
Trabajo Fin de Grado

Herramienta para la medición automática de
cobertura de código mediante la técnica de caminos

con profundidad de nivel 2 en Java

Tool for automatic code coverage measurement
using the path coverage technique with depth level 2

in Java

Autor

Juan Catalán Bernal

Director

Miguel Ángel Latre Abadía

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2024

DECLARACIÓN DE
AUTORÍA Y ORIGINALIDAD

TR
A

B
A

JO
S

D
E

FI
N

 D
E

G
R

A
D

O
 /

 F
IN

 D
E

M
Á

ST
ER

(Este documento debe acompañar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Máster (TFM) cuando sea depositado para su evaluación).

D./Dª. __,

con nº de DNI ______________________ en aplicación de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo

de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Máster)

___, (Título del Trabajo)

__,

es de mi autoría y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, ____________________________________

Fdo: __________________________________

Juan Catalán Bernal

73009179A

Grado en Ingeniería Informática

Herramienta para la medición automática de cobertura de código mediante la
técnica de caminos de profunidad de nivel 2 en Java

 5 de Septiembre de 2024

I

II

AGRADECIMIENTOS

Primeramente quiero agradecer a Miguel Ángel Latre, tutor de este trabajo, por

todo el tiempo dedicado, los ánimos recibidos y por haber ayudado a que la experiencia

de trabajar en el TFG haya sido (a excepción de los últimos momentos de estrés)

entretenida y satisfactoria.

Agradecer también a todos aquellos compañeros y amigos que he conocido en la

carrera, que convierten los días de aburrimiento y de estrés, en días que, aunque sigan

siendo estresantes y llenos de trabajos, vuelves a casa con una sonrisa y con (al menos

unas pocas) ganas de volver al día siguiente. Entre ellos destacar a aquellos que conocí

casi al comienzo de la carrera como Ernesto, Antonio, Jaime y Ainhoa, y a aquellos

que aunque los he conocido el ultimo año han sido algo clave para haber llegado al día

de hoy: Carlos, Senso, Raúl, Jaime, Carlota y Marina.

Por último agradecer a mis personas más cercanas, tanto a mi familia de sangre por

haber puesto la confianza en mí para comenzar la carrera y seguir en ella a pesar de

un mal comienzo, como a los amigos que considero parte de mi familia como Pablete,

Miguel Ángel, Dieguito, Sara, Diego Del, Claudia y Adri (que me ha acompañado en

la carrera un día tras otro) por haberme entendido y apoyado en los días malos de la

carrera y por haber celebrado cuando las cosas han ido bien.

III

Herramienta para la medición automática de
cobertura de código mediante la técnica de caminos

con profundidad de nivel 2 en Java

RESUMEN

A la hora de realizar testing de sistemas informáticos es común utilizar diferentes

técnicas de diseño de pruebas. Estas son métodos definidos para obtener, a partir de

unos requisitos o especificaciones determinados, casos de prueba que proporcionan una

determinada cobertura para los mismos.

Una de ellas es la técnica de caminos con profundidad de nivel 2, la cual es una

técnica de testing basada en la estructura que pretende diseñar un conjunto de casos de

prueba que asegure que todos los pares de aristas adyacentes del grafo de flujo asociado

al código objeto de pruebas se ejecuten al menos una vez.

La técnica de caminos con profundidad 2 es una técnica muy exhaustiva para

la que no existen herramientas de medición de cobertura que comprueben que las

pruebas diseñadas están cubriendo todos los caminos deseados. Este TFG busca crear

una herramienta para Java que automatice el proceso de medición de cobertura de

pruebas diseñadas con esta técnica, ofreciendo un informe de cobertura de código tras

la ejecución de las pruebas.

Para ello se va a desarrollar un agente en Java que mediante instrumentación de

código Java, sea capaz de analizar un método generando su grafo de flujo asociado,

identificando las situaciones de prueba y modificando el código para registrar de manera

dinámica las situaciones de prueba que se vayan ejecutando.

Además se va a implementar un plugin para el IDE IntelliJ que integre el agente

previamente mencionado, para facilitar el uso de la herramienta con una configuración

simple por parte de los programadores.

IV

Tool for automatic code coverage measurement using
the path coverage technique with depth level 2 in

Java

ABSTRACT

At the time of performing testing of computer systems, it is common to use different

test design techniques. These are defined methods to obtain, from certain requirements

or specifications, test cases that provide a certain coverage for them.

One of them is the path coverage technique with level 2 depth, which is a

structure-based testing technique aimed at designing a set of test cases that ensures

that all pairs of adjacent edges of the flow graph associated with the code under test

are executed at least once.

The path coverage technique with level 2 depth technique is a very exhaustive

technique for which there are no coverage measurement tools that check whether the

designed tests are covering all the desired paths. This final project aims to create a

tool for Java that automates the process of measuring the coverage of tests designed

with this technique, offering a code coverage report after the tests are executed.

To achieve this, a Java agent will be developed that, through Java code

instrumentation, is capable of analyzing a method, generating its associated flow graph,

identifying test situations, and modifying the code to dynamically record the test

situations that are being executed.

In addition, a plugin for the IntelliJ IDE will be implemented to integrate the

previously mentioned agent, making it easier for programmers to use the tool with a

simple configuration.

V

Índice

1. Introducción y objetivos 1

1.1. Contexto . 1

1.1.1. Testing y técnicas de diseño de pruebas 1

1.1.2. Cobertura de código . 2

1.1.3. Automatización de las pruebas . 4

1.1.4. Técnica de caminos con profundidad de nivel 2 4

1.2. Objetivos . 7

2. Requisitos y casos de uso 9

2.1. Requisitos . 9

2.1.1. Aspectos fuera de ámbito . 10

2.2. Casos de uso . 10

2.2.1. Actores y descripción de los casos de uso asociados 10

2.2.2. Diagrama de casos de uso . 11

3. Análisis 12

3.1. Estado de las herramientas de cobertura de código actuales 12

3.2. Metodología . 14

4. Diseño e implementación 16

4.1. Diseño algorítmico de la solución . 16

4.2. Diseño e implementación de un agente en Java 18

4.2.1. Análisis de herramientas de instrumentación de código Java . . . 18

4.2.2. Agentes en Java e instrumentación 19

4.2.3. Implementación de un agente en Java utilizando la librería ASM 19

4.2.4. Dificultades encontradas . 21

4.3. Implementación de un plugin de integración del agente para el IDE IntelliJ 23

4.3.1. Contexto sobre IntelliJ Platform Plugin SDK 23

4.3.2. Diseño de la interfaz y funcionamiento 24

VI

5. Validación 28

5.1. Corrección de los grafos . 28

5.1.1. Diseño . 28

5.1.2. Implementación . 29

5.1.3. Resultados . 32

5.2. Identificación de las situaciones de prueba a partir de un grafo 32

5.2.1. Diseño . 32

5.2.2. Implementación . 33

5.2.3. Resultados . 33

5.3. Correcto registro de los nodos y caminos recorridos. 33

5.3.1. Diseño . 33

5.3.2. Implementación . 34

5.3.3. Resultados . 34

6. Conclusiones 35

6.1. Gestión del proyecto . 35

6.2. Trabajo futuro . 36

6.2.1. Extensión de la herramienta a otros lenguajes basados en la JVM 36

6.2.2. Herramientas de soporte a la aplicación de la técnica 36

6.3. Reflexiones sobre la técnica de caminos de profundidad 2 36

6.4. Valoración personal . 39

Bibliografía 40

Lista de Figuras 41

Lista de Tablas 43

Anexos 44

A. Ejemplos de conceptos basados en código fuente 46

A.1. Ejemplo de situaciones imposibles en la técnica de caminos de

profundidad 2 . 46

A.2. Ejemplo de medición de cobertura de código 47

A.2.1. Objeto de pruebas . 47

A.2.2. Ejecución y cobertura . 49

A.2.3. Cobertura completa . 49

VII

B. Breve resumen de bytecode Java y sus instrucciones 51

B.1. Instrucciones . 51

B.1.1. Instrucciones de load y store . 51

B.1.2. Instrucciones aritméticas . 51

B.1.3. Instrucciones de conversión de tipos 51

B.1.4. Instrucciones de creación y acceso a objetos 52

B.1.5. Instrucciones de transferencia de control 52

B.1.6. Instrucciones de invocación de métodos 52

B.1.7. Instrucciones de devolución de valores 52

B.2. Ejemplo de programa en bytecode . 52

B.2.1. Método en Java . 52

B.2.2. Método en bytecode . 53

C. Diagramas arquitecturales 54

C.1. Arquitectura del agente Java . 54

C.1.1. Diagrama de paquetes . 54

C.2. Arquitectura del plugin de IntelliJ . 57

C.2.1. Contexto sobre la IntelliJ Platform Plugin SDK 57

C.2.2. Diagrama de paquetes . 58

C.2.3. Diagrama de secuencia . 61

VIII

Capítulo 1

Introducción y objetivos

1.1. Contexto

1.1.1. Testing y técnicas de diseño de pruebas

A la hora de realizar testing de sistemas informáticos existen diferentes formas de

definir que se va a probar, desde enfoques más informales como pruebas basadas en la

experiencia (pruebas exploratorias, basadas en listas de comprobación, etc.) hasta la

utilización de diferentes técnicas de diseño de prueba [1].

Las técnicas de diseño de pruebas son métodos definidos para obtener, a partir

de unos requisitos o especificaciones determinados, casos de prueba de un software

que proporcionan una determinada cobertura para el mismo. Cada técnica enfoca las

pruebas a aspectos diferentes para adaptarse a la exigencia de la estrategia de pruebas

elegida.

Las diferentes técnicas se pueden clasificar en dos grupos [2]:

− Técnicas basadas en la especificación (o técnicas de pruebas de caja negra):

técnicas donde la test basis (requisitos, especificación, modelos) es usada como la

principal fuente de información para diseñar casos de prueba.

Un ejemplo de técnica basada en la especificación es la técnica de particiones

de equivalencia donde, para un determinado objeto de pruebas (función,

módulo, programa que se desea testear) se busca definir las diferentes particiones

de equivalencia de los parámetros o entradas del objeto de pruebas (casos

conceptualmente semejantes), y a partir de ellas diseñar pruebas que cubran

el conjunto de las particiones de equivalencia identificadas.

− Técnicas basadas en la estructura (o técnicas de pruebas de caja blanca):

técnicas donde la estructura del objeto de pruebas (generalmente el código fuente)

es utilizada como la fuente primaria de información para diseñar los casos de

prueba.

1

Algunos ejemplos de técnicas basadas en la estructura son:

• Instrucciones (Statement Testing): es una técnica que pretende diseñar

un conjunto de casos de prueba que asegure que todas las instrucciones del

código objeto de pruebas se ejecuten al menos una vez.

• Ramas (Branch Testing): es una técnica que pretende diseñar un

conjunto de casos de prueba que asegure que todas las aristas del grafo

de flujo asociado al código objeto de pruebas se ejecuten al menos una vez.

• Caminos de profundidad 2 (Edge-Pair Testing): esta técnica se puede

entender como una extensión de la técnica de cobertura de ramificación

donde, en vez de todas las aristas del grafo de flujo, se pretende asegurar

que se ejecutan todos las pares de aristas adyacentes. Es la técnica en la que

se centra este TFG y se describe con más detalle en la sección 1.1.4.

1.1.2. Cobertura de código

Cuando se realiza testing es conveniente tener medidas que nos permitan observar

como de bien se esta realizando los test, y las partes del programa o el código que se

están probando con mayor y menor exhaustividad. Una de las medidas más utilizadas

para ello es la cobertura de código, que muestra el grado en el que código fuente de un

programa es ejecutado durante la ejecución de un conjunto de pruebas en concreto [3].

