w2s Universidad
A0 Zaragoza

1542

Trabajo Fin de Grado

Herramienta para la medicion automaética de
cobertura de codigo mediante la técnica de caminos
con profundidad de nivel 2 en Java

Tool for automatic code coverage measurement
using the path coverage technique with depth level 2
in Java

Autor

Juan Cataldn Bernal

Director

Miguel Angel Latre Abadia

ESCUELA DE INGENIERIA Y ARQUITECTURA
2024

MASTER

W
Q
=
Ty
N
o
S
c
O
W
Q
<
Ty
W
Q
v
Qo
<
<
~

Ingenieria y Arquitectura

.ﬁl Escuela de DECLARACION DE
UniversidadZaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe acompaiiar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Méster (TFM) cuando sea depositado para su evaluacion).

D./D2. Juan Catalan Bernal

7

con n2 de DNI 73009179A en aplicacién de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de Ia

Universidad de Zaragoza,

Declaro que el ©presente Trabajo de Fin de (Grado/Master)

Grado en Ingenieria Informatica , (Titulo del Trabajo)

Herramienta para la medicion automatica de cobertura de cédigo mediante la

técnica de caminos de profunidad de nivel 2 en Java

7

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 5 de Septiembre de 2024

Fi rmado por CATALAN BERNAL JUAN -
%0917 el dia 05/09/2024 con un
certificado emtido por AC FNMI Usuari os

Fdo:

IT

AGRADECIMIENTOS

Primeramente quiero agradecer a Miguel Angel Latre, tutor de este trabajo, por
todo el tiempo dedicado, los &nimos recibidos y por haber ayudado a que la experiencia
de trabajar en el TFG haya sido (a excepciéon de los tltimos momentos de estrés)
entretenida y satisfactoria.

Agradecer también a todos aquellos companeros y amigos que he conocido en la
carrera, que convierten los dias de aburrimiento y de estrés, en dias que, aunque sigan
siendo estresantes y llenos de trabajos, vuelves a casa con una sonrisa y con (al menos
unas pocas) ganas de volver al dia siguiente. Entre ellos destacar a aquellos que conoci
casi al comienzo de la carrera como Ernesto, Antonio, Jaime y Ainhoa, y a aquellos
que aunque los he conocido el ultimo ano han sido algo clave para haber llegado al dia
de hoy: Carlos, Senso, Raul, Jaime, Carlota y Marina.

Por ultimo agradecer a mis personas més cercanas, tanto a mi familia de sangre por
haber puesto la confianza en mi para comenzar la carrera y seguir en ella a pesar de
un mal comienzo, como a los amigos que considero parte de mi familia como Pablete,
Miguel Angel, Dieguito, Sara, Diego Del, Claudia y Adri (que me ha acompaifiado en
la carrera un dia tras otro) por haberme entendido y apoyado en los dias malos de la

carrera y por haber celebrado cuando las cosas han ido bien.

II1

Herramienta para la medicién automatica de
cobertura de co6digo mediante la técnica de caminos
con profundidad de nivel 2 en Java

RESUMEN

A la hora de realizar testing de sistemas informaticos es comun utilizar diferentes
técnicas de diseno de pruebas. Estas son métodos definidos para obtener, a partir de
unos requisitos o especificaciones determinados, casos de prueba que proporcionan una
determinada cobertura para los mismos.

Una de ellas es la técnica de caminos con profundidad de nivel 2, la cual es una
técnica de testing basada en la estructura que pretende disenar un conjunto de casos de
prueba que asegure que todos los pares de aristas adyacentes del grafo de flujo asociado
al codigo objeto de pruebas se ejecuten al menos una vez.

La técnica de caminos con profundidad 2 es una técnica muy exhaustiva para
la que no existen herramientas de mediciéon de cobertura que comprueben que las
pruebas diseniadas estan cubriendo todos los caminos deseados. Este TFG busca crear
una herramienta para Java que automatice el proceso de mediciéon de cobertura de
pruebas diseniadas con esta técnica, ofreciendo un informe de cobertura de codigo tras
la ejecucion de las pruebas.

Para ello se va a desarrollar un agente en Java que mediante instrumentacion de
codigo Java, sea capaz de analizar un método generando su grafo de flujo asociado,
identificando las situaciones de prueba y modificando el codigo para registrar de manera
dindmica las situaciones de prueba que se vayan ejecutando.

Ademas se va a implementar un plugin para el IDE IntelliJ que integre el agente
previamente mencionado, para facilitar el uso de la herramienta con una configuracion

simple por parte de los programadores.

IV

Tool for automatic code coverage measurement using
the path coverage technique with depth level 2 in
Java

ABSTRACT

At the time of performing testing of computer systems, it is common to use different
test design techniques. These are defined methods to obtain, from certain requirements
or specifications, test cases that provide a certain coverage for them.

One of them is the path coverage technique with level 2 depth, which is a
structure-based testing technique aimed at designing a set of test cases that ensures
that all pairs of adjacent edges of the flow graph associated with the code under test
are executed at least once.

The path coverage technique with level 2 depth technique is a very exhaustive
technique for which there are no coverage measurement tools that check whether the
designed tests are covering all the desired paths. This final project aims to create a
tool for Java that automates the process of measuring the coverage of tests designed
with this technique, offering a code coverage report after the tests are executed.

To achieve this, a Java agent will be developed that, through Java code
instrumentation, is capable of analyzing a method, generating its associated flow graph,
identifying test situations, and modifying the code to dynamically record the test
situations that are being executed.

In addition, a plugin for the IntelliJ] IDE will be implemented to integrate the
previously mentioned agent, making it easier for programmers to use the tool with a

simple configuration.

Indice

1. Introduccién y objetivos 1

1.1, Contexto 1

1.1.1. Testing y técnicas de diseno de pruebas 1

1.1.2. Cobertura de codigo 2

1.1.3. Automatizaciéon de las pruebas oL 4

1.1.4. Técnica de caminos con profundidad de nivel 2 4

1.2. Objetivos 7

2. Requisitos y casos de uso 9
2.1. Requisitos

2.1.1. Aspectos fuera de &mbito L. 10

2.2, Casos de UsO 10

2.2.1. Actores y descripciéon de los casos de uso asociados 10

2.2.2. Diagrama de casos de uso 11

3. Analisis 12

3.1. Estado de las herramientas de cobertura de cédigo actuales 12

3.2. Metodologia 14

4. Diseno e implementacion 16

4.1. Diseno algoritmico de la soluciono oL 16

4.2. Diseno e implementacion de un agente en Java 18

4.2.1. Analisis de herramientas de instrumentacion de codigo Java. . . 18

4.2.2. Agentes en Java e instrumentacion 19

4.2.3. Implementacion de un agente en Java utilizando la libreria ASM 19

4.2.4. Dificultades encontradas oL 21

4.3. Implementacion de un plugin de integracion del agente para el IDE IntelliJ 23

4.3.1. Contexto sobre IntelliJ Platform Plugin SDK 23

4.3.2. Diseno de la interfaz y funcionamiento 24

VI

5. Validacion 28

5.1. Correccion de los grafos 28

5.1.1. Diseno 28

5.1.2. Implementacion 29

5.1.3. Resultados 32

5.2. Identificacion de las situaciones de prueba a partir de un grafo 32

5.2.1. Diseno 32

5.2.2. Implementacion 33

5.2.3. Resultados 33

5.3. Correcto registro de los nodos y caminos recorridos. 33

0.3 1. Diseno 33

5.3.2. Implementacion 34

5.3.3. Resultados 34

6. Conclusiones 35

6.1. Gestion del proyectoo 35

6.2. Trabajo futuro 36

6.2.1. Extension de la herramienta a otros lenguajes basados en la JVM 36

6.2.2. Herramientas de soporte a la aplicacion de la técnica 36

6.3. Reflexiones sobre la técnica de caminos de profundidad 2 36

6.4. Valoracion personal 39

Bibliografia 40

Lista de Figuras 41

Lista de Tablas 43

Anexos 44

A. Ejemplos de conceptos basados en cédigo fuente 46
A.1. Ejemplo de situaciones imposibles en la técnica de caminos de

A2

profundidad 2 46
Ejemplo de mediciéon de cobertura de codigo 47
A.2.1. Objetode pruebas 47
A.2.2. Ejecucion y cobertura. o 49
A.2.3. Cobertura completa 49

B. Breve resumen de bytecode Java y sus instrucciones 51

B.1. Instrucciones 51
B.1.1. Instrucciones de load y store 51
B.1.2. Instrucciones aritméticas o1
B.1.3. Instrucciones de conversion de tipos o1
B.1.4. Instrucciones de creaciéon y acceso a objetos 52
B.1.5. Instrucciones de transferencia de control 52
B.1.6. Instrucciones de invocaciéon de métodos 52
B.1.7. Instrucciones de devolucion de valores 52

B.2. Ejemplo de programa en bytecode oL 52
B.2.1. Métodoen Java 52
B.2.2. Método en bytecode Lo 53

C. Diagramas arquitecturales 54

C.1. Arquitectura del agente Java L. 54
C.1.1. Diagrama de paquetes 54

C.2. Arquitectura del plugin de IntelliJ, 57
C.2.1. Contexto sobre la IntelliJ Platform Plugin SDK o7
C.2.2. Diagrama de paquetes 58
C.2.3. Diagrama de secuencia 61

VIII

Capitulo 1

Introduccion y objetivos

1.1. Contexto

1.1.1. Testing y técnicas de diseno de pruebas

A la hora de realizar testing de sistemas informéaticos existen diferentes formas de
definir que se va a probar, desde enfoques mas informales como pruebas basadas en la
experiencia (pruebas exploratorias, basadas en listas de comprobacion, etc.) hasta la
utilizacion de diferentes técnicas de diseno de prueba [1].

Las técnicas de diseno de pruebas son métodos definidos para obtener, a partir
de unos requisitos o especificaciones determinados, casos de prueba de un software
que proporcionan una determinada cobertura para el mismo. Cada técnica enfoca las
pruebas a aspectos diferentes para adaptarse a la exigencia de la estrategia de pruebas
elegida.

Las diferentes técnicas se pueden clasificar en dos grupos [2]:

— Técnicas basadas en la especificaciéon (o técnicas de pruebas de caja negra):
técnicas donde la test basis (requisitos, especificacion, modelos) es usada como la

principal fuente de informacién para disenar casos de prueba.

Un ejemplo de técnica basada en la especificacion es la técnica de particiones
de equivalencia donde, para un determinado objeto de pruebas (funcion,
modulo, programa que se desea testear) se busca definir las diferentes particiones
de equivalencia de los pardmetros o entradas del objeto de pruebas (casos
conceptualmente semejantes), y a partir de ellas disenar pruebas que cubran

el conjunto de las particiones de equivalencia identificadas.

- Técnicas basadas en la estructura (o técnicas de pruebas de caja blanca):
técnicas donde la estructura del objeto de pruebas (generalmente el codigo fuente)
es utilizada como la fuente primaria de informacién para disenar los casos de

prueba.

Algunos ejemplos de técnicas basadas en la estructura son:

e Instrucciones (Statement Testing): es una técnica que pretende disenar
un conjunto de casos de prueba que asegure que todas las instrucciones del

codigo objeto de pruebas se ejecuten al menos una vez.

e Ramas (Branch Testing): es una técnica que pretende disenar un
conjunto de casos de prueba que asegure que todas las aristas del grafo

de flujo asociado al codigo objeto de pruebas se ejecuten al menos una vez.

e Caminos de profundidad 2 (Edge-Pair Testing): esta técnica se puede
entender como una extension de la técnica de cobertura de ramificacion
donde, en vez de todas las aristas del grafo de flujo, se pretende asegurar
que se ejecutan todos las pares de aristas adyacentes. Es la técnica en la que

se centra este TFG y se describe con més detalle en la secciéon 1.1.4.

1.1.2. Cobertura de cédigo

Cuando se realiza testing es conveniente tener medidas que nos permitan observar
como de bien se esta realizando los test, y las partes del programa o el codigo que se
estdn probando con mayor y menor exhaustividad. Una de las medidas més utilizadas
para ello es la cobertura de codigo, que muestra el grado en el que codigo fuente de un
programa es ejecutado durante la ejecucion de un conjunto de pruebas en concreto [3].

