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RESUMEN

Este Trabajo de Fin de Grado (TFG) se centra en el desarrollo de una plataforma
para la emulacién de redes Time-Sensitive Networking (TSN) sobre Mininet y en la
validacion de la plataforma como mecanismo para el despliegue de planificaciones TSN
resultado de planificadores como[1]. Estas planificaciones garantizan cotas determinis-
tas de latencia para los flujos de la red en la capa de enlace. El trabajo desarrollado
ha permitido identificar aspectos clave en la implementacion de redes TSN, y también
limitaciones de los componentes TSN en la plataforma de emulacién. Como parte del
desarrollo de la plataforma se ha desarrollado una metodologia para la caracterizacion
de la plataforma, que permite caracterizar los distintos componentes con un impacto
minimo. Esta metodologia se ha utilizado a continuacion para analizar el impacto de
la plataforma hardware subyacente sobre los resultados de calculo de latencias, anali-
zando diferentes configuraciones de kernel y hardware sobre sistemas con capacidades
distintas. Este trabajo ha contribuido a la creacién de una plataforma novedosa de
emulacién para el despliegue de casos de uso TSN cubriendo aspectos no considerados
o no detallados en trabajos previos. La metodologia, experimentacion y conclusiones de
este TFG se van a presentar proximamente en la confrencia Time Sensitive Networking
and Applications (TSN&A) 2024 principal foro internacional anual de la industria y
academia sobre TSN, a donde se envié y en donde fue aceptada la comunicacién co-

rrespondiente [2].
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Abstract

This project focuses on the development of a platform for Time-Sensitive Net-
working (TSN) emulation over Mininet and on the validation of the platform as a
mechanism for the deployment of TSN schedules resulting from schedulers such as [1].
These schedulers guarantee deterministic latency bounds for network flows at the link
layer. The work developed has identified key issues in the implementation of TSN, as
well as limitations of the components in the emulation platform. As part of the plat-
form development, a methodology for timestamping and platform characterization has
been developed. It allows characterizing the different components with minimal impact.
This methodology was then used to analyze the impact of the underlying hardware on
latency calculations by analyzing different kernel and hardware configurations on sys-
tems with different capabilities. This work has contributed to the creation of a novel
emulation platform for the deployment of TSN use cases covering aspects not consi-
dered or not detailed in previous references. The methodology, experimentation and
conclusions of this work were submitted, accepted and will be presented at the Time
Sensitive Networking and Applications (TSN&A) 2024 Conference, the main annual

international forum for industry and academia related to TSN [2].
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Capitulo 1

Introduccion

1.1. Motivaciéon y contexto

Time-Sensitive Networking (TSN) es un conjunto de tecnologias esténdar del IEEE
orientadas a garantizar la sincronizacion y cumplimiento de restricciones temporales en
redes Ethernet e inalambricas, permitiendo la interoperabilidad entre componentes de
diferentes fabricantes. TSN es especialmente relevante en la integracién de tecnologias
operacionales y de la informacién (OT/IT) en la industria productiva, la distribucién
eléctrica, y las redes intra vehiculares en automocion e industria aeroespacial. Permite
el despliegue de sistemas que requieren latencia ultra baja (Ultra-Low Latency (ULL)

networks), la reduccién de costes y la mejora de la eficiencia.

TSN proporciona mecanismos de conformacién (traffic shaping) y planificacién del
trafico para garantizar la calidad de servicio en redes en las convergen diferentes tipos
de trafico. Uno de los problemas abiertos es la implantacién de un planificacién pre-
viamente calculada en un caso de uso real, debido a factores dificiles de incluir en el
problema tedrico de planificacién. Asi mismo, la tendencia al establecimiento de redes
definidas por software (Software Defined Network (SDN)) y en la nube (cloudification)
abre la via de test y validaciéon de planificaciones y configuraciones TSN mediante

procedimiento de emulacién, en ausencia de testbed hardware.

