w2s Universidad
A0 Zaragoza

1542

Trabajo Fin de Grado

Desarrollo de un juego de ajedrez con inteligencia
artificial basada en el algoritmo Minimax

Development of a Chess Game with Minimax
algorithm-based artificial intelligence

Autor

David Gispert Gutiérrez

Director

José Javier Merseguer Herndiz

ESCUELA DE INGENIERIA Y ARQUITECTURA
Septiembre 2024

Indice

1. Introduccién

2. Desarrollo de la estructura del juego

2.1, Laspiezas
2.2. Los movimientos
2.3. Eltablero
24. Los jugadores
2.5. Laclase Game

2.5.1. Laméaquinadeestados L.

2.5.2. Implementacion

2.6. La estructuraen suconjunto Lo

3. Implementacién de las reglas

3.1. Movimientos de las piezas Lo
3.1.1. ElCaballo
3.1.2. La Torre, el Alfil yla Reina
3.1.3. ElPeén
3.14. ElRey
3.1.5. De movimientos pseudo-legales a movimientos legales
3.1.6. Encapsulacién Lo

3.2. Jaque mate y Rey ahogado

3.3. Tablas por triple repeticiono
3.3.1. Notacién de Forsyth-Edwards
3.3.2. Zobrist Hashing

3.4. Regla de los cincuenta movimientos

4. Diseno y desarrollo de la interfaz de usuario
4.1. Representacion grafica del juegoo
4.1.1. La clase BoardGraphics

4.2. Integrando la interfaz de usuario en el juego

1

co = ot Ot

12
13
14
14
17

19
19
19
22
24
28
33
35
36
37
38
40
44

4.2.1. El jugador humano

4.2.2. Integracion con la clase Game

5. Desarrollo de la inteligencia artificial

5.1. Funcién de evaluacion del tablero

5.2. Algoritmo de bisqueda: minimax

5.2.1. Funcionamiento del algoritmo

5.2.2. Implementacion L
5.2.3. Alpha-Beta Prunning
5.3. Busqueda de estabilidad (Quiescence search)

5.4. Tabla de transposicién (Transposition table)

5.5. Profundizacion iterativa ([terative deepening)

5.6. Reducciones por traslado tardio (Late move reductions)

6. Pruebas y conclusiones
6.1. Estimacién del ELO

6.1.1. Preparacién del experimento L.

6.1.2. Ejecucién de las partidas
6.1.3. Analisis de resultados y estimacion del ELO del bot

6.2. Conclusiéon

7. Bibliografia

61
61
66
66
71
75
81
83
91
98

100
102
102
103
103
106

108

Capitulo 1

Introduccion

El desarrollo de un juego de ajedrez digital requiere una comprensién profunda tanto
de las reglas y la mecénica del juego [1] como de los principios de diseno de software [2].
Este TFG aborda varios aspectos criticos del proceso, incluyendo la representacién de
la interfaz de usuario, la implementacién de las reglas del juego, y la creacion de una
inteligencia artificial [3] capaz de desafiar a los jugadores.

El estado del arte en las aplicaciones de ajedrez ha sido significativamente impulsado
por desarrollos como Stockfish [4] y AlphaZero [5, 6]. Stockfish es uno de los motores de
ajedrez mas poderosos, conocido por su capacidad de busqueda y evaluaciéon eficiente,
y es utilizado ampliamente tanto en competiciones como en analisis. Por otro lado,
AlphaZero, desarrollado por DeepMind!, ha demostrado capacidades sorprendentes al
aprender a jugar ajedrez mediante técnicas de aprendizaje profundo y autoaprendizaje,
logrando superar a los mejores motores tradicionales sin conocimiento previo del juego.
Estas aplicaciones no sélo han elevado el nivel de competencia en el ajedrez digital,
sino que también han marcado hitos en el campo de la inteligencia artificial.

En este contexto, nuestro proyecto se posiciona como un intento de seguir el camino
de los motores tradicionales, centrandose en técnicas clasicas de bisqueda y evaluacién
en el ambiente de un marco educativo. No pretendemos competir directamente con
los gigantes mencionados, sino proporcionar una plataforma accesible y didactica que
permita a los jugadores y desarrolladores comprender los fundamentos del ajedrez
digital y la inteligencia artificial aplicada al mismo.

Para llevar a cabo el desarrollo de este proyecto, utilizaremos C# [7, 8] como
lenguaje de programacién y el motor de videojuegos Godot [9]. Godot es una
herramienta de desarrollo de juegos de codigo abierto que ofrece un entorno integrado y
completo para crear videojuegos 2D y 3D. Es conocido por su flexibilidad, facilidad de
uso y una comunidad activa que contribuye a su constante mejora. El uso de Godot nos

permitira desarrollar tanto la logica del juego como la interfaz de usuario de manera

Thttps://deepmind.google

eficiente y cohesiva.

Este trabajo no sélo pretende crear un juego de ajedrez funcional y atractivo, sino
también servir como una guia detallada y educativa para aquellos interesados en el
desarrollo de videojuegos, demostrando cémo se puede abordar un proyecto complejo
de manera sistematica y efectiva. Ademas, este TFG examinara los desafios encontrados
durante el proceso de desarrollo y las soluciones implementadas para superarlos.Cada
etapa del desarrollo presenta sus propios obstaculos y oportunidades de aprendizaje.

Los Capitulos 2 y 3 describen la estructura fundamental del juego, que abarca
desde la implementacién del tablero y las piezas hasta los mecanismos de control
y la logica subyacente que rige las interacciones del juego. El Capitulo 4 describe
cémo se ha desarrollado la interfaz de usuario. El Capitulo 5 explica la inteligencia
artificial desarrollada para el juego. Finalmente, el Capitulo 6 presentara los resultados
obtenidos, destacando las caracteristicas principales del juego desarrollado y evaluando
su desempeno tanto desde el punto de vista técnico como desde la experiencia del
usuario. Concluiremos con una reflexion sobre las posibles mejoras futuras y las
implicaciones del proyecto en el &mbito del desarrollo de videojuegos y la educacién en
programacion.

El codigo fuente del proyecto esta disponible en el siguiente enlace:

https://github.com/Flyboy1010/ChessTFG.

https://github.com/Flyboy1010/ChessTFG

Capitulo 2

Desarrollo de la estructura del
juego

Cualquier sistema software complejo, y los videojuegos sin ninguna duda lo son,
tanto mas un videojuego de ajedrez, queda caracterizado por su parte estdtica y su
parte dindmica [10]. La parte estdtica de un sistema identifica la informacién que
subyace en el mismo, en términos de sus componentes principales o clases. A su vez,
la parte dinamica del sistema comprende tanto la definicién de las reglas del negocio
como las interacciones que se producen entre los componentes estaticos previamente
identificados.

En el desarrollo de un juego de ajedrez la parte estdtica requiere por tanto la creacién
de varios componentes esenciales, o clases, que den soporte a la estructura del juego.
En este capitulo, desarrollamos los componentes que serviran de base para el resto del
programa. Estos componentes son las piezas, el tablero, los movimientos y los jugadores.
A continuacién, describimos cada uno de estos elementos. Ademaés, a la hora de describir
cada clase hacemos hincapié en como cada una de las decisiones de diseno que hemos
tomado repercute en la implementacién del sistema. En la Seccion 2.6 recapitularemos
para ofrecer una visiéon de conjunto de dicha estructura, en términos de un diagrama
de clases [11].

Por otro lado, en el juego del ajedrez la parte dindmica queda obviamente definida
por las reglas del juego, que suponen a su vez las interacciones entre los componentes
identificados en la parte estatica. El Capitulo 3 presentara esta parte del diseno

software.

2.1. Las piezas

Las piezas de ajedrez son los componentes fundamentales que se desplazan por el

tablero. Cada pieza se define por dos parametros: su tipo y su color.

Piece J

Y Y
(' Color ‘w 4 Type)

White Pawn

Black Knight

Bishop
Rook

Queen
King

J

Figura 2.1: Estructura de una pieza de ajedrez

Implementacion

La clase Piece esta disenada para representar las piezas en un juego de ajedrez.

La implementacién resultante es la siguiente:

1 public struct Piece

2 A4

3 public enum Type
4 {

5 None,

6 King,

7 Queen,

8 Bishop,

9 Knight ,

10 Rook ,

11 Pawn

12 }

13

14 public enum Color
15 {

16 None,

17 White,

18 Black

19 }

20

21 public Type type;
22 public Color color;
23 %}

Fragmento de codigo 2.1: Clase Piece simplificada

OO0 ~IODH UL W =

e
BN = O

Ot

16
17
18
19
20

Para almacenar los valores color y tipo hemos decido utilizar 2 enumeraciones con

los valores mostrados en la figura 2.1.

2.2. Los movimientos

Los movimientos determinan la forma en que las piezas se mueven a través del
tablero. Un movimiento se define como el traslado de una pieza desde una casilla de
origen A hasta una casilla de destino B. Para realizar un movimiento, es necesario
conocer estas dos casillas. Con esta informacion, podriamos crear una estructura que
almacene estos dos parametros tunicos, definiendo asi un movimiento. No obstante, por
razones que explicaremos mas adelante, incluiremos también el tipo de la pieza de
origen y el tipo de la pieza de destino, siendo esta ltima una pieza de tipo vacia si no
hay ninguna en la casilla de destino.

Ademas, debido a que existen movimientos especiales como el enroque o la captura
al paso, anadiremos una variable que especifique si el movimiento corresponde a uno

de estos casos especiales.

Implementacion

La clase Move encapsula todos los parametros que hemos mencionado

anteriormente. Aqui podemos ver el codigo:

ublic struct Move

~ g

// move flags

public enum Flags

{
None,
DoublePush,
Promotion,
EnPassant ,
CastleShort,
CastlelLong

}

public int squareSourcelndex, squareTargetIndex;
public Piece pieceSource, pieceTarget;
public Flags flags;

public Piece.Type promotionPieceType;
3

Fragmento de cédigo 2.2: Clase Mowve simplificada

A continuacién se presenta una explicacion detallada de su funcionalidad y

estructura:

Enumeracion Flags
La enumeracién Flags define varios tipos de movimientos especiales en el ajedrez:
— None: Movimiento normal sin caracteristicas especiales.
— DoublePush: Movimiento inicial del peén que avanza dos casillas.
— Promotion: Indica que el movimiento es una promocién de un peon.
— FEnPassant: Indica que el movimiento realiza una captura al paso.
— ClastleShort: Indica que el movimiento es un enroque corto.
— C(astleLong: Indica que el movimiento es un enroque largo.
Atributos de la Clase
La estructura Move contiene varios atributos que describen un movimiento:
— squareSourcelndex: Indice de la casilla de origen.

— squareTargetIndex: Indice de la casilla de destino.

pieceSource: Pieza que se mueve.
— pieceTarget: Pieza en la casilla de destino (puede ser nula si la casilla estd vacia).
— flags: Indica el flag del movimiento.

— promotionPieceType: Tipo de pieza en la que se convierte un pedn al

promocionarse.

2.3. El tablero

El tablero de ajedrez es una cuadricula de 8x8, formada por 64 casillas alternadas

en colores claros y oscuros. Cada casilla puede estar vacia o contener una pieza.

Implementacién

Podemos entender el tablero como una interfaz para realizar movimientos. Este
llevara un seguimiento de las piezas y de variables de control que indicaran las acciones
disponibles en el estado actual, y expondra una serie de métodos que nos permitiran
interactuar con él indicandole el movimiento que deseamos realizar.

Una de las primeras aproximaciones para gestionar la estructura del tablero es

crear una clase que almacene informacién esencial, como las piezas, el color del turno

actual y la posibilidad de realizar enroques, entre otros. Sin embargo, pronto se hace
evidente que esta solucién no es 6ptima debido a que ciertas acciones dependen del
estado anterior del tablero. Un ejemplo claro es la captura al paso, que solo puede
realizarse si el oponente ha movido un pedn dos casillas en el movimiento anterior.
Para abordar este problema, se propone dividir la clase del tablero en dos

componentes: BoardState y Board.

Clase BoardState

La clase BoardState contendra todos los indicadores del estado del juego, tales como
el turno actual, la posibilidad de enroque y la disponibilidad de captura al paso. Esta
clase se encarga de gestionar y almacenar la informacién relativa al estado del juego

en un momento dado.

1 public struct BoardState

2 A

3 private Piece.Color turnColor = Piece.Color.None;
!

3) /* EN PASSANT x/

6 private bool isEnPassantAvailable = false;
{

8 private Piece.Color doublePushedPawnColor = Piece.Color.None;
9

10 private int enPassantSquareIndex = -1;

11
12 /* CASTLELING x/
13 private bool canCastleShortWhite = false;
14 private bool canCastlelLongWhite = false;
15
16 private bool canCastleShortBlack = false;
17 private bool canCastleLongBlack = false;
18
19 // half move count
20 private int halfMoveCount = O;
21}

Fragmento de cédigo 2.3: Clase BoardState simplificada

Los indicadores a tener en cuenta son los siguientes:

— Turno actual: Flags relacionados con el turno actual
e turnColor: Indica el color del jugador cuyo turno es el actual.
— Captura al paso: Flags relacionados con la captura al paso

e isEnPassantAvailable: Indica si la captura al paso (en passant) estd

disponible.

OO0 ~JO Ol Wk —

—
N = O

13
14
15
16
17
18
19
20

o doublePushedPawnColor: Almacena el color del pedén que realizé un
movimiento doble en el turno anterior, utilizado para verificar si la captura

al paso es posible.

o enPassantSquarelndex: Guarda la posicién del cuadrado del pedén que puede

ser capturado mediante la captura al paso.
— Enroque: Flags relacionados con el enroque

e canCastleShort: Indica si se puede realizar el enroque corto.

e canCastleLong: Indica si se puede realizar el enroque largo.
— Conteo de movimientos: Flags relacionados con el enroque

e halfMoveCount: Indica el numero de medios movimientos que se han

realizado a lo largo de la partida.

Clase Board

Por otro lado, la clase Board actuara como el contenedor principal que no solo llevara
el seguimiento de las piezas en el tablero, sino que también mantendrd un registro tanto
del estado actual como de los estados anteriores del juego. Esta separacion es esencial
porque, para ciertos movimientos como la captura al paso o el enroque, es necesario
conocer el estado del tablero en jugadas anteriores.

Ademas, la clase Board se comporta como una interfaz que expone funciones para
realizar movimientos.

Aqui podemos ver una simplificacién de su implementacién en cédigo.

ublic class Board

~ g

private Piece[] pieces = new Piece [64];
private Stack<BoardState> boardStates = new Stack<BoardState>();
private BoardState currentBoardState = new BoardState();

public Piece GetPiece(int index)
{
return pieces[index];

}

private void SetPiece(int index, Piece piece)
{
pieces[index] = piece;

}

public void MakeMove (Move move)

{

10

21 // save previous board state

22

23 BoardState previousBoardState = currentBoardState;

24

25 // save current board state

26

27 boardStates.Push(currentBoardState) ;

28

29 // check move flags

30

31 switch (move.flags)

32 {

33 ... // handle special moves

34 default:

35 // move the piece to the target

36

37 SetPiece (move.squareSourcelndex, Piece.NullPiece);
38 SetPiece (move.squareTargetIndex, move.pieceSource);
39 break;

40 }

41

42 // change turn color

43

44 Piece.Color turnColor = currentBoardState.GetTurnColor () ;
45 currentBoardState.SetTurnColor (Piece.GetOppositeColor (turnColor));
46 }

47 ¥

Fragmento de codigo 2.4: Clase Board simplificada

Las piezas se almacenan en un array de dimension 64, el cual contendra las piezas
que hay actualmente en el tablero y el cual se irda modificando a la vez que se vayan
efectuando movimientos.

Para poder realizar movimientos disponemos de una funcién MakeMowve, la cual
toma como parametro una estructura del tipo Move. Esta funcién se encargara de
modificar el array de piezas y el estado del tablero en base a las acciones definidas
en la estructura Move. Primero, se guarda el estado actual del tablero en una pila
por lo que hemos mencionado que para ciertos movimientos necesitamos conocer el
estado anterior. A continuacién, segun los indicadores del movimiento (flags), la funcién
realizara las acciones correspondientes, como mover una pieza de una casilla a otra,

capturar una pieza, o manejar movimientos especiales como enroques o promociones.

Veamos un ejemplo en el caso en el que un pedn se mueve dos casillas:

case Move.Flags.DoublePush:
// enable en passant flags in board state

currentBoardState.SetEnPassant (true) ;
currentBoardState.SetEnPassantColor (move.pieceSource.color);
currentBoardState.SetEnPassantSquareIndex (move.squareTargetIndex);

N O Utk W —

11

1
2
3
1

// move the piece from source to target

SetPiece (move.squareSourcelndex, Piece.NullPiece);
SetPiece (move.squareTargetIndex, move.pieceSource) ;
break;

Fragmento de cédigo 2.5: Caso peon se mueve 2 casillas

Como se ha movido un pedn dos casillas, eso significa que ese pedn se puede capturar
mediante una captura al paso en el turno siguiente, por lo que tendremos que modificar
el estado del tablero indicando que una captura al paso es posible, el color del pedn y
el indice del cuadrado donde es posible realizar la captura.

A continuacion se mueve como en el resto de movimientos la pieza origen, en este
caso el pedn hacia la casilla destino, y se coloca una pieza vacia en el lugar en el que
se encontraba previamente.

Con el resto de movimientos especiales se sigue un procedimiento similar.

Finalmente, la funciéon cambia el color del turno para reflejar que se ha completado

el movimiento.

2.4. Los jugadores

El ajedrez involucra dos jugadores, cada uno controlando un conjunto de piezas

(blancas o negras). Los jugadores pueden ser de dos tipos:

— Humanos: Introducen movimientos manualmente a través de la interfaz de

usuario.

— Inteligencia Artificial (IA): Calcula los movimientos autométicamente utilizando

algoritmos de busqueda y evaluacion.

Implementacién

La clase Player la proponemos como una clase abstracta, que define el
comportamiento general de un jugador en el juego de ajedrez. Esta clase no puede
ser instanciada directamente, sino que sirve como base para clases derivadas que
implementan jugadores especificos, como un jugador humano o una inteligencia
artificial.

Aqui podemos ver la implementacién:

ublic abstract class Player

public event System.Action<Move> onMoveChosen;

12

public abstract void Update () ;
public abstract void NotifyTurnToMove ();
protected virtual void ChoseMove(Move move)

{

onMoveChosen?.Invoke (move) ;

Fragmento de codigo 2.6: Clase Player

Método Update

Este método debe ser implementado por las clases derivadas y se utiliza para
actualizar el estado del jugador en cada iteracion del game loop. Por ejemplo, para
el caso de un jugador humano, este método manejard la entrada del usuario para

seleccionar el movimiento que se quiere realizar.

Método NotifyTurnToMove

Este método debe ser implementado por las clases derivadas y se llama cuando es el

turno del jugador para mover. Permite que el jugador prepare y ejecute su movimiento.

Método ChoseMove y evento onMoveChosen

El método ChoseMove sera llamado por el propio jugador cuando éste haya
seleccionado un movimiento. Este método, a su vez, invocara el evento onMoveChosen,
pasando como parametro el movimiento elegido. El game loop, que actiia como el
pegamento del sistema, estara suscrito a este evento, permitiendo la integraciéon y
coordinacién de las diferentes partes del juego. Mas adelante en la seccién 2.5, cuando
hablemos en profundidad acerca del game loop se entendera el porqué de este sistema.

Ahora nos tocaria implementar el jugador humano y el jugador controlado por la
IA, pero ambos dependen de la implementacién de otras partes del juego. En el caso
del jugador humano, éste depende de la interfaz de usuario, debido a que tiene que ser
capaz de controlar las piezas para poder realizar movimientos. Y en el caso del jugador
controlado por la A, necesitamos que la 1A esté implementada. Por estos motivos, los

veremos mas adelante.

2.5. La clase Game

La clase Game es el elemento central en el desarrollo de nuestro videojuego de

ajedrez. Actuard como el nicleo que controla y coordina todos los aspectos del juego.

13

Esta clase se encargara de inicializar el tablero y los jugadores, ademas de contener el

game loop el cual se regirda por una maquina de estados.

2.5.1. La maquina de estados

Para nuestro juego de ajedrez, hemos definido los siguientes estados:

— PlayerTurn: En este estado se actualizara el jugador al cual le toca mover, esto
le permitira ejecutar toda la logica correspondiente a la seleccion del movimiento
que quiere realizar. Una vez elegido el movimiento, se comprobaré si el juego ha
terminado y se cambiara al estado NextTurn si el juego no ha terminado y al

estado Ower si ha terminado.

— NextTurn: En este estado se notificara al jugador al cual le va tocar en este

turno. Una vez notificado se cambia de estado a PlayerTurn.

— Over: El juego ha terminado.

Aqui podemos ver un esquema de la maquina de estados con sus transiciones:

NextTurn El jugador acaba

Notificar al siguiente su turno
jugador de que es su

Se inicM

turno

PlayerTurn

Llamar al metodo

update del jugador

Over

La partida se ha El jugador acaba su turno y con este

acabdo movimiento se acaba la partida

Figura 2.2: Maquina de estados del juego

2.5.2. Implementacion

La implementacion de la clase Game es la siguiente:

| using Godot;
2 using System;
3

| public partial class Game : Node

14

// game state machine

private enum GameState

O © 00~ O Ot

{
1 PlayerTurn,
11 NextTurn,
12 Over
13 }
14
15 // board class that contains everything related to the pieces
16
17 private Board board;
18
19 // current game state
20
21 private GameState gameState;
22
23 // players
24
25 private Player playerWhite;
26 private Player playerBlack;
27
28 // current player
29
30 private Player playerToMove;
31
32 // Called when the node enters the scene tree for the first time.
33
34 public override void _Ready() {...}
35
36 // on move chosen
37
38 private void OnMoveChosen (Move move) {...}
39
40 // update game state
41
42 private void UpdateState() {...}
43
44 // Called every frame. ’delta’ is the elapsed time since the previous frame.
45
46 public override void _Process(double delta) {...}
A7 ¥

Fragmento de cédigo 2.7: Clase Game simplificada

La clase Game hereda de la clase Node proporcionada por Godot. En Godot, todo
se construye a partir de nodos. Un nodo es una unidad bésica que puede realizar una
funcién especifica, como representar una imagen, manejar entradas del usuario, ejecutar
scripts, o gestionar la fisica. Los nodos se organizan en una estructura de arbol, donde
cada nodo puede tener miultiples nodos hijos. Esta jerarquia facilita la organizacion
y el control de los elementos del juego, permitiendo una flexibilidad significativa a la
hora de disenar y programar. En este caso el nodo Node[12] nos da acceso a 2 metodos

importantes, el metodo _Ready y el metodo _Process.

