm
jsgt32 dst src
jsge32 dst imm
jsge32 dst src
jslt32 dst imm
jslt32 dst src
jsle32 dst imm
jsle32 dst src

off
off
off
off
off
off
off
off
off
off
off
off
off
off
off
off
off
off
off
off
off
off

PC += imm ; Jump
PC += off if dst
PC += off if dst

PC += off if dst
PC += off if dst

PC += off if dst
PC += off if dst
PC += off if dst
PC += off if dst
PC += off if dst
PC += off if dst
PC += off if dst
PC += off if dst

PC += off if dst
PC += off if dst
PC += off if dst

PC += off if dst
PC += off if dst

Always (Long Offset)

PC += off if dst >
PC += off if dst >

PC += off if dst <

imm
src
imm
src
imm
src
imm
src
imm

= S8Irc

imm
src

imm

= 8rc

PC += off if dst >

PC += off if dst <

imm
src
imm
src
imm
src
imm
src

[signed]
[signed]
[signed]
[signed]
[signed]
[signed]
[signed]
[signed]

53

o4

Anexos C

Descripciéon RTL de instrucciones
en la ruta de datos

Las tablas mostradas a continuacién contienen una descripcion algoritmica del ca-
mino seguido por los valores a través de los bancos de etapa. Las instrucciones estan
categorizadas segin su clase y codigo. La columna other indica la condiciéon que debe
cumplir una instruccién para seguir ese camino, con prioridad de seleccién de arriba
hacia abajo. La Tab. C.1 describe los operandos utilizados. A estos operandos se han
anadido las macros auxiliares de la Tab. C.2 con el fin de simplificar el esquema.

Cuando se escribe X <op> Y se pretende indicar que el valor asignado es el resultado
de la operacion aritmética o légica (trabajando en modo de 32 o 64 bits) aplicada a

X e Y. La etiqueta <size> hace referencia a la sefial de control value_size.

Tabla C.1: Descripcién de operandos RTL

Operador | Descripcién
<= Asignacién de valor a un registro.
1= Asignacion de un alias para un valor.
(] Acceso indexado a un contenedor.
Efecto colateral sobre otra etapa.
if/else Accién o valor condicional.
atomic Accién atomica.

Tabla C.2: Descripcién de macros auxiliares para RTL

Macro Descripcion
Concat(low, high) Concatena los bits de ambas palabras.
SX(x, size) Devuelve z extendido de signo (a 64 bits, si no se indica tamarno).
Tr(x, size) Devuelve el valor de x truncado al tamafio indicado.
fw(operand) Indica que el operando pasa por el sistema de anticipacién (for-
warding).
HFU_Set_Code(id) Notifica a la HFU la id de la funcién que se va a ejecutar.
HFU(pl..p5) Devuelve el valor de la funcién ejecutada por la HFU.
Byte_Swap(x, width) | Devuelve el valor de x con los width bytes menos significativos
cambiados de endian.
Write(&dst, x, size) | Escribe en dst el valor de x los segin el tamafio de palabra.

95

Tabla C.3: Descripcién RTL de instrucciones atémicas, acceso a memoria y carga de inmediato

Class | Code Other IF ID EX MEM WB
PC <- PC + 1,
LD IMM C <- Concat(ID_imm32, EX_imm32) | ex_val <- C Reg_Bank[dst] <- ex_val
##DISCARD IF
LDX MEM A <- Reg_Bank[dst] C <- fw(A) + SX(offset) mem_val <- Mem_Datal[C] Reg_Bank[dst] <- mem_val
MEMSX A <- Reg_Bank[dst] C <- fw(A) + SX(offset) mem_val <- SX(Mem_Datal[C], <size>) Reg_Bank[dst] <- mem_val
IR <- Mem_Inst[PC],
C <- fw(A) + SX(offset), X X
ST MEM PC <- PC + 1 A <- Reg_Bank[dst] Write(Mem_Datal[C], data, <size>)
data <- SX(EX_imm32)
A <- Reg_Bank[dst], C <- fw(A) + SX(offset),
MEM &- [dst] w(4) (offset) Write(Mem_Datal[C], data, <size>)
B <- Reg_Bank[src] data <- fw(B)
STX result := Mem_Data[C] <op>data,
~FETCH A <- Reg_Bank[dst], C <- fw(A) + SX(offset),
B <- Reg_Bank[src] data <- fw(B)
ATOMIC &- Write(Mem_Datal[C], result, <size>)
atomic {
mem_val <- Tr(Mem_Datal[C], <size>),
A <- Reg_Bank[dst], C <- fw(A) + SX(offset),
FETCH result := Mem_Datal[C] <op>data, Reg_Bank[dst] <- mem_val
B <- Reg_Bank[src] data <- fw(B)
Write(Mem_Data[C], result, <size>)
}
atomic {
mem_val <- Tr(Mem_Datal[C], <size>),
EX_token <- Reg_Bank[rO], | MEM_token <- fw(EX_token), X
if (MEM_token = Mem_Datal[C]) {
CMPXCHG A <- Reg_Bank[dst], C <- fw(A) + SX(offset), Reg_Bank[r0] <- mem_val

B <- Reg_Bank[src]

data <- fw(B)

Write(Mem_Data[C], data, <size>)

56

g-do <yodo> (V)mF -> D

- - - [oas]ueg 3oy -> g
Tea"xe -> [1sp]yueg 3oy = TeA”x® . _ . _ 2100 2D
(Cewwt YH)XS °ST® [asp]yueg 8oy -> ¥
(9)mF (HFY = @danos) FT =: g do
(<®zTS> ‘g do)¥s -> D
TeA™xe -> [asp]yueg 3oy = TeA”™xX® _ [oas]yueg 8oy -> g AOW
‘ (zemuT XA)XS OST®
(d)mF (DAY = @danos) FT =: g do
- - _ (yapta ‘y)demgTearhg -> D _ yonTv
Tea"xe -> [3sp]yueg Sey = TeA”x® . . [asp]queg 8oy -> ¥ andg
(TEWWT YA)XS =: UIpIa
gdo <ggdo> (Y)mF -> D
- - _ [oas]yueg ™8y -> g
TeA™xe -> [asp]xueg 3oy = TeA”x® . _ . _ 2100 ap
(geuwut Xd)XS osT® [asp]yueg 3oy -> ¥
(9)mF (DIY = @dInos) FT =: g do
(<®zTs> ‘g do)¥s -> D
TeA™xe -> [asp]yueg ey = Tea™x® . _ [oas]yueg ™8y -> g AOW
(TEWWT XI)XS osTe
- T +0d -> 0d
(9)MI (HIY = @danos) FT =: g do . _
P = [Dd]asul wel -> Y¥I
_ _ _ (yapta ‘y)demgTeahg -> D _ -
TeAa™xe -> [3sp]yueqg Sey = Tea x® . - . [asp]yueg 8oy -> ¥ a9 oL ana nIy
(TEWWT YA)XS =: YIpIA
aI ayvoSIa## 4101 ana
an WIW Xq ar a1 T8930 ®pop | sSBT)

SEOIJOUIILIR SOUOIIINIISUT op T[4 Uondiisa(F'0) B[R],

57

Tabla C.5: Descripcién RTL de instrucciones de salto

Class | Code Other IF ID EX MEM WB
// call ID stage 1
// call ID stage 2
EX_token <- Reg_Bank[ri],
A <- Reg_Bank[r4]
A <- Reg_Bank[r2],
B <- Reg_Bank[r5]
B <- Reg_Bank[r3],
CALL src = r0 ex_val <- HFU(token,data,C,A,B) | Reg_Bank[r0] <- ex_val
. // call EX stage
HFU_Set_Code(ID_imm32),
JMP MEM_token <- fw(EX_token)
IR <- Mem_Inst[PC],
data <- fw(A)
PC <- PC + 1 PC <- PC + 1,
C <- fw(B)
##DISCARD IF
EXIT
I PC <- PC + 1 + offset,
##DISCARD IF
op_B := if (source = REG) fw(B)
else SX(EX_imm32),
A <- Reg_Bank[dst],
g if (fw(A) <op64> op_B) {
default B <- Reg_Bank[src],
PC <- PC_taken,
PC_taken <- PC + 1 + offset
##DISCARD IF,
##DISCARD ID
}
1 PC <- PC + 1 + imm32,
JMP32 ##DISCARD IF
op_B := if (source = REG) fw(B)
else SX(EX_imm32),
A <- Reg_Bank[dst],
if (fw(A) <op32> op_B) {
default B <- Reg_Bank[src],

PC_taken <- PC + offset

PC <- PC_taken,
##DISCARD IF,
##DISCARD ID

58

Anexos D

Control de la ruta de datos

D.1. Unidad de Control (CU)

La CU es la encargada de generar las senales de control durante la etapa ID. Las
Tab. D.1 y D.2 contienen el valor de estas senales para cada tipo de instruccién. Adicio-
nalmente, indica los registros que van a ser consumidos para informar a la HU, l6gica

presente en la Tabla D.3.

Tabla D.1: Senales de control por tipo de instruccién (I)

Class |Code Other jump branch 32b_jump call 64b_imm alu64 alu_en addr_calc write_en read_en atomic
LD IMM 0 0 - 0 1 1 0 0 0 0 0
LDX MEM 0 0 - 0 0 1 0 1 0 1 0
MEMSX 0 0 - 0 0 1 0 1 0 1 0
ST MEM 0 0 - 0 0 1 0 1 1 0 0
MEM 0 0 - 0 0 1 0 1 1 0 0
STX -FETCH 0 0 - 0 0 1 0 1 1 0 1
ATOMIC |FETCH 0 0 - 0 0 1 0 1 1 1 1
CMPXCHG| O 0 - 0 0 1 0 1 1 1 1
END TO_LE 0 0 - 0 0 - - 0 0 0 0
ALU END TO_BE 0 0 - 0 0 1 1 0 0 0 0
MOV 0 0 - 0 0 0 1 0 0 0 0
default 0 0 - 0 0 0 1 0 0 0 0
END 0 0 - 0 0 1 1 0 0 0 0
ALU64 | MOV 0 0 - 0 0 1 1 0 0 0 0
default 0 0 - 0 0 1 1 0 0 0 0
CALL src=r0 0 0 - 1 0 1 0 0 0 0 0
IMP EXIT 0 0 - 0 0 - 0 0 0 0 0
JA 1 0 0 0 0 - 0 0 0 0 0
default 0 1 0 0 0 1 0 0 0 0 0
JA 1 0 1 0 0 - 0 0 0 0 0
JMP32 default 0 1 0 0 0 0 0 0 0 0 0

(@)
Nej

Tabla D.2: Senales de control por tipo de instruccién (II)

Class |Code Other force_imm sign_ext value_size mem_to_reg reg_write write_rO discard_IF finish
LD IMM 1 0 64b 0 1 0 1 0
LDX MEM - 0 opcode.size 1 1 0 0 0
MEMSX - 1 opcode.size 1 1 0 0 0
ST MEM 1 - opcode.size - 0 0 0 0
MEM 0 - opcode.size - 0 0 0 0
STX ~FETCH 0 - opcode.size - 0 0 0 0
ATOMIC |FETCH 0 0 opcode.size 1 1 0 0 0
CMPXCHG 0 0 opcode.size 1 0 1 0 0
END TO_LE 0 0 - 0 0 0 0 0
ALU END TO_BE 1 0 - 0 1 0 0 0
MOV 0 1 code(offset)! 0 1 0 0 0
default 0 0 - 0 1 0 0 0
END 1 0 - 0 1 0 0 0
ALU64 | MOV 0 1 code (offset) 0 1 0 0 0
default 0 0 - 0 1 0 0 0
CALL src=r0 - - 64b 0 0 1 1 0
EXIT - - - - 0 0 0 1
JMP JA - - - - 0 0 0 0
default 0 - - - 0 0 0 0
JA - - - - 0 0 0 0
JMP32 default 0 - - - 0 0 0 0

Tabla D.3: Sefiales que indican registro consumido

Class | Code Other DST SRC Token
LD IMM 0 0 0
MEM 1 1 0
LDX MEMSX 1 1 0
ST MEM 1 0 0
MEM 1 1 0
-FETCH 1 1 0
STX ATOMIC FETCH 1 1 0
CMPXCHG 1 1 1
END TO_LE 1 0 0
END TO_BE 1 0 0
ALU MOV 0 1 0
s = REG
default | and —NEG 1 1 0
else 1 0 0
END 1 0 0
ALUGL MOV 0 1 0
s = REG 1 1 0
default | and —NEG
else 1 0 0
CALL src = 10 0 0 0
EXIT 0 0 0
JMP JA 0 0 0
s = REG 1 1 0
default e 10 0
JA 0 0 0
JMP32 s = REG 1 1 0
default else 1 0 0

'El tamafio en bytes de la palabra para las instrucciones MOV se codifica como un ntimero dentro
del offset (8, 16 0 32). La senial de control value_size utiliza una codificacién en 2 bits, por lo que la
CU debe codificarlo.

60

D.2. TUnidad de Riesgos (HU)

La HU funciona como detector de riesgos de datos para provocar que la instruccién
decodificada quede detenida hasta poder obtener sus operandos correctamente. Los
riesgos de control y estructurales son notificados propiamente por los componentes que
los provocan y quedan fuera de la responsabilidad de la HU.

Los riesgos que debe detectar son los siguientes:

— Token (r0), registro fuente o registro destino no estan listos para anticipacion.
Esto ocurre cuando el dato se produce en etapa MEM y la consumidora es la
siguiente instruccién. Para cuando la consumidora esté en etapa EX el valor atin

no habra sido producido, por lo que es necesario detenerla un ciclo en etapa ID.

— Parametros 1, 2 o 3 de una funcién auxiliar no estan listos para anticipacion

(causa anéloga).

— Pardmetros 4 o 5 de una funciéon auxiliar no pueden ser obtenidos directamente
del banco de registros. Estos valores no pasan por el sistema de anticipacion y
deben estar disponibles para leer del banco de registros cuando la instruccion
call alcanza la etapa EX. Este caso se da independientemente de que el dato se
produzca en EX o MEM.

