
Trabajo Fin de Grado

Desarrollo de un juego de ajedrez con inteligencia
artificial basada en el algoritmo Minimax

Development of a Chess Game with Minimax
algorithm-based artificial intelligence

Autor

David Gispert Gutiérrez

Director

José Javier Merseguer Hernáiz

ESCUELA DE INGENIERÍA Y ARQUITECTURA
Septiembre 2024

Índice

1. Introducción 3

2. Desarrollo de la estructura del juego 5

2.1. Las piezas . 5

2.2. Los movimientos . 7

2.3. El tablero . 8

2.4. Los jugadores . 12

2.5. La clase Game . 13

2.5.1. La máquina de estados . 14

2.5.2. Implementación . 14

2.6. La estructura en su conjunto . 17

3. Implementación de las reglas 19

3.1. Movimientos de las piezas . 19

3.1.1. El Caballo . 19

3.1.2. La Torre, el Alfil y la Reina . 22

3.1.3. El Peón . 24

3.1.4. El Rey . 28

3.1.5. De movimientos pseudo-legales a movimientos legales 33

3.1.6. Encapsulación . 35

3.2. Jaque mate y Rey ahogado . 36

3.3. Tablas por triple repetición . 37

3.3.1. Notación de Forsyth-Edwards 38

3.3.2. Zobrist Hashing . 40

3.4. Regla de los cincuenta movimientos . 44

4. Diseño y desarrollo de la interfaz de usuario 45

4.1. Representación gráfica del juego . 45

4.1.1. La clase BoardGraphics . 45

4.2. Integrando la interfaz de usuario en el juego 52

1

4.2.1. El jugador humano . 52

4.2.2. Integración con la clase Game 59

5. Desarrollo de la inteligencia artificial 61

5.1. Función de evaluación del tablero . 61

5.2. Algoritmo de búsqueda: minimax . 66

5.2.1. Funcionamiento del algoritmo 66

5.2.2. Implementación . 71

5.2.3. Alpha-Beta Prunning . 75

5.3. Búsqueda de estabilidad (Quiescence search) 81

5.4. Tabla de transposición (Transposition table) 83

5.5. Profundización iterativa (Iterative deepening) 91

5.6. Reducciones por traslado tard́ıo (Late move reductions) 98

6. Pruebas y conclusiones 100

6.1. Estimación del ELO . 102

6.1.1. Preparación del experimento . 102

6.1.2. Ejecución de las partidas . 103

6.1.3. Análisis de resultados y estimación del ELO del bot 103

6.2. Conclusión . 106

7. Bibliograf́ıa 108

2

Caṕıtulo 1

Introducción

El desarrollo de un juego de ajedrez digital requiere una comprensión profunda tanto

de las reglas y la mecánica del juego [1] como de los principios de diseño de software [2].

Este TFG aborda varios aspectos cŕıticos del proceso, incluyendo la representación de

la interfaz de usuario, la implementación de las reglas del juego, y la creación de una

inteligencia artificial [3] capaz de desafiar a los jugadores.

El estado del arte en las aplicaciones de ajedrez ha sido significativamente impulsado

por desarrollos como Stockfish [4] y AlphaZero [5, 6]. Stockfish es uno de los motores de

ajedrez más poderosos, conocido por su capacidad de búsqueda y evaluación eficiente,

y es utilizado ampliamente tanto en competiciones como en análisis. Por otro lado,

AlphaZero, desarrollado por DeepMind1, ha demostrado capacidades sorprendentes al

aprender a jugar ajedrez mediante técnicas de aprendizaje profundo y autoaprendizaje,

logrando superar a los mejores motores tradicionales sin conocimiento previo del juego.

Estas aplicaciones no sólo han elevado el nivel de competencia en el ajedrez digital,

sino que también han marcado hitos en el campo de la inteligencia artificial.

En este contexto, nuestro proyecto se posiciona como un intento de seguir el camino

de los motores tradicionales, centrándose en técnicas clásicas de búsqueda y evaluación

en el ambiente de un marco educativo. No pretendemos competir directamente con

los gigantes mencionados, sino proporcionar una plataforma accesible y didáctica que

permita a los jugadores y desarrolladores comprender los fundamentos del ajedrez

digital y la inteligencia artificial aplicada al mismo.

Para llevar a cabo el desarrollo de este proyecto, utilizaremos C# [7, 8] como

lenguaje de programación y el motor de videojuegos Godot [9]. Godot es una

herramienta de desarrollo de juegos de código abierto que ofrece un entorno integrado y

completo para crear videojuegos 2D y 3D. Es conocido por su flexibilidad, facilidad de

uso y una comunidad activa que contribuye a su constante mejora. El uso de Godot nos

permitirá desarrollar tanto la lógica del juego como la interfaz de usuario de manera

1https://deepmind.google

3

eficiente y cohesiva.

Este trabajo no sólo pretende crear un juego de ajedrez funcional y atractivo, sino

también servir como una gúıa detallada y educativa para aquellos interesados en el

desarrollo de videojuegos, demostrando cómo se puede abordar un proyecto complejo

de manera sistemática y efectiva. Además, este TFG examinará los desaf́ıos encontrados

durante el proceso de desarrollo y las soluciones implementadas para superarlos.Cada

etapa del desarrollo presenta sus propios obstáculos y oportunidades de aprendizaje.

Los Caṕıtulos 2 y 3 describen la estructura fundamental del juego, que abarca

desde la implementación del tablero y las piezas hasta los mecanismos de control

y la lógica subyacente que rige las interacciones del juego. El Caṕıtulo 4 describe

cómo se ha desarrollado la interfaz de usuario. El Caṕıtulo 5 explica la inteligencia

artificial desarrollada para el juego. Finalmente, el Caṕıtulo 6 presentará los resultados

obtenidos, destacando las caracteŕısticas principales del juego desarrollado y evaluando

su desempeño tanto desde el punto de vista técnico como desde la experiencia del

usuario. Concluiremos con una reflexión sobre las posibles mejoras futuras y las

implicaciones del proyecto en el ámbito del desarrollo de videojuegos y la educación en

programación.

El código fuente del proyecto está disponible en el siguiente enlace:

https://github.com/Flyboy1010/ChessTFG.

4

https://github.com/Flyboy1010/ChessTFG

Caṕıtulo 2

Desarrollo de la estructura del
juego

Cualquier sistema software complejo, y los videojuegos sin ninguna duda lo son,

tanto más un videojuego de ajedrez, queda caracterizado por su parte estática y su

parte dinámica [10]. La parte estática de un sistema identifica la información que

subyace en el mismo, en términos de sus componentes principales o clases. A su vez,

la parte dinámica del sistema comprende tanto la definición de las reglas del negocio

como las interacciones que se producen entre los componentes estáticos previamente

identificados.

En el desarrollo de un juego de ajedrez la parte estática requiere por tanto la creación

de varios componentes esenciales, o clases, que den soporte a la estructura del juego.

En este caṕıtulo, desarrollamos los componentes que servirán de base para el resto del

programa. Estos componentes son las piezas, el tablero, los movimientos y los jugadores.

A continuación, describimos cada uno de estos elementos. Además, a la hora de describir

cada clase hacemos hincapié en cómo cada una de las decisiones de diseño que hemos

tomado repercute en la implementación del sistema. En la Sección 2.6 recapitularemos

para ofrecer una visión de conjunto de dicha estructura, en términos de un diagrama

de clases [11].

Por otro lado, en el juego del ajedrez la parte dinámica queda obviamente definida

por las reglas del juego, que suponen a su vez las interacciones entre los componentes

identificados en la parte estática. El Caṕıtulo 3 presentará esta parte del diseño

software.

2.1. Las piezas

Las piezas de ajedrez son los componentes fundamentales que se desplazan por el

tablero. Cada pieza se define por dos parámetros: su tipo y su color.

5

Figura 2.1: Estructura de una pieza de ajedrez

Implementacion

La clase Piece está diseñada para representar las piezas en un juego de ajedrez.

La implementación resultante es la siguiente:

1 public struct Piece

2 {

3 public enum Type

4 {

5 None ,

6 King ,

7 Queen ,

8 Bishop ,

9 Knight ,

10 Rook ,

11 Pawn

12 }

13
14 public enum Color

15 {

16 None ,

17 White ,

18 Black

19 }

20
21 public Type type;

22 public Color color;

23 }

Fragmento de código 2.1: Clase Piece simplificada

6

Para almacenar los valores color y tipo hemos decido utilizar 2 enumeraciones con

los valores mostrados en la figura 2.1.

2.2. Los movimientos

Los movimientos determinan la forma en que las piezas se mueven a través del

tablero. Un movimiento se define como el traslado de una pieza desde una casilla de

origen A hasta una casilla de destino B. Para realizar un movimiento, es necesario

conocer estas dos casillas. Con esta información, podŕıamos crear una estructura que

almacene estos dos parámetros únicos, definiendo aśı un movimiento. No obstante, por

razones que explicaremos más adelante, incluiremos también el tipo de la pieza de

origen y el tipo de la pieza de destino, siendo esta última una pieza de tipo vaćıa si no

hay ninguna en la casilla de destino.

Además, debido a que existen movimientos especiales como el enroque o la captura

al paso, añadiremos una variable que especifique si el movimiento corresponde a uno

de estos casos especiales.

Implementación

La clase Move encapsula todos los parámetros que hemos mencionado

anteriormente. Aqúı podemos ver el codigo:

1 public struct Move

2 {

3 // move flags

4
5 public enum Flags

6 {

7 None ,

8 DoublePush ,

9 Promotion ,

10 EnPassant ,

11 CastleShort ,

12 CastleLong

13 }

14
15 public int squareSourceIndex , squareTargetIndex;

16 public Piece pieceSource , pieceTarget;

17 public Flags flags;

18
19 public Piece.Type promotionPieceType;

20 }

Fragmento de código 2.2: Clase Move simplificada

A continuación se presenta una explicación detallada de su funcionalidad y

estructura:

7

Enumeración Flags

La enumeración Flags define varios tipos de movimientos especiales en el ajedrez:

− None: Movimiento normal sin caracteŕısticas especiales.

− DoublePush: Movimiento inicial del peón que avanza dos casillas.

− Promotion: Indica que el movimiento es una promoción de un peón.

− EnPassant : Indica que el movimiento realiza una captura al paso.

− CastleShort : Indica que el movimiento es un enroque corto.

− CastleLong : Indica que el movimiento es un enroque largo.

Atributos de la Clase

La estructura Move contiene varios atributos que describen un movimiento:

− squareSourceIndex : Índice de la casilla de origen.

− squareTargetIndex : Índice de la casilla de destino.

− pieceSource: Pieza que se mueve.

− pieceTarget : Pieza en la casilla de destino (puede ser nula si la casilla está vaćıa).

− flags : Indica el flag del movimiento.

− promotionPieceType: Tipo de pieza en la que se convierte un peón al

promocionarse.

2.3. El tablero

El tablero de ajedrez es una cuadŕıcula de 8x8, formada por 64 casillas alternadas

en colores claros y oscuros. Cada casilla puede estar vaćıa o contener una pieza.

Implementación

Podemos entender el tablero como una interfaz para realizar movimientos. Este

llevará un seguimiento de las piezas y de variables de control que indicarán las acciones

disponibles en el estado actual, y expondrá una serie de métodos que nos permitirán

interactuar con él indicándole el movimiento que deseamos realizar.

Una de las primeras aproximaciones para gestionar la estructura del tablero es

crear una clase que almacene información esencial, como las piezas, el color del turno

8

actual y la posibilidad de realizar enroques, entre otros. Sin embargo, pronto se hace

evidente que esta solución no es óptima debido a que ciertas acciones dependen del

estado anterior del tablero. Un ejemplo claro es la captura al paso, que solo puede

realizarse si el oponente ha movido un peón dos casillas en el movimiento anterior.

Para abordar este problema, se propone dividir la clase del tablero en dos

componentes: BoardState y Board.

Clase BoardState

La clase BoardState contendrá todos los indicadores del estado del juego, tales como

el turno actual, la posibilidad de enroque y la disponibilidad de captura al paso. Esta

clase se encarga de gestionar y almacenar la información relativa al estado del juego

en un momento dado.

1 public struct BoardState

2 {

3 private Piece.Color turnColor = Piece.Color.None;

4
5 /* EN PASSANT */

6 private bool isEnPassantAvailable = false;

7
8 private Piece.Color doublePushedPawnColor = Piece.Color.None;

9
10 private int enPassantSquareIndex = -1;

11
12 /* CASTLELING */

13 private bool canCastleShortWhite = false;

14 private bool canCastleLongWhite = false;

15
16 private bool canCastleShortBlack = false;

17 private bool canCastleLongBlack = false;

18
19 // half move count

20 private int halfMoveCount = 0;

21 }

Fragmento de código 2.3: Clase BoardState simplificada

Los indicadores a tener en cuenta son los siguientes:

− Turno actual: Flags relacionados con el turno actual

• turnColor : Indica el color del jugador cuyo turno es el actual.

− Captura al paso: Flags relacionados con la captura al paso

• isEnPassantAvailable: Indica si la captura al paso (en passant) está

disponible.

9

• doublePushedPawnColor : Almacena el color del peón que realizó un

movimiento doble en el turno anterior, utilizado para verificar si la captura

al paso es posible.

• enPassantSquareIndex : Guarda la posición del cuadrado del peón que puede

ser capturado mediante la captura al paso.

− Enroque: Flags relacionados con el enroque

• canCastleShort : Indica si se puede realizar el enroque corto.

• canCastleLong : Indica si se puede realizar el enroque largo.

− Conteo de movimientos: Flags relacionados con el enroque

• halfMoveCount : Indica el numero de medios movimientos que se han

realizado a lo largo de la partida.

Clase Board

Por otro lado, la clase Board actuará como el contenedor principal que no solo llevará

el seguimiento de las piezas en el tablero, sino que también mantendrá un registro tanto

del estado actual como de los estados anteriores del juego. Esta separación es esencial

porque, para ciertos movimientos como la captura al paso o el enroque, es necesario

conocer el estado del tablero en jugadas anteriores.

Además, la clase Board se comporta como una interfaz que expone funciones para

realizar movimientos.

Aqúı podemos ver una simplificación de su implementación en código.

1 public class Board

2 {

3 private Piece[] pieces = new Piece [64];

4
5 private Stack <BoardState > boardStates = new Stack <BoardState >();

6
7 private BoardState currentBoardState = new BoardState ();

8
9 public Piece GetPiece(int index)

10 {

11 return pieces[index];

12 }

13
14 private void SetPiece(int index , Piece piece)

15 {

16 pieces[index] = piece;

17 }

18
19 public void MakeMove(Move move)

20 {

10

21 // save previous board state

22
23 BoardState previousBoardState = currentBoardState;

24
25 // save current board state

26
27 boardStates.Push(currentBoardState);

28
29 // check move flags

30
31 switch (move.flags)

32 {

33 ... // handle special moves

34 default:

35 // move the piece to the target

36
37 SetPiece(move.squareSourceIndex , Piece.NullPiece);

38 SetPiece(move.squareTargetIndex , move.pieceSource);

39 break;

40 }

41
42 // change turn color

43
44 Piece.Color turnColor = currentBoardState.GetTurnColor ();

45 currentBoardState.SetTurnColor(Piece.GetOppositeColor(turnColor));

46 }

47 }

Fragmento de código 2.4: Clase Board simplificada

Las piezas se almacenan en un array de dimension 64, el cual contendrá las piezas

que hay actualmente en el tablero y el cual se irá modificando a la vez que se vayan

efectuando movimientos.

Para poder realizar movimientos disponemos de una función MakeMove, la cual

toma como parámetro una estructura del tipo Move. Esta función se encargará de

modificar el array de piezas y el estado del tablero en base a las acciones definidas

en la estructura Move. Primero, se guarda el estado actual del tablero en una pila

por lo que hemos mencionado que para ciertos movimientos necesitamos conocer el

estado anterior. A continuación, según los indicadores del movimiento (flags), la función

realizará las acciones correspondientes, como mover una pieza de una casilla a otra,

capturar una pieza, o manejar movimientos especiales como enroques o promociones.

Veamos un ejemplo en el caso en el que un peón se mueve dos casillas:

1 case Move.Flags.DoublePush:

2 // enable en passant flags in board state

3
4 currentBoardState.SetEnPassant(true);

5 currentBoardState.SetEnPassantColor(move.pieceSource.color);

6 currentBoardState.SetEnPassantSquareIndex(move.squareTargetIndex);

7

11

8 // move the piece from source to target

9
10 SetPiece(move.squareSourceIndex , Piece.NullPiece);

11 SetPiece(move.squareTargetIndex , move.pieceSource);

12 break;

Fragmento de código 2.5: Caso peon se mueve 2 casillas

Como se ha movido un peón dos casillas, eso significa que ese peón se puede capturar

mediante una captura al paso en el turno siguiente, por lo que tendremos que modificar

el estado del tablero indicando que una captura al paso es posible, el color del peón y

el ı́ndice del cuadrado donde es posible realizar la captura.

A continuación se mueve como en el resto de movimientos la pieza origen, en este

caso el peón hacia la casilla destino, y se coloca una pieza vaćıa en el lugar en el que

se encontraba previamente.

Con el resto de movimientos especiales se sigue un procedimiento similar.

Finalmente, la función cambia el color del turno para reflejar que se ha completado

el movimiento.

2.4. Los jugadores

El ajedrez involucra dos jugadores, cada uno controlando un conjunto de piezas

(blancas o negras). Los jugadores pueden ser de dos tipos:

− Humanos : Introducen movimientos manualmente a través de la interfaz de

usuario.

− Inteligencia Artificial (IA): Calcula los movimientos automáticamente utilizando

algoritmos de búsqueda y evaluación.

Implementación

La clase Player la proponemos como una clase abstracta, que define el

comportamiento general de un jugador en el juego de ajedrez. Esta clase no puede

ser instanciada directamente, sino que sirve como base para clases derivadas que

implementan jugadores espećıficos, como un jugador humano o una inteligencia

artificial.

Aqúı podemos ver la implementación:

1 public abstract class Player

2 {

3 public event System.Action <Move > onMoveChosen;

4

12

5 public abstract void Update ();

6
7 public abstract void NotifyTurnToMove ();

8
9 protected virtual void ChoseMove(Move move)

10 {

11 onMoveChosen ?. Invoke(move);

12 }

13 }

Fragmento de código 2.6: Clase Player

Método Update

Este método debe ser implementado por las clases derivadas y se utiliza para

actualizar el estado del jugador en cada iteración del game loop. Por ejemplo, para

el caso de un jugador humano, este método manejará la entrada del usuario para

seleccionar el movimiento que se quiere realizar.

Método NotifyTurnToMove

Este método debe ser implementado por las clases derivadas y se llama cuando es el

turno del jugador para mover. Permite que el jugador prepare y ejecute su movimiento.

Método ChoseMove y evento onMoveChosen

El método ChoseMove será llamado por el propio jugador cuando éste haya

seleccionado un movimiento. Este método, a su vez, invocará el evento onMoveChosen,

pasando como parámetro el movimiento elegido. El game loop, que actúa como el

pegamento del sistema, estará suscrito a este evento, permitiendo la integración y

coordinación de las diferentes partes del juego. Mas adelante en la sección 2.5, cuando

hablemos en profundidad acerca del game loop se entenderá el porqué de este sistema.

Ahora nos tocaŕıa implementar el jugador humano y el jugador controlado por la

IA, pero ambos dependen de la implementación de otras partes del juego. En el caso

del jugador humano, éste depende de la interfaz de usuario, debido a que tiene que ser

capaz de controlar las piezas para poder realizar movimientos. Y en el caso del jugador

controlado por la IA, necesitamos que la IA esté implementada. Por estos motivos, los

veremos mas adelante.

2.5. La clase Game

La clase Game es el elemento central en el desarrollo de nuestro videojuego de

ajedrez. Actuará como el núcleo que controla y coordina todos los aspectos del juego.

13

Esta clase se encargará de inicializar el tablero y los jugadores, además de contener el

game loop el cual se regirá por una máquina de estados.

2.5.1. La máquina de estados

Para nuestro juego de ajedrez, hemos definido los siguientes estados:

− PlayerTurn: En este estado se actualizará el jugador al cual le toca mover, esto

le permitirá ejecutar toda la lógica correspondiente a la selección del movimiento

que quiere realizar. Una vez elegido el movimiento, se comprobará si el juego ha

terminado y se cambiará al estado NextTurn si el juego no ha terminado y al

estado Over si ha terminado.

− NextTurn: En este estado se notificará al jugador al cual le va tocar en este

turno. Una vez notificado se cambia de estado a PlayerTurn.

− Over: El juego ha terminado.

Aqúı podemos ver un esquema de la máquina de estados con sus transiciones:

Figura 2.2: Máquina de estados del juego

2.5.2. Implementación

La implementación de la clase Game es la siguiente:

1 using Godot;

2 using System;

3
4 public partial class Game : Node

14

5 {

6 // game state machine

7
8 private enum GameState

9 {

10 PlayerTurn ,

11 NextTurn ,

12 Over

13 }

14
15 // board class that contains everything related to the pieces

16
17 private Board board;

18
19 // current game state

20
21 private GameState gameState;

22
23 // players

24
25 private Player playerWhite;

26 private Player playerBlack;

27
28 // current player

29
30 private Player playerToMove;

31
32 // Called when the node enters the scene tree for the first time.

33
34 public override void _Ready () {...}

35
36 // on move chosen

37
38 private void OnMoveChosen(Move move) {...}

39
40 // update game state

41
42 private void UpdateState () {...}

43
44 // Called every frame. ’delta ’ is the elapsed time since the previous frame.

45
46 public override void _Process(double delta) {...}

47 }

Fragmento de código 2.7: Clase Game simplificada

La clase Game hereda de la clase Node proporcionada por Godot. En Godot, todo

se construye a partir de nodos. Un nodo es una unidad básica que puede realizar una

función espećıfica, como representar una imagen, manejar entradas del usuario, ejecutar

scripts, o gestionar la f́ısica. Los nodos se organizan en una estructura de árbol, donde

cada nodo puede tener múltiples nodos hijos. Esta jerarqúıa facilita la organización

y el control de los elementos del juego, permitiendo una flexibilidad significativa a la

hora de diseñar y programar. En este caso el nodo Node[12] nos da acceso a 2 metodos

importantes, el metodo Ready y el metodo Process.