15

A continuacién explicaremos las diferentes partes de la clase Game.
Inicializacién

En Godot, el método _Ready se utiliza para inicializar [12]. Dentro de este método,
configuramos el tablero y creamos los jugadores, preparando asi el juego para su

comienzo.

| public override void _Ready ()

2 A4

3 // inicializamos el tablero

4 board = new Board();

) board.LoadFenString (Board.StartFEN);

6

7 // creamos los jugadores (asi es como quedaria)

8 // playerWhite = new PlayerHuman (board) ;

9 // playerBlack = new PlayerAI(board);

10

11 // nos suscribimos a los eventos de ambos jugadores

12 playerWhite.onMoveChosen += 0OnMoveChosen;

13 playerBlack.onMoveChosen += 0OnMoveChosen;

14

15 // comenzamos en el estado NextTurn

16 gameState = GameState.NextTurn;

173

Fragmento de codigo 2.8: Inicializacion
Tenemos que destacar que durante la inicializacién, nos suscribimos a los eventos
onMoveChosen de ambos jugadores, por lo que cuando estos realizen un movimiento
se llame la funcion OnMoveChosen al que se le pasara el movimiento que estos hayan
elegido.
Transiciones de Estados
El método UpdateState contiene la légica para manejar los diferentes estados del

juego y realizar las transiciones apropiadas con respecto a la maquina de estados
previamente descrita en la figura 2.2.

1 private void UpdateState ()

2 A4

3 switch (gameState)

4 {

3) case GameState.NextTurn:

6 Piece.Color turnColor = board.GetTurnColor () ;

7 playerToMove = turnColor == Piece.Color.White 7 playerWhite

8 playerBlack;

9 playerToMove.NotifyTurnToMove () ;

10 gameState = GameState.PlayerTurn;

11 break;

12 case GameState.PlayerTurn:

16

13
14
15
16
17
18

Tk W N =

INICE NI

playerToMove .Update () ;
break;

case GameState.QOver:
break;

}

Fragmento de cédigo 2.9: Funcién UpdateState

Podemos ver que cuando nos encontramos en el estado PlayerTurn lo tnico que
hacemos es actualizar al jugador y puede parecer que de este estado no saldremos nunca.
Sin embargo, cuando un jugador elige un movimiento en su método Update mediante la
llamada al método ChooseMove de la clase Player. El cual como vimos en el apartado
2.4 invocaba el evento onMoveChosen al cual le pasabamos el movimiento elegido,
provoca entonces que el método OnMoveChosen de la clase Game se llame debido a
que previamente en la inicializacion nos habiamos suscrito al evento onMoveChosen
del jugador, aplicando el movimiento al tablero y cambiando el estado del juego a
NextTurn.

private void OnMoveChosen (Move move)
{

board.MakeMove (move) ;

gameState = GameState.NextTurn;

Fragmento de coédigo 2.10: Funciéon OnMoveChosen

Procesamiento del estado del juego

En Godot, el método _Process se ejecuta cada frame [13], por lo que este método
actuard como nuestro game loop. En este método llamaremos a UpdateState para que

asi se vayan actualizando los estados.

public override void _Process(double delta)

{
UpdateState () ;
}

Fragmento de cédigo 2.11: E1 Game Loop

2.6. La estructura en su conjunto

El diagrama de clases que aparece en la Figura 2.3 representa la estructura del
juego en su conjunto. A partir de este diagrama se han realizado las implementaciones
previas. En él se pueden observar de forma mas general las relaciones que existen

entre todos estos componentes que hemos ido explicando a lo largo de este capitulo.

17

Finalmente, con todos estos elementos basicos que hemos ido desarrollando podemos

ya pasar a la implementacién de las reglas del juego.

Game

- board: Board

- gameState: enum

- playerWhite: Player
—< - playerBlack: Player o

- playerToMove: Player

+ _Ready()
- OnMoveChosen(move: Move)
- UpdateState()

+ _Process(delta: double)

1 2
Board Player
- pieces: Piece[64] + onMoveChosen: "event"
- currentBoardState: BoardState < + Update()
—<| - boardStates: List<BoardState> K— + NotifyTurnToMove()
+ GetPiece(index: int): Piece # ChoseMove(move: Move)
- SetPiece(index: int, piece: Piece) ‘r
+ MakeMove(move: Move)
S
PlayerHuman PlayerAl
1.*
BoardState

+ turnColor: enum

Move
+ isEnPassantAvailable: bool

+ squareSourcelndex: int
+ doublePushedPawnColor: enum
+ squareTargetindex: int
+ enPassantSquarelndex: int
+ pieceSource: Piece
+ canCastle: bool
+ pieceTarget: Piece

+ flags: enum

0.2

Piece

+ type: enum
64
+ color: enum

Figura 2.3: Diagrama de clases de la estructura basica del juego

18

Capitulo 3

Implementacion de las reglas

Una vez definida la estructura basica del programa podemos ya implemementar
las reglas del ajedrez, es decir, la dindmica del sistema. Esto abarca desde las
restricciones de movimiento de cada pieza, que se desarrollara en la Seccion 3.1, hasta
las comprobaciones de jaque y jaque mate, desarrolladas en la Seccion 3.2. Por ltimo,
las tablas por triple repeticion y la regla de los 50 movimientos se acometen en las

Secciones 3.3 y 3.4 respectivamente.

3.1. Movimientos de las piezas

En el juego del ajedrez cada tipo de pieza se mueve de una manera diferente.
Ademas, hay ciertas piezas que tienen movimientos especiales que sélo se pueden
realizar si se cumplen una serie de condiciones en el tablero y/o en estados anteriores
del mismo.

Cabe resaltar que debemos intentar que la generacion de los movimientos sea lo mas
rapida posible, puesto que més adelante cuando desarrollemos la IA, cuanto menos
tiempo tarden en generarse los movimientos de cada pieza, mas en profundidad se
podré analizar el juego y por lo tanto la A serd un mejor rival. Para ello, intentaremos
en la medida de lo posible precalcular todos los movimientos posibles. Ahora veremos

a qué nos referimos con esto.

3.1.1. El Caballo

Veamos un ejemplo de como se mueve el caballo. Si se encontrase en la casilla de la
Figura 3.1, se podria mover a todas las casillas marcadas con un circulo verde. Como
nos interesa precalcular todo lo posible, para que sea mas rapido, lo que podemos hacer
es para cada casilla del tablero ver a qué casillas se podria mover si se encontrase en

dicha casilla.

19

Figura 3.1: Movimiento del caballo

Para ello lo que haremos es recorrer las 64 casillas del tablero y guardarnos en
una LookUpTable las casillas disponibles. Asi, cuando queramos saber a qué casillas se
podria mover si se encontrase en la casilla X, consultariamos la tabla de la casilla X.

Aqui podemos ver el cédigo que genera dichos movimientos:

1 int [1[] preCalculatedKnightMoves = new int [64][];
2

3 List<int> movesBuffer = new List<int>();

4

O for (int j = 0; j < 8; j++)

61

7 for (int i = 0; i < 8; i++)

8 {

9 int index = i + j * 8;

10

11 for (int jj
12 {

13 for (int ii = -1; ii <= 1; ii += 2)

14 {

15 if (IsInBounds(i + ii, j + jj))

16 {

17 movesBuffer.Add((i + ii) + (j + jj) = 8);
18 }

19
20 if (IsInBounds(i + jj, j + ii))
21 {
22 movesBuffer.Add((i + jj) + (j + ii) * 8);
23 }
24 3
25 }

=25 33 <= 25 j) += 4

20

26
27
28
29

W —

O Ol

13

15
16
17
18
19
20
21
22

preCalculatedKnightMoves [index] = movesBuffer.ToArray();

}

Fragmento de codigo 3.1: Precalculacion de los movimientos del caballo

El array preCalculated KnightMoves es una LookUpTable que se usa para almacenar
todos los movimientos posibles de un caballo en un tablero de ajedrez, para cada una
de las 64 posiciones del tablero. Este es un array de arrays, donde cada elemento es un
array que contiene los posibles movimientos desde una posicién especifica del tablero. El
tamano principal del array es 64, correspondiente a las 64 casillas. Dentro de los bucles
anidados, se calculan las posibles posiciones de destino para los movimientos del caballo
(que pueden ser 2 casillas en una direccién y 1 en otra, en todas las combinaciones
posibles). Si volvemos a la Figura 3.1, esto corresponderia a la generacién de los circulos
verdes.

Tenemos que resaltar que esto sélo nos devuelve las casillas disponibles,
posteriormente deberemos comprobar si esas casillas se encuentran vacias, o con una
pieza. En ese caso tendriamos que comprobar el color de la pieza y ver si corresponde
al color contrario, entonces el movimiento seria valido, puesto que esta pieza podria ser
capturada. Sin embargo, si el color de la pieza es el mismo que el del caballo, entonces
no seria un movimiento valido.

Podemos ver aqui finalmente el codigo que genera el movimiento de un caballo, al
cual le pasamos un tablero y la casilla donde se encuentra el caballo, y devuelve una

lista de los movimientos posibles.

private static List<Move> GenerateKnightMoves (Board board, int index)
{
List<Move> moves = new List<Move>();

Piece piece = board.GetPiece(index);

foreach (int targetIndex in preCalculatedKnightMoves [index])

{
Piece targetPiece = board.GetPiece(targetIndex);
if (targetPiece.color == piece.color)
continue;
moves .Add (new Move ()
{
squareSourcelIndex = index,
squareTargetIndex = targetlndex,
pieceSource = piece,
pieceTarget = targetPiece
IO
}

21

23
24

return moves;

3

Fragmento de c6digo 3.2: Generacion del movimiento de un caballo

Observamos que se hace uso de la LookUpTable preCalculatedKnightMoves del
caballo para el indice de la casilla seleccionada, y para cada una de las casillas
disponibles debemos comprobar, como hemos dicho previamente, que se encuentren
vacias o con una pieza del color contrario para garantizar la validez del movimiento. Una
vez comprobado que el movimiento es valido, construimos el movimiento de acuerdo a

los parametros de la Seccién 2.2 y lo anadimos a la lista.

3.1.2. La Torre, el Alfil y la Reina

La torre, el alfil y la reina son piezas que se comportan practicamente de la misma
manera. Estas piezas se deslizan por el tablero hasta que se encuentran con el limite
de este o con otra pieza. La torre se desliza de manera horizontal y vertical. El alfil se
desliza a lo largo de las diagonales, y la reina es una combinacién de ambos, vease la

Figura 3.2.

H O =N

BN
D)\ -~ N

O\

Figura 3.2: Movimiento de la reina

Para generar sus movimientos vamos a seguir un procedimiento similiar al que
hemos planteado para el caballo. En este caso vamos a precalcular si nos encontraramos
en una casilla determinada. Por ejemplo, la casilla en la que se encuentra la reina de la

Figura 3.2 es la casilla D4, si ignoramos ambos peones entonces el ntimero de casillas

22

1
2
3

4

—_
— O O 00~ O Ot

12
13
14
15
16
17
18
19
20
21
22
23
24
25

N O Utk W —

que hay hacia arriba es 4, a izquierda 3, abajo 3, derecha 4, en la diagonal arriba-derecha
4, en la diagonal arriba-izquierda 3, en la diagonal abajo-izquierda 3, y en la diagonal
abajo-derecha 3.

A continuacién podemos ver el cédigo desarrollado para dichos movimientos:

int [J[] preCalculatedSquaresToEdge = new int [64][];

for (int j = 0; j < 8; j++)

{
for (int i = 0; i < 8; i++)
{
int index = 1 + j * 8;
// squares to edge
int up = j;
int down = 7 - j;
int left = i;
int right =7 - 1i;
int d1 = Math.Min(up, right);
int d2 = Math.Min(up, left);
int d3 = Math.Min(down, left);
int d4 = Math.Min(down, right);
preCalculatedSquaresToEdge[i + j * 8] = new int[8] {
up, left, down, right, di, 42, d3, d4
s
}
}

Fragmento de coédigo 3.3: Precalculacion del numero de cuadrados en las 8 direcciones

Una vez tenemos la LookUpTable preCalculatedSquaresToFEdge, dependiendo de si
la pieza es una torre, un alfil o una reina, comprobaremos las casillas en las direcciones
correspondientes, para ver si se encuentran vacias, o si contienen alguna pieza. Si
contienen una pieza del mismo color descartaremos esa casilla como valida y no
seguiremos comprobando mas casillas en esa direccion. En cambio, si contiene una
pieza del color contrario, si que lo anadiremos como movimiento valido, puesto que
seria una captura, pero también dejaremos de comprobar las siguientes casillas en esa
direccién, como en la Figura 3.2.

Podemos ver aqui finalmente el cédigo que planteamos para el movimiento de la

torre/alfil/reina.

private static List<Move> GenerateSlidingMoves (Board board, int index)

{

List<Move> moves = new List<Move>();
// ... comprobar si la pieza es una torre/alfil/reina
// ... dependiendo de la pieza ver que direcciones hay que comprobar

23

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1
2

for (//... las direcciones pertinentes ...//)

{
int n = preCalculatedSquaresToEdge [index] [direccion];
for (int 1 = 0; i < n; i++)
{
int targetIndex = index + directionOffsets[d] * (i + 1);
Piece targetPiece = board.GetPiece(targetIndex) ;
if (targetPiece.type == Piece.Type.None)
{
// ... anadimos el movimiento
}
else
{
if (targetPiece.color != piece.color)
{
// ... anadimos el movimiento
}
break;
¥
}
}
return moves;
}

Fragmento de cédigo 3.4: Generacién del movimiento de la torre/alfil/reina
(simplificado)

3.1.3. El Peo6n

Los peones se pueden desplazar tinicamente hacia adelante, siempre que esa casilla
se encuentre vacia. Adicionalmente, si el peén se encuentra en la fila 2, para el caso
de los peones blancos, se puede desplazar 2 casillas hacia adelante. Podemos ver un
ejemplo en la Figura 3.3. Hay que resaltar también que si un pedn llega a la tltima fila
se puede promocionar a una de las siguientes piezas: reina, torre, alfil y caballo.

Para estos movimientos no necesitaremos precalcular nada, puesto que solo
necesitamos comprobar la casilla de adelante. Simplemente tendremos que comprobar
si se encuentra vacia y si el peén se encuentra en fila 2. En ese caso tendremos que
comprobar también si el pedén se puede desplazar 2 casillas hacia adelante, siempre
y cuando no haya ninguna casilla ocupada a lo largo de ese desplazamiento. Aqui
podemos ver la parte del cédigo que genera estos movimientos, inicamente para el

pedn blanco, el pedn negro sigue las mismas reglas sélo que en la direccion contraria:

// double push

24

25 %}

Figura 3.3: Movimiento del peén

(j == 6)

for (int jj = 0; jj < 2; jj++)

{

3

int targetIndex = index + (jj + 1) * directionOffsets[Direction.Up];

Piece targetPiece = board.GetPiece(targetIndex);
if (targetPiece.type == Piece.Type.None)
{
moves .Add (new Move
{
flags = (jj == 0) 7 Move.Flags.None : Move.Flags.DoublePush
I
}
else
{
// if there is a piece in between then you cant double push
break;
}

20 else if (j < 6 && j > 0) // single push

27 A
28
29
30
31
32
33
34

int targetIndex = index + directionOffsets[Direction.Up];
Piece targetPiece = board.GetPiece(targetIndex);

if (targetPiece.type == Piece.Type.None)

{

moves.Add (new Move

{

25

35
36
37
38
39
40

1
2

flags = (j == 1) 7 Move.Flags.Promotion : Move.Flags.None,
promotionPieceType = board.PromotionPieceType

P

}

Fragmento de codigo 3.5: Parte del codigo para la generacién del movimiento del pedn

Tenemos que realizar una comprobacion para conocer si el pedn se encuentra en la
fila 2, en este caso se comprueba que la coordenada j de la pieza sea igual a 6, esto se
debe a que de la manera en la que hemos construido el array del tablero las filas irfan
numeradas desde la fila 0 en la parte superior hasta la fila 7 en la parte inferior. Si es
ese el caso, entonces tendremos que comprobar si se puede desplazar hacia adelante 1
6 2 casillas. En el caso en el que se pueda desplazar 2 casillas, es decir, no hay ninguna
pieza que obstaculice el camino, tendremos que marcar ese movimiento con el flag
DoublePush para indicar que ese movimiento realiza un movimiento doble de un peodn.
En cambio, si el pedn se encuentra en una fila diferente sélo tendremos que comprobar
si se puede mover una casilla hacia adelante, con la excepcién de que si se desplaza a
la dltima fila, entonces tendremos que marcar el flag Promotion para indicar que ese
movimiento realiza una promociéon de un peodn.

Los movimientos de captura son diferentes de sus movimientos normales. Mientras
que los peones se mueven hacia adelante, en linea recta, capturan las piezas en las
diagonales hacia adelante. Adicionalmente, si un peén enemigo se mueve 2 casillas en
un turno, al siguiente turno se puede capturar como si hubiese movido una sola casilla.
Podemos ver un ejemplo en la Figura 3.4.

Para el caso de las capturas si que hemos precalculado los movimientos, puesto
que asi podemos ahorrarnos tiempo en ciertas comprobaciones. En concreto, para
comprobar si el pedn se encuentra en los bordes del tablero y a la hora de comprobar si
puede capturar arriba a la izquierda o a la derecha. Simplemente con la LookUpTable de
las capturas precalculadas de la casilla en la que se encuentra nuestro peon, tendremos
que comprobar que exista una pieza del color opuesto en las casillas disponibles para
que se pueda efectuar ese movimiento.

Finalmente para la captura al paso, tendremos que comprobar que justo en el
anterior movimiento que se realizé en el tablero se hizo un movimiento doble de peén
por parte del rival. Aqui entra todo lo que explicamos previamente acerca del sistema
del estado del tablero en la Seccion 2.3.

Aqui podemos ver el cédigo que genera las capturas al paso:

ref readonly BoardState boardState = ref board.GetBoardState();

26

Figura 3.4: Movimientos de captura del pedn

3 if (boardState.IsEnPassantAvailable())

4 {

5) int enPassantSquarel = boardState.GetEnPassantSquareIndex () 7% 8;
6

7 if (j == 3)

8 {

9 if (i + 1 == enPassantSquarel)

10 {

11 int targetIndex = index + directionOffsets[(int)Direction.D1];
12 moves .Add (new Move

13 {

14 ..

15 pieceTarget = Piece.NullPiece,

16 flags = Move.Flags.EnPassant

17 i9M

18 }

19 else if (i - 1 == enPassantSquarel)

20 {

21 int targetIndex = index + directionOffsets[(int)Direction.D2];
22 moves .Add (new Move

23 {

24 ..

25 pieceTarget = Piece.NullPiece,

26 flags = Move.Flags.EnPassant

27 i9M

28 }

29 }

30 ¥

Fragmento de cédigo 3.6: Parte del cédigo de la generacion de los movimientos de
captura al paso del pedén

27

Realizamos una consulta al estado actual del tablero, y comprobamos si es posible
realizar una captura al paso. En ese caso comprobamos si nuestro pedn se encuentra
en la fila 5, que es la unica fila en la que se pueden realizar este tipo de capturas,
recordemos que ésto es solo para el caso de los peones blancos, se realizaria de una
forma similar para los peones negros, solo que en direccidones opuestas. Si se da ese
caso entonces comprobamos si la casilla de la diagonal superior izquierda o derecha
concuerdan con la casilla correspondiente a la captura al paso y si se verifica entonces
la captura al paso es posible, se contruye el movimiento con el flag EnPassant y se

anade a la lista de movimientos posibles.

Finalmente todos estos fragmentos que hemos visto para generar estos posibles
movimientos posibles del pedn, se recogen en una funcion, al igual que con el resto de

piezas.

private static List<Move> GeneratePawnMoves (Board board, int index);

Fragmento de coédigo 3.7: Funcién que genera los movimientos del pedn

3.1.4. El Rey

El rey se puede mover en cualquiera de las 8 direcciones, pero sélo una casilla
de distancia. Para generar estos movimientos hemos seguido el mismo procedimiento
utilizado con otras piezas, es decir, precalcular las casillas disponibles a las que se
puede mover el rey por cada casilla del tablero y guardarlas en una LookUpTable para
consultarla a la hora de generar los movimientos.

Adicionalmente el rey es capaz de realizar un movimiento especial denominado
enroque, el cual consiste en mover simultdneamente al rey y a una de las torres, de
manera que el rey se desplace dos casillas hacia la torre y ésta se coloque en la casilla
inmediatamente al otro lado del rey. Este movimiento tiene ciertas condiciones: no
debe haber piezas entre el rey y la torre, ni el rey ni la torre deben haber sido movidos
previamente, el rey no puede estar en jaque, ni puede atravesar ni terminar en una
casilla amenazada por una pieza enemiga.

Para implementar el enroque necesitaremos conocer qué casillas esta controlando o
atacando el color contrario, puesto que las reglas nos lo exigen al tener que comprobar
que el rey no se encuentra en jaque y a la hora de enrocarse no puede atravesar casillas
que estan siendo atacadas. Para ello implementaremos una funcién, que para un color
de piezas determinado, nos devolvera un bitmap del tablero indicando con un 1 si la
casilla estd siendo atacada por alguna pieza del color que hayamos seleccionado, ¢ 0 en

el caso contrario. A continuacién mostramos la implementacién de esta funcién.