Que un programa tenga una cobertura de cédigo baja al ejecutar los test indica que
solo una pequena parte del programa se ha ejecutado durante los test, lo que sugiere que
existe una mayor probabilidad de encontrar fallos inesperados respecto a un programa
con alta cobertura de codigo.

Existen diferentes tipos de cobertura de codigo, los més comunes (y que multiples

herramientas son capaces de medir automaticamente) son:

— Cobertura de lineas: mide el numero de lineas del codigo fuente que se han

ejecutado.

— Cobertura de instrucciones: mide el ntimero de instrucciones del coédigo fuente

que se han ejecutado.

— Cobertura de clases: mide el namero de clases (en lenguajes orientados a

objetos) que se han utilizado durante la ejecucion de los tests.

— Cobertura de funciones o métodos: mide el niimero de funciones o métodos
(en lenguajes orientados a objetos) que han sido invocados durante la ejecucion

de los tests.

— Cobertura de ramas: mide el nimero de ramas de cada estructura de control
(como if o while) que han sido ejecutadas. Por ramas se entiende los diferentes
caminos que puede tomar el flujo del programa al evaluarse las condiciones que

los guardan como true o false.

— Cobertura de condiciones: mide el nimero de sub-expresiones booleanas que

han sido evaluadas con sus diferentes posibles valores.

Un ejemplo de los diferentes tipos de cobertura y su medicién se encuentra en el
Anexo A.2.

Los IDE generalmente son capaces medir algunos de estos tipos de cobertura y
ofrecerte un informe. En la figura 1.1 se puede observar un ejemplo de informe de
cobertura del IDE IntelliJ, con los diferentes tipos de cobertura que este IDE es capaz

de medir.

Coverage spring-petclinic [test] 5 =

ETT U KEY

4

Element ~ Class, % Method, % Line, % Branch, %
v [3] org.springframework 2% (17/764) 3% (81/2125) 3% (233/7413) 78% (63/80)
> [aop 0% (0/4) 0% (0/4) 0% (0/24) 100% (0/0)
> [2J boot 0% (0/617) 0% (0/1654) 0% (0/4585) 100% (0/0)
> [¢J cache 0% (0/15) 0% (0/48) 0% (0/156) 100% (0/0)
> [2J context.event 0% (0/8) 0% (0/8) 0% (0/32) 100% (0/0)
> [¢J data 0% (0/39) 0% (0/87) 0% (0/276) 100% (0/0)
> [2J orm.jpa 0% (0/3) 0% (0/12) 0% (0/63) 100% (0/0)
v [0 samples.petclinic 26% (17/64) 48% (81/168) 12% (233/18... 78% (63/80)
~ (23 model 100% (3/3) 100% (10/10) 100% (10/10) 100% (2/2)
(© BaseEntity 100% (1/1) 100% (3/3) 100% (3/3) 100% (2/2)
(© NamedEntity 100% (1/1) 100% (3/3) 100% (3/3) 100% (0/0)
© Person 100% (1/1) 100% (4/4) 100% (4/4) 100% (0/0)
> [e] owner 40% (8/20) 71% (56/78) 63% (185/290) 77% (57/74)
> [2] service 0% (0/2) 0% (0/4) 0% (0/88) 100% (0/0)
> [e] system 12% (2/16) 8% (2/25) 0% (2/388) 100% (0/0)
> [vet 33% (3/9) 47% (10/21) 29% (29/97) 100% (4/4)

Figura 1.1: Ejemplo de informe de cobertura de IntelliJ

1.1.3. Automatizaciéon de las pruebas

La automatizacion de pruebas implica la escritura de codigo especifico cuya tinica
funcion es verificar que el codigo de produccion (es decir, el codigo que realmente
ejecutara el usuario final y que resuelve el problema que el software pretende abordar)
se comporta como se espera en diversas situaciones. Este codigo de pruebas se ejecuta
de forma automaética, permitiendo la repeticion de pruebas sin intervenciéon manual, lo
cual ahorra tiempo y minimiza el riesgo de errores humanos.

Para poder automatizar las pruebas es necesario un entorno de automatizacion
de pruebas y test harness: esto es una coleccion de software que facilita la ejecucion
de pruebas, incluye el entorno general y los scripts especificos para un programa o
proyecto. En el caso de Java, el entorno de automatizaciéon de pruebas predominante
es JUnit!.

1.1.4. Técnica de caminos con profundidad de nivel 2

Este trabajo esta centrado en la técnica de caminos con profundidad de nivel 2, la
cual es una técnica de testing basada en la estructura que pretende disenar un conjunto
de casos de prueba que asegure que todos los pares de aristas adyacentes del grafo de
flujo asociado al codigo objeto de pruebas se ejecuten al menos una vez.

Para aplicar la técnica se pueden seguir los siguientes pasos:
1. Generar el grafo de control asociado al c6digo objeto de pruebas.

2. Determinar los nodos “relevantes” del grafo (nodo inicial, nodos finales y nodos
predicado) y determinar las aristas que los conectan basdndose en el grafo

completo.

Esta técnica es particularmente sensible a la definicion de nodo predicado (nodos
en los que el flujo del programa se puede dividir). Consideramos nodo predicado
a cada condicién simple que aparece en la guarda de una instrucciéon condicional

o iterativa.

3. Incluir como situaciones de prueba todas las combinaciones de caminos de dos

aristas que pasan por nodos predicado.

4. Generar caminos sobre el grafo hasta que se hayan incluido todas las situaciones

de prueba.

5. Generar casos de prueba que satisfagan los caminos.

"https://junit.org/junits/

https://junit.org/junit5/

Ejemplo de aplicaciéon de la técnica

Objeto de pruebas Dado el siguiente método con nombre buscar, que va a ser

nuestro objeto de pruebas:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

VAT
¥ Busca un dato determinado en un wvector de enteros.
*

* Oparam v

* - el vector no nulo en el que se busca el entero.
* @param datoBuscado
* - el dato que se quiere buscar en el vector «v».
*
* @return Si en el wvector «v» hay un dato tgual a <¢datoBuscadoy,
* devuelve el indice de la componente en la que se encuentra.
* FEn caso contrario devuelve -1;
*/
public int buscar(int[] v, int datoBuscado) {

int i = 0;

while (i < v.length) {
if (v[i] == datoBuscado) {

return i;
it++;
return -1;

Figura 1.2: Codigo Java de la funcion buscar

Los pasos a seguir son:

Generar el grafo de control Se va a utilizar como identificador de vértices el

ntmero de linea de su representacion en el coédigo para facilitar la lectura del grafo.

Figura 1.3: Grafo de flujo asociado al codigo Java de 1.2

Determinar los nodos ‘relevantes” del grafo Para ello, a partir del grafo

completo, nos centramos tunicamente en los nodos inicial, finales y predicado, y

determinamos las aristas que los conectan.

E: false

Figura 1.4: Grafo de flujo con nodos “relevantes” basado en el grafo de la figura 1.3

Generar situaciones de prueba Las situaciones de prueba seran todo aquel

conjunto de pares de aristas adyacente, en este caso:

AC,AG ,CD,CE,EC,EG

Generar caminos que incluyan todas las situaciones de prueba De manera

iterativa e incremental, se definen caminos que cubran algunas de las situaciones de

prueba restantes.

Por ejemplo, podriamos empezar con un camino que Gnicamente cubra AG.
Caminos Situaciones de prueba restantes
AG AC, AG, CD, CE, EC, EG
Tras esto, podemos seguir con un camino que cubra AC y CD.
Caminos Situaciones de prueba restantes

AG, ACD AC, AG, CD, CE, EC, EG

Para finalizar, podemos buscar un camino que cubra las situaciones restantes: CE,
EC y EG.

Caminos Situaciones de prueba restantes

AG, ACD, ACECEG AC, AG, CD, CE, BEC, BEG

Generar casos de prueba que satisfagan los caminos En este caso, un ejemplo

de casos de prueba que satisfacen los caminos previamente determinados se ven en la

tabla 1.1.

Parametros
Caso Resultado | Camino cubierto
int[] v | int datoBuscado
1 I 1 -1 AG
2 | [1,2.3] 1 0 ACD
3| 1,2 3 -1 ACECEG

Tabla 1.1: Tabla de casos de prueba para el método de la figura 1.2

1.2. Objetivos

La técnica de caminos con profundidad 2 es una técnica muy exhaustiva para la
que no existen herramientas de medicién de cobertura que comprueben que las pruebas

diseniadas estan cubriendo todos los caminos deseados.

Este TFG busca crear una herramienta para Java que automatice el proceso de
medicion de cobertura de pruebas disenadas con esta técnica, ofreciendo un informe de
cobertura de cédigo tras la ejecucion de las pruebas.

Para ello se buscara un medidor de cobertura para Java, similar a los que ya
existen para otros tipos de cobertura més faciles, que realice los pasos de la técnica
explicados en la seccién 1.1.4 y sea capaz de reconocer que situaciones de prueba han
sido ejecutadas y cuales no.

También se buscard que el uso de esta herramienta sea lo mas sencillo posible para
el programador y que el informe sea ttil para complementar las pruebas en caso de que

haya situaciones de prueba no ejecutadas.

Capitulo 2

Requisitos y casos de uso

Al tener este TFG un objetivo muy especifico, los requisitos del sistema son

concretos y dirigidos a cumplir el objetivo.

2.1. Requisitos

— RF1: La herramienta permitira medir la cobertura de profundidad 2 alcanzada
a partir de un codigo fuente (el objeto de pruebas) durante la ejecucion de un

conjunto de test que prueba el objeto de pruebas.

e RF1.1: La herramienta identificarda automéaticamente las situaciones de

prueba de profundidad 2 del objeto de pruebas.

e RF1.2: La herramienta registrara las situaciones de prueba de profundidad 2

cubiertas del objeto de pruebas al ejecutar los test.

— RF2: La herramienta proporcionara un informe sobre porcentaje de cobertura,
situaciones de prueba cubiertas y situaciones de prueba no cubiertas al finalizar

la ejecucion de los test.

— RF3: La herramienta de mediciéon de cobertura esta integrada como plugin en

un IDE (entorno de desarrollo integrado).

2.1.1. Aspectos fuera de Ambito

Definir si una situaciéon de prueba es posible o no

Hay que tener en cuenta que existen situaciones de prueba imposibles, ya que la
ejecucion de dos aristas consecutivas en el grafo puede ser imposible por estar guardadas
por condiciones dependientes entre si e incompatibles. Se puede ver un ejemplo de esto
en el Anexo A.l.

Este tipo de restricciones de caminos imposibles se deben tener en cuenta cuando se
realiza la técnica de manera manual pero la herramienta no es capaz de reconocerlos,
ya que requeriria de un anélisis contextual sobre el grafo y no es el objetivo de este
trabajo. Ademaés, es un problema no decidible segiin Durelli et al [4]. En cambio la
herramienta ofrece la posibilidad de indicarle si existe algiin camino imposible y que

los tenga en cuenta a la hora de calcular la cobertura.

Generar los caminos y casos de prueba

Esta herramienta esta enfocada como un medidor de cobertura para verificar que
la técnica de caminos de profundidad 2 se ha aplicado correctamente, por lo que, como
otros medidores de cobertura, su propoésito no es disenar las pruebas sino medir la

cobertura cuando se ejecutan las pruebas.

2.2. Casos de uso

En la figura 2.1 se puede ver el diagrama de casos de uso de la herramienta.

2.2.1. Actores y descripcién de los casos de uso asociados

Desarrollador

Es la persona que desea verificar que las pruebas que ha implementado utilizando

la técnica de caminos de profundidad 2 cubren todas las situaciones de prueba.

— Medir cobertura de profundidad 2: El desarrollador ejecuta sus pruebas
indicando que quiere medir la cobertura de caminos de profundidad 2 y ver un

informe al finalizar la ejecucion de los test.

— Instalar herramienta: El desarrollador instala y configura la herramienta para
poder medir cobertura de caminos de profundidad 2. Puede instalarla de manera

manual o como un plugin de un IDE para facilitar su uso.