15

A continuación explicaremos las diferentes partes de la clase Game.

Inicialización

En Godot, el método Ready se utiliza para inicializar [12]. Dentro de este método,

configuramos el tablero y creamos los jugadores, preparando aśı el juego para su

comienzo.

1 public override void _Ready ()

2 {

3 // inicializamos el tablero

4 board = new Board ();

5 board.LoadFenString(Board.StartFEN);

6
7 // creamos los jugadores (asi es como quedaria)

8 // playerWhite = new PlayerHuman(board);

9 // playerBlack = new PlayerAI(board);

10
11 // nos suscribimos a los eventos de ambos jugadores

12 playerWhite.onMoveChosen += OnMoveChosen;

13 playerBlack.onMoveChosen += OnMoveChosen;

14
15 // comenzamos en el estado NextTurn

16 gameState = GameState.NextTurn;

17 }

Fragmento de código 2.8: Inicialización

Tenemos que destacar que durante la inicialización, nos suscribimos a los eventos

onMoveChosen de ambos jugadores, por lo que cuando estos realizen un movimiento

se llame la función OnMoveChosen al que se le pasara el movimiento que estos hayan

elegido.

Transiciones de Estados

El método UpdateState contiene la lógica para manejar los diferentes estados del

juego y realizar las transiciones apropiadas con respecto a la maquina de estados

previamente descrita en la figura 2.2.

1 private void UpdateState ()

2 {

3 switch (gameState)

4 {

5 case GameState.NextTurn:

6 Piece.Color turnColor = board.GetTurnColor ();

7 playerToMove = turnColor == Piece.Color.White ? playerWhite :

8 playerBlack;

9 playerToMove.NotifyTurnToMove ();

10 gameState = GameState.PlayerTurn;

11 break;

12 case GameState.PlayerTurn:

16

13 playerToMove.Update ();

14 break;

15 case GameState.Over:

16 break;

17 }

18 }

Fragmento de código 2.9: Función UpdateState

Podemos ver que cuando nos encontramos en el estado PlayerTurn lo único que

hacemos es actualizar al jugador y puede parecer que de este estado no saldremos nunca.

Sin embargo, cuando un jugador elige un movimiento en su método Update mediante la

llamada al método ChooseMove de la clase Player. El cual como vimos en el apartado

2.4 invocaba el evento onMoveChosen al cual le pasabamos el movimiento elegido,

provoca entonces que el método OnMoveChosen de la clase Game se llame debido a

que previamente en la inicialización nos hab́ıamos suscrito al evento onMoveChosen

del jugador, aplicando el movimiento al tablero y cambiando el estado del juego a

NextTurn.

1 private void OnMoveChosen(Move move)

2 {

3 board.MakeMove(move);

4 gameState = GameState.NextTurn;

5 }

Fragmento de código 2.10: Función OnMoveChosen

Procesamiento del estado del juego

En Godot, el método Process se ejecuta cada frame [13], por lo que este método

actuará como nuestro game loop. En este método llamaremos a UpdateState para que

aśı se vayan actualizando los estados.

1 public override void _Process(double delta)

2 {

3 UpdateState ();

4 }

Fragmento de código 2.11: El Game Loop

2.6. La estructura en su conjunto

El diagrama de clases que aparece en la Figura 2.3 representa la estructura del

juego en su conjunto. A partir de este diagrama se han realizado las implementaciones

previas. En él se pueden observar de forma mas general las relaciones que existen

entre todos estos componentes que hemos ido explicando a lo largo de este caṕıtulo.

17

Finalmente, con todos estos elementos básicos que hemos ido desarrollando podemos

ya pasar a la implementación de las reglas del juego.

Piece

+ type: enum

+ color: enum

Move

+ squareSourceIndex: int

+ squareTargetIndex: int

+ pieceSource: Piece

+ pieceTarget: Piece

+ flags: enum

BoardState

+ turnColor: enum

+ isEnPassantAvailable: bool

+ doublePushedPawnColor: enum

+ enPassantSquareIndex: int

+ canCastle: bool

Board

- pieces: Piece[64]

- currentBoardState: BoardState

- boardStates: List<BoardState>

+ GetPiece(index: int): Piece

- SetPiece(index: int, piece: Piece)

+ MakeMove(move: Move)

Player

+ onMoveChosen: "event"

+ Update()

+ NotifyTurnToMove()

ChoseMove(move: Move)

Game

- board: Board

- gameState: enum

- playerWhite: Player

- playerBlack: Player

- playerToMove: Player

+ _Ready()

- OnMoveChosen(move: Move)

- UpdateState()

+ _Process(delta: double)

PlayerHuman

...

PlayerAI

...

Figura 2.3: Diagrama de clases de la estructura básica del juego

18

Caṕıtulo 3

Implementación de las reglas

Una vez definida la estructura básica del programa podemos ya implemementar

las reglas del ajedrez, es decir, la dinámica del sistema. Esto abarca desde las

restricciones de movimiento de cada pieza, que se desarrollará en la Sección 3.1, hasta

las comprobaciones de jaque y jaque mate, desarrolladas en la Sección 3.2. Por último,

las tablas por triple repetición y la regla de los 50 movimientos se acometen en las

Secciónes 3.3 y 3.4 respectivamente.

3.1. Movimientos de las piezas

En el juego del ajedrez cada tipo de pieza se mueve de una manera diferente.

Además, hay ciertas piezas que tienen movimientos especiales que sólo se pueden

realizar si se cumplen una serie de condiciones en el tablero y/o en estados anteriores

del mismo.

Cabe resaltar que debemos intentar que la generación de los movimientos sea lo más

rápida posible, puesto que más adelante cuando desarrollemos la IA, cuanto menos

tiempo tarden en generarse los movimientos de cada pieza, más en profundidad se

podrá analizar el juego y por lo tanto la IA será un mejor rival. Para ello, intentaremos

en la medida de lo posible precalcular todos los movimientos posibles. Ahora veremos

a qué nos referimos con esto.

3.1.1. El Caballo

Veamos un ejemplo de cómo se mueve el caballo. Si se encontrase en la casilla de la

Figura 3.1, se podŕıa mover a todas las casillas marcadas con un ćırculo verde. Como

nos interesa precalcular todo lo posible, para que sea más rápido, lo que podemos hacer

es para cada casilla del tablero ver a qué casillas se podŕıa mover si se encontrase en

dicha casilla.

19

Figura 3.1: Movimiento del caballo

Para ello lo que haremos es recorrer las 64 casillas del tablero y guardarnos en

una LookUpTable las casillas disponibles. Aśı, cuando queramos saber a qué casillas se

podŕıa mover si se encontrase en la casilla X, consultaŕıamos la tabla de la casilla X.

Aqúı podemos ver el código que genera dichos movimientos:

1 int [][] preCalculatedKnightMoves = new int [64][];

2
3 List <int > movesBuffer = new List <int >();

4
5 for (int j = 0; j < 8; j++)

6 {

7 for (int i = 0; i < 8; i++)

8 {

9 int index = i + j * 8;

10
11 for (int jj = -2; jj <= 2; jj += 4)

12 {

13 for (int ii = -1; ii <= 1; ii += 2)

14 {

15 if (IsInBounds(i + ii , j + jj))

16 {

17 movesBuffer.Add((i + ii) + (j + jj) * 8);

18 }

19
20 if (IsInBounds(i + jj , j + ii))

21 {

22 movesBuffer.Add((i + jj) + (j + ii) * 8);

23 }

24 }

25 }

20

26
27 preCalculatedKnightMoves[index] = movesBuffer.ToArray ();

28 }

29 }

Fragmento de código 3.1: Precalculación de los movimientos del caballo

El array preCalculatedKnightMoves es una LookUpTable que se usa para almacenar

todos los movimientos posibles de un caballo en un tablero de ajedrez, para cada una

de las 64 posiciones del tablero. Este es un array de arrays, donde cada elemento es un

array que contiene los posibles movimientos desde una posición espećıfica del tablero. El

tamaño principal del array es 64, correspondiente a las 64 casillas. Dentro de los bucles

anidados, se calculan las posibles posiciones de destino para los movimientos del caballo

(que pueden ser 2 casillas en una dirección y 1 en otra, en todas las combinaciones

posibles). Si volvemos a la Figura 3.1, esto correspondeŕıa a la generación de los ćırculos

verdes.

Tenemos que resaltar que esto sólo nos devuelve las casillas disponibles,

posteriormente deberemos comprobar si esas casillas se encuentran vaćıas, o con una

pieza. En ese caso tendŕıamos que comprobar el color de la pieza y ver si corresponde

al color contrario, entonces el movimiento seŕıa valido, puesto que esta pieza podŕıa ser

capturada. Sin embargo, si el color de la pieza es el mismo que el del caballo, entonces

no seŕıa un movimiento válido.

Podemos ver aqúı finalmente el código que genera el movimiento de un caballo, al

cual le pasamos un tablero y la casilla donde se encuentra el caballo, y devuelve una

lista de los movimientos posibles.

1 private static List <Move > GenerateKnightMoves(Board board , int index)

2 {

3 List <Move > moves = new List <Move >();

4
5 Piece piece = board.GetPiece(index);

6
7 foreach (int targetIndex in preCalculatedKnightMoves[index])

8 {

9 Piece targetPiece = board.GetPiece(targetIndex);

10
11 if (targetPiece.color == piece.color)

12 continue;

13
14 moves.Add(new Move()

15 {

16 squareSourceIndex = index ,

17 squareTargetIndex = targetIndex ,

18 pieceSource = piece ,

19 pieceTarget = targetPiece

20 });

21 }

22

21

23 return moves;

24 }

Fragmento de código 3.2: Generación del movimiento de un caballo

Observamos que se hace uso de la LookUpTable preCalculatedKnightMoves del

caballo para el ı́ndice de la casilla seleccionada, y para cada una de las casillas

disponibles debemos comprobar, como hemos dicho previamente, que se encuentren

vaćıas o con una pieza del color contrario para garantizar la validez del movimiento. Una

vez comprobado que el movimiento es válido, construimos el movimiento de acuerdo a

los parámetros de la Sección 2.2 y lo añadimos a la lista.

3.1.2. La Torre, el Alfil y la Reina

La torre, el álfil y la reina son piezas que se comportan prácticamente de la misma

manera. Estas piezas se deslizan por el tablero hasta que se encuentran con el ĺımite

de este o con otra pieza. La torre se desliza de manera horizontal y vertical. El álfil se

desliza a lo largo de las diagonales, y la reina es una combinación de ambos, vease la

Figura 3.2.

Figura 3.2: Movimiento de la reina

Para generar sus movimientos vamos a seguir un procedimiento similiar al que

hemos planteado para el caballo. En este caso vamos a precalcular si nos encontraramos

en una casilla determinada. Por ejemplo, la casilla en la que se encuentra la reina de la

Figura 3.2 es la casilla D4, si ignoramos ambos peones entonces el número de casillas

22

que hay hacia arriba es 4, a izquierda 3, abajo 3, derecha 4, en la diagonal arriba-derecha

4, en la diagonal arriba-izquierda 3, en la diagonal abajo-izquierda 3, y en la diagonal

abajo-derecha 3.

A continuación podemos ver el código desarrollado para dichos movimientos:

1 int [][] preCalculatedSquaresToEdge = new int [64][];

2
3 for (int j = 0; j < 8; j++)

4 {

5 for (int i = 0; i < 8; i++)

6 {

7 int index = i + j * 8;

8
9 // squares to edge

10
11 int up = j;

12 int down = 7 - j;

13 int left = i;

14 int right = 7 - i;

15
16 int d1 = Math.Min(up , right);

17 int d2 = Math.Min(up , left);

18 int d3 = Math.Min(down , left);

19 int d4 = Math.Min(down , right);

20
21 preCalculatedSquaresToEdge[i + j * 8] = new int [8] {

22 up, left , down , right , d1, d2, d3, d4

23 };

24 }

25 }

Fragmento de código 3.3: Precalculación del numero de cuadrados en las 8 direcciones

Una vez tenemos la LookUpTable preCalculatedSquaresToEdge, dependiendo de si

la pieza es una torre, un alfil o una reina, comprobaremos las casillas en las direcciones

correspondientes, para ver si se encuentran vacias, o si contienen alguna pieza. Si

contienen una pieza del mismo color descartaremos esa casilla como válida y no

seguiremos comprobando mas casillas en esa dirección. En cambio, si contiene una

pieza del color contrario, śı que lo añadiremos como movimiento válido, puesto que

seŕıa una captura, pero también dejaremos de comprobar las siguientes casillas en esa

dirección, como en la Figura 3.2.

Podemos ver aqúı finalmente el código que planteamos para el movimiento de la

torre/alfil/reina.

1 private static List <Move > GenerateSlidingMoves(Board board , int index)

2 {

3 List <Move > moves = new List <Move >();

4
5 //... comprobar si la pieza es una torre/alfil/reina

6 //... dependiendo de la pieza ver que direcciones hay que comprobar

7

23

8 for (//... las direcciones pertinentes ...//)

9 {

10 int n = preCalculatedSquaresToEdge[index][direccion];

11
12 for (int i = 0; i < n; i++)

13 {

14 int targetIndex = index + directionOffsets[d] * (i + 1);

15
16 Piece targetPiece = board.GetPiece(targetIndex);

17
18 if (targetPiece.type == Piece.Type.None)

19 {

20 // ... anadimos el movimiento

21 }

22 else

23 {

24 if (targetPiece.color != piece.color)

25 {

26 // ... anadimos el movimiento

27 }

28
29 break;

30 }

31 }

32 }

33
34 return moves;

35 }

Fragmento de código 3.4: Generación del movimiento de la torre/alfil/reina
(simplificado)

3.1.3. El Peón

Los peones se pueden desplazar únicamente hacia adelante, siempre que esa casilla

se encuentre vaćıa. Adicionalmente, si el peón se encuentra en la fila 2, para el caso

de los peones blancos, se puede desplazar 2 casillas hacia adelante. Podemos ver un

ejemplo en la Figura 3.3. Hay que resaltar también que si un peón llega a la última fila

se puede promocionar a una de las siguientes piezas: reina, torre, álfil y caballo.

Para estos movimientos no necesitaremos precalcular nada, puesto que sólo

necesitamos comprobar la casilla de adelante. Simplemente tendremos que comprobar

si se encuentra vaćıa y si el peón se encuentra en fila 2. En ese caso tendremos que

comprobar también si el peón se puede desplazar 2 casillas hacia adelante, siempre

y cuando no haya ninguna casilla ocupada a lo largo de ese desplazamiento. Aqúı

podemos ver la parte del código que genera estos movimientos, únicamente para el

peón blanco, el peón negro sigue las mismas reglas sólo que en la dirección contraria:

1 // double push

2

24

Figura 3.3: Movimiento del peón

3 if (j == 6)

4 {

5 for (int jj = 0; jj < 2; jj++)

6 {

7 int targetIndex = index + (jj + 1) * directionOffsets[Direction.Up];

8 Piece targetPiece = board.GetPiece(targetIndex);

9
10 if (targetPiece.type == Piece.Type.None)

11 {

12 moves.Add(new Move

13 {

14 ...

15 flags = (jj == 0) ? Move.Flags.None : Move.Flags.DoublePush

16 });

17 }

18 else

19 {

20 // if there is a piece in between then you cant double push

21
22 break;

23 }

24 }

25 }

26 else if (j < 6 && j > 0) // single push

27 {

28 int targetIndex = index + directionOffsets[Direction.Up];

29 Piece targetPiece = board.GetPiece(targetIndex);

30
31 if (targetPiece.type == Piece.Type.None)

32 {

33 moves.Add(new Move

34 {

25

35 ...

36 flags = (j == 1) ? Move.Flags.Promotion : Move.Flags.None ,

37 promotionPieceType = board.PromotionPieceType

38 });

39 }

40 }

Fragmento de código 3.5: Parte del código para la generación del movimiento del peón

Tenemos que realizar una comprobación para conocer si el peón se encuentra en la

fila 2, en este caso se comprueba que la coordenada j de la pieza sea igual a 6, esto se

debe a que de la manera en la que hemos construido el array del tablero las filas iŕıan

numeradas desde la fila 0 en la parte superior hasta la fila 7 en la parte inferior. Si es

ese el caso, entonces tendremos que comprobar si se puede desplazar hacia adelante 1

ó 2 casillas. En el caso en el que se pueda desplazar 2 casillas, es decir, no hay ninguna

pieza que obstaculice el camino, tendremos que marcar ese movimiento con el flag

DoublePush para indicar que ese movimiento realiza un movimiento doble de un peón.

En cambio, si el peón se encuentra en una fila diferente sólo tendremos que comprobar

si se puede mover una casilla hacia adelante, con la excepción de que si se desplaza a

la última fila, entonces tendremos que marcar el flag Promotion para indicar que ese

movimiento realiza una promoción de un peón.

Los movimientos de captura son diferentes de sus movimientos normales. Mientras

que los peones se mueven hacia adelante, en ĺınea recta, capturan las piezas en las

diagonales hacia adelante. Adicionalmente, si un peón enemigo se mueve 2 casillas en

un turno, al siguiente turno se puede capturar como si hubiese movido una sola casilla.

Podemos ver un ejemplo en la Figura 3.4.

Para el caso de las capturas śı que hemos precalculado los movimientos, puesto

que aśı podemos ahorrarnos tiempo en ciertas comprobaciones. En concreto, para

comprobar si el peón se encuentra en los bordes del tablero y a la hora de comprobar si

puede capturar arriba a la izquierda o a la derecha. Simplemente con la LookUpTable de

las capturas precalculadas de la casilla en la que se encuentra nuestro peón, tendremos

que comprobar que exista una pieza del color opuesto en las casillas disponibles para

que se pueda efectuar ese movimiento.

Finalmente para la captura al paso, tendremos que comprobar que justo en el

anterior movimiento que se realizó en el tablero se hizo un movimiento doble de peón

por parte del rival. Aqúı entra todo lo que explicamos previamente acerca del sistema

del estado del tablero en la Sección 2.3.

Aqúı podemos ver el código que genera las capturas al paso:

1 ref readonly BoardState boardState = ref board.GetBoardState ();

2

26

Figura 3.4: Movimientos de captura del peón

3 if (boardState.IsEnPassantAvailable ())

4 {

5 int enPassantSquareI = boardState.GetEnPassantSquareIndex () % 8;

6
7 if (j == 3)

8 {

9 if (i + 1 == enPassantSquareI)

10 {

11 int targetIndex = index + directionOffsets [(int)Direction.D1];

12 moves.Add(new Move

13 {

14 ...

15 pieceTarget = Piece.NullPiece ,

16 flags = Move.Flags.EnPassant

17 });

18 }

19 else if (i - 1 == enPassantSquareI)

20 {

21 int targetIndex = index + directionOffsets [(int)Direction.D2];

22 moves.Add(new Move

23 {

24 ...

25 pieceTarget = Piece.NullPiece ,

26 flags = Move.Flags.EnPassant

27 });

28 }

29 }

30 }

Fragmento de código 3.6: Parte del código de la generación de los movimientos de
captura al paso del peón

27

Realizamos una consulta al estado actual del tablero, y comprobamos si es posible

realizar una captura al paso. En ese caso comprobamos si nuestro peón se encuentra

en la fila 5, que es la única fila en la que se pueden realizar este tipo de capturas,

recordemos que ésto es sólo para el caso de los peones blancos, se realizaŕıa de una

forma similar para los peones negros, solo que en direcciónes opuestas. Si se da ese

caso entonces comprobamos si la casilla de la diagonal superior izquierda o derecha

concuerdan con la casilla correspondiente a la captura al paso y si se verifica entonces

la captura al paso es posible, se contruye el movimiento con el flag EnPassant y se

añade a la lista de movimientos posibles.

Finalmente todos estos fragmentos que hemos visto para generar estos posibles

movimientos posibles del peón, se recogen en una función, al igual que con el resto de

piezas.

1 private static List <Move > GeneratePawnMoves(Board board , int index);

Fragmento de código 3.7: Función que genera los movimientos del peón

3.1.4. El Rey

El rey se puede mover en cualquiera de las 8 direcciones, pero sólo una casilla

de distancia. Para generar estos movimientos hemos seguido el mismo procedimiento

utilizado con otras piezas, es decir, precalcular las casillas disponibles a las que se

puede mover el rey por cada casilla del tablero y guardarlas en una LookUpTable para

consultarla a la hora de generar los movimientos.

Adicionalmente el rey es capaz de realizar un movimiento especial denominado

enroque, el cual consiste en mover simultáneamente al rey y a una de las torres, de

manera que el rey se desplace dos casillas hacia la torre y ésta se coloque en la casilla

inmediatamente al otro lado del rey. Este movimiento tiene ciertas condiciones: no

debe haber piezas entre el rey y la torre, ni el rey ni la torre deben haber sido movidos

previamente, el rey no puede estar en jaque, ni puede atravesar ni terminar en una

casilla amenazada por una pieza enemiga.

Para implementar el enroque necesitaremos conocer qué casillas está controlando o

atacando el color contrario, puesto que las reglas nos lo exigen al tener que comprobar

que el rey no se encuentra en jaque y a la hora de enrocarse no puede atravesar casillas

que están siendo atacadas. Para ello implementaremos una función, que para un color

de piezas determinado, nos devolverá un bitmap del tablero indicando con un 1 si la

casilla está siendo atacada por alguna pieza del color que hayamos seleccionado, ó 0 en

el caso contrario. A continuación mostramos la implementación de esta función.