28

Figura 3.5: Movimiento del rey

1l ulong GetControlledSquaresBitboardByColor (Board board, Piece.Color color)
2 A4

3 ulong squares = 0;

4

) List<int> piecesIndices = board.GetPiecesIndices(color);

6

7 foreach (int index in piecesIndices)

8 {

9 Piece piece = board.GetPiece (index);

10

11 switch (piece.type)

12 {

13 case Piece.Type.Pawn:

14 // ... SOLO MOVIMIENTOS DE CAPTURAS DIAGONALES
15 case Piece.Type.Knight:

16 // ... IGUAL QUE ANTES

17 case Piece.Type.Bishop:

18 case Piece.Type.Rook:

19 case Piece.Type.Queen:

20 // ... IGUAL QUE ANTES

21 case Piece.Type.King:

22 // ... SOLO MOVIMIENTOS "NORMALES" SIN INCLUIR ENROQUE
23 }

24 }

25

26 return squares;

27 3

Fragmento de cédigo 3.8: Funcion que devuelve un bitmap del tablero con las casillas
controladas por las piezas del color seleccionado

29

Figura 3.6: Movimiento de enroque del rey

Simplemente tomamos todas las piezas del color escogido y calculamos para cada
una de ellas los indices de las casillas que estan atacando, similarmente a cuando
generabamos los movimientos, s6lo que esta vez inicamente nos importan las posiciones
de las casillas. Podriamos marcar estos indices en un array de booleanos de dimension
64 y todo funcionaria perfectamente. Sin embargo, podemos utilizar un unsigned long,
que es un entero sin signo de 64 bits y que es mucho mas eficiente que usar un array,
al tener 64 bits nos encaja perfectamente con el niimero de casillas del tablero, asi que
podemos ir modificando los bits de este entero haciendo que cada bit sea una casilla y
marcandolo como 1 6 0 en funcién de si esta siendo atacada o no. Para modificar los
bits de este entero utilizaremos légicamente las operaciones a nivel de bit: and, or y
desplazamientos de bits. Podemos ver un ejemplo en la Figura 3.7.

Todas las casillas marcadas por un circulo verde son aquellas casillas
que estan siendo controladas por las piezas negras, en este caso, la funcion
GetControlledSquaresBitboard ByColor (con el color negro) nos devolveria el siguiente

entero de 64 bits:

1011010001111100110111110111000010101000000001000101001000000001

Empezando por los 8 bits mas significativos 10110100 vemos que cuadra con las
casillas controladas de la primera fila (fila 8 de la Figura 3.7) y lo mismo para los

siguientes grupos de 8 bits correspondientes al resto de filas. Si queremos mas tarde

30

OO0 ~JO Ttk Wb —

L.‘
Va
N\

OBOBO)
_
H H ¢

Ve
\

\
IE
R B

__/|
_

_J
7\
\

OO

@,
)

Figura 3.7: Bitmap con las casillas atacadas por las piezas negras

comprobar si la casilla n-esima esta siendo atacada, simplemente comprobamos que
si realizamos una operacién and con un bit desplazado n veces hacia la izquierda da

distinto de O:

(bitmap & (1UL <<mn)) !'= 0

Una vez ya sabemos como obtener las casillas atacadas por un color determinado

de pieza, continuamos con la implementacién del enroque:

ref readonly BoardState boardState = ref board.GetBoardState();
bool canCastleShort = boardState.CanCastleShort(piece.color);
bool canCastlelong = boardState.CanCastlelLong(piece.color);

if (canCastleShort || canCastlelLong)
{
ulong bitmap = GetControlledSquaresBitboardByColor (
board,
Piece.GetOppositeColor (piece.color)

)

// first check if the king is in check

bool isKingInCheck = (bitmap & (1UL << index)) != 0;
// if the king is not in check then

if (!isKingInCheck)

{

if (canCastleShort)
{

31

22
23
24
25
26
27
28
29
30

32
33
34
35
36
37
38
39
40
41
42
43
44
15
46
47
48
49

=

Ot Ot Otr Ot Ot
RO~ D

// check squares in between

bool isShortCastlelegal = true;
foreach (int squareIndex in shortCastleIndices[piece.color - 1])
{
Piece targetPiece = board.GetPiece(squareIndex);
if (
((bitmap & (1UL << squarelIndex)) != 0) ||
targetPiece.type != Piece.Type.None
)
{
isShortCastlelLegal = false;
break;
b
¥
if (isShortCastlelegal)
{
moves .Add (new Move
{
squareSourcelIndex = index,
squareTargetIndex = shortCastleTargetKingIndex[piece.color -
pieceSource = piece,
pieceTarget = Piece.NullPiece,
flags = Move.Flags.CastleShort
IOl
X
3
// ... lo mismo para el enroque largo

Fragmento de cédigo 3.9: Codigo de generacién del enroque corto

Empezamos obteniendo el estado actual del tablero para comprobar si esta
disponible el enroque, estos flags tanto para el enroque corto como el enroque largo nos
indican si el enroque esta disponible, es decir, si el rey o la torre del correspondiente
lado no se han movido de acuerdo con las reglas. Pero no si se puede realizar en este
momento debido a que podrian existir piezas en el camino entre el rey o la torre o
esas mismas casillas podrian estar siendo atacadas, incluida la del rey. Estos son los

diferentes casos adicionales que tendremos que comprobar.

Para el caso en el que si esté disponible el enroque, obtenemos las
casillas controladas por las piezas del color contrario utilizando la funcién
GetControlledSquaresBitboard ByColor que hemos implementado y comprobamos si el
rey se encuentra en una de las casillas atacadas. Si no se encuentra en una de ellas
entonces comprobamos si se puede realizar cada uno de los enroques, corto y largo,

comprobando que esten libres las casillas entre el rey y la torre y que no esten siendo

32

atacadas. Si todo esto se cumple entonces aniadimos el movimiento e indicamos el flag

del movimiento como CastleShort o CastleLong dependiendo del enroque.

3.1.5. De movimientos pseudo-legales a movimientos legales

Hasta ahora los movimientos que hemos ido generando no son movimientos legales
sino que son pseudo-legales, puesto que en ningin momento hemos comprobado si el
rey se encuentra en jaque, después de realizar el movimiento. Veamos un ejemplo de

ésto en la Figura 3.8

Figura 3.8: Ejemplo clavada de pedn

En este escenario, las piezas blancas no pueden mover el pedn, puesto que ello
revelaria un ataque directo del alfil negro al rey, se dice entonces que el pedn estd
clavado, puesto que no se puede mover. Con nuestro codigo actual mover el pedn seria
considerado erréneamente un movimiento “valido”, por lo que tenemos que tener en
cuenta este tipo de situaciones.

Para solucionar este problema lo que haremos sera generar los movimientos de la
pieza, y uno por uno jugarlos en el tablero y comprobar entonces si el rey se encuentra
en una casilla atacada. Si no se encuentra atacado entonces cogemos ese movimiento
y lo anadimos a la lista de movimientos legales, finalmente deshacemos el movimiento
del tablero.

Aqui podemos ver el codigo:

1 public static List<Move> GetLegalMoves (Board board, int index)

33

2 {

3 List<Move> legalMoves = new List<Move>();

4 List<Move> pseudolegalMoves = GetPseudolegalMoves(board, index);
5)

§) Piece piece = board.GetPiece(index) ;

7

8 foreach (Move move in pseudolLegalMoves)

9 {

10 // make the move

11

12 board.MakeMove (move, true);

13

14 // check if after the move the king is in check
15

16 if (!IsKingInCheck(board, piece.color))
17 {

18 legalMoves .Add (move) ;

19 }

20

21 // undo the move

22

23 board.UndoMove (true) ;

24 }

25

26 return legalMoves;

27 ¥

Fragmento de codigo 3.10: Generacién de los movimientos legales de una pieza

De esta forma podemos filtrar aquellos movimientos que en un principio parecerian
validos, pero que en realidad no lo son. La funcién GetPseudoLegalMoves retorna
los movimientos pseudo-legales de una pieza en funcién de su tipo. Esta funcién
simplemente invoca, segin el tipo de pieza, a la funciéon correspondiente que genera los
movimientos de dicho tipo, tal como hemos visto a lo largo de este capitulo.

Aqui podemos ver el cédigo de dicha funcion:

1l public static List<Move> GetPseudolLegalMoves (Board board, int index)
2 A4

3 Piece piece = board.GetPiece(index);

4

5) switch (piece.type)

6 {

7 case Piece.Type.Pawn:

8 return GeneratePawnMoves (board, index) ;

9 case Piece.Type.Knight:

10 return GenerateKnightMoves (board, index);
11 case Piece.Type.Bishop:

12 case Piece.Type.Queen:

13 case Piece.Type.Rook:

14 return GenerateSlidingMoves (board, index) ;
15 case Piece.Type.King:

16 return GenerateKingMoves (board, index);

17 }

18

19 return new List<Move>();

20 ¥

34

Fragmento de codigo 3.11: Funciéon GetPseudoLegalMoves

3.1.6. Encapsulacion

Todas las funciones que hemos ido desarrollando con las LookUpTables, que se han
ido precalculando, las hemos agrupado en una clase estatica de C#. Con esta decisiéon
de diseno avalamos el hecho de que estas funciones no requieren de un estado especifico
de la instancia de la clase [14], a la que hemos llamado MoveGeneration, esta clase

simplemente actuara de contenedor para las funciones y tablas que hemos mencionado:

1 public static class MoveGeneration
24
3 // LookUpTables
4 private static int[][] preCalculatedKnightMoves = new int [64][];
) /7
6
7 static MoveGeneration ()
8 {
9 // ... pre—-calculo de las LookUpTables en el constructor
10 }
11
12 // las funciones que generan los movimientos de las piezas
13 private static List<Move> GenerateKnightMoves (Board board, int index)
14 {
15 //
16 }
17 //
18
19 // funcion que genera los movimientos pseudo-legales de una pieza
20 public static List<Move> GetPseudoLegalMoves (Board board, int index)
21 {
22 //
23 }
24
25 // funcion que genera los movimientos legales de una pieza
26 public static List<Move> GetlLegalMoves (Board board, int index)
27 {
28 //
29 }

30 ¥

Fragmento de codigo 3.12: Clase MoveGeneration

Esta encapsulacion que hemos realizado nos permite de manera muy sencilla obtener
una lista de los movimientos legales de una pieza con solo pasarle el tablero, y el indice

de la casilla (0 a 63) donde se encuentra la pieza, de la siguiente forma:

|l List<Move> moves = MoveGeneration.GetLegalMoves(board, index) ;

35

U QO DD

~
oY O

Gl W N — O OO0

3.2. Jaque mate y Rey ahogado

Una vez que podemos determinar los movimientos de cada pieza, resulta
relativamente facil verificar las condiciones que indican que una partida ha concluido
debido a 2 posibles escenarios: jaque mate y rey ahogado o tablas.

El jaque mate se da cuando el rey del oponente estd bajo amenaza directa de
captura (en jaque) y no tiene ninguna forma de escapar, ya sea moviéndose a una casilla
segura, bloqueando la amenaza con otra pieza, o capturando la pieza que amenaza al
rey. En este punto, el juego termina y el jugador que ha puesto en jaque mate al rey
adversario es declarado ganador [1].

El rey ahogado es similar al jaque mate, s6lo que en este caso no esta en jaque,
pero no puede realizar ningin movimiento legal porque todas sus casillas de escape
estan bloqueadas por sus propias piezas o controladas por las piezas del oponente.
Esto resulta en un empate (tablas) en lugar de una victoria para el oponente [1].

Para realizar ambas comprobaciones, lo que haremos serd generar todos los
movimientos legales de todas las piezas del color al que le toca mover. Si el numero total
de movimientos generados es 0, entonces obtendremos las casillas que esta atacando el
rival y comprobaremos si la casilla en la que se encuentra el rey esta siendo atacada o
no. Si se encuentra atacada, entonces se declarara que el jugador que hizo el movimiento
previo gana por jaque mate. En cambio, si no se encuentra atacado el rey se declarara
final por rey ahogado, es decir, por tablas.

Para ello, si recordamos en la Seccién 2.5, donde hablabamos sobre la clase Game,
la méquina de estados, y las transiciones entre estos (apartado 2.5.2), podemos anadir
estas comprobaciones en el estado NextTurn, para que justo antes de pasarle el turno
al siguiente jugador se compruebe si ha habido jaque mate o rey ahogado.

Aqui podemos ver el cédigo modificado del estado NextTurn, el cual implementa

las comprobaciones mencionadas antes:

Piece.Color turnColor = board.GetTurnColor ();
bool isGameOver = false;

// COMPROBACION DE JAQUE MATE/REY AHOGADO

List<Move> moves = MoveGeneration.GetAllLegalMovesByColor (board, turnColor);
if (moves.Count == 0)
{

if (MoveGeneration.IsKingInCheck (board, turnColor))
{

switch (turnColor)

{

case Piece.Color.White:
// JAQUE MATE DE LAS PIEZAS NEGRAS

36

16 break;

17 case Piece.Color.Black:
18 // JAQUE MATE DE LAS PIEZAS BLANCAS
19 break;

20 }

21 }

22 else

23 {

24 // REY AHOGADO

25 }

26

27 isGameOver = true;

28 }

29

30 if (lisGameOver)

31 A

32 // next player turn

33

34 playerToMove = turnColor == Piece.Color.White 7 playerWhite : playerBlack;
35 playerToMove.NotifyTurnToMove () ;
36 gameState = GameState.PlayerTurn;
37}

38 else

39 {

40 gameState = GameState.Over;

41 ¥

Fragmento de cédigo 3.13: Estado NextTurn con la comprobacién de jaque mate y rey
ahogado

Por el momento, independientemente del motivo por el cual se termine el juego,
vease jaque mate o rey ahogado simplemente transicionamos al estado Over. Més
adelante, cuando implementemos la interfaz de usuario senalizaremos con un texto

el motivo por el cual ha terminado el juego.

3.3. Tablas por triple repeticion

En ajedrez, las tablas por triple repeticion se producen cuando la misma posicion
exacta de las piezas en el tablero aparece tres veces durante el transcurso de una partida.

Para que una posicién sea considerada idéntica, se deben cumplir ciertas condiciones:

1. Las mismas piezas del mismo color ocupan las mismas casillas.

2. Las mismas posibles jugadas estdn disponibles para cada jugador (es decir,
los derechos de enroque y captura al paso no deben haber cambiado entre las

repeticiones).

Cuando se repite la misma posicion por tercera vez, cualquiera de los jugadores

puede reclamar tablas. Esta regla esta disenada para evitar partidas interminables y

37

es una de las formas en que una partida puede terminar en empate. Por simplificacién
consideraremos tablas automaticamente una vez se repitan tres posiciones.

Para implementar esta regla necesitamos obtener y comparar estas posiciones
incluyendo el estado del tablero. Para ello existen diferentes técnicas que se explican a

continuacion.

3.3.1. Notacién de Forsyth-Edwards

La notacién Forsyth Edwards! (FEN) es un estdndar para describir una posicién
especifica en una partida de ajedrez. Esta notacién es esencial para registrar y
comunicar posiciones de ajedrez de manera precisa y concisa. Una cadena FEN la
expresaremos con cuatro campos separados por espacios: la posicion de las piezas, el
turno de juego, los derechos de enroque y la posibilidad de captura al paso. Aunque
existen mas parametros, los omitiremos por simplicidad puesto que no los hemos

considerado relevantes ya que estan ligados a reglas que no hemos implementado.

1. Posicion de las piezas:
— Este campo describe la ubicacion de todas las piezas en el tablero, fila por
fila desde la octava fila (fila superior) hasta la primera fila (fila inferior).

— Las piezas se representan con letras: p (peén), r (torre), n (caballo), b (alfil),
q (dama), k (rey). Las letras mayusculas representan piezas blancas y las

minusculas representan piezas negras.

— Las casillas vacias se representan con numeros del 1 al 8, indicando cuantas

casillas vacias hay consecutivamente.
2. Turno de juego:

— Representado por una w si es el turno de las blancas o una b si es el turno

de las negras.
3. Derechos de enroque:

— Representado por las letras K (enroque corto blanco), Q (enroque largo
blanco), k (enroque corto negro) y q (enroque largo negro). Si ninguno de

los bandos puede enrocar, se usa un -.

4. Posibilidad de captura al paso:

https://en.wikipedia.org/wiki/ForsythEdwards_Notation

38

https://en.wikipedia.org/wiki/Forsyth–Edwards_Notation

— Representado por la notacion de la columna en la que es posible una captura

al paso. Si no hay posibilidad de captura al paso, se usa un -.

Veamos un ejemplo con la posicion inicial del tablero:

Figura 3.9: Posicién inicial de un tablero de ajedrez

Cuya notaciéon FEN corresponderia a:
rnbgkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq -

Para poder construir esta cadena FEN, tendriamos que recorrer todas las filas del
tablero en busca de las piezas que en él se encuentran, y consultar el estado del tablero
para conocer el turno actual, si se puede realizar una captura al paso y en que casilla,
y si estan disponibles los derechos de enroque.

Con la cadena FEN generada, ya podriamos realizar comparaciones entre posiciones
y verificar si una misma posicion se ha repetido tres veces durante el juego. No obstante,
generar una cadena FEN es un proceso relativamente lento ya que requiere revisar todo
el tablero en busca de las piezas. Esto no seria relevante para este caso especifico, ya
que generariamos una sola cadena por cada movimiento en el tablero para su posterior
comparacion. Sin embargo, cuando desarrollemos la [A, necesitaremos producir muchas
méas cadenas y requeriremos que el proceso sea lo mas rapido posible, por lo que este

método resultaria inviable.

39

3.3.2. Zobrist Hashing

Zobrist hashing es una técnica utilizada en programacién de juegos de ajedrez (y
otros juegos de tablero) para representar de manera eficiente y répida la posicién en
el tablero. Fue inventada por Albert Zobrist en 1970 y se utiliza principalmente para
crear claves unicas (hashes) que representan las posiciones del tablero [15].

En este método, transformamos una posicién del tablero en una clave hash,
en nuestro caso un nimero de 64 bits (unsigned long). Esto genera un pequeno
inconveniente: un ntimero de 64 bits tiene 24 combinaciones posibles, lo que significa
que podemos representar hasta 24 posiciones diferentes de un tablero de ajedrez. No
obstante, las combinaciones posibles de un tablero de ajedrez son mucho mayores,
lo que significa que es posible que diferentes posiciones del tablero generen el mismo
hash. Con un nimero de 64 bits podemos esperar una colisién cada 232 o 4 billones de
posiciones [15]. Aunque no podemos evitar este problema de colisiones, en la practica
no suele ser un inconveniente significativo.

Su funcionamiento es el siguiente:

1. Generacion de Numeros Aleatorios:

— Se crea una tabla de ntimeros aleatorios. Cada pieza en cada posicion del

tablero tiene un nimero aleatorio asociado.

— Para un tablero de ajedrez estandar, se necesitan niimeros aleatorios para
12 tipos de piezas (6 para blancas y 6 para negras) y 64 casillas del tablero.

Esto da un total de 768 nimeros aleatorios (12 piezas x 64 casillas).

Aqui podemos ver el codigo que pre-genera estos nimeros aleatorios para cada
una de las 64 casillas y a su vez por cada una de las 12 piezas, los cuales se

almacenan en una tabla a la que hemos llamado pieceKeys:

1 ulong[,] pieceKeys = new ulong([64, 12];

2

3 for (int i = 0; i < 64; i++)

4 {

) for (int j = 0; j < 12; j++)

6 {

7 pieceKeys[i, j] = (ulong)random.NextInt64();
8 }

9%

Fragmento de codigo 3.14: Numeros aleatorios para las piezas

También se generan numeros aleatorios asociados al color del turno, a la captura al

paso y a los derechos de enroque por cada color siguiendo el mismo procedimiento.

40

2. Calculo del Hash Inicial:

— Se inicializa el valor del hash en cero.

— Para cada pieza en el tablero, se toma el nimero aleatorio correspondiente
a esa pieza en su posicién actual y se realiza una operacion XOR. con el

valor del hash.

— Laoperacion XOR asegura que cada pieza y posicion contribuyan de manera
unica al valor del hash, y que la adicion y eliminaciéon de piezas sean

operaciones reversibles.

— Tambien se realiza la operacion XOR con los numeros aletorios
correspondientes al color del turno actual, a los derechos de enroque que
son posibles por ambos colores y en caso de que esté disponible el niimero

correspondiente a la captura al paso.

Aqui podemos ver el codigo de la funcién GetKey con la que podemos obtener
el hash de una posicion del tablero utilizando las tablas de numeros aleatorios

precalculadas anteriormente:

1 public static ulong GetKey(Board board)

2 A4

3 ulong hashKey = 0;

A

5) // piezas blancas

6 foreach (int i in board.GetPiecesIndices (Piece.Color.White))
7 {

8 Piece piece = board.GetPiece(i);

9
10 hashKey "= pieceKeys[i, (int) (piece.type - 1)1];
11 }
12
13 // piezas negras
14
15 // board state
16 ref readonly BoardState boardState = ref board.GetBoardState();
17
18 // captura al paso
19 if (boardState.IsEnPassantAvailable())
20 {
21 hashKey "= enPassantKey;
22 }
23
24 // color del turno
25
26 hashKey ~“= turnColorKeys [(int)boardState.GetTurnColor () - 1];
27
28 // enroque
29
30 return hashKey;
31 ¥

41

Fragmento de codigo 3.15: Funcion GetKey

Con esta funcién, calcularemos el hash del tablero inicamente la primera vez que
se inicie el juego. Posteriormente, actualizaremos el hash conforme se realicen

movimientos en el tablero, aprovechando las propiedades de la operacion XOR.
3. Actualizacién del Hash:

— Cuando una pieza se mueve, el hash se actualiza realizando una operacién
XOR para eliminar la pieza de su posicién inicial y otra operacion XOR
para colocarla en su nueva posicion. Igualmente sucede cuando cambian los

derechos de enroque, el color del turno o la captura al paso.

— Esto permite actualizar el hash sin tener que recalcularlo entero, lo que es

mas eficiente y rapido.

A la clase Board que vimos en la seccién 2.3 le anadiremos un atributo que
llamaremos zobrist el cual correspondera al hash del tablero y el cual ird
cambiando a la vez que se realizan movimientos. Veamos las modificaciones que

hemos realizado a la hora de colocar piezas en el tablero:

private void SetPiece(int index, Piece piece)

1

24

3 // obtenemos la pieza que habia antes en el tablero
4 Piece piecePrevious = pieces[index];

5)

6 if (piecePrevious.type != Piece.Type.None)

7 {

8 // "quitamos" la pieza que habia antes del hash
9 zobrist "= ZobristHashing.GetPieceKey(index, piecePrevious);
10 }

11

12 // la nueva pieza

13 if (piece.type != Piece.Type.None)

14 {

15 // "colocamos" la nueva pieza en el hash

16 zobrist "= ZobristHashing.GetPieceKey(index, piece);
17 }

18

19 // ponemos la pieza en el tablero

20 pieces[index] = piece;

21}

Fragmento de cédigo 3.16: Funcion SetPiece modificada

De esta manera vamos actualizando el hash a la hora de mover las piezas. La
funcién GetPieceKey de la clase estatica ZobristHashing simplemente devuelve

el numero aleatorio correspondiente a la pieza seleccionada para la casilla

42

N OO W~

— =
— O W 0o

INGYGUN NI

seleccionada. De manera similar, debe actualizarse cuando cambia el turno, asi

como los derechos de enroque y la captura al paso.