Que un programa tenga una cobertura de código baja al ejecutar los test indica que

solo una pequeña parte del programa se ha ejecutado durante los test, lo que sugiere que

existe una mayor probabilidad de encontrar fallos inesperados respecto a un programa

con alta cobertura de código.

Existen diferentes tipos de cobertura de código, los más comunes (y que múltiples

herramientas son capaces de medir automáticamente) son:

− Cobertura de líneas: mide el número de líneas del código fuente que se han

ejecutado.

− Cobertura de instrucciones: mide el número de instrucciones del código fuente

que se han ejecutado.

− Cobertura de clases: mide el número de clases (en lenguajes orientados a

objetos) que se han utilizado durante la ejecución de los tests.

− Cobertura de funciones o métodos: mide el número de funciones o métodos

(en lenguajes orientados a objetos) que han sido invocados durante la ejecución

de los tests.

2

− Cobertura de ramas: mide el número de ramas de cada estructura de control

(como if o while) que han sido ejecutadas. Por ramas se entiende los diferentes

caminos que puede tomar el flujo del programa al evaluarse las condiciones que

los guardan como true o false.

− Cobertura de condiciones: mide el número de sub-expresiones booleanas que

han sido evaluadas con sus diferentes posibles valores.

Un ejemplo de los diferentes tipos de cobertura y su medición se encuentra en el

Anexo A.2.

Los IDE generalmente son capaces medir algunos de estos tipos de cobertura y

ofrecerte un informe. En la figura 1.1 se puede observar un ejemplo de informe de

cobertura del IDE IntelliJ, con los diferentes tipos de cobertura que este IDE es capaz

de medir.

Figura 1.1: Ejemplo de informe de cobertura de IntelliJ

3

1.1.3. Automatización de las pruebas

La automatización de pruebas implica la escritura de código específico cuya única

función es verificar que el código de producción (es decir, el código que realmente

ejecutará el usuario final y que resuelve el problema que el software pretende abordar)

se comporta como se espera en diversas situaciones. Este código de pruebas se ejecuta

de forma automática, permitiendo la repetición de pruebas sin intervención manual, lo

cual ahorra tiempo y minimiza el riesgo de errores humanos.

Para poder automatizar las pruebas es necesario un entorno de automatización

de pruebas y test harness : esto es una colección de software que facilita la ejecución

de pruebas, incluye el entorno general y los scripts específicos para un programa o

proyecto. En el caso de Java, el entorno de automatización de pruebas predominante

es JUnit1.

1.1.4. Técnica de caminos con profundidad de nivel 2

Este trabajo esta centrado en la técnica de caminos con profundidad de nivel 2, la

cual es una técnica de testing basada en la estructura que pretende diseñar un conjunto

de casos de prueba que asegure que todos los pares de aristas adyacentes del grafo de

flujo asociado al código objeto de pruebas se ejecuten al menos una vez.

Para aplicar la técnica se pueden seguir los siguientes pasos:

1. Generar el grafo de control asociado al código objeto de pruebas.

2. Determinar los nodos “relevantes” del grafo (nodo inicial, nodos finales y nodos

predicado) y determinar las aristas que los conectan basándose en el grafo

completo.

Esta técnica es particularmente sensible a la definición de nodo predicado (nodos

en los que el flujo del programa se puede dividir). Consideramos nodo predicado

a cada condición simple que aparece en la guarda de una instrucción condicional

o iterativa.

3. Incluir como situaciones de prueba todas las combinaciones de caminos de dos

aristas que pasan por nodos predicado.

4. Generar caminos sobre el grafo hasta que se hayan incluido todas las situaciones

de prueba.

5. Generar casos de prueba que satisfagan los caminos.
1https://junit.org/junit5/

4

https://junit.org/junit5/

Ejemplo de aplicación de la técnica

Objeto de pruebas Dado el siguiente método con nombre buscar, que va a ser

nuestro objeto de pruebas:

1 /**
2 * Busca un dato determinado en un vector de enteros.
3 *
4 * @param v
5 * - el vector no nulo en el que se busca el entero.
6 * @param datoBuscado
7 * - el dato que se quiere buscar en el vector «v».
8 *
9 * @return Si en el vector «v» hay un dato igual a «datoBuscado»,

10 * devuelve el índice de la componente en la que se encuentra.
11 * En caso contrario devuelve -1;
12 */
13 public int buscar(int[] v, int datoBuscado) {
14 int i = 0;
15

16 while (i < v.length) {
17 if (v[i] == datoBuscado) {
18 return i;
19 }
20 i++;
21 }
22

23 return -1;
24 }

Figura 1.2: Código Java de la función buscar

5

Los pasos a seguir son:

Generar el grafo de control Se va a utilizar como identificador de vértices el

número de linea de su representación en el código para facilitar la lectura del grafo.

14

16 17

18

20

23

A

B

C: true

D: true

E: false

F

G: false

Figura 1.3: Grafo de flujo asociado al código Java de 1.2

Determinar los nodos “relevantes” del grafo Para ello, a partir del grafo

completo, nos centramos únicamente en los nodos inicial, finales y predicado, y

determinamos las aristas que los conectan.

16 17

1823

A

C: true

D: true

E: false

G: false

Figura 1.4: Grafo de flujo con nodos “relevantes” basado en el grafo de la figura 1.3

6

Generar situaciones de prueba Las situaciones de prueba serán todo aquel

conjunto de pares de aristas adyacente, en este caso:

AC , AG , CD , CE , EC , EG

Generar caminos que incluyan todas las situaciones de prueba De manera

iterativa e incremental, se definen caminos que cubran algunas de las situaciones de

prueba restantes.

Por ejemplo, podríamos empezar con un camino que únicamente cubra AG.

Caminos Situaciones de prueba restantes
AG AC, ��AG, CD, CE, EC, EG

Tras esto, podemos seguir con un camino que cubra AC y CD.

Caminos Situaciones de prueba restantes
AG, ACD ��AC, ��AG, ��CD, CE, EC, EG

Para finalizar, podemos buscar un camino que cubra las situaciones restantes: CE,

EC y EG.

Caminos Situaciones de prueba restantes
AG, ACD, ACECEG ��AC, ��AG, ��CD, ��CE, ��EC, ��EG

Generar casos de prueba que satisfagan los caminos En este caso, un ejemplo

de casos de prueba que satisfacen los caminos previamente determinados se ven en la

tabla 1.1.

Caso
Parámetros

Resultado Camino cubierto
int[] v int datoBuscado

1 [] 1 -1 AG

2 [1,2,3] 1 0 ACD

3 [1, 2] 3 -1 ACECEG

Tabla 1.1: Tabla de casos de prueba para el método de la fígura 1.2

1.2. Objetivos

La técnica de caminos con profundidad 2 es una técnica muy exhaustiva para la

que no existen herramientas de medición de cobertura que comprueben que las pruebas

diseñadas están cubriendo todos los caminos deseados.

7

Este TFG busca crear una herramienta para Java que automatice el proceso de

medición de cobertura de pruebas diseñadas con esta técnica, ofreciendo un informe de

cobertura de código tras la ejecución de las pruebas.

Para ello se buscará un medidor de cobertura para Java, similar a los que ya

existen para otros tipos de cobertura más fáciles, que realice los pasos de la técnica

explicados en la sección 1.1.4 y sea capaz de reconocer que situaciones de prueba han

sido ejecutadas y cuales no.

También se buscará que el uso de esta herramienta sea lo más sencillo posible para

el programador y que el informe sea útil para complementar las pruebas en caso de que

haya situaciones de prueba no ejecutadas.

8

Capítulo 2

Requisitos y casos de uso

Al tener este TFG un objetivo muy específico, los requisitos del sistema son

concretos y dirigidos a cumplir el objetivo.

2.1. Requisitos

− RF1: La herramienta permitirá medir la cobertura de profundidad 2 alcanzada

a partir de un código fuente (el objeto de pruebas) durante la ejecución de un

conjunto de test que prueba el objeto de pruebas.

• RF1.1: La herramienta identificará automáticamente las situaciones de

prueba de profundidad 2 del objeto de pruebas.

• RF1.2: La herramienta registrará las situaciones de prueba de profundidad 2

cubiertas del objeto de pruebas al ejecutar los test.

− RF2: La herramienta proporcionará un informe sobre porcentaje de cobertura,

situaciones de prueba cubiertas y situaciones de prueba no cubiertas al finalizar

la ejecución de los test.

− RF3: La herramienta de medición de cobertura está integrada como plugin en

un IDE (entorno de desarrollo integrado).

9

2.1.1. Aspectos fuera de ámbito

Definir si una situación de prueba es posible o no

Hay que tener en cuenta que existen situaciones de prueba imposibles, ya que la

ejecución de dos aristas consecutivas en el grafo puede ser imposible por estar guardadas

por condiciones dependientes entre sí e incompatibles. Se puede ver un ejemplo de esto

en el Anexo A.1.

Este tipo de restricciones de caminos imposibles se deben tener en cuenta cuando se

realiza la técnica de manera manual pero la herramienta no es capaz de reconocerlos,

ya que requeriría de un análisis contextual sobre el grafo y no es el objetivo de este

trabajo. Además, es un problema no decidible según Durelli et al [4]. En cambio la

herramienta ofrece la posibilidad de indicarle si existe algún camino imposible y que

los tenga en cuenta a la hora de calcular la cobertura.

Generar los caminos y casos de prueba

Esta herramienta está enfocada como un medidor de cobertura para verificar que

la técnica de caminos de profundidad 2 se ha aplicado correctamente, por lo que, como

otros medidores de cobertura, su propósito no es diseñar las pruebas sino medir la

cobertura cuando se ejecutan las pruebas.

2.2. Casos de uso

En la figura 2.1 se puede ver el diagrama de casos de uso de la herramienta.

2.2.1. Actores y descripción de los casos de uso asociados

Desarrollador

Es la persona que desea verificar que las pruebas que ha implementado utilizando

la técnica de caminos de profundidad 2 cubren todas las situaciones de prueba.

− Medir cobertura de profundidad 2: El desarrollador ejecuta sus pruebas

indicando que quiere medir la cobertura de caminos de profundidad 2 y ver un

informe al finalizar la ejecución de los test.

− Instalar herramienta: El desarrollador instala y configura la herramienta para

poder medir cobertura de caminos de profundidad 2. Puede instalarla de manera

manual o como un plugin de un IDE para facilitar su uso.

10

2.2.2. Diagrama de casos de uso

Medir
cobertura de
profundidad 2

Identificar
situaciones

de prueba de
profundidad 2

Generar
informe de

cobertura de
profundidad 2

Registrar
situaciones

prueba
cubiertas

Instalar
herramienta

Instalar
herramienta
de manera

manual

Instalar
herramienta
como plugin
de un IDE

Edge-Pair Coverage

Desarrollador

≪ incl
ude
≫

≪ include≫

≪ include≫

Figura 2.1: Diagrama de casos de uso de la herramienta Edge-Pair Coverage

11

Capítulo 3

Análisis

3.1. Estado de las herramientas de cobertura de
código actuales

Se ha realizado un análisis de las herramientas de medición de cobertura de código

para Java más populares [5] con varios objetivos:

− Verificar que realmente no existe ninguna herramienta con este

propósito: A la técnica se le conoce por varios nombres (caminos de profundidad,

Edge-pair testing, etc) y es posible que algunas herramientas de cobertura de

código ya incluyan soporte para esta técnica pero con un nombre diferente.