28

Figura 3.5: Movimiento del rey

1 ulong GetControlledSquaresBitboardByColor(Board board , Piece.Color color)

2 {

3 ulong squares = 0;

4
5 List <int > piecesIndices = board.GetPiecesIndices(color);

6
7 foreach (int index in piecesIndices)

8 {

9 Piece piece = board.GetPiece(index);

10
11 switch (piece.type)

12 {

13 case Piece.Type.Pawn:

14 // ... SOLO MOVIMIENTOS DE CAPTURAS DIAGONALES

15 case Piece.Type.Knight:

16 // ... IGUAL QUE ANTES

17 case Piece.Type.Bishop:

18 case Piece.Type.Rook:

19 case Piece.Type.Queen:

20 // ... IGUAL QUE ANTES

21 case Piece.Type.King:

22 // ... SOLO MOVIMIENTOS "NORMALES" SIN INCLUIR ENROQUE

23 }

24 }

25
26 return squares;

27 }

Fragmento de código 3.8: Función que devuelve un bitmap del tablero con las casillas
controladas por las piezas del color seleccionado

29

Figura 3.6: Movimiento de enroque del rey

Simplemente tomamos todas las piezas del color escogido y calculamos para cada

una de ellas los ı́ndices de las casillas que están atacando, similarmente a cuando

generabamos los movimientos, sólo que esta vez únicamente nos importan las posiciones

de las casillas. Podŕıamos marcar estos ı́ndices en un array de booleanos de dimensión

64 y todo funcionaŕıa perfectamente. Sin embargo, podemos utilizar un unsigned long,

que es un entero sin signo de 64 bits y que es mucho mas eficiente que usar un array,

al tener 64 bits nos encaja perfectamente con el número de casillas del tablero, aśı que

podemos ir modificando los bits de este entero haciendo que cada bit sea una casilla y

marcándolo como 1 ó 0 en función de si esta siendo atacada o no. Para modificar los

bits de este entero utilizaremos lógicamente las operaciones a nivel de bit: and, or y

desplazamientos de bits. Podemos ver un ejemplo en la Figura 3.7.

Todas las casillas marcadas por un ćırculo verde son aquellas casillas

que están siendo controladas por las piezas negras, en este caso, la función

GetControlledSquaresBitboardByColor (con el color negro) nos devolveria el siguiente

entero de 64 bits:

1011010001111100110111110111000010101000000001000101001000000001

Empezando por los 8 bits mas significativos 10110100 vemos que cuadra con las

casillas controladas de la primera fila (fila 8 de la Figura 3.7) y lo mismo para los

siguientes grupos de 8 bits correspondientes al resto de filas. Si queremos mas tarde

30

Figura 3.7: Bitmap con las casillas atacadas por las piezas negras

comprobar si la casilla n-esima está siendo atacada, simplemente comprobamos que

si realizamos una operación and con un bit desplazado n veces hacia la izquierda da

distinto de 0:

(bitmap & (1UL <<n)) != 0

Una vez ya sabemos cómo obtener las casillas atacadas por un color determinado

de pieza, continuamos con la implementación del enroque:

1 ref readonly BoardState boardState = ref board.GetBoardState ();

2 bool canCastleShort = boardState.CanCastleShort(piece.color);

3 bool canCastleLong = boardState.CanCastleLong(piece.color);

4
5 if (canCastleShort || canCastleLong)

6 {

7 ulong bitmap = GetControlledSquaresBitboardByColor(

8 board ,

9 Piece.GetOppositeColor(piece.color)

10);

11
12 // first check if the king is in check

13
14 bool isKingInCheck = (bitmap & (1UL << index)) != 0;

15
16 // if the king is not in check then

17
18 if (! isKingInCheck)

19 {

20 if (canCastleShort)

21 {

31

22 // check squares in between

23
24 bool isShortCastleLegal = true;

25
26 foreach (int squareIndex in shortCastleIndices[piece.color - 1])

27 {

28 Piece targetPiece = board.GetPiece(squareIndex);

29
30 if (

31 ((bitmap & (1UL << squareIndex)) != 0) ||

32 targetPiece.type != Piece.Type.None

33)

34 {

35 isShortCastleLegal = false;

36 break;

37 }

38 }

39
40 if (isShortCastleLegal)

41 {

42 moves.Add(new Move

43 {

44 squareSourceIndex = index ,

45 squareTargetIndex = shortCastleTargetKingIndex[piece.color - 1],

46 pieceSource = piece ,

47 pieceTarget = Piece.NullPiece ,

48 flags = Move.Flags.CastleShort

49 });

50 }

51 }

52
53 //... lo mismo para el enroque largo

54 }

55 }

Fragmento de código 3.9: Codigo de generación del enroque corto

Empezamos obteniendo el estado actual del tablero para comprobar si está

disponible el enroque, estos flags tanto para el enroque corto como el enroque largo nos

indican si el enroque está disponible, es decir, si el rey o la torre del correspondiente

lado no se han movido de acuerdo con las reglas. Pero no si se puede realizar en este

momento debido a que podŕıan existir piezas en el camino entre el rey o la torre o

esas mismas casillas podŕıan estar siendo atacadas, incluida la del rey. Estos son los

diferentes casos adicionales que tendremos que comprobar.

Para el caso en el que śı esté disponible el enroque, obtenemos las

casillas controladas por las piezas del color contrario utilizando la función

GetControlledSquaresBitboardByColor que hemos implementado y comprobamos si el

rey se encuentra en una de las casillas atacadas. Si no se encuentra en una de ellas

entonces comprobamos si se puede realizar cada uno de los enroques, corto y largo,

comprobando que esten libres las casillas entre el rey y la torre y que no esten siendo

32

atacadas. Si todo esto se cumple entonces añadimos el movimiento e indicamos el flag

del movimiento como CastleShort o CastleLong dependiendo del enroque.

3.1.5. De movimientos pseudo-legales a movimientos legales

Hasta ahora los movimientos que hemos ido generando no son movimientos legales

sino que son pseudo-legales, puesto que en ningún momento hemos comprobado si el

rey se encuentra en jaque, después de realizar el movimiento. Veamos un ejemplo de

ésto en la Figura 3.8

Figura 3.8: Ejemplo clavada de peón

En este escenario, las piezas blancas no pueden mover el peón, puesto que ello

revelaria un ataque directo del álfil negro al rey, se dice entonces que el peón está

clavado, puesto que no se puede mover. Con nuestro codigo actual mover el peón seŕıa

considerado erróneamente un movimiento “válido”, por lo que tenemos que tener en

cuenta este tipo de situaciones.

Para solucionar este problema lo que haremos será generar los movimientos de la

pieza, y uno por uno jugarlos en el tablero y comprobar entonces si el rey se encuentra

en una casilla atacada. Si no se encuentra atacado entonces cogemos ese movimiento

y lo añadimos a la lista de movimientos legales, finalmente deshacemos el movimiento

del tablero.

Aqúı podemos ver el código:

1 public static List <Move > GetLegalMoves(Board board , int index)

33

2 {

3 List <Move > legalMoves = new List <Move >();

4 List <Move > pseudoLegalMoves = GetPseudoLegalMoves(board , index);

5
6 Piece piece = board.GetPiece(index);

7
8 foreach (Move move in pseudoLegalMoves)

9 {

10 // make the move

11
12 board.MakeMove(move , true);

13
14 // check if after the move the king is in check

15
16 if (! IsKingInCheck(board , piece.color))

17 {

18 legalMoves.Add(move);

19 }

20
21 // undo the move

22
23 board.UndoMove(true);

24 }

25
26 return legalMoves;

27 }

Fragmento de código 3.10: Generación de los movimientos legales de una pieza

De esta forma podemos filtrar aquellos movimientos que en un principio pareceŕıan

válidos, pero que en realidad no lo son. La función GetPseudoLegalMoves retorna

los movimientos pseudo-legales de una pieza en función de su tipo. Esta función

simplemente invoca, según el tipo de pieza, a la función correspondiente que genera los

movimientos de dicho tipo, tal como hemos visto a lo largo de este caṕıtulo.

Aqúı podemos ver el código de dicha función:

1 public static List <Move > GetPseudoLegalMoves(Board board , int index)

2 {

3 Piece piece = board.GetPiece(index);

4
5 switch (piece.type)

6 {

7 case Piece.Type.Pawn:

8 return GeneratePawnMoves(board , index);

9 case Piece.Type.Knight:

10 return GenerateKnightMoves(board , index);

11 case Piece.Type.Bishop:

12 case Piece.Type.Queen:

13 case Piece.Type.Rook:

14 return GenerateSlidingMoves(board , index);

15 case Piece.Type.King:

16 return GenerateKingMoves(board , index);

17 }

18
19 return new List <Move >();

20 }

34

Fragmento de código 3.11: Función GetPseudoLegalMoves

3.1.6. Encapsulación

Todas las funciones que hemos ido desarrollando con las LookUpTables, que se han

ido precalculando, las hemos agrupado en una clase estática de C#. Con esta decisión

de diseño avalamos el hecho de que estas funciones no requieren de un estado espećıfico

de la instancia de la clase [14], a la que hemos llamado MoveGeneration, esta clase

simplemente actuará de contenedor para las funciones y tablas que hemos mencionado:

1 public static class MoveGeneration

2 {

3 // LookUpTables

4 private static int [][] preCalculatedKnightMoves = new int [64][];

5 // ...

6
7 static MoveGeneration ()

8 {

9 // ... pre -calculo de las LookUpTables en el constructor

10 }

11
12 // las funciones que generan los movimientos de las piezas

13 private static List <Move > GenerateKnightMoves(Board board , int index)

14 {

15 // ...

16 }

17 // ...

18
19 // funcion que genera los movimientos pseudo -legales de una pieza

20 public static List <Move > GetPseudoLegalMoves(Board board , int index)

21 {

22 // ...

23 }

24
25 // funcion que genera los movimientos legales de una pieza

26 public static List <Move > GetLegalMoves(Board board , int index)

27 {

28 // ...

29 }

30 }

Fragmento de código 3.12: Clase MoveGeneration

Esta encapsulación que hemos realizado nos permite de manera muy sencilla obtener

una lista de los movimientos legales de una pieza con solo pasarle el tablero, y el ı́ndice

de la casilla (0 a 63) donde se encuentra la pieza, de la siguiente forma:

1 List <Move > moves = MoveGeneration.GetLegalMoves(board , index);

35

3.2. Jaque mate y Rey ahogado

Una vez que podemos determinar los movimientos de cada pieza, resulta

relativamente fácil verificar las condiciones que indican que una partida ha concluido

debido a 2 posibles escenarios: jaque mate y rey ahogado o tablas.

El jaque mate se da cuando el rey del oponente está bajo amenaza directa de

captura (en jaque) y no tiene ninguna forma de escapar, ya sea moviéndose a una casilla

segura, bloqueando la amenaza con otra pieza, o capturando la pieza que amenaza al

rey. En este punto, el juego termina y el jugador que ha puesto en jaque mate al rey

adversario es declarado ganador [1].

El rey ahogado es similar al jaque mate, sólo que en este caso no está en jaque,

pero no puede realizar ningún movimiento legal porque todas sus casillas de escape

están bloqueadas por sus propias piezas o controladas por las piezas del oponente.

Esto resulta en un empate (tablas) en lugar de una victoria para el oponente [1].

Para realizar ambas comprobaciones, lo que haremos será generar todos los

movimientos legales de todas las piezas del color al que le toca mover. Si el numero total

de movimientos generados es 0, entonces obtendremos las casillas que está atacando el

rival y comprobaremos si la casilla en la que se encuentra el rey está siendo atacada o

no. Si se encuentra atacada, entonces se declarara que el jugador que hizo el movimiento

previo gana por jaque mate. En cambio, si no se encuentra atacado el rey se declarara

final por rey ahogado, es decir, por tablas.

Para ello, si recordamos en la Sección 2.5, donde hablabamos sobre la clase Game,

la máquina de estados, y las transiciones entre estos (apartado 2.5.2), podemos añadir

estas comprobaciones en el estado NextTurn, para que justo antes de pasarle el turno

al siguiente jugador se compruebe si ha habido jaque mate o rey ahogado.

Aqúı podemos ver el código modificado del estado NextTurn, el cual implementa

las comprobaciones mencionadas antes:

1 Piece.Color turnColor = board.GetTurnColor ();

2
3 bool isGameOver = false;

4
5 // COMPROBACION DE JAQUE MATE/REY AHOGADO

6 List <Move > moves = MoveGeneration.GetAllLegalMovesByColor(board , turnColor);

7
8 if (moves.Count == 0)

9 {

10 if (MoveGeneration.IsKingInCheck(board , turnColor))

11 {

12 switch (turnColor)

13 {

14 case Piece.Color.White:

15 // JAQUE MATE DE LAS PIEZAS NEGRAS

36

16 break;

17 case Piece.Color.Black:

18 // JAQUE MATE DE LAS PIEZAS BLANCAS

19 break;

20 }

21 }

22 else

23 {

24 // REY AHOGADO

25 }

26
27 isGameOver = true;

28 }

29
30 if (! isGameOver)

31 {

32 // next player turn

33
34 playerToMove = turnColor == Piece.Color.White ? playerWhite : playerBlack;

35 playerToMove.NotifyTurnToMove ();

36 gameState = GameState.PlayerTurn;

37 }

38 else

39 {

40 gameState = GameState.Over;

41 }

Fragmento de código 3.13: Estado NextTurn con la comprobación de jaque mate y rey
ahogado

Por el momento, independientemente del motivo por el cual se termine el juego,

vease jaque mate o rey ahogado simplemente transicionamos al estado Over. Más

adelante, cuando implementemos la interfaz de usuario señalizaremos con un texto

el motivo por el cual ha terminado el juego.

3.3. Tablas por triple repetición

En ajedrez, las tablas por triple repetición se producen cuando la misma posición

exacta de las piezas en el tablero aparece tres veces durante el transcurso de una partida.

Para que una posición sea considerada idéntica, se deben cumplir ciertas condiciones:

1. Las mismas piezas del mismo color ocupan las mismas casillas.

2. Las mismas posibles jugadas están disponibles para cada jugador (es decir,

los derechos de enroque y captura al paso no deben haber cambiado entre las

repeticiones).

Cuando se repite la misma posición por tercera vez, cualquiera de los jugadores

puede reclamar tablas. Esta regla está diseñada para evitar partidas interminables y

37

es una de las formas en que una partida puede terminar en empate. Por simplificación

consideraremos tablas automaticamente una vez se repitan tres posiciones.

Para implementar esta regla necesitamos obtener y comparar estas posiciones

incluyendo el estado del tablero. Para ello existen diferentes técnicas que se explican a

continuación.

3.3.1. Notación de Forsyth-Edwards

La notación Forsyth Edwards1 (FEN) es un estándar para describir una posición

espećıfica en una partida de ajedrez. Esta notación es esencial para registrar y

comunicar posiciones de ajedrez de manera precisa y concisa. Una cadena FEN la

expresaremos con cuatro campos separados por espacios: la posición de las piezas, el

turno de juego, los derechos de enroque y la posibilidad de captura al paso. Aunque

existen más parámetros, los omitiremos por simplicidad puesto que no los hemos

considerado relevantes ya que están ligados a reglas que no hemos implementado.

1. Posición de las piezas:

− Este campo describe la ubicación de todas las piezas en el tablero, fila por

fila desde la octava fila (fila superior) hasta la primera fila (fila inferior).

− Las piezas se representan con letras: p (peón), r (torre), n (caballo), b (alfil),

q (dama), k (rey). Las letras mayúsculas representan piezas blancas y las

minúsculas representan piezas negras.

− Las casillas vaćıas se representan con números del 1 al 8, indicando cuántas

casillas vaćıas hay consecutivamente.

2. Turno de juego:

− Representado por una w si es el turno de las blancas o una b si es el turno

de las negras.

3. Derechos de enroque:

− Representado por las letras K (enroque corto blanco), Q (enroque largo

blanco), k (enroque corto negro) y q (enroque largo negro). Si ninguno de

los bandos puede enrocar, se usa un -.

4. Posibilidad de captura al paso:

1https://en.wikipedia.org/wiki/ForsythEdwards_Notation

38

https://en.wikipedia.org/wiki/Forsyth–Edwards_Notation

− Representado por la notación de la columna en la que es posible una captura

al paso. Si no hay posibilidad de captura al paso, se usa un -.

Veamos un ejemplo con la posición inicial del tablero:

Figura 3.9: Posición inicial de un tablero de ajedrez

Cuya notación FEN correspondeŕıa a:

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq -

Para poder construir esta cadena FEN, tendŕıamos que recorrer todas las filas del

tablero en busca de las piezas que en él se encuentran, y consultar el estado del tablero

para conocer el turno actual, si se puede realizar una captura al paso y en que casilla,

y si estan disponibles los derechos de enroque.

Con la cadena FEN generada, ya podŕıamos realizar comparaciones entre posiciones

y verificar si una misma posición se ha repetido tres veces durante el juego. No obstante,

generar una cadena FEN es un proceso relativamente lento ya que requiere revisar todo

el tablero en busca de las piezas. Esto no seŕıa relevante para este caso espećıfico, ya

que generaŕıamos una sola cadena por cada movimiento en el tablero para su posterior

comparación. Sin embargo, cuando desarrollemos la IA, necesitaremos producir muchas

más cadenas y requeriremos que el proceso sea lo más rápido posible, por lo que este

método resultaŕıa inviable.

39

3.3.2. Zobrist Hashing

Zobrist hashing es una técnica utilizada en programación de juegos de ajedrez (y

otros juegos de tablero) para representar de manera eficiente y rápida la posición en

el tablero. Fue inventada por Albert Zobrist en 1970 y se utiliza principalmente para

crear claves únicas (hashes) que representan las posiciones del tablero [15].

En este método, transformamos una posición del tablero en una clave hash,

en nuestro caso un número de 64 bits (unsigned long). Esto genera un pequeño

inconveniente: un número de 64 bits tiene 264 combinaciones posibles, lo que significa

que podemos representar hasta 264 posiciones diferentes de un tablero de ajedrez. No

obstante, las combinaciones posibles de un tablero de ajedrez son mucho mayores,

lo que significa que es posible que diferentes posiciones del tablero generen el mismo

hash. Con un número de 64 bits podemos esperar una colisión cada 232 o 4 billones de

posiciones [15]. Aunque no podemos evitar este problema de colisiones, en la práctica

no suele ser un inconveniente significativo.

Su funcionamiento es el siguiente:

1. Generación de Números Aleatorios:

− Se crea una tabla de números aleatorios. Cada pieza en cada posición del

tablero tiene un número aleatorio asociado.

− Para un tablero de ajedrez estándar, se necesitan números aleatorios para

12 tipos de piezas (6 para blancas y 6 para negras) y 64 casillas del tablero.

Esto da un total de 768 números aleatorios (12 piezas × 64 casillas).

Aqúı podemos ver el código que pre-genera estos números aleatorios para cada

una de las 64 casillas y a su vez por cada una de las 12 piezas, los cuales se

almacenan en una tabla a la que hemos llamado pieceKeys :

1 ulong[,] pieceKeys = new ulong [64, 12];

2
3 for (int i = 0; i < 64; i++)

4 {

5 for (int j = 0; j < 12; j++)

6 {

7 pieceKeys[i, j] = (ulong)random.NextInt64 ();

8 }

9 }

Fragmento de código 3.14: Números aleatorios para las piezas

También se generan numeros aleatorios asociados al color del turno, a la captura al

paso y a los derechos de enroque por cada color siguiendo el mismo procedimiento.

40

2. Cálculo del Hash Inicial:

− Se inicializa el valor del hash en cero.

− Para cada pieza en el tablero, se toma el número aleatorio correspondiente

a esa pieza en su posición actual y se realiza una operación XOR con el

valor del hash.

− La operaciónXOR asegura que cada pieza y posición contribuyan de manera

única al valor del hash, y que la adición y eliminación de piezas sean

operaciones reversibles.

− Tambien se realiza la operacion XOR con los números aletorios

correspondientes al color del turno actual, a los derechos de enroque que

son posibles por ambos colores y en caso de que esté disponible el número

correspondiente a la captura al paso.

Aqúı podemos ver el código de la función GetKey con la que podemos obtener

el hash de una posición del tablero utilizando las tablas de numeros aleatorios

precalculadas anteriormente:

1 public static ulong GetKey(Board board)

2 {

3 ulong hashKey = 0;

4
5 // piezas blancas

6 foreach (int i in board.GetPiecesIndices(Piece.Color.White))

7 {

8 Piece piece = board.GetPiece(i);

9
10 hashKey ^= pieceKeys[i, (int)(piece.type - 1)];

11 }

12
13 // piezas negras ...

14
15 // board state

16 ref readonly BoardState boardState = ref board.GetBoardState ();

17
18 // captura al paso

19 if (boardState.IsEnPassantAvailable ())

20 {

21 hashKey ^= enPassantKey;

22 }

23
24 // color del turno

25
26 hashKey ^= turnColorKeys [(int)boardState.GetTurnColor () - 1];

27
28 // enroque ...

29
30 return hashKey;

31 }

41

Fragmento de código 3.15: Función GetKey

Con esta función, calcularemos el hash del tablero únicamente la primera vez que

se inicie el juego. Posteriormente, actualizaremos el hash conforme se realicen

movimientos en el tablero, aprovechando las propiedades de la operación XOR.

3. Actualización del Hash:

− Cuando una pieza se mueve, el hash se actualiza realizando una operación

XOR para eliminar la pieza de su posición inicial y otra operación XOR

para colocarla en su nueva posición. Igualmente sucede cuando cambian los

derechos de enroque, el color del turno o la captura al paso.

− Esto permite actualizar el hash sin tener que recalcularlo entero, lo que es

más eficiente y rápido.

A la clase Board que vimos en la sección 2.3 le añadiremos un atributo que

llamaremos zobrist el cual corresponderá al hash del tablero y el cual irá

cambiando a la vez que se realizan movimientos. Veamos las modificaciones que

hemos realizado a la hora de colocar piezas en el tablero:

1 private void SetPiece(int index , Piece piece)

2 {

3 // obtenemos la pieza que habia antes en el tablero

4 Piece piecePrevious = pieces[index];

5
6 if (piecePrevious.type != Piece.Type.None)

7 {

8 // "quitamos" la pieza que habia antes del hash

9 zobrist ^= ZobristHashing.GetPieceKey(index , piecePrevious);

10 }

11
12 // la nueva pieza

13 if (piece.type != Piece.Type.None)

14 {

15 // "colocamos" la nueva pieza en el hash

16 zobrist ^= ZobristHashing.GetPieceKey(index , piece);

17 }

18
19 // ponemos la pieza en el tablero

20 pieces[index] = piece;

21 }

Fragmento de código 3.16: Función SetPiece modificada

De esta manera vamos actualizando el hash a la hora de mover las piezas. La

función GetPieceKey de la clase estática ZobristHashing simplemente devuelve

el número aleatorio correspondiente a la pieza seleccionada para la casilla

42

seleccionada. De manera similar, debe actualizarse cuando cambia el turno, aśı

como los derechos de enroque y la captura al paso.