Finalmente, para llevar a cabo el seguimiento de todas las posiciones que se van
produciendo en la partida y poder comprobar si se produce una triple repeticién,
utilizaremos un diccionario o HashMap. Este diccionario al que hemos llamado
zobristHistory, almacena las posiciones del tablero utilizando una clave hash de 64
bits (ulong) generada mediante Zobrist hashing. El valor asociado a cada clave es un
entero (int) que representa el nimero de veces que esa posicién ha aparecido en la

partida.

Dictionary<ulong, int> zobristHistory = new Dictionary<ulong, int>();

Fragmento de cédigo 3.17: Diccionario zobristHistory

Entonces cada vez que realizamos un movimiento tenemos que buscar si ese hash
ya existe en el diccionario. Si ya existe incrementamos el valor asociado a esa clave en
uno. Esto indica que la posicién ha aparecido nuevamente. Si no creamos la entrada en

el diccionario y colocamos el nimero de veces que ha aparecido la posicion a 1.

// ... se realiza el movimiento y se actualiza el hash

// modificamos el diccionario
if (zobristHistory.ContainsKey (zobrist))

{
zobristHistory[zobrist]++;
}
else
{
zobristHistory [zobrist] = 1;
}

Fragmento de cédigo 3.18: Modificacién del diccionario zobristHistory

Para terminar, antes de pasar el turno al siguiente jugador tenemos que comprobar
entonces si la posicion actual se ha repetido 3 veces. Para ello anadimos la siguiente
comprobacion el estado NextTurn de la clase Game (seccién 2.5) despues de la

comprobacion de jaque mate y rey ahogado.

else if (board.GetRepetitions() >= 3)
{

isGameOver = true;

3

Fragmento de codigo 3.19: Comprobacién de triple repeticion para el estado NextTurn

La funcion GetRepetitions de la clase Board tunicamente devuelve el nimero de
veces que se ha repetido la posicién actual. Si se diese el caso el juego terminaria y se

transicionaria al estado Owver.

43

OO0 Ul WhN —

10
11
12

NJUN NG

3.4. Regla de los cincuenta movimientos

La regla de los cincuenta movimientos establece que una partida acaba en tablas si
cada jugador ha hecho los ultimos 50 movimientos consecutivos sin que haya habido
ningiin movimiento de peén ni captura de pieza.

Para ello tendremos que modificar la funcién MakeMove de la clase Board para
que adicionalmente incluya un conteo de los movimientos en los que no se ha realizado
ninguna captura o movimiento de pedn, reseteandolo a 0 en caso contrario. Para ello
haremos uso de la variable halfMoveCount que vimos cuando hablabamos acerca de la
clase BoardState.

//
// update half move count
int halfMoveCount = currentBoardState.GetHalfMoveCount () + 1;
if (move.pieceSource.type == Piece.Type.Pawn ||
move .pieceTarget.type != Piece.Type.None)
{
halfMoveCount = O0;
}
currentBoardState.SetHalfMoveCount (halfMoveCount) ;

Fragmento de codigo 3.20: Actualizamos el conteo de medios movimientos en la funcién
MakeMowve

Para terminar, antes de pasar el turno al siguiente jugador tenemos que comprobar
entonces si la se han realizado por lo menos 100 medios movimientos o lo que es
equivalente 50 movimientos totales. Para ello anadimos la siguiente comprobacion el
estado NeztTurn de la clase Game (seccién 2.5) despues de la comprobacién de jaque

mate, rey ahogado y tablas por triple repeticion.

else if (board.GetHalfMoveCount() >= 100)// fifty move rule
{

isGameOver = true;

}

Fragmento de cédigo 3.21: Comprobacion de triple repeticion para el estado NextTurn

La funcion GetHalfMoveCount de la clase Board inicamente devuelve el niimero de

medios movimientos, correspondiente al almacenado en el estado actual del tablero.

44

Capitulo 4

Diseno y desarrollo de la interfaz de
usuario

Hasta el momento, todo lo que hemos desarrollado forma parte de la estructura y
de la légica de nuestro juego de ajedrez. No obstante, para interactuar y efectuar
movimientos como “jugadores humanos”, es necesario desarrollar una interfaz de
usuario que nos permita realizar una representacion grafica o visual del tablero de
ajedrez y sus piezas, y que ademas nos facilite la realizacién de movimientos mediante

la interaccién con ella.

4.1. Representacion grafica del juego

La clase Board, que vimos en la Seccién 2.3, representa la légica y el estado del
tablero, contiene las piezas, y nos permitia realizar movimientos. Lo que haremos sera
crear una interfaz que tome dicho tablero y lo muestre graficamente en la pantalla.
Para ello haremos uso de los objetos o nodos Sprite2D [16] de Godot, los cuales sirven
para mostrar una imagen o textura en la pantalla en una posiciéon determinada.

Como en este TFG nuestro objetivo no es ensenar cémo utilizar Godot, puesto que es
simplemente una herramienta mas que hemos utilizado, no explicaremos en profundidad
aspectos especificos de este motor, sino que mostraremos una perspectiva global, salvo

que utilicemos alguna funcionalidad muy especifica que requiera de explicacion.

4.1.1. La clase BoardGraphics

La clase BoardGraphics extendera de la clase Node2D de Godot, ya que su funcién
principal es manejar la representacion grafica del tablero de ajedrez y las piezas
dentro de un entorno 2D. Al utilizar la clase Node2D como base permite que la
clase BoardGraphics tenga acceso directo a funcionalidades especificas del entorno 2D

en Godot, tales como la posicion dentro de la pantalla. Esta clase se encargara de

45

=~ Qo Do

conectarse con el tablero y renderizar los sprites de este mismo y de las piezas que
se encuentren en él. También se encargard de dibujar los indicadores que revelan los
movimientos posibles que tiene una pieza, asi como indicar cual ha sido el ltimo
movimiento.

La estructura simplificada seria la siguiente:

BoardGraphics: Node2D

- board: Board
- piecesSprites: Sprite2D[64]
- hintsSprites: Sprite2D[64]

- isFlipped: bool

+ _Ready()

+ ConnectToBoard(board: Board)

- CreateGraphics()

- SetPieceSprite(pieceSprite: Sprite2D, piece: Piece)
+ UpdateGraphics()

+ SetHintMoves(moves: List<Move>)

+ _Draw()

+ SetPieceSpritePosition(index: int, position: Vector2)

+ TryGetSquarelndexFromCoords(coords: Vector2, index: out int): bool

Figura 4.1: Diagrama de clases de la clase BoardGraphics

Veamos una explicacién detallada de cada una de las partes que la componen.

El tablero

Esta clase contiene una referencia al tablero, el cual se conecta mediante la funcién
ConnectToBoard. Esto nos permitira poder acceder a toda la informacion relacionada

con el tablero, como las piezas y cual ha sido el ultimo movimiento realizado.

public void ConnectToBoard(Board board)

{
this.board = board;

}

Fragmento de cédigo 4.1: Funcién ConnectToBoard

Para la representacion grafica del tablero se ha decidido utilizar un nodo Sprite2D,
el cual se ha establecido como hijo del nodo BoardGraphics, al cual se le ha asignado
la imagen de las casillas de un tablero y se ha colocado en el centro de la ventana
utilizando el editor de Godot.

46

20 %30 Fscript & Assetlib

e View

Visibility

© Node
Process
Editor Description

Figura 4.2: Editor de Godot con la imagen del tablero

El inspector del editor de Godot presenta la jerarquia de estos nodos, podemos ver
como el nodo Game correspondiente a la clase Game, que vimos en el apartado 2.5, es
la raiz del arbol de nodos y que el nodo BoardGraphics es hijo de este, y que a su vez

tiene como hijo el nodo sprite BoardSquares, que contiene la imagen del tablero.

Figura 4.3: Inspector con el arbol de nodos

Las piezas

Para dibujar las piezas, contamos con un vector de Sprite2D de dimensién 64 al
que hemos llamado piecesSprites. Cada uno de estos sprites se colocara en la posicién
correspondiente a la casilla del tablero a la que pertenece y en funcion de la pieza que
se encuentre actualmente en el tablero se mostrard una imagen u otra. En el caso en

el que no exista ninguna pieza en esa casilla, lo que haremos serd ocultar ese sprite.

Para representar las piezas hemos usado una unica imagen la cual contiene todos
los tipos de pieza para ambos colores. Esto nos ahorra de disponer de una imagen

por cada pieza y color, pero también nos introduce un problema, ya que nos impide

47

asignar directamente la imagen de la pieza correspondiente a su respectivo sprite que
la representa. Lo que tendremos que hacer en ese caso es recortar la imagen en funcién

de la pieza que necesitemos como veremos a continuacion.

W o H
LWeoeqnE4L

Figura 4.4: Spritesheet de las piezas

Sabiendo que la imagen completa mide en el eje z un tamano Width y en el eje y un
tamano Height y que cada pieza tiene el mismo tamano, para saber cuanto mide una
sola pieza tenemos que dividir esa dimensién entre 6 horizontalmente y 2 verticalmente,

con lo que nos quedaria que la sub-imagen de una sola pieza tiene dimension:

Width " Hewght
6 2

Finalmente nos faltaria calcular los offsets dentro de la imagen. Estos offsets nos

indican la posicion de la sub-imagen de una pieza especifica dentro de la imagen

completa. Aqui podemos ver el ejemplo si la pieza elegida hubiese sido el caballo negro.

Width

W B o H

dolll W &

Figura 4.5: Posicién y tamano de la pieza del caballo dentro de la imagen completa

offset-y

Height

Height/2

\ 7

Width/6

Para calcular estos offsets seguiriamos las siguientes férmulas para ambos ejes de

coordenadas:

Width
6

Offsetx:nxx<), donde 0<n, <5

48

OO Ut —

10
11
12
13
14
15
16

Height
2

Siendo n, y n, las coordenadas expresadas en numero de piezas en la que se

Offsety:nyx<), donde 0<n, <1

encuentra la sub-tmagen que queremos representar. En el caso del ejemplo del caballo

negro anterior n, tendria el valor de 3 y n, el valor de 1.

De realizar todo este procedimiento se ocupa la funcién SetPieceSprite, aqui

podemos ver su implementacién:

private void SetPieceSprite(Sprite2D pieceSprite, Piece piece)

{

if (piece.type == Piece.Type.None)
{
pieceSprite.Visible = false;
}
else
{
pieceSprite.RegionRect = new Rect2(
pieceTextureSize.X * ((int)piece.type - 1),
pieceTextureSize.Y * ((int)piece.color - 1),
pieceTextureSize .X, pieceTextureSize.Y
)
pieceSprite.Visible = true;
}

Fragmento de codigo 4.2: Funcién SetPieceSprite

Esta funcion toma como parametros el sprite de las piezas al que queremos modificar
su apariencia y la pieza que contiene el tipo y el color que queremos que tome. En el
caso en el que el tipo sea ninguno lo que haremos serda modificar la propiedad Visible
del sprite a falso, con esto lo que haremos sera ocultarlo y que no se dibuje en la
pantalla. En caso contrario, modificaremos la propiedad RegionRect del sprite. Esta
propiedad indica la regién que queremos renderizar dentro de una textura o imagen.
Esta propiedad es un Rect2 (Rectangulo 2d) de Godot, cuenta con 4 pardmetros: offset
X, offset y, anchura y altura, que son precisamente los pardametros que hemos descrito
y calculado previamente. Estos parametros se modifican en funcién del tipo y color de
la pieza. La variable piece TextureSize es del tipo vector 2d y contiene el tamano de la

sub-imagen de una pieza.

Puesto que el tablero va cambiando a la vez que se van realizando movimientos
necesitaremos ir actualizando la interfaz de usuario a la vez. Para ello dispondremos
de la funcion UpdateGraphics que llamaremos cada vez que se realice un movimiento

y se encargara de actualizar cada uno de los sprites del tablero.

49

W DO —

0O ~JO Ut C

o
U O DD = O ©

16
17
18
19
20

NS —

OO ~JO) Ul Wi

C

10
11
12
13
14
15
16

public void UpdateGraphics ()
{
for (int j = 0; j < 8; j++)
{
for (int i = 0; i < 8; i++)
{
int index = 1 + j * 8;
// update the pieces sprites to match the ones in the board
Sprite2D pieceSprite = piecesSprites[index];
Piece piece = board.GetPiece (index);
SetPieceSprite (pieceSprite, piece);
Vector2 pieceSpritePosition = new Vector2(i + 0.5f, j + 0.5f);
pieceSprite.Position = pieceSpritePosition * squareSize;
}
}
}

Fragmento de codigo 4.3: Funcién UpdateGraphics

Esta funcién se encarga de actualizar cada sprite de las piezas con su pieza
correspondiente del tablero y recolocarlo en el centro de la casilla en el caso en el

que se haya desplazado.

Los indicadores

Seria util poder indicar al jugador qué movimientos tiene disponibles una
determinada pieza. Para ello dispondremos de una funcion que tome una lista de
movimientos y represente en el tablero de forma grafica las casillas a las cuales
corresponden dichos movimientos. La funcién SetHintMoves hace precisamente esto
que hemos descrito, seguiremos un procedimiento similar al que vimos con los sprites

de las piezas, en este caso utilizamos el vector de sprites de dimension 64 hintsSprites.

public void SetHintMoves (List<Move> moves)
{
// hide previous hint moves
for (int i = 0; i < 64; i++)
{
hintsSprites[i].Visible = false;
}

// show the new ones if not null
if (moves != null)
{
foreach (Move move in moves)
{
Material m = move.pieceTarget.type == Piece.Type.None 7
hintCircleMaterial : hintCircleWithHoleMaterial;

50

17
18
19
20
21

Ip
29
3

hintsSprites [move.squareTargetIndex].Material = m;
hintsSprites[move.squareTargetIndex].Visible = true;

}

Fragmento de cédigo 4.4: Funcién SetHintMoves

Esta funcion se encarga primero de ocultar todos los indicadores para luego mostrar
aquellos que le hemos pasado mediante la lista de movimientos, con la diferencia de que
si la casilla se encuentra vacia se elige el sprite de un circulo relleno y si estd ocupada
por una pieza se elige el sprite de un circulo sin relleno. Podemos ver el resultado de
esto en la imagen 4.6, la cual toma como ejemplo los movimientos posibles de la reina

blanca.

>
s
T4

wid [K
- B 3

n)%- E -
-3 - [- [

- O B

B
-
-
m

S-m =
G-l s

Figura 4.6: Ejemplo de los indicadores de movimiento

También anadiremos los indicadores que muestran el 1ltimo movimiento realizado
en el tablero. Para ello consultaremos el 1ltimo movimiento y dibujaremos dos
cuadrados amarillos, uno en la casilla en la que se encontraba la pieza antes de realizar
el movimiento y otro en la casilla a la que se ha desplazado dicha pieza. Para ello
haremos uso de la funciéon _Draw de la clase Node2D que nos proporciona Godot para

el dibujo de primitivas 2d, como por ejemplo en este caso cuadrados de color amarillo.

ublic override void _Draw()

// draw last move

51

~NO Ol W~

CO DO —

Ot~ W

if (board.TryGetLastMove (out Move lastMove))
{
int si = lastMove.squareSourcelndex 7% 8;
int sj = lastMove.squareSourcelndex / 8;
int ti = lastMove.squareTargetIndex 7% 8;
int tj = lastMove.squareTargetIndex / 8;

DrawRect (new Rect2(new Vector2(si, sj) * squareSize,
squareSize, squareSize), hintLastMoveColor);
DrawRect (new Rect2(new Vector2(ti, tj) * squareSize,
squareSize, squareSize), hintLastMoveColor);

Fragmento de codigo 4.5: Funcién _Draw

4.2. Integrando la interfaz de usuario en el juego

Hasta ahora todo lo que hemos ido viendo de la clase BoardGraphics ha sido acerca
de su funcionalidad. Sin embargo, todavia nos falta integrarla en el juego junto con el
resto de elementos. Ademas de implementar al jugador humano que se encargard de
controlarla, puesto que la clase BoardGraphics no hace nada por si misma, sélo expone
una interfaz con la que podemos interactuar con ella, y decirle qué debe representar y

cuando se debe de actualizar.

4.2.1. El jugador humano

El jugador humano se encargara de controlar la interfaz de usuario mediante la
clase BoardGraphics, que permitira al usuario interactuar y realizar movimientos en el
tablero. El jugador humano extendera de la clase Player que vimos en el apartado 2.4
cuando hablabamos sobre los jugadores. Sobreescribiremos el método Update de la clase
Player e implementaremos toda la funcionalidad para seleccionar piezas y moverlas en
el tablero. Para ello, dispondremos de una maquina de estados que se encargard de
todo ello.

Cddigo de PlayerHuman

Antes de entrar en detalles sobre la maquina de estados, mostramos a continuacién

el c6digo del jugador humano (PlayerHuman).

using Godot;
using System;
using System.Collections.Generic;

public class PlayerHuman : Player

52

61
7 private enum InputState
8 {
9 Idle,
10 Dragging,
11 PieceSelected
12 }
1
14 // player state
15 private InputState inputState = InputState.Idle;
16
17 // board
18 private Board board;
19
20 // board graphics
21 private BoardGraphics boardGraphics;
22
23 // piece selection helpers
24 private int pieceSelectedIndex = -1; // -1 means nothing selected
25 private List<Move> pieceSelectedMoves = null;
26
27 public PlayerHuman (Board board, BoardGraphics boardGraphics)
28 {
29 // init
30 this.board = board;
31 this.boardGraphics = boardGraphics;
32 }
33
34 public override void Update ()
35 {
36 // Aqui se actualiza la maquina de estados...
37 }
38 }
Fragmento de cédigo 4.6: Clase PlayerHuman
La funcién Update en la clase PlayerHuman es de hecho el nicleo del ciclo de
actualizacion de la maquina de estados del jugador humano. Esta funcién se encarga
de determinar el estado actual del jugador y ejecutar la légica correspondiente a ese
estado. La funcién Update hace esto mediante un switch que selecciona y ejecuta la
funcién adecuada segin el estado actual (Idle, Dragging, o PieceSelected).
1 public override void Update ()
2 A4
3 // handle everything related to move selection
) // get the mouse coordinates
6 Vector2 mouse = boardGraphics.GetLocalMousePosition () ;
(
8 // get the square the mouse is on
9 bool isOnSquare = boardGraphics.TryGetSquareIndexFromCoords (
10 mouse ,
11 out int squarelndex
12) ;
13
14 // state machine

53

15
16

18
19
20
21
22
23
24
25
26
27

switch (inputState)
{
case InputState.Idle:
HandlePieceSelection(squareIndex, isOnSquare);
break;
case InputState.Dragging:
HandleDragMovement(mouse, squareIndex, isOnSquare);
break;
case InputState.PieceSelected:
HandleClickMovement (squareIndex, isOnSquare);
break;

3

Fragmento de coédigo 4.7: Funcién Update

Antes de ejecutarse el cédigo correspondiente a la maquina de estados, en la
funciéon Update se obtiene la posicién actual del ratén, relativa a la posicion dénde
se encuentra el tablero dentro de la pantalla, y se obtiene mediante la funcién
TryGetSquareIndexFromCoord en qué casilla del tablero se encuentra el ratén mediante
el parametro de salida squarelndex. Esta funcién ademads devuelve un valor logico
(isOnSquare) que indica si el ratén se encuentra dentro del tablero e indica por lo
tanto la validez del pardametro squarelndex. Esta serie de parametros son comunes a
todos los estados de la maquina de estados, de ahi la razén por la cual los obtengamos
al principio.

La maquina de estados que hemos implementado se ilustra en la Figura 4.7. Esta
figura proporciona una visiéon clara de las transiciones entre los diferentes estados
(Idle, Dragging, PieceSelected) y como se gestionan estas transiciones basadas en las
interacciones del usuario. Esta maquina de estados se ocupara como hemos mencionado
antes de gestionar toda la logica que permite al usuario interactuar con el tablero y asi

poder realizar movimientos en este.

Estado Idle

El estado Idle se activa cuando no hay ninguna pieza seleccionada y el jugador no
estd realizando ninguna accién con el ratén. Si el jugador hace clic en la pantalla se
verifica que se haya seleccionado una casilla dentro del tablero (isOnSquare) en caso de
que asi sea entonces se verifica si la pieza que se encuentra en esa casilla corresponde con
una pieza valida (del color correspondiente al turno). En ese caso, la pieza se selecciona,
guardandonos el indice de la casilla en la variable entera pieceSelectedIndex, se calculan,
se guardan (en la variable pieceSelectedMoves) y se muestran sus movimientos legales

(boardGraphics.SetHintMoves), y se cambia el estado a Dragging.

54

Idle (Punto de partida)

Esperar hasta que se
seleccione una pieza

No

pieza valida?

Seleccionamos la pieza,
mostramos sus

Dragging

movimientos legales en el
tablero y cambiamos al
estado Dragging

A

PieceSelected

Esperamos a que se
haga click con el
ratén

Se elige ese
movimiento y se
transiciona al estado
Idle

Seleccionamos la
pieza, mostramos sus
movimientos legales
en el tablero y
cambiamos al estado
Dragging

nuestras
piezas?

Paramos de mostrar los
movimientos legales y
Transicionamos al
estado Idle

Movemos el sprite de
la pieza a la misma
posicion que el cursor
del ratén

se ha soltado
el raton?

es un
movimiento
valido?