10

2.2.2. Diagrama de casos de uso

Edge-Pair Coverage

Identificar
situaciones
de prueba de
profundidad 2

Registrar

< include > situaciones
cobertura de F-------- b
profundidad 2 prl.le a
—] it cubiertas
e f’?c/l{
~ ¢ Q’e
Desarrollador J

Generar
informe de
cobertura de
profundidad 2

Instalar
herramienta

Instalar
herramienta
como plugin

de un IDE

Instalar
herramienta
de manera
manual

Figura 2.1: Diagrama de casos de uso de la herramienta Edge-Pair Coverage

11

Capitulo 3
Analisis

3.1. Estado de las herramientas de cobertura de
codigo actuales

Se ha realizado un anélisis de las herramientas de medicion de cobertura de codigo

para Java méas populares [5| con varios objetivos:

— Verificar que realmente no existe ninguna herramienta con este
proposito: A la técnica se le conoce por varios nombres (caminos de profundidad,
Edge-pair testing, etc) y es posible que algunas herramientas de cobertura de

c6digo ya incluyan soporte para esta técnica pero con un nombre diferente.

— Buscar una herramienta que pueda servir de punto de partida:
Implementar un medidor de cobertura puede no ser una tarea sencilla, y si
existiese una herramienta de codigo abierto que permitiese la extension de sus
funcionalidades de manera sencilla podria suponer una reducciéon de riesgos a la

hora de realizar el proyecto.

— Conocer los mecanismos que utilizan: Al no tener experiencia
implementando medidores de cobertura puede ser ttil conocer cuales son los
mecanismos y sus variaciones que utilizan las diferentes herramientas del mercado

existentes.

En la tabla 3.1 se incluye un resumen de las diferentes herramientas: qué ofrecen,
el mecanismo por el cual lo consiguen, si es similar a la herramienta que buscamos y

si el codigo es accesible.

12

€l

Herramienta | Tipo cobertura Mecanismo (Parecido? | ;Codigo accesible? URL

Cobertura Basico Instrumentacion No GitHub publico https://cobertura.github. o/
cobertura/

L ., No, pero
CodeCover Basico y bucles Instrumentacion Open source http://codecover.org/
ofrece bucles

Emma Basico Instrumentaciéon No Open source https://emma.sourceforge.net/
https://www.cs.uoregon.edu/

Gretel Lineas Instrumentacion No Sin actividad desde el 2002 research/perpetual/Software/
Gretel

Hansel Gretel pero con JUnit 4 https://hansel.sourceforge.net/

JaCoCo Basico Instrumentacién No GitHub publico https://www.eclemma.org/jacoco/

on-the-fly con agentes
L s GitHub publico pero sin | https://wiki.openjdk.org/

JCov Bisico Instrumentacion No mucha actividad display/CodeTools/jcov

NoUnit Cobertura estatica https://nounit.sourceforge.net/

Pitest Mutation testing https://pitest.org/

. L. . Sourceforge sin actividad)
Quilt Muy basico Instrumentacion No https://quilt.sourceforge.net/
desde 2003
Serenity BDD Test de aceptacion y cobertura centrada en los test https://serenity-bdd.info/
Atlassian Clover | Basico Instrumentacion sobre No Open source desde 2017 https://www.atlassian.com/es/
fuentes software/clover
Incluye Modified
Qt Coco Condition Deczs?on Privado, de pago con licencia de uso http; ://wiu . qt . 1o/product/
Coverage 'y Multiple quality-assurance/coco

Condition Coverage

Tabla 3.1: Comparacion de herramientas de cobertura de codigo para Java

https://cobertura.github.io/cobertura/
https://cobertura.github.io/cobertura/
http://codecover.org/
https://emma.sourceforge.net/
https://www.cs.uoregon.edu/research/perpetual/Software/Gretel
https://www.cs.uoregon.edu/research/perpetual/Software/Gretel
https://www.cs.uoregon.edu/research/perpetual/Software/Gretel
https://hansel.sourceforge.net/
https://www.eclemma.org/jacoco/
https://wiki.openjdk.org/display/CodeTools/jcov
https://wiki.openjdk.org/display/CodeTools/jcov
https://nounit.sourceforge.net/
https://pitest.org/
https://quilt.sourceforge.net/
https://serenity-bdd.info/
https://www.atlassian.com/es/software/clover
https://www.atlassian.com/es/software/clover
https://www.qt.io/product/quality-assurance/coco
https://www.qt.io/product/quality-assurance/coco

Algunos conceptos necesarios que se utilizan en la tabla 3.1 son:
— Tipo cobertura: se han definido dos grupos para simplificar la lectura:

e Muy baésico: lineas, instrucciones.

e Basico: lineas, instrucciones, funciones, ramas.

Ademés también se menciona Modified Condition Decision Coverage y Multiple

Condition Coverage, dos tipos de cobertura mas avanzada y exhaustiva [1] [2].

— Instrumentacion: es el proceso de modificar software para poder realizar
analisis sobre el, generalmente anadir instrucciones que permiten registrar su
comportamiento dindmico (en tiempo de ejecucion). Segin el objeto de la

instrumentacion puede ser:

e Sobre fuentes: se modifica el codigo fuente antes de compilarlo.

e Sobre ejecutables: se modifica el ejecutable. Normalmente se utiliza
instrumentacion on-the-fly que permite modificar el ejecutable en tiempo
de ejecucion pero justo antes lanzar el programa. Por ejemplo, en Java se
utilizan agentes que interceptan los .class antes de cargarlos en la maquina

virtual de Java. Este aspecto se analiza con mas detalle en la seccion 4.2.1.

En este analisis no se ha encontrado ninguna herramienta existente y popular que
ofrezca lo que se plantea en este TFG. En el contexto académico, lo mas similar que
se ha encontrado es la herramienta BA-CF que proponen y utilizan Matheus Silva y
Marcos Chaim [6]. Sin embargo, esta herramienta tiene como entrada las situaciones
de prueba, mientras que, los objetivos planteados en este TFG, se plantean determinar

las situaciones de prueba a partir del codigo fuente.

3.2. Metodologia

Se va a utilizar un ciclo de vida iterativo-incremental con las siguientes fases:

— Primera version funcional: a modo de estudio de viabilidad, en ella se

verificara que los siguientes procesos se pueden realizar:

e (Calcular un grafo de flujo a partir de un archivo fuente de Java.

e Identificar todos los posibles caminos de profundidad 2 a partir de su grafo

de flujo.

14

e Instrumentar un coédigo Java identificando las expresiones condicionales
(nodos predicado) y anadiendo codigo antes de las propias condiciones y

al comienzo de las diferentes ramas.

e Utilizar la informaciéon generada sobre los posibles caminos de profundidad 2
para que la instrumentacién genere informacion acerca de los caminos de

profundidad 2 visitados.

e Generar un informe legible por un humano acerca de la cobertura de caminos
de profundidad 2.

- Diferentes iteraciones para mejorar la usabilidad: en ellas se buscara:

e El informe muestra informacion basada en el c6digo fuente de los caminos

que no se han visitado, para poder identificarlos y mejorar los test.

e Se automatiza todo el proceso con una configuracion de un runner (archivo
de configuracion que permite definir algunas opciones de ejecuciéon, como
opciones de la maquina virtual de Java, variables de entorno, etc.) de un
IDE (se valora IntelliJ? como primera opcion, este es un IDE para Java y

otros lenguajes basados en la JVM de la empresa JetBrains).

e Toda la herramienta se transforma en un plugin de un IDE para poder

ejecutarlo con una configuraciéon muy simple.

’https://wuw.jetbrains.com/es-es/idea/

15

https://www.jetbrains.com/es-es/idea/

Capitulo 4

Diseno e implementacion

Esta seccion esta organizada en:

— Diseno algoritmico de la solucién: donde se define el diseno algoritmico de

la solucién a alto nivel.

— Diseno e implementacién de un agente en Java: donde se explican las
decisiones de diseno tomadas, pseudocédigo de los aspectos mas importantes de

la implementacion y las dificultades encontradas.

— Diseno e implementaciéon de un plugin para IntelliJ: donde se explica
brevemente como se implementa un plugin para IntelliJ, se muestra el diseno de

la interfaz y un breve resumen del funcionamiento.

4.1. Diseno algoritmico de la solucién

De forma anéloga a como se realiza la técnica de manera manual, la herramienta
debe seguir los pasos de la técnica, como se ve en la figura 4.1, para verificar que
durante la ejecucion del programa objeto de pruebas o sus test se ejecutan todos los

pares de aristas adyacentes:

— Obtener el grafo de flujo asociado a ese programa: Este proceso requiere de
un analisis léxico-sintéactico del programa y se puede realizar a partir del fuente (la
forma en la que se aplica la técnica de manera manual) o a partir del ejecutable.
En este caso es mas favorable realizar el analisis a partir del ejecutable ya que el
bytecode de Java es de un nivel mas bajo de abstracciéon y por lo tanto es méas

facil analizar su estructura.

— Identificar los pares de aristas (situaciones de prueba): A partir del grafo

creado en el paso anterior, se debe identificar todos los conjuntos de pares de

16

aristas adyacentes, es decir, todas las situaciones de prueba a verificar que se

ejecutan.

Instrumentar el ejecutable Java: Se debe modificar el ejecutable Java para
que, en tiempo de ejecucion, se registre las aristas ejecutadas para poder mostrarlo

en el informe.

Generar un informe al finalizar la ejecucién: Al terminar de ejecutarse el
programa, se le mostrara al usuario un informe que indicarda cuantos pares de

aristas se han ejecutado y cuales faltan por ejecutarse.

Test ’ ‘ Codigo fuente
.class (Ejecutable Java) Grafo
» Situaciones
Instrumentacion d
e prueba

.class instrumentado

Ejecucion

Informe

Figura 4.1: Diagrama de flujo de la solucién propuesta

17

4.2. Diseno e implementacién de un agente en Java

La implementacion del agente se puede encontrar en el siguiente repositorio ptblico
de GitHub: https://github.com/juan-catalan/tfg

En el Anexo C.1 se puede ver una explicacién de la arquitectura del agente.

4.2.1. AnAlisis de herramientas de instrumentacién de cédigo
Java

Las dos herramientas mas usadas para instrumentaciéon de codigo Java son
Javassist® y ASM*.

Javassist es, de las dos, la més sencilla de utilizar y con mayor grado de abstraccion,
por lo que se realizaron unas pruebas de viabilidad para verificar si el proyecto era

factible con esta herramienta. Los resultados no fueron favorables debido a:

— El core de su API esta en un grado de abstraccion mayor al necesario: permite

modificar y crear clases pero basado en Java y no en el bytecode.

— Posee una API para trabajar a nivel de bytecode (el nivel de abstracciéon necesario
para este proyecto), pero la documentacion y trabajos de la comunidad con esa

API son escasos.

Tras estos insatisfactorios resultados se opté por realizar unas pruebas de viabilidad
similares pero con la herramienta ASM. Estos resultados fueron completamente

satisfactorios debido a:

— Es la herramienta de instrumentalizacion utilizada por otros medidores
de cobertura como Cobertura o Jacoco: esto es un indicio positivo ya que

implica que la herramienta ha sido utilizada para un propésito similar al nuestro.

— API centrada en manipulaciéon de bytecode: este exactamente el grado de

abstraccion necesario para este proyecto.

— Muy buena documentacion: la herramienta cuenta con una guia de usuario de
150 paginas donde explican todas las posibilidades de la herramienta a través de
ejemplos y diagramas, de una manera muy organizada. Con esta guia de usuario
se consiguié realizar las pruebas de viabilidad necesarias para verificar que se

podia llevar a cabo el proyecto:

e Identificar nodos predicado de un .class.

3https://www.javassist.org/
‘https://asm.ow2.io/

18

https://github.com/juan-catalan/tfg
https://www.javassist.org/
https://asm.ow2.io/

e Manipular el bytecode de un .class anadiendo coédigo antes y despues de

cada nodo predicado.

4.2.2. Agentes en Java e instrumentaciéon

Los agentes en Java son un tipo especial de clase, que utilizando la API de Java
Instrumentation®, pueden interceptar programas ejecutandose en la maquina virtual
de Java (JVM) y modificar su bytecode. El bytecode es, de manera simplificada, el
ensamblador de la JVM. En el Anexo B se puede ver una breve explicacion de las
operaciones bytecode.

Los agentes de Java implementan instrumentacion sobre ejecutables on-the-fly
(en tiempo de ejecucion). En concreto, los agentes en Java pueden realizar la

mstrumentacion:

— Antes de cargar las clases en la maquina virtual de Java: se
anaden como parametro al lanzar el programa Java utilizando la opcion:

-javaagent: path-to-agent. jar.

— Durante la ejecucién del programa en la maquina virtual de Java:
permiten enlazarse a una maquina virtual de Java durante la ejecucion del

programa.