Finalmente, para llevar a cabo el seguimiento de todas las posiciones que se van

produciendo en la partida y poder comprobar si se produce una triple repetición,

utilizaremos un diccionario o HashMap. Este diccionario al que hemos llamado

zobristHistory, almacena las posiciones del tablero utilizando una clave hash de 64

bits (ulong) generada mediante Zobrist hashing. El valor asociado a cada clave es un

entero (int) que representa el número de veces que esa posición ha aparecido en la

partida.

1 Dictionary <ulong , int > zobristHistory = new Dictionary <ulong , int >();

Fragmento de código 3.17: Diccionario zobristHistory

Entonces cada vez que realizamos un movimiento tenemos que buscar si ese hash

ya existe en el diccionario. Si ya existe incrementamos el valor asociado a esa clave en

uno. Esto indica que la posición ha aparecido nuevamente. Si no creamos la entrada en

el diccionario y colocamos el número de veces que ha aparecido la posición a 1.

1 // ... se realiza el movimiento y se actualiza el hash

2
3 // modificamos el diccionario

4 if (zobristHistory.ContainsKey(zobrist))

5 {

6 zobristHistory[zobrist]++;

7 }

8 else

9 {

10 zobristHistory[zobrist] = 1;

11 }

Fragmento de código 3.18: Modificación del diccionario zobristHistory

Para terminar, antes de pasar el turno al siguiente jugador tenemos que comprobar

entonces si la posicion actual se ha repetido 3 veces. Para ello añadimos la siguiente

comprobación el estado NextTurn de la clase Game (sección 2.5) despues de la

comprobación de jaque mate y rey ahogado.

1 else if (board.GetRepetitions () >= 3)

2 {

3 isGameOver = true;

4 }

Fragmento de código 3.19: Comprobación de triple repetición para el estado NextTurn

La función GetRepetitions de la clase Board únicamente devuelve el número de

veces que se ha repetido la posición actual. Si se diese el caso el juego terminaŕıa y se

transicionaŕıa al estado Over.

43

3.4. Regla de los cincuenta movimientos

La regla de los cincuenta movimientos establece que una partida acaba en tablas si

cada jugador ha hecho los últimos 50 movimientos consecutivos sin que haya habido

ningún movimiento de peón ni captura de pieza.

Para ello tendremos que modificar la función MakeMove de la clase Board para

que adicionalmente incluya un conteo de los movimientos en los que no se ha realizado

ninguna captura o movimiento de peón, reseteandolo a 0 en caso contrario. Para ello

haremos uso de la variable halfMoveCount que vimos cuando hablabamos acerca de la

clase BoardState.

1 // ...

2
3 // update half move count

4 int halfMoveCount = currentBoardState.GetHalfMoveCount () + 1;

5
6 if (move.pieceSource.type == Piece.Type.Pawn ||

7 move.pieceTarget.type != Piece.Type.None)

8 {

9 halfMoveCount = 0;

10 }

11
12 currentBoardState.SetHalfMoveCount(halfMoveCount);

Fragmento de código 3.20: Actualizamos el conteo de medios movimientos en la función
MakeMove

Para terminar, antes de pasar el turno al siguiente jugador tenemos que comprobar

entonces si la se han realizado por lo menos 100 medios movimientos o lo que es

equivalente 50 movimientos totales. Para ello añadimos la siguiente comprobación el

estado NextTurn de la clase Game (sección 2.5) despues de la comprobación de jaque

mate, rey ahogado y tablas por triple repetición.

1 else if (board.GetHalfMoveCount () >= 100)// fifty move rule

2 {

3 isGameOver = true;

4 }

Fragmento de código 3.21: Comprobación de triple repetición para el estado NextTurn

La función GetHalfMoveCount de la clase Board únicamente devuelve el número de

medios movimientos, correspondiente al almacenado en el estado actual del tablero.

44

Caṕıtulo 4

Diseño y desarrollo de la interfaz de
usuario

Hasta el momento, todo lo que hemos desarrollado forma parte de la estructura y

de la lógica de nuestro juego de ajedrez. No obstante, para interactuar y efectuar

movimientos como “jugadores humanos”, es necesario desarrollar una interfaz de

usuario que nos permita realizar una representación gráfica o visual del tablero de

ajedrez y sus piezas, y que además nos facilite la realización de movimientos mediante

la interacción con ella.

4.1. Representación gráfica del juego

La clase Board, que vimos en la Sección 2.3, representa la lógica y el estado del

tablero, contiene las piezas, y nos permit́ıa realizar movimientos. Lo que haremos será

crear una interfaz que tome dicho tablero y lo muestre gráficamente en la pantalla.

Para ello haremos uso de los objetos o nodos Sprite2D [16] de Godot, los cuales sirven

para mostrar una imagen o textura en la pantalla en una posición determinada.

Como en este TFG nuestro objetivo no es enseñar cómo utilizar Godot, puesto que es

simplemente una herramienta más que hemos utilizado, no explicaremos en profundidad

aspectos especificos de este motor, sino que mostraremos una perspectiva global, salvo

que utilicemos alguna funcionalidad muy espećıfica que requiera de explicación.

4.1.1. La clase BoardGraphics

La clase BoardGraphics extenderá de la clase Node2D de Godot, ya que su función

principal es manejar la representación gráfica del tablero de ajedrez y las piezas

dentro de un entorno 2D. Al utilizar la clase Node2D como base permite que la

clase BoardGraphics tenga acceso directo a funcionalidades espećıficas del entorno 2D

en Godot, tales como la posición dentro de la pantalla. Esta clase se encargará de

45

conectarse con el tablero y renderizar los sprites de este mismo y de las piezas que

se encuentren en él. También se encargará de dibujar los indicadores que revelan los

movimientos posibles que tiene una pieza, aśı como indicar cuál ha sido el último

movimiento.

La estructura simplificada seŕıa la siguiente:

BoardGraphics: Node2D

- board: Board

- piecesSprites: Sprite2D[64]

- hintsSprites: Sprite2D[64]

- isFlipped: bool

+ _Ready()

+ ConnectToBoard(board: Board)

- CreateGraphics()

- SetPieceSprite(pieceSprite: Sprite2D, piece: Piece)

+ UpdateGraphics()

+ SetHintMoves(moves: List<Move>)

+ _Draw()

+ SetPieceSpritePosition(index: int, position: Vector2)

+ TryGetSquareIndexFromCoords(coords: Vector2, index: out int): bool

Figura 4.1: Diagrama de clases de la clase BoardGraphics

Veamos una explicación detallada de cada una de las partes que la componen.

El tablero

Esta clase contiene una referencia al tablero, el cual se conecta mediante la función

ConnectToBoard. Esto nos permitirá poder acceder a toda la información relacionada

con el tablero, como las piezas y cual ha sido el último movimiento realizado.

1 public void ConnectToBoard(Board board)

2 {

3 this.board = board;

4 }

Fragmento de código 4.1: Función ConnectToBoard

Para la representación gráfica del tablero se ha decidido utilizar un nodo Sprite2D,

el cual se ha establecido como hijo del nodo BoardGraphics, al cual se le ha asignado

la imagen de las casillas de un tablero y se ha colocado en el centro de la ventana

utilizando el editor de Godot.

46

Figura 4.2: Editor de Godot con la imagen del tablero

El inspector del editor de Godot presenta la jerarqúıa de estos nodos, podemos ver

como el nodo Game correspondiente a la clase Game, que vimos en el apartado 2.5, es

la ráız del árbol de nodos y que el nodo BoardGraphics es hijo de este, y que a su vez

tiene como hijo el nodo sprite BoardSquares, que contiene la imagen del tablero.

Figura 4.3: Inspector con el arbol de nodos

Las piezas

Para dibujar las piezas, contamos con un vector de Sprite2D de dimensión 64 al

que hemos llamado piecesSprites. Cada uno de estos sprites se colocará en la posición

correspondiente a la casilla del tablero a la que pertenece y en función de la pieza que

se encuentre actualmente en el tablero se mostrará una imagen u otra. En el caso en

el que no exista ninguna pieza en esa casilla, lo que haremos será ocultar ese sprite.

Para representar las piezas hemos usado una única imagen la cual contiene todos

los tipos de pieza para ambos colores. Esto nos ahorra de disponer de una imagen

por cada pieza y color, pero también nos introduce un problema, ya que nos impide

47

asignar directamente la imagen de la pieza correspondiente a su respectivo sprite que

la representa. Lo que tendremos que hacer en ese caso es recortar la imagen en función

de la pieza que necesitemos como veremos a continuación.

Figura 4.4: Spritesheet de las piezas

Sabiendo que la imagen completa mide en el eje x un tamaño Width y en el eje y un

tamaño Height y que cada pieza tiene el mismo tamaño, para saber cuánto mide una

sola pieza tenemos que dividir esa dimensión entre 6 horizontalmente y 2 verticalmente,

con lo que nos quedaŕıa que la sub-imagen de una sola pieza tiene dimensión:(
Width

6

)
×
(
Height

2

)
Finalmente nos faltaŕıa calcular los offsets dentro de la imagen. Estos offsets nos

indican la posición de la sub-imagen de una pieza espećıfica dentro de la imagen

completa. Aqúı podemos ver el ejemplo si la pieza elegida hubiese sido el caballo negro.

Figura 4.5: Posición y tamaño de la pieza del caballo dentro de la imagen completa

Para calcular estos offsets seguiŕıamos las siguientes fórmulas para ambos ejes de

coordenadas:

Offsetx = nx ×
(
Width

6

)
, donde 0 ≤ nx ≤ 5

48

Offsety = ny ×
(
Height

2

)
, donde 0 ≤ ny ≤ 1

Siendo nx y ny las coordenadas expresadas en número de piezas en la que se

encuentra la sub-imagen que queremos representar. En el caso del ejemplo del caballo

negro anterior nx tendria el valor de 3 y ny el valor de 1.

De realizar todo este procedimiento se ocupa la función SetPieceSprite, aqúı

podemos ver su implementación:

1 private void SetPieceSprite(Sprite2D pieceSprite , Piece piece)

2 {

3 if (piece.type == Piece.Type.None)

4 {

5 pieceSprite.Visible = false;

6 }

7 else

8 {

9 pieceSprite.RegionRect = new Rect2(

10 pieceTextureSize.X * ((int)piece.type - 1),

11 pieceTextureSize.Y * ((int)piece.color - 1),

12 pieceTextureSize.X, pieceTextureSize.Y

13);

14 pieceSprite.Visible = true;

15 }

16 }

Fragmento de código 4.2: Función SetPieceSprite

Esta función toma como parámetros el sprite de las piezas al que queremos modificar

su apariencia y la pieza que contiene el tipo y el color que queremos que tome. En el

caso en el que el tipo sea ninguno lo que haremos será modificar la propiedad Visible

del sprite a falso, con esto lo que haremos será ocultarlo y que no se dibuje en la

pantalla. En caso contrario, modificaremos la propiedad RegionRect del sprite. Esta

propiedad indica la región que queremos renderizar dentro de una textura o imagen.

Esta propiedad es un Rect2 (Rectangulo 2d) de Godot, cuenta con 4 parámetros: offset

x, offset y, anchura y altura, que son precisamente los parámetros que hemos descrito

y calculado previamente. Estos parámetros se modifican en función del tipo y color de

la pieza. La variable pieceTextureSize es del tipo vector 2d y contiene el tamaño de la

sub-imagen de una pieza.

Puesto que el tablero va cambiando a la vez que se van realizando movimientos

necesitaremos ir actualizando la interfaz de usuario a la vez. Para ello dispondremos

de la función UpdateGraphics que llamaremos cada vez que se realice un movimiento

y se encargará de actualizar cada uno de los sprites del tablero.

49

1 public void UpdateGraphics ()

2 {

3 for (int j = 0; j < 8; j++)

4 {

5 for (int i = 0; i < 8; i++)

6 {

7 int index = i + j * 8;

8
9 // update the pieces sprites to match the ones in the board

10
11 Sprite2D pieceSprite = piecesSprites[index];

12 Piece piece = board.GetPiece(index);

13
14 SetPieceSprite(pieceSprite , piece);

15
16 Vector2 pieceSpritePosition = new Vector2(i + 0.5f, j + 0.5f);

17 pieceSprite.Position = pieceSpritePosition * squareSize;

18 }

19 }

20 }

Fragmento de código 4.3: Función UpdateGraphics

Esta función se encarga de actualizar cada sprite de las piezas con su pieza

correspondiente del tablero y recolocarlo en el centro de la casilla en el caso en el

que se haya desplazado.

Los indicadores

Seŕıa útil poder indicar al jugador qué movimientos tiene disponibles una

determinada pieza. Para ello dispondremos de una función que tome una lista de

movimientos y represente en el tablero de forma gráfica las casillas a las cuales

corresponden dichos movimientos. La función SetHintMoves hace precisamente esto

que hemos descrito, seguiremos un procedimiento similar al que vimos con los sprites

de las piezas, en este caso utilizamos el vector de sprites de dimension 64 hintsSprites.

1 public void SetHintMoves(List <Move > moves)

2 {

3 // hide previous hint moves

4 for (int i = 0; i < 64; i++)

5 {

6 hintsSprites[i]. Visible = false;

7 }

8
9 // show the new ones if not null

10 if (moves != null)

11 {

12 foreach (Move move in moves)

13 {

14 Material m = move.pieceTarget.type == Piece.Type.None ?

15 hintCircleMaterial : hintCircleWithHoleMaterial;

16

50

17 hintsSprites[move.squareTargetIndex]. Material = m;

18 hintsSprites[move.squareTargetIndex]. Visible = true;

19 }

20 }

21 }

Fragmento de código 4.4: Función SetHintMoves

Esta función se encarga primero de ocultar todos los indicadores para luego mostrar

aquellos que le hemos pasado mediante la lista de movimientos, con la diferencia de que

si la casilla se encuentra vaćıa se elige el sprite de un ćırculo relleno y si está ocupada

por una pieza se elige el sprite de un ćırculo sin relleno. Podemos ver el resultado de

esto en la imagen 4.6, la cual toma como ejemplo los movimientos posibles de la reina

blanca.

Figura 4.6: Ejemplo de los indicadores de movimiento

También añadiremos los indicadores que muestran el último movimiento realizado

en el tablero. Para ello consultaremos el último movimiento y dibujaremos dos

cuadrados amarillos, uno en la casilla en la que se encontraba la pieza antes de realizar

el movimiento y otro en la casilla a la que se ha desplazado dicha pieza. Para ello

haremos uso de la función Draw de la clase Node2D que nos proporciona Godot para

el dibujo de primitivas 2d, como por ejemplo en este caso cuadrados de color amarillo.

1 public override void _Draw()

2 {

3 // draw last move

51

4
5 if (board.TryGetLastMove(out Move lastMove))

6 {

7 int si = lastMove.squareSourceIndex % 8;

8 int sj = lastMove.squareSourceIndex / 8;

9 int ti = lastMove.squareTargetIndex % 8;

10 int tj = lastMove.squareTargetIndex / 8;

11
12 DrawRect(new Rect2(new Vector2(si, sj) * squareSize ,

13 squareSize , squareSize), hintLastMoveColor);

14 DrawRect(new Rect2(new Vector2(ti, tj) * squareSize ,

15 squareSize , squareSize), hintLastMoveColor);

16 }

17 }

Fragmento de código 4.5: Función Draw

4.2. Integrando la interfaz de usuario en el juego

Hasta ahora todo lo que hemos ido viendo de la clase BoardGraphics ha sido acerca

de su funcionalidad. Sin embargo, todav́ıa nos falta integrarla en el juego junto con el

resto de elementos. Además de implementar al jugador humano que se encargará de

controlarla, puesto que la clase BoardGraphics no hace nada por śı misma, sólo expone

una interfaz con la que podemos interactuar con ella, y decirle qué debe representar y

cuándo se debe de actualizar.

4.2.1. El jugador humano

El jugador humano se encargará de controlar la interfaz de usuario mediante la

clase BoardGraphics, que permitirá al usuario interactuar y realizar movimientos en el

tablero. El jugador humano extenderá de la clase Player que vimos en el apartado 2.4

cuando hablábamos sobre los jugadores. Sobreescribiremos el método Update de la clase

Player e implementaremos toda la funcionalidad para seleccionar piezas y moverlas en

el tablero. Para ello, dispondremos de una máquina de estados que se encargará de

todo ello.

Código de PlayerHuman

Antes de entrar en detalles sobre la máquina de estados, mostramos a continuación

el código del jugador humano (PlayerHuman).

1 using Godot;

2 using System;

3 using System.Collections.Generic;

4
5 public class PlayerHuman : Player

52

6 {

7 private enum InputState

8 {

9 Idle ,

10 Dragging ,

11 PieceSelected

12 }

13
14 // player state

15 private InputState inputState = InputState.Idle;

16
17 // board

18 private Board board;

19
20 // board graphics

21 private BoardGraphics boardGraphics;

22
23 // piece selection helpers

24 private int pieceSelectedIndex = -1; // -1 means nothing selected

25 private List <Move > pieceSelectedMoves = null;

26
27 public PlayerHuman(Board board , BoardGraphics boardGraphics)

28 {

29 // init

30 this.board = board;

31 this.boardGraphics = boardGraphics;

32 }

33
34 public override void Update ()

35 {

36 // Aqui se actualiza la maquina de estados ...

37 }

38 }

Fragmento de código 4.6: Clase PlayerHuman

La función Update en la clase PlayerHuman es de hecho el núcleo del ciclo de

actualización de la máquina de estados del jugador humano. Esta función se encarga

de determinar el estado actual del jugador y ejecutar la lógica correspondiente a ese

estado. La función Update hace esto mediante un switch que selecciona y ejecuta la

función adecuada según el estado actual (Idle, Dragging, o PieceSelected).

1 public override void Update ()

2 {

3 // handle everything related to move selection

4
5 // get the mouse coordinates

6 Vector2 mouse = boardGraphics.GetLocalMousePosition ();

7
8 // get the square the mouse is on

9 bool isOnSquare = boardGraphics.TryGetSquareIndexFromCoords(

10 mouse ,

11 out int squareIndex

12);

13
14 // state machine

53

15 switch (inputState)

16 {

17 case InputState.Idle:

18 HandlePieceSelection(squareIndex , isOnSquare);

19 break;

20 case InputState.Dragging:

21 HandleDragMovement(mouse , squareIndex , isOnSquare);

22 break;

23 case InputState.PieceSelected:

24 HandleClickMovement(squareIndex , isOnSquare);

25 break;

26 }

27 }

Fragmento de código 4.7: Función Update

Antes de ejecutarse el código correspondiente a la máquina de estados, en la

función Update se obtiene la posición actual del ratón, relativa a la posición dónde

se encuentra el tablero dentro de la pantalla, y se obtiene mediante la función

TryGetSquareIndexFromCoord en qué casilla del tablero se encuentra el ratón mediante

el parámetro de salida squareIndex. Esta función además devuelve un valor lógico

(isOnSquare) que indica si el ratón se encuentra dentro del tablero e indica por lo

tanto la validez del parámetro squareIndex. Esta serie de parámetros son comunes a

todos los estados de la máquina de estados, de ahi la razón por la cual los obtengamos

al principio.

La máquina de estados que hemos implementado se ilustra en la Figura 4.7. Esta

figura proporciona una visión clara de las transiciones entre los diferentes estados

(Idle, Dragging, PieceSelected) y cómo se gestionan estas transiciones basadas en las

interacciones del usuario. Esta máquina de estados se ocupará como hemos mencionado

antes de gestionar toda la lógica que permite al usuario interactuar con el tablero y aśı

poder realizar movimientos en este.

Estado Idle

El estado Idle se activa cuando no hay ninguna pieza seleccionada y el jugador no

está realizando ninguna acción con el ratón. Si el jugador hace clic en la pantalla se

verifica que se haya seleccionado una casilla dentro del tablero (isOnSquare) en caso de

que aśı sea entonces se verifica si la pieza que se encuentra en esa casilla corresponde con

una pieza válida (del color correspondiente al turno). En ese caso, la pieza se selecciona,

guardandonos el ı́ndice de la casilla en la variable entera pieceSelectedIndex, se calculan,

se guardan (en la variable pieceSelectedMoves) y se muestran sus movimientos legales

(boardGraphics.SetHintMoves), y se cambia el estado a Dragging.

54

Figura 4.7: Máquina de estados del jugador humano

La función que maneja e implementa la funcionalidad de este estado es

HandlePieceSelection.

1 private void HandlePieceSelection(int squareIndex , bool isOnSquare)

2 {

3 // the first frame you click

4 if (Input.IsActionJustPressed("Select"))

5 {

6 if (isOnSquare)

55

7 {

8 // get the piece

9 Piece piece = board.GetPiece(squareIndex);

10
11 // if not none then select it

12 if (piece.type != Piece.Type.None

13 && piece.color == board.GetTurnColor ())

14 {

15 // select piece

16 pieceSelectedIndex = squareIndex;

17 pieceSelectedMoves

18 = MoveGeneration.GetLegalMoves(board , squareIndex);

19
20 // set hint moves

21 boardGraphics.SetHintMoves(pieceSelectedMoves);

22
23 // change state

24 inputState = InputState.Dragging;

25 }

26 }

27 }

28 }

Fragmento de código 4.8: Función HandlePieceSelection

Estado Dragging

Este estado se activa cuando una pieza ha sido seleccionada y el jugador la

está arrastrando. Mientras el ratón está presionado, el sprite de la pieza que está

seleccionada se coloca en la posición del cursor del ratón mediante la función

SetPieceSpritePosition que vimos en la clase BoardGraphics. Cuando el jugador suelta

el ratón (IsActionJustReleased(”Select”)) se comprueba primero si se ha soltado en una

casilla dentro del tablero (isOnSquare). En ese caso, se comprueba si la casilla elegida

para efectuar el movimiento corresponde a uno de los movimientos legales de la pieza

que tenemos seleccionada. Esto lo conseguimos probando con todos los movimientos de

dicha pieza que habiamos seleccionado (almacenados en la variable pieceSelectedMoves)

y comprobando que la casilla destino del movimiento (move.squareTargetIndex)

corresponde con la casilla que habiamos seleccionado (squareIndex). En ese caso,

elegimos ese movimiento disparando el evento onMoveChosen mediante la llamada

a la función OnMoveChosen y pasándole como parámetro el movimiento elegido. Si

recordamos cuando hablabamos sobre los jugadores y la clase Game (secciones 2.4 y

2.5) esto provocará que se notifique a la clase Game y sea ésta finalmente la que juegue

el movimiento elegido en el tablero. Finalmente, el estado vuelve a Idle. En el caso

en el que el que no se haya seleccionado una casilla en el tablero o el movimiento no

sea válido, se actualizan los gráficos del tablero (esto provoca que el sprite de la pieza

seleccionada vuelva a su posición original) y el estado actual cambia a PieceSelected.