La Tab. D.4 muestra las condiciones para cada riesgo en base a senales del proce-
sador. Las seniales ID use_dst, ID use_src, ID use_rO0 las produce la CU, como se
ve en el anexo D.1. Ademas, se sabe que una instruccién es productora en etapa MEM
porque escribe el dato en mem_val (activa la senal de control EX_mem_to_reg) o porque

es una llamada a funcién auxiliar (EX_call).

61

Tabla D.4: Condiciones de detencién por riesgo de datos

Hazard description

Hazard condition

Is EX producer

7 Is ID consumer

Is result ready on MEM

EX_reg_write and EX_dst =0 and ID_use_r0 and EX_mem_producer
r0 not ready -
EX_write_x0 and ID_use_r0 and EX_mem_producer
EX_reg_write and EX_dst = ID_dst and ID_use_dst and EX_mem_producer
dst not ready :
EX_write_x0 and ID_dst =0 and ID_use_dst and EX_mem_producer
src not read EX_reg_write and EX_dst = ID_src and ID_use_src and EX_mem_producer
v EX_write_x0 and ID_src =0 and ID_use_src and EX_mem_producer
rl, r2 or r3 not ready | EX_reg_write and EX_dst € (0, 3] and EX_dst < ID_num_params and ID_call and EX_mem_producer
r4 or r5 not ready EX_reg write and EX_dst € (3, 5] and EX_dst < ID_num_params and ID_call

62

D.3. Unidad de Anticipacién (FU)

La FU se encarga de proveer a la etapa EX de los operandos necesarios en caso de
que el valor requerido no estuviera disponible para lectura en ID. A diferencia de la
HU, la FU ignora si realmente se utiliza el valor, pero asegura que en caso de usarlo se
proporciona el valor correcto. Las Tab. D.5 y D.6 contienen la logica para determinar
si los bancos de etapa MEM o WB contienen un posible valor de los operandos. El
origen de lectura de cada operando se decide con la légica de las Tab. D.7, D.8 y D.9.
Cuando mas de una condiciéon aparece asignada a una sefial significa que la activa con

independencia del resto de condiciones (puerta or légica).

Tabla D.5: Condiciones de posible anticipacion desde banco MEM

. Activation condition
Signal
Is MEM producer \ Is EX consumer

MEM_reg write and MEM dst = 2 and EX_call

A _from_ MEM MEM_reg write and MEM dst = EX_dst and not EX_call
MEM write_r0O and EX dst =0 and not EX call
MEM_reg write and MEM dst = 3 and EX call

B _from MEM MEM reg write and MEM dst = EX_src and not EX_call
MEM write_r0O and EX src =0 and not EX_call
MEM_reg write and MEM dst =1 and EX call

token_from MEM | MEM_reg write and MEM dst = 0 and not EX call
MEM write rO and not EX call

Tabla D.6: Condiciones de posible anticipacion desde banco WB

Activation condition

Signal

Is WB producer \ Is EX consumer

WB_reg write and WB_dst = 2 and EX call

A from WB WB_reg write and WB_dst = EX dst and not EX_call
WB_write rO and EX dst =0 and not EX call
WB_reg write and WB_dst = 3 and EX_call

B _from WB WB_reg write and WB_dst = EX src and not EX_ call
WB_write_r0 and EX_src =0 and not EX_call
WB_reg write and WB_ dst =1 and EX call

token_from WB | WB_reg write and WB_dst =0 and not EX_call
WB write rO and not EX call

63

Tabla D.7: Fuente de lectura anticipada del operando A

fw A from A from MEM A from WB WB_mem to_reg
FROM_MEM C 1 -2 -
FROM_WB_EX_VAL 0 1 0
FROM_WB_MEM_VAL 0 1 1
NO_FW 0 0 -

Tabla D.8: Fuente de lectura anticipada del operando B

fw B from B_from MEM B _from WB WB_mem to_reg
FROM_MEM_C 1 - -
FROM_WB_EX_VAL 0 1 0
FROM_WB_MEM_VAL 0 1 1
NO_FW 0 0 -

Tabla D.9: Fuente de lectura anticipada del token

fw_token from token_from MEM token from WB WB_mem to_reg
FROM_MEM _C 1 - -
FROM_WB_EX_VAL 0 1 0
FROM_WB_MEM_VAL 0 1 1
NO_FW 0 0 -

2Se debe priorizar el valor del registro mas reciente, por lo que se ignora si se usa en una etapa
posterior.

64

D.4. TUnidad de Excepciones (EU)

La EU se encarga de centralizar la gestién de errores en el procesador. Los compo-
nentes externos pueden indicarle errores en una etapa determinada. A su vez, se asegura
de que no se ejecute ninguna instruccion ilegal o no implementada. La Tab. D.10 mues-
tra los distintos valores que puede tener IR para ser considerada instruccion valida. La

tabla se apoya en las condiciones auxiliares que se muestran a continuacion:

writable = reg < 10
readable = reg < 10

atomic_op := imm[7:4] € {ADD, OR, AND, XOR} and imm[..] = 0
atomic_fetch := imm[0] = 1 and imm[7:4] € {ADD, OR, AND, XOR, XCHG}
and imm[..] = O

atomic_cmpxchg = imm[0] = 1 and imm[7:4] = CMPXCHG and imm[..] = 0

regular op = code € {ADD, SUB, MUL, DIV, MOD, OR,
AND, LSH, RSH, NEG, XOR, ARSH}
signed_op := code € {DIV, MOD}
branch_op = code € {JEQ, JGT, JGE, JSET, JNE, JSGT, JSGE,
JLT, JLE, JSLT, JSLE}

mov_size = ((offset[3] = 1 xor offset[4] = 1) xor offset[5] = 1)
and offset[..] = 0
end_size ok = ((imm[4] = 1 xor imm[5] = 1) xor imm[6] = 1)

and imm[..] = O

65

Tabla D.10: Codificaciones de instruccion validas

Valid combinations
Class | Source Inst. Code | Mem. Size Mem. Mode | Dst Src Offset Immediate
LD - - 64b IMM writable 0 0 -
LDX - - - MEM writable readable - 0
LDX - - - MEMSX writable readable - 0
ST - - - MEM readable readable - -
STX - - - MEM readable readable - 0
STX - - 32b/64b ATOMIC readable readable - atomic_op
STX - - 32b/64Db ATOMIC readable writable - atomic_fetch
STX - - 32b/64b ATOMIC readable readable - atomic_cmpxchg
ALU - regular_op - - writable readable 0 -
ALU - signed_op - - writable readable 1 -
ALU - MOV - - writable readable | mov_size_ok -
ALU - END - - writable readable 0 end_size_ ok
ALU64 - regular_op - - writable readable 0 -
ALU64 - signed_op - - writable readable 1 -
ALUG4 - MOV - - writable readable | mov_size_ ok -
ALU6G4 0 END - - writable readable 0 end_size ok
JMP 0 JA - - 0 0 - 0
JMP - branch_op - - readable readable - -
JMP 0 EXIT - - 0 0 0 0
JMP 0 CALL - - 0 0’ 0 -
JMP32 0 JA - - 0 0 0 -
JMP32 - branch_op - - readable readable - -

3 El registro fuente indica si una instruccién CALL es una invocacién a funcién de usuario (src = 1) o a una funcién auxiliar (src = 0).

66

Anexos E

Detalles de implementacién por
componente

E.1. Verificador de Saltos (BC)

La implementacion del Verificador de Saltos genera una senial por cada condicion de
salto posible en BPF. Hay 3 condiciones basicas que emplean componentes dedicadas

(=, >y &). El resto son derivadas de ellas segtin la 1dgica siguiente:

same_sign := (op_64b and A(63) = B(63)) or
(not op_64b and A(31) = B(31))

eq :=A =B

ne := not eq

1t := A<KB

le := 1t or eq

gt := not 1t and not eq

ge := not 1t

slt := (same_sign and 1t) or (not same_sign and gt)
sle := (same_sign and le) or (not same_sign and ge)
sgt := (same_sign and gt) or (not same_sign and 1t)
sge := (same_sign and ge) or (not same_sign and le)
set := (A& B) '=0

El resultado es multiplexado a partir de todas las condiciones, utilizando el cédigo

de operacion como selector.

67

E.2. Unidad Aritmética Légica (ALU)

La implementacién de cada una de las operaciones aritméticas de BPF en VHDL
es trivial usando la biblioteca estandar, salvo para la divisiéon y el modulo, que son las
unicas cuya funcién no es sintetizable como circuito combinacional. Por ello, la ALU
precisa de un divisor multiciclo. Los divisores que provee Xilinx como IP permiten
elegir el tipo y tamano de los operandos. La configuracion elegida es un divisor de
naturales de 64 bits, con salidas para el cociente y el resto (la alternativa es un resultado
fraccionario). Con él se pueden implementar todas las versiones de la operacion de
divisiéon y modulo que ofrece BPF.

La Fig. E.1 muestra la ruta de datos correspondiente al camino de la division y el
modulo dentro de la ALU, disenada para soportar operaciones con o sin signo, de 32
o 64 bits y tratar divisiones entre 0 como caso aparte. Si un operando es negativo y
se ejecuta la division natural, se trata como si fuera positivo, pero se niega en caso
de ser una divisién entera. El resultado de una divisién entera tinicamente se niega si
los signos de los operandos son distintos. La operacion modulo en BPF esta definida
igual que en el lenguaje C, por lo aprovecha la misma légica que la divisién para negar

valores.

Este procesador no tiene lanzamiento concurrente de instrucciones a fase de ejecu-
cion, por lo que el divisor siempre va a estar disponible cuando llega una nueva opera-
cién. El autémata de la Fig. E.2 asume esto. Sin embargo, durante la configuracion del
divisor se puede establecer una latencia de iniciacion, pensada para ahorrar recursos.
A cambio, el procesador ya no puede asumir que el divisor estd siempre disponible.
Como el sistema de anticipacién de operandos solo garantiza que el valor anticipado

es correcto durante el primer ciclo que se usa, la ALU debe guardar los operandos en

update_neg_result

LYy P : | E |_|

e J:D7 ﬁvalid,result
b —>

< 4

DIV

[»)
\Y
b —>|
—I:D— A

valid_operands ready_operands

signed [}—m—

div_bus

\Y

[S)

B [}

—

>—> mod_bus

\—‘@

D> div_by_0

Figura E.1: Camino de la ALU disenado para la ejecucion de divisiones. DIV es una
representacion simplificada de un Divider Generator LogiCORE™ [P

68

caso de que el divisor no esté disponible. Este comportamiento mas complejo es el se
ha incluido en el core y su autéomata se puede ver en la Fig. E.3.

Algo que se puede observar en los autématas es el estado dedicado para reset. Su
objetivo es mantener activa la sefial reset del divisor durante al menos dos ciclos, tal y
como requiere.

Otra decisién de disenio de la ALU fue utilizar el multiplicador en un ciclo que se
genera por defecto. Utilizar un multiplicador secuencial permitiria reducir el tiempo
de ciclo en el caso de que la multiplicacion fuera el camino critico. Como no es posible
identificar este camino critico desde la fase de disefio, en esta primera versién se ha

decidido dejar el multiplicador por defecto.

69

NOT reset

RESET
/

reset / reset_divider reset_divider

valid_result /
NoT await_div ,

use_divider

/
valid_operands, ,-* reset /
await_div, _.-~ reset_divider

update_negate_result

NoT valid_result /
await_div

| use_divider := op_alu € {DIV, MOD} AND NOT div_by_© AND alu_en |

Figura E.2: Autémata de la ALU con soporte a division sin latencia de iniciacién

NOT reset

RESET
/

reset / reset_divider

reset_divider

\
1
1
'
'
'
[
1
1
1
1

valid_result /
NoT await_div

use_divider anp
NoT ready_operands

use_divider anp
ready_operands

-’ reset /

/
save_operands, / .
await_div, NoT use_saved_operands, _.-~ reset_divider

valid_operands,
await_div,
update_negate_result

update_negate_result

Not valid_result / -

await_div 0
ready_operands R
/ 7
use_saved_operands, Lt
va11d_9per§nds, -“feset /
await_div Pt -
.- reset_divider

Figura E.3: Autémata de la ALU con soporte a divisién con latencia de iniciacion

70

E.3. Interfaz de memoria de datos

Este componente tiene la responsabilidad de llevar a cabo todas las operaciones que
requieren acceso a memoria, incluidas las operaciones atomicas, a la vez que abstrae la
interaccion con los bloques de memoria. La ruta de datos que se observa en la Fig. E4 y
su correspondiente automata de control (Fig. E.5) estan disenados para interactuar con
modulos de BRAM direccionables a palabras de 64 bits. Aunque en el esquema se vea
un modulo de BRAM, en realidad este modulo no esta presente dentro del componente,
tal y como ha aparecido en la Fig 4.1. El bloque ha sido afiadido para representar que
las senales conectadas corresponden a las que interactian con el bus de memoria.

La BRAM permite lecturas y escrituras con latencia de un ciclo, por lo que so-
lamente las operaciones atémicas son multiciclo. Los accesos a memoria compartida
también pueden durar mas de un ciclo si no se obtiene del arbitro durante el primer
ciclo.

Las lecturas son siempre de 8 bytes y alineadas, por lo que se usa el tamano del valor
y los bits menos significativos de la direccién para seleccionar el valor de salida (bloque
Byte Select). Esta operacion se produce en la etapa WB (por la latencia de un ciclo),
por lo que es necesario almacenar previamente los datos de seleccién (sel_info).

Las escrituras también son alineadas, pero se permite elegir cudles de los 8 bytes
van a ser escritos, mediante una mascara. Las escrituras de palabras menores a 64 bits
no alineadas requieren corregir la posicién de los bytes (bloque Byte Xchg). Ademaés,
es preciso generar una mascara de escritura a partir de los datos de seleccion (bloque
Size to Mask).

Las operaciones atémicas se realizan en dos fases: lectura y modificacion-escritura.
El autémata de control se encarga de bloquear las etapas anteriores generando la senal
ready, de mantener el acceso al bus de memoria con la senal bus_frame si se estd
accediendo a memoria compartida y de multiplexar el dato de entrada a la BRAM
(store_modified). La ruta de datos incluye una ALU de 64 bits con las operaciones
add, or, and y xor. Cuando la instruccion es de 32 bits se debe alinear data con el
valor leido de memoria. Para implementar la instruccién xchg, la ALU permite el paso
data. En el caso de cmpxchg, la ALU sirve como multiplexor entre data y el dato de
memoria, activado con el resultado de comparar el dato de memoria con token.