La investigacién en planificacién y conformado de tréfico (traffic shaping) en TSN
es una de las lineas de investigacién del gaZ (Grupo de Arquitectura de Computado-
res de Zaragoza) de la Universidad de Zaragoza, desarrollada en colaboracién con el
CINVESTAV-IPN de Guadalajara, México, e Intel Deutschland GnbH. De esta cola-
boracién han surgido hasta el momento dos contribuciones a revista ([3], [1]) y una

comunicacion a conferencia internacional [2], fruto esta ultima de este TFG.
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1.2. Objetivos

1.2.1. Objetivos generales

Mediante la realizacién de este TFG se persigue, por una parte, la ampliaciéon de
conceptos relacionados con sistemas TR y redes, mediante la explotacion integrada de
conocimientos y habilidades propias de la titulacion. Por otra, se busca un acercamiento
tanto a los problemas y métodos propios de la investigacion en TSN, como a la realidad

y practica industrial en el campo.

1.2.2. Objetivos especificos

— Estudio de las utilidades TSN disponibles sobre Linux y de las tecnologias utili-

zadas en High Performance Networking (HPN).

— Anélisis de Mininet como herramienta de emulacién y puesta en marcha de com-

ponentes TSN.

— Analisis experimental de métodos de medida de tiempos en TSN sobre Mininet.

Propuesta de una metodologia de medida.

— Validacion de una planificacion de un caso de uso TSN sobre Mininet

Este TFG contribuye a las metas 9.2 / 9.2.1; 9.4/9.4.1; 9.5 / 9.5.2 de los Objetivos

de Desarrollo Sostenible.

1.3. Alcance

La consecucién de los objetivos anteriores ha generado las siguientes entregables:

— Testbed de emulacién TSN sobre Mininet, particularmente orientado a la valida-
cién de planificaciones, dotado de filtros, scripts de configuracion, e instrumenta-
cion de registro de tiempos para calculo de latencia y jitter segiin la metodologia

desarrollada en el TFG.
— Esta memoria de TFG con sus Anexos.

— Una comunicacién aceptada en el principal foro internacional de TSN [2].
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1.4. Metodologia y entorno de trabajo

El tipo de trabajo ha requerido una aproximacion experimental, ademas de la obli-
gada consulta de fuentes. El estudio del rendimiento de sistemas como XDP, las di-
ferentes qdisc, la tecnologia TCC de Intel o la misma plataforma Mininet, resulta
eminentemente empirico. Para alcanzar los objetivos, se han ensayado alternativas pa-
ra comprobar las hipotesis que se han ido planteado, como se expone en los capitulos
correspondientes. Ademds de los manuales de las diferentes tecnologias y plataformas
involucradas, también se ha realizado una bisqueda bibliografica y se han localizado y
estudiado articulos relacionados (Sec. 2.4).

La principal herramienta de trabajo ha sido Visual Studio Code [4] con las ex-
tensiones para Python [5] y C/C++[6]. Python ha sido utilizado junto con la Api de
Mininet [7] para el desarrollo de la plataforma de emulacién ,mientras que C ha si-
do el lenguaje elegido para el desarrollo de los clientes y servidores a ejecutar sobre
Mininet[7] junto con los distintos método de profiling(Cap. 4). Por otro lado se ha
utilizado al biblioteca de Python matplotlib[8].

Para el desarrollo del software utilizado en este TFG se ha utilizado una maquina
virtual desplegada sobre virt-manager[9] para comprobar el cumplimiento de requisitos,
antes de desplegarlo mediante ssh sobre las diferentes plataformas de prueba.

Para el desarrollo de los diagramas utilizados en esta memoria se ha utilizado la
herramienta draw.io [10].

Esta memoria se ha redactado mediante Overleaf [11], editor colaborativo de XTEX.

La metodologia y entorno especifico de las partes experimentales describen en las
Secs. 4.1 y 4.2. Las diferentes plataformas hardware en la que se han realizado los
experimentos se pueden observar en la Tab. 4.1. Excepto en las Secs. 4.3.1 y 4.3.3, el

resto de resultados experimentales en este TFG se han obtenido bajo la configuracion
CONF-2 (Sec. 4.1).

1.4.1. Consideraciones terminolégicas

En esta memoria se traducen al espanol los términos comunes en Tecnologias de la
Informacién y la Comunicacién, como por ejemplo trama (frame) o flujo (flow, stream).
Los términos talker, listener tienen connotaciones muy especificas en TSN pero en
todo caso los traducimos como emisor y receptor respectivamente. Preservamos sin
embargo en inglés términos especificos que raramente por no decir nunca se traducen
el campo, e.g. software, hardware, bridge, end station, shaping o end-to-end entre
otros. Reservamos e término nicleo para un core de una CPU, y utilizamos kernel

para referirnos al nicleo de un sistema operativo, algo por otra parte muy comun



en el caso de Linux. Se ha hecho un esfuerzo para mantenerlos en cursiva. También
se marcan en typewriter pardmetros, estructuras singulares de datos, metadatos y
elementos similares.