Para nuestro objetivo la opciéon méas conveniente es la primera: un agente que
instrumente el c6digo antes de cargarlo en la JVM, ya que al estar enfocado a utilizarse
junto a los test interesa que la instrumentacion este presente desde el comienzo para

obtener toda la informacién posible.

4.2.3. Implementacion de un agente en Java utilizando la
libreria ASM

Para implementar un agente de este tipo en Java hace falta, entre otras cosas,
una clase que implemente la interfaz ClassFileTransformer: Esta interfaz posee un
método transform, que es invocado por la JVM por cada clase a cargar en ella. Como
parametro este método recibe los bytes que definen todo el .class y devuelve los bytes
resultado de haber modificado el .class.

Aqui es donde la libreria ASM facilita esta tarea permitiendo la gestién del
bytecode a través de una API: leer atributos de la clase, leer sus métodos: obtener

sus instrucciones bytecode, anadir instrucciones bytecode en cualquier punto, etc.

"https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package- summary.
html

19

https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html

En la figura 4.1, los procesos indicados en color naranja (a excepcion de la ejecucion)

son aquellos realizados por el agente:

1. Analizar el bytecode para obtener un grafo de control de los objetos de prueba.

En la figura 4.2 se puede ver el pseudocodigo del algoritmo de analisis de bytecode

para generar un grafo de control de flujo.

function ANALYZE(insn) > Siendo insn un conjunto de instrucciones bytecode
for all 7 € insn do

if ¢ is first instruction then

Anadir ¢ como vértice

n < nextPredicateOr EndN ode(i)

Anadir arista entre ¢ y n

else if 7 is predicate node then

Anadir ¢ como vértice

nTrue < nextPredicateOr EndN ode EvaluatingTrue(i)
Anadir arista entre ¢ y nTrue

nFalse < next PredicateOr EndN ode Evaluating False (i)
- Anadir arista entre i y nFalse

return graph

Figura 4.2: Pseudocodigo del algoritmo de analisis de flujo de bytecode

2. Identificar las situaciones de prueba a partir del grafo.

En la figura 4.3 se puede ver el pseudocddigo del algoritmo de obtencién de

situaciones de prueba a partir de un grafo de control de flujo.

function OBTAINTESTSITUATIONS(graph)
testSituations « &
for all v € graph.vertices do
for all vin € v.verticesEntradas do
for all vOut € v.verticesSalida do
L new <« TestSituation(vin,v, v0Out)
testSituations < testSituations U new
return testSituations

Figura 4.3: Pseudocodigo del algoritmo de obtencion de situaciones de prueba

3. Instrumentar los diferentes objetos de prueba para registrar la situaciones de

prueba cubiertas.

En la figura 4.4 se puede ver el el codigo fuente de un método muy sencillo
llamado esPar. Al realizar los pasos anteriores sobre él se han identificado los

nodos relevantes, en este caso el nodo 1 es un nodo predicado, el nodo 2 es un

20

nodo final que se alcanza si se evaliia como verdadero el nodo 1, y el nodo 3 es

un nodo final que se alcanza si se evaltia como falso el nodo 1.

La idea es, que tras identificar los nodos y las situaciones de prueba, modificar el
objeto de pruebas anadiendo instrucciones para registrar su ejecuciéon. Un ejemplo

del resultado de esta modificacion (simplificada) se puede ver en la figura 4.5.

boolean esPar(Integer i){ boolean esParInstrumentado(Integer i){
// Nodo 1 registrarNodo(1);
if (1%2 == 0){ if (1%2 == 0){
// Nodo 2 registrarArista(
return true; EdgeType.TRUE) ;
}
else { registrarNodo(2);
// Nodo 3 return true;
return false; T
} else {
} registrarArista(

EdgeType.FALSE) ;

Figura 4.4: COdlgf) fuente del 'metodo registrariodo(3) ;
esPar antes de la instrumentacion return false;

Figura 4.5: Ejemplificacion como codigo
Java del método esPar después de la
instrumentacion

4.2.4. Dificultades encontradas

Al estar trabajando a nivel de bytecode, en vez de cédigo fuente en Java, ocurren

algunas discrepancias o aspectos a tener en cuenta:

Asignaciones booleanas

Las asignaciones booleanas de Java como:

boolean esPar = (n),2 == 0)

Figura 4.6: Ejemplo de asignacion booleana en Java

se compilan al bytecode con una estructura mas similar a esta:

boolean esPar;
if (n%2 == 0) esPar = true;
else esPar = false;

Figura 4.7: Ejemplificacion como coédigo Java de una asignacion booleana en bytecode

21

La diferencia es que en la version bytecode se genera un nodo predicado (que no
existia en la version Java) por cada asignacion booleana.

Esto puede ser un problema, ya que al generar el grafo de manera manual no se
tiene en cuenta estas asignaciones booleanas como nodos predicado, lo que provoca que
las situaciones de prueba que se producen al aplicar la técnica sean menos que los que
genera la herramienta autométicamente y por lo tanto la cobertura no sea la esperada.

Para solucionar esto se ha implementado una funciéon que identifique en el
bytecode la estructura de las asignaciones booleanas. No obstante, existe el pequeno
inconveniente que el bytecode generado por el compilador es indistinguible en los dos
casos (figuras 4.6 y 4.7), por lo que al final la herramienta de medicion de cobertura
no puede determinar si el codigo original contenia o no una instruccion condicional (y
por lo tanto, debe tener en cuenta la existencia de un nodo predicado adicional).

Por este motivo y por si alguien quisiera aplicar la técnica entendiendo las
asignaciones booleanas como nodos predicado (lo cual hace la técnica atn mas
exhaustiva) la herramienta permite configurar si debe entender las asignaciones

booleanas como nodos predicado o no.

Implementaciéon de las estructuras condicionales y los operadores légicos
and y or en bytecode

A nivel de bytecode las estructuras condicionales (if) se implementan con
saltos condicionales entre etiquetas, pero estos saltos pueden ser implementados
por el compilador de diferentes maneras. Por ejemplo, en una estructura
(if {...} else {...}), dos posibilidades (no exhaustivas) de como implementarla

en bytecode serfan:

1. Evaluar la condicién del if y si resulta ser false saltar a la etiqueta del codigo

del else.

2. Evaluar la negacion de la condicion del if y si resulta ser true saltar a la etiqueta

del codigo del else.

Esto puede generar discrepancias en la representacion del grafo respecto a como se

generaria el grafo a partir del codigo fuente. En el caso 2 de los ejemplos anteriores:

— Segin codigo fuente: desde el nodo if se va a la instruccion else al evaluarse

como false.

— Segun bytecode: desde el nodo if se va a la instruccion else al evaluarse (la

condicién inversa) como true.

22

En el caso de javacS, el compilador estandar de Oracle y el utilizado por defecto por
IntelliJ, se ha identificado como implementan las estructuras de control béasicas para
evitar discrepancias respecto al codigo fuente.

Estas discrepancias aumentan al utilizarse operados logicos and y or en las
estructuras condicionales, ya que las diferentes maneras de implementarlas aumentan
y no se ha conseguido descubrir una manera de identificar, a partir de bytecode, el tipo
de operadores logicos que existian en el codigo fuente; y por lo tanto algunas aristas
(resultado de operadores logicos) pueden tener una etiqueta discrepante respecto al
codigo fuente. Un ejemplo se puede ver en https://github.com/juan-catalan/tfg/
issues/1.

Como la discrepancia es meramente visual (ya que el calculo de cobertura se realiza

correctamente), se ha decidido no tener en cuenta este problema por el momento.

4.3. Implementacién de un plugin de integraciéon del
agente para el IDE IntelliJ

La implementacion del plugin para IntelliJ se puede encontrar en el siguiente
repositorio piblico de GitHub: https://github.com/juan-catalan/tfg_intellij_
plugin

En el Anexo C.1 se puede ver una explicacion de la arquitectura del plugin.

4.3.1. Contexto sobre IntelliJ Platform Plugin SDK

IntelliJ Platform?” es la plataforma de codigo abierto utilizada y creada por JetBrains
para desarrollar IDEs, también es la plataforma usada por Google para el desarrollo
de Android Studio.

Es un entorno de aplicaciones basadas en la JVM, basada en componentes, con
un conjunto de herramientas de interfaz de usuario de alto nivel para crear paneles de
herramientas, vistas de arbol y listas, asi como ments emergentes y cuadros de didlogo.

Dentro de la IntelliJ Platform se encuentra Intellij Platform Plugin SDK que facilita
la creacion de plugins para IDEs basados en la IntelliJ Platform.

Entre las funcionalidades y componentes que ofrece este SDK, los que se han
utilizado en el proyecto son: los componentes Ul basados en Swing® para mantener
la consistencia entre la Ul del IDE, el sistema de actions que permite anadir botones

en diferentes secciones del IDE y asociarles funcionalidad (como se ve en la figura 4.9), el

Shttps://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html

"https://plugins. jetbrains.com/docs/intellij/welcome.html

8Libreria grafica para crear GUI en Java: https://docs.oracle.com/javase/7/docs/api/
javax/swing/package-summary.html)

23

https://github.com/juan-catalan/tfg/issues/1
https://github.com/juan-catalan/tfg/issues/1
https://github.com/juan-catalan/tfg_intellij_plugin
https://github.com/juan-catalan/tfg_intellij_plugin
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html

sistema para anadir una ventana de ajustes personalizable (como se ve en la figura 4.8),
el sistema para acceder al sistema de ficheros, el sistema para acceder al analizador

sintactico y semantico del codigo fuente y el sistema de control de procesos del IDE.

4.3.2. Diseno de la interfaz y funcionamiento

Ment de ajustes del plugin

En la figura 4.8 se puede ver el mentu de ajustes del plugin, este te permite decidir el
tipo de informe (nativo como en la figura 4.12 o HTML como en la figura 4.13) y decidir

si la herramienta debe entender las asignaciones booleanas como nodos predicado.

Settings

Q- Tools > Edge-Pair Coverage

v Tools Report type Native
Qodana Boolean assignments as predicate nodes
Actions on Save
Web Browsers and
External Tools
Terminal
Code With Me
Database (@
Diff & Merge
Edge-Pair Coverag(
Features Suggestel
Features Trainer
Server Certificates
Shared Indexes
Startup Tasks
> Tasks
Settings Sync
Advanced Settings

Cancel

Figura 4.8: Menu de ajustes del plugin

Botén de ejecucion con cobertura de profundidad 2

En la figura 4.9 se puede ver el botén para ejecutar un conjunto de pruebas midiendo
la cobertura de profundidad 2, este boton se encuentra en el ment “Run” del IDE.
Cuando el usuario pulsa en él se muestran las ventanas de seleccion de métodos y
situaciones imposibles (figuras 4.10 y 4.11) y tras finalizar la seleccion se ejecuta el

conjunto de pruebas anadiendo el agente (y sus parametros) como parametro de la
JVM.

24

Run Tools Git Window Help

Run 'SecuenciaCollatzTestLongitud'

Debug 'SecuenciaCollatzTestLongitud'

(2 Run 'SecuenciaCollatzTestLongitud' with Coverage

® Run 'SecuenciaCollatzTestLongitud' with Edge-Pair Coverage

Run...
e Debug...
o 1Y Attach to Process...

Edit Configurations...
(=]

Figura 4.9: Boton “Run with Edge-Pair Coverage” en el menu “Run”

Ventana de seleccion de métodos y situaciones imposibles

En la figura 4.10 se puede ver la ventana de seleccion de métodos a medir la

cobertura. Para obtener las clases y métodos a mostrar se utiliza el sistema de acceso

a ficheros para buscar los ficheros Java del proyecto y luego utilizando el analizador

sintactico del IDE se obtienen las diferentes clases y métodos de los ficheros.

Select the methods to measure Edge-Pair coverage

es.unizar.eina.vvéf.collatz.Main
iniciadorSecuenciaMasLarga(int limite)
main(String[] args)

es.unizar.eina.vvéf.collatz.SecuenciaCollatz
siguienteCollatz(long n)
SecuenciaCollatz(long inicio)

longitud()

Figura 4.10: Ventana de seleccion de métodos a medir la cobertura

En la figura 4.11 se puede ver la ventana de seleccién de situaciones imposibles.

Recibe los métodos seleccionados en la figura 4.10 y permite al usuario indicar el

ntmero de situaciones imposibles para cada método.