− Buscar una herramienta que pueda servir de punto de partida:

Implementar un medidor de cobertura puede no ser una tarea sencilla, y si

existiese una herramienta de código abierto que permitiese la extensión de sus

funcionalidades de manera sencilla podría suponer una reducción de riesgos a la

hora de realizar el proyecto.

− Conocer los mecanismos que utilizan: Al no tener experiencia

implementando medidores de cobertura puede ser útil conocer cuáles son los

mecanismos y sus variaciones que utilizan las diferentes herramientas del mercado

existentes.

En la tabla 3.1 se incluye un resumen de las diferentes herramientas: qué ofrecen,

el mecanismo por el cual lo consiguen, si es similar a la herramienta que buscamos y

si el código es accesible.

12

Herramienta Tipo cobertura Mecanismo ¿Parecido? ¿Código accesible? URL

Cobertura Básico Instrumentación No GitHub público https://cobertura.github.io/
cobertura/

CodeCover Básico y bucles Instrumentación No, pero
ofrece bucles Open source http://codecover.org/

Emma Básico Instrumentación No Open source https://emma.sourceforge.net/

Gretel Líneas Instrumentación No Sin actividad desde el 2002
https://www.cs.uoregon.edu/
research/perpetual/Software/
Gretel

Hansel Gretel pero con JUnit 4 https://hansel.sourceforge.net/

JaCoCo Básico Instrumentación
on-the-fly con agentes No GitHub público https://www.eclemma.org/jacoco/

JCov Básico Instrumentación No GitHub público pero sin
mucha actividad

https://wiki.openjdk.org/
display/CodeTools/jcov

NoUnit Cobertura estática https://nounit.sourceforge.net/

Pitest Mutation testing https://pitest.org/

Quilt Muy básico Instrumentación No Sourceforge sin actividad
desde 2003 https://quilt.sourceforge.net/

Serenity BDD Test de aceptación y cobertura centrada en los test https://serenity-bdd.info/

Atlassian Clover Básico Instrumentación sobre
fuentes No Open source desde 2017 https://www.atlassian.com/es/

software/clover

Qt Coco

Incluye Modified
Condition Decision
Coverage y Multiple
Condition Coverage

Privado, de pago con licencia de uso https://www.qt.io/product/
quality-assurance/coco

Tabla 3.1: Comparación de herramientas de cobertura de código para Java

13

https://cobertura.github.io/cobertura/
https://cobertura.github.io/cobertura/
http://codecover.org/
https://emma.sourceforge.net/
https://www.cs.uoregon.edu/research/perpetual/Software/Gretel
https://www.cs.uoregon.edu/research/perpetual/Software/Gretel
https://www.cs.uoregon.edu/research/perpetual/Software/Gretel
https://hansel.sourceforge.net/
https://www.eclemma.org/jacoco/
https://wiki.openjdk.org/display/CodeTools/jcov
https://wiki.openjdk.org/display/CodeTools/jcov
https://nounit.sourceforge.net/
https://pitest.org/
https://quilt.sourceforge.net/
https://serenity-bdd.info/
https://www.atlassian.com/es/software/clover
https://www.atlassian.com/es/software/clover
https://www.qt.io/product/quality-assurance/coco
https://www.qt.io/product/quality-assurance/coco

Algunos conceptos necesarios que se utilizan en la tabla 3.1 son:

− Tipo cobertura: se han definido dos grupos para simplificar la lectura:

• Muy básico: líneas, instrucciones.

• Básico: líneas, instrucciones, funciones, ramas.

Además también se menciona Modified Condition Decision Coverage y Multiple

Condition Coverage, dos tipos de cobertura más avanzada y exhaustiva [1] [2].

− Instrumentación: es el proceso de modificar software para poder realizar

análisis sobre el, generalmente añadir instrucciones que permiten registrar su

comportamiento dinámico (en tiempo de ejecución). Según el objeto de la

instrumentación puede ser:

• Sobre fuentes: se modifica el código fuente antes de compilarlo.

• Sobre ejecutables: se modifica el ejecutable. Normalmente se utiliza

instrumentación on-the-fly que permite modificar el ejecutable en tiempo

de ejecución pero justo antes lanzar el programa. Por ejemplo, en Java se

utilizan agentes que interceptan los .class antes de cargarlos en la máquina

virtual de Java. Este aspecto se analiza con más detalle en la sección 4.2.1.

En este análisis no se ha encontrado ninguna herramienta existente y popular que

ofrezca lo que se plantea en este TFG. En el contexto académico, lo más similar que

se ha encontrado es la herramienta BA-CF que proponen y utilizan Matheus Silva y

Marcos Chaim [6]. Sin embargo, esta herramienta tiene como entrada las situaciones

de prueba, mientras que, los objetivos planteados en este TFG, se plantean determinar

las situaciones de prueba a partir del código fuente.

3.2. Metodología

Se va a utilizar un ciclo de vida iterativo-incremental con las siguientes fases:

− Primera versión funcional: a modo de estudio de viabilidad, en ella se

verificara que los siguientes procesos se pueden realizar:

• Calcular un grafo de flujo a partir de un archivo fuente de Java.

• Identificar todos los posibles caminos de profundidad 2 a partir de su grafo

de flujo.

14

• Instrumentar un código Java identificando las expresiones condicionales

(nodos predicado) y añadiendo código antes de las propias condiciones y

al comienzo de las diferentes ramas.

• Utilizar la información generada sobre los posibles caminos de profundidad 2

para que la instrumentación genere información acerca de los caminos de

profundidad 2 visitados.

• Generar un informe legible por un humano acerca de la cobertura de caminos

de profundidad 2.

− Diferentes iteraciones para mejorar la usabilidad: en ellas se buscará:

• El informe muestra información basada en el código fuente de los caminos

que no se han visitado, para poder identificarlos y mejorar los test.

• Se automatiza todo el proceso con una configuración de un runner (archivo

de configuración que permite definir algunas opciones de ejecución, como

opciones de la máquina virtual de Java, variables de entorno, etc.) de un

IDE (se valora IntelliJ 2 como primera opción, este es un IDE para Java y

otros lenguajes basados en la JVM de la empresa JetBrains).

• Toda la herramienta se transforma en un plugin de un IDE para poder

ejecutarlo con una configuración muy simple.

2https://www.jetbrains.com/es-es/idea/

15

https://www.jetbrains.com/es-es/idea/

Capítulo 4

Diseño e implementación

Esta sección está organizada en:

− Diseño algorítmico de la solución: donde se define el diseño algorítmico de

la solución a alto nivel.

− Diseño e implementación de un agente en Java: donde se explican las

decisiones de diseño tomadas, pseudocódigo de los aspectos más importantes de

la implementación y las dificultades encontradas.

− Diseño e implementación de un plugin para IntelliJ: donde se explica

brevemente como se implementa un plugin para IntelliJ, se muestra el diseño de

la interfaz y un breve resumen del funcionamiento.

4.1. Diseño algorítmico de la solución

De forma análoga a como se realiza la técnica de manera manual, la herramienta

debe seguir los pasos de la técnica, como se ve en la figura 4.1, para verificar que

durante la ejecución del programa objeto de pruebas o sus test se ejecutan todos los

pares de aristas adyacentes:

− Obtener el grafo de flujo asociado a ese programa: Este proceso requiere de

un análisis léxico-sintáctico del programa y se puede realizar a partir del fuente (la

forma en la que se aplica la técnica de manera manual) o a partir del ejecutable.

En este caso es más favorable realizar el análisis a partir del ejecutable ya que el

bytecode de Java es de un nivel más bajo de abstracción y por lo tanto es más

fácil analizar su estructura.

− Identificar los pares de aristas (situaciones de prueba): A partir del grafo

creado en el paso anterior, se debe identificar todos los conjuntos de pares de

16

aristas adyacentes, es decir, todas las situaciones de prueba a verificar que se

ejecutan.

− Instrumentar el ejecutable Java: Se debe modificar el ejecutable Java para

que, en tiempo de ejecución, se registre las aristas ejecutadas para poder mostrarlo

en el informe.

− Generar un informe al finalizar la ejecución: Al terminar de ejecutarse el

programa, se le mostrará al usuario un informe que indicará cuantos pares de

aristas se han ejecutado y cuales faltan por ejecutarse.

Código fuenteTest

.class (Ejecutable Java) Grafo

Situaciones
de pruebaInstrumentación

.class instrumentado

Ejecución

Informe

Figura 4.1: Diagrama de flujo de la solución propuesta

17

4.2. Diseño e implementación de un agente en Java

La implementación del agente se puede encontrar en el siguiente repositorio público

de GitHub: https://github.com/juan-catalan/tfg

En el Anexo C.1 se puede ver una explicación de la arquitectura del agente.

4.2.1. Análisis de herramientas de instrumentación de código
Java

Las dos herramientas más usadas para instrumentación de código Java son

Javassist3 y ASM4.

Javassist es, de las dos, la más sencilla de utilizar y con mayor grado de abstracción,

por lo que se realizaron unas pruebas de viabilidad para verificar si el proyecto era

factible con esta herramienta. Los resultados no fueron favorables debido a:

− El core de su API esta en un grado de abstracción mayor al necesario: permite

modificar y crear clases pero basado en Java y no en el bytecode.

− Posee una API para trabajar a nivel de bytecode (el nivel de abstracción necesario

para este proyecto), pero la documentación y trabajos de la comunidad con esa

API son escasos.

Tras estos insatisfactorios resultados se optó por realizar unas pruebas de viabilidad

similares pero con la herramienta ASM. Estos resultados fueron completamente

satisfactorios debido a:

− Es la herramienta de instrumentalización utilizada por otros medidores

de cobertura como Cobertura o Jacoco: esto es un indicio positivo ya que

implica que la herramienta ha sido utilizada para un propósito similar al nuestro.

− API centrada en manipulación de bytecode: este exactamente el grado de

abstracción necesario para este proyecto.

− Muy buena documentación: la herramienta cuenta con una guía de usuario de

150 páginas donde explican todas las posibilidades de la herramienta a través de

ejemplos y diagramas, de una manera muy organizada. Con esta guía de usuario

se consiguió realizar las pruebas de viabilidad necesarias para verificar que se

podía llevar a cabo el proyecto:

• Identificar nodos predicado de un .class.
3https://www.javassist.org/
4https://asm.ow2.io/

18

https://github.com/juan-catalan/tfg
https://www.javassist.org/
https://asm.ow2.io/

• Manipular el bytecode de un .class añadiendo código antes y despues de

cada nodo predicado.

4.2.2. Agentes en Java e instrumentación

Los agentes en Java son un tipo especial de clase, que utilizando la API de Java

Instrumentation5, pueden interceptar programas ejecutándose en la máquina virtual

de Java (JVM) y modificar su bytecode. El bytecode es, de manera simplificada, el

ensamblador de la JVM. En el Anexo B se puede ver una breve explicación de las

operaciones bytecode.

Los agentes de Java implementan instrumentación sobre ejecutables on-the-fly

(en tiempo de ejecución). En concreto, los agentes en Java pueden realizar la

instrumentación:

− Antes de cargar las clases en la máquina virtual de Java: se

añaden como parámetro al lanzar el programa Java utilizando la opción:

-javaagent: path-to-agent.jar.

− Durante la ejecución del programa en la máquina virtual de Java:

permiten enlazarse a una máquina virtual de Java durante la ejecución del

programa.

Para nuestro objetivo la opción más conveniente es la primera: un agente que

instrumente el código antes de cargarlo en la JVM, ya que al estar enfocado a utilizarse

junto a los test interesa que la instrumentación este presente desde el comienzo para

obtener toda la información posible.