En la literatura sobre TSN, especialmente en la comercial, los términos bridge y
switch se utilizan indistintamente. En este trabajo utilizamos el término bridge, que es
el utilizado en las recomendaciones del estandar IEEE 802.1Q).

Por otra parte, el nimero de acrénimos relacionados con TSN evoluciona, muta,
y espanta a cualquier persona poco familiarizada con esta tecnologia. Por ello se han
generado enlaces para que en cualquier momento pueda consultarse la definicién y

regresar al punto de lectura.l.

1.5. Planificacion

El desarrollo de este TFG se ha realizado de manera progresiva. En la primera etapa
de desarrollo se estudié la documentacién correspondiente a TSN. Ademas de localizar
trabajos relacionados con el trabajo a realizar. Una vez estudiado el material encontra-
do se procedio con el desarrollo de la plataforma de emulacion.Una vez desarrollada la
plataforma de emulacién se procedié a desarrollar una metodologia de medicion vélida
para la plataforma. Con la plataforma desarrollada y como culminacién del TFG se
implemento un caso de uso TSN sobre la plataforma. Ademéds durante toda la realiza-
cién del TFG se ha participado en las reuniones del grupo de investigacién. La Fig.1.1

muestra las tareas y como se han repartido a lo largo del desarrollo del TFG.

1.6. Estructura del documento

Esta memoria de TFG se estructura como sigue. El Cap. 2 introduce los conocimien-
tos técnicos necesarios para el seguimiento de este TFG, especialmetnte en lo relativo
a TSN. El Cap. 3 identifica los diferentes mecanismos TSN incluidos en el kernel de
Linux y discute su integracién en Mininet. El Cap. 4 desarrolla una metodologia de
registro de tiempos para el calculo de latencia y jitter, a partir de diferentes opciones
de profiling, asi como las posibles optimizaciones de la plataforma de emulacién en su
conjunto. El Cap. 5 define y despliega un Caso de Uso sobre la plataforma de emulacion
preparada a fin de validar el resultado de una planificacion TSN, incidiendo en nue-
vas cuestiones que surgen al realizar la configuracion y puesta en marcha. Finalmente,
el Cap. 6 recapitula los resultados experimentales, recoge conclusiones y traza lineas

futuras.

!E.g. Alt-<flecha> en las utilidades de Adobe Acrobat®
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Capitulo 2

Fundamentos

En este capitulo se definen los términos y se explican los conceptos necesarios para
que esta memoria sea autocontenida en lo posible. Existe una amplia literatura sobre
conceptos generales relacionados con redes (e.g. [12],[13]). En el caso de TSN, puede

encontrarse una vision general en [14, 15]).

2.1. Conceptos generales

2.1.1. Redes

Red de computadores Conjunto de nodos interconectados por un medio fisico que

se comunican entre si.

Capa de enlace (DLL) Segunda capa del modelo OSI responsable del intercambio
de datos entre el host (nodo anfitrién) y el resto de elementos de la red a la
que esta conectado. Es habitual encontrarla referida como Layer 2 en inglés. Su

ejemplo mas relevante en la es Ethernet .

Latencia (delay) Tiempo que tarda en transmitirse un paquete de datos desde su

origen hasta su destino.

gitter Fluctuacion de la latencia. El jitter evalia la diferencia de la latencia de dis-

tintas tramas mostrando la desviacion con respecto a la latencia.

Virtual Local Area Network Mecanismo que permite generar distintas redes 16gi-
cas a partir de una misma red fisica. Las tramas de red se etiquetan con un campo

VLAN en el que se indica a que VLAN (red légica) pertenecen.

2.1.2. Linux Network Stack (LNS)

Linux Network Stack (LNS) engloba las soluciones software que permiten la co-

municacién entre Linux y las tarjetas de red (NIC) mediante la recepcién (Rx) y la
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Figura 2.1: Esquema de la estructura de la Linux Network Stack.
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transmisiéon (Tx) de las tramas de red desde las aplicaciones de usuario. La Fig.2.1
muestra las diferentes capas de la LNS.