Transicionamos al
estado PieceSelected

Se elige ese
movimiento y se
transiciona al estado
Idle

A

Figura 4.7: Maquina de estados del jugador humano

La funcién que maneja e implementa la funcionalidad de este estado es

1l private void HandlePieceSelection(int squareIndex, bool isOnSquare)

Y U O N

HandlePieceSelection.
{
// the first frame you click
if (Input.IsActionJustPressed("Select"))
{
if (isOnSquare)

55

-3

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

// get the piece
Piece piece = board.GetPiece(squareIndex) ;

// if not none then select it
if (piece.type != Piece.Type.None
&% piece.color == board.GetTurnColor ())
{
// select piece
pieceSelectedIndex = squarelndex;
pieceSelectedMoves
= MoveGeneration.GetLegalMoves (board, squarelIndex);

// set hint moves
boardGraphics.SetHintMoves (pieceSelectedMoves) ;

// change state
inputState = InputState.Dragging;

}

Fragmento de cédigo 4.8: Funcién HandlePieceSelection

Estado Dragging

Este estado se activa cuando una pieza ha sido seleccionada y el jugador la
estda arrastrando. Mientras el ratén estd presionado, el sprite de la pieza que esta
seleccionada se coloca en la posicion del cursor del ratén mediante la funcién
SetPieceSpritePosition que vimos en la clase BoardGraphics. Cuando el jugador suelta
el ratén (IsActionJustReleased(”Select”)) se comprueba primero si se ha soltado en una
casilla dentro del tablero (isOnSquare). En ese caso, se comprueba si la casilla elegida
para efectuar el movimiento corresponde a uno de los movimientos legales de la pieza
que tenemos seleccionada. Esto lo conseguimos probando con todos los movimientos de
dicha pieza que habiamos seleccionado (almacenados en la variable pieceSelectedMoves)
y comprobando que la casilla destino del movimiento (mowve.squareTargetindex)
corresponde con la casilla que habiamos seleccionado (squarelndex). En ese caso,
elegimos ese movimiento disparando el evento onMoveChosen mediante la llamada
a la funcion OnMoveChosen y pasandole como parametro el movimiento elegido. Si
recordamos cuando hablabamos sobre los jugadores y la clase Game (secciones 2.4 y
2.5) esto provocara que se notifique a la clase Game y sea ésta finalmente la que juegue
el movimiento elegido en el tablero. Finalmente, el estado vuelve a Idle. En el caso
en el que el que no se haya seleccionado una casilla en el tablero o el movimiento no
sea vélido, se actualizan los graficos del tablero (esto provoca que el sprite de la pieza

seleccionada vuelva a su posicion original) y el estado actual cambia a PieceSelected.

56

La funcién que maneja e implementa la funcionalidad de este estado es

HandleDragMovement.
1l private void HandleDragMovement (Vector2 mouse, int squareIndex, bool isOnSquare)
2 A4
3 // move the piece selected to the mouse position
4 boardGraphics.SetPieceSpritePosition(pieceSelectedIndex, mouse);
5)
6 // if stop holding
7 if (Input.IsActionJustReleased("Select"))
3 {
9 if (isOnSquare)
10 {
11 // check for a valid move
12 foreach (Move move in pieceSelectedMoves)
13 {
14 if (move.squareTargetIndex == squarelndex)
15 {
16 // chose the move (no animation)
17 ChoseMove (move, false);
18
19 // reset board state
20 inputState = InputState.Idle;
21
22 // move selected
23 return;
24 }
25 3
26 }
27
28 // update graphics
29 boardGraphics.UpdateGraphics ();
30
31 // go to piece selected state
32 inputState = InputState.PieceSelected;
33 }
34}

Fragmento de codigo 4.9: Funcién HandleDragMovement

Estado PieceSelected

Este estado se utiliza cuando el jugador ha seleccionado una pieza pero no la estd
arrastrando. El jugador puede hacer clic en una casilla para intentar mover la pieza
seleccionada. Si el jugador hace clic en una casilla valida para mover la pieza, se
realiza el movimiento y el estado regresa a Idle. Si el jugador selecciona una nueva
pieza del mismo color, se actualizan los movimientos posibles y el estado cambia a
Dragging de nuevo. Si el jugador hace clic en una casilla no valida, el estado regresa
a Idle y se desactivan las sugerencias de movimientos pasandole null a la funcién
boardGraphics.SetHintMowes.

57

La funciéon que maneja e implementa la funcionalidad de este estado es
HandleClickMovement.

| private void HandleClickMovement (int squareIndex, bool isOnSquare)
2 A

3 // the first frame you click

4 if (Input.IsActionJustPressed("Select"))

5) {

6 if (isOnSquare)

7 {

8 // check for a valid move

9 foreach (Move move in pieceSelectedMoves)

10 {

11 if (move.squareTargetIndex == squarelndex)
12 {

13 // select the move

14 ChoseMove (move, true);

15

16 // reset board state

17 inputState = InputState.Idle;

18

19 // move selected

20 return;

21 }

22 }

23

24 // if the move is not legal then check if another piece is selected
25 // get the piece

26 Piece piece = board.GetPiece(squareIndex);

27

28 // if not none then select it

29 if (piece.type != Piece.Type.None && piece.color == board.GetTurnColo:
30 {

31 // select piece

32 pieceSelectedIndex = squarelndex;

33 pieceSelectedMoves = MoveGeneration.GetLegalMoves (board, squarel:
34

35 // set hint moves

36 boardGraphics.SetHintMoves (pieceSelectedMoves) ;
37

38 // change state to holding the piece

39 inputState = InputState.Dragging;
40
41 // exit
42 return;
43 }
44 }
45
46 // disable hint moves
47 boardGraphics.SetHintMoves (null) ;
48
49 // go back to idle state

50 inputState = InputState.Idle;

51 }

52}

Fragmento de codigo 4.10: Funciéon HandleClickMovement

58

W DN —

—~1 O T

13
14
15
16
17
18
19
20
21
22
23

EN Rop e WINGTJUN N

©

4.2.2. Integracion con la clase Game

Finalmente nos faltaria integrar toda la interfaz de usuario con el nicleo de nuestro
juego, es decir, con la clase Game. Conectaremos la interfaz con el tablero y la iremos
actualizando, a la vez que se realizan los movimientos.

En la funcién _Ready (Cédigo 2.8) de la clase Game, anadiremos la conexién
de la interfaz grafica (BoardGraphics) con el tablero (Board) usando la funcién
ConnectToBoard. Luego, actualizaremos la interfaz para que los sprites de las piezas
coincidan con las piezas del tablero. Adicionalmente, ahora que tenemos desarrollado
al jugador humano podemos hacer que ambos jugadores, blanco y negro, sean del tipo
PlayerHuman lo que nos permitird poder jugar contra otra persona o con nosotros

mismos para probar que todo lo que hemos ido programando funciona correctamente.

ublic override void _Ready ()

~ g

// init the board and load the fen
board = new Board();
board.LoadFenString (Board.StartFEN) ;

// connect the board graphical representation with the board itself
boardGraphics.ConnectToBoard (board) ;

// update the board graphics
boardGraphics.UpdateGraphics () ;

// creamos los jugadores
playerWhite = new PlayerHuman (board, boardGraphics);
playerBlack = new PlayerHuman (board, boardGraphics);

// nos suscribimos a los eventos de ambos jugadores
playerWhite.onMoveChosen += 0OnMoveChosen;
playerBlack.onMoveChosen += 0OnMoveChosen;

// comenzamos en el estado NextTurn
gameState = GameState.NextTurn;

Fragmento de cédigo 4.11: Conexién entre el tablero y la interfaz de usuario

En la funcién OnMoveChosen (Cédigo 2.10), ademds de realizar el movimiento en

el tablero, anadiremos la actualizacién de la interfaz de usuario.

private void OnMoveChosen(Move move)
{
// make the move
board.MakeMove (move) ;

// update ui

boardGraphics.SetHintMoves (null) ;
boardGraphics.UpdateGraphics () ;

59

10 // change state

11 gameState = GameState.NextTurn;
123

Fragmento de codigo 4.12: Actualizacién de la interfaz de usuario

Con esto concluiria el desarrollo de la interfaz de usuario, permitiendo a los

jugadores interactuar de manera intuitiva y fluida con el tablero de ajedrez.

60

Capitulo 5

Desarrollo de la inteligencia
artificial

El desarrollo de una inteligencia artificial (IA) para un juego de ajedrez es una
tarea que combina conceptos avanzados de algoritmos de busqueda, evaluacién de
posiciones y optimizacién de recursos computacionales [3]. En este capitulo, se explorard
la implementaciéon de una TA para ajedrez basada principalmente en el algoritmo
minimax [17, 18, 19], y se detallardn una serie de mejoras que incrementaran su

eficiencia y rendimiento.

5.1. Funcién de evaluacion del tablero

Antes de adentrarnos en los algoritmos de busqueda, es esencial contar con una
funcién de evaluacién del tablero que permita a la IA determinar la calidad de una
posicion dada de forma aproximada. Esta funcién se encargara de asignar un valor
numérico a una posicién del tablero determinada de forma estatica.

Dado que cada pieza en el ajedrez es diferente provoca que no todas valgan lo
mismo. Por ejemplo, una reina es mucho mas valiosa que un peén o un caballo. Por
esta razon les vamos a asignar diferentes valores que reflejaran cuan valiosas son. La
tabla 5.1 refleja los valores que hemos elegido y que estan basados en los valores que

hemos encontrado en la Chess Programming Wiki [20].

Pieza | Valor
Peén 100
Caballo | 300
Alfil 320
Torre 500
Reina 900

Tabla 5.1: Valores de las piezas de ajedrez

61

Al rey no lo hemos incluido puesto que no tiene valor propiamente dicho. El valor
del rey no se puede cuantificar de la misma manera que las otras piezas puesto que su

importancia es absoluta y esencial para la continuidad del juego.

Con respecto al posicionamiento de las piezas, es evidente que una pieza gana o
pierde valor en funcién de la posicién en la que se encuentre colocada en el tablero,
con lo que tendremos que tener esto también en cuenta a la hora de valorar las piezas.

Veamos un ejemplo:

En la siguiente imagen de un tablero, observamos dos caballos: uno esta en una
casilla central y el otro en una esquina. Esto resulta en que el caballo de la esquina
controle menos casillas que el que esta en el centro, lo que nos lleva a concluir que el

caballo de la esquina es menos efectivo o no tan valioso como el del centro.

Figura 5.1: Ejemplo del valor de la posicion del caballo

Para tener en cuenta la posicion dentro del tablero para las piezas, nos vamos a crear
una serie de tablas para cada tipo de pieza, las cuales anadan o resten valor en funcién
de la casilla en la que se encuentre dicho tipo de pieza. Estas tablas estan basadas
en los valores que hemos obtenido de [21], y corresponden a los bonuses por casilla.
Si representamos estas tablas de forma que cuanto mayor sea el bonus coloreamos el
cuadrado de un azul mas claro que cuanto menor sea el bonus, podemos visualizar

facilmente las mejores posiciones para cada tipo de pieza en el tablero.

62

Figura 5.2: Tabla del caballo Figura 5.3: Tabla del alfil

Figura 5.4: Tabla de la reina Figura 5.5: Tabla del peén

Figura 5.6: Tabla de la torre Figura 5.7: Tabla del rey

63

— Caballo: Un caballo en el centro tiene mas movilidad y control sobre mas casillas,

por lo que es mas valioso que uno en una esquina.

— AIfil: Los alfiles son mas efectivos en diagonales largas y abiertas, por lo que su

valor aumenta en posiciones donde pueden moverse libremente.

— Reina: Dado que la reina es la pieza mas poderosa, su valor es alto en casi todas

las posiciones, pero especialmente en el centro donde puede controlar mas casillas.

— Pedn: Los peones son mas valiosos cuando estan cerca de promocionarse, es decir,

en las filas més avanzadas.

— Torre: Las torres son més efectivas en columnas abiertas y en la séptima fila,

donde pueden atacar las piezas del oponente.

— Rey: La seguridad del rey es crucial, por lo que su valor aumenta en posiciones

seguras y protegidas.

Las tablas que hemos visto correspondes a las tablas para las piezas blancas. Para

las piezas negras se usan las mismas tablas pero rotadas 180 grados.

Para evaluar el tablero, contaremos el valor de todas las piezas blancas, sumando
o restando los bonos de la casilla donde se encuentran, segin las tablas previamente
mencionadas. Esta sera la puntuacién de las blancas. Luego, repetiremos el proceso con
las piezas negras para obtener su puntuaciéon. Con ambas puntuaciones, restaremos la
puntuacion de las negras a la puntuacién de las blancas. Una puntuaciéon positiva
indicard que las blancas se encuentran en una mejor posicion, mientras que una
puntuacion negativa indicarda que son las negras las que se encuentran en una mejor

posicion.

// evaluate board

1

2 public static int EvaluateBoard(Board board)

3 {

4 int materialWhite = CountMaterial (board, Piece.Color.White);
5 int materialBlack = CountMaterial (board, Piece.Color.Black);
6

7 return materialWhite - materialBlack;

3}

9

10 // count material

11 private static int CountMaterial (Board board, Piece.Color color)
12 {

13 int count = 0;

14

15 foreach (int index in board.GetPiecesIndices (color))

16 {

64

17
18
19
20
21
22
23
24

8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Piece piece

= board.GetPiece (index) ;

count += GetPieceValue(piece.type) +

PieceTables.Read (PieceTables.GetTable (piece.type),

return count;

}

index,

La funcion EvaluateBoard calcula la puntuacion de la posicién del tablero. Para ello
hace uso de la funcién CountMaterial, que se encarga de contar la puntuacion del color
elegido, para ello se obtienen todas las piezas de dicho color y su posicién dentro del
tablero y se van sumando su valor con su correspondiente bonus de forma acumulativa.
La funcion GetPieceValue devuelve los valores vistos en la tabla 5.1 en funcién del
tipo de pieza. La funcion PieceTables. Read devuelve el bonus correspondiente de la
tabla de dicha pieza en funcién de la casilla en la que se encuentra. La funcién

PieceTables. GetTable devuelve la tabla de bonuses para el tipo de pieza. Aqui podemos

Fragmento de codigo 5.1: Evaluacion del tablero

ver el codigo de ambas funciones:

// read value from a table
public static int Read(int[] table, int index, Piece.Color color)

{

switch (color)

{

case Piece.
case Piece.

return O;

}

// get piece table
public static int[] GetTable(Piece.Type type)

{

switch (type)

{

}

case Piece.
return
case Piece.
return
case Piece
return
case Piece.
return
case Piece.
return
case Piece
return

return null;

Color.White: return table[index];

Color .Black: return table[63 - index];

Type.Pawn:
PawnTable;
Type.Knight:
KnightTable;

.Type.Bishop:

BishopTable;
Type.Rook:
RookTable;
Type.Queen:
QueenTable;

.Type .King:

KingTable;

65

color) ;

Fragmento de codigo 5.2: Funcién Read y GetTable

5.2. Algoritmo de busqueda: minimax

El algoritmo minimax [19] es una técnica fundamental en la teoria de juegos y la
inteligencia artificial, utilizada para determinar el movimiento éptimo en juegos de dos

jugadores, como el ajedrez.

5.2.1. Funcionamiento del algoritmo

El algoritmo minimax se basa en la construcciéon de un arbol de decisiones que
representa todos los posibles movimientos, desde la posicion actual hasta los estados
terminales del juego. Cada nodo del arbol representa un estado del juego, y las ramas

representan los movimientos posibles. Veamos su funcionamiento:

— Generacion del arbol de juego: Se genera un arbol que incluye todos los
movimientos posibles, desde la posicién actual hasta los estados terminales
(victoria, derrota o empate). En otros juegos, como por ejemplo el 3 en raya, es
posible generar el arbol completo del juego desde una posicién dada, puesto que
el nimero de combinaciones posibles de jugadas no es muy elevado. Sin embargo,
para el caso del ajedrez no es posible generar el arbol entero, puesto que estamos
hablando de una cantidad extremadamente grande de combinaciones posibles. Lo

que haremos serd generar el arbol hasta una profundidad determinada.

— Evaluacién de nodos terminales: Cada nodo terminal se evaluara utilizando
la funcién de evaluacién previamente desarrollada, que asigna un valor numérico

a la posicion.

— Propagacién de valores: Los valores de los nodos terminales se propagan hacia
arriba en el arbol. En cada nivel del arbol, los jugadores alternan entre maximizar

su ganancia (jugador MAX) y minimizar la ganancia del oponente (jugador MIN).

Veamos un ejemplo:

66

Figura 5.8: Arbol minimax 1

Para este ejemplo, imaginémonos que sélo podemos escoger entre 2 posibles
movimientos para simplificar. Comenzaremos con el turno de las blancas, representado
por el nodo blanco que corresponde a la raiz del arbol. Al tener dos movimientos
posibles representados por las dos lineas grises, llegamos a 2 estados posibles en el que
es el turno de las negras, y continuamos con el arbol un par de iteraciones mas, hasta
llegar a la profundidad deseada, en este caso 3, para asi formar el arbol que vemos en

la figura 5.8.

Figura 5.9: Arbol minimax 2

Una vez que hemos llegado a la profundidad deseada pasamos a evaluar las
posiciones usando una funcién de evaluacién. Imaginemos que el resultado de la funcién
de evaluacion devuelve un valor que cuanto mas negativo es, mejor es la posiciéon para
las negras, mientras que cuanto mas positivo es, mejor es para las blancas. Esto quiere
decir que el jugador negro va a intentar minimizar mientras que el jugador blanco
intentara maximizar. En el caso de nuestro ejemplo, los dos primeros nodos terminales

resultan con una puntuacién de -1 y 3 como podemos ver en la figura 5.9.

67

Figura 5.10: Arbol minimax 3

Una vez que tenemos evaluados ambos nodos terminales, como en el turno anterior
era el turno de las blancas y estas buscan una puntuaciéon cuanto mayor mejor, es
decir, estan mazimizando, escogeran el movimiento que lleva a la puntuacion de 3,

como podemos ver en la figura 5.10.

Figura 5.11: Arbol minimax 4

Repetimos lo mismo para la otra bifurcacién de la primera rama del arbol.

68

1
2
3
|

Figura 5.12: Arbol minimax 5

Ahora seria el turno de las negras, y estarfan entre dos decisiones. Elegir el nodo
que tiene como puntuacion un 3 o el que tiene un 5. Como las negras quieren cuanta

menos puntuacion mejor, es decir, estan minimizando, elegiran el movimiento que les
lleva al estado de puntuacion 3.

N

Figura 5.13: Arbol minimax 6

Repetimos este proceso con el resto del arbol, maximizando y minimizando,
dependiendo del turno y podemos ver el camino seleccionado. En el nodo raiz, que
serfa el actual y a partir del cual se ha calculado el arbol de decisiones, las blancas

(turno actual) elegirian el movimiento que les lleva por la rama de la izquierda, como
podemos ver en la figura 5.13.

Aqui podemos ver la implementacién en pseudocodigo del algoritmo minimax:

int maxi(int depth) {
if (depth == 0) return evaluate();
int max = -infinity;

for (all moves) {

69

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

OO0 ID U W =

—_ —
)

12

makeMove (move) ;

score = mini(depth - 1);
undoMove () ;
if (score > max)
max = score;
}
return max;
}
int mini(int depth) {
if (depth == 0) return -evaluate();
int min = +infinity;
for (all moves) {
makeMove (move) ;
score = maxi(depth - 1);
undoMove () ;
if(score < min)
min = score;
}
return min;
}

Fragmento de cédigo 5.3: Pseudocodigo minimax [19]

Se utilizan 2 subrutinas, una para el jugador que minimiza y otra para el jugador
que maximiza, y se van llamando recursivamente de forma que se van alternando. Se
comienza con una profundidad determinada y se va decrementando a lo largo que se
va profundizando en el arbol, una vez que la profundidad llegue a 0, es decir, hasta
los nodos terminales, se evalia el tablero y se obtiene la puntuacién. Si beneficia a las
blancas, el jugador que maximiza, resultard en una evaluaciéon positiva, mientras que

si beneficia a las negras, el jugador que minimiza, sera negativa.

Nosotros, sin embargo, vamos a implementar una variante llamada negamaz [22, 23],
que es una manera comun de implementar el algoritmo minimax para juegos como el
ajedrez, ya que no necesita de ambas subrutinas. Aqui podemos ver la implementacion

en pseudocodigo:

int negaMax(int depth) {
if (depth == 0) return evaluate();
int max = -infinity;
for (all moves) A
makeMove (move) ;
score = -negaMax(depth - 1);
undoMove (move) ;
if (score > max)
max = score;
}
return max,;
}

Fragmento de c6digo 5.4: Pseudocodigo negamax [23]

70

Funciona de la misma manera que la implementacién pura del algoritmo minimaz,
s6lo que en vez de maximizar y minimizar en funcién del jugador, vamos a maximizar
siempre y cada vez que llamemos a la funcién de manera recursiva negaremos la
puntuacion del rival. Para que esto funcione nuestra funcion de evaluacion ya no tiene
que devolver una puntuaciéon positiva si favorece a las blancas y una negativa si favorece
a las negras, tiene que devolver una puntuacion relativa al jugador desde el que se esta
analizando el tablero, es decir, si lo estamos analizando desde la posicion de las blancas
una puntuacion positiva significard que es bueno para las blancas y negativa que es
mala para estas mismas. [gualmente si estamos viendo la posicion desde el punto de
vista de las negras, una puntuaciéon positiva significard que es bueno para las negras
y una negativa que es malo para estas mismas. Esto lo conseguiremos realizando la

siguiente modificacién en la funcién de evaluacién (fragmento de cédigo 5.1).

1 // evaluate board

2 public static int EvaluateBoard(Board board, Piece.Color colorPerspective)
31

4 int materialWhite = CountMaterial (board, Piece.Color.White);

5 int materialBlack = CountMaterial (board, Piece.Color.Black);

§

7 return (materialWhite - materialBlack) *

8 (colorPerspective == Piece.Color.White 7 1 : -1);

9 ¥

Fragmento de cédigo 5.5: Modificacion a la funcién de evaluacién del tablero

5.2.2. Implementacion

Comenzaremos con la implementacion de la clase Search que es la que se encargara

de realizar estas busquedas usando el algoritmo minimax.