4.2.3. Implementación de un agente en Java utilizando la
librería ASM

Para implementar un agente de este tipo en Java hace falta, entre otras cosas,

una clase que implemente la interfaz ClassFileTransformer: Esta interfaz posee un

método transform, que es invocado por la JVM por cada clase a cargar en ella. Como

parámetro este método recibe los bytes que definen todo el .class y devuelve los bytes

resultado de haber modificado el .class.

Aquí es donde la librería ASM facilita esta tarea permitiendo la gestión del

bytecode a través de una API: leer atributos de la clase, leer sus métodos: obtener

sus instrucciones bytecode, añadir instrucciones bytecode en cualquier punto, etc.
5https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.

html

19

https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html

En la figura 4.1, los procesos indicados en color naranja (a excepción de la ejecución)

son aquellos realizados por el agente:

1. Analizar el bytecode para obtener un grafo de control de los objetos de prueba.

En la figura 4.2 se puede ver el pseudocódigo del algoritmo de análisis de bytecode

para generar un grafo de control de flujo.

function analyze(insn) ▷ Siendo insn un conjunto de instrucciones bytecode
for all i ∈ insn do

if i is first instruction then
Añadir i como vértice
n← nextPredicateOrEndNode(i)
Añadir arista entre i y n

else if i is predicate node then
Añadir i como vértice
nTrue← nextPredicateOrEndNodeEvaluatingTrue(i)
Añadir arista entre i y nTrue
nFalse← nextPredicateOrEndNodeEvaluatingFalse(i)
Añadir arista entre i y nFalse

return graph

Figura 4.2: Pseudocódigo del algoritmo de análisis de flujo de bytecode

2. Identificar las situaciones de prueba a partir del grafo.

En la figura 4.3 se puede ver el pseudocódigo del algoritmo de obtención de

situaciones de prueba a partir de un grafo de control de flujo.

function obtainTestSituations(graph)
testSituations← ∅
for all v ∈ graph.vertices do

for all vIn ∈ v.verticesEntradas do
for all vOut ∈ v.verticesSalida do

new ← TestSituation(vIn, v, vOut)
testSituations← testSituations ∪ new

return testSituations

Figura 4.3: Pseudocódigo del algoritmo de obtención de situaciones de prueba

3. Instrumentar los diferentes objetos de prueba para registrar la situaciones de

prueba cubiertas.

En la figura 4.4 se puede ver el el código fuente de un método muy sencillo

llamado esPar. Al realizar los pasos anteriores sobre él se han identificado los

nodos relevantes, en este caso el nodo 1 es un nodo predicado, el nodo 2 es un

20

nodo final que se alcanza si se evalúa como verdadero el nodo 1, y el nodo 3 es

un nodo final que se alcanza si se evalúa como falso el nodo 1.

La idea es, que tras identificar los nodos y las situaciones de prueba, modificar el

objeto de pruebas añadiendo instrucciones para registrar su ejecución. Un ejemplo

del resultado de esta modificación (simplificada) se puede ver en la figura 4.5.

boolean esPar(Integer i){
// Nodo 1
if (i%2 == 0){

// Nodo 2
return true;

}
else {

// Nodo 3
return false;

}
}

Figura 4.4: Código fuente del método
esPar antes de la instrumentación

boolean esParInstrumentado(Integer i){
registrarNodo(1);
if (i%2 == 0){

registrarArista(
EdgeType.TRUE);

registrarNodo(2);
return true;

}
else {

registrarArista(
EdgeType.FALSE);

registrarNodo(3);
return false;

}
}

Figura 4.5: Ejemplificación como código
Java del método esPar después de la
instrumentación

4.2.4. Dificultades encontradas

Al estar trabajando a nivel de bytecode, en vez de código fuente en Java, ocurren

algunas discrepancias o aspectos a tener en cuenta:

Asignaciones booleanas

Las asignaciones booleanas de Java como:

boolean esPar = (n%2 == 0)

Figura 4.6: Ejemplo de asignación booleana en Java

se compilan al bytecode con una estructura más similar a esta:

boolean esPar;
if (n%2 == 0) esPar = true;
else esPar = false;

Figura 4.7: Ejemplificación como código Java de una asignación booleana en bytecode

21

La diferencia es que en la versión bytecode se genera un nodo predicado (que no

existía en la versión Java) por cada asignación booleana.

Esto puede ser un problema, ya que al generar el grafo de manera manual no se

tiene en cuenta estas asignaciones booleanas como nodos predicado, lo que provoca que

las situaciones de prueba que se producen al aplicar la técnica sean menos que los que

genera la herramienta automáticamente y por lo tanto la cobertura no sea la esperada.

Para solucionar esto se ha implementado una función que identifique en el

bytecode la estructura de las asignaciones booleanas. No obstante, existe el pequeño

inconveniente que el bytecode generado por el compilador es indistinguible en los dos

casos (figuras 4.6 y 4.7), por lo que al final la herramienta de medición de cobertura

no puede determinar si el código original contenía o no una instrucción condicional (y

por lo tanto, debe tener en cuenta la existencia de un nodo predicado adicional).

Por este motivo y por si alguien quisiera aplicar la técnica entendiendo las

asignaciones booleanas como nodos predicado (lo cual hace la técnica aún mas

exhaustiva) la herramienta permite configurar si debe entender las asignaciones

booleanas como nodos predicado o no.

Implementación de las estructuras condicionales y los operadores lógicos
and y or en bytecode

A nivel de bytecode las estructuras condicionales (if) se implementan con

saltos condicionales entre etiquetas, pero estos saltos pueden ser implementados

por el compilador de diferentes maneras. Por ejemplo, en una estructura

(if {...} else {...}), dos posibilidades (no exhaustivas) de como implementarla

en bytecode serían:

1. Evaluar la condición del if y si resulta ser false saltar a la etiqueta del código

del else.

2. Evaluar la negación de la condición del if y si resulta ser true saltar a la etiqueta

del código del else.

Esto puede generar discrepancias en la representación del grafo respecto a como se

generaría el grafo a partir del código fuente. En el caso 2 de los ejemplos anteriores:

− Según código fuente: desde el nodo if se va a la instrucción else al evaluarse

como false.

− Según bytecode: desde el nodo if se va a la instrucción else al evaluarse (la

condición inversa) como true.

22

En el caso de javac6, el compilador estándar de Oracle y el utilizado por defecto por

IntelliJ, se ha identificado como implementan las estructuras de control básicas para

evitar discrepancias respecto al código fuente.

Estas discrepancias aumentan al utilizarse operados lógicos and y or en las

estructuras condicionales, ya que las diferentes maneras de implementarlas aumentan

y no se ha conseguido descubrir una manera de identificar, a partir de bytecode, el tipo

de operadores lógicos que existían en el código fuente; y por lo tanto algunas aristas

(resultado de operadores lógicos) pueden tener una etiqueta discrepante respecto al

código fuente. Un ejemplo se puede ver en https://github.com/juan-catalan/tfg/

issues/1.

Como la discrepancia es meramente visual (ya que el cálculo de cobertura se realiza

correctamente), se ha decidido no tener en cuenta este problema por el momento.

4.3. Implementación de un plugin de integración del
agente para el IDE IntelliJ

La implementación del plugin para IntelliJ se puede encontrar en el siguiente

repositorio público de GitHub: https://github.com/juan-catalan/tfg_intellij_

plugin

En el Anexo C.1 se puede ver una explicación de la arquitectura del plugin.

4.3.1. Contexto sobre IntelliJ Platform Plugin SDK

IntelliJ Platform7 es la plataforma de código abierto utilizada y creada por JetBrains

para desarrollar IDEs, también es la plataforma usada por Google para el desarrollo

de Android Studio.

Es un entorno de aplicaciones basadas en la JVM, basada en componentes, con

un conjunto de herramientas de interfaz de usuario de alto nivel para crear paneles de

herramientas, vistas de árbol y listas, así como menús emergentes y cuadros de diálogo.

Dentro de la IntelliJ Platform se encuentra Intellij Platform Plugin SDK que facilita

la creación de plugins para IDEs basados en la IntelliJ Platform.

Entre las funcionalidades y componentes que ofrece este SDK, los que se han

utilizado en el proyecto son: los componentes UI basados en Swing8 para mantener

la consistencia entre la UI del IDE, el sistema de actions que permite añadir botones

en diferentes secciones del IDE y asociarles funcionalidad (como se ve en la figura 4.9), el
6https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
7https://plugins.jetbrains.com/docs/intellij/welcome.html
8Librería gráfica para crear GUI en Java: https://docs.oracle.com/javase/7/docs/api/

javax/swing/package-summary.html)

23

https://github.com/juan-catalan/tfg/issues/1
https://github.com/juan-catalan/tfg/issues/1
https://github.com/juan-catalan/tfg_intellij_plugin
https://github.com/juan-catalan/tfg_intellij_plugin
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html

sistema para añadir una ventana de ajustes personalizable (como se ve en la figura 4.8),

el sistema para acceder al sistema de ficheros, el sistema para acceder al analizador

sintáctico y semántico del código fuente y el sistema de control de procesos del IDE.

4.3.2. Diseño de la interfaz y funcionamiento

Menú de ajustes del plugin

En la figura 4.8 se puede ver el menú de ajustes del plugin, este te permite decidir el

tipo de informe (nativo como en la figura 4.12 o HTML como en la figura 4.13) y decidir

si la herramienta debe entender las asignaciones booleanas como nodos predicado.

Figura 4.8: Menú de ajustes del plugin

Botón de ejecución con cobertura de profundidad 2

En la figura 4.9 se puede ver el botón para ejecutar un conjunto de pruebas midiendo

la cobertura de profundidad 2, este botón se encuentra en el menú “Run” del IDE.

Cuando el usuario pulsa en él se muestran las ventanas de selección de métodos y

situaciones imposibles (figuras 4.10 y 4.11) y tras finalizar la selección se ejecuta el

conjunto de pruebas añadiendo el agente (y sus parámetros) como parámetro de la

JVM.

24

Figura 4.9: Botón “Run with Edge-Pair Coverage” en el menú “Run”

Ventana de selección de métodos y situaciones imposibles

En la figura 4.10 se puede ver la ventana de selección de métodos a medir la

cobertura. Para obtener las clases y métodos a mostrar se utiliza el sistema de acceso

a ficheros para buscar los ficheros Java del proyecto y luego utilizando el analizador

sintáctico del IDE se obtienen las diferentes clases y métodos de los ficheros.

Figura 4.10: Ventana de selección de métodos a medir la cobertura

En la figura 4.11 se puede ver la ventana de selección de situaciones imposibles.

Recibe los métodos seleccionados en la figura 4.10 y permite al usuario indicar el

número de situaciones imposibles para cada método.

25

Figura 4.11: Ventana de selección de situaciones imposibles de los métodos
seleccionados

Informes de cobertura de profundidad 2

Como se ha indicado en los ajustes del plugin, existen dos tipos de informes: uno

nativo y otro HTML. Al finalizar la ejecución de un conjunto de pruebas (si se ha

seleccionado medir la cobertura de profundidad 2) se abre automáticamente el tipo de

informe seleccionado en los ajustes.

En la figura 4.12 se puede ver el informe nativo que busca integrarse mejor con la

estética del IDE.

Figura 4.12: Informe de cobertura de profundidad 2 basado en Swing

26

En la figura 4.13 se puede ver el informe HTML que busca ser más visual y atractivo.