Las herramientas de la LNS permiten al administrador interactuar con el trafico de
red. Algunas como Linux Traffic Control (tc) son clave en este TFG, junto al sistema
de colas (qdisc) del LNS, especialmente la denominada Time-Aware Priority Shaper
(taprio) (Sec. 3.1.1).

2.1.3. Socket Buffer (SKB)

Todas las colas y buferes de la LNS del kernel utilizan una estructura comtn,
consistente en una lista de elementos struct sk buff (Socket Buffer (skb), Fig. 2.2).
Retine informacion sobre todas las tramas que estan siendo procesadas. Cada elemento
en skb almacena una trama junto a metadatos tales como el instante de recepcion, el
instante en el que debe de ser transmitida o su prioridad (skb).

Los skb proporcionan una abstraccion de los protocolos subyacentes, y elevan el
nivel de abstraccién en la interaccién de las aplicaciones de red con el sistema operativo.

Esto impacta en la latencia y el jitter de las aplicaciones utilizando dicho interfaz.

2.1.4. Network Namespaces y Virtual Ethernet Pairs

Los network namespaces son una funcionalidad integrada en el kernel de Linux que
permite que un proceso tenga su propia LNS aislada del resto de procesos del sistema.

Los wvirtual Ethernet pairs (pares veth) son parejas de interfaces de red que se uti-
lizan para interconectar procesos que se encuentran en diferentes network namespaces.
Para ello se genera una interfaz de red en cada uno de los distintos namespaces a
conectar.

Por defecto, los pares veth solo cuentan con una cola de recepcién (RX queue)
y una de transmisién (7Tz queue). Esto supone un problema a la hora de integrar
tecnologias TSN como taprio, que se fundamentan en la existencia de multiples colas.

Este problema se aborda en la Sec. 3.2.2..

2.1.5. Berkeley Packet Filter (BPF)

Berkeley Packet Filtering (BPF) es un sistema que permite ejecutar de forma se-
gura funciones definidas desde programas de usuario dentro de las interfaces de red de
un kernel UNIX. Su ambito de aplicacion principal son reglas sobre paquetes de red
ejecutadas por el cortafuegos del kernel.

La codificacion de estas funciones estd sometida a unas restricciones cuyo cum-

plimiento se verifica antes de pasarlas al kernel mediante un compilador JIT como

11



sk_buff
len
head
data
tail
end
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b e e e = = J -
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Figura 2.2: FEsquema de la estructura skb del kernel,Kernel Implemen-
tation of Sockets[16] Scientific Figure on ResearchGate. Available from:
https://www.researchgate.net/figure/Network-buffer-sk-buff_figl 285355742 [ac-
cessed 1 Sept 2024]

programas BPF para su ejecucion en un entorno seguro, aislado del resto del sistema.
Supone una forma sencilla de extender la funcionalidad del kernel sin necesidad de
modificar su cédigo estética o dindmicamente (mediante médulos).

BPF se basa en la arquitectura de lenguaje maquina del mismo nombre. Su version
original de principios de los '90 se transformo notablemente en el eBPF, al que actual-
mente nos referimos simplemente como BPF. Su funcién original (la relevante en este
TFG) es el filtrado eficiente y seguro las tramas recibidas, pero se utiliza también para

profiling o incremento de la seguridad en el kernel.

Mapas BPF

Un mapa en BPF es una estructura de datos compartida entre los programas BPF
y el kernel del sistema operativo. Los programas BPF acceden a los mapas bien para
comunicarse entre ellos, bien para hacerlo con procesos que se ejecutan a nivel de

usuario.

2.1.6. eXpress Data Path (XDP)

eXpress Data Packet (XDP) [17] es un sistema que permite el procesamiento de

las tramas de red en el nivel inicial de la LNS, sin pasar por el resto de niveles, incre-
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Figura 2.3: Esquema de XDP

mentando drésticamente el rendimiento (Fig.2.3). XDP es de desarrollo relativamente
reciente. Surge para superar inconvenientes de métodos previos, fundamentalmente Da-
ta Plane Development Kit (DPDK) [18], atin en uso. Igualmente orientado al procesado
de tramas antes de que éstas alcancen la LNS, DPDK es tan eficiente como dependiente

del hardware subyacente, y mucho més complejo de utilizar de forma segura.