La interfaz de memoria de datos también se encarga de comprobar si las direccio-
nes corresponden al espacio de memoria compartido o no compartido, con el fin de
notificarlo al autémata (sehal shared). Si la direccién no corresponde a ninguno de
ellos, pasa a estado de error, donde notifica a la EU que la etapa MEM ha generado

excepcion.

71

do_write do_read

sel_info Size
to Mask

sel_info
we en
adar L e do_save
din BRAM
5]
Byte
store_modified | dout Select] {>mem_val
iz@ésel_info
do_save
data [} (=<3
o—> sel_info
token [} @ .
sz [}
op [}

Figura E.4: Ruta de datos de la interfaz de memoria de datos

NOoT read_en AND
write_en AND

NOT atomic
/
do_write, write_en AnpD
NoT store_modified, atomic
ready /
do_read,
read_en AND do_save,
NoT ready

NOT write_en

/ MODIFY_WRITE
do_read, /
do_save, IN/IT bus_frame = shared,
ready

shared AND

NoT granted
/
NoT ready error

Figura E.5: Autémata de control de la interfaz de memoria de datos

72

El esquema de la ruta de datos (Fig E.4) muestra un registro a la salida de la
BRAM. Se trata de un registro retardado, que guarda el dato de entrada un ciclo
después de que su senal load esté activa. Su salida es el valor de entrada si load esta

activa, o contenido guardado en caso contrario.

73

E.4. Unidad de funciones auxiliares (HFU)

La HFU es un componente que permite implementar funciones auxiliares mediante
circuitos secuenciales que avanzan en sincronia a las etapas de la ruta de datos del
procesador. Utiliza la etapa ID para decodificar el id de la funcién, a partir del cual
se decide el siguiente estado. En caso de que no exista la funcion indicada, avisa a la
EU de error. También permite la consulta del nimero de parametros que recibe una
funcion, para informar de su consumo a la HU.

Esta versién inicamente implementa la funcién bpf _lookup_elem, que devuelve un
puntero al valor del elemento buscado a partir de la id del mapa y la clave del elemento.
La HFU ejecuta esta funcién por completo en la etapa MEM, en dos fases: consulta
de los datos del mapa en la unidad de mapas y cédlculo de la direcciéon del elemento.
El autémata de la Fig. E.6 muestra el avance de la funcién y su sincronizacién con el
avance de las etapas ID y EX.

El céalculo de la direccion del elemento se realiza a partir de los datos del registro

de mapa, descritos en la Tab. 4.2, aplicando el siguiente calculo:

elem_ptr = (base_ptr * 8) + (truncate(key, key_size) << value_size)

map_granted

go_ID aAnD
function_id = ©

LOOKUP_MEM_REQ
/

map_request,

await_MEM

go_ID anD

go_ID aAnD function_id = 0

function_id # ©

map_granted
/
map_ena,
save_map_info

ERROR ID
/
error_ID

Figura E.6: Automata de la HFU implementada con soporte para bpf_lookup_elem

74

E.5. Controlador AXI

Este componente implementa una interfaz AXI Lite secundaria para conectar el
periférico con el exterior y permitir las transacciones de memoria y control explicadas
en la Sec. 4.2. Para comprender en detalle las senales que conforman la interfaz AXI Lite
se remite al Cap. B1 de la especificacién del protocolo AXI [4].

Para la mayoria de las transacciones, el controlador funciona como decodificador de
la direcciéon, permitiendo leer o escribir en el bloque correspondiente. Sin embargo, la
inclusién de transacciones atomicas de 64 bits en un bus de 32 bits complica el diseno.
Su comportamiento esta determinado por dos autématas: uno principal para traducir
las transacciones en sefiales de control (Fig. E.7) y otro auxiliar para controlar el estado
del bifer de memoria compartida (Fig. E.8).

Los estados del bifer representan la tltima operacién sobre memoria compartida
que se realizo desde el bus: EMPTY, si no ha afectado al bufer; STORE 0/1, si se trata
de una escritura; y LOAD_0/1, si se trata de una lectura. El cero y el uno que com-
plementan al estado senalan que la palabra accedida son los 4 bytes mas o menos
significativos. Los estados del bufer permiten al autémata principal determinar si es
preciso escribir el contenido del bifer de escritura en memoria (trasladandose a los
estados de flush). También sirven para saber si una lectura debe acceder a memoria o
extraer el dato del bufer de lectura. El automata auxiliar se encarga de actualizar el
estado del bufer, pero solo lo hace en los ciclos que el autémata principal lo indica con

la senial update_buffer_state (UBS).

request AND request AND
NOT granted NOT granted

awvalid anp wvalid anp

arvalid anp flush_n_read / flustfn,writz /
arready, do_write, awready, wready,

save_axi_ch request AND do_write,

NOT granted

FLUSH AND READ
/
from_saved_ch,
req_state

FLUSH AND WRITE
/
from_saved_ch,
req_state

save_axi_ch

INIT
/
req_state

do_read, UBS do_write, UBS

READ ACK WRITE ACK
/ /

arvalid / awvalid awp wvalid /
arready, awready, wready,
do_read, UBS do_write, UBS

rvalid bvalid

Figura E.7: Autémata de control de la interfaz AXI Lite

75

wr_shared_1 / JPCEEEEEE - wr_shared_1 / rd_shared_e
wr_save_shared - ~e_ wr_save_shared

wr_shared_1
/
wr_save_shared rd_shared_1
no_mem_access

(wr_shared_0 Anp rd_shared_1 "anp
same_addra) _.same_addra
/ /
write_64b no_mem_access

shared_flush or-.
no_buffered_action

wr_shared_1 AND
NOT same_addra
/

wr_save_shared

wr_shared_6 AND
NOT same_addra rd_shared_6 anp
/

NOT same_addra
wr_save_shared shared_flush or 3 shared_flush or

no_buffered_action .:olutm.m.mwmnlmnlo:

$hared_flush or
no_buffered_action

rd_shared_1 AnD
NOT same_addra

(wr_shared_1 Anp
same_addra)

rd_shared_1 Anp
same_addra

wr_shared_0

.write_é4b

r_save_shared

rd_shared_o0
no_mem_access

wr_shared_0 /

wr_save_shared e .- _----""" wr_shared_0 / rd_shared_1 rd_shared_1
wr_save_shared

Figura E.8: Autémata de control del bifer de memoria

rd_shared_o

76

Anexos F

Funciones definidas por el usuario

Como se explica en la Sec. 3.2.5, el procesador BPF no implementa las llamadas a
funciones de usuario, aunque aparecen en el anexo B como instruccién rel. Este anexo
explica las consideraciones de diseno que se deben tomar para incluirlas en la ruta de

datos actual.

Las llamadas a funciones son saltos relativos a PC que guardan la informacién del
FP y el PC de retorno (PC + 1), con el fin de crear un nuevo marco de pila. Como
BPF limita a 8 los marcos de pila activos [24], ambos valores podrian ser guardados
en un pequenio banco de 8 registros, la Stack Frame Unit (SFU), indexada por la
cantidad actual de marcos activos (FC). PC se guarda codificado en 12 bits, porque los
programas tienen un tamano maximo permitido de 4096 instrucciones, y para el FP
se usan 6 bits, aprovechando que la pila siempre tiene un tamano de 512 bytes y esta

alineada a 8 bytes (64 posibles posiciones de FP).

La arquitectura de BPF no tiene un Stack Pointer (SP) visible al programador, por
lo que el marco de pila debe ser deducido a partir de las escrituras en el espacio de
pila. Se considera que el SP cambia cuando se escribe en una direccién més baja (BPF
usa una pila descendente). Si el programa intentase leer de zonas todavia no escritas
incurre en comportamiento indefinido, lo que no esta permitido por el verificador de

Linux, por lo que es seguro utilizar este método.

Para soportar este tipo de llamadas, es preciso anadir comportamiento especial a
la instruccién exit en caso de estar dentro de una funcién (cuando el FC es mayor a
cero). Esta instruccién debe ser capaz de recuperar el estado anterior a la llamada a
funcion. La HU también debe ser modificada para detectar riesgos de datos producidos

por alteraciones en el SP.

La Tab. F.1 contiene una posible descripciéon RTL del comportamiento de las ins-
trucciones a lo largo de las etapas. Se han anadido las Fig. F.1 y F.2 como borradores

de lo que podria ser la infraestructura a anadir.

7

Tabla F.1: Posibles acciones RTL para soportar funciones de usuario

Class|Code [Other IF ho) EX MEM WB
PC <- PC + 1 + imm32,
SFU(FC + 1).ret_PC <- PC + 1,
IR <- Mem_Inst[PC],|SFU(FC + 1).saved_FP <- Reg_Bank[r10],
CALL|src = 1 C <- 8p, ex_val <- C|Reg_Bank[r10] <- ex_val
JMP PC <- PC + 1 FC <- FC + 1,
##DISCARD IF!
PC <- SFU(FC).ret_PC,
SP <- fw(A),
IR <- Mem_Inst[PC],|A <- Reg_Bank[r10],
EXIT|FC > 0 C <- SFU(FC).saved_FP,|ex_val <- C|Reg_Bank[r10] <- ex_val
PC <- PC + 1
FC <- FC - 1,
##DISCARD IF

addr_of_store_in_stack

EX_operand_A ——>19

load_FP

)

—_—

SP

> FP'

Stack Memory

new frame

old frame

<+—FP

Figura F.1: Infraestructura de shadow SP

EX_exit

+1

frame_counter

ID_rel

Stack Frame Unit (SFU)

F YYVYVYYY

)
E]
y

> FP

PC + 1

saved_FP |

Figura F.2: Sistema de guardado y recuperacion del marco de pila

!Descartar la siguiente instruccién permite usar la SFU tanto en la etapa ID como EX.

78

0 N O U A WN =

AR DA DS DD ADWWWWWWWWWWNNNNRNRNNNDRNRN= =S = 8 s s s s s
© N U A WN=OWVW®O®IOUKRWN-=00VL®IOULIIEWN-=0U©ONOU-IWN-=O O

Anexos G

Pruebas de integracion

G.1.

add
add
sub
sub
mul
mul
div
div
sdiv
sdiv
or
or
and
and
1sh
1sh
rsh
rsh
neg
mod
mod
smod
smod
xor
xor
mov
mov

ré
ré
ré
ré
ré
ré
ré
ré

64
rd
64
rd
64
rd
64
rd

Programas de prueba

rée 64
re r4

ré
ré
ré
ré
ré
ré
ré
ré
ré
ré
ré

64
rd
64
rd
64
rd
64
rd

64
rd

rée 64
re r4

ré
ré
ré
ré

movsx8
movsx8

movsxX
movsXx

16
16

movsx32
movsx32

arsh
arsh

add32
add32
sub32
sub32
mul32
mul32
div32
div32

ré
ré

sdiv32
sdiv32

64
rd
64
rd

rée 64
rée r4
re 64
rée r4
re 64
ré r4

64
rd

r3
13
r3
r3
r3
r3
r3
r3

r3 32
r3 r2

32
r2
32
r2
32
r2
32
r2

Listado G.1: Test de decodificacién (test_decode.s)

79

49 o0r32 r3 32

50 or32 r3 r2

51 and32 r3 32

52 and32 r3 r2

53 1sh32 r3 32

54 1sh32 r3 r2

55 rsh32 r3 32

56 rsh32 r3 r2

57 neg32 r3

58 mod32 r3 32

59 mod32 r3 r2

60 smod32 r3 32
61 smod32 r3 r2
62 xor32 r3 32

63 xor32 r3 r2

64 mov32 r3 32

65 mov32 r3 r2

66 mov32sx8 r3 32
67 mov32sx8 r3 r2
68 mov32sx16 r3 32
69 mov32sx16 r3 r2
70 arsh32 r3 32

71 arsh32 r3 r2

72

73 ; Byteswap instructions
74 lel6 r7

75 1le32 r7

76 le64d r7

77 bel6 r7

78 be32 r7

79 bebd r7

80 bswap16 r7

81 bswap32 r7

82 bswap64 r7

83

84 ; Atomic operations
85 addx32 r1 r5 54
86 addx64 r1 r5 54
87 andx32 r1 r5 54
88 andx64 r1 r5 54
89 0rx32 r1 r5 54
90 orx64 r1 r5 54
91 xorx32 r1 r5 54
92 XOrx64 r1 r5 54

93 addfx32 r1 r5 54
94 addfx64 r1 r5 54
95 andfx32 ri r5 54
96 andfx64 r1 r5 54
97 orfx32 r1 r5 54
98 orfx64 r1 r5 54
99 xorfx32 r1 r5 54
100 xorfx64 r1 r5 54
101 xchgx32 r1 r5 54
102 xchgx64 r1 r5 54
103 cmpxchgx32 r1 r5 54
104 cmpxchgx64 r1 r5 54
105

106 ; Memory instructions
107 1d64 r7 -10

108 1dx8 r7 r9 101
109 1ldx16 r7 r9 101
110 1dx32 r7 r9 101
111 1dx64 r7 r9 101
112 1dxs8 r7 r9 101
113 1ldxs16 r7 r9 101
114 1ldxs32 r7 r9 101
115 sSt8 r7 101 80
116 st16 r7 101 80
117 st32 r7 101 80
118 st64 r7 101 80
119 stx8 r7 r9 101
120 Stx16 r7 r9 101
121 stx32 r7 r9 101

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

0 N OU A WN =

N =]

stx6

ja

L23:

jal

L24:
L25:
L26:
L27:
L28:
L29:
L30:
L31:
L32:
L33:
L34:
L35:
L36:
L37:
L38:
L39:
L40:
L41:
L42:
L43:
L44:
L45:
L46:

exit

4 r7 r9 101

L1

i Jeq

: Jeq

: Jgt

: Jgt

: Jjge

: jge

1 jlt
:jlt

: jle

: jle
: jset
: Jset
: jne
: jne
: Jjsgt
: Jsgt
! Jsge
: jsge
: Jslt
: jslt
1 Jsle
: jsle

call

L24

ri

ri
ri
ri
ri
ri
ri

ri
ri
ri
ri
ri
ri

ri
ri
ri
ri
ri
ri
12

jeq32
jeq32
jgt32
jgt32
jge32
jge32
jlt32
jlt32
jle32
jle32
jset32
jset32
jne32
jne32
jsgt32
jsgt32
jsge32
jsge32
jslt32
jslt32
jsle32
jsle32