Figura 4.13: Informe de cobertura de profundidad 2 utilizando HTML

27

Capítulo 5

Validación

Para validar la corrección de la herramienta nos hemos centrado en tres aspectos:

− La corrección de los grafos generados a partir de un .class.

− La identificación de las situaciones de prueba a partir de un grafo.

− El correcto registro por parte de la instrumentación de los nodos y caminos

recorridos.

Para facilitar la validación se cuenta con el material y exámenes resueltos de la

asignatura Verificación y Validación, que propone ejercicios donde aplicar la técnica

y sus soluciones. De esta manera se puede verificar que la herramienta es correcta

utilizando casos con una solución externa a este desarrollo.

5.1. Corrección de los grafos

5.1.1. Diseño

Como parte del material existen problemas de examen donde, a partir de un código

en Java, se debe obtener el grafo de flujo. La idea es comprobar que el grafo que genera

la herramienta es isomorfo del grafo esperado (la solución del examen, calculada a

mano).

A continuación se indican los diferentes casos de prueba con alguna información

sobre el objeto de pruebas en el problema de examen, como el número de líneas (LOC

por sus siglas en inglés) o sobre el grafo de flujo asociado, como el número de vértices

y aristas:

28

Curso Convocatoria Nombre del método LOC Nº
vértices

Nº
aristas

2014-2015 2ª imagen 17 6 7

2015-2016 1ª esPrimo 20 7 11

2016-2017 1ª buscar 11 6 7

2018-2019 1ª buscar 21 8 9

2019-2020 1ª minimo 15 8 9

2021-2022 1ª replaceDigits 12 5 7

2022-2023 1ª calcularPuntuacion 15 5 7

Tabla 5.1: Casos de prueba para validar la corrección de los grafos

5.1.2. Implementación

Implementación de los casos de prueba

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/

juancatalan/edgepaircoverage/GetControlFlowGraphTest.java

Implementación de mecanismo de verificación de isomorfismos

Para comprobar isomorfismos entre grafos existe un módulo en la biblioteca

utilizada para la representación de los grafos de flujo JGraphT9. El problema con este

módulo es que únicamente funciona para grafos simples, es decir, grafos no dirigidos

que no contengan ciclos o múltiples aristas entre dos vértices. Los grafos utilizados en

el proyecto no son grafos simples sino pseudografos dirigidos ya que para expresar un

grafo de flujo es necesario que:

− Sean grafos dirigidos.

− Permitan múltiples aristas entre dos vértices (ya que puedes ir de un nodo

predicado a otro por dos caminos distintos).

− Permitan ciclos para implementar los bucles.

Como utilizar este módulo no era viable y tampoco podemos utilizar otro tipo

de grafo, se decidió implementar un algoritmo de verificación de isomorfismo para

pseudografos dirigidos basado en matrices de adyacencia.

9https://jgrapht.org/

29

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/GetControlFlowGraphTest.java
https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/GetControlFlowGraphTest.java
https://jgrapht.org/

Hace falta una adaptación del concepto de matriz de adyacencia para este tipo de

grafos, en concreto ha hecho falta:

− Expresar la dirección de las aristas

− Expresar múltiples aristas entre nodos

− Expresar los diferentes tipos de aristas

Para conseguir esto en las filas están representados los vértices origen, en las

columnas los vértices destino y en las intersecciones se define un conjunto de valores

(los diferentes tipos de aristas) que indica la posible conexión entre el vértice origen y

el vértice destino.

Ejemplo de matriz de adyacencia Dado el siguiente fragmento de código en Java

donde se especifica una función de nombre paresHasta:

1 public static List<Integer> paresHasta(int max){
2 List<Integer> listaPares = new ArrayList<>();
3 for (int i = 0; i<=max; i++){
4 if (i % 2 == 0){
5 listaPares.add(i);
6 }
7 }
8 return listaPares;
9 }

Figura 5.1: Código Java de la función paresHasta

Su grafo de flujo asociado, donde cada vértice es un nodo que se encuentra en la

línea del código que indica su etiqueta, sería:

2

3

48

default

truefalse

true

false

Figura 5.2: Grafo de flujo asociado al fragmento de código Java 5.1

30

Este grafo se puede representar como la matriz de adyacencia de la figura 5.3.

En esta matriz se definen los vértices y las aristas entre ellos, por ejemplo la celda

marcada en azul indica que desde el vértice 4 puedes alcanzar el vértice 3 desde 2

aristas diferentes:

− Una al evaluarse la condición como true

− Otra al evaluarse la condición como false

Vértices destino

2 3 4 8

V
ér

ti
ce

s
or

ig
en 2 [] [DEFAULT] [] []

3 [] [] [TRUE] [FALSE]

4 [] [TRUE,FALSE] [] []

8 [] [] [] []

Figura 5.3: Matriz de adyacencia asociada al grafo de la figura 5.2

Mecanismo de verificación de isomorfismo entre matrices de adyacencia

Con esta representación como matriz de adyacencia se puede calcular si un grafo es

isomorfo de otro de manera sencilla (conceptualmente, no a nivel computacional) ya

que un grafo x es isomorfo de otro grafo y si el grafo x es una permutación del grafo y.

Por ejemplo, el grafo de la figura 5.4 se puede ver visualmente que es isomorfo del

grafo de la figura 5.2 pues es el resultado de “intercambiar” los nodos 2 y 8.

8

3

42

default

truefalse

true

false

Figura 5.4: Grafo de flujo isomorfo del grafo de flujo de la figura 5.2

En la figura 5.5 podemos ver la matriz de adyacencia asociada al grafo 5.4. En ella

se puede observar el isomorfismo con la matriz de adyacencia de la figura 5.3 ya que es

el resultado de permutar los vértices 2 y 8.

31

Vértices destino

2 3 4 8

V
ér

ti
ce

s
or

ig
en 2 [] [] [] []

3 [FALSE] [] [TRUE] []

4 [] [TRUE, FALSE] [] []

8 [] [DEFAULT] [] []

Figura 5.5: Matriz de adyacencia isomorfa a la matriz de adyacencia de la figura 5.3

La implementación de este mecanismo de verificación de isomorfismos se

puede encontrar en: https://github.com/juan-catalan/tfg/blob/master/src/

test/java/org/juancatalan/edgepaircoverage/utils/AdjacencyMatrix.java

5.1.3. Resultados

Se han encontrado 4 defectos en la clase ControlFlowAnalyser:

− Si en el código bytecode aparecían 2 goto seguidos, el grafo generado tenía un

nodo de más (el asociado al segundo goto).

− No se identificaban las instrucciones bytecode ifnull y ifnonull como nodos

predicado.

− Si el código fuente tenía una asignación booleana el grafo generado tenía nodos

de más (relacionado con lo descrito en la sección 4.2.4).

− Si el código fuente tenía una asignación booleana con puertas lógicas anidadas

el grafo generado tenía nodos de más (problema relacionado con la solución del

defecto anterior).

Finalmente todos los test se ejecutan y pasan sin ningún error.

5.2. Identificación de las situaciones de prueba a
partir de un grafo

5.2.1. Diseño

Como cuando se aplica de forma manual la técnica, se debe obtener las situaciones

de prueba de profundidad 2 a partir del grafo. Este es un proceso más trivial que los

otros pero se ha decidido diseñar pruebas para ello, enfocado más como herramienta

de regresión que como forma de encontrar defectos actuales.

32

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/utils/AdjacencyMatrix.java
https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/utils/AdjacencyMatrix.java

Se han utilizado los problemas de examen donde un apartado es obtener las

situaciones de prueba. En concreto se han implementado los siguientes test:

Curso Convocatoria Nombre del método Número de situaciones
de prueba

2014-2015 2ª imagen 10

2015-2016 1ª esPrimo 12

2016-2017 1ª buscar 10

2018-2019 1ª buscar 12

2019-2020 1ª minimo 11

2021-2022 1ª replaceDigits 12

2022-2023 1ª calcularPuntuacion 12

Tabla 5.2: Casos de prueba para validar la identificación de situaciones de prueba

5.2.2. Implementación

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/

juancatalan/edgepaircoverage/ObtenerSituacionesPruebaTest.java

5.2.3. Resultados

No se ha encontrado ningún defecto.

5.3. Correcto registro de los nodos y caminos
recorridos.

5.3.1. Diseño

Como parte del material existen ejercicios de examen donde tras obtener el grafo

de flujo de un código en Java se definen los diferentes caminos de profundidad 2 que

cubren todas las situaciones de prueba que existen y los diferentes casos de prueba que

cubren todos estos caminos.

Con estos casos de prueba (que técnicamente cubren todas las situaciones de prueba

posible) debemos verificar que la cobertura de caminos que ofrece la herramienta al

ejecutarlos también es del 100% en cada uno de ellos.

Los casos a probar son:

33

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/ObtenerSituacionesPruebaTest.java
https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/ObtenerSituacionesPruebaTest.java

Curso Convocatoria Nombre del método Número de casos de
prueba necesarios para

cobertura completa

2014-2015 2ª imagen 3

2015-2016 1ª esPrimo 5

2016-2017 1ª buscar 3

2018-2019 1ª buscar 4

2019-2020 1ª minimo 5

2021-2022 1ª replaceDigits 3

2022-2023 1ª calcularPuntuacion 5

Tabla 5.3: Casos de prueba para validar el correcto registro de nodos y caminos
recorridos

5.3.2. Implementación

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/

juancatalan/edgepaircoverage/CoverageMeasurementTest.java

5.3.3. Resultados

Se han encontrado 2 defectos:

− Si el código bytecode comenzaba con una instrucción condicional que

implementaba un bucle, al volver al comienzo del bucle se registraba una visita

al nodo inicial en vez de al primer nodo predicado.

− No se volvía a inicializar el camino recorrido actual si se lanzaba una excepción.

Finalmente todos los test se ejecutan y pasan sin ningún error.

34

https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/CoverageMeasurementTest.java
https://github.com/juan-catalan/tfg/blob/master/src/test/java/org/juancatalan/edgepaircoverage/CoverageMeasurementTest.java

Capítulo 6

Conclusiones

Este trabajo tenía como objetivo crear una herramienta para Java, fácil de instalar

y utilizar, que automatice el proceso de medición de cobertura de pruebas diseñadas

con la técnica de caminos de profundidad 2, ofreciendo un informe de cobertura de

código tras la ejecución de las pruebas, que permita al desarrollador complementar las

pruebas en caso de que haya situaciones de prueba no ejecutadas.

Para conseguir este objetivo se ha tenido que: establecer unos requisitos y casos

de uso de la herramienta solicitada, realizar un análisis de las herramientas de

medición de cobertura ya existentes, definir una metodología de trabajo adecuada

para el tipo de proyecto, realizar un análisis de herramientas de instrumentación y

manipulación de bytecode para Java, diseñar e implementar una solución (un agente

Java y un plugin para el IDE IntelliJ que lo integre en él), diseñar una estrategia de

pruebas e implementar las pruebas (incluyendo la implementación de un mecanismo

de verificación de isomorfismo basado en matrices de adyacencia).

Finalmente el resultado, un plugin para IntelliJ, se puede descargar o instalar en

IntelliJ o Android Studio desde el siguiente enlace: https://plugins.jetbrains.com/

plugin/25103-edge-pair-coverage

6.1. Gestión del proyecto

Como se ha indicado en la sección 3.2 se ha utilizado un ciclo de vida

iterativo-incremental buscando como objetivo final convertir la herramienta en un

plugin para un IDE.

Durante el proyecto se han ido abordando las diferentes fases y problemas de

manera concisa y directa, y finalmente se ha conseguido completar todas las iteraciones

propuestas para mejorar la usabilidad, incluyendo el desarrollo de un plugin para

IntelliJ.