1 public class Search

24

3 // on search complete action

4 public event System.Action<Move> onComplete;
)

6 private Board board;

7

8 // best move found

9 private Move bestMoveFound;

10 private int bestEvalFound = negativeInfinity;
11

12 public void SetBoard(Board board)

13 {

14 this.board = board;

15 }

16

17 public void StartSearch()

18 {

71

19
20
21
22
23
24
25
26
27
28

O U~ Wb =

—_
— O O 0o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

bestMoveFound = Move.NullMove;
bestEvalFound int.MinValue;

// SearchMoves (...);

onComplete?. Invoke (bestMoveFound) ;

3

public int SearchMoves(...) {...}

Fragmento de coédigo 5.6: Clase Search

Esta clase se encargara de realizar las busquedas sobre el tablero. Para ello

se llamard a la funcién StartSearch, la cual se encargarda de llamar a la funcion
SearchMoves, que veremos en profundidad y es la que utilizard el algoritmo negamaz
para buscar el mejor movimiento. En cuanto acabe la bisqueda se invocara al evento
onComplete, al cual se le pasara el mejor movimiento encontrado para esa posicién y

turno actuales del tablero.

public int SearchMoves (int depth, int plyFromRoot) {

if (depth == 0) {
return Evaluation.EvaluateBoard(board, board.GetTurnColor ());
}
// check checkmate
List<Move> moves = MoveGeneration.GetAllLegalMovesByColor (
board,
board.GetTurnColor ()
);
if (moves.Count == 0)
{
if (MoveGeneration.IsKingInCheck (board, board.GetTurnColor()))
{
return negativeInfinity;
}
// stale mate
return O;
}
int bestEvaluation = negativelnfinity;

foreach (Move move in moves) {
board.MakeMove (move) ;
int evaluation = -SearchMoves(depth - 1, plyFroomRoot + 1);
board.UndoMove () ;

// check for better evaluation = better move
if (evaluation > bestEvaluation)
{

bestEvaluation = evaluation;

// if we are in the root (starting position) also retrieve

72

36
37
38
39
40
41
42
13
44
45
46

—_

) O WO DN

(@)
()]

// best move

if (plyFroomRoot == 0)

{
bestMove = move;
bestEval = evaluation;

}

return bestEvaluation;

}

Fragmento de coédigo 5.7: Funcién SearchMoves

La funcién SearchMoves toma 2 parametros, la profundidad hasta la que queremos
llegar del arbol (pardmetro depth) y el ntumero de medios movimientos que se han
realizado desde la raiz del arbol (plyFromRoot). En ajedrez, un ply es un solo
movimiento de un jugador. Dos plies corresponden a un turno completo, movimiento
de las blancas seguido por un movimiento de las negras. La implementacién de esta
funcion sigue el mismo esquema que el pseudocodigo del algoritmo negamax que vimos
en el fragmento 5.4, pero con una serie de anadidos, comprobaremos si estamos en
posicién de jaque mate o rey ahogado (cuando el niimero de movimientos generados en
esa posicién es igual a 0). En el caso de jaque mate, retornaremos una puntuacion de
—oo (que nos hagan jaque mate es la peor situaciéon que nos puede pasar), y en el caso de
rey ahogado retornaremos 0 indicando tablas. Finalmente, para obtener el movimiento
escogido, lo que haremos serda que cada vez que se regrese, debido a la recursividad,
a la raiz del arbol (plyFromRoot es igual a 0), es decir, al estado de partida, nos
iremos guardando y reemplazando el movimiento que tenga mejor puntuacién, hasta
que finalice la funcién. Una vez que esto acabe, la variable bestMove contendra el mejor

movimiento y la variable bestEval contendra la puntuacion de éste.

Tenemos que tener en cuenta la profundidad inicial que elegimos a la hora de llamar
a la funciéon SearchMoves a la hora de iniciar la bisqueda, puesto que la busqueda

tardara mas tiempo cuanto més profundo se intente buscar.

Una vez vista la funciéon de bisqueda nos quedara por implementar al jugador Al
(PlayerAlI), el cual serd el que se encargara de iniciar dichas bisquedas para elegir el

movimiento.

public class PlayerAI : Player
{
private Board board;

private Search search;

73

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
A7
48

// move selected

private Move moveSelected = Move.NullMove;
private bool moveFound = false;
// ctor
public PlayerAI (Board board)
{
// init
this.board = board;
search = new Search();
search.onComplete += OnSearchCompleted;
}
public override void NotifyTurnToMove ()
{
moveFound = false;
Board boardCopy = board.Copy();
search.SetBoard (boardCopy) ;
// Start a new Task to calculate the best move asynchronously
Task.Run (() =>
{
search.StartSearch () ;
IO
}
private void OnSearchCompleted(Move move)
{
moveSelected = move;
moveFound = true;
}
public override void Update ()
{
if (moveFound)
{
ChoseMove (moveSelected, true);
}
}
}

Fragmento de cédigo 5.8: Clase PlayerAl

La clase PlayerAI hereda de la clase Player, en el constructor creamos una instancia
de la clase Search y nos suscribimos al evento onComplete, para que cuando éste se
active se llame a la funcion OnSearchCompleted pasandole el movimiento. En esta
funcion se seleccionara este movimiento y se marcara a true el flag que indica que un
movimiento ha sido encontrado. Cuando al jugador Al se le notifica que es su turno,
lo que hard sera crear una copia del tablero actual y pasarselo a la instancia que nos
habiamos creado de la clase Search, la razén de esta copia y no un paso por referencia

es porque vamos a ejecutar la funcién de busqueda de forma asincrona puesto que

74

la funcién de busqueda “tarda tiempo.®® completarse, y asi no bloqueamos todo el
juego hasta que se complete, y de esta forma evitamos cualquier condicion de carrera.
Finalmente, en la funcion Update esperamos hasta que el movimiento se encuentre y

cuando ésto ocurra elegimos dicho movimiento.

5.2.3. Alpha-Beta Prunning

Una optimizacién muy comun, que se realiza en el algoritmo minimax, es aplicar
alpha-beta prunning [18]. Ello consiste en podar ramas del arbol que no son necesarias
de calcular puesto que estas no influyen en el resultado final. Veamos como aplicariamos

esta técnica al ejemplo que vimos en el apartado 5.2.1.

Figura 5.14: Arbol minimax (alpha-beta prunning) 1

Si regresamos al momento en el que evaluamos la posicién en el tercer nodo terminal
como un 5 (imagen 5.14), nos daremos cuenta de que no necesitamos calcular el segundo
nodo terminal de esa misma subrama. Esto es asi ya que en la raiz de esa subrama,
es decir, en el nodo blanco, se tiene para elegir 2 movimientos. Pero este nodo sabe
que por lo menos obtiene una puntuacion de un 5, que es el nodo que acabamos de
calcular. Por lo tanto, el nodo negro superior estaria decidiento entre un 3 (el del otro
nodo blanco) y un 5 o mas, por lo que nunca elegiria la rama del 5, puesto que preferira

la del 3 que es menor y por lo tanto no necesitamos calcular ese segundo nodo terminal.

75

1
2
3
|

Figura 5.15: Arbol minimax (alpha-beta prunning) 2

En la imagen 5.16 podemos ver el resultado de aplicar esta optimizacion al

ahorrarnos calcular la evaluacién del nodo que hemos marcado con interrogantes (77).

/°§§ //@

Figura 5.16: Arbol minimax (alpha-beta prunning) 3

Si continuamos con el resto de nodos faltantes podremos repetir este mismo proceso
ahorrandonos mas calculos y tiempo. En este caso, sabemos que el nodo negro principal
de la segunda rama tendrd una puntuacién de -4 o menor, y como el nodo raiz blanco
tiene como opcion el nodo negro de la otra rama principal cuya puntuacion es de 3,

nunca elgiria la rama que estamos calculando actualmente, por lo que nos podemos

ahorrar de calcular los 3 nodos faltantes.

Si modificamos nuestra funcién SearchMoves para que incluya esta optimizacion

nos quedaria el siguiente codigo:

public int SearchMoves (int depth, int plyFromRoot,
/7

foreach (Move move in moves) {

76

int alpha, int beta) {

5 board.MakeMove (move) ;

6 int evaluation = -SearchMoves(depth - 1, plyFroomRoot + 1, -beta, -alpha)
7 board.UndoMove () ;

8

9 // hemos encontrado un movimiento muy bueno

10 // nuestro oponente seguramente no va a elegir esta rama
11 // la cortamos

12 if (evaluation >= beta)

13 {

14 return beta;

15 }

16

17 if (evaluation > alpha)

18 {

19 alpha = evaluation;

20

21 // if we are in the root (starting position) also retrieve
22 // best move

23 if (plyFroomRoot == 0)

24 {

25 bestMove = move;

26 bestEval = evaluation;

27 }

28 }

29 }

30

31 return alpha;

32 3

Fragmento de codigo 5.9: Funcién SearchMoves

Incluimos dos pardmetros en la funcién que llamaremos alpha y beta. Alpha es
el parametro que indica nuestra mejor evaluacion, mientras que beta es la mejor
evaluacién del rival. Estos parametros se inicializardn a —oo e +00 respectivamente.
Si encontramos un movimiento cuya evaluacion supera a la mejor evaluaciéon del rival
(evaluation > beta), cortaremos esa rama puesto que el rival no permitird que ese
camino sea explorado, porque tiene una mejor opcion. Como estamos usando la variante
negamax cada vez que se llame de forma recursiva a la funcién SearchMoves tendremos
que invertir y cambiar de signo los valores de alpha y beta, puesto que en la siguiente

iteracién sera el turno del rival.

Ordenacién de movimientos

La idea detréas de alfa-beta prunning es eliminar ramas del arbol de busqueda que
no necesitan ser exploradas porque ya se ha encontrado un mejor movimiento. Si los
mejores movimientos se evalian primero, es mas probable que se realicen cortes (podas)
mas temprano en la bisqueda, evitando asi la necesidad de evaluar muchas mas ramas.

Analicemos el caso del ejemplo anterior:

7

Figura 5.17: Arbol minimax (alpha-beta prunning) 3

Aqui observamos que no era necesario calcular el nodo terminal con una puntuacion
de 1, ya que las negras, al saber que las blancas pueden obtener una puntuacion de
5 0 més, nunca optarian por esa rama. Esto se debe a que se evalué primero el nodo
con una puntuacion de 5, de haber sido al contrario, es decir, si hubiéramos evaluado
primero el nodo con una puntuacién de 1, no habriamos podido efectuar este corte

como podemos ver en la imagen 5.19.

Figura 5.18: Arbol minimax (alpha-beta prunning) 3

78

SUN N

O Ol

13

NI N

00006000

Figura 5.19: Arbol minimax, no se ha podido realizar el corte

Inicialmente, no podemos determinar si un movimiento tendra un resultado positivo
o negativo. No obstante, podemos hacer suposiciones para prever cuales podrian ser
los movimientos més acertados y asi ordenarlos antes de examinarlos en la busqueda.
Algunos de los criterios que podemos considerar para evaluar si un movimiento es

prometedor incluyen:

— Desarrollo de piezas: Movimientos que desarrollan piezas hacia posiciones

activas y tiles.
— Capturas: Capturar una pieza de mucho valor del rival con una de poco valor.

— Promociones de peones.

La funcion SortMowves se encarga de ordenar una lista de movimientos en funcion de
si creemos que son buenos o malos para un determinado color basado en los pardametros

que hemos mencionados.

rivate void SortMoves (List<Move> moves, Piece.Color color)

~ g

int [] moveScore = new int[moves.Count];
for (int i = 0; i < moves.Count; i++)
{

moveScore[i] = 0;

// check if it is a capture

Piece.Type pieceTypeTarget
Piece.Type pieceTypeSource

moves [i].pieceTarget.type;
moves [i].pieceSource.type;

if (pieceTypeTarget != Piece.Type.None)
{

// bonus for capture

79

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

or
A

) U= WO DN

moveScore[i] += 10 * Evaluation.GetPieceValue(pieceTypeTarget)

Eval:

}
else
{
// bonus for moving the piece into a better square
int [] table = PieceTables.GetTable(pieceTypeSource);
moveScore [i] += PieceTables.Read(table, moves[i].squareTargetIndex, c
}
// bonus for promotion
if (moves[i].flags == Move.Flags.Promotion)
{
moveScore[i] += Evaluation.GetPieceValue(moves[i].promotionPieceType)
}
}
// Sort the moves list based on the move scores array
}
Fragmento de cédigo 5.10: Funcién SortMoves
Finalmente, antes de proceder con la bisqueda ordenaremos los movimientos:
public int SearchMoves (int depth, int plyFromRoot, int alpha, int beta) {
//
SortMoves (moves, board.GetTurnColor ());
foreach (Move move in moves) {
//
}
//
}

Fragmento de codigo 5.11: Funcion SearchMoves

Con la busqueda implementada, y sus diversas optimizaciones, que hemos ido
explicando y desarrollando a lo largo de este capitulo, si probamos a jugar contra
el oponente manejado por la inteligencia artificial nos daremos cuenta de que esta
malinterpretando muchas jugadas a lo largo de la partida, las cuales acaban en malos
resultados. Esto se debe a que cuando se finaliza la busqueda en una profundidad
determinada, es posible que estemos evaluando el tablero en una posicién inestable, es
decir, que en el tablero todavia existan movimientos tacticos como capturas, lo cual
provoca que nuestra funciéon de evaluacién malinterprete la posiciéon dando resultados
incorrectos. Veamos un ejemplo:

Imaginemos que durante la busqueda en el turno de las negras hemos llegado a
la profundidad deseada - 1, lo cual resulta en la posicién de la figura 5.20. Ahora las

negras tienen que encontrar su mejor movimiento y se procederd a la evaluacion de

80

cada una de las posiciones resultantes.

Figura 5.20: Posicién FEN 5rkl/ppp2ppp/2q5/5n2/8/2N5/PPP2PPP/2Q2RK1 b - -

Las negras exploran todos los movimientos posibles y evalian los tableros,
concluyendo que, si capturan el caballo blanco con la reina negra, ganarian un caballo,
ya que la funcién de evaluacién examina el tablero estaticamente y detecta una ventaja
material. No obstante, no estan realmente ganando un caballo, terminaran perdiendo
una reina. Este problema es el que esta provocando que la inteligencia artificial tome
decisiones equivocadas, esto es lo que se denomina efecto horizonte [24]. Para mitigar
este efecto y si queremos que nuestra funcion de evaluacion sea lo mas precisa posible,

tendremos que tener en cuenta los movimientos tacticos siguientes.

5.3. Busqueda de estabilidad (Quiescence search)

La busqueda de estabilidad, o quiescence search [25], es una extension del algoritmo
minimax que se implementa para mejorar la precisién en la evaluacién de posiciones
complejas o tacticamente inestables. La idea principal detrds de esta técnica es
continuar la buisqueda en aquellas posiciones donde el algoritmo principal podria tomar
decisiones incorrectas debido a evaluaciones estaticas que no consideran las posibles
secuencias tacticas inmediatas.

El objetivo de la busqueda de estabilidad es evitar los errores de horizonte, donde la

evaluacion se detiene antes de que puedan resolverse movimientos tacticos importantes,

81

DO =

o

00~ O Ut~

18

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

como capturas, jaques, o amenazas de promocion, que es precisamente el problema
que nos encontramos al final de la seccién anterior. Estos errores ocurren porque la
evaluacién estatica de la posicién no tiene en cuenta los cambios dindmicos que pueden
ocurrir en los siguientes movimientos.

Para ello en vez de que una vez terminada la bisqueda se evaltie la posicién del
tablero, lo que haremos sera comenzar una nueva busqueda la cual solo analice los
movimientos tacticos, es decir, capturas de piezas.

La funcién QuiescenceSearch serd la que se encargara de realizar esta nueva

busqueda que sélo se enfoca en las capturas.

private int QuiescenceSearch(int alpha, int beta)

{
// evaluate board
int evaluation = Evaluation.EvaluateBoard(board, board.GetTurnColor ());
if (evaluation >= beta) // Beta cutoff
{
return beta;
¥
alpha = Math.Max(alpha, evaluation); // Update alpha
// get moves just captures
List<Move> moves = MoveGeneration.GetAllLegalMovesByColor (
board,
board.GetTurnColor (),
true
)
// sort
SortMoves (moves, board.GetTurnColor (), Move.NullMove) ;
foreach (Move move in moves)
{
board.MakeMove (move, true);
evaluation = -QuiescenceSearch(-beta, -alpha);
board.UndoMove (true) ;
if (evaluation >= beta) // Beta cutoff
{
return beta;
}
alpha = Math.Max(alpha, evaluation); // Update alpha
}
return alpha;
}

Fragmento de c6digo 5.12: Funcion SearchMoves

Se han realizado modificacidénes a las funciones que se encargan de generar los

movimientos para que retornen solo los movimientos de capturas si el valor del flag

82

QOO U= W

onlyCaptures de la funcion MoveGeneration. GetAllLegalMovesByColor es true. El
codigo sigue el mismo esquema que vimos con respecto a la bisqueda normal que
realizaba la funcion SearchMowves. Finalmente en la funcion SearchMoves en vez de
realizar la evaluacion cuando se alcanza el limite de profundidad, se llamara a la nueva

busqueda de estabilidad.

public int SearchMoves (int depth, int plyFromRoot, int alpha, int beta)
{
if (depth == 0)
{
int result = QuiescenceSearch(alpha, beta);
return result;
}
//
}

Fragmento de cédigo 5.13: Funcion SearchMoves

La implementacién de la busqueda de estabilidad (quiescence search) nos ha
permitido mejorar notablemente la precisiéon de las evaluaciones realizadas por la
inteligencia artificial, especialmente en posiciones complejas y tacticamente inestables.
Al extender la busqueda mas alla del limite de profundidad tradicional para considerar
movimientos tacticos criticos, como las capturas, se pueden evitar y mitigar los errores

de horizonte y tomar decisiones més solidas.

5.4. Tabla de transposicion (Transposition table)

Cuando estamos realizando la bisqueda, es muy probable que diferentes secuencias
de movimientos conduzcan a la misma posicion del tablero. Esto sucede porque en el
ajedrez, las piezas pueden moverse de manera que, aunque el orden de los movimientos

sea diferente, el resultado final sea exactamente el mismo.

83

Figura 5.21: Posicién FEN r1bgkbnr/pppplppp/2n5/4p3/4P3/5N2/PPPP1PPP/RNBQKBIR
w KQkq-41

Por ejemplo, para alcanzar la posicién de la figura 5.21 podemos mover primero
ambos peones y luego ambos caballos, que seria equivalente a comenzar moviendo el
caballo blanco, luego ambos peones y por iltimo el caballo negro.

Estas posiciones equivalentes, llamadas transposiciones [26], pueden surgir
repetidamente durante la exploracion del arbol de buisqueda. Por lo que es ineficiente
recalcular la evaluacién de posiciones que ya han sido analizadas. Aqui es donde las
tablas de transposicién [27] resultan esenciales.

La tabla de transposicién es una base de datos que almacena los resultados
de busquedas previas, con lo que si nos encontramos con la misma posicién y ya
se encuentra calculada en dicha tabla, nos limitaremos a consultarla. Con ello nos
ahorramos recalcular la bisqueda para dicha posicién ganando tiempo. Cada entrada
de la tabla almacena una serie de valores que son fundamentales para el proceso de

busqueda y evaluacién. Estos valores incluyen:

— Clave Zobrist (Zobrist Key).

— Valor de la Evaluacién (Evaluation Value): Valor numérico que representa

la evaluacién de la posicién.

— Profundidad de Bisqueda (Search Depth): Nimero de movimientos

explorados desde la posicion actual.

84

CO DO —

Ot~ W

— Mejor Movimiento (Best Move): El movimiento que resulté en la mejor

evaluacion desde la posicion almacenada.

— Tipo de Nodo (Node Type): En el contexto de la bisqueda en arboles con
el algoritmo alfa-beta, cada entrada en la tabla de transposicion puede estar
asociada con un tipo de nodo que describe cémo debe interpretarse el valor
almacenado para esa posicién. Estos tipos de nodo proporcionan informacion
sobre el estado de la evaluacion y cémo se debe utilizar esa informacion en la

busqueda. Los tipos de nodo se definen como sigue:

e Exact (Nodo Exacto):

o Descripcién: Un nodo marcado como Exact indica que el valor
almacenado en la tabla de transposicién es la evaluacién exacta para
esa posicion. La busqueda ha sido completamente realizada en esa
posiciéon y el valor almacenado representa la evaluacion precisa para

esa profundidad de busqueda.
e LowerBound (Limite Inferior):

o Descripcién: Un nodo marcado como LowerBound indica que el valor
almacenado es un limite inferior para la posicién. Esto significa que el
valor real de la posicion es al menos el valor almacenado, pero podria
ser mayor. Este tipo de nodo es el resultado de una poda beta (es decir,
la busqueda se corté porque el valor almacenado es suficientemente alto

para ser un limite inferior).
e UpperBound (Limite Superior):

o Descripciéon: Un nodo marcado como UpperBound indica que el valor
almacenado es un limite superior para la posicion. Esto significa que el
valor real de la posicién es a lo sumo el valor almacenado, pero podria
ser menor. Este tipo de nodo es el resultado de una poda alfa (es decir,
la busqueda se cortd porque el valor almacenado es suficientemente bajo

para ser un limite superior).

Aqui podemos ver el cédigo con los valores que almacena una entrada de la tabla

de transposicion:

ublic enum NodeType

~ g

Exact, // Exact score
LowerBound, // Lower bound (beta cut-off)
UpperBound // Upper bound (alpha cut-off)

85

03

7

8 public struct Entry

91

10 public ulong key;

11 public byte depth;

12 public int value;

13 public NodeType nodeType;

14 public Move move;

153

Fragmento de codigo 5.14: Entrada de la tabla de transposicién
Y aqui podemos ver parte del c6digo de la tabla de transposicién [28]:

1 public class TranspositionTable

2 A4

3 // lookup failed value

4 public const int lookupFailed = int.MinValue;

5}

6 private Entry[] entries;

(

8 public TranspositionTable (int size)

9 {

10 entries = new Entryl[sizel;

11 }

12

13 public Entry GetEntry(ulong key)

14 {

15 int index = (int) (key % (ulong)entries.Length);
16 return entries[index];

17 }

18

19 public void Store(ulong key, int depth, int value, NodeType nodeType,
20 Move move)
21 {
22 // replace scheme
23 int index = (int) (key % (ulong)entries.Length);
24
25 entries[index] = new Entry ()
26 {
27 key = key,
28 depth = (byte)depth,
29 value = value,
30 nodeType = nodeType,
31 move = move
32 };
33 }
34
35 public int Lookup(ulong key, int depth, int alpha, int beta) {// ...}
36 3

Fragmento de cédigo 5.15: Clase TranspositionTable

Para almacenar estas entradas en la tabla de transposiciones, utilizaremos un

vector (entries) donde cada posicién representa una entrada potencial de la tabla.

86

15
16
17
18
19
20
21
22
23
24
25
26

El tamano del vector dependera de la cantidad de posiciones que deseamos almacenar
simultaneamente teniendo en cuenta también la memoria que éste ocupara.

Para indexar las posiciones del tablero de forma eficiente dentro de este vector,
usamos la clave zobrist. Pero puesto que esta clave tiene un tamano de 64 bits y no
podemos tener un vector de dimension 2%, lo que haremos serd dado un tamaio fijo
del vector realizaremos la operacién modulo del hash zobrist con el tamano del vector,

dandonos asi el indice correspondiente.

index = zobrist mdd size

Esto provoca que aparezca un problema y es que puesto que estamos haciendo
la operaciéon modulo, puede pasar que para 2 claves zobrist diferentes resulten en
el mismo indice del vector lo que provocaria una colision a la hora de almacenar o
consultar posiciones (nos podria llegar a pasar que se consulta una posicién y se recibe la
evaluacion de otra diferente). La probabilidad de que ocurran estas colisiones dependera
del tamano de nuestro vector. Ante esto no podemos realmente hacer nada y optaremos
por usar un esquema de reemplazamiento, es decir, cada vez que alamacenemos una
posicion, ignoraremos si ya estd siendo ocupada y la reescribiremos como podemos ver
en la funcién Store.