12 L2
r10 L3
12 L4
r10 L5
12 L6
ri0 L7
12 L8
r10 L9
12 L10
r10 L11
12 L12
r10 L13
12 L14
r10 L15
12 L16
r10 L17
12 L18
r10 L19
12 L20
r10 L21
12 L22
r10 L23

r1 12 L25
r1 r10 L26
r1 12 L27
r1 r10 L28
r1 12 L29
r1 r10 L30
r1 12 L31
r1 r10 L32
r1 12 L33
r1 r10 L34
r1 12 L35
r1 r10 L36
r1 12 L37
r1 r10 L38
r1 12 L39
r1 r10 L40
r1 12 L41
r1 r10 L42
r1 12 L43
r1 r10 L44
r1 12 L45
r1 r10 L46

Listado G.2: Test de memoria (test_mem.s)

st64 r10 -0x00 327
1ldx64 r0 r10 -0x00

st32 r10 -0x08 4123
1dx32 r1 r10 -0x08

st32 r10 -0x0C 543
1dx32 r2 r10 -0x0C

st16 r10 -0x10 999

81

15
16
17
18
19
20
21
22
28
24
25
26
27
28
29
30
31
&2
33
34
35
36
37
38
)
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

1dx16 r3

st16 r10
1dx16 r4

st16 r10
1dx16 r5

st16 r10
1dx16 r6

st8 r10
1dx8 ro0

st8 r10
1dx8 r1

st8 r10
1dx8 r2

st8 r10
1dx8 r3

st8 r10
1dx8 r4

st8 r10
1dx8 r5

st8 r10
1dx8 r6

st8 r10
1dx8 r7

== Test STORE

1d64 r9
stx64 ri
1ldx64 rO

1d64 r9
stx32 ri1
1dxs32 r

1d64 r9
stx32 r1

r10 -0x10 ;

-0x12 66

r10 -0x12 ;

-0x14 3232;
r10 -0x14 ;

-0x16 756

r10 -0x16 ;

-0x18 11
r10 -0x18 ;

-0x19 22
r10 -0x19 ;

-0x1A 33
r10 -0x1A ;

-0x1B 44
r10 -0x1B ;

-0x1C 55
r10 -0x1C ;

-0x1D 66 ;
r10 -0x1D ;

-Ox1E 77
r10 -0x1E ;

-Ox1F 88
r10 -0x1F ;

+ LOADSX ==

-327

0 r9 -0x00 ;

r10 -0x00

-4123
0 r9 -0x08
1 r10 -0x08

-543
0 r9 -0xoC

rs

r4

r5

ré

ro

ri

r2

r3

r4

r5

ré

r7

ro

1dxs32 r2 r10 -0x0C ;

1d64 r9
stx16 ri
ldxs16 r

1d64 r9
stx16 ri

-999
0 r9 -0x10
3 r10 -0x10

-66
0 r9 -0x12

ldxs16 r4 r10 -0x12 ;

1d64 r9 -3232

stx16 r10 r9 -0x14
ldxs16 r5 r10 -0x14
1d64 r9 -756

stx16 r10 r9 -0x16 ;
ldxs16 r6 r10 -0x16 ;
1d64 r9 -11

stx8 r10 r9 -0x18
1dxs8 r0 r10 -0x18 ;

ri

r2

r5

ré

ro

999

66

3232

756

11

22

44

55

66

77

88

—327/.

= -4123

= -543

=1 -999

= -3232

= -756

-11

82

88 1d64 r9 -22

89 stx8 r10 r9 -0x19 ;

90 1ldxs8 r1 r10 -0x19 ; r1 = -22
91

92 1d64 r9 -33

93 stx8 r10 r9 -Ox1A ;

94 ldxs8 r2 r10 -Ox1A ; r2 = -33
95

9% 1d64 r9 -44 ;

97 stx8 r10 r9 -0x1B ;

98 ldxs8 r3 r10 -0x1B ; r3 = -44
99

100 1d64 r9 -55

101 stx8 r10 r9 -0x1C ;

102 ldxs8 r4 r10 -0x1C ; r4 = -55
103

104 1d64 r9 -66

105 stx8 r10 r9 -0x1D ;

106 1dxs8 r5 r10 -0x1D ; r5 = -66
107

108 1d64 r9 -77

109 stx8 r10 r9 -Ox1E ;

110 1ldxs8 r6 r10 -Ox1E ; r6 = -77
111

112 1d64 r9 -88 ;

113 stx8 r10 r9 -0Ox1F ;

114 1dxs8 r7 r10 -Ox1F ; r7 = -88
115

116 ; == Test STORE + ADD + LOAD ==

117

118 1d64 r8 -24 ;

119 st64 r10 -0x20 3 ;

120 addx64 r10 r8 -0x20 ;

121 1dx64 r0 r10 -0x20 ; r0 = -21
122

123 st32 r10 -0x28 3 ;

124 addx32 r10 r8 -0x28 ;

125 1dx32 r1 r10 -0x28 ; r1 = OxFFFFFFFFFFFFFFEB
126

127 st32 r10 -0x2C 3 ;

128 addx32 r10 r8 -0x2C ;

129 1dxs32 r2 r10 -0x2C ; r2 = -21
130

131

132 1d64 r3 -53 ;

133 st64 r10 -0x30 66 ;

134 addfx64 r10 r3 -0x30 ; r3 = 66
135 1dx64 r6 r10 -0x30 ; re = 13
136

137 1d64 r4 -53

138 st32 r10 -0x38 64 ;

139 addfx32 r10 r4 -0x38 ; r4 = 64
140 1dx32 r7 r10 -0x38 ;or7 = 11
141

142 1d64 r5 -53 ;

143 st32 r10 -0x3C 62 ;

144 addfx32 r10 r5 -0x3C ; r5 = 62
145 1dxs32 r8 r10 -0x3C ; r8 = 9
146

147 ; == Test STORE + OR|AND|XOR + LOAD ==
148

149 ; Same operands as in test_alu
150

151 1de4 r9 72057851736457312
152 1d64 r8 562950893143040

153 stx64 r10 r8 -0x40

154 orx64 r10 r9 -0x40 ;
155 1dx64 r0 r10 -0x40 ; r0 = 72620802629403744
156

157 1d64 r9 72057851736457312
158 1de4 r8 72620544931070976
159 stx64 r10 r8 -0x50 ;
160 andfx64 r10 r9 -0x50 ; r9 = 72620544931070976

83

161 1dx64 r0 r10 -0x50 ; r0 = 72057594038124544

162
163 1d64 r9 72057851736457312
164 1d64 r8 72620544931070976
165 stx64 r10 r8 -0x60 ;
166 xorfx64 r10 r9 -0x60 ; r9 = 72620544931070976
167 1dx64 r0 r10 -0x60 ; r0 = 563208591279200
168
169 ; == Test STORE + XCHG|CMPXCHG + LOAD ==
170
171 st64 r10 -0xA0 3 ;
172 mov r9 24 ;
173 xchgx64 r10 r9 -0xA0 ; r9 = 3
174 1dx64 r8 r10 -0xA0 ; r8 = 24
175 mov r1 r9 ; (!) wait for xchgx64 to finish MEM stage,
176 ; then consume r9 from MEM-WB buffer
177
178
179 st64 r10 -0xA0 7
180 mov r9 35 ;
181 mov r0 7 ; Equal -> exchange
182 cmpxchgx64 r10 r9 -0xA0 ; r0O = 7 (!) get r0O from MEM
183 mov r2 r0 ; (!) stop 1 cycle and wait for cmpxchgx64 to finish
184 B MEM stage, then consume rO0 from MEM-WB buffer
185 1dx64 r8 r10 -0xAOQ ; r8 = 35
186
187 ste4 r10 -0xA0 -32 ;
188 mov r0 -34 ; Not Equal -> not exchange
189 mov r9 981 ;
190 cmpxchgx64 r10 r9 -0xA0 ; r0 = -32 (!) get r0 from WB
191 1dx64 r8 r10 -0xAO0 ; r8 = -32
192 add r0 r1 ; (!) wait for cmpxchgx64 to finish MEM stage, then
193 ; consume r0 from MEM-WB buffer -> r0 = -32 + 3 = -29
194
195 exit
Listado G.3: Test de ALU (test_alu.s)
1 == Test ADD ==
2
3 mov r0 24 ; A
4 mov r1 5 ; B
5 add rO r1 ; r0 = 29
6
7 mov r2 -1 ; A
8 add r21 ; r2 =20
9
10 mov r3 -67 ;A
11 add r3 -2131 ; r3 = -2198
12
13 mov r0 24 ; A
14 mov r1 5 ; B
15 add32 r0 r1 ; r0 = 29
16
17 mov r2 -1 ; A
18 add32 r2 1 ; r2 =0
19
20 mov r3 -67 ;A
21 add32 r3 -2131 ; r3 = 00000000FFFFF76A (-2198)
22
23 , == Test SUB ==
24
25 mov r0 24 ; A
26 mov r1' 5 ; B
27 sub rO r1 ; r0 = 19
28
29 mov r2 -1 ; A
30 sub r2 1 ; r2 = -2
31
32 mov r3 -67 ;A
33 sub r3 -2131 ; r3 = 2064
34
35 mov r0 24 ; A

84

36
37
38
39
40
a
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

v

mov r1'5 ; B

sub32 rO0O r1 ; r0 = 19

mov r2 -1 ; A

sub32 r2 1 ; r2 = 00000000FFFFFFFE (-2)

mov r3 -67 ;A

sub32 r3 -2131 ; r3 = 2064
== Test MUL ==

mov r0 24 ; A

mov r1' 5 ; B

mul rO r1 ; r0 = 120

mov r2 -1 ; A

mul r21 ; r2 = -1

mov r3 -67 ;A

mul r3 -2131 ; r3 = 142777

mov r0 24 ;A

mov r1 5 ; B

mul32 r0O r1 ; rO

1l
—
N
o

mov r2 -2 ;A
mul32 r2 1 ; r2 = 00000000FFFFFFFE (-2)

mov r3 -67 ;A
mul32 r3 -2131 ; r3 = 142777

== Test DIV ==

mov
mov
div

mov
mov
div

mov
mov
div

mov
mov
div

mov
mov
div

mov
mov
div

ro
ri
ro

ro
ri
ro

ro
ri
ro

ro
ri
ro

ro
ri
ro

ro
ri
ro

100 ; A

7 ; B

rt ;, r0 =14
100 ; A

-7 ;B

rit ; roO =0
-100 ; A

7 ;B

ri ; r0O = 2 635 249 153 387 078 788
-100 ; A

-7 ; B

ri ; ro =0
100 ; A

0 ; B

rt , r0o=20
-100 ; A

0 ;. B

ri ; ro =0

mov r0 100 ; A
sdivr0 7 ; r0 = 14

mov r0O 100 ; A
sdiv r0 -7 ; r0 = -14

mov r0 -100 ; A
sdiv r0 7 ; r0o = -14
mov r0 -100 ; A

sdiv r0 -7 ; r0 = 14

mov r0 100 ; A
sdivr0 0 ; r0 =0

85

109 mov r0 -100 ; A

110 sdiv r0 0 ; r0 =0
111

112

113 mov r0 100 ; A

14 mov r1 7 ; B

115 div32 rO r1 ; r0 = 14
116

117 mov r0 100 ; A

118 mov ri1 -7 ; B

119 div32 rOr1 ; r0 =0
120

121 mov r0 -100 ; A

122 mov r1 7 ; B

123 div32 r0 r1 ; r0 = 613 566 742
124

125 mov r0 -100 ; A

126 mov ri1 -7 ; B

127 div32 rO r1 ; r0 =0
128

129 mov r0 100 ; A

130 mov r1 0 ; B

131 div32 rOr1 ; r0 =0
132

133 mov r0 -100 ; A

134 mov r1 0 ; B

135 div32 rOr1 ; r0 =0
136

137

138 mov r0 100 ; A

139 sdiv32 r0 7 ; r0 = 14
140

141 mov r0 100 ;A

142 sdiv32 r0 -7 ; rO = 00000000FFFFFFF2
143

144 mov r0 -100 ; A

145 sdiv32 r0 7 ; rO = 00000000FFFFFFF2
146

147 mov r0 -100 ; A

148 sdiv32 r0 -7 ; r0 = 14
149

150 mov r0 100 ; A

151 sdiv32 r0 0 ; r0 = 0
152

153 mov r0 -100 ; A

154 sdiv32 r0 0 ; r0O = 0
155

156 ; == Test MOD ==

157

158 mov r0 100 ; A

159 mov r1 7 ; B

160 mod rO r1 ; r0 = 2
161

162 mov r0 100 ; A

163 mov r1 -7 ; B

164 mod rO r1 ; r0O = 100
165

166 mov r0 -100 ; A

167 mov r1 7 ; B

168 mod r0 r1 ; r0 =0
169

170 mov r0 -100 ; A

171 mov ri1 -7 ; B

172 mod r0 r1 ; r0O = -100 (full dividend, as div equals 0)
173

174 mov r0 100 ; A

175 mov r1 0 ; B

176 mod rO r1 ; r0O = 100
177

178 mov r0 -100 ; A

179 mov r1 0 ; B

180 mod r0 r1 ; ro = -100

181

86

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

254

mov r0 100 ; A
smod rO 7 ; r0 = 2

mov r0 100 ; A
smod r0 -7 ; r0 = -2

mov r0 -100 ; A
smod r0 7 ; ro = -2

mov r0 -100 ; A
smod rO -7 ; r0O

1}
N

mov r0O 100 ; A
smod rO 0 ; rO = 100

mov r0 -100 ; A

smod r0 0 ; r0 = -100
mov r0 100 ; A
mov ri1 7 ; B

mod32 r0 r1 ; r0 = 2

mov r0 100 ; A
mov ri1 -7 ; B
mod32 r0 r1 ; r0 = 100

mov r0 -100 ; A
mov r1 7 ; B
mod32 r0 r1 ; r0 = 2

mov r0 -100 ; A
mov ri1 -7 ; B
mod32 r0 r1 ; rO

00000000FFFFFFOC

mov r0 100 ; A
mov r1 0 ; B
mod32 r0 r1 ; r0O = 100

mov r0 -100 ;
mov r1 0 ;
mod32 r0 r1 ; rO

W >

00000000FFFFFF9C
mov r0 100 ; A
smod32 r0 7 ; r0 = 2

mov r0 100 i A
smod32 r0 -7 ; r0 = 00000000FFFFFFFE

mov r0 -100 ; A
smod32 r0 7 ; r0 = 00000000FFFFFFFE

mov r0 -100 ; A
smod32 r0 -7 ;