Basado en BPF, XDP permite que cada trama entrante sea procesada por un pro-
grama BPF establecido desde un programa de usuario. XDP instrumenta el driver del
NIC anadiendo una llamada (hook) al programa BPF asociado, justo en el retorno de
la rutina de servicio a interrupcion, y antes de cualquier operacién de asignacion de

memoria (para evitar su sobrecoste temporal).
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Usos habituales de XDP son, por ejemplo, enviar informacién sobre las tramas
recibidas a una aplicacién de usuario, filtrar el trafico de la red!, o reenviar las tramas

a otros interfaces de red o a procesos de usuario para su procesamiento.

2.1.7. Expulsion en el kernel

La expulsion de procesos (preemption) es un mecanismo mediante el que los sistemas
operativos controlan el reparto del tiempo de CPU entre las diferentes tareas sujetas
al planificador.

La expulsién (preemption) de procesos implica que el sistema operativo se apropia de
una CPU en la que se estd ejecutando un proceso, expulsando a este ultimo para ceder
el uso de dicha CPU a otro proceso. En planificadores orientados a multiprogramacion
de proposito general, esto sucede por ejemplo cuando el proceso en curso agota su
cuota de uso consecutivo de CPU (time slice), a fin de conseguir un reparto equitativo
o ponderado de las CPUs entre los procesos preparados. En planificadores tiempo real
expulsivos, sucede cuando se activa una tarea de mayor prioridad que la que esta en
curso. La explicacién de esta cuestion queda fuera de los objetivos de este TFG y se
remite a la seccion de documentacion de los fuentes del kernel de Linux como referencia
preferible [19]. Incluimos aqui una breve explicacién, que permita comprender algunas
de las cuestiones abordadas en el TFG (e.g. Sec. 3.2.1).

La expulsién presenta un problema. El proceso a expulsar puede por ejemplo estar
ejecutando c6digo del kernel en su propio contexto de proceso (i.e. tras una excepcién
sincrona derivada de una llamada al sistema o un fallo de validez por ejemplo), mo-
dificando una estructura critica accesible por otras excepciones. Si se le expulsa antes
de dejar en estado estable la modificacién (e.g. una insercién en lista), todo el siste-
ma queda inestable y se produciran errores. La forma de gestionar este problema y la
exclusion mutua subyacente depende del propédsito de cada sistema operativo y de la
arquitectura subyacente. En la actualidad Linux soporta tres modelos de expulsion, al

que se suman otros dos si se utiliza el parche PREEMPT_RT para tiempo real.

— No Forced Preemption - Mientras un proceso esta ejecutando cédigo del kernel,
solo abandona la CPU si invoca voluntariamente (inovcacion directa) al planifica-
dor (schedule()), o bien en el cédigo de regreso de la ultima excepcién anidada,
si asf lo indica la variable need_resched (lazy invocation). Es el modelo con menos

sobrecarga, y también menos agilidad.

— Voluntary Kernel Preemption - Variante de la anterior que anade invocaciones

IXDP permite filtrar (descartar) 24 millones de tramas por segundo sobre NIC convencional [17],
convirtiéndolo en una herramienta muy ttil como defensa de ataques de denegacion de servicio
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voluntarias al planificador en el cédigo del kernel que se ejecuta en conexto de
proceso (no en el que se ejecuta en contexto de interrupcién), que tienen efec-
to sélo si existen procesos preparados de mayor prioridad. Mejora la respuesta
en equipos personales usados para trabajo y entretenimiento o comunicacion, y

posiblemente se elimine en breve.

— Preemptible Kernel - Un proceso que ejecuta cédigo de kernel (en contexto de
proceso) puede ser expulsado en cualquier momento excepto si estd ejectuando

el cédigo de una seccion critica.

— Preemptible Kernel (RT) - Versién de la anterior en el patch PREEMPT_RT en el
que las rutinas de kernel que se ejecutan en contexto de interrupcién (rutinas de

servicio a interrupcion, softirgs y tasklets) se implementan como kernel threads.