56

La función que maneja e implementa la funcionalidad de este estado es

HandleDragMovement.

1 private void HandleDragMovement(Vector2 mouse , int squareIndex , bool isOnSquare)

2 {

3 // move the piece selected to the mouse position

4 boardGraphics.SetPieceSpritePosition(pieceSelectedIndex , mouse);

5
6 // if stop holding

7 if (Input.IsActionJustReleased("Select"))

8 {

9 if (isOnSquare)

10 {

11 // check for a valid move

12 foreach (Move move in pieceSelectedMoves)

13 {

14 if (move.squareTargetIndex == squareIndex)

15 {

16 // chose the move (no animation)

17 ChoseMove(move , false);

18
19 // reset board state

20 inputState = InputState.Idle;

21
22 // move selected

23 return;

24 }

25 }

26 }

27
28 // update graphics

29 boardGraphics.UpdateGraphics ();

30
31 // go to piece selected state

32 inputState = InputState.PieceSelected;

33 }

34 }

Fragmento de código 4.9: Función HandleDragMovement

Estado PieceSelected

Este estado se utiliza cuando el jugador ha seleccionado una pieza pero no la está

arrastrando. El jugador puede hacer clic en una casilla para intentar mover la pieza

seleccionada. Si el jugador hace clic en una casilla válida para mover la pieza, se

realiza el movimiento y el estado regresa a Idle. Si el jugador selecciona una nueva

pieza del mismo color, se actualizan los movimientos posibles y el estado cambia a

Dragging de nuevo. Si el jugador hace clic en una casilla no valida, el estado regresa

a Idle y se desactivan las sugerencias de movimientos pasándole null a la función

boardGraphics.SetHintMoves.

57

La función que maneja e implementa la funcionalidad de este estado es

HandleClickMovement.

1 private void HandleClickMovement(int squareIndex , bool isOnSquare)

2 {

3 // the first frame you click

4 if (Input.IsActionJustPressed("Select"))

5 {

6 if (isOnSquare)

7 {

8 // check for a valid move

9 foreach (Move move in pieceSelectedMoves)

10 {

11 if (move.squareTargetIndex == squareIndex)

12 {

13 // select the move

14 ChoseMove(move , true);

15
16 // reset board state

17 inputState = InputState.Idle;

18
19 // move selected

20 return;

21 }

22 }

23
24 // if the move is not legal then check if another piece is selected

25 // get the piece

26 Piece piece = board.GetPiece(squareIndex);

27
28 // if not none then select it

29 if (piece.type != Piece.Type.None && piece.color == board.GetTurnColor ())

30 {

31 // select piece

32 pieceSelectedIndex = squareIndex;

33 pieceSelectedMoves = MoveGeneration.GetLegalMoves(board , squareIndex);

34
35 // set hint moves

36 boardGraphics.SetHintMoves(pieceSelectedMoves);

37
38 // change state to holding the piece

39 inputState = InputState.Dragging;

40
41 // exit

42 return;

43 }

44 }

45
46 // disable hint moves

47 boardGraphics.SetHintMoves(null);

48
49 // go back to idle state

50 inputState = InputState.Idle;

51 }

52 }

Fragmento de código 4.10: Función HandleClickMovement

58

4.2.2. Integración con la clase Game

Finalmente nos faltaŕıa integrar toda la interfaz de usuario con el núcleo de nuestro

juego, es decir, con la clase Game. Conectaremos la interfaz con el tablero y la iremos

actualizando, a la vez que se realizan los movimientos.

En la función Ready (Código 2.8) de la clase Game, añadiremos la conexión

de la interfaz gráfica (BoardGraphics) con el tablero (Board) usando la función

ConnectToBoard. Luego, actualizaremos la interfaz para que los sprites de las piezas

coincidan con las piezas del tablero. Adicionalmente, ahora que tenemos desarrollado

al jugador humano podemos hacer que ambos jugadores, blanco y negro, sean del tipo

PlayerHuman lo que nos permitirá poder jugar contra otra persona o con nosotros

mismos para probar que todo lo que hemos ido programando funciona correctamente.

1 public override void _Ready ()

2 {

3 // init the board and load the fen

4 board = new Board ();

5 board.LoadFenString(Board.StartFEN);

6
7 // connect the board graphical representation with the board itself

8 boardGraphics.ConnectToBoard(board);

9
10 // update the board graphics

11 boardGraphics.UpdateGraphics ();

12
13 // creamos los jugadores

14 playerWhite = new PlayerHuman(board , boardGraphics);

15 playerBlack = new PlayerHuman(board , boardGraphics);

16
17 // nos suscribimos a los eventos de ambos jugadores

18 playerWhite.onMoveChosen += OnMoveChosen;

19 playerBlack.onMoveChosen += OnMoveChosen;

20
21 // comenzamos en el estado NextTurn

22 gameState = GameState.NextTurn;

23 }

Fragmento de código 4.11: Conexión entre el tablero y la interfaz de usuario

En la función OnMoveChosen (Código 2.10), además de realizar el movimiento en

el tablero, añadiremos la actualización de la interfaz de usuario.

1 private void OnMoveChosen(Move move)

2 {

3 // make the move

4 board.MakeMove(move);

5
6 // update ui

7 boardGraphics.SetHintMoves(null);

8 boardGraphics.UpdateGraphics ();

9

59

10 // change state

11 gameState = GameState.NextTurn;

12 }

Fragmento de código 4.12: Actualización de la interfaz de usuario

Con esto concluiŕıa el desarrollo de la interfaz de usuario, permitiendo a los

jugadores interactuar de manera intuitiva y fluida con el tablero de ajedrez.

60

Caṕıtulo 5

Desarrollo de la inteligencia
artificial

El desarrollo de una inteligencia artificial (IA) para un juego de ajedrez es una

tarea que combina conceptos avanzados de algoritmos de búsqueda, evaluación de

posiciones y optimización de recursos computacionales [3]. En este caṕıtulo, se explorará

la implementación de una IA para ajedrez basada principalmente en el algoritmo

minimax [17, 18, 19], y se detallarán una serie de mejoras que incrementaran su

eficiencia y rendimiento.

5.1. Función de evaluación del tablero

Antes de adentrarnos en los algoritmos de búsqueda, es esencial contar con una

función de evaluación del tablero que permita a la IA determinar la calidad de una

posición dada de forma aproximada. Esta función se encargará de asignar un valor

numérico a una posición del tablero determinada de forma estática.

Dado que cada pieza en el ajedrez es diferente provoca que no todas valgan lo

mismo. Por ejemplo, una reina es mucho mas valiosa que un peón o un caballo. Por

esta razón les vamos a asignar diferentes valores que reflejarán cuán valiosas son. La

tabla 5.1 refleja los valores que hemos elegido y que estan basados en los valores que

hemos encontrado en la Chess Programming Wiki [20].

Pieza Valor
Peón 100

Caballo 300
Alfil 320
Torre 500
Reina 900

Tabla 5.1: Valores de las piezas de ajedrez

61

Al rey no lo hemos incluido puesto que no tiene valor propiamente dicho. El valor

del rey no se puede cuantificar de la misma manera que las otras piezas puesto que su

importancia es absoluta y esencial para la continuidad del juego.

Con respecto al posicionamiento de las piezas, es evidente que una pieza gana o

pierde valor en función de la posición en la que se encuentre colocada en el tablero,

con lo que tendremos que tener esto también en cuenta a la hora de valorar las piezas.

Veamos un ejemplo:

En la siguiente imagen de un tablero, observamos dos caballos: uno está en una

casilla central y el otro en una esquina. Esto resulta en que el caballo de la esquina

controle menos casillas que el que está en el centro, lo que nos lleva a concluir que el

caballo de la esquina es menos efectivo o no tan valioso como el del centro.

Figura 5.1: Ejemplo del valor de la posicion del caballo

Para tener en cuenta la posicion dentro del tablero para las piezas, nos vamos a crear

una serie de tablas para cada tipo de pieza, las cuales añadan o resten valor en función

de la casilla en la que se encuentre dicho tipo de pieza. Estas tablas están basadas

en los valores que hemos obtenido de [21], y corresponden a los bonuses por casilla.

Si representamos estas tablas de forma que cuanto mayor sea el bonus coloreamos el

cuadrado de un azul más claro que cuanto menor sea el bonus, podemos visualizar

fácilmente las mejores posiciones para cada tipo de pieza en el tablero.

62

Figura 5.2: Tabla del caballo Figura 5.3: Tabla del alfil

Figura 5.4: Tabla de la reina Figura 5.5: Tabla del peón

Figura 5.6: Tabla de la torre Figura 5.7: Tabla del rey

63

− Caballo: Un caballo en el centro tiene más movilidad y control sobre más casillas,

por lo que es más valioso que uno en una esquina.

− Alfil: Los alfiles son más efectivos en diagonales largas y abiertas, por lo que su

valor aumenta en posiciones donde pueden moverse libremente.

− Reina: Dado que la reina es la pieza más poderosa, su valor es alto en casi todas

las posiciones, pero especialmente en el centro donde puede controlar más casillas.

− Peón: Los peones son más valiosos cuando están cerca de promocionarse, es decir,

en las filas más avanzadas.

− Torre: Las torres son más efectivas en columnas abiertas y en la séptima fila,

donde pueden atacar las piezas del oponente.

− Rey: La seguridad del rey es crucial, por lo que su valor aumenta en posiciones

seguras y protegidas.

Las tablas que hemos visto correspondes a las tablas para las piezas blancas. Para

las piezas negras se usan las mismas tablas pero rotadas 180 grados.

Para evaluar el tablero, contaremos el valor de todas las piezas blancas, sumando

o restando los bonos de la casilla donde se encuentran, según las tablas previamente

mencionadas. Esta será la puntuación de las blancas. Luego, repetiremos el proceso con

las piezas negras para obtener su puntuación. Con ambas puntuaciones, restaremos la

puntuación de las negras a la puntuación de las blancas. Una puntuación positiva

indicará que las blancas se encuentran en una mejor posición, mientras que una

puntuación negativa indicará que son las negras las que se encuentran en una mejor

posición.

1 // evaluate board

2 public static int EvaluateBoard(Board board)

3 {

4 int materialWhite = CountMaterial(board , Piece.Color.White);

5 int materialBlack = CountMaterial(board , Piece.Color.Black);

6
7 return materialWhite - materialBlack;

8 }

9
10 // count material

11 private static int CountMaterial(Board board , Piece.Color color)

12 {

13 int count = 0;

14
15 foreach (int index in board.GetPiecesIndices(color))

16 {

64

17 Piece piece = board.GetPiece(index);

18
19 count += GetPieceValue(piece.type) +

20 PieceTables.Read(PieceTables.GetTable(piece.type), index , color);

21 }

22
23 return count;

24 }

Fragmento de código 5.1: Evaluación del tablero

La función EvaluateBoard calcula la puntuación de la posición del tablero. Para ello

hace uso de la función CountMaterial, que se encarga de contar la puntuación del color

elegido, para ello se obtienen todas las piezas de dicho color y su posición dentro del

tablero y se van sumando su valor con su correspondiente bonus de forma acumulativa.

La función GetPieceValue devuelve los valores vistos en la tabla 5.1 en función del

tipo de pieza. La función PieceTables.Read devuelve el bonus correspondiente de la

tabla de dicha pieza en función de la casilla en la que se encuentra. La función

PieceTables.GetTable devuelve la tabla de bonuses para el tipo de pieza. Aqúı podemos

ver el código de ambas funciones:

1 // read value from a table

2 public static int Read(int[] table , int index , Piece.Color color)

3 {

4 switch (color)

5 {

6 case Piece.Color.White: return table[index];

7 case Piece.Color.Black: return table [63 - index];

8 }

9
10 return 0;

11 }

12
13 // get piece table

14 public static int[] GetTable(Piece.Type type)

15 {

16 switch (type)

17 {

18 case Piece.Type.Pawn:

19 return PawnTable;

20 case Piece.Type.Knight:

21 return KnightTable;

22 case Piece.Type.Bishop:

23 return BishopTable;

24 case Piece.Type.Rook:

25 return RookTable;

26 case Piece.Type.Queen:

27 return QueenTable;

28 case Piece.Type.King:

29 return KingTable;

30 }

31
32 return null;

65

33 }

Fragmento de código 5.2: Función Read y GetTable

5.2. Algoritmo de búsqueda: minimax

El algoritmo minimax [19] es una técnica fundamental en la teoŕıa de juegos y la

inteligencia artificial, utilizada para determinar el movimiento óptimo en juegos de dos

jugadores, como el ajedrez.

5.2.1. Funcionamiento del algoritmo

El algoritmo minimax se basa en la construcción de un árbol de decisiones que

representa todos los posibles movimientos, desde la posición actual hasta los estados

terminales del juego. Cada nodo del árbol representa un estado del juego, y las ramas

representan los movimientos posibles. Veamos su funcionamiento:

− Generación del árbol de juego: Se genera un árbol que incluye todos los

movimientos posibles, desde la posición actual hasta los estados terminales

(victoria, derrota o empate). En otros juegos, como por ejemplo el 3 en raya, es

posible generar el árbol completo del juego desde una posición dada, puesto que

el número de combinaciones posibles de jugadas no es muy elevado. Sin embargo,

para el caso del ajedrez no es posible generar el árbol entero, puesto que estamos

hablando de una cantidad extremadamente grande de combinaciones posibles. Lo

que haremos será generar el árbol hasta una profundidad determinada.

− Evaluación de nodos terminales: Cada nodo terminal se evaluará utilizando

la función de evaluación previamente desarrollada, que asigna un valor numérico

a la posición.

− Propagación de valores: Los valores de los nodos terminales se propagan hacia

arriba en el árbol. En cada nivel del árbol, los jugadores alternan entre maximizar

su ganancia (jugador MAX) y minimizar la ganancia del oponente (jugador MIN).

Veamos un ejemplo:

66

Figura 5.8: Arbol minimax 1

Para este ejemplo, imaginémonos que sólo podemos escoger entre 2 posibles

movimientos para simplificar. Comenzaremos con el turno de las blancas, representado

por el nodo blanco que corresponde a la ráız del árbol. Al tener dos movimientos

posibles representados por las dos ĺıneas grises, llegamos a 2 estados posibles en el que

es el turno de las negras, y continuamos con el árbol un par de iteraciones más, hasta

llegar a la profundidad deseada, en este caso 3, para aśı formar el árbol que vemos en

la figura 5.8.

65

Figura 5.9: Arbol minimax 2

Una vez que hemos llegado a la profundidad deseada pasamos a evaluar las

posiciones usando una función de evaluación. Imaginemos que el resultado de la función

de evaluación devuelve un valor que cuanto más negativo es, mejor es la posición para

las negras, mientras que cuanto más positivo es, mejor es para las blancas. Esto quiere

decir que el jugador negro va a intentar minimizar mientras que el jugador blanco

intentará maximizar. En el caso de nuestro ejemplo, los dos primeros nodos terminales

resultan con una puntuación de -1 y 3 como podemos ver en la figura 5.9.

67

65

Figura 5.10: Arbol minimax 3

Una vez que tenemos evaluados ambos nodos terminales, como en el turno anterior

era el turno de las blancas y estas buscan una puntuación cuanto mayor mejor, es

decir, están maximizando, escogerán el movimiento que lleva a la puntuación de 3,

como podemos ver en la figura 5.10.

65

Figura 5.11: Arbol minimax 4

Repetimos lo mismo para la otra bifurcación de la primera rama del árbol.

68

65

Figura 5.12: Arbol minimax 5

Ahora seŕıa el turno de las negras, y estaŕıan entre dos decisiones. Elegir el nodo

que tiene como puntuación un 3 o el que tiene un 5. Como las negras quieren cuanta

menos puntuación mejor, es decir, están minimizando, elegirán el movimiento que les

lleva al estado de puntuación 3.

65

Figura 5.13: Arbol minimax 6

Repetimos este proceso con el resto del árbol, maximizando y minimizando,

dependiendo del turno y podemos ver el camino seleccionado. En el nodo ráız, que

seŕıa el actual y a partir del cual se ha calculado el árbol de decisiones, las blancas

(turno actual) elegiŕıan el movimiento que les lleva por la rama de la izquierda, como

podemos ver en la figura 5.13.

Aqúı podemos ver la implementación en pseudocodigo del algoritmo minimax:

1 int maxi(int depth) {

2 if (depth == 0) return evaluate ();

3 int max = -infinity;

4 for (all moves) {

69

5 makeMove(move);

6 score = mini(depth - 1);

7 undoMove ();

8 if(score > max)

9 max = score;

10 }

11 return max;

12 }

13
14 int mini(int depth) {

15 if (depth == 0) return -evaluate ();

16 int min = +infinity;

17 for (all moves) {

18 makeMove(move);

19 score = maxi(depth - 1);

20 undoMove ();

21 if(score < min)

22 min = score;

23 }

24 return min;

25 }

Fragmento de código 5.3: Pseudocodigo minimax [19]

Se utilizan 2 subrutinas, una para el jugador que minimiza y otra para el jugador

que maximiza, y se van llamando recursivamente de forma que se van alternando. Se

comienza con una profundidad determinada y se va decrementando a lo largo que se

va profundizando en el árbol, una vez que la profundidad llegue a 0, es decir, hasta

los nodos terminales, se evalúa el tablero y se obtiene la puntuación. Si beneficia a las

blancas, el jugador que maximiza, resultará en una evaluación positiva, mientras que

si beneficia a las negras, el jugador que minimiza, será negativa.

Nosotros, sin embargo, vamos a implementar una variante llamada negamax [22, 23],

que es una manera común de implementar el algoritmo minimax para juegos como el

ajedrez, ya que no necesita de ambas subrutinas. Aqúı podemos ver la implementación

en pseudocodigo:

1 int negaMax(int depth) {

2 if (depth == 0) return evaluate ();

3 int max = -infinity;

4 for (all moves) {

5 makeMove(move);

6 score = -negaMax(depth - 1);

7 undoMove(move);

8 if(score > max)

9 max = score;

10 }

11 return max;

12 }

Fragmento de código 5.4: Pseudocodigo negamax [23]

70

Funciona de la misma manera que la implementación pura del algoritmo minimax,

sólo que en vez de maximizar y minimizar en función del jugador, vamos a maximizar

siempre y cada vez que llamemos a la función de manera recursiva negaremos la

puntuación del rival. Para que esto funcione nuestra función de evaluación ya no tiene

que devolver una puntuación positiva si favorece a las blancas y una negativa si favorece

a las negras, tiene que devolver una puntuación relativa al jugador desde el que se está

analizando el tablero, es decir, si lo estamos analizando desde la posición de las blancas

una puntuación positiva significará que es bueno para las blancas y negativa que es

mala para estas mismas. Igualmente si estamos viendo la posición desde el punto de

vista de las negras, una puntuación positiva significará que es bueno para las negras

y una negativa que es malo para estas mismas. Esto lo conseguiremos realizando la

siguiente modificación en la función de evaluación (fragmento de código 5.1).

1 // evaluate board

2 public static int EvaluateBoard(Board board , Piece.Color colorPerspective)

3 {

4 int materialWhite = CountMaterial(board , Piece.Color.White);

5 int materialBlack = CountMaterial(board , Piece.Color.Black);

6
7 return (materialWhite - materialBlack) *

8 (colorPerspective == Piece.Color.White ? 1 : -1);

9 }

Fragmento de código 5.5: Modificación a la función de evaluación del tablero

5.2.2. Implementación

Comenzaremos con la implementación de la clase Search que es la que se encargara

de realizar estas búsquedas usando el algoritmo minimax.

1 public class Search

2 {

3 // on search complete action

4 public event System.Action <Move > onComplete;

5
6 private Board board;

7
8 // best move found

9 private Move bestMoveFound;

10 private int bestEvalFound = negativeInfinity;

11
12 public void SetBoard(Board board)

13 {

14 this.board = board;

15 }

16
17 public void StartSearch ()

18 {

71

19 bestMoveFound = Move.NullMove;

20 bestEvalFound = int.MinValue;

21
22 // SearchMoves (...);

23
24 onComplete ?. Invoke(bestMoveFound);

25 }

26
27 public int SearchMoves (...) {...}

28 }

Fragmento de código 5.6: Clase Search

Esta clase se encargará de realizar las búsquedas sobre el tablero. Para ello

se llamará a la función StartSearch, la cual se encargará de llamar a la función

SearchMoves, que veremos en profundidad y es la que utilizará el algoritmo negamax

para buscar el mejor movimiento. En cuanto acabe la búsqueda se invocará al evento

onComplete, al cual se le pasará el mejor movimiento encontrado para esa posición y

turno actuales del tablero.