25

Indicate the number of impossible situations per method

siguienteCollatz(long n)

SecuenciaCollatz(long inicio)

longitud()

Previous

Figura 4.11: Ventana de seleccion de situaciones imposibles de los métodos
seleccionados

Informes de cobertura de profundidad 2

Como se ha indicado en los ajustes del plugin, existen dos tipos de informes: uno
nativo y otro HTML. Al finalizar la ejecucion de un conjunto de pruebas (si se ha
seleccionado medir la cobertura de profundidad 2) se abre automéaticamente el tipo de

informe seleccionado en los ajustes.

En la figura 4.12 se puede ver el informe nativo que busca integrarse mejor con la
estética del IDE.

C collatz >~ 99 main v SecuenciaCollatzTestLongitud -

Edge Pair Coverage Report

es/unizar/eina/vvéf/collatz/SecuenciaCollatz.siguienteCollatz. ()

Coverage percentage
75.0%
Graph

Search Everywhere
Project View
Go to File

Recent Files

Navigation Bar

Drop files here to open them

vV 6 @ 9

Test situations

17.1-> DEFAULT -> 17.2 -> TRUE -> 18 @
17.1-> DEFAULT -> 17.2 -> FALSE -> 20
17.2 -> FALSE -> 20 -> TRUE -> 21

17.2 -> FALSE -> 20 -> FALSE -> 24

T 0O 0

collatz > src > test > java > es > unizar > eina > vv6f > collatz SecuenciaCollatzTestSiguiente > dynamicTestsFromCollection

Figura 4.12: Informe de cobertura de profundidad 2 basado en Swing

26

En la figura 4.13 se puede ver el informe HTML que busca ser mas visual y atractivo.

C collatz v 99 main v SecuenciaCollatzTestLongitud v

Edge Pair Coverage Report

ecuenciaCollat:

[}

Coverage percentage

75,00%

Search Everywhere
Project View

Go to File

Recent Files

Navigation Bar
FALSE\TRUE

Test situations
* 17.1 — DEFAULT - 17.2 = TRUE> 18 X

Drop files here to open them

* 17.1 — DEFAULT - 17.2 — FALSE> 20 v
* 17.2 —FALSE > 20 —TRUE->21 v

* 17.2 — FALSE - 20 — FALSE> 24 v

collatz > src > test > java > es > unizar > eina > vvéf > collatz > SecuenciaCollatzTestSiguiente > dynamicTestsFromCollection

Figura 4.13: Informe de cobertura de profundidad 2 utilizando HTML

27

Capitulo 5

Validacion

Para validar la correcciéon de la herramienta nos hemos centrado en tres aspectos:

— La correcciéon de los grafos generados a partir de un .class.
— La identificacion de las situaciones de prueba a partir de un grafo.

— El correcto registro por parte de la instrumentacion de los nodos y caminos

recorridos.

Para facilitar la validacién se cuenta con el material y exdmenes resueltos de la
asignatura Verificacion y Validacion, que propone ejercicios donde aplicar la técnica
y sus soluciones. De esta manera se puede verificar que la herramienta es correcta

utilizando casos con una solucién externa a este desarrollo.

5.1. Correccion de los grafos

5.1.1. Diseno

Como parte del material existen problemas de examen donde, a partir de un cédigo
en Java, se debe obtener el grafo de flujo. La idea es comprobar que el grafo que genera
la herramienta es isomorfo del grafo esperado (la soluciéon del examen, calculada a
mano).

A continuaciéon se indican los diferentes casos de prueba con alguna informacion
sobre el objeto de pruebas en el problema de examen, como el nimero de lineas (LOC
por sus siglas en inglés) o sobre el grafo de flujo asociado, como el nimero de vértices

y aristas:

28

Curso | Convocatoria | Nombre del método| LOC N¢ N¢
vértices | aristas

2014-2015 22 magen 17 6 7
2015-2016 12 esPrimo 20 7 11
2016-2017 12 buscar 11 6 7
2018-2019 12 buscar 21 8 9
2019-2020 12 minimo 15 8 9
2021-2022 12 replaceDigits 12 5 7
2022-2023 1 calcularPuntuacion 15 5 7

Tabla 5.1: Casos de prueba para validar la correcciéon de los grafos

5.1.2. Implementacion

Implementacion de los casos de prueba

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/

juancatalan/edgepaircoverage/GetControlFlowGraphTest. java

Implementacion de mecanismo de verificaciéon de isomorfismos

Para comprobar isomorfismos entre grafos existe un modulo en la biblioteca
utilizada para la representacion de los grafos de flujo JGraphT?. El problema con este
modulo es que tnicamente funciona para grafos simples, es decir, grafos no dirigidos
que no contengan ciclos o miltiples aristas entre dos vértices. Los grafos utilizados en
el proyecto no son grafos simples sino pseudografos dirigidos ya que para expresar un

grafo de flujo es necesario que:
— Sean grafos dirigidos.

— Permitan multiples aristas entre dos vértices (ya que puedes ir de un nodo

predicado a otro por dos caminos distintos).
— Permitan ciclos para implementar los bucles.

Como utilizar este moédulo no era viable y tampoco podemos utilizar otro tipo
de grafo, se decidi6 implementar un algoritmo de verificaciéon de isomorfismo para

pseudografos dirigidos basado en matrices de adyacencia.

Ynttps://jgrapht.org/

29

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/GetControlFlowGraphTest.java
https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/GetControlFlowGraphTest.java
https://jgrapht.org/

Hace falta una adaptacion del concepto de matriz de adyacencia para este tipo de

grafos, en concreto ha hecho falta:
— Expresar la direccion de las aristas
— Expresar multiples aristas entre nodos
— Expresar los diferentes tipos de aristas

Para conseguir esto en las filas estdn representados los vértices origen, en las
columnas los vértices destino y en las intersecciones se define un conjunto de valores
(los diferentes tipos de aristas) que indica la posible conexién entre el vértice origen y

el vértice destino.

Ejemplo de matriz de adyacencia Dado el siguiente fragmento de codigo en Java

donde se especifica una funcién de nombre paresHasta:

public static List<Integer> paresHasta(int max){
List<Integer> listaPares = new ArrayList<>();
for (int i = 0; i<=max; i++){
if (A% 2==0)
listaPares.add(i);

by

return listaPares;

Figura 5.1: Coédigo Java de la funcién paresHasta

Su grafo de flujo asociado, donde cada vértice es un nodo que se encuentra en la

linea del codigo que indica su etiqueta, seria:

default

Figura 5.2: Grafo de flujo asociado al fragmento de cédigo Java 5.1

30

Este grafo se puede representar como la matriz de adyacencia de la figura 5.3.
En esta matriz se definen los vértices y las aristas entre ellos, por ejemplo la celda
marcada en azul indica que desde el vértice 4 puedes alcanzar el vértice 3 desde 2

aristas diferentes:

— Una al evaluarse la condicién como true

— Otra al evaluarse la condicion como false

Vértices destino

2 3 4 8
§02 (] [DEFAULT] (|]
530 I [TRUE| [FALSE]
.g 4[] |[TRUE,FALSE] (]]
= 8 | | [

Figura 5.3: Matriz de adyacencia asociada al grafo de la figura 5.2

Mecanismo de verificacion de isomorfismo entre matrices de adyacencia

Con esta representacion como matriz de adyacencia se puede calcular si un grafo es
isomorfo de otro de manera sencilla (conceptualmente, no a nivel computacional) ya
que un grafo z es isomorfo de otro grafo y si el grafo = es una permutacion del grafo .

Por ejemplo, el grafo de la figura 5.4 se puede ver visualmente que es isomorfo del

grafo de la figura 5.2 pues es el resultado de “intercambiar” los nodos 2 y 8.

default

Figura 5.4: Grafo de flujo isomorfo del grafo de flujo de la figura 5.2

En la figura 5.5 podemos ver la matriz de adyacencia asociada al grafo 5.4. En ella
se puede observar el isomorfismo con la matriz de adyacencia de la figura 5.3 ya que es

el resultado de permutar los vértices 2 y 8.

31

Vértices destino

2 3 4 8
gEO 2 | | [|
3 3| [FALSE] I [TRUE|]
.EE 4 (] [TRUE, FALSE] (| (]
E 8 I [DEFAULT] I I

Figura 5.5: Matriz de adyacencia isomorfa a la matriz de adyacencia de la figura 5.3

La implementacion de este mecanismo de verificacion de isomorfismos se
puede encontrar en: https://github.com/juan-catalan/tfg/blob/master/src/

test/java/org/juancatalan/edgepaircoverage/utils/AdjacencyMatrix. java

5.1.3. Resultados
Se han encontrado 4 defectos en la clase ControlFlowAnalyser:

— Si en el codigo bytecode aparecian 2 goto seguidos, el grafo generado tenfa un

nodo de mas (el asociado al segundo goto).

— No se identificaban las instrucciones bytecode ifnull y ifnonull como nodos

predicado.

— Si el codigo fuente tenia una asignacion booleana el grafo generado tenia nodos

de mas (relacionado con lo descrito en la seccion 4.2.4).

— Si el codigo fuente tenia una asignacion booleana con puertas logicas anidadas
el grafo generado tenia nodos de més (problema relacionado con la solucion del

defecto anterior).

Finalmente todos los test se ejecutan y pasan sin ningtn error.

5.2. Identificaciobn de las situaciones de prueba a
partir de un grafo

5.2.1. Diseno

Como cuando se aplica de forma manual la técnica, se debe obtener las situaciones
de prueba de profundidad 2 a partir del grafo. Este es un proceso mas trivial que los
otros pero se ha decidido disenar pruebas para ello, enfocado més como herramienta

de regresion que como forma de encontrar defectos actuales.

32

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/utils/AdjacencyMatrix.java
https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/utils/AdjacencyMatrix.java

Se han utilizado los problemas de examen donde un apartado es obtener las

situaciones de prueba. En concreto se han implementado los siguientes test:

Curso | Convocatoria | Nombre del método | Numero de situaciones
de prueba
2014-2015 28 imagen 10
2015-2016 12 esPrimo 12
2016-2017 12 buscar 10
2018-2019 12 buscar 12
2019-2020 12 minimo 11
2021-2022 12 replaceDigits 12
2022-2023 12 calcular Puntuacion 12

Tabla 5.2: Casos de prueba para validar la identificacién de situaciones de prueba

5.2.2. Implementacion

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/

juancatalan/edgepaircoverage/0ObtenerSituacionesPruebaTest. java

5.2.3. Resultados

No se ha encontrado ningin defecto.

5.3. Correcto registro de los nodos y caminos
recorridos.

5.3.1. Diseno

Como parte del material existen ejercicios de examen donde tras obtener el grafo
de flujo de un c6digo en Java se definen los diferentes caminos de profundidad 2 que
cubren todas las situaciones de prueba que existen y los diferentes casos de prueba que
cubren todos estos caminos.

Con estos casos de prueba (que técnicamente cubren todas las situaciones de prueba
posible) debemos verificar que la cobertura de caminos que ofrece la herramienta al
ejecutarlos también es del 100 % en cada uno de ellos.

Los casos a probar son:

33

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/ObtenerSituacionesPruebaTest.java
https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/ObtenerSituacionesPruebaTest.java

Curso | Convocatoria | Nombre del método Niumero de casos de
prueba necesarios para

cobertura completa
2014-2015 22 imagen 3
2015-2016 12 esPrimo 5
2016-2017 12 buscar 3
2018-2019 12 buscar 4
2019-2020 12 minimo 5
2021-2022 12 replaceDigits 3
2022-2023 12 calcularPuntuacion)

Tabla 5.3: Casos de prueba para validar el correcto registro de nodos y caminos
recorridos

5.3.2. Implementaciéon

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/

juancatalan/edgepaircoverage/CoverageMeasurementTest. java

5.3.3. Resultados

Se han encontrado 2 defectos:

- Si el codigo bytecode comenzaba con una instruccién condicional que
implementaba un bucle, al volver al comienzo del bucle se registraba una visita

al nodo inicial en vez de al primer nodo predicado.
— No se volvia a inicializar el camino recorrido actual si se lanzaba una excepcion.

Finalmente todos los test se ejecutan y pasan sin ningtn error.