En la figura 6.1 se puede observar las horas dedicadas y su agrupación por tareas.

35

https://plugins.jetbrains.com/plugin/25103-edge-pair-coverage
https://plugins.jetbrains.com/plugin/25103-edge-pair-coverage

Figura 6.1: Informe con las horas dedicadas al proyecto dividido por tareas

6.2. Trabajo futuro

6.2.1. Extensión de la herramienta a otros lenguajes basados
en la JVM

Uno de los posibles rumbos de trabajo futuro podría ser extender la herramienta de

medición de cobertura de profundidad 2 a otros lenguajes basados en la JVM, ya que

el agente que se encarga de todo el proceso de medición de cobertura trabaja a nivel

de bytecode de la JVM y, sin haber realizado aún pruebas, se cree que funcionaría sin

apenas modificaciones para otros lenguajes como Kotlin, Scala o Groovy.

6.2.2. Herramientas de soporte a la aplicación de la técnica

Otro posible rumbo sería, utilizando toda la lógica desarrollada para la herramienta,

cambiar el enfoque y desarrollar otra herramienta para el soporte a la aplicación de

la técnica, es decir que facilite poder aplicarla ofreciendo, por ejemplo, generación

automática del grafo de control de flujo a partir de un archivo Java, generación de

situaciones de prueba, generación de posibles caminos que cubran todas las situaciones

de prueba, etc.

6.3. Reflexiones sobre la técnica de caminos de
profundidad 2

Al estar trabajando y profundizando en la técnica de caminos de profundidad 2 han

surgido principalmente dos reflexiones sobre la técnica:

La importancia de la definición de las situaciones de prueba En muchas de las

diferentes descripciones de aplicación de la técnica no se especifica que las situaciones

de prueba son únicamente aquel conjunto de pares de aristas que pasan por un nodo

36

predicado, sino todo el conjunto de pares de aristas. Esto provoca una gran cantidad

de situaciones que no ofrecen ninguna información relevante y por tanto la cobertura

resultada no ofrece realmente resultados concluyentes.

Por ejemplo, en una estructura como

la de la derecha, si implementásemos un

test que cubriera únicamente el caso de

evaluar el if como verdadero, al tener

mucha instrucciones y por tanto muchos

nodos, daría una cobertura de caminos

de profundidad 2 muy elevada a pesar

de haber evaluado únicamente una rama

del nodo predicado.

if (condition){
// Muchas nodos no predicado
// ...
// Un nodo final

}
else {

// Un nodo final
}

Creemos que las descripciones de la técnica deberían especificar de manera más

clara el concepto de situación de prueba, ya que de la otra manera se pierde el enfoque

de la técnica al incluirse muchas situaciones de prueba que no aportan información

relevante.

La importancia de la definición de nodo predicado Incluso en las descripciones

de aplicación de la técnica donde sí que definen las situaciones de prueba como el

conjunto de pares de aristas que pasan por un nodo predicado, no especifican que se

entiende por nodo predicado.

Como se ha mencionado en la sección 1.1.4 esta técnica es sensible a la definición

de nodo predicado. Uno de los casos que más nos ha llamado la atención son

las asignaciones booleanas, mencionado previamente en la sección 4.2.4, ya que

dependiendo de si se interpretan como nodos predicado o no, pueden hacer aún

más exhaustiva la técnica o se puede utilizar para falsear la técnica reduciendo

significativamente el número de situaciones de prueba en presencia de código con

muchos operadores lógicos and y or.

Por ejemplo en la figura 6.2 se puede ver un código que incluye un if con varios

operadores lógicos y a su lado el grafo de control de flujo asociado, que tiene un total

de 8 situaciones de prueba de caminos de profundidad 2.

37

// ini
if ((cond1 || cond2) &&

cond3){↪

// nf1
}
else {

// nf2
}

ini

cond1

cond3

con2

nf2nf1

default

false

true
true

false

false
true

Figura 6.2: Ejemplo de código con múltiples operadores lógicos y su grafo de control

Si no entendemos las asignaciones booleanas como nodos predicado, podríamos

modificar el código como se ha hecho en la figura 6.3 de manera que simplificamos el

grafo, reduciendo el numero de situaciones de prueba a 2.

// ini
boolean cond = (cond1 ||

cond2) && cond3;↪

if (cond){
// nf1

}
else {

// nf2
}

ini

cond

nf2nf1

default

falsetrue

Figura 6.3: Código equivalente al de la figura 6.2 unificando múltiples operadores lógicos
y su grafo de control

Este es un detalle que puede cambiar la exhaustividad de la técnica pero que

fácilmente puede pasar desapercibido a quienes la van a aplicar. Por este motivo

creemos que se debe tener en cuenta antes de aplicarla, decidiendo si, por el contexto

del problema, vale la pena buscar ese extra de exhaustividad o si por el contrario puede

aumentar el número de casos sin aportar beneficios.

38

A raíz de esto también se plantea como posible trabajo futuro, más relacionado

con la investigación académica, un estudio para demostrar de manera empírica si

existen beneficios notables (en este caso número de defectos encontrados) al entender

las asignaciones booleanas como nodos predicados, aumentando de esta manera las

situaciones de prueba.

6.4. Valoración personal

Este TFG ha sido una experiencia divertida y enriquecedora, ya que se trataba

de un tipo de proyecto fuera de lo que estaba acostumbrado a realizar en la carrera

(jamás me habría imaginado implementando un medidor de cobertura) y que me ha

hecho adentrarme un poco en el mundo de la instrumentación de código Java y la

manipulación de código bytecode.

Como reto ha sido entretenido y enriquecedor puesto que no había una solución

directa y sencilla por lo que he tenido que leer mucha documentación y plantear muchas

ideas para descubrir como se podía implementar lo que teníamos en mente.

El resultado final es, al menos para mí, muy satisfactorio ya que se ha conseguido

implementar todo lo que se propuso al comienzo sin saber muy bien hasta donde

podríamos llegar.

39

Bibliografía

[1] Tim Koomen, Leo van der Aalst, Bart Broekman, and Michiel Vroon. TMap Next,

for result-driven testing. UTN Publishers, 2006.

[2] ISO/IEC/IEEE International Standard. Software and systems engineering:

Software testing: Part 4: Test techniques. ISO/IEC/IEEE 29119-4:2015, pages

1–149, December 2015.

[3] Glenford J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas. The Art

of Software Testing, Second Edition. Wiley, June 2004.

[4] Vinicius H.S. Durelli, Marcio E. Delamaro, and Jeff Offutt. An experimental

comparison of edge, edge-pair, and prime path criteria. Science of Computer

Programming, 152:99–115, January 2018.

[5] Alexandra Altvater. Code Coverage Tools: 25 Tools for Testing in C, C++, Java

— stackify.com. https://stackify.com/code-coverage-tools/, April 2024.

[6] Matheus Silva and Marcos Chaim. Bit-wise all edge-pairs coverage. In Proceedings

of the XXXVII Brazilian Symposium on Software Engineering, SBES ’23, page

267–276, New York, NY, USA, 2023. Association for Computing Machinery.

40

https://stackify.com/code-coverage-tools/

Lista de Figuras

1.1. Ejemplo de informe de cobertura de IntelliJ 3

1.2. Código Java de la función buscar . 5

1.3. Grafo de flujo asociado al código Java de 1.2 6

1.4. Grafo de flujo con nodos “relevantes” basado en el grafo de la figura 1.3 6

2.1. Diagrama de casos de uso de la herramienta Edge-Pair Coverage 11

4.1. Diagrama de flujo de la solución propuesta 17

4.2. Pseudocódigo del algoritmo de análisis de flujo de bytecode 20

4.3. Pseudocódigo del algoritmo de obtención de situaciones de prueba . . . 20

4.4. Código fuente del método esPar antes de la instrumentación 21

4.5. Ejemplificación como código Java del método esPar después de la

instrumentación . 21

4.6. Ejemplo de asignación booleana en Java 21

4.7. Ejemplificación como código Java de una asignación booleana en bytecode 21

4.8. Menú de ajustes del plugin . 24

4.9. Botón “Run with Edge-Pair Coverage” en el menú “Run” 25

4.10. Ventana de selección de métodos a medir la cobertura 25

4.11. Ventana de selección de situaciones imposibles de los métodos seleccionados 26

4.12. Informe de cobertura de profundidad 2 basado en Swing 26

4.13. Informe de cobertura de profundidad 2 utilizando HTML 27

5.1. Código Java de la función paresHasta . 30

5.2. Grafo de flujo asociado al fragmento de código Java 5.1 30

5.3. Matriz de adyacencia asociada al grafo de la figura 5.2 31

5.4. Grafo de flujo isomorfo del grafo de flujo de la figura 5.2 31

5.5. Matriz de adyacencia isomorfa a la matriz de adyacencia de la figura 5.3 32

6.1. Informe con las horas dedicadas al proyecto dividido por tareas 36

6.2. Ejemplo de código con múltiples operadores lógicos y su grafo de control 38

41

6.3. Código equivalente al de la figura 6.2 unificando múltiples operadores

lógicos y su grafo de control . 38

A.1. Código Java de la función imagen . 46

A.2. Código Java de la función buscar . 47

A.3. Grafo de flujo asociado al código Java de 1.2 48

B.1. Código Java de la función longitudCollatz 52

B.2. Código bytecode de la función longitudCollatz 53

C.1. Diagrama de paquetes del agente . 56

C.2. Diagrama de paquetes del plugin para IntelliJ 60

C.3. Diagrama de secuencia del caso de uso “Medir cobertura de

profundidad 2” desde la perspectiva del plugin para IntelliJ 62

42

Lista de Tablas

1.1. Tabla de casos de prueba para el método de la fígura 1.2 7

3.1. Comparación de herramientas de cobertura de código para Java 13

5.1. Casos de prueba para validar la corrección de los grafos 29

5.2. Casos de prueba para validar la identificación de situaciones de prueba 33

5.3. Casos de prueba para validar el correcto registro de nodos y caminos

recorridos . 34

43

Anexos

44

Anexo A

Ejemplos de conceptos basados en
código fuente

A.1. Ejemplo de situaciones imposibles en la técnica
de caminos de profundidad 2

Dado el siguiente fragmento de código en Java donde se especifica una función de

nombre imagen:

1 public static int imagen(int n) {
2 boolean negativo = n < 0;
3 if (negativo) {
4 n = -n;
5 }
6

7 int imagenEspecular = 0;
8 while (n != 0) {
9 imagenEspecular = 10 * imagenEspecular + n % 10;

10 n = n / 10;
11 }
12

13 if (negativo) {
14 return -imagenEspecular;
15 }
16 else {
17 return imagenEspecular;
18 }
19 }

Figura A.1: Código Java de la función imagen

Jamás se va a poder evaluar como true la condición de la linea 3:

if (negativo){...} y como false la condición de la linea 8: while (n != 0){...}

ya que n no puede ser menor estricto que 0 e igual que 0 al mismo tiempo.