— Fully Preemptible Kernel (RT) - Todo el c6digo del kernel es expulsable excepto
en secciones criticas muy limitadas. Como en el caso anterior, rutinas de servicio
asincronas, softirgs y tasklets, se gestionan como kernel threads independientes).
En consecuencia todas las rutinas de excepcion y actividades de kernel son plani-
ficadas, no entrelazadas. Es decir, por ejemplo la ocurrencia de una interrupcion
conlleva la invocacién del planificador, que dard paso a la correspondiente ru-
tina de servicio o no, segun la prioridad que tenga asignada. Los spinlocks se

substituyen por seméaforos mutex_rt (un mecanismo bloqueante, por definicién).

2.2. Time-Sensitive Networking (TSN)

TSN es un conjunto de mecanismos estandarizados por el IEEE 802.1 TSN Working
Group. Su objetivo principal es permitir establecer cotas deterministas de latencia
y jitter en flujos prioritarios (i.e. sometidos a restricciones temporales) sobre redes
Ethernet y WiFi convencionales. Describen mecanismos y procedimientos estandar
que facilitan la interoperabilidad de componentes de diferentes fabricantes. También
buscan proporcionar servicios estandar de calidad de servicio (QoS, gestién y tolerancia
a fallos, que las tecnologias propietarias no satisfacen o lo hacen sélo parcialmente.

El TEEE 802.1 TSN Working Group también cubre areas relacionadas como la
sincronizacion del tiempo en una red Ethernet, o las garantias de ancho de banda con
aplicaciones en el transporte de audio y video a través de una red Ethernet.

Los estandares TSN permiten que flujos de diferente criticidad convivan en la misma

red, de forma que los flujos no prioritarios no afecten a las latencias de los prioritarios.
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2.2.1. Nodos TSN

Una red TSN consta de nodos terminales (end points o end stations) y de elementos
de comunicacién (bridges). Dentro de los end points podemos diferenciarlos entre talkers

o listeners:

Listener (receptor) Nodo perteneciente a una red TSN que es el destino final de

un flujo. Un nodo puede ser tanto listener como talker al mismo tiempo.
Talker (emisor) Nodo perteneciente a una red TSN que es el origen de un flujo.

Bridge Nodo encargado de interconectar distintos nodos de una red y controlar el

trafico.

2.2.2. Flujo

En TSN un flujo es una secuencia de tramas (frames) que comparten caracteristicas
y requisitos, como el mismo nodo de origen y mismas restricciones temporales. A cada
flujo se le asocia un cédigo de prioridad codificado en el campo PCP (3 bits) de la
cabecera VLAN de su trama Ethernet (Fig. 2.4). Asi, mecanismos como el TAS (IEEE
802.1Qbv, Sec. 2.2.4) pueden disponer de hasta ocho colas para gestionar hasta ocho
clases diferentes.

A efectos de clarificar la terminologia seguida en esta memoria segin los estanda-
res y el uso habitual, conviene senalar que IEEE 802.1Q-2014 [20] (Anexo II) asocia
ocho prioridades diferentes a ocho clases de trafico (traffic class) segin sus requisitos
(Tab. 2.1). En la practica, se distinguen menos clases segin el dmbito de uso. Por
ejemplo, el Internet Industrial Consortium (iiC) distingue cinco clases (Tab. 2.2) en el
contexto TACS.

Sin embargo, se diferencian tres clases generales de tréafico a efectos de asignacion

de recursos de red y modulacion de trafico sobre tecnologia TSN (ver e.g. [14]):

Clase CDT (Control-Data Traffic) Téfico de control de red o Excellent Effort que

requiere el menor retardo posible.

Clase A Trafico de aplicaciones criticas, que suele denominarse trdfico TSN, sensible
al tiempo (time-aware traffic), sujeto a restricciones temporales (time-constrained

y otras expresiones similares, que incluyen restricciones de audio y video.