Aqui podemos ver en detalle el cédigo de la funcion Lookup, la cual se encargara de

la busqueda de la entrada dada por la clave zobrist especificada.

public int Lookup(ulong key, int depth, int alpha, int beta)
{
int index = (int) (key % (ulong)entries.Length);
Entry entry = entries[index];
if (entry.key == key)
{
if (entry.depth >= depth)
{
switch (entry.nodeType)
{
case NodeType.Exact:
return entry.value;
case NodeType.LowerBound:
if (entry.value >= beta)
{
return entry.value;
}
break;
case NodeType.UpperBound:
if (entry.value <= alpha)
{
return entry.value;
}
break;
}

87

3

return lookupFailed;

Fragmento de codigo 5.16: Funcion Lookup

Si se encuentra la entrada dentro de la tabla, se comprueba que la profundidad para
la cual se evalu6 previamente es como minimo igual a la que se esta realizando en la
consulta actualmente. Esto se debe a que no nos interesan evaluaciones que se hicieron
a una menor profundidad a la que estamos buscando, puesto que esos resultados se
consideraran desactualizados.

Si la profundidad es valida, entonces se comprueba el tipo de nodo:

— Nodo Exacto (NodeType.Exact): Si el tipo de nodo es Eract, esto indica

que el valor almacenado es la evaluacion exacta de la posicion. En este caso,
se devuelve directamente el valor almacenado, ya que representa la evaluacion

precisa de la posicion en cuestion.

Limite Inferior (NodeType.LowerBound): Si el tipo de nodo es
LowerBound, esto significa que el valor almacenado es un limite inferior. Esto
ocurre cuando la busqueda previa determiné que el valor de la posicion es al menos
tan bueno como el valor almacenado, pero no se pudo determinar con certeza si era
mejor. Si este valor es mayor o igual al umbral beta actual, entonces se devuelve,
lo que indica que la posiciéon es lo suficientemente fuerte como para cortar la
busqueda en esta rama (lo que se conoce como poda beta). De lo contrario, se
continua la busqueda, ya que el valor almacenado no es lo suficientemente alto

como para tomar una decision definitiva.

Limite Superior (NodeType.UpperBound): Si el tipo de nodo es
UpperBound, esto significa que el valor almacenado es un limite superior. Esto
ocurre cuando la busqueda previa determiné que el valor de la posicién es a lo
sumo tan malo como el valor almacenado, pero podria ser peor. Si este valor es
menor o igual al umbral alpha actual, entonces se devuelve, lo que sugiere que la
posicion es lo suficientemente débil como para cortar la busqueda en esta rama
(lo que se conoce como poda alfa). Si el valor es mayor que alpha, se continia
la busqueda, ya que la posicién podria ser mejor de lo que sugiere este limite

superior.

Si ninguna de estas condiciones se cumple, la funcion Lookup concluye que la

informacion almacenada no es suficiente para tomar una decision en la busqueda

88

W DN =

00 ~1 O Ut i~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
42
43
44
45
46

actual, y por lo tanto, devuelve un valor que indica que la busqueda debe continuar

(lookupFailed). Este enfoque garantiza que sélo se utilicen evaluaciones de posiciones

que sean relevantes y precisas para la bisqueda en curso, optimizando asi el proceso

de busqueda.

Finalmente modificaremos nuestra funcién de busqueda para que incluya el uso de

la tabla de transposiciones:

p
{

ublic int SearchMoves(int depth, int plyFromRoot, int alpha, int beta)

// get zobristKey from board
ulong zobristKey = board.GetZobristKey();

// check the transposition table

int ttVal = tt.Lookup(zobristKey, depth, alpha, beta);
if (ttVal != TranspositionTable.lookupFailed)
{

if (plyFromRoot == 0)

{

TranspositionTable.Entry tEntry = tt.GetEntry(zobristKey);
bestMove = tEntry.move;

bestEval = tEntry.value;
}
return ttVal;
}
// when reached 0 depth perform a quiescence search
if (depth == 0)
{
int result = QuiescenceSearch(alpha, beta);
return result;
}
// check for checkmate
List<Move> moves = MoveGeneration.GetAllLegalMovesByColor (
board,
board.GetTurnColor ()
)
if (moves.Count == 0)
{
if (MoveGeneration.IsKingInCheck(board, board.GetTurnColor ()))
{
int result = -mateScore + plyFromRoot;
return result;
¥
// stale mate
return O;
}

// sort moves
SortMoves (moves, board.GetTurnColor (), hashMove) ;

89

48
19

Ot

OO UL WN—O

S T UTUT UL Ut Ut Ut Ot O

)
(-

61

SHOY O
=N

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
83

// calculate eval
NodeType nodeType = NodeType.UpperBound;
Move bestMoveInThisPosition = Move.NullMove;
for (int i = 0; i < moves.Count; i++)
{
board.MakeMove (moves[i]) ;
int evaluation = -SearchMoves(depth - 1, plyFromRoot + 1, -beta, -alpha);
board.UndoMove () ;
if (evaluation >= beta) // Beta cutoff
{
tt.Store(zobristKey, depth, beta, NodeType.LowerBound, moves[i]);
return beta;
}
if (evaluation > alpha)
{
nodeType = NodeType.Exact;
bestMoveInThisPosition = moves[i];
alpha = evaluation;
if (plyFromRoot == 0)
{
bestMove = moves[i];
bestEval = evaluation;
}
}
}
tt.Store(zobristKey, depth, alpha, nodeType, bestMoveInThisPosition);
return alpha;
}

Fragmento de codigo 5.17: Funcion Lookup

Al inicio de la busqueda de cada nodo comprobamos si la posicién ya se ha evaluado
y se encuentra guardada dentro de la tabla de transposiciones, de ser asi se retorna la
evaluacion guardada. En el caso adicional de que ademés nos encontremos en la raiz
del arbol (plyFromRoot == () antes de retornar la evaluacién, también obtendremos
el mejor movimiento que habiamos guardado en la tabla para dicha entrada.

A la hora de almacenar las posiciones dentro de la tabla, es fundamental determinar
el tipo de nodo (NodeType) al que pertenece la evaluacién calculada. Esta clasificacién
es crucial para la correcta interpretacion y reutilizacién de los valores almacenados en
futuras busquedas.

El tipo de nodo se determina segin los valores de alpha, beta y la evaluaciéon

(evaluation) obtenida al explorar los movimientos legales desde la posicién actual:
— Nodo Exacto (NodeType.Exact): Si durante la bisqueda se encuentra un

90

movimiento que mejora el valor alpha, este se actualiza y el nodo se clasifica
como FEzact. Esto indica que la evaluacion es exacta para esta posicion dado que
se exploraron todas las ramas criticas y se encontré un valor que podria ser el
resultado final si se juega de manera 6ptima. El movimiento correspondiente se

guarda como el mejor movimiento encontrado hasta el momento.

— Limite Inferior (NodeType.LowerBound): Si la evaluacion de un
movimiento supera el valor beta, se produce una poda beta (beta cutoff). Esto
significa que la posicion es tan favorable para el jugador que el oponente evitard
esta linea de juego. En este caso, el nodo se clasifica como un LowerBound, ya
que la evaluacién es un limite inferior del valor real, y se guarda este valor en la

tabla de transposicion.

— Limite Superior (NodeType.UpperBound): Si ninguno de los movimientos
explorados mejora el valor alpha, la evaluacion de la posiciéon queda por debajo
del umbral alpha. En este caso, el nodo se clasifica como UpperBound, indicando
que la posicién es desfavorable, y el valor almacenado (alpha) es un limite superior

del valor real.

Una vez determinado el tipo de nodo, se almacena en la tabla de transposicion junto
con la evaluacién, la profundidad y el mejor movimiento encontrado.

Todo este proceso optimiza la busqueda en el arbol de movimientos al evitar
reevaluar posiciones ya exploradas y permite cortar ramas del arbol que no conduciran

a un mejor resultado, mejorando asi la eficiencia de nuestra inteligencia artificial

5.5. Profundizacién iterativa ([terative deepening)

Hasta este punto, hemos discutido la busqueda de movimientos en un arbol de
decisiones con una profundidad fija. Este enfoque tiene la ventaja de ser predecible en
términos de recursos computacionales: sabemos exactamente cuantos niveles del arbol
se exploraran y podemos estimar el tiempo que tomarda completar la bisqueda. Sin
embargo, surge una pregunta fundamental: ;ja qué profundidad deberiamos realizar la
busqueda?

La respuesta ideal seria “lo mas profundo posible”, ya que explorar mas niveles en
el arbol de decisiones generalmente lleva a evaluaciones mas precisas y movimientos de
mayor calidad. Cuanto mas profundamente podamos buscar, mejor podremos anticipar
las consecuencias de cada movimiento, lo que deberia resultar en una estrategia de juego

mas fuerte.

91

No obstante, esta profundidad de busqueda esta limitada por un recurso esencial,
el tiempo. A medida que la profundidad aumenta, el nimero de nodos que el
algoritmo debe explorar crece exponencialmente, lo que incrementa considerablemente
el tiempo necesario para completar la bisqueda. En un juego de ajedrez, donde las
decisiones deben tomarse en un tiempo limitado, este aumento de tiempo puede volverse
impracticable.

Por lo tanto, debemos encontrar un equilibrio entre la profundidad de la busqueda
y el tiempo para realizarla. Esto nos lleva a la necesidad de un enfoque que
permita explorar tan profundamente como sea posible dentro de los limites de tiempo
disponibles, maximizando asi la calidad de la busqueda sin exceder los recursos
computacionales. Aqui es donde entra en juego la técnica de iterative deepening.

La idea principal es realizar multiples bisquedas consecutivas, aumentando
gradualmente la profundidad en cada iteracion hasta que se alcance un limite de tiempo
o profundidad predefinido. En otras palabras, se explora el arbol de decisiones a una
profundidad inicial de 1, luego de 2, luego de 3, y asi sucesivamente, hasta que se
agote el tiempo disponible o se alcance la profundidad maxima deseada. Esto puede
parecer bastante ineficiente puesto que estamos repitiendo todo el trabajo cada vez que
realizamos una busqueda a una profundidad mayor por cada iteracion que realizamos.
Sin embargo, gracias al uso de la tabla de transposiciones es muy probable que ya
hayamos evaluado las posiciones en la anterior busqueda. Ademads, podemos usar el
mejor movimiento que encontramos en la busqueda anterior y ordenarlo para que se
coloque el primero en ser analizado. Aunque la funcién de busqueda no siempre estara
de acuerdo con que este movimiento es el mejor, muchas veces si que lo hara, y gracias
a la poda alfa-beta podremos cortar muchas ramas, con lo que paraddjicamente la
busqueda iterativa es mas rapida que la busqueda normal.

Vamo a modificar la funcion SortMoves para que si le pasamos un movimiento como
parametro al que llamaremos hashMove, si lo encuentra en la lista de movimientos le

ponga una puntuacion muy grande garantizando asi que sea colocado el primero.

1 private void SortMoves (List<Move> moves, Piece.Color color, Move hashMove)
2 {

3 int [] moveScore = new int[moves.Count];
4

5 for (int i = 0; i < moves.Count; i++)

6 {

7 moveScore[i] = O0;

8

9 // check if is the hash move

10 if (moves[i].IsEqual (hashMove))

11 {

12 // bonus for hash move

13 moveScore[i] += 10000000;

92

14 continue;

15 X
16

17 //
18 }

19 3

Fragmento de cédigo 5.18: Funcion StartSearch

En la funcion SearchMoves, debemos realizar varias modificaciones para adaptarla

a la técnica de iterative deepening. A continuacion, se detallan los cambios necesarios:

— Ordenacion de movimientos: Al ordenar los movimientos, es importante
determinar si nos encontramos en la raiz del arbol de busqueda. Si es asi,
pasaremos como parametro hashMove el mejor movimiento encontrado en la
iteracion anterior, es decir, la variable bestMove. Si no estamos en la raiz del
arbol, utilizaremos el mejor movimiento almacenado en la tabla de transposicion

para la posicién actual.

— Mejor movimiento por iteracion: Debido a que ahora realizamos bisquedas
iterativas, la funciéon de busqueda no encontrard el mejor movimiento de forma
global (representado por la variable bestMove). En su lugar, identificaremos el
mejor movimiento en cada iteracion especifica, almacendndolo en la variable

bestMovelteration.

— Cancelacién de la biusqueda: Dado que en iterative deepening es posible
cancelar la buisqueda en cualquier momento, por ejemplo, si se agota el tiempo,
es necesario comprobar si la busqueda ha sido cancelada mediante el indicador
1sSearchCanceled. Si se detecta que la busqueda ha sido cancelada, la funcién

retornard 0, provocando la cancelacién de todas las bisquedas recursivas en curso.

Aqui podemos ver el codigo producto de dichas modificaciones.

| public int SearchMoves(int depth, int plyFromRoot, int alpha, int beta)
24

3 // if search canceled

4 if (isSearchCanceled)

) {

6 return O0;

7 }

8

9 // get zobristKey from board

10 ulong zobristKey = board.GetZobristKey();

11

12 // check the transposition table

13 int ttVal = tt.Lookup(zobristKey, depth, alpha, beta);
14 if (ttVal != TranspositionTable.lookupFailed)

93

15 {

16 if (plyFromRoot == 0)

17 {

18 TranspositionTable.Entry tEntry = tt.GetEntry(zobristKey);
19 bestMovelteration = tEntry.move;

20 bestEvallteration = tEntry.value;

21 }

22

23 return ttVal;

24 }

25

26 // when reached 0O depth perform a quiescence search until a stable state (to
27

28 if (depth == 0)

29 {

30 int result = QuiescenceSearch(alpha, beta);
31 return result;

32 }

33

34 // check checkmate

35

36 List<Move> moves = MoveGeneration.GetAllLegalMovesByColor (
37 board,

38 board.GetTurnColor ()

39);

40

41 if (moves.Count == 0)

42 {

43 if (MoveGeneration.IsKingInCheck(board, board.GetTurnColor ()))
44 {

45 int result = -mateScore + plyFromRoot;

46 return result;

47 }

48

49 // stale mate

50

51 return 0;

52 }

53

54 // sort moves

5% Move hashMove;

56

57 if (plyFromRoot == 0)

58 {

59 hashMove = bestMoveFound;

60 }

61 else

62 {

63 TranspositionTable.Entry entry = tt.GetEntry(zobristKey) ;
64 hashMove = entry.move;

65 }

66

67 SortMoves (moves, board.GetTurnColor (), hashMove);
68

69 // calculate eval

70

71

(NodeType nodeType = NodeType.UpperBound;
72 Move bestMoveInThisPosition = Move.NullMove;

94

73

74 for (int i = 0; i < moves.Count; i++)

75 {

76 board.MakeMove (moves [i]) ;

77 int evaluation = -SearchMoves(depth - 1, plyFromRoot + 1, -beta, -alpha);
78 board.UndoMove () ;

79

80 // if search canceled

81 if (isSearchCanceled)

82 {

83 return O0;

84 }

85

86 if (evaluation >= beta) // Beta cutoff
87 {

88 tt.Store(zobristKey, depth, beta, NodeType.LowerBound, moves[i]);
89 return beta;

90 }

91

92 if (evaluation > alpha)

93 {

94 nodeType = NodeType.Exact;

95 bestMoveInThisPosition = moves[i];
96

97 alpha = evaluation;

98

99 if (plyFromRoot == 0)

100 {

101 bestMovelteration = moves[il];
102 bestEvallteration = evaluation;
103 }

104 }

105 }

106

107 tt.Store(zobristKey, depth, alpha, nodeType, bestMoveInThisPosition);
108

109 return alpha;

110 3

En la funcion StartSearch, en lugar de buscar a una profundidad fija, realizaremos
una busqueda iterativa desde la profundidad 1 hasta la 100. En cada iteracién,
actualizaremos el mejor movimiento con el hallado en la iteracién anterior, hasta que la
busqueda sea cancelada o se alcance el limite de profundidad. Crearemos una funcién
denominada CancelSearch que se encargard de cambiar el indicador isSearchCanceled

a true indicando asi que se ha cancelado la busqueda.

public void Cancel ()
{

isSearchCanceled = true;

}

public void StartSearch ()
{

OO UL W —

// prepare the search

95

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30

31y

bestMoveFound = Move.NullMove;
bestEvalFound = int.MinValue;
isSearchCanceled = false;

// iterative deepening

for (int depth = 1; depth < 100; depth++)

{
bestMovelteration = Move.NullMove;
bestEvallteration = negativelInfinity;
SearchMoves (depth, 0, negativeInfinity, positiveInfinity);
if (!bestMovelteration.IsEqual (Move.NullMove))
{
bestMoveFound = bestMovelteration;
bestEvalFound = bestEvallteration;
¥
¥

onComplete?. Invoke (bestMoveFound) ;

Fragmento de codigo 5.19: Funciones StartSearch y Cancel

Finalmente, cuando se notifica al jugador IA de que es su turno, ademas de crear

la tarea para iniciar la busqueda, generarda una tarea adicional que, tras un tiempo

determinado, cancelara dicha busqueda.

DO =

{

(O]

OO O UL~

18
19
20 %}

public override void NotifyTurnToMove ()

moveFound = false;
Board boardCopy = board.Copy();
search.SetBoard (boardCopy) ;

// Start a new Task to calculate the best move asynchronously

Task.Run (() =>
{

search.StartSearch();

IOl
// cancelamos la busqueda pasado x tiempo

Task.Delay(searchTime) .ContinueWith ((t) =>
{
search.Cancel () ;

IDN

Fragmento de c6digo 5.20: Funcién Notify TurnToMove()

Para conocer la profundidad a la que se esta buscando podemos mostrar por consola

la profundidad de la actual iteracién y otros parametros, como por ejemplo, el mejor

96

movimiento, la evaluacion de la posicién y el tiempo acumulado de la busqueda ademas

de indicar a que profundidad se cancelo la busqueda.

1 Stopwatch stopwatch = new Stopwatch();

2

3//...

4

D stopwatch.Start () ;

0 SearchMoves (depth, 0, negativeInfinity, positiveInfinity);
7 stopwatch.Stop ();

8

9 if (!'bestMovelteration.IsEqual(Move.NullMove))

10 {

11 bestMoveFound = bestMovelteration;

12 bestEvalFound = bestEvallteration;

133

14

15 if (isSearchCanceled)

16 {

17 GD.Print($"Search canceled at depth: {depthl}");

18 GD.Print ($"

19 Partial search result best move:{Utils.FromMoveToString (bestMoveFound)},
20 eval: {bestEvalFound},
21 time: {stopwatch.ElapsedMilliseconds} ms"
22)
23 break;
24 %}
25 else
26 {
27 GD.Print (
28 $"Depth: {depth},
29 best move: {Utils.FromMoveToString (bestMoveFound)},
30 eval: {bestEvalFound}, time: {stopwatch.ElapsedMilliseconds} ms"
31);
32 %}
33
34 //

Fragmento de cédigo 5.21: Estadisticas de la busqueda

En la imagen 5.22 tenemos un ejemplo de la salida por consola. Para este ejemplo
se ha utilizado un tiempo de busqueda de 3 segundos y se ha realizado el movimiento
e2e4, a lo que la inteligencia artificial después de llegar a una profundiad de 12 ha
concluido que la mejor respuesta es realizar el movimiento e7eb, que da como resultado

una evaluacién para las negras de -15:

97

best move: b8cét, eval: 10, time: 1 ms
best move: b8cé6t, eval: -40, time: 2 ms
best move: b8cét, eval: 10, time: 7 ms
best move: g8f6, eval: -35, time: 25 ms
, best move: b8cb, eval: B, time: 52 ms
, best move: b8c6, eval: -35, time: 112 ms

, best move: b8cbt, eval: 0, time: 214 ms
: 8, best move: b8c6, eval: -25, time: 282 ms
: 9, best move: b8céh, eval: -20, time: 472 ms
: 10, best move: e7e5, eval: -25, time: 1343 ms
: 11, best move: e7e5, eval: -15, time: 2397 ms
Search canceled at depth: 12
Partial search result best move: e7e5, eval: -15, time: 2997 ms

Figura 5.22: Ejemplo de salida por consola

5.6. Reducciones por traslado tardio (Late move
reductions)

Hasta ahora, durante la busqueda, a pesar de que ordenamos los movimientos
desde el mas prometedor hasta el menos prometedor, estamos analizando todos ellos
a la misma profundidad. Sin embargo, seria mas eficiente si los movimientos que
consideramos menos relevantes se evaluaran a una profundidad menor. A esta técnica
se le denomina late move reductions(LMR) [29].

Existen ciertas condiciones que deben cumplirse para que un movimiento sea
considerado menos relevante y, por lo tanto, evaluado a una profundidad reducida.

Estas condiciones tipicamente incluyen:

— Movimientos no principales: Los primeros movimientos en la lista, que se
consideran més prometedores, se evalian a la profundidad completa. LMR se
aplica a movimientos que aparecen después en la lista, que se consideran menos

prometedores.

— No capturas ni promociones: LMR normalmente se aplica a movimientos
“silenciosos”, es decir, aquellos que no son capturas o jaques. Los movimientos
que podrian cambiar drasticamente la evaluacién de la posicion, como capturas,

no se reducen en profundidad.

— Profundidad suficiente: La técnica de LMR se suele aplicar sélo cuando la
profundidad restante de la buisqueda es mayor que un umbral determinado, por

ejemplo, 2 o mas. Si la profundidad es muy baja, no se aplica la reduccién.

98

1
2
3
4
5

6

17
18
19
20
21
22
23
24
25
26
27

En el caso de que al evaluar un movimiento a profundidad reducida, su puntuacién
supere la mejor evaluacion actual, se procederd a rehacer la bisqueda a la profundidad
completa, puesto que esto indicaria que el movimiento es mas bueno de lo que realmente
parecia al realizar la ordenacion de movimientos.