46

A.2. Ejemplo de medición de cobertura de código

A.2.1. Objeto de pruebas

Dado el siguiente método con nombre buscar, que va a ser nuestro objeto de pruebas:

1 /**
2 * Busca un dato determinado en un vector de enteros.
3 *
4 * @param vector
5 * - el vector en el que se busca el dato «datoBuscado». Debe
6 * ser distinto de null y tener al menos una componente.
7 * @param datoBuscado
8 * - el dato que se quiere buscar en el vector «vector».
9 *

10 * @return Si en el vector «vector» hay un dato igual a «datoBuscado»,
11 * devuelve el índice de la componente en la que se encuentra.
12 * En caso contrario, devuelve -1;
13 */
14 public static int buscar(int[] vector, int datoBuscado) {
15 int i = 0;
16

17 while (i < vector.length - 1 && vector[i] != datoBuscado) {
18 i++;
19 }
20

21 if (vector[i] == datoBuscado) {
22 return i;
23 } else {
24 return -1;
25 }
26 }

Figura A.2: Código Java de la función buscar

Los diferentes tipos de cobertura que vamos a medir son instrucciones, ramas y

condiciones. Vamos a identificar todas ellas en el código:

Instrucciones

Podemos encontrar 7 instrucciones:

1. int i = 0;

2. while (i < vector.length - 1 && vector[i] != datoBuscado)

3. i++;

4. if (vector[i] == datoBuscado)

47

5. return i;

6. else

7. return -1;

Ramas

Las ramas se entienden mejor si representamos el grafo de control de la función,

cada arista de salida de los nodos que representan estructuras de control son una rama

(marcadas en azul en el grafo):

15

17

21

18

22 24

R1.1: true

R1.2: false

R2.1: true R2.2: false

Figura A.3: Grafo de flujo asociado al código Java de 1.2

En el grafo podemos identificar 4 ramas.

Condiciones

Podemos encontrar 3 condiciones:

1. i < vector.length - 1

2. vector[i] != datoBuscado

3. vector[i] == datoBuscado

48

A.2.2. Ejecución y cobertura

Si ejecutamos el método con los siguiente parámetros:

buscar(new int[]{1,2}, 1) podemos calcular los resultados de los diferentes

tipos de cobertura:

Cobertura de sentencias

Se ejecutaran la sentencias: 1,2,4,5.

Teniendo en cuenta que hay un total de 7 sentencias, tenemos una cobertura de

4/7, es decir 57.14%.

Cobertura de ramas

De las 4 ramas, se ejecutarán las ramas R1.2 y R2.1, un total de 2/4, es decir, una

cobertura del 50%.

Cobertura de condiciones

De las 3 condiciones que tenemos, podemos evaluar cada una como verdadero o

falso, lo que da un total de 6 posibilidades (si analizamos cada condición de manera

independiente al resto).

En este caso las condiciones definidas en A.2.1 se evaluan como:

1. i < vector.length - 1:

Verdadero

2. vector[i] != datoBuscado:

Falso

3. vector[i] == datoBuscado:

Verdadero

En total tenemos 6 posibilidades, y hemos cubierto 3, lo que nos da una cobertura

de 3/6, es decir, del 50%.

A.2.3. Cobertura completa

El objetivo de la medición de cobertura de código es conocer que falta por probar

para llegar a una cobertura del 100% añadiendo casos de prueba.

Un ejemplo de casos de prueba adicionales para alcanzar una cobertura completa

para los diferentes tipos de cobertura serían:

49

Cobertura completa de instrucciones

Si ejecutamos el método con los siguiente parámetros:

− buscar(new int[]{1,2}, 1): se ejecutarían las instrucciones 1, 2, 4 y 5.

− buscar(new int[]{1,2}, 3): se ejecutarían las instrucciones 1, 2, 3, 4, 6 y 7.

Por lo tanto tendríamos una cobertura de 7/7 instrucciones, es decir 100%.

Cobertura completa de ramas

Si ejecutamos el método con los siguiente parámetros:

− buscar(new int[]{1,2}, 1): se ejecutarían las ramas R1.2 y R2.1.

− buscar(new int[]{1,2}, 3): se ejecutarían las ramas R1.1, R1.2 y R2.2.

Por lo tanto tendríamos una cobertura de 4/4 ramas, es decir 100%.

Cobertura completa de condiciones

Si ejecutamos el método con los siguientes parámetros:

− buscar(new int[]{1,2}, 1): las condiciones definidas en A.2.1 se evaluan

como:

1. i < vector.length - 1:

Verdadero

2. vector[i] != datoBuscado:

Falso

3. vector[i] == datoBuscado:

Verdadero

− buscar(new int[]{1}, 3): las condiciones definidas en A.2.1 se evaluan como:

1. i < vector.length - 1:

Verdadero y Falso

2. vector[i] != datoBuscado:

Verdadero

3. vector[i] == datoBuscado:

Falso

Por lo tanto tendríamos una cobertura de 6/6 valores en condiciones, es decir

100%.

50

Anexo B

Breve resumen de bytecode Java y sus
instrucciones

B.1. Instrucciones

Los principales tipos de instrucciones bytecode de la JVM son:

B.1.1. Instrucciones de load y store

Estas instrucciones transfieren valores entre las variables locales y la pila de

operandos del marco de la VM. Existen diferentes variantes para los diferentes tipos

de datos de la JVM. Ejemplos: iload, fload, dload, aload, bipush, sipush, etc.

B.1.2. Instrucciones aritméticas

Estas instrucciones permiten computar el resultado de una operación aritmética

entre dos valores de la pila de operandos, realizando push de vuelta del resultado a la

pila de operandos. Existen varios tipos de operaciones:

− Aritmética entera o de coma flotante: suma, resta, multiplicación, división, resto,

etc.

− Aritmética de bits: bit-shifting, OR, AND, XOR, etc.

B.1.3. Instrucciones de conversión de tipos

Estas instrucciones permiten conversion entre los diferentes tipos de la JVM.

Existen conversiones sin perdidas (de un tipo de dato con menor numero de bits que

el destino) y con perdidas (de un tipo de dato a otro con menor numero de bits).

Ejemplos: i2l, i2f, i2b, i2c.

51

B.1.4. Instrucciones de creación y acceso a objetos

Estas instrucciones permiten crear una nueva instancia de una clase o acceder a los

campos de un objeto. Ejemplos: new, newarray, getstatic, arraylength, instanceof.

B.1.5. Instrucciones de transferencia de control

Estas instrucciones permiten modificar el flujo de ejecución de un programa. Existen

varios tipos de operaciones:

− Salto condicional: modifican la dirección de salto dependiendo del resultado de

la comparación. Ejemplos: ifeq. ifgt, ifnull, etc.

− Salto incondicional: modifican la dirección de salto de manera incondicional.

Ejemplos: goto, jsr, etc.

B.1.6. Instrucciones de invocación de métodos

Estas instrucciones permiten invocar los métodos de alguna clase u objeto.

Ejemplos: invokevirtual, invokeinterface, invokstatic, invokedynamic.

B.1.7. Instrucciones de devolución de valores

Estas instrucciones permiten devolver el control en un método a su invocador,

devolviendo un dato si es necesario. Ejemplos: ireturn (para devolver un entero), freturn

(para devolver un float), return (para métodos void).

B.2. Ejemplo de programa en bytecode

B.2.1. Método en Java

37 public static int longitudCollatz(long inicio) {
38 int longitud = 1;
39 long siguienteProbar = inicio;
40 while (siguienteProbar!=1){
41 siguienteProbar = siguienteCollatz(siguienteProbar);
42 longitud++;
43 }
44 return longitud;
45 }

Figura B.1: Código Java de la función longitudCollatz

52

B.2.2. Método en bytecode

public static longitudCollatz(J)I
L0:

linenumber 38 L0
iconst_1
istore 2

L1:
linenumber 39 L1
lload 0
lstore 3

L2:
linenumber 40 L2
frame append [I J]
lload 3
lconst_1
lcmp
ifeq L3

L4:
linenumber 41 L4
lload 3
invokestatic es/unizar/eina/vv6f/collatz/SecuenciaCollatz.siguienteCollatz (J)J
lstore 3

L5:
linenumber 42 L5
iinc 2 1
goto L2

L3:
linenumber 44 L3
frame same
iload 2
ireturn

L6
localvariable inicio J L0 L6 0
localvariable longitud I L1 L6 2
localvariable siguienteProbar J L2 L6 3
maxstack = 4
maxlocals = 5

Figura B.2: Código bytecode de la función longitudCollatz

53

Anexo C

Diagramas arquitecturales

C.1. Arquitectura del agente Java

Al ser una herramienta local para el soporte al testing con la cual se interactúa

únicamente cuando se añade como agente a una ejecución Java, no es relevante ni su

vista de despliegue, ni su vista de componente-conector, por lo que la explicación de

la arquitectura va a estar centrada en la vista estática, especialmente en explicar los

diferentes paquetes, sus propósitos, las clases incluidas y sus responsabilidades.

C.1.1. Diagrama de paquetes

Como se ve en la figura C.1 las clases están estructuradas en diferentes paquetes

según su propósito. Los diferentes paquetes son:

− controlFlow: contiene aquellas clases relacionadas con el análisis de control de

flujo de código bytecode:

• ControlFlowAnalyser : clase que contiene toda la lógica para obtener el grafo

de control de flujo a partir de unas instrucciones bytecode.

Posee métodos públicos para analizar una lista de instrucciones bytecode y

para obtener los resultados del análisis de diferentes maneras: como un grafo

con AbstractInsnNode, con identificadores numéricos “artificiales”, o con el

número de línea del código fuente del nodo correspondiente.

Además posee múltiples métodos privados que facilitan el análisis de las

instrucciones bytecode.

• EdgePair : clase que representa una situación de prueba (un par de aristas)

de la técnica de caminos de profundidad 2.

− graph: contiene aquellas clases relacionadas con la definición de los grafos

utilizados, y utilidades de transformación de grafos:

54

• EdgeType: tipo enumerado que representa los diferentes tipos de arista que

puede haber en el grafo.

• BooleanEdge: clase que extiende la arista por defecto de la librería JGraphT:

DefaultEdge10, añadiendo información acerca del tipo de arista.

• GraphToDotTransfomer : clase de utilidad que permite exportar un objeto

DirectedPseudograph a su correspondiente notación DOT11.

− DTO (Data Transfer Object): contiene aquellas clases utilizadas como objetos

de transferencia de datos a la hora de exportar los resultados de la medición de

cobertura:

• MethodReportDTO : clase que representa la información necesaria de un

informe de cobertura de caminos de profundidad 2 para un método en

específico.

• EdgePairDTO : clase que representa la información necesaria para identificar

una situación de prueba en concreto.

Algunas clases que no pertenecen a ningún paquete de propósito específico son:

− Agent: es la clase que actúa como punto de entrada a la instrumentación, la JVM

invoca su método premain y este se encarga de añadir un ClassFileTransformer

a través de la Instrumentation API. Además se encarga de realizar el parse de

los argumentos que recibe el agente.

− AgentTransformer: clase que implementa ClassFileTransformer y que la

JVM invoca su método transform por cada clase a cargar en ella. Para cada

clase de la que se desea medir su cobertura, se obtiene su grafo de control de

flujo, sus situaciones de prueba, y se modifica el método añadiendo instrucciones

que permiten registrar de manera dinámica las aristas se vayan ejecutando.

Además añade un ShutdownHook (un hilo de Java que se ejecuta justo antes de

apagar la JVM) al Runtime de la aplicación para imprimir el informe al finalizar

su ejecución.