1 public int SearchMoves(int depth , int plyFromRoot) {

2 if (depth == 0) {

3 return Evaluation.EvaluateBoard(board , board.GetTurnColor ());

4 }

5
6 // check checkmate

7 List <Move > moves = MoveGeneration.GetAllLegalMovesByColor(

8 board ,

9 board.GetTurnColor ()

10);

11
12 if (moves.Count == 0)

13 {

14 if (MoveGeneration.IsKingInCheck(board , board.GetTurnColor ()))

15 {

16 return negativeInfinity;

17 }

18
19 // stale mate

20 return 0;

21 }

22
23 int bestEvaluation = negativeInfinity;

24
25 foreach (Move move in moves) {

26 board.MakeMove(move);

27 int evaluation = -SearchMoves(depth - 1, plyFroomRoot + 1);

28 board.UndoMove ();

29
30 // check for better evaluation = better move

31 if (evaluation > bestEvaluation)

32 {

33 bestEvaluation = evaluation;

34
35 // if we are in the root (starting position) also retrieve

72

36 // best move

37 if (plyFroomRoot == 0)

38 {

39 bestMove = move;

40 bestEval = evaluation;

41 }

42 }

43 }

44
45 return bestEvaluation;

46 }

Fragmento de código 5.7: Función SearchMoves

La función SearchMoves toma 2 parámetros, la profundidad hasta la que queremos

llegar del árbol (parámetro depth) y el número de medios movimientos que se han

realizado desde la ráız del árbol (plyFromRoot). En ajedrez, un ply es un solo

movimiento de un jugador. Dos plies corresponden a un turno completo, movimiento

de las blancas seguido por un movimiento de las negras. La implementación de esta

función sigue el mismo esquema que el pseudocodigo del algoritmo negamax que vimos

en el fragmento 5.4, pero con una serie de añadidos, comprobaremos si estamos en

posición de jaque mate o rey ahogado (cuando el número de movimientos generados en

esa posición es igual a 0). En el caso de jaque mate, retornaremos una puntuacion de

−∞ (que nos hagan jaque mate es la peor situación que nos puede pasar), y en el caso de

rey ahogado retornaremos 0 indicando tablas. Finalmente, para obtener el movimiento

escogido, lo que haremos será que cada vez que se regrese, debido a la recursividad,

a la ráız del árbol (plyFromRoot es igual a 0), es decir, al estado de partida, nos

iremos guardando y reemplazando el movimiento que tenga mejor puntuación, hasta

que finalice la función. Una vez que esto acabe, la variable bestMove contendrá el mejor

movimiento y la variable bestEval contendrá la puntuación de éste.

Tenemos que tener en cuenta la profundidad inicial que elegimos a la hora de llamar

a la función SearchMoves a la hora de iniciar la búsqueda, puesto que la búsqueda

tardará más tiempo cuanto más profundo se intente buscar.

Una vez vista la función de búsqueda nos quedará por implementar al jugador AI

(PlayerAI), el cual será el que se encargará de iniciar dichas búsquedas para elegir el

movimiento.

1 public class PlayerAI : Player

2 {

3 private Board board;

4
5 private Search search;

6

73

7 // move selected

8 private Move moveSelected = Move.NullMove;

9 private bool moveFound = false;

10
11 // ctor

12
13 public PlayerAI(Board board)

14 {

15 // init

16
17 this.board = board;

18 search = new Search ();

19 search.onComplete += OnSearchCompleted;

20 }

21
22 public override void NotifyTurnToMove ()

23 {

24 moveFound = false;

25 Board boardCopy = board.Copy();

26 search.SetBoard(boardCopy);

27
28 // Start a new Task to calculate the best move asynchronously

29 Task.Run (() =>

30 {

31 search.StartSearch ();

32 });

33 }

34
35 private void OnSearchCompleted(Move move)

36 {

37 moveSelected = move;

38 moveFound = true;

39 }

40
41 public override void Update ()

42 {

43 if (moveFound)

44 {

45 ChoseMove(moveSelected , true);

46 }

47 }

48 }

Fragmento de código 5.8: Clase PlayerAI

La clase PlayerAI hereda de la clase Player, en el constructor creamos una instancia

de la clase Search y nos suscribimos al evento onComplete, para que cuando éste se

active se llame a la función OnSearchCompleted pasándole el movimiento. En esta

función se seleccionará este movimiento y se marcará a true el flag que indica que un

movimiento ha sido encontrado. Cuando al jugador AI se le notifica que es su turno,

lo que hará será crear una copia del tablero actual y pasarselo a la instancia que nos

hab́ıamos creado de la clase Search, la razón de esta copia y no un paso por referencia

es porque vamos a ejecutar la función de búsqueda de forma asincrona puesto que

74

la función de búsqueda “tarda tiempo.en completarse, y asi no bloqueamos todo el

juego hasta que se complete, y de esta forma evitamos cualquier condición de carrera.

Finalmente, en la función Update esperamos hasta que el movimiento se encuentre y

cuando ésto ocurra elegimos dicho movimiento.

5.2.3. Alpha-Beta Prunning

Una optimización muy común, que se realiza en el algoritmo minimax, es aplicar

alpha-beta prunning [18]. Ello consiste en podar ramas del árbol que no son necesarias

de calcular puesto que estas no influyen en el resultado final. Veamos como aplicaŕıamos

esta técnica al ejemplo que vimos en el apartado 5.2.1.

65

Figura 5.14: Arbol minimax (alpha-beta prunning) 1

Si regresamos al momento en el que evaluamos la posición en el tercer nodo terminal

como un 5 (imagen 5.14), nos daremos cuenta de que no necesitamos calcular el segundo

nodo terminal de esa misma subrama. Esto es aśı ya que en la ráız de esa subrama,

es decir, en el nodo blanco, se tiene para elegir 2 movimientos. Pero este nodo sabe

que por lo menos obtiene una puntuación de un 5, que es el nodo que acabamos de

calcular. Por lo tanto, el nodo negro superior estaŕıa decidiento entre un 3 (el del otro

nodo blanco) y un 5 o más, por lo que nunca elegiria la rama del 5, puesto que preferirá

la del 3 que es menor y por lo tanto no necesitamos calcular ese segundo nodo terminal.

75

65

Figura 5.15: Arbol minimax (alpha-beta prunning) 2

En la imagen 5.16 podemos ver el resultado de aplicar esta optimización al

ahorrarnos calcular la evaluación del nodo que hemos marcado con interrogantes (??).

65

Figura 5.16: Arbol minimax (alpha-beta prunning) 3

Si continuamos con el resto de nodos faltantes podremos repetir este mismo proceso

ahorrandonos más cálculos y tiempo. En este caso, sabemos que el nodo negro principal

de la segunda rama tendrá una puntuación de -4 o menor, y como el nodo ráız blanco

tiene como opción el nodo negro de la otra rama principal cuya puntuación es de 3,

nunca elgiŕıa la rama que estamos calculando actualmente, por lo que nos podemos

ahorrar de calcular los 3 nodos faltantes.

Si modificamos nuestra función SearchMoves para que incluya esta optimización

nos quedaria el siguiente codigo:

1 public int SearchMoves(int depth , int plyFromRoot , int alpha , int beta) {

2 // ...

3
4 foreach (Move move in moves) {

76

5 board.MakeMove(move);

6 int evaluation = -SearchMoves(depth - 1, plyFroomRoot + 1, -beta , -alpha);

7 board.UndoMove ();

8
9 // hemos encontrado un movimiento muy bueno

10 // nuestro oponente seguramente no va a elegir esta rama

11 // la cortamos

12 if (evaluation >= beta)

13 {

14 return beta;

15 }

16
17 if (evaluation > alpha)

18 {

19 alpha = evaluation;

20
21 // if we are in the root (starting position) also retrieve

22 // best move

23 if (plyFroomRoot == 0)

24 {

25 bestMove = move;

26 bestEval = evaluation;

27 }

28 }

29 }

30
31 return alpha;

32 }

Fragmento de código 5.9: Función SearchMoves

Incluimos dos parámetros en la función que llamaremos alpha y beta. Alpha es

el parámetro que indica nuestra mejor evaluación, mientras que beta es la mejor

evaluación del rival. Estos parámetros se inicializarán a −∞ e +∞ respectivamente.

Si encontramos un movimiento cuya evaluación supera a la mejor evaluación del rival

(evaluation ≥ beta), cortaremos esa rama puesto que el rival no permitirá que ese

camino sea explorado, porque tiene una mejor opción. Como estamos usando la variante

negamax cada vez que se llame de forma recursiva a la función SearchMoves tendremos

que invertir y cambiar de signo los valores de alpha y beta, puesto que en la siguiente

iteración sera el turno del rival.

Ordenación de movimientos

La idea detrás de alfa-beta prunning es eliminar ramas del árbol de búsqueda que

no necesitan ser exploradas porque ya se ha encontrado un mejor movimiento. Si los

mejores movimientos se evalúan primero, es más probable que se realicen cortes (podas)

más temprano en la búsqueda, evitando aśı la necesidad de evaluar muchas mas ramas.

Analicemos el caso del ejemplo anterior:

77

65

Figura 5.17: Arbol minimax (alpha-beta prunning) 3

Aqúı observamos que no era necesario calcular el nodo terminal con una puntuación

de 1, ya que las negras, al saber que las blancas pueden obtener una puntuación de

5 o más, nunca optaŕıan por esa rama. Esto se debe a que se evaluó primero el nodo

con una puntuación de 5, de haber sido al contrario, es decir, si hubiéramos evaluado

primero el nodo con una puntuación de 1, no habŕıamos podido efectuar este corte

como podemos ver en la imagen 5.19.

65

Figura 5.18: Arbol minimax (alpha-beta prunning) 3

78

65

Figura 5.19: Arbol minimax, no se ha podido realizar el corte

Inicialmente, no podemos determinar si un movimiento tendrá un resultado positivo

o negativo. No obstante, podemos hacer suposiciones para prever cuáles podŕıan ser

los movimientos más acertados y aśı ordenarlos antes de examinarlos en la búsqueda.

Algunos de los criterios que podemos considerar para evaluar si un movimiento es

prometedor incluyen:

− Desarrollo de piezas: Movimientos que desarrollan piezas hacia posiciones

activas y útiles.

− Capturas: Capturar una pieza de mucho valor del rival con una de poco valor.

− Promociones de peones.

La función SortMoves se encarga de ordenar una lista de movimientos en función de

si creemos que son buenos o malos para un determinado color basado en los parámetros

que hemos mencionados.

1 private void SortMoves(List <Move > moves , Piece.Color color)

2 {

3 int[] moveScore = new int[moves.Count];

4
5 for (int i = 0; i < moves.Count; i++)

6 {

7 moveScore[i] = 0;

8
9 // check if it is a capture

10
11 Piece.Type pieceTypeTarget = moves[i]. pieceTarget.type;

12 Piece.Type pieceTypeSource = moves[i]. pieceSource.type;

13
14 if (pieceTypeTarget != Piece.Type.None)

15 {

16 // bonus for capture

17

79

18 moveScore[i] += 10 * Evaluation.GetPieceValue(pieceTypeTarget) - Evaluation.GetPieceValue(pieceTypeSource);

19 }

20 else

21 {

22 // bonus for moving the piece into a better square

23
24 int[] table = PieceTables.GetTable(pieceTypeSource);

25 moveScore[i] += PieceTables.Read(table , moves[i]. squareTargetIndex , color) - PieceTables.Read(table , moves[i]. squareSourceIndex , color);

26 }

27
28 // bonus for promotion

29
30 if (moves[i].flags == Move.Flags.Promotion)

31 {

32 moveScore[i] += Evaluation.GetPieceValue(moves[i]. promotionPieceType);

33 }

34 }

35
36 // Sort the moves list based on the move scores array ...

37 }

Fragmento de código 5.10: Función SortMoves

Finalmente, antes de proceder con la búsqueda ordenaremos los movimientos:

1 public int SearchMoves(int depth , int plyFromRoot , int alpha , int beta) {

2 // ...

3
4 SortMoves(moves , board.GetTurnColor ());

5
6 foreach (Move move in moves) {

7 // ...

8 }

9
10 // ...

11 }

Fragmento de código 5.11: Función SearchMoves

Con la búsqueda implementada, y sus diversas optimizaciones, que hemos ido

explicando y desarrollando a lo largo de este capitulo, si probamos a jugar contra

el oponente manejado por la inteligencia artificial nos daremos cuenta de que está

malinterpretando muchas jugadas a lo largo de la partida, las cuales acaban en malos

resultados. Esto se debe a que cuando se finaliza la búsqueda en una profundidad

determinada, es posible que estemos evaluando el tablero en una posición inestable, es

decir, que en el tablero todav́ıa existan movimientos tacticos como capturas, lo cual

provoca que nuestra función de evaluación malinterprete la posición dando resultados

incorrectos. Veamos un ejemplo:

Imaginemos que durante la búsqueda en el turno de las negras hemos llegado a

la profundidad deseada - 1, lo cual resulta en la posición de la figura 5.20. Ahora las

negras tienen que encontrar su mejor movimiento y se procederá a la evaluación de

80

cada una de las posiciones resultantes.

Figura 5.20: Posición FEN 5rk1/ppp2ppp/2q5/5n2/8/2N5/PPP2PPP/2Q2RK1 b - -

Las negras exploran todos los movimientos posibles y evalúan los tableros,

concluyendo que, si capturan el caballo blanco con la reina negra, ganaŕıan un caballo,

ya que la función de evaluación examina el tablero estáticamente y detecta una ventaja

material. No obstante, no están realmente ganando un caballo, terminarán perdiendo

una reina. Este problema es el que está provocando que la inteligencia artificial tome

decisiones equivocadas, esto es lo que se denomina efecto horizonte [24]. Para mitigar

este efecto y si queremos que nuestra función de evaluación sea lo mas precisa posible,

tendremos que tener en cuenta los movimientos tácticos siguientes.

5.3. Búsqueda de estabilidad (Quiescence search)

La búsqueda de estabilidad, o quiescence search [25], es una extensión del algoritmo

minimax que se implementa para mejorar la precisión en la evaluación de posiciones

complejas o tácticamente inestables. La idea principal detrás de esta técnica es

continuar la búsqueda en aquellas posiciones donde el algoritmo principal podŕıa tomar

decisiones incorrectas debido a evaluaciones estáticas que no consideran las posibles

secuencias tácticas inmediatas.

El objetivo de la búsqueda de estabilidad es evitar los errores de horizonte, donde la

evaluación se detiene antes de que puedan resolverse movimientos tácticos importantes,

81

como capturas, jaques, o amenazas de promoción, que es precisamente el problema

que nos encontramos al final de la sección anterior. Estos errores ocurren porque la

evaluación estática de la posición no tiene en cuenta los cambios dinámicos que pueden

ocurrir en los siguientes movimientos.

Para ello en vez de que una vez terminada la búsqueda se evalúe la posición del

tablero, lo que haremos sera comenzar una nueva búsqueda la cual solo analice los

movimientos tácticos, es decir, capturas de piezas.

La función QuiescenceSearch será la que se encargará de realizar esta nueva

búsqueda que sólo se enfoca en las capturas.

1 private int QuiescenceSearch(int alpha , int beta)

2 {

3 // evaluate board

4 int evaluation = Evaluation.EvaluateBoard(board , board.GetTurnColor ());

5
6 if (evaluation >= beta) // Beta cutoff

7 {

8 return beta;

9 }

10 alpha = Math.Max(alpha , evaluation); // Update alpha

11
12 // get moves just captures

13 List <Move > moves = MoveGeneration.GetAllLegalMovesByColor(

14 board ,

15 board.GetTurnColor (),

16 true

17);

18
19 // sort

20 SortMoves(moves , board.GetTurnColor (), Move.NullMove);

21
22 foreach (Move move in moves)

23 {

24 board.MakeMove(move , true);

25 evaluation = -QuiescenceSearch(-beta , -alpha);

26 board.UndoMove(true);

27
28 if (evaluation >= beta) // Beta cutoff

29 {

30 return beta;

31 }

32
33 alpha = Math.Max(alpha , evaluation); // Update alpha

34 }

35
36 return alpha;

37 }

Fragmento de código 5.12: Función SearchMoves

Se han realizado modificaciónes a las funciones que se encargan de generar los

movimientos para que retornen solo los movimientos de capturas si el valor del flag

82

onlyCaptures de la función MoveGeneration.GetAllLegalMovesByColor es true. El

código sigue el mismo esquema que vimos con respecto a la búsqueda normal que

realizaba la función SearchMoves. Finalmente en la función SearchMoves en vez de

realizar la evaluación cuando se alcanza el limite de profundidad, se llamará a la nueva

búsqueda de estabilidad.

1 public int SearchMoves(int depth , int plyFromRoot , int alpha , int beta)

2 {

3 if (depth == 0)

4 {

5 int result = QuiescenceSearch(alpha , beta);

6 return result;

7 }

8
9 // ...

10 }

Fragmento de código 5.13: Función SearchMoves

La implementación de la búsqueda de estabilidad (quiescence search) nos ha

permitido mejorar notablemente la precisión de las evaluaciones realizadas por la

inteligencia artificial, especialmente en posiciones complejas y tácticamente inestables.

Al extender la búsqueda más allá del ĺımite de profundidad tradicional para considerar

movimientos tácticos cŕıticos, como las capturas, se pueden evitar y mitigar los errores

de horizonte y tomar decisiones más sólidas.

5.4. Tabla de transposición (Transposition table)

Cuando estamos realizando la búsqueda, es muy probable que diferentes secuencias

de movimientos conduzcan a la misma posición del tablero. Esto sucede porque en el

ajedrez, las piezas pueden moverse de manera que, aunque el orden de los movimientos

sea diferente, el resultado final sea exactamente el mismo.

83

Figura 5.21: Posición FEN r1bqkbnr/pppp1ppp/2n5/4p3/4P3/5N2/PPPP1PPP/RNBQKB1R
w KQkq - 4 1

Por ejemplo, para alcanzar la posición de la figura 5.21 podemos mover primero

ambos peones y luego ambos caballos, que seŕıa equivalente a comenzar moviendo el

caballo blanco, luego ambos peones y por último el caballo negro.

Estas posiciones equivalentes, llamadas transposiciones [26], pueden surgir

repetidamente durante la exploración del árbol de búsqueda. Por lo que es ineficiente

recalcular la evaluación de posiciones que ya han sido analizadas. Aqúı es donde las

tablas de transposición [27] resultan esenciales.

La tabla de transposición es una base de datos que almacena los resultados

de búsquedas previas, con lo que si nos encontramos con la misma posición y ya

se encuentra calculada en dicha tabla, nos limitaremos a consultarla. Con ello nos

ahorramos recalcular la búsqueda para dicha posición ganando tiempo. Cada entrada

de la tabla almacena una serie de valores que son fundamentales para el proceso de

búsqueda y evaluación. Estos valores incluyen:

− Clave Zobrist (Zobrist Key).

− Valor de la Evaluación (Evaluation Value): Valor numérico que representa

la evaluación de la posición.

− Profundidad de Búsqueda (Search Depth): Número de movimientos

explorados desde la posición actual.

84

− Mejor Movimiento (Best Move): El movimiento que resultó en la mejor

evaluación desde la posición almacenada.

− Tipo de Nodo (Node Type): En el contexto de la búsqueda en árboles con

el algoritmo alfa-beta, cada entrada en la tabla de transposición puede estar

asociada con un tipo de nodo que describe cómo debe interpretarse el valor

almacenado para esa posición. Estos tipos de nodo proporcionan información

sobre el estado de la evaluación y cómo se debe utilizar esa información en la

búsqueda. Los tipos de nodo se definen como sigue:

• Exact (Nodo Exacto):

◦ Descripción: Un nodo marcado como Exact indica que el valor

almacenado en la tabla de transposición es la evaluación exacta para

esa posición. La búsqueda ha sido completamente realizada en esa

posición y el valor almacenado representa la evaluación precisa para

esa profundidad de búsqueda.

• LowerBound (Ĺımite Inferior):

◦ Descripción: Un nodo marcado como LowerBound indica que el valor

almacenado es un ĺımite inferior para la posición. Esto significa que el

valor real de la posición es al menos el valor almacenado, pero podŕıa

ser mayor. Este tipo de nodo es el resultado de una poda beta (es decir,

la búsqueda se cortó porque el valor almacenado es suficientemente alto

para ser un ĺımite inferior).

• UpperBound (Ĺımite Superior):

◦ Descripción: Un nodo marcado como UpperBound indica que el valor

almacenado es un ĺımite superior para la posición. Esto significa que el

valor real de la posición es a lo sumo el valor almacenado, pero podŕıa

ser menor. Este tipo de nodo es el resultado de una poda alfa (es decir,

la búsqueda se cortó porque el valor almacenado es suficientemente bajo

para ser un ĺımite superior).

Aqúı podemos ver el código con los valores que almacena una entrada de la tabla

de transposición:

1 public enum NodeType

2 {

3 Exact , // Exact score

4 LowerBound , // Lower bound (beta cut -off)

5 UpperBound // Upper bound (alpha cut -off)

85

6 }

7
8 public struct Entry

9 {

10 public ulong key;

11 public byte depth;

12 public int value;

13 public NodeType nodeType;

14 public Move move;

15 }

Fragmento de código 5.14: Entrada de la tabla de transposición

Y aqúı podemos ver parte del código de la tabla de transposición [28]:

1 public class TranspositionTable

2 {

3 // lookup failed value

4 public const int lookupFailed = int.MinValue;

5
6 private Entry[] entries;

7
8 public TranspositionTable(int size)

9 {

10 entries = new Entry[size];

11 }

12
13 public Entry GetEntry(ulong key)

14 {

15 int index = (int)(key % (ulong)entries.Length);

16 return entries[index];

17 }

18
19 public void Store(ulong key , int depth , int value , NodeType nodeType ,

20 Move move)

21 {

22 // replace scheme

23 int index = (int)(key % (ulong)entries.Length);

24
25 entries[index] = new Entry()

26 {

27 key = key ,

28 depth = (byte)depth ,

29 value = value ,

30 nodeType = nodeType ,

31 move = move

32 };

33 }

34
35 public int Lookup(ulong key , int depth , int alpha , int beta) {// ...}

36 }

Fragmento de código 5.15: Clase TranspositionTable

Para almacenar estas entradas en la tabla de transposiciones, utilizaremos un

vector (entries) donde cada posición representa una entrada potencial de la tabla.

86

El tamaño del vector dependerá de la cantidad de posiciones que deseamos almacenar

simultáneamente teniendo en cuenta también la memoria que éste ocupará.

Para indexar las posiciones del tablero de forma eficiente dentro de este vector,

usamos la clave zobrist. Pero puesto que esta clave tiene un tamaño de 64 bits y no

podemos tener un vector de dimension 264, lo que haremos será dado un tamaño fijo

del vector realizaremos la operación modulo del hash zobrist con el tamaño del vector,

dándonos aśı el ı́ndice correspondiente.

index = zobrist mód size

Esto provoca que aparezca un problema y es que puesto que estamos haciendo

la operación modulo, puede pasar que para 2 claves zobrist diferentes resulten en

el mismo ı́ndice del vector lo que provocaŕıa una colisión a la hora de almacenar o

consultar posiciones (nos podria llegar a pasar que se consulta una posición y se recibe la

evaluación de otra diferente). La probabilidad de que ocurran estas colisiones dependerá

del tamaño de nuestro vector. Ante esto no podemos realmente hacer nada y optaremos

por usar un esquema de reemplazamiento, es decir, cada vez que alamacenemos una

posición, ignoraremos si ya está siendo ocupada y la reescribiremos como podemos ver

en la función Store.