-
o
1}
N

mov r0 100 ; A
smod32 r0 0 ; rO

100

mov r0 -100 ; A
smod32 r0 0 ; rO

00000000FFFFFFOC (PC + 1: 163)

; == Test OR | AND | XOR ==

; 0000000100000000000000000011110000000000000001111000000001100000
; or 0000000000000010000000000000000000111000000000110000010000000000

0000000100000010000000000011110000111000000001111000010001100000

1d64 r9 72057851736457312
1d64 r8 562950893143040

87

255 or r9 r8 ; r9 = 72620802629403744
256
257

258 ; 0000000100000000000000000011110000000000000001111000000001100000
259 ; and 0000000100000010000000000000000000111000000000110000010000000000
260 et et
261 ; 0000000100000000000000000000000000000000000000110000000000000000
262

263 1d64 r8 72057851736457312 ;

264 1d64 r9 72620544931070976 ;

265 and r9 r8 ; r9 = 72057594038124544

266

267

268 ; 0000000100000000000000000011110000000000000001111000000001100000
269 ; xor 0000000100000010000000000000000000111000000000110000010000000000
270 e
271 ; 0000000000000010000000000011110000111000000001001000010001100000
272

273 1de4 r9 72057851736457312 ;

274 1d64 r8 72620544931070976 ;

275 xor r9 r8 ; r9 = 563208591279200

276

277

278 ; == Test LSH | RSH ==

279

280 mov r0 100 ; A

281 1sh r0 2 ; r0 = 400

282

283 mov r0 800 ; A

284 rsh r0 1027 ; r0 = (800 >> 3) = 100

285

286

287 ; == Test ARSH ==

288

289 1d64 rO 0x00000FFO000000FF ; A

290 arsh r0 8 ; r0 = 0x0000000FF0000000

291

292 1d64 r0O Ox80000FFO000000FF ; A

293 arsh r0 8 ; r0 = OxFF80000FF0000000

294

295

296 1d64 rO O0x00000FFO0000FFFF ; A

297 arsh32 r0 8 ; r0 = 0x00000000000000FF

298

299 1d64 r0 Ox80000FFO800000FF ; A

300 arsh32 r0 8 ; r0O = 0x00000000FF800000

301

302

303 ; == Test MOVSX ==

304

305 movsx8 r6 OxFD ; re = -3

306 movsx8 r6 0x7D ; re = 125

307 movsx16 r6 OXFFFD ; re = -3

308 movsx16 r6 Ox7FFD ; ré = 32 765

309 movsx32 r6 OxFFFFFFFD ; r6 = -3

310 movsx32 r6 0x700000FD ; r6 = 1 879 048 445

311

312 mov32sx8 r6 O0xFD ; ré = 00000000FFFFFFFD

313 mov32sx8 r6 0x7D ; re = 125

314 mov32sx16 r6 OXFFFD ; ré = 00000000FFFFFFFD

315 mov32sx16 r6 Ox7FFD ; ré = 32 762

316

317

318 ; == Test END ==

319

320 1d64 r7 0x0102030405060708 ;

321 bswap16 r7 ; r7 = 0000000000000807

322

323 1d64 r7 0x0102030405060708 ;

324 bswap32 r7 ; r7 = 0000000008070605

325

326 1d64 r7 0x0102030405060708 ;

327 bswap64 r7 ; r7 = 0807060504030201

88

328

329
330 1d64 r7 0x0102030405060708 ;
331 be16 r7 ; r7 = 0000000000000807
332
333 1d64 r7 0x0102030405060708 ;
334 be32 r7 ; r7 = 0000000008070605
335
336 1d64 r7 0x0102030405060708 ;
337 be64 r7 ; r7 = 0807060504030201
338
339 1d64 r7 0x0102030405060708 ;
340 le16 r7 ; do nothing
341 le32 r7 ; do nothing
342 le64 r7 ; do nothing
343
344 exit
Listado G.4: Test de control (test_branch.s)
1 == Test Jump Always ==
2 LO:
3 ja L1 ; Jump Always
4 mov r0 -1
5 mov r1 -1
6 mov r2 -1
7
g L1:
9 jal L2 ; Jump Always (Long)
10 mov r0 -1
11 mov r1 -1
12 mov r2 -1
13
14 ; == Test EQ ==
15 L2:
16 mov r8 23
17 jeq r8 24 L2 ; Not taken (if fail infinite loop)
18 mov r9 23
19 jeq r8 r9 L3 ; Taken
20 mov r0 -1
21 mov r1 -1
22 mov r2 -1
23
24 ; == Test NE ==
25 L3:
26 mov r8 23
27 jne r8 23 L3 ; Not taken
28 mov r9 24
29 jne r8 r9 L4 ; Taken
30 mov r0 -1
31 mov r1 -1
32 mov r2 -1
33
34 , == Test GT ==
35 L4
36 mov r8 23
37 jgt r8 23 L4 ; Not taken
38
39 mov r8 14
40 mov r9 15
41 jgt r8 r9 L4 ; Not taken
42
43 mov r8 16
44 mov r9 7
45 jgt r8 r9 L5 ; Taken
46 mov r0 -1
47 mov r1 -1
48 mov r2 -1
49
50 ,; == Test GE ==
51 L5:
52 mov r8 23
53 jge r8 23 L6 ; Taken

89

54
55
56
57
58
50
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

L6:

;==

L7:

L8:

, ==

L9:

L10:

L11:

mov r0 -1
mov r1 -1
mov r2 -1

mov r8 14
mov r9 15
jge r8 r9 L6 ; Not taken

mov r8 16

mov r9 7

jge r8 r9 L7 ; Taken
mov r0 -1

mov ri1 -1

mov r2 -1

Test SGT ==

mov r8 23
jsgt r8 23 L7 ; Not taken

mov r8 14
mov r9 15
jsgt r8 r9 L7 ; Not taken

mov r8 16

mov r9 7

jsgt r8 r9 L8 ; Taken
mov r0 -1

mov ri1 -1

mov r2 -1

mov r8 -23

mov r9 -17
jsgt r8 r9 L8 ; Not taken

mov r8 -42

jsgt r8 -52 L9 ; Taken
mov r0 -1

mov r1 -1

mov r2 -1

Test SGE ==

mov r8 23

jsge r8 23 L10 ; Taken
mov r0 -1

mov r1 -1

mov r2 -1

mov r8 14

mov r9 15

jsge r8 r9 L10 ; Not taken

mov r8 16

mov r9 7

jsge r8 r9 L11 ; Taken
mov r0 -1

mov r1 -1

mov r2 -1

mov r8 -23

mov r9 -17

jsge r8 r9 L11 ; Not taken

mov r8 -42

jsge r8 -52 L12 ; Taken
mov r0 -1

mov r1 -1

mov r2 -1

90

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

; == Test LT ==
L12:
mov r8 23
jlt r8 23 L12 ;
mov r8 14
mov r9 15
jlt r8 r9 L13 ;
mov r0 -1
mov r1 -1
mov r2 -1
L13:
mov r8 16
mov r9 7
jlt r8 r9 L13 ;
; == Test LE ==
L14:
mov r8 23
jle r8 23 L15 ;
mov r0 -1
mov r1 -1
mov r2 -1
L15:
mov r8 14
mov r9 15
jle r8 r9 L16 ;
mov r0 -1
mov r1 -1
mov r2 -1
L16:
mov r8 16
mov r9 7
jle r8 r9 L16 ;
; == Test SLT ==
L17:
mov r8 23
jslt r8 23 L18 ;
mov r8 14
mov r9 15
jslt r8 r9 L18
mov r0 -1
mov r1 -1
mov r2 -1
L18:
mov r8 16
mov r9 7
jslt r8 r9 L18 ;
L19:
mov r8 -23
mov r9 -17
jslt r8 r9 L20
mov r0 -1
mov r1 -1
mov r2 -1
L20:
mov r8 -42
jslt r8 -52 L20 ;
== Test SLE ==
L21:
mov r8 23
jsle r8 23 L22
mov r0 -1
mov r1 -1
mov r2 -1
L22:
mov r8 14

Not taken

Taken

Not taken

Taken

Taken

Not taken

Not taken

; Taken

Not taken

; Taken

Not taken

; Taken

91

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

mov r9 15
jsle r8 r9 L23 ; Taken
mov r0 -1
mov r1 -1
mov r2 -1
L23:
mov r8 16
mov r9 7
jsle r8 r9 L23 ; Not taken
L24:
mov r8 -23
mov r9 -17
jslt r8 r9 L25 ; Taken
mov r0 -1
mov r1 -1
mov r2 -1
L25:
mov r8 -42
jslt r8 -52 L25 ; Not taken
ja L26
; == END OF TEST ==
L_end:
exit
mov r0 -2
mov r1 -2
mov r2 -2
; == SET ==
L26:
mov r8 23
jset r8 1 L27 ; Taken
mov r0 -1
mov ri1 -1
mov r2 -1
L27:
mov r8 8
mov r9 4
jset r8 r9 L27; Not taken
mov r8 -1
mov r9 75
jset r8 r9 L28; ; Taken
mov r0 -1
mov ri1 -1
mov r2 -1
== 32 bit cases ==
== Test SGT ==
L28:
mov32 r8 -23
mov32 r9 -17
jsgt32 r8 r9 L28 ; Not taken
mov32 r8 -42
jsgt32 r8 -52 L29 ; Taken
mov r0 -1
mov r1 -1
mov r2 -1
; == Test SGE ==
L29:
mov32 r8 -23
mov32 r9 -17
jsge r8 r9 L29 ; Not taken
mov32 r8 -42

92

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

290
291
292
293
294
295

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
13
314
315
316
317
318
319
320
321
322
323
324
325

0N O UA WN =

©

11
12
13
14
15
16
17

jsge32 r8 -52 L30 ; Taken
mov r0 -1
mov r1 -1
mov r2 -1
== Test SLT ==
L30:
mov32 r8 -23
mov32 r9 -17
jslt32 r8 r9 L31 ; Taken
mov r0 -1
mov r1 -1
mov r2 -1
L31:
mov32 r8 -42
jslt32 r8 -52 L31 ; Not taken
; == Test SLE ==
L32:
mov32 r8 -23
mov32 r9 -17
jslt32 r8 r9 L33 ; Taken
mov r0 -1
mov r1 -1
mov r2 -1
L33:
mov32 r8 -42
jslt32 r8 -52 L33 ; Not taken
; == some edge cases ==
; taken branch after taken branch
jeq r0 r0 L34
jeq r1 r1 L_error
L34:
; unconditional jump after taken branch
jeq r2 r2 L35
jeq r3 r3 L_error
L35:
ja L_end
L_error:
mov r0 -1
mov r1 -1
mov r2 -1
Program ends at tag L_end
If this is reached exception will be generated
call -1
Listado G.5: Test de HFU (test_call.s)
; Warning! This test only works with "hfu/Test_HFU.vhd" instead of actual
HFU entity. In order to test it using "launch-core-testbench.sh" it
; has to be executed using --hfu=Test_HFU option
mov r1 0x000A0000
mov r2 0x0000B000
mov r3 0x00000C00
mov r4 0x000000D0
mov r5 0x0000000F
call 0 ; does not receive parameters -> r0 = -1
call 1 ; receives 1 parameter -> r0 = r1 = 0x000A0000
mov r8 16
div r8 4 ; Test if stays on INIT_S state
call 2 ; receives 2 parameters -> r0 = r1|r2 = 0x000AB000O

93

18
19
20
21
22
23
24
25
26
27
28

30
31
32
BY
34
BS
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

88
89
90

;-- 1 parameter dependency

;-- 2 parameters dependency

;-- 3 parameters dependency

mov r8 16
st8 r10 0x00 2 ; Test if stays on FUNCTION3_EX_S
; tate while st8 blockes pipeline
call 3 ; receives 3 parameters -> r0 = r1|r2|r3 = 0x000ABCO0

call 4 ; receives 4 parameters -> r0 = r1|r2|r3|r4 = 0x000ABCDO

call 5 ; receives 5 parameters -> r0 = r1|r2|r3|r4|r5 = 0x000ABCDF

mov r1 0x00010000

call 1 ; r0 = 0x00010000 ; get r1 from MEM, don’'t stop
mov r8 r0 ; get r0 from WB, don't stop

mov r9 r0 ; get r0 from RegBank, don’'t stop

st64 r10 0x00 0x00020000
ldx64 r1 r10 0x00
call 1 ; r0 = 0x00020000
; get r1 from WB, stop on ID stage while 1ldx64 is on MEM

mov r1 0x00030000
st64 r10 0x00 OxFFFFFFFF
1dx64 r2 r10 0x00
call 1 ; r0 = 0x00030000
; get r1 from RegBank, don’'t stop because of r2

mov r2 0x0000F000

mov r1 0x00010000
call 2 ; r0 = 0x0001F000
; get r1 from MEM, don’'t stop
mov r8 r0 ; get rO from WB, don’'t stop
mov r9 r0 ; get rO from RegBank, don’t stop

st64 r10 0x00 0x00020000
1dx64 r1 r10 0x00
call 2 ; r0 = 0x0002F000
; get r1 from WB, stop on ID stage while 1dx64 is on MEM

mov r1 0x00030000
st64 r10 0x00 OxFFFFFFFF
1ldx64 r3 r10 0x00
call 2 ; r0O = 0x0003F000
; get r1 from RegBank, don’t stop because of r3

mov r1 0x000F0000

mov r2 0x00001000
call 2 ; r0O = 0x000F1000
; get r2 from MEM, don’t stop
mov r8 r0 ; get r0 from WB, don’t stop
mov r9 r0 ; get r0 from RegBank, don’'t stop

st64 r10 0x00 0x00002000
1dx64 r2 r10 0x00
call 2 ; rO0O = 0x000F2000
; get r2 from WB, stop on ID stage while ldx64 is on MEM