10https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/graph/DefaultEdge.html
11https://graphviz.org/doc/info/lang.html

55

https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/graph/DefaultEdge.html
https://graphviz.org/doc/info/lang.html

controlFlow

graphDTO

Agent

- controlFlowAnalyser :
ControlFlowAnalyser

- parse (args : String)
+ premain (agentArgs : String,
inst : Instrumentation)

AgentTransformer

- imprimirInforme ()
- addRegistryInst ()
+ transform (className :
String, classfileBuffer : byte[])

ControlFlowAnalyser

- isPredicateNode (in : AbstractInsnNode) : boolean
- isBooleanAssignment (in : AbstractInsnNode) : boolean
- findJumpDestiny (in : AbstractInsnNode) : AbstractInsnNode
- findNextPredicateNode (in : AbstractInsnNode) : AbstractInsnNode
- findLinenumber (in : AbstractInsnNode) : Integer
+ analyze (idMethod : String, insns : InsnsList)
+ getControlFlowGraph (idMethod : String) : DirectedPseudograph
+ getControlFlowGraphAsIntegerGraph
(idMethod : String) : DirectedPseudograph
+ getControlFlowGraphAsLinenumberGraph
(idMethod : String) : DirectedPseudograph
+ obtainTestSituations (idMethod : String) : Set<EdgePair>

EdgePair

- nodoInicio : Integer
- nodoMedio : Integer
- nodoFinal : Integer
- aristaInicioMedio : EdgeType
- aristaMedioFinal : EdgeType

+ isComplete () : boolean
+ nextHalf () : EdgePair
+ addNode (node : Integer)
+ addEdge (edge : EdgeType)

BooleanEdge

- type : EdgeType

+ getType () : EdgeType

«enumerate»
EdgeType

- TRUE
- FALSE
- DEFAULT

GraphToDotTransformer

+ graphToDot (grafo :
DirectedPseudograph<Integer, BooleanEdge>) :
String

EdgePairDTO

- nodoInicio : String
- nodoMedio : String
- nodoFinal : String
- aristaInicioMedio : EdgeType
- aristaMedioFinal : EdgeType

MethodReportDTO

- nombre : String
- grafo : String
- grafoImagen : String
- situacionesImposibles : Integer
- situacionesPrueba : List<EdgePairDTO>
- situacionesPruebaCubiertas : List<EdgePairDTO>
- porcentajeCobertura : Double

Figura C.1: Diagrama de paquetes del agente

56

C.2. Arquitectura del plugin de IntelliJ

Al ser un plugin local para un IDE, lo más relevante acerca de su arquitectura es:

− Vista estática: se van a explicar los diferentes paquetes, sus propósitos, las

clases incluidas y sus responsabilidades.

− Vista dinámica: únicamente se va a mostrar como interactúan los diferentes

objetos del sistema cuando un usuario hace click en el botón de “Run with

’Edge-Pair’ coverage”.

C.2.1. Contexto sobre la IntelliJ Platform Plugin SDK

Para entender algunos aspectos de la arquitectura del plugin, hay que explicar antes

los sistemas y componentes que ofrece la IntelliJ Platform y que han sido utilizados en

este proyecto:

− User Interface Components: conjunto de componentes Swing12

personalizados para mantener la consistencia entre la UI del IDE.

− Actions: sistema que permite añadir acciones personalizadas a botones que

puedes incluir diferentes secciones del IDE.

− Settings: sistema que permite definir y persistir ajustes personalizados por el

usuario.

− Virtual File System: sistema que encapsula el acceso a ficheros, permitiendo

subscribirte a los diferentes eventos de un ficheros (modificación, eliminación,

etc).

− PSI: el Program Structure Interface es el sistema responsable del análisis

sintáctico y semántico del código fuente, permitiendo acceder a su modelo,

obtener y modificar atributos, métodos, etc.

− Execution: sistema que controla la ejecución de procesos dentro del IDE. En

este proyecto únicamente se han utilizado los siguientes conceptos:

• RunConfiguration: permite acceder y persistir las diferentes opciones de

ejecución, así como variables de entorno y argumentos.

12Librería gráfica para crear GUI en Java: https://docs.oracle.com/javase/7/docs/api/
javax/swing/package-summary.html)

57

https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html

• Execution events: permite subscribirte a diferentes eventos relacionados

con la ejecución de un proceso (comienzo, finalización, etc) con la

implementación de un ExecutionListener.

C.2.2. Diagrama de paquetes

Como se ve en la figura C.2 las clases están estructuradas en diferentes paquetes

según su propósito. Los diferentes paquetes son:

− actions: contiene aquellas clases relacionadas con las actions del plugin:

• RunWithEdgePairCoverage: clase que extiende AnAction que contiene toda

la lógica para abrir el selector de métodos y ejecutar la configuración actual

añadiendo el agente (y sus paremetros) a la ejecución.

− toolWindows: contiene aquellas clases relacionadas con las Tool windows del

plugin:

• EdgePairCoverageReportNativeWindow : clase que devuelve un JPanel que

permite visualizar el informe con elementos nativos del IDE.

• EdgePairCoverageReportNativeWindowFactory : clase que

implementa ToolWindowFactory y es encargada de instanciar

EdgePairCoverageReportNativeWindow.

• EdgePairCoverageReportHTMLWindow : clase que devuelve un JPanel que

permite visualizar el informe como un HTML.

• EdgePairCoverageReportHTMLWindowFactory : clase que

implementa ToolWindowFactory y es encargada de instanciar

EdgePairCoverageReportHTMLWindow.

− settings: contiene aquellas clases relacionadas con los ajustes del plugin:

• AppSettings : clase que representa la información a persistir como ajustes del

plugin.

− dialogs: contiene aquellas clases relaciones con los dialogs :

• SeleccionarMetodosDialog : clase que extiende DialogWrapper e implementa

el dialog para seleccionar métodos a medir la cobertura y sus situaciones

imposibles.

− panels: contiene aquellas clases relaciones con los panels :

58

• MethodReportPanel : clase que extiende JPanel e implementa el panel para

mostrar el informe de cobertura de un método.

• MethodSelectorPanel : clase que extiende JPanel e implementa el panel para

seleccionar los métodos a medir la cobertura.

• ReportPanel : clase que extiende JPanel e implementa el panel para mostrar

el informe de cobertura completo.

• SituacionesImposiblesSelectorPanel : clase que extiende JPanel e

implementa el panel para indicar las situaciones imposibles de los

métodos seleccionados.

Algunas clases que no pertenecen a ningún paquete de propósito especifico son:

− MyExecutionListener: clase que implementa ExecutionListener y se

subscribe al evento de finalización de ejecución para mostrar el informe en una

ToolWindow.

59

actions

settings

toolsWindow

dialogs panels

DTO

RunWithEdgePairCoverage
extends AnAction

+ actionPerformed (e : AnActionEvent)
- ejecutarConJavaAgent (project: Project,
metodosSeleccionados Map<PsiMethod, Integer>)

AppSettings

+ getInstance () : AppSettings
+ getState () : AppSettings.State

MyExecutionListener
implements ExecutionListener

+ processTerminated ()
+ registerListener ()
+ unregisterListener ()
- openToolWindow ()

EdgePairCoverageReportNativeWindowFactory
implements ToolWindowFactory

+ createToolWindowsContent (toolWindow : ToolWindow)

EdgePairCoverageReport
→NativeWindow

+ fillUi ()
+ getContent () : JPanel

EdgePairCoverageReportHTMLWindowFactory
implements ToolWindowFactory

+ createToolWindowsContent (toolWindow : ToolWindow)

EdgePairCoverageReport
→HTMLWindow

+ getContent () : JPanel

SeleccionarMetodosDialog MethodReportPanel

MethodSelectorPanel

ReportPanel

SituacionesImposiblesSelectorPanelSituacionPruebaDTO
- nodoInicio : String
- nodoMedio : String
- nodoFinal : String
- aristaInicioMedio : String
- aristaMedioFinal : String

MethodReportDTO

- nombre : String
- grafo : String
- grafoImagen : String
- situacionesImposibles : Integer
- situacionesPrueba : List<SituacionPruebaDTO>
- situacionesPruebaCubiertas
: List<SituacionPruebaDTO>
- porcentajeCobertura : Double

Figura C.2: Diagrama de paquetes del plugin para IntelliJ

60

C.2.3. Diagrama de secuencia

En la figura C.3 se puede ver el diagrama de secuencia del caso de uso “Medir

cobertura de profundidad 2” desde la perspectiva del plugin.

Este diagrama de secuencia comienza con:

1. El actor Desarrollador hace click en el botón de “Run with ’Edge-Pair’ coverage”.

Este botón tiene asociado la action RunWithEdgePairCoverage que inicialmente

muestra el dialog SeleccionarMetodoDialog .

2. El Desarrollador hace click en el botón de “Next” y se muestra el dialog

SeleccionarMetodoDialog.

3. El Desarrollador hace click en el botón de “Run” y se ejecuta la configuración

existente añadiendo el agente y los parámetros.

61

Desarrollador :RunWithEdgePairCoverage :SeleccionarMetodosDialog mPanel:MetodoSelectorPanel sPanel:SituacionesSelectorPanel

clickButton ()

show()

new MetodoSelectorPanel()

showPanel(mPanel)

clickNextButton()

new SituacionesSelectorPanel()

showPanel(sPanel)

clickRunButton()

notify()

getSelectedMethods(selectedMethods)

return selectedMethods

ejecutarConJavaAgent(selectedMethods)

Figura C.3: Diagrama de secuencia del caso de uso “Medir cobertura de profundidad 2” desde la perspectiva del plugin para IntelliJ

62

	Introducción y objetivos
	Contexto
	Testing y técnicas de diseño de pruebas
	Cobertura de código
	Automatización de las pruebas
	Técnica de caminos con profundidad de nivel 2

	Objetivos

	Requisitos y casos de uso
	Requisitos
	Aspectos fuera de ámbito

	Casos de uso
	Actores y descripción de los casos de uso asociados
	Diagrama de casos de uso

	Análisis
	Estado de las herramientas de cobertura de código actuales
	Metodología

	Diseño e implementación
	Diseño algorítmico de la solución
	Diseño e implementación de un agente en Java
	Análisis de herramientas de instrumentación de código Java
	Agentes en Java e instrumentación
	Implementación de un agente en Java utilizando la librería ASM
	Dificultades encontradas

	Implementación de un plugin de integración del agente para el IDE IntelliJ
	Contexto sobre IntelliJ Platform Plugin SDK
	Diseño de la interfaz y funcionamiento

	Validación
	Corrección de los grafos
	Diseño
	Implementación
	Resultados

	Identificación de las situaciones de prueba a partir de un grafo
	Diseño
	Implementación
	Resultados

	Correcto registro de los nodos y caminos recorridos.
	Diseño
	Implementación
	Resultados

	Conclusiones
	Gestión del proyecto
	Trabajo futuro
	Extensión de la herramienta a otros lenguajes basados en la JVM
	Herramientas de soporte a la aplicación de la técnica

	Reflexiones sobre la técnica de caminos de profundidad 2
	Valoración personal

	Bibliografía
	Lista de Figuras
	Lista de Tablas
	Anexos
	Ejemplos de conceptos basados en código fuente
	Ejemplo de situaciones imposibles en la técnica de caminos de profundidad 2
	Ejemplo de medición de cobertura de código
	Objeto de pruebas
	Ejecución y cobertura
	Cobertura completa

	Breve resumen de bytecode Java y sus instrucciones
	Instrucciones
	Instrucciones de load y store
	Instrucciones aritméticas
	Instrucciones de conversión de tipos
	Instrucciones de creación y acceso a objetos
	Instrucciones de transferencia de control
	Instrucciones de invocación de métodos
	Instrucciones de devolución de valores

	Ejemplo de programa en bytecode
	Método en Java
	Método en bytecode

	Diagramas arquitecturales
	Arquitectura del agente Java
	Diagrama de paquetes

	Arquitectura del plugin de IntelliJ
	Contexto sobre la IntelliJ Platform Plugin SDK
	Diagrama de paquetes
	Diagrama de secuencia

		2024-09-05T20:00:02+0200
	CATALAN BERNAL JUAN - 73009179A