34

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/CoverageMeasurementTest.java
https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/CoverageMeasurementTest.java

Capitulo 6

Conclusiones

Este trabajo tenia como objetivo crear una herramienta para Java, facil de instalar
y utilizar, que automatice el proceso de medicién de cobertura de pruebas disenadas
con la técnica de caminos de profundidad 2, ofreciendo un informe de cobertura de
codigo tras la ejecucion de las pruebas, que permita al desarrollador complementar las
pruebas en caso de que haya situaciones de prueba no ejecutadas.

Para conseguir este objetivo se ha tenido que: establecer unos requisitos y casos
de uso de la herramienta solicitada, realizar un analisis de las herramientas de
medicion de cobertura ya existentes, definir una metodologia de trabajo adecuada
para el tipo de proyecto, realizar un anélisis de herramientas de instrumentacion y
manipulacion de bytecode para Java, disenar e implementar una solucién (un agente
Java y un plugin para el IDE IntelliJ que lo integre en él), disenar una estrategia de
pruebas e implementar las pruebas (incluyendo la implementacion de un mecanismo
de verificacién de isomorfismo basado en matrices de adyacencia).

Finalmente el resultado, un plugin para IntelliJ, se puede descargar o instalar en
IntelliJ o Android Studio desde el siguiente enlace: https://plugins. jetbrains. com/
plugin/25103-edge-pair-coverage

6.1. Gestion del proyecto

Como se ha indicado en la seccion 3.2 se ha utilizado un ciclo de vida
iterativo-incremental buscando como objetivo final convertir la herramienta en un
plugin para un IDE.

Durante el proyecto se han ido abordando las diferentes fases y problemas de
manera concisa y directa, y finalmente se ha conseguido completar todas las iteraciones
propuestas para mejorar la usabilidad, incluyendo el desarrollo de un plugin para
IntelliJ.

En la figura 6.1 se puede observar las horas dedicadas y su agrupaciéon por tareas.

35

https://plugins.jetbrains.com/plugin/25103-edge-pair-coverage
https://plugins.jetbrains.com/plugin/25103-edge-pair-coverage

Analisis 31:44:20 10,28%

o Implementacion del Agente 106:06:30 34,35%

Implementacion del Plugin 79:42:29 25,81%

308:52:23 e Memoria y documentacién 75:24:04 24.41%
Reuniones 15:55:00 5,15%

Figura 6.1: Informe con las horas dedicadas al proyecto dividido por tareas

6.2. Trabajo futuro

6.2.1. Extensiéon de la herramienta a otros lenguajes basados
en la JVM

Uno de los posibles rumbos de trabajo futuro podria ser extender la herramienta de
medicion de cobertura de profundidad 2 a otros lenguajes basados en la JVM, ya que
el agente que se encarga de todo el proceso de medicién de cobertura trabaja a nivel
de bytecode de la JVM vy, sin haber realizado atin pruebas, se cree que funcionaria sin

apenas modificaciones para otros lenguajes como Kotlin, Scala o Groovy.

6.2.2. Herramientas de soporte a la aplicaciéon de la técnica

Otro posible rumbo seria, utilizando toda la l6gica desarrollada para la herramienta,
cambiar el enfoque y desarrollar otra herramienta para el soporte a la aplicacion de
la técnica, es decir que facilite poder aplicarla ofreciendo, por ejemplo, generacion
automatica del grafo de control de flujo a partir de un archivo Java, generacion de
situaciones de prueba, generacion de posibles caminos que cubran todas las situaciones

de prueba, etc.

6.3. Reflexiones sobre la técnica de caminos de
profundidad 2

Al estar trabajando y profundizando en la técnica de caminos de profundidad 2 han

surgido principalmente dos reflexiones sobre la técnica:

La importancia de la definicién de las situaciones de prueba En muchas de las

diferentes descripciones de aplicacion de la técnica no se especifica que las situaciones

de prueba son tinicamente aquel conjunto de pares de aristas que pasan por un nodo

36

predicado, sino todo el conjunto de pares de aristas. Esto provoca una gran cantidad
de situaciones que no ofrecen ninguna informacién relevante y por tanto la cobertura

resultada no ofrece realmente resultados concluyentes.

Por ejemplo, en una estructura como if (condition){
. , // Muchas nodos no predicado
la de la derecha, si implementasemos un /)
test que cubriera tnicamente el caso de // Un nodo final
evaluar el if como verdadero, al tener by
else {

mucha instrucciones y por tanto muchos // Un modo final
nodos, darfa una cobertura de caminos }

de profundidad 2 muy elevada a pesar

de haber evaluado tinicamente una rama

del nodo predicado.

Creemos que las descripciones de la técnica deberian especificar de manera mas
clara el concepto de situacién de prueba, ya que de la otra manera se pierde el enfoque
de la técnica al incluirse muchas situaciones de prueba que no aportan informacion

relevante.

La importancia de la definicién de nodo predicado Incluso en las descripciones

de aplicacion de la técnica donde si que definen las situaciones de prueba como el
conjunto de pares de aristas que pasan por un nodo predicado, no especifican que se

entiende por nodo predicado.

Como se ha mencionado en la secciéon 1.1.4 esta técnica es sensible a la definicién
de nodo predicado. Uno de los casos que més nos ha llamado la atenciéon son
las asignaciones booleanas, mencionado previamente en la seccion 4.2.4, ya que
dependiendo de si se interpretan como nodos predicado o no, pueden hacer aiin
més exhaustiva la técnica o se puede utilizar para falsear la técnica reduciendo
significativamente el nimero de situaciones de prueba en presencia de codigo con

muchos operadores logicos and y or.

Por ejemplo en la figura 6.2 se puede ver un coédigo que incluye un if con varios
operadores logicos y a su lado el grafo de control de flujo asociado, que tiene un total

de 8 situaciones de prueba de caminos de profundidad 2.

37

// ini
if ((condl || cond2) &&

- cond3){
// nfl
ks
else {
// nf2
ks

Figura 6.2: Ejemplo de co6digo con multiples operadores logicos y su grafo de control

Si no entendemos las asignaciones booleanas como nodos predicado, podriamos
modificar el coédigo como se ha hecho en la figura 6.3 de manera que simplificamos el

grafo, reduciendo el numero de situaciones de prueba a 2.

// ing ' ‘H”

boolean cond = (condl
. cond2) && cond3;
if (cond){
// nfl

default

+
else {

// nf2

Figura 6.3: Codigo equivalente al de la figura 6.2 unificando multiples operadores l6gicos
y su grafo de control

Este es un detalle que puede cambiar la exhaustividad de la técnica pero que
facilmente puede pasar desapercibido a quienes la van a aplicar. Por este motivo
creemos que se debe tener en cuenta antes de aplicarla, decidiendo si, por el contexto
del problema, vale la pena buscar ese extra de exhaustividad o si por el contrario puede

aumentar el nimero de casos sin aportar beneficios.

38

A raiz de esto también se plantea como posible trabajo futuro, mas relacionado
con la investigacion académica, un estudio para demostrar de manera empirica si
existen beneficios notables (en este caso numero de defectos encontrados) al entender
las asignaciones booleanas como nodos predicados, aumentando de esta manera las

situaciones de prueba.

6.4. Valoracién personal

Este TFG ha sido una experiencia divertida y enriquecedora, ya que se trataba
de un tipo de proyecto fuera de lo que estaba acostumbrado a realizar en la carrera
(jamas me habria imaginado implementando un medidor de cobertura) y que me ha
hecho adentrarme un poco en el mundo de la instrumentaciéon de codigo Java y la
manipulacion de cédigo bytecode.

Como reto ha sido entretenido y enriquecedor puesto que no habia una soluciéon
directa y sencilla por lo que he tenido que leer mucha documentacion y plantear muchas
ideas para descubrir como se podia implementar lo que teniamos en mente.

El resultado final es, al menos para mi, muy satisfactorio ya que se ha conseguido
implementar todo lo que se propuso al comienzo sin saber muy bien hasta donde

podriamos llegar.

39

Bibliografia

1]

2]

3]

4]

5]

6]

Tim Koomen, Leo van der Aalst, Bart Broekman, and Michiel Vroon. TMap Next,
for result-driven testing. UTN Publishers, 2006.

ISO/IEC/IEEE International Standard. Software and systems engineering:
Software testing: Part 4: Test techniques. ISO/IEC/IEEE 29119-4:2015, pages
1-149, December 2015.

Glenford J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas. The Art
of Software Testing, Second Edition. Wiley, June 2004.

Vinicius H.S. Durelli, Marcio E. Delamaro, and Jeff Offutt. An experimental
comparison of edge, edge-pair, and prime path criteria. Science of Computer

Programming, 152:99-115, January 2018.

Alexandra Altvater. Code Coverage Tools: 25 Tools for Testing in C, C++, Java
— stackify.com. https://stackify.com/code-coverage-tools/, April 2024.

Matheus Silva and Marcos Chaim. Bit-wise all edge-pairs coverage. In Proceedings
of the XXXVII Brazilian Symposium on Software Engineering, SBES 23, page
267276, New York, NY, USA, 2023. Association for Computing Machinery.

40

https://stackify.com/code-coverage-tools/

Lista de Figuras

1.1.
1.2.
1.3.
1.4.

2.1.

4.1.
4.2.
4.3.
4.4.
4.5.

4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.

5.1
0.2
3.3.
0.4.
2.5.

6.1.
6.2.

Ejemplo de informe de cobertura de IntelliJ 3
Codigo Java de la funcion buscar 5
Grafo de flujo asociado al coédigo Javade 1.2 6
Grafo de flujo con nodos “relevantes” basado en el grafo de la figura 1.3 6
Diagrama de casos de uso de la herramienta Edge-Pair Coverage 11
Diagrama de flujo de la solucién propuesta 17
Pseudocodigo del algoritmo de anélisis de flujo de bytecode 20
Pseudocodigo del algoritmo de obtenciéon de situaciones de prueba . . . 20
Codigo fuente del método esPar antes de la instrumentacion 21
Ejemplificacion como codigo Java del método esPar después de la

instrumentacion Lo 21
Ejemplo de asignaciéon booleana en Java 21

Ejemplificaciéon como cédigo Java de una asignacion booleana en bytecode 21

Mena de ajustes del plugin oo 24
Boton “Run with Edge-Pair Coverage” en el mena “Run” 25
Ventana de seleccion de métodos a medir la cobertura 25
Ventana de selecciéon de situaciones imposibles de los métodos seleccionados 26
Informe de cobertura de profundidad 2 basado en Swing 26
Informe de cobertura de profundidad 2 utilizando HTML 27
Codigo Java de la funciéon paresHasta 30
Grafo de flujo asociado al fragmento de codigo Java 5.1 30
Matriz de adyacencia asociada al grafo de la figura 5.2 31
Grafo de flujo isomorfo del grafo de flujo de la figura 5.2 31
Matriz de adyacencia isomorfa a la matriz de adyacencia de la figura 5.3 32

Informe con las horas dedicadas al proyecto dividido por tareas 36

Ejemplo de cédigo con multiples operadores logicos y su grafo de control 38

41

6.3. Codigo equivalente al de la figura 6.2 unificando miltiples operadores

logicos y su grafo de control L 38
A.1. Cédigo Java de la funcién imagen 46
A.2. Codigo Java de la funcion buscaro oL 47
A.3. Grafo de flujo asociado al coédigo Javade 1.2 48
B.1. Codigo Java de la funcion longitudCollatz 52
B.2. Codigo bytecode de la funcion longitudCollatz 53
C.1. Diagrama de paquetes del agente, 56
C.2. Diagrama de paquetes del plugin para IntelliJ 60

C.3. Diagrama de secuencia del caso de wuso “Medir cobertura de

profundidad 2” desde la perspectiva del plugin para IntelliJ 62

42

Lista de Tablas

1.1.

3.1.

5.1.
0.2.
2.3.

Tabla de casos de prueba para el método de la figura 1.2
Comparacion de herramientas de cobertura de codigo para Java

Casos de prueba para validar la correccion de los grafos.
Casos de prueba para validar la identificacion de situaciones de prueba
Casos de prueba para validar el correcto registro de nodos y caminos

recorridOS

43

13

29
33

Anexos

44

10

11

12

13

14

15

16

17

18

19

Anexo A

Ejemplos de conceptos basados en
codigo fuente

A.1. Ejemplo de situaciones imposibles en la técnica
de caminos de profundidad 2

Dado el siguiente fragmento de c6édigo en Java donde se especifica una funciéon de

nombre tmagen:

public static int imagen(int n) {
boolean negativo = n < 0;
if (negativo) {
n = -n;

¥

int imagenEspecular

while (n '= 0) {
imagenEspecular = 10 * imagenEspecular + n 7 10;
n=n/ 10;

0;

}

if (negativo) {
return -imagenEspecular;

X
else {

return imagenEspecular;
+

Figura A.1: Codigo Java de la funcion imagen

Jamas se va a poder evaluar como true la condicion de la linea 3:
if (negativo){...} y como false la condicion de la linea 8: while (n !'= 0){...}

ya que n no puede ser menor estricto que 0 e igual que 0 al mismo tiempo.