mov r2 0x00003000
st64 r10 0x00 OxFFFFFFFF
1dx64 r3 r10 0x00
call 2 ; r0 = 0x000F3000
; get r2 from RegBank, don’t stop because of r3

mov r2 0x0000F000
mov r3 0x00000F00

94

91 mov r1 0x00010000

92 call 3 ; r0O = 0x0001FF00

93 ; get r1 from MEM, don’t stop

94 mov r8 r0 ; get r0 from WB, don’t stop

95 mov r9 r0 ; get rO from RegBank, don’'t stop
96

97 st64 r10 0x00 0x00020000

98 ldx64 r1 r10 0x00

99 call 3 ; r0O = 0x0002FF00

100 ; get r1 from WB, stop on ID stage while ldx64 is on MEM
101

102 mov r1 0x00030000

103 st64 r10 0x00 OxFFFFFFFF

104 ldx64 r4 r10 0x00

105 call 3 ; r0O = 0x0003FF00

106 ; get r1 from RegBank, don’t stop because of r4
107

108

109 mov r1 0x000F0000

110 mov r3 0x00000F00

11

112 mov r2 0x00001000

113 call 3 ; r0 = Ox000F1F00

114 ; get r2 from MEM, don’t stop

115 mov r8 r0 ; get r0 from WB, don’t stop

116 mov r9 r0 ; get r0 from RegBank, don’'t stop
17

118 st64 r10 0x00 0x00002000

119 1ldx64 r2 r10 0x00

120 call 3 ; r0 = Ox000F2F00

121 ; get r2 from WB, stop on ID stage while 1ldx64 is on MEM
122

123 mov r2 0x00003000

124 st64 r10 0x00 OxFFFFFFFF

125 ldx64 r4 r10 0x00

126 call 3 ; r0O = 0x000F3F00

127 ; get r2 from RegBank, don’t stop because of r4
128

129

130 mov r1 0x000F0000

131 mov r2 0x0000F000

132

133 mov r3 0x00000100

134 call 3 ; r0 = Ox000FF100

135 ; get r3 from MEM, don’t stop

136 mov r8 r0 ; get rO from WB, don’'t stop

137 mov r9 r0 ; get r0 from RegBank, don’'t stop
138

139 st64 r10 0x00 0x00000200

140 1dx64 r3 r10 0x00

141 call 3 ; r0 = 0x000FF200

142 ; get r3 from WB, stop on ID stage while 1dx64 is on MEM
143

144 mov r3 0x00000300

145 st64 r10 0x00 OxFFFFFFFF

146 1dx64 r4 r10 0x00

147 call 3 ; r0O = 0x000FF300

148 ; get r3 from RegBank, don’t stop because of r4
149

150 ;-- 4 parameters dependenCy --------- oo m oo oo
151 mov r2 0x0000F000

152 mov r3 0x00000F00

153 mov r4 0x000000FO0

154

155 mov r1 0x00010000

156 call 4 ; r0O = 0x0001FFFO

157 ; get r1 from MEM, don’t stop

158 mov r8 r0 ; get r0 from WB, don't stop

159 mov r9 r0 ; get rO from RegBank, don’'t stop
160

161 st64 r10 0x00 0x00020000

162 ldx64 r1 r10 0x00

163 call 4 ; r0O = 0x0002FFFO

95

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

; get r1 from WB, stop on ID stage while ldx64 is on MEM

mov r1 0x00030000
st64 r10 0x00 OxFFFFFFFF
ldx64 r5 r10 0x00
call 4 ; r0 = Ox0003FFFO
; get r1 from RegBank, don’t stop because of r5

mov r1 0x000F0000
mov r3 0x00000F00
mov r4 0x000000F0

mov r2 0x00001000
call 4 ; r0 = O0xO000F1FFO
; get r2 from MEM, don’'t stop
mov r8 r0 ; get r0 from WB, don't stop
mov r9 r0 ; get r0 from RegBank, don’'t stop

st64 r10 0x00 0x00002000
ldx64 r2 r10 0x00
call 4 ; r0 = Ox000F2FFO
; get r2 from WB, stop on ID stage while 1ldx64 is on MEM

mov r2 0x00003000
st64 r10 0x00 OxFFFFFFFF
1dx64 r5 r10 0x00
call 4 ; r0 = Ox000F3FFO
; get r2 from RegBank, don’t stop because of r5

mov r1 0x000F0000
mov r2 0x0000F000
mov r4 0x000000F0

mov r3 0x00000100
call 4 ; r0O = Ox000FF1FO
; get r3 from MEM, don’t stop
mov r8 r0 ; get rO from WB, don’'t stop
mov r9 r0 ; get r0 from RegBank, don’t stop

st64 r10 0x00 0x00000200
1dx64 r3 r10 0x00
call 4 ; r0O = Ox000FF2F0
; get r3 from WB, stop on ID stage while ldx64 is on MEM

mov r3 0x00000300
st64 r10 0x00 OxFFFFFFFF
1dx64 r5 r10 0x00
call 4 ; r0 = 0x000FF3FO0
; get r3 from RegBank, don’t stop because of r5

mov r1 0x000F0000
mov r2 0x0000F000
mov r3 0x00000F00

mov r4 0x00000010
call 4 ; r0O = Ox000FFF10
; get r4 from RegBank, stop while mov is on EX stage
mov r8 r0 ; get r0 from WB, don't stop
mov r9 r0 ; get rO from RegBank, don’'t stop

st64 r10 0x00 0x00000020
1dx64 r4 r10 0x00
call 4 ; r0O = Ox000FFF20
; get r4 from WB, stop on ID stage while 1ldx64 is on MEM

mov r4 0x00000030
st64 r10 0x00 OxFFFFFFFF
1dx64 r5 r10 0x00
call 4 ; r0 = O0x000FFF30
; get r4 from RegBank, don’t stop because of r5

96

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

289
290
291
292
293
294

296
297
298
299
300
301
302
303
304
305
306
307
308
309

mov r2 0x0000F000
mov r3 0x00000F00
mov r4 0x000000F0
mov r5 0x0000000F

mov r1 0x00010000
call 5

mov r8 r0
mov r9 ro0

st64 r10 0x00 0x00020000
1dx64 r1 r10 0x00
call 5

mov r1 0x00030000

st64 r10 0x00 OxFFFFFFFF
1dx64 r6 r10 0x00

call 5

mov r1 0x000F0000
mov r3 0x00000F00
mov r4 0x000000F0
mov r5 0x0000000F

mov r2 0x00001000
call 5

mov r8 r0
mov r9 ro0

st64 r10 0x00 0x00002000
1dx64 r2 r10 0x00
call 5

mov r2 0x00003000

st64 r10 0x00 OxFFFFFFFF
1dx64 r6 r10 0x00

call 5

mov r1 0x000F0000
mov r2 0x0000F000
mov r4 0x000000F0
mov r5 0x0000000F

mov r3 0x00000100
call 5

mov r8 r0
mov r9 ro0

st64 r10 0x00 0x00000200
1dx64 r3 r10 0x00
call 5

mov r3 0x00000300

st64 r10 0x00 OxFFFFFFFF
1dx64 r6 r10 0x00

call 5

mov r1 0x000F0000
mov r2 0x0000F000

97

310 mov r3 0x00000F00

31 mov r5 0x0000000F

312

313 mov r4 0x00000010

314 call 5 ; r0O = OxO000FFF1F

315 ; get r4 from RegBank, stop while mov is on EX stage
316 mov r8 r0 ; get rO from WB, don’'t stop

317 mov r9 r0 ; get r0 from RegBank, don’t stop

318

319 st64 r10 0x00 0x00000020

320 1dx64 r4 r10 0x00

321 call 5 ; r0 = OxO000FFF2F

322 ; get r4 from WB, stop on ID stage while 1dx64 is on MEM
323

324 mov r4 0x00000030

325 st64 r10 0x00 OxFFFFFFFF

326 ldx64 r6 r10 0x00

327 call 5 ; r0O = OxO000FFF3F

328 ; get r4 from RegBank, don’t stop because of ré6
329

330

331 mov r1 0x000F0000

332 mov r2 0x0000F000

333 mov r3 0x00000F00

334 mov r4 0x000000F0

335

336 mov r5 0x00000001

337 call 5 ; r0 = Ox000FFFF1

338 ; get r5 from RegBank, stop while mov is on EX stage
339 mov r8 r0 ; get rO from WB, don’t stop

340 mov r9 r0 ; get r0 from RegBank, don’'t stop

341

342 st64 r10 0x00 0x00000002

343 1dx64 r5 r10 0x00

344 call 5 ; r0 = OxO000FFFF2

345 ; get r5 from WB, stop on ID stage while 1dx64 is on MEM
346

347 mov r5 0x00000003

348 st64 r10 0x00 OxFFFFFFFF

349 1ldx64 r6 r10 0x00

350 call 5 ; r0O = OxO00FFFF3

351 ; get r5 from RegBank, don’t stop because of ré6
352

353

354 call -1 ; generates exception in MEM stage

Listado G.6: Test de IOMM (test_io_mem.s)

; This program copies content from BPF_MEM_PACKET_BASE (h8000) up to

1
2 ; BPF_FRAME_POINTER (h89F8) into shared memory (h9000).

3

4 ; It requires being tested using test_io_mem.vhd testbench, which includes:
5

6

7 Control test:

8 - Write control signals

9 - Read control signals, input and output

10

1" Concurrency test:

12 - Concurrent 1 step write

13 - Concurrent 1 step read

14

15 - Concurrent flush and write

16 - Concurrent flush and read

17

18 Buffered read test:

19 - Read lower 32b + higher 32b of same addr

20 - Read higher 32b + lower 32b of same addr

21 - Read lower 32b + lower 32b of same addr

2 - Read higher 32b + higher 32b of same addr

23

24 - Read lower 32b + higher 32b of different addr
25 - Read higher 32b + lower 32b of different addr

98

26
27
28
29
30
31
32
33
34
B
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
60
61
62
63

0 N oA WN =

W W wWwNNNNNNDNRNRLNRN-S S 5 5 a5 s s
N = O VW ®NO U BWN-=0©VoWONOUIN~WN-= 0 O

; - Read lower 32b + lower 32b of different addr
: - Read higher 32b + higher 32b of different addr

; Buffered write test:

Write
Write
Write
Write

Write
Write
Write
Write

lower 32b + higher 32b of same addr
higher 32b + lower 32b of same addr
lower 32b + lower 32b of same addr

higher 32b + higher 32b of same addr

lower 32b + higher 32b of different addr
higher 32b + lower 32b of different addr
lower 32b + lower 32b of different addr

higher 32b + higher 32b of different addr

; Forced flushed test:
; - Write 32b + FLUSH

; - Write <32b + FLUSH

R - Read lower 32b + FLUSH + Read higher 32b (same addr)

mov r0 0x8000

L1: ldx64 r1 r0 0x0000
stx64 r0 r1 0x1000

add r0

8

i1t r0 0x8A00 L1

mov r0 0x9000
1d64 r2 0x0001000000010000

L2: addx64 r0 r2 0x0000 ; Add both halves

add ro

8

jlt r0 0x9A00 L2

exit

Listado G.7: Test de mapas (test_map.s)

; This test requires being tested using test_map.vhd testbench

; Map with 32-bit values

mov r9
loop:

mov r1

mov r2

call 0

jeq r0

0

1 ; map id <- 1

r9 ; map key <- 0..100
; lookup_elem(1, 1i);

0 null

1dx32 r3 r0 0x00
1dx32 r4 r0 0x04 ; next elem

ja loop_guard

null:
mov r3
mov r4

loop_guard:
add r9
jlt r9

mov r
mov r2
call 0

mov r
mov r2
call 0

-1
-1

1
100 loop
1 ;
100 ; ! out of bounds
; lookup_elem(0, 100) -> NULL
0 ! map 0 should not exist
45 N

; lookup_elem(0, 45) -> NULL

;-- Dummy Loop to change map settings --;

99

33 mov r9 0

34 dummy_loop_0:

35 le64d r7

36 le64 r7

37 add r9 1

38 jlt r9 10 dummy_loop_0

39

40

a1

42 mov r1 0

43 mov r2 45

44 call 0

45

46 1dx32 r3 r0 0x00

47 1dx32 r4 r0 0x04

48

49

50 mov r9 0

51 dummy_loop_1:

52 le64 r7

53 le64d r7

54 add r9 1

55 jlt r9 10 dummy_loop_1

56

57

58

59 mov r1 0

60 mov r2 45

61 call 0

62

63 1dx32 r3 r0 0x00

64 1dx32 r4 r0 0x04

65

66

67 mov r9 0

68 dummy_loop_2:

69 le64d r7

70 le64d r7

71 add r9 1

72 jlt r9 10 dummy_loop_2

73

74

75

76 mov r1 0

77 mov r2 45

78 call 0

79

80 1dx64 r3 r0 0x00

81 1dx64 r4 r0 0x04

82

83

84 mov r1 1

85 mov r2 66

86 call 0

87

88

89 1dx32 r3 r0 0x00
G.2. Ejemplo de testbench
Listado G.8: Testbench que permite simular la carga y ejecucién de un programa BPF
(program_test.vhd)

'I __

2 -- Project Name: A basic processor core for running BPF programs

3 -- Author: Fernando Lahoz Bernad

4 -

5 -- Description: Testbench for testing loading of a BPF program and it’'s

6 -- execution.