Aqúı podemos ver en detalle el código de la función Lookup, la cual se encargará de

la búsqueda de la entrada dada por la clave zobrist especificada.

1 public int Lookup(ulong key , int depth , int alpha , int beta)

2 {

3 int index = (int)(key % (ulong)entries.Length);

4 Entry entry = entries[index];

5
6 if (entry.key == key)

7 {

8 if (entry.depth >= depth)

9 {

10 switch (entry.nodeType)

11 {

12 case NodeType.Exact:

13 return entry.value;

14 case NodeType.LowerBound:

15 if (entry.value >= beta)

16 {

17 return entry.value;

18 }

19 break;

20 case NodeType.UpperBound:

21 if (entry.value <= alpha)

22 {

23 return entry.value;

24 }

25 break;

26 }

87

27 }

28 }

29
30 return lookupFailed;

31 }

Fragmento de código 5.16: Función Lookup

Si se encuentra la entrada dentro de la tabla, se comprueba que la profundidad para

la cual se evaluó previamente es como minimo igual a la que se está realizando en la

consulta actualmente. Esto se debe a que no nos interesan evaluaciones que se hicieron

a una menor profundidad a la que estamos buscando, puesto que esos resultados se

considerarán desactualizados.

Si la profundidad es válida, entonces se comprueba el tipo de nodo:

− Nodo Exacto (NodeType.Exact): Si el tipo de nodo es Exact, esto indica

que el valor almacenado es la evaluación exacta de la posición. En este caso,

se devuelve directamente el valor almacenado, ya que representa la evaluación

precisa de la posición en cuestión.

− Ĺımite Inferior (NodeType.LowerBound): Si el tipo de nodo es

LowerBound, esto significa que el valor almacenado es un ĺımite inferior. Esto

ocurre cuando la búsqueda previa determinó que el valor de la posición es al menos

tan bueno como el valor almacenado, pero no se pudo determinar con certeza si era

mejor. Si este valor es mayor o igual al umbral beta actual, entonces se devuelve,

lo que indica que la posición es lo suficientemente fuerte como para cortar la

búsqueda en esta rama (lo que se conoce como poda beta). De lo contrario, se

continúa la búsqueda, ya que el valor almacenado no es lo suficientemente alto

como para tomar una decisión definitiva.

− Ĺımite Superior (NodeType.UpperBound): Si el tipo de nodo es

UpperBound, esto significa que el valor almacenado es un ĺımite superior. Esto

ocurre cuando la búsqueda previa determinó que el valor de la posición es a lo

sumo tan malo como el valor almacenado, pero podŕıa ser peor. Si este valor es

menor o igual al umbral alpha actual, entonces se devuelve, lo que sugiere que la

posición es lo suficientemente débil como para cortar la búsqueda en esta rama

(lo que se conoce como poda alfa). Si el valor es mayor que alpha, se continúa

la búsqueda, ya que la posición podŕıa ser mejor de lo que sugiere este ĺımite

superior.

Si ninguna de estas condiciones se cumple, la función Lookup concluye que la

información almacenada no es suficiente para tomar una decisión en la búsqueda

88

actual, y por lo tanto, devuelve un valor que indica que la búsqueda debe continuar

(lookupFailed). Este enfoque garantiza que sólo se utilicen evaluaciones de posiciones

que sean relevantes y precisas para la búsqueda en curso, optimizando aśı el proceso

de búsqueda.

Finalmente modificaremos nuestra función de búsqueda para que incluya el uso de

la tabla de transposiciones:

1 public int SearchMoves(int depth , int plyFromRoot , int alpha , int beta)

2 {

3 // get zobristKey from board

4 ulong zobristKey = board.GetZobristKey ();

5
6 // check the transposition table

7 int ttVal = tt.Lookup(zobristKey , depth , alpha , beta);

8 if (ttVal != TranspositionTable.lookupFailed)

9 {

10 if (plyFromRoot == 0)

11 {

12 TranspositionTable.Entry tEntry = tt.GetEntry(zobristKey);

13 bestMove = tEntry.move;

14 bestEval = tEntry.value;

15 }

16
17 return ttVal;

18 }

19
20 // when reached 0 depth perform a quiescence search

21 if (depth == 0)

22 {

23 int result = QuiescenceSearch(alpha , beta);

24 return result;

25 }

26
27 // check for checkmate

28 List <Move > moves = MoveGeneration.GetAllLegalMovesByColor(

29 board ,

30 board.GetTurnColor ()

31);

32
33 if (moves.Count == 0)

34 {

35 if (MoveGeneration.IsKingInCheck(board , board.GetTurnColor ()))

36 {

37 int result = -mateScore + plyFromRoot;

38 return result;

39 }

40
41 // stale mate

42
43 return 0;

44 }

45
46 // sort moves

47 SortMoves(moves , board.GetTurnColor (), hashMove);

89

48
49 // calculate eval

50 NodeType nodeType = NodeType.UpperBound;

51 Move bestMoveInThisPosition = Move.NullMove;

52
53 for (int i = 0; i < moves.Count; i++)

54 {

55 board.MakeMove(moves[i]);

56 int evaluation = -SearchMoves(depth - 1, plyFromRoot + 1, -beta , -alpha);

57 board.UndoMove ();

58
59 if (evaluation >= beta) // Beta cutoff

60 {

61 tt.Store(zobristKey , depth , beta , NodeType.LowerBound , moves[i]);

62 return beta;

63 }

64
65 if (evaluation > alpha)

66 {

67 nodeType = NodeType.Exact;

68 bestMoveInThisPosition = moves[i];

69
70 alpha = evaluation;

71
72 if (plyFromRoot == 0)

73 {

74 bestMove = moves[i];

75 bestEval = evaluation;

76 }

77 }

78 }

79
80 tt.Store(zobristKey , depth , alpha , nodeType , bestMoveInThisPosition);

81
82 return alpha;

83 }

Fragmento de código 5.17: Función Lookup

Al inicio de la búsqueda de cada nodo comprobamos si la posición ya se ha evaluado

y se encuentra guardada dentro de la tabla de transposiciones, de ser asi se retorna la

evaluación guardada. En el caso adicional de que además nos encontremos en la ráız

del árbol (plyFromRoot == 0) antes de retornar la evaluación, también obtendremos

el mejor movimiento que hab́ıamos guardado en la tabla para dicha entrada.

A la hora de almacenar las posiciones dentro de la tabla, es fundamental determinar

el tipo de nodo (NodeType) al que pertenece la evaluación calculada. Esta clasificación

es crucial para la correcta interpretación y reutilización de los valores almacenados en

futuras búsquedas.

El tipo de nodo se determina según los valores de alpha, beta y la evaluación

(evaluation) obtenida al explorar los movimientos legales desde la posición actual:

− Nodo Exacto (NodeType.Exact): Si durante la búsqueda se encuentra un

90

movimiento que mejora el valor alpha, este se actualiza y el nodo se clasifica

como Exact. Esto indica que la evaluación es exacta para esta posición dado que

se exploraron todas las ramas cŕıticas y se encontró un valor que podŕıa ser el

resultado final si se juega de manera óptima. El movimiento correspondiente se

guarda como el mejor movimiento encontrado hasta el momento.

− Ĺımite Inferior (NodeType.LowerBound): Si la evaluación de un

movimiento supera el valor beta, se produce una poda beta (beta cutoff). Esto

significa que la posición es tan favorable para el jugador que el oponente evitará

esta ĺınea de juego. En este caso, el nodo se clasifica como un LowerBound, ya

que la evaluación es un ĺımite inferior del valor real, y se guarda este valor en la

tabla de transposición.

− Ĺımite Superior (NodeType.UpperBound): Si ninguno de los movimientos

explorados mejora el valor alpha, la evaluación de la posición queda por debajo

del umbral alpha. En este caso, el nodo se clasifica como UpperBound, indicando

que la posición es desfavorable, y el valor almacenado (alpha) es un ĺımite superior

del valor real.

Una vez determinado el tipo de nodo, se almacena en la tabla de transposición junto

con la evaluación, la profundidad y el mejor movimiento encontrado.

Todo este proceso optimiza la búsqueda en el árbol de movimientos al evitar

reevaluar posiciones ya exploradas y permite cortar ramas del árbol que no conducirán

a un mejor resultado, mejorando aśı la eficiencia de nuestra inteligencia artificial

5.5. Profundización iterativa (Iterative deepening)

Hasta este punto, hemos discutido la búsqueda de movimientos en un árbol de

decisiones con una profundidad fija. Este enfoque tiene la ventaja de ser predecible en

términos de recursos computacionales: sabemos exactamente cuántos niveles del árbol

se explorarán y podemos estimar el tiempo que tomará completar la búsqueda. Sin

embargo, surge una pregunta fundamental: ¿a qué profundidad debeŕıamos realizar la

búsqueda?

La respuesta ideal seŕıa “lo más profundo posible”, ya que explorar más niveles en

el árbol de decisiones generalmente lleva a evaluaciones más precisas y movimientos de

mayor calidad. Cuanto más profundamente podamos buscar, mejor podremos anticipar

las consecuencias de cada movimiento, lo que debeŕıa resultar en una estrategia de juego

más fuerte.

91

No obstante, esta profundidad de búsqueda está limitada por un recurso esencial,

el tiempo. A medida que la profundidad aumenta, el número de nodos que el

algoritmo debe explorar crece exponencialmente, lo que incrementa considerablemente

el tiempo necesario para completar la búsqueda. En un juego de ajedrez, donde las

decisiones deben tomarse en un tiempo limitado, este aumento de tiempo puede volverse

impracticable.

Por lo tanto, debemos encontrar un equilibrio entre la profundidad de la búsqueda

y el tiempo para realizarla. Esto nos lleva a la necesidad de un enfoque que

permita explorar tan profundamente como sea posible dentro de los ĺımites de tiempo

disponibles, maximizando aśı la calidad de la búsqueda sin exceder los recursos

computacionales. Aqúı es donde entra en juego la técnica de iterative deepening.

La idea principal es realizar múltiples búsquedas consecutivas, aumentando

gradualmente la profundidad en cada iteración hasta que se alcance un ĺımite de tiempo

o profundidad predefinido. En otras palabras, se explora el árbol de decisiones a una

profundidad inicial de 1, luego de 2, luego de 3, y aśı sucesivamente, hasta que se

agote el tiempo disponible o se alcance la profundidad máxima deseada. Esto puede

parecer bastante ineficiente puesto que estamos repitiendo todo el trabajo cada vez que

realizamos una búsqueda a una profundidad mayor por cada iteración que realizamos.

Sin embargo, gracias al uso de la tabla de transposiciones es muy probable que ya

hayamos evaluado las posiciones en la anterior búsqueda. Además, podemos usar el

mejor movimiento que encontramos en la búsqueda anterior y ordenarlo para que se

coloque el primero en ser analizado. Aunque la función de búsqueda no siempre estará

de acuerdo con que este movimiento es el mejor, muchas veces śı que lo hará, y gracias

a la poda alfa-beta podremos cortar muchas ramas, con lo que paradójicamente la

búsqueda iterativa es más rápida que la búsqueda normal.

Vamo a modificar la función SortMoves para que si le pasamos un movimiento como

parámetro al que llamaremos hashMove, si lo encuentra en la lista de movimientos le

ponga una puntuación muy grande garantizando aśı que sea colocado el primero.

1 private void SortMoves(List <Move > moves , Piece.Color color , Move hashMove)

2 {

3 int[] moveScore = new int[moves.Count];

4
5 for (int i = 0; i < moves.Count; i++)

6 {

7 moveScore[i] = 0;

8
9 // check if is the hash move

10 if (moves[i]. IsEqual(hashMove))

11 {

12 // bonus for hash move

13 moveScore[i] += 10000000;

92

14 continue;

15 }

16
17 // ...

18 }

19 }

Fragmento de código 5.18: Función StartSearch

En la función SearchMoves, debemos realizar varias modificaciones para adaptarla

a la técnica de iterative deepening. A continuación, se detallan los cambios necesarios:

− Ordenación de movimientos: Al ordenar los movimientos, es importante

determinar si nos encontramos en la ráız del árbol de búsqueda. Si es aśı,

pasaremos como parámetro hashMove el mejor movimiento encontrado en la

iteración anterior, es decir, la variable bestMove. Si no estamos en la ráız del

árbol, utilizaremos el mejor movimiento almacenado en la tabla de transposición

para la posición actual.

− Mejor movimiento por iteración: Debido a que ahora realizamos búsquedas

iterativas, la función de búsqueda no encontrará el mejor movimiento de forma

global (representado por la variable bestMove). En su lugar, identificaremos el

mejor movimiento en cada iteración espećıfica, almacenándolo en la variable

bestMoveIteration.

− Cancelación de la búsqueda: Dado que en iterative deepening es posible

cancelar la búsqueda en cualquier momento, por ejemplo, si se agota el tiempo,

es necesario comprobar si la búsqueda ha sido cancelada mediante el indicador

isSearchCanceled. Si se detecta que la búsqueda ha sido cancelada, la función

retornará 0, provocando la cancelación de todas las búsquedas recursivas en curso.

Aqui podemos ver el código producto de dichas modificaciones.

1 public int SearchMoves(int depth , int plyFromRoot , int alpha , int beta)

2 {

3 // if search canceled

4 if (isSearchCanceled)

5 {

6 return 0;

7 }

8
9 // get zobristKey from board

10 ulong zobristKey = board.GetZobristKey ();

11
12 // check the transposition table

13 int ttVal = tt.Lookup(zobristKey , depth , alpha , beta);

14 if (ttVal != TranspositionTable.lookupFailed)

93

15 {

16 if (plyFromRoot == 0)

17 {

18 TranspositionTable.Entry tEntry = tt.GetEntry(zobristKey);

19 bestMoveIteration = tEntry.move;

20 bestEvalIteration = tEntry.value;

21 }

22
23 return ttVal;

24 }

25
26 // when reached 0 depth perform a quiescence search until a stable state (to get good results from evaluation)

27
28 if (depth == 0)

29 {

30 int result = QuiescenceSearch(alpha , beta);

31 return result;

32 }

33
34 // check checkmate

35
36 List <Move > moves = MoveGeneration.GetAllLegalMovesByColor(

37 board ,

38 board.GetTurnColor ()

39);

40
41 if (moves.Count == 0)

42 {

43 if (MoveGeneration.IsKingInCheck(board , board.GetTurnColor ()))

44 {

45 int result = -mateScore + plyFromRoot;

46 return result;

47 }

48
49 // stale mate

50
51 return 0;

52 }

53
54 // sort moves

55 Move hashMove;

56
57 if (plyFromRoot == 0)

58 {

59 hashMove = bestMoveFound;

60 }

61 else

62 {

63 TranspositionTable.Entry entry = tt.GetEntry(zobristKey);

64 hashMove = entry.move;

65 }

66
67 SortMoves(moves , board.GetTurnColor (), hashMove);

68
69 // calculate eval

70
71 NodeType nodeType = NodeType.UpperBound;

72 Move bestMoveInThisPosition = Move.NullMove;

94

73
74 for (int i = 0; i < moves.Count; i++)

75 {

76 board.MakeMove(moves[i]);

77 int evaluation = -SearchMoves(depth - 1, plyFromRoot + 1, -beta , -alpha);

78 board.UndoMove ();

79
80 // if search canceled

81 if (isSearchCanceled)

82 {

83 return 0;

84 }

85
86 if (evaluation >= beta) // Beta cutoff

87 {

88 tt.Store(zobristKey , depth , beta , NodeType.LowerBound , moves[i]);

89 return beta;

90 }

91
92 if (evaluation > alpha)

93 {

94 nodeType = NodeType.Exact;

95 bestMoveInThisPosition = moves[i];

96
97 alpha = evaluation;

98
99 if (plyFromRoot == 0)

100 {

101 bestMoveIteration = moves[i];

102 bestEvalIteration = evaluation;

103 }

104 }

105 }

106
107 tt.Store(zobristKey , depth , alpha , nodeType , bestMoveInThisPosition);

108
109 return alpha;

110 }

En la función StartSearch, en lugar de buscar a una profundidad fija, realizaremos

una búsqueda iterativa desde la profundidad 1 hasta la 100. En cada iteración,

actualizaremos el mejor movimiento con el hallado en la iteración anterior, hasta que la

búsqueda sea cancelada o se alcance el ĺımite de profundidad. Crearemos una función

denominada CancelSearch que se encargará de cambiar el indicador isSearchCanceled

a true indicando asi que se ha cancelado la búsqueda.

1 public void Cancel ()

2 {

3 isSearchCanceled = true;

4 }

5
6 public void StartSearch ()

7 {

8 // prepare the search

95

9
10 bestMoveFound = Move.NullMove;

11 bestEvalFound = int.MinValue;

12 isSearchCanceled = false;

13
14 // iterative deepening

15
16 for (int depth = 1; depth < 100; depth ++)

17 {

18 bestMoveIteration = Move.NullMove;

19 bestEvalIteration = negativeInfinity;

20
21 SearchMoves(depth , 0, negativeInfinity , positiveInfinity);

22
23 if (! bestMoveIteration.IsEqual(Move.NullMove))

24 {

25 bestMoveFound = bestMoveIteration;

26 bestEvalFound = bestEvalIteration;

27 }

28 }

29
30 onComplete ?. Invoke(bestMoveFound);

31 }

Fragmento de código 5.19: Funciones StartSearch y Cancel

Finalmente, cuando se notifica al jugador IA de que es su turno, además de crear

la tarea para iniciar la búsqueda, generará una tarea adicional que, tras un tiempo

determinado, cancelará dicha búsqueda.

1 public override void NotifyTurnToMove ()

2 {

3 moveFound = false;

4 Board boardCopy = board.Copy();

5 search.SetBoard(boardCopy);

6
7 // Start a new Task to calculate the best move asynchronously

8
9 Task.Run (() =>

10 {

11 search.StartSearch ();

12 });

13
14 // cancelamos la busqueda pasado x tiempo

15
16 Task.Delay(searchTime).ContinueWith ((t) =>

17 {

18 search.Cancel ();

19 });

20 }

Fragmento de código 5.20: Función NotifyTurnToMove()

Para conocer la profundidad a la que se esta buscando podemos mostrar por consola

la profundidad de la actual iteración y otros parámetros, como por ejemplo, el mejor

96

movimiento, la evaluación de la posición y el tiempo acumulado de la busqueda ademas

de indicar a que profundidad se cancelo la búsqueda.

1 Stopwatch stopwatch = new Stopwatch ();

2
3 //...

4
5 stopwatch.Start ();

6 SearchMoves(depth , 0, negativeInfinity , positiveInfinity);

7 stopwatch.Stop();

8
9 if (! bestMoveIteration.IsEqual(Move.NullMove))

10 {

11 bestMoveFound = bestMoveIteration;

12 bestEvalFound = bestEvalIteration;

13 }

14
15 if (isSearchCanceled)

16 {

17 GD.Print($"Search canceled at depth: {depth}");

18 GD.Print($"
19 Partial search result best move:{ Utils.FromMoveToString(bestMoveFound)},

20 eval: {bestEvalFound},

21 time: {stopwatch.ElapsedMilliseconds} ms"

22);

23 break;

24 }

25 else

26 {

27 GD.Print(

28 $"Depth: {depth},

29 best move: {Utils.FromMoveToString(bestMoveFound)},

30 eval: {bestEvalFound}, time: {stopwatch.ElapsedMilliseconds} ms"

31);

32 }

33
34 // ...

Fragmento de código 5.21: Estadisticas de la busqueda

En la imagen 5.22 tenemos un ejemplo de la salida por consola. Para este ejemplo

se ha utilizado un tiempo de búsqueda de 3 segundos y se ha realizado el movimiento

e2e4, a lo que la inteligencia artificial después de llegar a una profundiad de 12 ha

concluido que la mejor respuesta es realizar el movimiento e7e5, que da como resultado

una evaluación para las negras de -15:

97

Figura 5.22: Ejemplo de salida por consola

5.6. Reducciones por traslado tard́ıo (Late move

reductions)

Hasta ahora, durante la búsqueda, a pesar de que ordenamos los movimientos

desde el más prometedor hasta el menos prometedor, estamos analizando todos ellos

a la misma profundidad. Sin embargo, seŕıa más eficiente si los movimientos que

consideramos menos relevantes se evaluaran a una profundidad menor. A esta técnica

se le denomina late move reductions(LMR) [29].

Existen ciertas condiciones que deben cumplirse para que un movimiento sea

considerado menos relevante y, por lo tanto, evaluado a una profundidad reducida.

Estas condiciones t́ıpicamente incluyen:

− Movimientos no principales: Los primeros movimientos en la lista, que se

consideran más prometedores, se evalúan a la profundidad completa. LMR se

aplica a movimientos que aparecen después en la lista, que se consideran menos

prometedores.

− No capturas ni promociones: LMR normalmente se aplica a movimientos

“silenciosos”, es decir, aquellos que no son capturas o jaques. Los movimientos

que podŕıan cambiar drásticamente la evaluación de la posición, como capturas,

no se reducen en profundidad.

− Profundidad suficiente: La técnica de LMR se suele aplicar sólo cuando la

profundidad restante de la búsqueda es mayor que un umbral determinado, por

ejemplo, 2 o más. Si la profundidad es muy baja, no se aplica la reducción.

98

En el caso de que al evaluar un movimiento a profundidad reducida, su puntuación

supere la mejor evaluación actual, se procederá a rehacer la búsqueda a la profundidad

completa, puesto que esto indicaŕıa que el movimiento es más bueno de lo que realmente

parećıa al realizar la ordenación de movimientos.

Veamos la modificación que hemos realizado en la función SearchMoves para añadir

este cambio:

1 //...