46

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

A.2. Ejemplo de mediciéon de cobertura de cédigo

A.2.1. Objeto de pruebas

Dado el siguiente método con nombre buscar, que va a ser nuestro objeto de pruebas:

/**

* Busca un dato determinado en un vector de enteros.

@param vector
- el vector en el que se busca el dato «datoBuscado». Debe
ser distinto de null y tener al menos una componente.
@param datoBuscado
- el dato que se quiere buscar en el vector «vectors.

Oreturn St en el wvector «vectory» hay un dato igual a «datoBuscadoy,
devuelve el indice de la componente en la que se encuentra.
En caso contrario, devuelve -1;

¥ %X X X X X X X x *

*/
public static int buscar(int[] vector, int datoBuscado) {
int i = 0;

while (i < vector.length - 1 && vector[i] != datoBuscado) {
i++;

b

by

if (vector[i] == datoBuscado) {
return i;

} else {
return -1;

Figura A.2: Codigo Java de la funcion buscar

Los diferentes tipos de cobertura que vamos a medir son instrucciones, ramas y

condiciones. Vamos a identificar todas ellas en el codigo:

Instrucciones

Podemos encontrar 7 instrucciones:

1.
2.
3.
4.

int i = 0;

while (i < vector.length - 1 && vector[i] != datoBuscado)
i++;
if (vector[i] == datoBuscado)

47

5. return i;
6. else

7. return -1;

Ramas

Las ramas se entienden mejor si representamos el grafo de control de la funcion,
cada arista de salida de los nodos que representan estructuras de control son una rama

(marcadas en azul en el grafo):

(i)
) —y

R1.2: false

R2.1: true R2.2: false

Figura A.3: Grafo de flujo asociado al coédigo Java de 1.2

En el grafo podemos identificar 4 ramas.
Condiciones

Podemos encontrar 3 condiciones:

1. i < vector.length - 1

2. vector[i] !'= datoBuscado

3. vector[i] == datoBuscado

48

A.2.2. Ejecucion y cobertura

Si ejecutamos el método con los siguiente parametros:
buscar(new int[]{1,2}, 1) podemos calcular los resultados de los diferentes

tipos de cobertura:

Cobertura de sentencias

Se ejecutaran la sentencias: 1,2,4.5.
Teniendo en cuenta que hay un total de 7 sentencias, tenemos una cobertura de
4/7, es decir 57.14 %.

Cobertura de ramas

De las 4 ramas, se ejecutaran las ramas R1.2 y R2.1, un total de 2/4, es decir, una
cobertura del 50 %.

Cobertura de condiciones

De las 3 condiciones que tenemos, podemos evaluar cada una como verdadero o
falso, lo que da un total de 6 posibilidades (si analizamos cada condicion de manera
independiente al resto).

En este caso las condiciones definidas en A.2.1 se evaluan como:

1. i < vector.length - 1:

Verdadero

2. vector[i] != datoBuscado:
Falso

3. vector[i] == datoBuscado:
Verdadero

En total tenemos 6 posibilidades, y hemos cubierto 3, lo que nos da una cobertura

de 3/6, es decir, del 50 %.

A.2.3. Cobertura completa

El objetivo de la medicion de cobertura de codigo es conocer que falta por probar
para llegar a una cobertura del 100 % anadiendo casos de prueba.
Un ejemplo de casos de prueba adicionales para alcanzar una cobertura completa

para los diferentes tipos de cobertura serian:

49

Cobertura completa de instrucciones
Si ejecutamos el método con los siguiente pardmetros:

— buscar(new int[]{1,2}, 1): se ejecutarian las instrucciones 1, 2, 4 y 5.

— buscar(new int[]{1,2}, 3): se ejecutarian las instrucciones 1, 2, 3, 4, 6 y 7.

Por lo tanto tendriamos una cobertura de 7/7 instrucciones, es decir 100 %.

Cobertura completa de ramas
Si ejecutamos el método con los siguiente pardmetros:
— buscar(new int[]{1,2}, 1): se ejecutarian las ramas R1.2 y R2.1.
— buscar(new int[]{1,2}, 3): se ejecutarian las ramas R1.1, R1.2 y R2.2.
Por lo tanto tendriamos una cobertura de 4/4 ramas, es decir 100 %.
Cobertura completa de condiciones

Si ejecutamos el método con los siguientes parametros:

— buscar(new int[]1{1,2}, 1): las condiciones definidas en A.2.1 se evaluan

COImo:

1. i < vector.length - 1:

Verdadero

2. vector[i] != datoBuscado:
Falso

3. vector[i] == datoBuscado:
Verdadero

— buscar(new int[]{1}, 3): las condiciones definidas en A.2.1 se evaluan como:

1. 1 < vector.length - 1:

Verdadero y Falso

2. vector[i] != datoBuscado:
Verdadero

3. vector[i] == datoBuscado:
Falso

Por lo tanto tendriamos una cobertura de 6/6 valores en condiciones, es decir

100 %.

50

Anexo B

Breve resumen de bytecode Java y sus
instrucciones

B.1. Instrucciones

Los principales tipos de instrucciones bytecode de la JVM son:

B.1.1. Instrucciones de load y store

Estas instrucciones transfieren valores entre las variables locales y la pila de
operandos del marco de la VM. Existen diferentes variantes para los diferentes tipos

de datos de la JVM. Ejemplos: iload, fload, dload, aload, bipush, sipush, etc.

B.1.2. Instrucciones aritméticas

Estas instrucciones permiten computar el resultado de una operacién aritmética
entre dos valores de la pila de operandos, realizando push de vuelta del resultado a la

pila de operandos. Existen varios tipos de operaciones:

— Aritmética entera o de coma flotante: suma, resta, multiplicacion, division, resto,

etc.

— Aritmética de bits: bit-shifting, OR, AND, XOR, etc.

B.1.3. Instrucciones de conversiéon de tipos

Estas instrucciones permiten conversion entre los diferentes tipos de la JVM.
Existen conversiones sin perdidas (de un tipo de dato con menor numero de bits que
el destino) y con perdidas (de un tipo de dato a otro con menor numero de bits).
Ejemplos: i2l, i2f, i2b, i2c.

51

37

38

39

40

41

42

43

44

45

B.1.4. Instrucciones de creacion y acceso a objetos

Estas instrucciones permiten crear una nueva instancia de una clase o acceder a los
campos de un objeto. Ejemplos: new, newarray, getstatic, arraylength, instanceof.
B.1.5. Instrucciones de transferencia de control

Estas instrucciones permiten modificar el flujo de ejecucion de un programa. Existen

varios tipos de operaciones:

— Salto condicional: modifican la direcciéon de salto dependiendo del resultado de

la comparacion. Ejemplos: ifeq. ifgt, ifnull, etc.

— Salto incondicional: modifican la direccién de salto de manera incondicional.

Ejemplos: goto, jsr, etc.

B.1.6. Instrucciones de invocacion de métodos

Estas instrucciones permiten invocar los métodos de alguna clase u objeto.

Ejemplos: invokevirtual, invokeinterface, invokstatic, invokedynamic.

B.1.7. Instrucciones de devolucion de valores

Estas instrucciones permiten devolver el control en un método a su invocador,
devolviendo un dato si es necesario. Ejemplos: ireturn (para devolver un entero), freturn

(para devolver un float), return (para métodos void).

B.2. Ejemplo de programa en bytecode

B.2.1. Meétodo en Java

public static int longitudCollatz(long inicio) {
int longitud = 1;
long siguienteProbar = inicio;
while (siguienteProbar!=1){
siguienteProbar = siguienteCollatz(siguienteProbar);
longitud++;
+

return longitud;

Figura B.1: Codigo Java de la funcion longitudCollatz

52

B.2.2. Meétodo en bytecode

public static longitudCollatz(J)I
LO:
linenumber 38 L0
iconst 1
istore 2
L1:
linenumber 39 L1
lload 0
Istore 3
L2:
linenumber 40 L2
frame append [I J|
lload 3
lconst 1
lcmp
ifeq L3
L4:
linenumber 41 L4
lload 3
invokestatic es/unizar/eina/vv6f/collatz/SecuenciaCollatz.siguienteCollatz (J)J
Istore 3
L5:
linenumber 42 L5
iinc 2 1
goto L2
L3:
linenumber 44 L3
frame same
iload 2
ireturn
L6
localvariable inicio J L0 L6 0
localvariable longitud I L1 L6 2
localvariable siguienteProbar J L2 1.6 3
maxstack — 4
maxlocals = 5

Figura B.2: Codigo bytecode de la funcion longitudCollatz

53

Anexo C

Diagramas arquitecturales

C.1. Arquitectura del agente Java

Al ser una herramienta local para el soporte al testing con la cual se interactia
tnicamente cuando se anade como agente a una ejecucion Java, no es relevante ni su
vista de despliegue, ni su vista de componente-conector, por lo que la explicacion de
la arquitectura va a estar centrada en la vista estatica, especialmente en explicar los

diferentes paquetes, sus propositos, las clases incluidas y sus responsabilidades.

C.1.1. Diagrama de paquetes

Como se ve en la figura C.1 las clases estan estructuradas en diferentes paquetes

segun su proposito. Los diferentes paquetes son:

— controlFlow: contiene aquellas clases relacionadas con el analisis de control de

flujo de coédigo bytecode:

o ControlFlowAnalyser: clase que contiene toda la logica para obtener el grafo
de control de flujo a partir de unas instrucciones bytecode.
Posee métodos publicos para analizar una lista de instrucciones bytecode y
para obtener los resultados del analisis de diferentes maneras: como un grafo
con AbstractInsnNode, con identificadores numéricos “artificiales”, o con el
numero de linea del codigo fuente del nodo correspondiente.
Ademés posee multiples métodos privados que facilitan el analisis de las

instrucciones bytecode.

e FdgePair: clase que representa una situacion de prueba (un par de aristas)

de la técnica de caminos de profundidad 2.

— graph: contiene aquellas clases relacionadas con la definicion de los grafos

utilizados, y utilidades de transformacion de grafos:

54

e FdgeType: tipo enumerado que representa los diferentes tipos de arista que

puede haber en el grafo.

e BooleanFEdge: clase que extiende la arista por defecto de la libreria JGraphT:

DefaultEdge!?, anadiendo informacion acerca del tipo de arista.

o GraphToDotTransfomer: clase de utilidad que permite exportar un objeto

DirectedPseudograph a su correspondiente notacion DOT!.

- DTO (Data Transfer Object): contiene aquellas clases utilizadas como objetos
de transferencia de datos a la hora de exportar los resultados de la medicion de

cobertura:

o MethodReportDTQ: clase que representa la informacion necesaria de un
informe de cobertura de caminos de profundidad 2 para un método en

especifico.

o FdgePairDTO: clase que representa la informacion necesaria para identificar

una situacion de prueba en concreto.
Algunas clases que no pertenecen a ningin paquete de propésito especifico son:

— Agent: es la clase que actiia como punto de entrada a la instrumentacion, la JVM
invoca su método premain y este se encarga de anadir un ClassFileTransformer
a través de la Instrumentation API. Ademés se encarga de realizar el parse de

los argumentos que recibe el agente.

— AgentTransformer: clase que implementa ClassFileTransformer y que la
JVM invoca su método transform por cada clase a cargar en ella. Para cada
clase de la que se desea medir su cobertura, se obtiene su grafo de control de
flujo, sus situaciones de prueba, y se modifica el método anadiendo instrucciones

que permiten registrar de manera dinamica las aristas se vayan ejecutando.

Ademés anade un ShutdownHook (un hilo de Java que se ejecuta justo antes de
apagar la JVM) al Runtime de la aplicacion para imprimir el informe al finalizar

su ejecucion.