10
11
12
13
14
15
16
17
18
19
20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use work.bpf.all;

entity BPF_Peripheral_Testbench is
end BPF_Peripheral_Testbench;

architecture Behavioral of BPF_Peripheral_Testbench is

component BPF_AXI_Peripheral is

port (

-- AXI slave interface

S_AXI_aclk :

S_AXI_awaddr :

S_AXI_awprot

S_AXI_awvalid :
S_AXI_awready :

S_AXI_wdata
S_AXI_wstrb :

S_AXI_wvalid :
S_AXI_wready :

S_AXI_bresp :

S_AXI_bvalid :
S_AXI_bready :

S_AXI_araddr :

S_AXI_arprot

S_AXI_arvalid :
S_AXI_arready :

S_AXI_rdata
S_AXI_rresp :

S_AXI_rvalid :
S_AXI_rready :

),

end component;

in std_logic;
S_AXI_aresetn :

in std_logic; -- This Signal is Active LOW

in std_logic_vector (31 downto 0);
in std_logic_vector(2 downto 0);
in std_logic;
out std_logic;

in std_logic_vector (31 downto 0);
in std_logic_vector(3 downto 0);
in std_logic;
out std_logic;

out std_logic_vector(1 downto 0);
out std_logic;
in std_logic;

in std_logic_vector (31 downto 0);
in std_logic_vector(2 downto 0);
in std_logic;
out std_logic;

: out std_logic_vector(31 downto 0);

out std_logic_vector(1 downto 0);
out std_logic;
in std_logic

-- RAM from which instructions are being loaded

component Inst_RAM is
port (

clk : in std_logic;

addr : in std_logic_vector (11 downto 0);
input : in std_logic_vector (63 downto 0);
write_en : in std_logic;

read_en : in std_logic;

output : out std_logic_vector (63 downto 0)

),

end component;

function vec32(input_vector: std_logic_vector) return std_logic_vector is
constant target_length : integer := 32;
variable output_vector : std_logic_vector(target_length-1 downto 0);
variable input_length : integer := input_vector’length;

begin

if input_length < target_length then
-- Zero-extend the input vector to 32 bits

output_vector

:= (others => '0');

output_vector(input_length-1 downto 0) := input_vector;

else

-- Truncate or keep the input vector to 32 bits

output_vector
end if;

:= input_vector(target_length-1 downto 0);

return output_vector;

end function;

constant CLK_PERIOD :

time := 10 ns;

101

82 constant NUM_CLKS : natural := 10000;
83

84 signal clk, reset : std_logic;

85 signal cycles : natural := 0;

86

87 signal instruction : std_logic_vector(63 downto 0);
88 signal inst_addr : std_logic_vector(11 downto 0);
89

90 signal S_AXI_awaddr : std_logic_vector(31 downto 0);
91 signal S_AXI_awprot : std_logic_vector(2 downto 0);
92 signal S_AXI_awvalid : std_logic;

93 signal S_AXI_awready : std_logic;

94

95 signal S_AXI_wdata : std_logic_vector(31 downto 0);
9% signal S_AXI_wstrb : std_logic_vector(3 downto 0);
97 signal S_AXI_wvalid : std_logic;

98 signal S_AXI_wready : std_logic;

99

100 signal S_AXI_bresp : std_logic_vector(1 downto 0);
101 signal S_AXI_bvalid : std_logic;

102 signal S_AXI_bready : std_logic;

103

104 signal S_AXI_araddr: std_logic_vector(31 downto 0);
105 signal S_AXI_arprot : std_logic_vector(2 downto 0);
106 signal S_AXI_arvalid : std_logic;

107 signal S_AXI_arready : std_logic;

108

109 signal S_AXI_rdata : std_logic_vector(31 downto 0);
110 signal S_AXI_rresp : std_logic_vector(1 downto 0);
111 signal S_AXI_rvalid : std_logic;

112 signal S_AXI_rready : std_logic;

113

114 begin

115

116 tested_unit: BPF_AXI_Peripheral

117 port map (

118 S_AXI_aclk => clk,

19 S_AXI_aresetn => not reset,

120

121 S_AXI_awaddr => S_AXI_awaddr,

122 S_AXI_awprot => S_AXI_awprot,

123 S_AXI_awvalid => S_AXI_awvalid,

124 S_AXI_awready => S_AXI_awready,

125

126 S_AXI_wdata => S_AXI_wdata,

127 S_AXI_wstrb => S_AXI_wstrb,

128 S_AXI_wvalid => S_AXI_wvalid,

129 S_AXI_wready => S_AXI_wready,

130

131 S_AXI_bresp => S_AXI_bresp,

132 S_AXI_bvalid => S_AXI_bvalid,

133 S_AXI_bready => S_AXI_bready,

134

135 S_AXI_araddr => S_AXI_araddr,

136 S_AXI_arprot => S_AXI_arprot,

137 S_AXI_arvalid => S_AXI_arvalid,

138 S_AXI_arready => S_AXI_arready,

139

140 S_AXI_rdata => S_AXI_rdata,

141 S_AXI_rresp => S_AXI_rresp,

142 S_AXI_rvalid => S_AXI_rvalid,

143 S_AXI_rready => S_AXI_rready

144)

145

146 program_buffer: Inst_RAM

147 port map (

148 clk => clk,

149 addr => inst_addr,

150 input => (63 downto 0 => '0'),

151 write_en => '0',

152 read_en => '1',

153 output => instruction

154),

102

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

CLK_PROC: process

begin

if (cycles /= NUM_CLKS) then
clk <= '0';
wait for CLK_PERIOD / 2;
clk <= "1";
cycles <= cycles + 1;
wait for CLK_PERIOD / 2;

else
wait;

end if;

end process;

TEST_PROC: process
begin
reset <= '1';

S_AXI_awaddr <= x"00000000";
S_AXI_awvalid <= '0';

S_AXI_wdata <= x"00000000";
S_AXI_wstrb <= "0000";
S_AXI_wvalid <= '0';

S_AXI_araddr <= x"00000000";
S_AXI_arvalid <= '0’';

-- Always ready
S_AXI_bready <= "1";
S_AXI_rready <= '1';

-- Unused
S_AXI_arprot <= "000";
S_AXI_awprot <= "000";

wait on clk until clk = "1’;
reset <= '0';

-- Step 1: load program --

inst_addr <= x"000";

wait for CLK_PERIOD / 8;

while instruction /= (63 downto 0 => '0') loop
-- lower 32 bit
S_AXI_awaddr <= BPF_MEM_INST_BASE_U32 + (inst_addr & "000");
S_AXI_awvalid <= "1';

S_AXI_wdata <= instruction(31 downto 0);
S_AXI_wstrb <= "1111";
S_AXI_wvalid <= "1';

wait until S_AXI_awready = ‘1’ and S_AXI_wready = '1';
wait on clk until clk = "1°;

S_AXI_awvalid <= '0';
S_AXI_wvalid <= '0';

wait until S_AXI_bvalid = '1’";
wait on clk until clk = "1’;

-- higher 32 bit
S_AXI_awaddr <= BPF_MEM_INST_BASE_U32 + (inst_addr & "100");
S_AXI_awvalid <= "1';

S_AXI_wdata <= instruction(63 downto 32);
S_AXI_wstrb <= "1111";
S_AXI_wvalid <= "1';

wait until S_AXI_awready = 1’ and S_AXI_wready = '1';
wait on clk until clk = "1’;

103

228 S_AXI_awvalid <= '0';

229 S_AXI_wvalid <= '0';

230

231 wait until S_AXI_bvalid = "1';
232 wait on clk until clk = "1’;

233

234 inst_addr <= inst_addr + "01";
235 wait for CLK_PERIOD / 8;

236

237 end loop;

238

239 -- Step 2: load frame pointer (FP) --
240

241 S_AXI_awaddr <= BPF_CORE_CTRL_U32;
242 S_AXI_awvalid <= '1';

243

244 S_AXI_wdata <= vec32("0000711" & "1010"); -- reset = 0; sleep = 1; write FP
245 S_AXI_wstrb <= "1111";

246 S_AXI_wvalid <= '1";

247

248 wait until S_AXI_awready = ‘1’ and S_AXI_wready = '1';
249 wait on clk until clk = "1’;

250

251 S_AXI_awvalid <= '0';

252 S_AXI_wvalid <= '0';

253

254 wait until S_AXI_bvalid = "1';

255 wait on clk until clk = "1’;

256

257 S_AXI_awaddr <= BPF_CORE_INPUT_U32;
258 S_AXI_awvalid <= '1';

259

260 S_AXI_wdata <= vec32(BPF_FRAME_POINTER);
261 S_AXI_wstrb <= "1111";

262 S_AXI_wvalid <= "1';

263

264 wait until S_AXI_awready = ‘1’ and S_AXI_wready = '1';
265 wait on clk until clk = "1’;

266

267 S_AXI_awvalid <= '0';

268 S_AXI_wvalid <= '0';

269

270 wait until S_AXI_bvalid = "1';

271 wait on clk until clk = "1’;

272

273 -- Step 3: execute --

274

275 S_AXI_awaddr <= BPF_CORE_CTRL_U32;
276 S_AXI_awvalid <= '1';

277

278 S_AXI_wdata <= vec32("000000" & "0000"); -- reset = 0; sleep = 0; don't write
279 S_AXI_wstrb <= "1111";

280 S_AXI_wvalid <= "1";

281

282 wait until S_AXI_awready = "1’ and S_AXI_wready = "1';
283 wait on clk until clk = "1’;

284

285 S_AXI_awvalid <= '0';

286 S_AXI_wvalid <= '0';

287

288 wait until S_AXI_bvalid = "1’";

289 wait on clk until clk = "1’;

290

291 —— e mm —m -

292

293 wait;

294

295 end process;

296

297 end Behavioral;

104

G.3. Ejemplos de visualizacion de senales

Los tests de integracion se comprueban manualmente observando el valor de las
senales con un visor de ondas (p. ej. GTKWave). A continuacién se muestran algunos
ejemplos de comportamientos del procesador que deben ser verificados ante ciertas

situaciones:

— La division es una operacion multiciclo. En etapa EX debe bloquear el avance de
etapas anteriores y permitir el de las posteriores, tal y como muestra la Fig. G.1a.

No obstante, si la division es entre cero deja de ser multiciclo, como se ve en la
Fig. G.1b.

— Como se menciona en la Sec. 3.1.1, los saltos incondicionales descartan la ins-
truccion en etapa IF y los condicionales tomados también descartan la etapa
ID. La Fig. G.2 corresponde al comienzo del test de control, donde aparece este
comportamiento de los saltos y se puede observar el primer descarte obligatorio

producido después de reiniciar el core.

— En caso de generarse una excepcion el procesador devuelve el niimero de instruc-
cion que la provoco. El programa del test de mapas esta pensado para acabar en
excepcion leyendo de un puntero nulo. En la Fig. G.3 se puede comprobar que la

instruccién causante es el ultimo load.

— Una parte del test de IOMM tiene por objetivo asegurar el acceso en exclusién
mutua al bus de memoria compartida. Un arbitro se encarga de otorgar acceso
y decidir en caso de solicitudes simultaneas, priorizando al solicitante menos
reciente para evitar inanicion. En la Fig. G.4 se ve un caso de coincidencia de

solicitudes y varios casos de cambios en la prioridad del arbitro.

— La Fig. G.5 muestra el proceso de carga del programa a la memoria de instruc-

ciones y el arranque del core siguiendo el proceso explicado en la Sec. 4.2.2.

105

clk

clk load_pc

load_pc load_af

load_af load_ad

load_id load_ex

load o« | load_nen
load_mem block_1f
block_if block_id
block_id block_ex
block_ex block_mem
block_mem div_by @6
ex_alu_ready ex_alu_ready
operand_al63:0] operand_a[63:0]
operand_b[63:0] operand_b[63:0]
mod_bus [63:0] mod_bus [63:0]
div_bus[63:8] div_bus[63:8]
signed_alu op_alu[3:0]

(a) Divisién normal (multiciclo) (b) Divisién entre cero

Figura G.1: Posibles etapas EX de una division

clk

id_jump
ex_taken
ex_branch
ex_taken_branch

PC

Next PC
discard_id
discard_if

Figura G.2: Comparacién en el niimero de etapas descartadas entre saltos incondicio-
nales (jump) y condicionales(branch)

core_finish

core_exception
core_output[63:0]

pc 4

1d_read_en

1d_write_en

1d_mem_to_reg
ex_cl63:0]

Figura G.3: Fin de ejecucién por excepcion en el ultimo load

clk
axic_ena
axic_shared
axic_unshared
dataif_ena
dataif_shared
dataif_unshared
shared_bram_ena
ARBITER {
reqli:e]
prio
bus_frame
granted[1:0]
} ARBITER

Figura G.4: Coincidencia en la peticién de acceso al bus de memoria compartida y
cambios de prioridad

106

clk
reset
cycles

Core Ctrl {
core_reset
core_finish
core_exception
core_sleeping
core_sleep
core_reg_write
core reg dst[3:0]
core_reg_input[63:0] M
core_output(63:0] |
} Core ctrl

Figura G.5: Fases de carga, ejecuciéon y fin de programa visualizadas con las senales

del registro de control

107

108

0 N O U A WN =

AR DA DS DD ADWWWWWWWWWWNNNNRNRNNNDRNRN= =S = 8 s s s s s
© N U A WN=OWVW®O®IOUKRWN-=00VL®IOULIIEWN-=0U©ONOU-IWN-=O O

Anexos H

Cédigo de demostracion

H.1. Biblioteca de interaccién con el periférico

Listado H.1: Biblioteca para interactuar con el procesador BPF (ebpf_lib.c).