2 for (int i = 0; i < moves.Count; i++)

3 {

4 board.MakeMove(moves[i]);

5
6 int evaluation = 0;

7 bool needsFullSearch = true;

8 bool isCapture = moves[i]. pieceTarget.type != Piece.Type.None;

9 bool isInCheck = MoveGeneration.IsKingInCheck(board , board.GetTurnColor ());

10
11 // apply late move reduction if the conditions are met

12 if (i >= 3 && depth > 3 && !isCapture && !isInCheck)

13 {

14 const int reduction = 2; // incremented to 2

15 evaluation = -SearchMoves(depth - 1 - reduction , plyFromRoot + 1, -beta , -alpha);

16 needsFullSearch = evaluation > alpha;

17 }

18
19 if (needsFullSearch)

20 {

21 evaluation = -SearchMoves(depth - 1, plyFromRoot + 1, -beta , -alpha);

22 }

23
24 board.UndoMove ();

25
26 //...

27 }

Fragmento de código 5.22: Modificación añadida a la función SearchMoves

Solo aplicaremos LMR si se cumplen las condiciones mencionadas anteriormente,

en el caso de que estas se cumplan, reduciremos la profundidad del movimiento en 2.

La técnica LMR ofrece una mejora significativa en la eficiencia al reducir la

profundidad de evaluación de movimientos menos prometedores. Esto permite explorar

en profundidad los movimientos que son más propensos a ser buenos, optimizando aśı el

tiempo de cálculo y mejorando la calidad general de la búsqueda. Sin embargo, es crucial

aplicar LMR con cuidado, asegurando que sólo se reduzcan aquellos movimientos que

realmente son menos relevantes, evitando aśı pérdidas de precisión en la evaluación.

La implementación de LMR, como se muestra en la función SearchMoves, refleja esta

estrategia, permitiendo reevaluar a profundidad completa cualquier movimiento que

demuestre un potencial inesperado durante la búsqueda reducida, es decir, cuando se

cumpla que evaluation > alpha.

99

Caṕıtulo 6

Pruebas y conclusiones

A lo largo del desarrollo del proyecto, hemos asumido que el código implementado es

funcional y cumple con los requisitos establecidos. No obstante, a lo largo del desarrollo

se han llevado a cabo una serie de pruebas para garantizar su correcto funcionamiento

y validar nuestras suposiciones.

Una de las pruebas más significativas que realizamos fue la evaluación de la

generación de movimientos, puesto que es la funcionalidad donde más errores aparecen

y más dif́ıciles son de encontrar. Para este propósito, implementamos un Perft Test [30]

(performance test) con el objetivo de verificar dicha generación. Este test se basa en,

dada una posición espećıfica del juego, comprobar cuántos movimientos válidos y únicos

pueden generarse desde esa posición. La idea principal es comparar el número de nodos

generados por el sistema con el número esperado, que se conoce a priori o se puede

calcular teóricamente.

Aqúı podemos ver una tabla de la posición inicial que llega hasta la profundidad 7

con el número de posiciones para cada profundidad (valores obtenidos de [30]).

Depth Nodes
0 1
1 20
2 400
3 8,902
4 197,281
5 4,865,609
6 119,060,324
7 3,195,901,860

Tabla 6.1: Número de nodos con respecto a la profundidad de la posición inicial

Para realizar este test contamos con la función TestPositions, que se encargará de

contar el número de posiciones o nodos resultantes para una profundidad determinada.

1 public static ulong TestPositions(Board board , Piece.Color color , int depth)

100

2 {

3 if (depth == 0)

4 {

5 return 1;

6 }

7
8 List <Move > moves = GetAllPseudoLegalMovesByColor(board , color);

9
10 ulong numPositions = 0;

11
12 foreach (Move move in moves)

13 {

14 board.MakeMove(move , true);

15 if (! IsKingInCheck(board , color))

16 numPositions += TestPositions(

17 board , Piece.GetOppositeColor(color), depth - 1);

18 board.UndoMove(true);

19 }

20
21
22 return numPositions;

23 }

Fragmento de código 6.1: Función TestPositions

Ahora, para realizar el test, tendremos que llamar en bucle a la función

TestPositions hasta la profundidad que deseemos comprobar y asegurarnos de que

los valores obtenidos cuadran con los teóricos.

1 private static void PerfTest ()

2 {

3 // test code

4
5 Board newBoard = new Board ();

6 newBoard.LoadFenString(Board.StartFEN);

7 ulong [] testNodes = new ulong [] {

8 20, 400, 8902, 197281 , 4865609 , 119060324 , 3195901860

9 };

10
11 for (int depth = 1; depth <= testNodes.Length; depth ++)

12 {

13 ulong nodes = MoveGeneration.TestPositions(

14 newBoard , Piece.Color.White , depth);

15
16 string output = $"Depth {depth}, nodes {nodes} ";

17 output += (nodes == testNodes[depth - 1]) ? "tick" :

18 $"cross (expected {testNodes[depth - 1]})";

19
20 Console.WriteLine(output);

21 }

22
23 Console.WriteLine("test finished");

24 }

Fragmento de código 6.2: Función PerfTest

101

Comprobando la salida, vemos que concuerdan con los valores teóricos, lo que nos

permite constatar que la generación de movimientos funciona correctamente.

Figura 6.1: Salida en consola del test de profundidad para la posición de inicio

6.1. Estimación del ELO

El sistema de puntuación ELO [31] es un método matemático utilizado para calcular

la habilidad relativa de los jugadores en disciplinas como el ajedrez. Cuanto mayor es

su ELO, mejor es un jugador. Aqúı podemos ver una tabla de cómo se clasificaŕıan los

rangos de ELO en el ajedrez.

Categoŕıa Rango de Elo
Principiantes Menos de 1200

Clase D 1200 - 1399
Clase C 1400 - 1599
Clase B 1600 - 1799
Clase A 1800 - 1999
Expertos 2000 - 2199
Maestros 2200 - 2399

Grandes Maestros 2400 y superior

Tabla 6.2: Distribución de ELO en ajedrez

Para estimar el rating ELO de nuestro bot de ajedrez, hemos llevado a cabo un

proceso metódico que implicó jugar múltiples partidas contra el motor de ajedrez

Stockfish [4] a diferentes niveles de habilidad. A continuación, se detalla el proceso

seguido, incluyendo las condiciones espećıficas bajo las cuales se realizaron las partidas.

6.1.1. Preparación del experimento

Se configuró un entorno de pruebas controlado para permitir que nuestro bot y

el motor Stockfish jugaran entre śı. Para ello, tuvimos que conectar nuestro bot a

Stockfish v́ıa el protocolo UCI [32, 33], por el cual enviábamos los movimientos que

realizaba nuestro bot y recoǵıamos el movimiento con el que respond́ıa Stockfish.

102

6.1.2. Ejecución de las partidas

− Número de partidas:Nuestro bot jugó un total de 100 partidas contra Stockfish

en cada nivel de ELO seleccionado (900 partidas en total). Este número de

partidas fue elegido para proporcionar una muestra suficientemente grande y

estad́ısticamente significativa de resultados.

− Condiciones de juego:

• Tiempo de pensamiento: Ambos motores tuvieron 100 milisegundos para

pensar en cada movimiento. Este ĺımite de tiempo se aplicó para garantizar

una evaluación justa del rendimiento de ambos motores bajo las mismas

condiciones temporales.

• Color de las piezas: Las 100 partidas se jugaron bajo las siguientes

condiciones:

◦ Primeras 50 partidas: Nuestro bot jugó con las blancas y Stockfish

con las negras.

◦ Últimas 50 partidas: Se invirtieron los roles, con nuestro bot jugando

con las negras y Stockfish con las blancas.

− Registro de resultados: Para cada conjunto de 100 partidas, se registraron los

resultados en tres categoŕıas:

• Victorias del bot: El número de partidas ganadas por nuestro bot.

• Victorias de Stockfish: El número de partidas ganadas por Stockfish.

• Empates: El número de partidas que terminaron en empate.

− Repetición del proceso: El experimento se repitió para cada nivel de ELO

de Stockfish, comenzando desde 1700 y avanzando en incrementos de 100 hasta

2500. Esta repetición permitió una evaluación exhaustiva del rendimiento del bot

en diferentes niveles de dificultad.

6.1.3. Análisis de resultados y estimación del ELO del bot

Los resultados obtenidos fueron los siguientes:

103

ElO de Stockfish Victorias Derrotas Empates
1700 87 13 0
1800 77 22 1
1900 73 23 4
2000 65 34 1
2100 61 35 4
2200 49 47 4
2300 43 51 6
2400 33 60 7
2500 16 72 12

Tabla 6.3: Resultados del bot en diferentes niveles de ElO de Stockfish

Cuya representación de forma gráfica es la siguiente:

Figura 6.2: Resultados del bot en diferentes niveles de ELO de Stockfish

La gráfica muestra cómo nuestro bot comienza a perder más partidas a medida que

el ELO de Stockfish aumenta, observando que a partir de un ELO de 2200, nuestro bot

pierde más juegos de los que gana, lo cual sugeriŕıa que el ELO de nuestro bot estaŕıa

en torno a los 2200 puntos.

Para conocer de manera más exacta cuál seŕıa el valor del ELO, seguiremos una

metodoloǵıa que estima la probabilidad de victoria en función de la diferencia de ELO

entre dos jugadores.

104

Cálculo de la probabilidad de victoria

La probabilidad de victoria de un jugador A frente a un jugador B, según el

sistema de ELO, se calcula con la siguiente fórmula:

P (A) =
1

1 + 10
(ELOB−ELOA)

400

Donde:

− P (A) es la probabilidad de que el jugador A gane.

− ELOA es el ELO del jugador A.

− ELOB es el ELO del jugador B.

En nuestro caso, ELOA corresponde al ELO de nuestro bot, y ELOB al ELO de

Stockfish en las pruebas.

Función de error

Para estimar el ELO de nuestro bot, hemos utilizado una función de error que mide

la diferencia entre las probabilidades de victoria observadas y las probabilidades de

victoria esperadas según la fórmula de ELO. La función de error que utilizamos fue

la suma de los errores cuadráticos entre estas probabilidades:

Error =
n∑

i=1

(Probabilidad Observadai − Probabilidad Esperadai)
2

Donde:

− n es el número de partidas en un conjunto determinado.

− Probabilidad Observadai es la probabilidad observada de victoria de nuestro bot

(calculada como Victorias del Bot
Total de Partidas

).

− Probabilidad Esperadai es la probabilidad de victoria esperada según la diferencia

de ELO entre nuestro bot y Stockfish.

Minimización de la función de error

Para determinar el ELO que mejor se ajusta al rendimiento de nuestro bot, se utilizó

una técnica de optimización conocida como minimización de la función de error.

La idea es encontrar el valor de ELObot que minimice el error entre las probabilidades

observadas y las esperadas.

105

Al aplicar este método a los datos obtenidos en las pruebas, estimamos que el

ELO de nuestro bot se encuentra aproximadamente en 2180 puntos (el valor que más

minimiza la función de error), lo que coincide con el análisis gráfico y el rendimiento

observado en los diferentes niveles de ELO de Stockfish.

6.2. Conclusión

El desarrollo de un motor de ajedrez basado en inteligencia artificial ha sido un

proceso complejo, que ha implicado la implementación de diversos componentes, desde

la interfaz de usuario hasta la lógica del juego y, en particular, la inteligencia artificial.

A lo largo del proyecto, hemos explorado tanto los aspectos fundamentales de la

programación aplicados al ajedrez como los desaf́ıos inherentes a la creación de un

bot que fuese desafiante para el jugador.

Uno de los principales logros del proyecto ha sido el desarrollo de un motor de

ajedrez que utiliza el algoritmominimax en conjunto con alpha-beta pruning y las varias

optimizaciones y mejoras que hemos ido implementando para mejorar y optimizar la

búsqueda de movimientos, asegurando una toma de decisiones eficiente.

Para estimar el rendimiento de nuestro motor, se realizaron numerosas pruebas

aprovechando el motor Stockfish, configurado con distintos niveles de ELO. Estas

pruebas nos permitieron no sólo evaluar el rendimiento del motor en términos de

partidas ganadas, perdidas y empatadas, sino también realizar una estimación bastante

precisa de su ELO. A través de un proceso de ajuste de la probabilidad de victoria

basada en el sistema ELO, llegamos a la conclusión de que el ELO de nuestro motor

se sitúa alrededor de 2180. Este valor indica que nuestro bot es competitivo contra

jugadores avanzados y motores de ajedrez de nivel intermedio, aunque aún se encuentra

lejos de los motores de élite, lo cual era de esperar.

Durante el desarrollo del proyecto, enfrentamos varios retos, especialmente en la

generación y evaluación de movimientos. Sin embargo, mediante técnicas de prueba,

como los Perft Tests, logramos verificar que el motor generaba el número correcto

de nodos, lo que garantizó su correcto funcionamiento en términos de cálculo de

movimientos.

En resumen, este proyecto ha permitido crear una plataforma educativa para el

desarrollo de inteligencia artificial aplicada al ajedrez. A pesar de que el rendimiento

de nuestro bot no alcanza los niveles de los motores más avanzados, como Stockfish

o AlphaZero, el resultado es un motor funcional y competitivo, que proporciona una

sólida base para futuros desarrollos. Las posibles mejoras en la evaluación de posiciones,

optimización de la búsqueda, o incluso la implementación de redes neuronales para la

106

evaluación de las posiciones, podŕıan aumentar significativamente el rendimiento del

bot en futuras iteraciones.

En conclusión, este proyecto no sólo ha cumplido los objetivos planteados al

principio, sino que también ha proporcionado una valiosa experiencia educativa en

el desarrollo de inteligencia artificial aplicada a los juegos de tablero. A través de este

trabajo, hemos logrado profundizar en conceptos fundamentales de la programación,

la lógica de juegos y las técnicas de búsqueda. Adicionalmente hemos ofrecido una

plataforma accesible y bien documentada, que facilita la enseñanza de conceptos

complejos de manera intuitiva, promoviendo el desarrollo de habilidades cŕıticas en

programación y diseño de juegos. De esta manera, se espera que sirva como una

herramienta educativa que inspire a otros a adentrarse en el fascinante mundo de la

inteligencia artificial y el desarrollo de videojuegos.

107

Caṕıtulo 7

Bibliograf́ıa

[1] Federación Española de Ajedrez. Leyes del ajedrez y traducciones

oficiales. Reglamentación FIDE, 2024. https://feda.org/feda2k16/

leyes-del-ajedrez-y-traducciones-oficiales-reglamentacion-fide/.

[2] A. Fox and D.A. Patterson. Engineering Software as a Service: An Agile Approach

Using Cloud Computing. Strawberry Canyon LLC, 2013.

[3] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach

(4th Edition). Pearson, 2020.

[4] Stockfish chess engine. https://stockfishchess.org/.

[5] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore

Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A general

reinforcement learning algorithm that masters chess, shogi, and go through

self-play. Science, 362(6419):1140–1144, 2018.

[6] Alphazero chess engine. https://en.wikipedia.org/wiki/AlphaZero.

[7] Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter Golde. The C#

Programming Language. Addison-Wesley Professional, 3rd edition, 2008.

[8] C# programming language. https://dotnet.microsoft.com/es-es/

languages/csharp.

[9] Godot game engine. https://godotengine.org/.

[10] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software

engineering. Prentice-Hall, Inc., USA, 1991.

108

https://feda.org/feda2k16/leyes-del-ajedrez-y-traducciones-oficiales-reglamentacion-fide/
https://feda.org/feda2k16/leyes-del-ajedrez-y-traducciones-oficiales-reglamentacion-fide/
https://stockfishchess.org/
https://en.wikipedia.org/wiki/AlphaZero
https://dotnet.microsoft.com/es-es/languages/csharp
https://dotnet.microsoft.com/es-es/languages/csharp
https://godotengine.org/

[11] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language

Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

[12] Ariel Manzur Juan Linietsky and the Godot community. Node class, 2024. https:

//docs.godotengine.org/es/4.x/classes/class_node.html.

[13] Ariel Manzur Juan Linietsky and the Godot community. Idle and physics

processing, 2024. https://docs.godotengine.org/en/stable/tutorials/

scripting/idle_and_physics_processing.html.

[14] Clases estáticas y sus miembros (gúıa de programación de c-sharp).

https://learn.microsoft.com/es-es/dotnet/csharp/programming-guide/

classes-and-structs/static-classes-and-static-class-members.

[15] Chess programming wiki, zobrist hashing. https://www.chessprogramming.

org/Zobrist_Hashing.

[16] Godot sprite2d. https://docs.godotengine.org/en/stable/classes/class_

sprite2d.html.

[17] Vladimir Fedorovich Demyanov and Vasilii Nikolaevich Malozemov. Introduction

to minimax. Dover Publications, 1990.

[18] George C. Stockman. A minimax algorithm better than alpha-beta? Artificial

Intelligence, 12(2):179–196, 1979.

[19] Chess programming wiki negamax. https://www.chessprogramming.org/

Minimax.

[20] Chess programming wiki pieces point values. https://www.chessprogramming.

org/Point_Value.

[21] Chess programming wiki piece position values (piece-square tables). https://

www.chessprogramming.org/Simplified_Evaluation_Function.

[22] Ingo Althöfer. An incremental negamax algorithm. Artificial intelligence,

43(1):57–65, 1990.

[23] Chess programming wiki negamax. https://www.chessprogramming.org/

Negamax.

[24] Chess programming wiki horizon effect. https://www.chessprogramming.org/

Horizon_Effect.

109

https://docs.godotengine.org/es/4.x/classes/class_node.html
https://docs.godotengine.org/es/4.x/classes/class_node.html
https://docs.godotengine.org/en/stable/tutorials/scripting/idle_and_physics_processing.html
https://docs.godotengine.org/en/stable/tutorials/scripting/idle_and_physics_processing.html
https://learn.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/static-classes-and-static-class-members
https://learn.microsoft.com/es-es/dotnet/csharp/programming-guide/classes-and-structs/static-classes-and-static-class-members
https://www.chessprogramming.org/Zobrist_Hashing
https://www.chessprogramming.org/Zobrist_Hashing
https://docs.godotengine.org/en/stable/classes/class_sprite2d.html
https://docs.godotengine.org/en/stable/classes/class_sprite2d.html
https://www.chessprogramming.org/Minimax
https://www.chessprogramming.org/Minimax
https://www.chessprogramming.org/Point_Value
https://www.chessprogramming.org/Point_Value
https://www.chessprogramming.org/Simplified_Evaluation_Function
https://www.chessprogramming.org/Simplified_Evaluation_Function
https://www.chessprogramming.org/Negamax
https://www.chessprogramming.org/Negamax
https://www.chessprogramming.org/Horizon_Effect
https://www.chessprogramming.org/Horizon_Effect

[25] Chess programming wiki quiescence search. https://www.chessprogramming.

org/Quiescence_Search.

[26] Chess programming wiki transposition. https://www.chessprogramming.org/

Transposition.

[27] Chess programming wiki transposition table. https://www.chessprogramming.

org/Transposition_Table.

[28] Wikipedia negamax with transposition table. https://en.wikipedia.org/

wiki/Negamax#:~:text=the%20search%20tree.-,Negamax%20with%20alpha%

20beta%20pruning%20and%20transposition%20tables,-%5Bedit%5D.

[29] Chess programming wiki late move reductions. https://www.chessprogramming.

org/Late_Move_Reductions.

[30] Chess programming wiki late move reductions. https://www.chessprogramming.

org/Perft_Results.

[31] Wikipedia elo rating. https://en.wikipedia.org/wiki/Elo_rating_system.

[32] Wikipedia uci protocol. https://en.wikipedia.org/wiki/Universal_Chess_

Interface.

[33] Rudolf Huber and Stefan-Meyer Kahlen. Uci protocol specificationsl, 2006. https:

//backscattering.de/chess/uci/2006-04.txt.

110

https://www.chessprogramming.org/Quiescence_Search
https://www.chessprogramming.org/Quiescence_Search
https://www.chessprogramming.org/Transposition
https://www.chessprogramming.org/Transposition
https://www.chessprogramming.org/Transposition_Table
https://www.chessprogramming.org/Transposition_Table
https://en.wikipedia.org/wiki/Negamax#:~:text=the%20search%20tree.-,Negamax%20with%20alpha%20beta%20pruning%20and%20transposition%20tables,-%5Bedit%5D
https://en.wikipedia.org/wiki/Negamax#:~:text=the%20search%20tree.-,Negamax%20with%20alpha%20beta%20pruning%20and%20transposition%20tables,-%5Bedit%5D
https://en.wikipedia.org/wiki/Negamax#:~:text=the%20search%20tree.-,Negamax%20with%20alpha%20beta%20pruning%20and%20transposition%20tables,-%5Bedit%5D
https://www.chessprogramming.org/Late_Move_Reductions
https://www.chessprogramming.org/Late_Move_Reductions
https://www.chessprogramming.org/Perft_Results
https://www.chessprogramming.org/Perft_Results
https://en.wikipedia.org/wiki/Elo_rating_system
https://en.wikipedia.org/wiki/Universal_Chess_Interface
https://en.wikipedia.org/wiki/Universal_Chess_Interface
https://backscattering.de/chess/uci/2006-04.txt
https://backscattering.de/chess/uci/2006-04.txt

	Introducción
	Desarrollo de la estructura del juego
	Las piezas
	Los movimientos
	El tablero
	Los jugadores
	La clase Game
	La máquina de estados
	Implementación

	La estructura en su conjunto

	Implementación de las reglas
	Movimientos de las piezas
	El Caballo
	La Torre, el Alfil y la Reina
	El Peón
	El Rey
	De movimientos pseudo-legales a movimientos legales
	Encapsulación

	Jaque mate y Rey ahogado
	Tablas por triple repetición
	Notación de Forsyth-Edwards
	Zobrist Hashing

	Regla de los cincuenta movimientos

	Diseño y desarrollo de la interfaz de usuario
	Representación gráfica del juego
	La clase BoardGraphics

	Integrando la interfaz de usuario en el juego
	El jugador humano
	Integración con la clase Game

	Desarrollo de la inteligencia artificial
	Función de evaluación del tablero
	Algoritmo de búsqueda: minimax
	Funcionamiento del algoritmo
	Implementación
	Alpha-Beta Prunning

	Búsqueda de estabilidad (Quiescence search)
	Tabla de transposición (Transposition table)
	Profundización iterativa (Iterative deepening)
	Reducciones por traslado tardío (Late move reductions)

	Pruebas y conclusiones
	Estimación del ELO
	Preparación del experimento
	Ejecución de las partidas
	Análisis de resultados y estimación del ELO del bot

	Conclusión

	Bibliografía