Veamos la modificacion que hemos realizado en la funcion SearchMoves para anadir

este cambio:

// ...
for (int i = 0; i < moves.Count; i++)
{
board.MakeMove (moves [i]) ;
int evaluation = 0;
bool needsFullSearch = true;
bool isCapture = moves[i].pieceTarget.type != Piece.Type.None;
bool isInCheck = MoveGeneration.IsKingInCheck(board, board.GetTurnColor ());
// apply late move reduction if the conditions are met
if (i >= 3 && depth > 3 && !isCapture && !isInCheck)
{
const int reduction = 2; // incremented to 2
evaluation = -SearchMoves(depth - 1 - reduction, plyFromRoot + 1, -beta,
needsFullSearch = evaluation > alpha;
¥
if (needsFullSearch)
{
evaluation = -SearchMoves(depth - 1, plyFromRoot + 1, -beta, -alpha);
}
board.UndoMove () ;
/] ...
}

Fragmento de codigo 5.22: Modificacién anadida a la funcién SearchMowves

Solo aplicaremos LMR si se cumplen las condiciones mencionadas anteriormente,
en el caso de que estas se cumplan, reduciremos la profundidad del movimiento en 2.

La técnica LMR ofrece una mejora significativa en la eficiencia al reducir la
profundidad de evaluacién de movimientos menos prometedores. Esto permite explorar
en profundidad los movimientos que son mas propensos a ser buenos, optimizando asi el
tiempo de calculo y mejorando la calidad general de la buisqueda. Sin embargo, es crucial
aplicar LMR con cuidado, asegurando que sélo se reduzcan aquellos movimientos que
realmente son menos relevantes, evitando asi pérdidas de precisién en la evaluacion.
La implementacién de LMR, como se muestra en la funcion SearchMoves, refleja esta
estrategia, permitiendo reevaluar a profundidad completa cualquier movimiento que
demuestre un potencial inesperado durante la busqueda reducida, es decir, cuando se

cumpla que evaluation > alpha.

99

Capitulo 6

Pruebas y conclusiones

A lo largo del desarrollo del proyecto, hemos asumido que el codigo implementado es
funcional y cumple con los requisitos establecidos. No obstante, a lo largo del desarrollo
se han llevado a cabo una serie de pruebas para garantizar su correcto funcionamiento
y validar nuestras suposiciones.

Una de las pruebas mas significativas que realizamos fue la evaluacion de la
generacion de movimientos, puesto que es la funcionalidad donde més errores aparecen
y mas dificiles son de encontrar. Para este propdsito, implementamos un Perft Test [30]
(performance test) con el objetivo de verificar dicha generacién. Este test se basa en,
dada una posicién especifica del juego, comprobar cuantos movimientos validos y tinicos
pueden generarse desde esa posicion. La idea principal es comparar el nimero de nodos
generados por el sistema con el nimero esperado, que se conoce a priori o se puede
calcular tedricamente.

Aqui podemos ver una tabla de la posicion inicial que llega hasta la profundidad 7

con el nimero de posiciones para cada profundidad (valores obtenidos de [30]).

Depth Nodes
0 1
1 20
2 400
3 8,902
4 197,281
5 4,865,609
6 119,060,324
7 3,195,901,860

Tabla 6.1: Nimero de nodos con respecto a la profundidad de la posicién inicial

Para realizar este test contamos con la funcion TestPositions, que se encargara de

contar el nimero de posiciones o nodos resultantes para una profundidad determinada.

1 public static ulong TestPositions(Board board, Piece.Color color, int depth)

100

O U WO N
-~

OO U= W /O OO

19
20
21
22
23 %}

List<Move> moves = GetAllPseudolLegalMovesByColor (board, color);
ulong numPositions = O0;

foreach (Move move in moves)

{
board.MakeMove (move, true);
if (!IsKingInCheck(board, color))
numPositions += TestPositions(
board, Piece.GetOppositeColor(color), depth - 1);
board.UndoMove (true) ;
}

return numPositions;

Fragmento de codigo 6.1: Funcién TestPositions

Ahora, para realizar el test, tendremos que llamar en bucle a la funcién

TestPositions hasta la profundidad que deseemos comprobar y asegurarnos de que

los valores obtenidos cuadran con los tedricos.

{

O U WD

© 0o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24}

private static void PerfTest ()

// test code

Board newBoard = new Board();
newBoard.LoadFenString (Board.StartFEN) ;
ulong[] testNodes = new ulong[] {
20, 400, 8902, 197281, 4865609, 119060324, 3195901860
+s

for (int depth = 1; depth <= testNodes.Length; depth++)
{
ulong nodes = MoveGeneration.TestPositions(
newBoard, Piece.Color.White, depth);
string output = $"Depth {depth}, nodes {nodes} ";
output += (nodes == testNodes[depth - 1]) ? "tick"
$"cross (expected {testNodes[depth - 1]})";

Console.WriteLine (output) ;

3

Console.WritelLine("test finished");

Fragmento de cédigo 6.2: Funcién PerfTest

101

Comprobando la salida, vemos que concuerdan con los valores tedricos, lo que nos

permite constatar que la generacién de movimientos funciona correctamente.

nodes 20 &
nodes 400 &
nodes 8902 &
nodes 197281 &

nodes 4865609 &
nodes 119060324 &
7, nodes 3195901860 &=
test finished

Figura 6.1: Salida en consola del test de profundidad para la posicién de inicio

6.1. Estimacion del ELO

El sistema de puntuaciéon ELO [31] es un método matematico utilizado para calcular
la habilidad relativa de los jugadores en disciplinas como el ajedrez. Cuanto mayor es
su ELO, mejor es un jugador. Aqui podemos ver una tabla de como se clasificarian los

rangos de ELO en el ajedrez.

Categoria Rango de Elo

Principiantes Menos de 1200
Clase D 1200 - 1399
Clase C 1400 - 1599
Clase B 1600 - 1799
Clase A 1800 - 1999
Expertos 2000 - 2199
Maestros 2200 - 2399

Grandes Maestros | 2400 y superior

Tabla 6.2: Distribucién de ELO en ajedrez

Para estimar el rating ELO de nuestro bot de ajedrez, hemos llevado a cabo un
proceso metddico que implicd jugar multiples partidas contra el motor de ajedrez
Stockfish [4] a diferentes niveles de habilidad. A continuacién, se detalla el proceso

seguido, incluyendo las condiciones especificas bajo las cuales se realizaron las partidas.

6.1.1. Preparacion del experimento

Se configuré un entorno de pruebas controlado para permitir que nuestro bot y
el motor Stockfish jugaran entre si. Para ello, tuvimos que conectar nuestro bot a
Stockfish via el protocolo UCI [32, 33|, por el cual envidbamos los movimientos que

realizaba nuestro bot y recogiamos el movimiento con el que respondia Stockfish.

102

6.1.2. Ejecucion de las partidas

— Numero de partidas: Nuestro bot jugé un total de 100 partidas contra Stockfish
en cada nivel de ELO seleccionado (900 partidas en total). Este ndmero de
partidas fue elegido para proporcionar una muestra suficientemente grande y

estadisticamente significativa de resultados.
— Condiciones de juego:

e Tiempo de pensamiento: Ambos motores tuvieron 100 milisegundos para
pensar en cada movimiento. Este limite de tiempo se aplicé para garantizar
una evaluacion justa del rendimiento de ambos motores bajo las mismas

condiciones temporales.

e Color de las piezas: Las 100 partidas se jugaron bajo las siguientes

condiciones:

o Primeras 50 partidas: Nuestro bot jugd con las blancas y Stockfish

con las negras.

o Ultimas 50 partidas: Se invirtieron los roles, con nuestro bot jugando

con las negras y Stockfish con las blancas.

— Registro de resultados: Para cada conjunto de 100 partidas, se registraron los

resultados en tres categorias:
e Victorias del bot: El nimero de partidas ganadas por nuestro bot.
e Victorias de Stockfish: El nimero de partidas ganadas por Stockfish.
e Empates: El nimero de partidas que terminaron en empate.
— Repeticion del proceso: El experimento se repitiéo para cada nivel de ELO
de Stockfish, comenzando desde 1700 y avanzando en incrementos de 100 hasta

2500. Esta repeticién permitié una evaluacién exhaustiva del rendimiento del bot

en diferentes niveles de dificultad.

6.1.3. Analisis de resultados y estimacién del ELO del bot
Los resultados obtenidos fueron los siguientes:

103

ElO de Stockfish | Victorias | Derrotas | Empates
1700 87 13 0
1800 7 22 1
1900 73 23 4
2000 65 34 1
2100 61 35 4
2200 49 47 4
2300 43 51 6
2400 33 60 7
2500 16 72 12

Tabla 6.3: Resultados del bot en diferentes niveles de EIO de Stockfish

Cuya representacion de forma grafica es la siguiente:

Resultados de partidas en funcion del ELO de Stockfish

—8— Victorias del Bot
Victorias de Stockfish
80 4 —e— Empates

60 4

40

Numero de Partidas

204

Ll LA

T T T T T T T T T
1700 1800 1900 2000 2100 2200 2300 2400 2500
ELO de Stockfish

Figura 6.2: Resultados del bot en diferentes niveles de ELLO de Stockfish

La grafica muestra como nuestro bot comienza a perder mas partidas a medida que
el ELO de Stockfish aumenta, observando que a partir de un ELO de 2200, nuestro bot
pierde mas juegos de los que gana, lo cual sugeriria que el ELO de nuestro bot estaria

en torno a los 2200 puntos.

Para conocer de manera mas exacta cudl seria el valor del ELO, seguiremos una
metodologia que estima la probabilidad de victoria en funcién de la diferencia de ELO

entre dos jugadores.

104

Calculo de la probabilidad de victoria

La probabilidad de victoria de un jugador A frente a un jugador B, segin el

sistema de ELO, se calcula con la siguiente formula:

1
(ELOg—ELO,)

1410 400

P(A)
Donde:
— P(A) es la probabilidad de que el jugador A gane.
— FELOy4 es el ELO del jugador A.
— ELOg es el ELO del jugador B.

En nuestro caso, ELO,4 corresponde al ELO de nuestro bot, y EFLOp al ELO de
Stockfish en las pruebas.

Funcién de error

Para estimar el ELO de nuestro bot, hemos utilizado una funcién de error que mide
la diferencia entre las probabilidades de victoria observadas y las probabilidades de
victoria esperadas segin la formula de ELO. La funcién de error que utilizamos fue

la suma de los errores cuadraticos entre estas probabilidades:

n

Error = Z (Probabilidad Observada; — Probabilidad Esperada,)?

i=1

Donde:
— n es el niumero de partidas en un conjunto determinado.

— Probabilidad Observada; es la probabilidad observada de victoria de nuestro bot

Victorias del Bot)

<Ca1CU1ada como Total de Partidas

— Probabilidad Esperada; es la probabilidad de victoria esperada segun la diferencia

de ELO entre nuestro bot y Stockfish.

Minimizacién de la funcién de error

Para determinar el ELO que mejor se ajusta al rendimiento de nuestro bot, se utiliz6
una técnica de optimizaciéon conocida como minimizaciéon de la funcion de error.
La idea es encontrar el valor de ELOy,; que minimice el error entre las probabilidades

observadas y las esperadas.

105

Al aplicar este método a los datos obtenidos en las pruebas, estimamos que el
ELO de nuestro bot se encuentra aproximadamente en 2180 puntos (el valor que més
minimiza la funcién de error), lo que coincide con el anédlisis gréfico y el rendimiento

observado en los diferentes niveles de ELO de Stockfish.

6.2. Conclusion

El desarrollo de un motor de ajedrez basado en inteligencia artificial ha sido un
proceso complejo, que ha implicado la implementacion de diversos componentes, desde
la interfaz de usuario hasta la 16gica del juego y, en particular, la inteligencia artificial.
A lo largo del proyecto, hemos explorado tanto los aspectos fundamentales de la
programacion aplicados al ajedrez como los desafios inherentes a la creacién de un
bot que fuese desafiante para el jugador.

Uno de los principales logros del proyecto ha sido el desarrollo de un motor de
ajedrez que utiliza el algoritmo minimax en conjunto con alpha-beta pruning y las varias
optimizaciones y mejoras que hemos ido implementando para mejorar y optimizar la
busqueda de movimientos, asegurando una toma de decisiones eficiente.

Para estimar el rendimiento de nuestro motor, se realizaron numerosas pruebas
aprovechando el motor Stockfish, configurado con distintos niveles de ELO. Estas
pruebas nos permitieron no sélo evaluar el rendimiento del motor en términos de
partidas ganadas, perdidas y empatadas, sino también realizar una estimacion bastante
precisa de su ELO. A través de un proceso de ajuste de la probabilidad de victoria
basada en el sistema ELO, llegamos a la conclusion de que el ELO de nuestro motor
se situa alrededor de 2180. Este valor indica que nuestro bot es competitivo contra
jugadores avanzados y motores de ajedrez de nivel intermedio, aunque ain se encuentra
lejos de los motores de élite, lo cual era de esperar.

Durante el desarrollo del proyecto, enfrentamos varios retos, especialmente en la
generacion y evaluacion de movimientos. Sin embargo, mediante técnicas de prueba,
como los Perft Tests, logramos verificar que el motor generaba el nimero correcto
de nodos, lo que garantizé su correcto funcionamiento en términos de célculo de
movimientos.

En resumen, este proyecto ha permitido crear una plataforma educativa para el
desarrollo de inteligencia artificial aplicada al ajedrez. A pesar de que el rendimiento
de nuestro bot no alcanza los niveles de los motores mas avanzados, como Stockfish
o AlphaZero, el resultado es un motor funcional y competitivo, que proporciona una
solida base para futuros desarrollos. Las posibles mejoras en la evaluacion de posiciones,

optimizacién de la busqueda, o incluso la implementacion de redes neuronales para la

106

evaluacién de las posiciones, podrian aumentar significativamente el rendimiento del
bot en futuras iteraciones.

En conclusion, este proyecto no sélo ha cumplido los objetivos planteados al
principio, sino que también ha proporcionado una valiosa experiencia educativa en
el desarrollo de inteligencia artificial aplicada a los juegos de tablero. A través de este
trabajo, hemos logrado profundizar en conceptos fundamentales de la programacion,
la logica de juegos y las técnicas de busqueda. Adicionalmente hemos ofrecido una
plataforma accesible y bien documentada, que facilita la ensenanza de conceptos
complejos de manera intuitiva, promoviendo el desarrollo de habilidades criticas en
programacion y diseno de juegos. De esta manera, se espera que sirva como una
herramienta educativa que inspire a otros a adentrarse en el fascinante mundo de la

inteligencia artificial y el desarrollo de videojuegos.

107

Capitulo 7

Bibliografia

1]

Federacion Espanola de Ajedrez. Leyes del ajedrez y traducciones
oficiales. Reglamentaciéon FIDE, 2024. https://feda.org/feda2k16/

leyes-del-ajedrez-y-traducciones-oficiales-reglamentacion-fide/.

A. Fox and D.A. Patterson. Engineering Software as a Service: An Agile Approach
Using Cloud Computing. Strawberry Canyon LLC, 2013.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach
(4th Edition). Pearson, 2020.

Stockfish chess engine. https://stockfishchess.org/.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A general
reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140-1144, 2018.

Alphazero chess engine. https://en.wikipedia.org/wiki/AlphaZero.

Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter Golde. The C#
Programming Language. Addison-Wesley Professional, 3rd edition, 2008.

C# programming language. https://dotnet.microsoft.com/es-es/
languages/csharp.
Godot game engine. https://godotengine.org/.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software
engineering. Prentice-Hall, Inc., USA, 1991.

108

https://feda.org/feda2k16/leyes-del-ajedrez-y-traducciones-oficiales-reglamentacion-fide/
https://feda.org/feda2k16/leyes-del-ajedrez-y-traducciones-oficiales-reglamentacion-fide/
https://stockfishchess.org/
https://en.wikipedia.org/wiki/AlphaZero
https://dotnet.microsoft.com/es-es/languages/csharp
https://dotnet.microsoft.com/es-es/languages/csharp
https://godotengine.org/

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]

James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

Ariel Manzur Juan Linietsky and the Godot community. Node class, 2024. https:
//docs.godotengine.org/es/4.x/classes/class_node.html.

Ariel Manzur Juan Linietsky and the Godot community. Idle and physics
processing, 2024. https://docs.godotengine.org/en/stable/tutorials/

scripting/idle_and_physics_processing.html.

Clases estdticas y sus miembros (guia de programaciéon de c-sharp).
https://learn.microsoft.com/es-es/dotnet/csharp/programming-guide/

classes-and-structs/static-classes—-and-static-class-members.

Chess programming wiki, zobrist hashing. https://www.chessprogramming.

org/Zobrist_Hashing.

Godot sprite2d. https://docs.godotengine.org/en/stable/classes/class_
sprite2d.html.

Vladimir Fedorovich Demyanov and Vasilii Nikolaevich Malozemov. Introduction

to minimaz. Dover Publications, 1990.

George C. Stockman. A minimax algorithm better than alpha-beta? Artificial
Intelligence, 12(2):179-196, 1979.

Chess programming wiki negamax. https://www.chessprogramming.org/

Minimax.

Chess programming wiki pieces point values. https://www.chessprogramming.

org/Point_Value.

Chess programming wiki piece position values (piece-square tables). https://

www . chessprogramming.org/Simplified_Evaluation_Function.

Ingo Althofer. An incremental negamax algorithm. Artificial intelligence,
43(1):57-65, 1990.

Chess programming wiki negamax. https://www.chessprogramming.org/

Negamax.

Chess programming wiki horizon effect. https://www.chessprogramming.org/

Horizon_Effect.

109

https://docs.godotengine.org/es/4.x/classes/class_node.html
https://docs.godotengine.org/es/4.x/classes/class_node.html
https://docs.godotengine.org/en/stable/tutorials/scripting/idle_and_physics_processing.html
https://docs.godotengine.org/en/stable/tutorials/scripting/idle_and_physics_processing.html
https://learn.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/static-classes-and-static-class-members
https://learn.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/static-classes-and-static-class-members
https://www.chessprogramming.org/Zobrist_Hashing
https://www.chessprogramming.org/Zobrist_Hashing
https://docs.godotengine.org/en/stable/classes/class_sprite2d.html
https://docs.godotengine.org/en/stable/classes/class_sprite2d.html
https://www.chessprogramming.org/Minimax
https://www.chessprogramming.org/Minimax
https://www.chessprogramming.org/Point_Value
https://www.chessprogramming.org/Point_Value
https://www.chessprogramming.org/Simplified_Evaluation_Function
https://www.chessprogramming.org/Simplified_Evaluation_Function
https://www.chessprogramming.org/Negamax
https://www.chessprogramming.org/Negamax
https://www.chessprogramming.org/Horizon_Effect
https://www.chessprogramming.org/Horizon_Effect

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

Chess programming wiki quiescence search. https://www.chessprogramming.

org/Quiescence_Search.

Chess programming wiki transposition. https://www.chessprogramming.org/

Transposition.

Chess programming wiki transposition table. https://www.chessprogramming.

org/Transposition_Table.

Wikipedia negamax with transposition table. https://en.wikipedia.org/
wiki/Negamax#: ~:text=the’20search),20tree.-,Negamax’20with)20alpha,
20beta’20pruning’%20and%20transposition’20tables, -%5Bedit?5D.

Chess programming wiki late move reductions. https://www.chessprogramming.

org/Late_Move_Reductions.

Chess programming wiki late move reductions. https://www.chessprogramming.

org/Perft_Results.
Wikipedia elo rating. https://en.wikipedia.org/wiki/Elo_rating_system.

Wikipedia uci protocol. https://en.wikipedia.org/wiki/Universal_Chess_

Interface.

Rudolf Huber and Stefan-Meyer Kahlen. Uci protocol specificationsl, 2006. https:
//backscattering.de/chess/uci/2006-04.txt.

110

https://www.chessprogramming.org/Quiescence_Search
https://www.chessprogramming.org/Quiescence_Search
https://www.chessprogramming.org/Transposition
https://www.chessprogramming.org/Transposition
https://www.chessprogramming.org/Transposition_Table
https://www.chessprogramming.org/Transposition_Table
https://en.wikipedia.org/wiki/Negamax#:~:text=the%20search%20tree.-,Negamax%20with%20alpha%20beta%20pruning%20and%20transposition%20tables,-%5Bedit%5D
https://en.wikipedia.org/wiki/Negamax#:~:text=the%20search%20tree.-,Negamax%20with%20alpha%20beta%20pruning%20and%20transposition%20tables,-%5Bedit%5D
https://en.wikipedia.org/wiki/Negamax#:~:text=the%20search%20tree.-,Negamax%20with%20alpha%20beta%20pruning%20and%20transposition%20tables,-%5Bedit%5D
https://www.chessprogramming.org/Late_Move_Reductions
https://www.chessprogramming.org/Late_Move_Reductions
https://www.chessprogramming.org/Perft_Results
https://www.chessprogramming.org/Perft_Results
https://en.wikipedia.org/wiki/Elo_rating_system
https://en.wikipedia.org/wiki/Universal_Chess_Interface
https://en.wikipedia.org/wiki/Universal_Chess_Interface
https://backscattering.de/chess/uci/2006-04.txt
https://backscattering.de/chess/uci/2006-04.txt

	Introducción
	Desarrollo de la estructura del juego
	Las piezas
	Los movimientos
	El tablero
	Los jugadores
	La clase Game
	La máquina de estados
	Implementación

	La estructura en su conjunto

	Implementación de las reglas
	Movimientos de las piezas
	El Caballo
	La Torre, el Alfil y la Reina
	El Peón
	El Rey
	De movimientos pseudo-legales a movimientos legales
	Encapsulación

	Jaque mate y Rey ahogado
	Tablas por triple repetición
	Notación de Forsyth-Edwards
	Zobrist Hashing

	Regla de los cincuenta movimientos

	Diseño y desarrollo de la interfaz de usuario
	Representación gráfica del juego
	La clase BoardGraphics

	Integrando la interfaz de usuario en el juego
	El jugador humano
	Integración con la clase Game

	Desarrollo de la inteligencia artificial
	Función de evaluación del tablero
	Algoritmo de búsqueda: minimax
	Funcionamiento del algoritmo
	Implementación
	Alpha-Beta Prunning

	Búsqueda de estabilidad (Quiescence search)
	Tabla de transposición (Transposition table)
	Profundización iterativa (Iterative deepening)
	Reducciones por traslado tardío (Late move reductions)

	Pruebas y conclusiones
	Estimación del ELO
	Preparación del experimento
	Ejecución de las partidas
	Análisis de resultados y estimación del ELO del bot

	Conclusión

	Bibliografía