#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <sys/_types.h>

#include "platform.h"

#include "xparameters.h"

uint8_t bpf_axi_read_8b(size_t addr)

{

return *(volatile uint8_t *) (XPAR_BPF_AXI_PERIPHERAL_O_BASEADDR + addr);
b
uint16_t bpf_axi_read_16b(size_t addr)
{

return *(volatile uint16_t *) (XPAR_BPF_AXI_PERIPHERAL_O_BASEADDR + addr);
+
uint32_t bpf_axi_read_32b(size_t addr)
{

return *(volatile uint32_t *) (XPAR_BPF_AXI_PERIPHERAL_O_BASEADDR + addr);
+
uint64_t bpf_axi_read_64b(size_t addr)
{

return *(volatile uint64_t *) (XPAR_BPF_AXI_PERIPHERAL_O_BASEADDR + addr);
+
void bpf_axi_write_8b(size_t addr, uint8_t value)
{

*(volatile uint8_t *) (XPAR_BPF_AXI_PERIPHERAL_O_BASEADDR + addr) = value;
¥
void bpf_axi_write_16b(size_t addr, uint16_t value)
{

*(volatile uint16_t *) (XPAR_BPF_AXI_PERIPHERAL_O_BASEADDR + addr) = value;
+

109

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

void bpf_axi_write_32b(size_t addr, uint32_t value)

{
}

void bpf_axi_write_64b(size_t addr, uint64_t value)

{

*(volatile uint32_t *) (XPAR_BPF_AXI_PERIPHERAL_0_BASEADDR + addr)

*(volatile uint64_t *) (XPAR_BPF_AXI_PERIPHERAL_O_BASEADDR

enum bpf_peripheral_address

{

15

BPF_MEM_INST_BASE = 0x0000,
BPF_MEM_PACKET_BASE = 0x8000,
BPF_MEM_STACK_BASE = 0x8800,
BPF_MEM_SHARED_BASE = 0x9000,

BPF_MEM_SHARED_FLUSH_BUFFER = Ox8FFF,

BPF_CORE_CTRL = 0x8A00,
BPF_CORE_INPUT = 0x8A08,
BPF_CORE_OUTPUT = 0x8A10,
BPF_MAP_BASE = 0Ox8A18,

BPF_FRAME_POINTER = O0x89F8

struct bpf_core_ctrl_reg

{

struct bpf_core_ctrl_reg bpf_core_get_ctrl_reg()

{

void bpf_core_set_ctrl_reg(struct bpf_core_ctrl_reg ctrl_reg)

{

unsigned reg dst : 4;
unsigned reg_write : 1;
unsigned sleep : 1;
unsigned sleeping : 1;
unsigned exception : 1;
unsigned finish : 1;
unsigned reset : 1;
uint64_t _padding : 54;

struct bpf_core_ctrl_reg ctrl_reg;

uint64_t value = bpf_axi_read_64b(BPF_CORE_CTRL);

memcpy (&ctrl_reg, &value, sizeof(uint64_t));

return ctrl_reg;

uinté64_t value;

memcpy(&value, &ctrl_reg, sizeof(uint64_t));

bpf_axi_write_64b(BPF_CORE_CTRL, value);

110

+ addr)

value;

value;

122 typedef uint64_t bpf_instruction_t;
123

124

125

126

127

128

129

130

131

132 int bpf_load_program(bpf_instruction_t* program, int length)
133 {

134 struct bpf_core_ctrl_reg ctrl_reg = bpf_core_get_ctrl_reg();
135 if (!(ctrl_reg.finish || ctrl_reg.exception || ctrl_reg.sleeping))
136 return -1;

137

138 for (int 1 = 0; i < length; ++1i)

139 bpf_axi_write_64b(BPF_MEM_INST_BASE + 8+%i, program[i]);
140

141 return 0;

142}

143

144

145

146

147

148 void bpf_start_program()

149 {

150 struct bpf_core_ctrl_reg ctrl_reg;

151

152

153 ctrl_reg.reset = 1;

154 bpf_core_set_ctrl_reg(ctrl_reg);

155

156

157 ctrl_reg.reset = 0;

158 ctrl_reg.sleep = 1;

159 ctrl_reg.reg_write = 1;

160 ctrl_reg.reg_dst = 10;

161 bpf_core_set_ctrl_reg(ctrl_reg);

162 bpf_axi_write_64b(BPF_CORE_INPUT, BPF_FRAME_POINTER);
163

164

165 ctrl_reg.sleep = 0;

166 ctrl_reg.reg_write = 0;

167 bpf_core_set_ctrl_reg(ctrl_reg);

168 }

169

170

171

172

173 void bpf_sleep_program()

174 |

175 struct bpf_core_ctrl_reg ctrl_reg = bpf_core_get_ctrl_reg();
176 if (ctrl_reg.finish || ctrl_reg.exception || ctrl_reg.sleeping)
177 return;

178

179 ctrl_reg.reset = 0;

180 ctrl_reg.sleep = 1;

181 ctrl_reg.reg_write = 0;

182 bpf_core_set_ctrl_reg(ctrl_reg);

183

184

185 while (!(ctrl_reg.finish || ctrl_reg.exception || ctrl_reg.sleeping))
186 ctrl_reg = bpf_core_get_ctrl_reg();

187 }

188

189

190

191

192

193

194

111

195
196
197
198
199
200
201
202
203
204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

254
255
256
257
258
259

261
262
263
264
265
266
267

int bpf_awake_program()

{
struct bpf_core_ctrl_reg ctrl_reg = bpf_core_get_ctrl_reg();
if (ctrl_reg.finish || ctrl_reg.exception)
return -1;
ctrl_reg.sleep = 0;
bpf_core_set_ctrl_reg(ctrl_reg);
return 0;
}

enum bpf_program_end_cause

BPF_FINISH = 0,
BPF_EXCEPTION = -1

int bpf_await_program()

{
struct bpf_core_ctrl_reg ctrl_reg = bpf_core_get_ctrl_reg();
while (!(ctrl_reg.finish || ctrl_reg.exception || ctrl_reg.sleeping))
ctrl_reg = bpf_core_get_ctrl_reg();
if (ctrl_reg.finish)
return BPF_FINISH;
else
return BPF_EXCEPTION;
+

uint64_t bpf_core_get_program_result()
{

}

return bpf_axi_read_64b(BPF_CORE_OUTPUT);

enum bpf_map_type

BPF_MAP_TYPE_ARRAY

o

struct bpf_map_entry

{
unsigned base_ptr : 12;
unsigned key_size : 2;
unsigned val_size : 2;
unsigned max_entries : 15;
unsigned valid : 1;

¥

struct bpf_map_entry _bpf_map_get_entry(size_t id)
{
struct bpf_map_entry map_reg;
uint32_t value = bpf_axi_read_32b(BPF_MAP_BASE + (4 * id));
memcpy (&map_reg, &value, sizeof(uint32_t));
return map_reg;

112

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
18
314
Blll5
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
BES
336
337
338
339
340

N

void _bpf_map_set_entry(struct bpf_map_entry map_reg, size_t id)

{
uint32_t val

ue;

memcpy(&value, &map_reg, sizeof(uint32_t));
bpf_axi_write_32b(BPF_MAP_BASE, value + (4 * id));

enum bpf_map_alloc_state

{

BPF_MAP_ALLOC_STATE_HALF_TOP,
BPF_MAP_ALLOC_STATE_HALF_BOT,
BPF_MAP_ALLOC_STATE_FULL,
BPF_MAP_ALLOC_STATE_EMPTY

15

const unsigned BPF_MAP_MAX_SIZE = 3584 * 8;

unsigned bpf_map

_next_ptr_v = 0;

enum bpf_map_alloc_state bpf_map_alloc_state_v = 0;

unsigned _bpf_compact_size(unsigned sz)

switch (sz)
case 8:
case 16:
case 32:
case 64:
default:

uinté4_t _bpf_ma
{
switch (sz)
case 0:
case 1:
case 2:
case 3:
default:

{
return 0
return 1
return 2;
return 3
return 0

sk_from_size(unsigned sz)

{

return 0x00000000000000FF;
return 0x000000000000FFFF;
return 0x00000000FFFFFFFF;
return OXFFFFFFFFFFFFFFFF;
return 0;

int bpf_create_map(enum bpf_map_type type, unsigned key_size,

val_size, unsigned max_entries)

struct bpf_map_entry map_reg;

_next_ptr, id;
_ptr = bpf_map_next_ptr_v / 8;

if (type != BPF_MAP_TYPE_ARRAY)

unsigned
{
unsigned aux
map_reg.base
return -
aux_next_ptr
if (aux_next
return -

1;

= bpf_map_next_ptr_v + (val_size * max_entries / 8)

_ptr > BPF_MAP_MAX_SIZE)

1;

113

341
342
343
344
345
346
347
348
349
350
351
352
B58
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
895
396
397
398
899
400
401
402
403
404
405

407
408
409
410
411
412
413

int

switch (bpf_map_alloc_state_v) {
case BPF_MAP_ALLOC_STATE_EMPTY:

id = 0;

bpf_map_next_ptr_v = aux_next_ptr;

if (bpf_map_next_ptr_v == BPF_MAP_MAX_SIZE)
bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_FULL;

else
bpf_map_alloc_state_v

BPF_MAP_ALLOC_STATE_HALF_TOP;

break;
case BPF_MAP_ALLOC_STATE_HALF_TOP:

id = 1;
bpf_map_next_ptr_v = aux_next_ptr;
bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_FULL;

break;
case BPF_MAP_ALLOC_STATE_HALF_BOT:

id = 0;
bpf_map_next_ptr_v = aux_next_ptr;
bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_FULL;

break;

case BPF_MAP_ALLOC_STATE_FULL:
return -1;

default:
return -1;

}

map_reg.valid = 1;

map_reg.key_size = _bpf_compact_size(key_size);
map_reg.val_size = _bpf_compact_size(val_size);
map_reg.max_entries = max_entries;
_bpf_map_set_entry(map_reg, id);

return id;

bpf_delete_map(unsigned id)
struct bpf_map_entry map_reg;

if (id >= 2)
return -1;

switch (bpf_map_alloc_state_v) {

case BPF_MAP_ALLOC_STATE_EMPTY:
return -1;

case BPF_MAP_ALLOC_STATE_HALF_TOP:

if (id !'= 0)
return -1;

bpf_map_next_ptr_v = 0;
bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_EMPTY;

break;
case BPF_MAP_ALLOC_STATE_HALF_BOT:

if (id !'= 1)
return -1;

114

414

415 bpf_map_next_ptr_v = 0;

416 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_EMPTY;
417

418 break;

419 case BPF_MAP_ALLOC_STATE_FULL:

420

421 map_reg = _bpf_map_get_entry(id);

422

423 if (id == 1)

424 {

425 bpf_map_next_ptr_v = map_reg.base_ptr * 8;
426 bpf_map_alloc_state_v = BPF_MAP_ALLOC_STATE_HALF_TOP;
427

428 else

429 {

430 bpf_map_next_ptr_v = 0;
431 bpf_map_alloc_state_v
432 }

433 break;

434 default:

435 return -1;

436 }

437

438 map_reg.valid = 0;
439 _bpf_map_set_entry(map_reg, id);

440

441 return 0;

442}

443

444

445

446

447

448

449

450

451

452

453 void *bpf_lookup_elem(unsigned id, uint64_t key)

454

455 struct bpf_map_entry map_reg;

456 uinté4_t key_masked;

457 size_t elem_ptr;

458

459 if (id >= 2)

460 return NULL;

461

462 map_reg = _bpf_map_get_entry(id);

463

464 if (!map_reg.valid)

465 return NULL;

466

467 key_masked = key & _bpf_mask_from_size(map_reg.key_size);
468

469 if (key_masked >= map_reg.max_entries)

470 return NULL;

471

472 elem_ptr = (map_reg.base_ptr * 8) + (key_masked << map_reg.val_size);
473

474 return (void *) (XPAR_BPF_AXI_PERIPHERAL_O_BASEADDR + elem_ptr);
475 }

BPF_MAP_ALLOC_STATE_HALF_BOT;

115

H.2. Ejemplo de programa

Listado H.2: Ejemplo de programa principal (main.c).
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include <sys/_intsup.h>

#include "xil_printf.h"

0 N oOU A WN =

A A A DNSDBAEDDDDWWWWWWWWWWRNRNNDNDNNNDRNRNR =S = a4 2 oo o oo
N = O 00Nt A WN=00VO0KONOURARWRN-=0VOO®NOUBEAWN-=0VOONOWURNARWN-=O O

53

#include "ebpf_lib.h"
#define PRINT_ENABLE 1

#define PRINT(fmt,

{\
if (PRINT_ENABLE) \
xil_printf(fmt, ## VA_ARGS); \
b
bpf_instruction_t program[] =
{
#include "programs/test_mem.txt"
I
int main()

{

int end_cause;
uint64_t result;

init_platform();
PRINT("Loading program...\n\r");

if (bpf_load_program(program, sizeof(program)/sizeof(bpf_instruction_t)) < 0)

{

}

PRINT("OK\n\r");
PRINT("Start of execution\n\r");

bpf_start_program();

end_cause = bpf_await_program();

result bpf_core_get_program_result();

if (end_cause == BPF_FINISH)

{
PRINT("Program finished with result: %llx\n\r", result);
¥
else {
PRINT("Program threw an exception at PC %L1lu\n\r", result);
}

exit_point:
cleanup_platform();
return 0;

PRINT("FAIL\n\r");
goto exit_point;

	Introducción
	Motivación y contexto
	Objetivos y alcance
	Objetivos generales
	Objetivos específicos
	Alcance

	Contribuciones
	Metodología y entorno de trabajo
	Planificación
	Estructura del documento

	Fundamentos
	Ruta de datos segmentada
	BPF
	Programas BPF y usos
	Mapas
	Hardware Offload
	Arquitectura de Lenguaje Máquina

	Metodología de depuración y testing
	Trabajos relacionados

	Diseño de un procesador BPF básico
	Ruta de datos
	Control de PC
	Búsqueda de operandos
	Escritura del resultado
	Control de los bancos de etapa
	Gestión de excepciones y detención del procesador

	Descripción de componentes
	Banco de registros
	Verificador de saltos (Branch Checker)
	Unidad Aritmética Lógica (ALU)
	Interfaz de memoria de datos
	Unidad de funciones auxiliares (HFU)

	Metodología de pruebas
	Ensamblador

	Integración de un procesador BPF en un sistema baremetal
	Procesador BPF como periférico
	MicroBlaze y protocolo AXI
	Módulo de entrada-salida y memoria

	Interacción con el procesador
	Registros de control
	Escritura del programa y arranque
	Accesos concurrentes a memoria compartida
	Gestión de mapas

	Metodología de pruebas
	Prueba de concepto

	Conclusiones y líneas abiertas
	Diseño de un microprocesador para la ISA BPF
	Líneas abiertas

	Bibliografía
	Siglas
	Lista de figuras
	Lista de tablas
	Lista de listados de código
	Anexos
	Dedicación
	Conjunto de Instrucciones eBPF
	Descripción RTL de instrucciones en la ruta de datos
	Control de la ruta de datos
	Unidad de Control (CU)
	Unidad de Riesgos (HU)
	Unidad de Anticipación (FU)
	Unidad de Excepciones (EU)

	Detalles de implementación por componente
	Verificador de Saltos (BC)
	Unidad Aritmética Lógica (ALU)
	Interfaz de memoria de datos
	Unidad de funciones auxiliares (HFU)
	Controlador AXI

	Funciones definidas por el usuario
	Pruebas de integración
	Programas de prueba
	Ejemplo de testbench
	Ejemplos de visualización de señales

	Código de demostración
	Biblioteca de interacción con el periférico
	Ejemplo de programa