Dhttps://jgrapht.org/javadoc/org. jgrapht.core/org/jgrapht/graph/Defaul tEdge . html
Uhttps://graphviz.org/doc/info/lang.html

55

https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/graph/DefaultEdge.html
https://graphviz.org/doc/info/lang.html

9¢

Agent

- controlFlowAnalyser :
ControlFlowAnalyser

- parse (args : String)
+ premain (agentArgs : String,
inst : Instrumentation)

AgentTransformer

- imprimirInforme ()
- addRegistrylnst ()

+ transform (className :
String, classfileBuffer : byte]|)

controlFlow

ControlFlowAnalyser

- isPredicateNode (in : AbstractInsnNode) : boolean

- isBooleanAssignment (in : AbstractInsnNode) : boolean

- findJumpDestiny (in : AbstractInsnNode) : AbstractInsnNode

- findNextPredicateNode (in : AbstractInsnNode) : AbstractInsnNode
- findLinenumber (in : AbstractInsnNode) : Integer

+ analyze (idMethod : String, insns : InsnsList)

+ getControlFlowGraph (idMethod : String) : DirectedPseudograph
+ getControlFlowGraphAsIntegerGraph

(idMethod : String) : DirectedPseudograph

+ getControlFlowGraphAsLinenumberGraph

(idMethod : String) : DirectedPseudograph

+ obtainTestSituations (idMethod : String) : Set<EdgePair>

EdgePair

- nodolnicio : Integer

- nodoMedio : Integer

- nodoFinal : Integer

- aristalnicioMedio : EdgeType
- aristaMedioFinal : EdgeType

-+ isComplete () : boolean

+ nextHalf () : EdgePair

+ addNode (node : Integer)
+ addEdge (edge : EdgeType)

DTO

graph

EdgePairDTO

MethodReportDTO

- nodolnicio : String

- nodoMedio : String

- nodoFinal : String

- aristalnicioMedio : EdgeType
- aristaMedioFinal : EdgeType

- nombre : String

- grafo : String

- grafolmagen : String

- situacionesImposibles : Integer

- situacionesPrueba : List<EdgePairDTO>

- situacionesPruebaCubiertas : List<EdgePairDTO>
- porcentajeCobertura : Double

BooleanEdge «enumerate»
- type : EdgeType EdgeType
- TRUE
+ getType () : EdgeType _ FALSE
- DEFAULT
GraphToDotTransformer

-+ graphToDot (grafo :
DirectedPseudograph<Integer, BooleanEdge>) :

Figura C.1: Diagrama de paquetes del agente

C.2. Arquitectura del plugin de IntelliJ
Al ser un plugin local para un IDE, lo méas relevante acerca de su arquitectura es:

— Vista estatica: se van a explicar los diferentes paquetes, sus propositos, las

clases incluidas y sus responsabilidades.

— Vista dinamica: tnicamente se va a mostrar como interactian los diferentes
objetos del sistema cuando un usuario hace click en el botéon de “Run with

"Edge-Pair’ coverage”.

C.2.1. Contexto sobre la IntelliJ Platform Plugin SDK

Para entender algunos aspectos de la arquitectura del plugin, hay que explicar antes
los sistemas y componentes que ofrece la IntelliJ Platform y que han sido utilizados en

este proyecto:

— User Interface Components: conjunto de componentes Swing!?

personalizados para mantener la consistencia entre la UI del IDE.

— Actions: sistema que permite anadir acciones personalizadas a botones que

puedes incluir diferentes secciones del IDE.

— Settings: sistema que permite definir y persistir ajustes personalizados por el

usuario.

— Virtual File System: sistema que encapsula el acceso a ficheros, permitiendo
subscribirte a los diferentes eventos de un ficheros (modificacion, eliminacion,
etc).

— PSI: el Program Structure Interface es el sistema responsable del anélisis
sintactico y seméantico del coédigo fuente, permitiendo acceder a su modelo,

obtener y modificar atributos, métodos, etc.

— Execution: sistema que controla la ejecucion de procesos dentro del IDE. En

este proyecto tnicamente se han utilizado los siguientes conceptos:

e RunConfiguration: permite acceder y persistir las diferentes opciones de

ejecucion, asi como variables de entorno y argumentos.

12Libreria grafica para crear GUI en Java: https://docs.oracle.com/javase/7/docs/api/
javax/swing/package-summary.html)

57

https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html

¢ Execution events: permite subscribirte a diferentes eventos relacionados
con la ejecucion de un proceso (comienzo, finalizacion, etc) con la

implementacion de un ExecutionListener.

C.2.2. Diagrama de paquetes

Como se ve en la figura C.2 las clases estan estructuradas en diferentes paquetes

segtn su propoésito. Los diferentes paquetes son:
— actions: contiene aquellas clases relacionadas con las actions del plugin:

o RunWithEdgePairCoverage: clase que extiende AnAction que contiene toda
la logica para abrir el selector de métodos y ejecutar la configuracion actual

anadiendo el agente (y sus paremetros) a la ejecucion.

- toolWindows: contiene aquellas clases relacionadas con las Tool windows del

plugin:
o FdgePairCoverageReportNative Window: clase que devuelve un JPanel que
permite visualizar el informe con elementos nativos del IDE.

o FdgePairCoverageReportNative WindowFactory: clase que
implementa ToolWindowFactory y es encargada de instanciar

EdgePairCoverage ReportNative Window.

e FdgePairCoverageReportHTMLWindow: clase que devuelve un JPanel que

permite visualizar el informe como un HTML.

o FdgePairCoverageReportHTMLWindowFactory: clase que
implementa ToolWindowFactory y es encargada de instanciar
EdgePairCoverageReportHTMLWindow.

— settings: contiene aquellas clases relacionadas con los ajustes del plugin:

o AppSettings: clase que representa la informacion a persistir como ajustes del

plugin.
— dialogs: contiene aquellas clases relaciones con los dialogs:

o SeleccionarMetodosDialog: clase que extiende DialogWrapper e implementa
el dialog para seleccionar métodos a medir la cobertura y sus situaciones

imposibles.
— panels: contiene aquellas clases relaciones con los panels:

58

o MethodReportPanel: clase que extiende JPanel e implementa el panel para

mostrar el informe de cobertura de un método.

e MethodSelectorPanel: clase que extiende JPanel e implementa el panel para

seleccionar los métodos a medir la cobertura.

e ReportPanel: clase que extiende JPanel e implementa el panel para mostrar

el informe de cobertura completo.

o SituacionesImposiblesSelectorPanel: clase que extiende JPanel e
implementa el panel para indicar las situaciones imposibles de los

métodos seleccionados.
Algunas clases que no pertenecen a ningin paquete de propoésito especifico son:

- MyExecutionListener: clase que implementa ExecutionListener y se
subscribe al evento de finalizaciéon de ejecucién para mostrar el informe en una

ToolWindow.

59

09

actions toolsWindow

RunWithEdgePairCoverage EdgePairCoverageReportNativeWindowFactory EdgePairCoverageReport
extends AnAction implements ToolWindowFactory —NativeWindow
+ actionPerformed (e : AnActionEvent) + createToolWindowsContent (toolWindow : ToolWindow) + fillli ()
- ejecutarConJavaAgent (project: Project, + getContent () : JPanel
metodosSeleccionados Map<PsiMethod, Integer>)
EdgePairCoverageReport HTMLWindowFactory EdgePairCoverageReport
implements ToolWindowFactory —HTMLWindow
settings + createToolWindowsContent (toolWindow : ToolWindow) + getContent () : JPanel
AppSettings dialogs panels
+ getInstance () : AppSettings
- iz () s Appbielings e ’ SeleccionarMetodosDialog ’ MethodReportPanel ‘
’ MethodSelectorPanel ‘
DTO ’ ReportPanel ‘
SituacionPruebaDTO MethodReportDTO ’ SituacionesImposiblesSelectorPanel ‘
= IlOdOIIliCiO o String - nombre 0 Strlng
= nOdOMediO o String - grafo 0 String
. no-doFin.a.l : Stri.ng . - grafolmagen : String MyExecutionListener
- ar}StaIHICI.OM.edIO : Strlng = Situacioneslmposibles 8 Integer implements ExecutionListener
- aristaMedioFinal : String - situacionesPrueba : List<SituacionPruebaDTO> —— ;
- situacionesPruebaCubiertas + pro.ceSbL(.ermmate 0
: List<SituacionPruebaDTO> + reglst.er 1s£§116r 0
- porcentajeCobertura : Double - TR e .1stener 0
- openToolWindow ()

Figura C.2: Diagrama de paquetes del plugin para IntelliJ

C.2.3. Diagrama de secuencia

En la figura C.3 se puede ver el diagrama de secuencia del caso de uso “Medir
cobertura de profundidad 2”7 desde la perspectiva del plugin.
Este diagrama de secuencia comienza con:
1. El actor Desarrollador hace click en el boton de “Run with "Edge-Pair’ coverage”.
Este boton tiene asociado la action RunWithEdgePairCoverage que inicialmente

muestra el dialog SeleccionarMetodoDialog .

2. El Desarrollador hace click en el boton de “Next” y se muestra el dialog

SeleccionarMetodoDialog.

3. El Desarrollador hace click en el boton de “Run” y se ejecuta la configuracion

existente anadiendo el agente y los pardmetros.

61

a9

Desarrollador

:RunWithEdgePairCoverage

clickButton ()

show ()

:SeleccionarMetodosDialog

mPanel:MetodoSelectorPanel

sPanel:SituacionesSelectorPanel

clickNextButton()

new MetodoSelectorPanel()

<777\

clickRunButton()

showPanel(mPanel) L

new SituacionesSelectorPanel()

pa—_—

notify()

getSelectedMethods(selectedMethods)

<777\

return selectedMethods

ejecutarConJavaAgent (selectedMethods)

showPanel(sPanel)

Figura C.3: Diagrama de secuencia del caso de uso “Medir cobertura de profundidad 2” desde la perspectiva del plugin para IntelliJ

	Introducción y objetivos
	Contexto
	Testing y técnicas de diseño de pruebas
	Cobertura de código
	Automatización de las pruebas
	Técnica de caminos con profundidad de nivel 2

	Objetivos

	Requisitos y casos de uso
	Requisitos
	Aspectos fuera de ámbito

	Casos de uso
	Actores y descripción de los casos de uso asociados
	Diagrama de casos de uso

	Análisis
	Estado de las herramientas de cobertura de código actuales
	Metodología

	Diseño e implementación
	Diseño algorítmico de la solución
	Diseño e implementación de un agente en Java
	Análisis de herramientas de instrumentación de código Java
	Agentes en Java e instrumentación
	Implementación de un agente en Java utilizando la librería ASM
	Dificultades encontradas

	Implementación de un plugin de integración del agente para el IDE IntelliJ
	Contexto sobre IntelliJ Platform Plugin SDK
	Diseño de la interfaz y funcionamiento

	Validación
	Corrección de los grafos
	Diseño
	Implementación
	Resultados

	Identificación de las situaciones de prueba a partir de un grafo
	Diseño
	Implementación
	Resultados

	Correcto registro de los nodos y caminos recorridos.
	Diseño
	Implementación
	Resultados

	Conclusiones
	Gestión del proyecto
	Trabajo futuro
	Extensión de la herramienta a otros lenguajes basados en la JVM
	Herramientas de soporte a la aplicación de la técnica

	Reflexiones sobre la técnica de caminos de profundidad 2
	Valoración personal

	Bibliografía
	Lista de Figuras
	Lista de Tablas
	Anexos
	Ejemplos de conceptos basados en código fuente
	Ejemplo de situaciones imposibles en la técnica de caminos de profundidad 2
	Ejemplo de medición de cobertura de código
	Objeto de pruebas
	Ejecución y cobertura
	Cobertura completa

	Breve resumen de bytecode Java y sus instrucciones
	Instrucciones
	Instrucciones de load y store
	Instrucciones aritméticas
	Instrucciones de conversión de tipos
	Instrucciones de creación y acceso a objetos
	Instrucciones de transferencia de control
	Instrucciones de invocación de métodos
	Instrucciones de devolución de valores

	Ejemplo de programa en bytecode
	Método en Java
	Método en bytecode

	Diagramas arquitecturales
	Arquitectura del agente Java
	Diagrama de paquetes

	Arquitectura del plugin de IntelliJ
	Contexto sobre la IntelliJ Platform Plugin SDK
	Diagrama de paquetes
	Diagrama de secuencia

		2024-09-05T20:00:02+0200
	CATALAN BERNAL JUAN - 73009179A