Clase B Tréfico Best Effort (no prioritario) (BE).
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Prioridad | Tipo de trafico
0 Background
Best Effort (BE)
Fxcellent effort
Aplicaciones criticas
Video, < 100 ms latencia y jitter
Voz, < 10 ms latency and jitter
Internetwork control
Network control

| O O = | W DN~

Tabla 2.1: Asignacién de prioridades a distintos tipos de trafico [20]

Tipo de Trafico Descripcién
Control de red Trafico de maxima prioridad
Trafico necesario para
Excellent Effort ., L
weellent Effor la configuracion y gestion de la red
Tramas que precisan
recepcién con retardo limitado

Trafico de aplicaciones criticas

Voz (audio)
Video

Tabla 2.2: Tipos de trafico en redes TSN [21]

La asignacién a cada flujo de los valores especificos codificados en el campo PCP se
realiza en la configuracion de la TSN segtin el caso de uso y las capacidades de los mo-
duladores de trafico (traffic shapers o simplemente shapers en lo sucesivo) disponibles
en la infraestructura. Parte del esfuerzo de este TFG se ha dirigido a la solucién de
problemas de gestion del campo PCP relacionados con la configuracién de la taprio
sobre Mininet (Sec. 3.1.1).

2.2.3. Sincronizacién del tiempo

Uno de los aspectos imprescindibles en TSN es la sincronizacién de los relojes de
los nodos de la red, un problema compartido con las redes industriales. Por ello, TSN
se apoya el sistema preexistente IEEE 1588 (Precision Time Protocol (PTP)), muy
conocido para sincronizar los relojes de los diferentes nodos.

El estandar IEEE 1588 define mecanismos generales de sincronizacion, aplicables a
diferentes tipos de redes, e incluso a distintos niveles dentro de la misma tecnologia. Por
ejemplo, define mecanismos de timestamping en la capa 2 o en el nivel IP. También
define una serie de aspectos parametrizables, como el intervalo de sincronizacién, e
incluso permite cierto nivel de personalizacién de las maquinas de estados asociadas al

protocolo.
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Figura 2.4: Campos VLAN y PCP en una trama Ethernet

Las parametrizaciones del estandar IEEE 1588 reciben el nombre de perfiles. Un
perfil define valores especificos para los parametros, y puede limitar las funcionalidades

y tipos de red a soportar para que un sistema se pueda considerar conforme al estandar.

PTP define el protocolo para propagar el tiempo proporcionado por un nodo de

referencia al resto e nodos de la red.

El protocolo elige un reloj denominado como grandmaster (GM) que es utilizado
como referencia por el resto de los relojes de la red. El GM envia periddicamente
tramas de sincronizacién al resto de nodos de la red. El protocolo incluye mecanismos
para medir y cancelar los retardos de propagacién en los que incurre el transito de los

mensajes desde el GM hasta los followers.

Las implementaciones basadas en software proporcionan desviaciones entre tiempo
en el GM y los followers por debajo de 1 ms. El soporte hardware permite reducir las

desviaciones por debajo de 1 us, alcanzando unos pocos nanosegundos.

TSN define un perfil de IEEE 1588 en el estandar IEEE 802.1AS, también conocido

como Generalized Precision Time Protocol (gPTP).

IEEE 802.1AS (alias gPTP) restringe el ambito del protocolo a la capa de enlace
Ethernet (802.3) y Wi-Fi (802.11), lo que permite mejorar la precision de la sincroniza-
cién. También especifica diferentes parametros, como el numero de dominios temporales

soportados.

2.2.4. Control de flujo

Uno de los aspectos definidos en el estandar IEEE 802.1Q) es el control de flujo para
redes TSN. Algunas de las extensiones relevantes integradas en dicho estandar son
802.1Qav 6 802.1Qbv, que especifican mecanismos para regular el trafico y garantizar

plazos de entrega de los flujos prioritarios.
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Modulado (shaping)

El control de tréfico consiste en administrar la cantidad y el tipo de flujo permitido
en la red. La modulacion del tréfico (traffic shaping) consiste en limitar la tasa de

transmisiéon de los flujos.

IEEE 802.1Qav Credit Base Shapper (CBS)

CBS es un sistema basado en los algoritmos leaky bucket que limita el ancho de
banda que puede utilizar una clase de trafico. Cada una de las colas de transmisién
(RX queues) tiene asociado un contador de crédito, que aumenta cuando no se estén
transmitiendo tramas a través de esa cola y disminuye mientras se transmiten.

Cuando un trama llega a la cola se verifica el contador de créditos. La trama se
transmitird si este contador es superior a un parametro definido por el administrador
o el CNC (ver Sec. 2.2.5). En caso contrario quedara en la cola hasta que el contador

supere al parametro.

IEEE 802.1Qbv Time Aware Shapper (TAS)

TAS es otro sistema de shaping basado en algoritmos leaky bucket, mas flexible y
complejo que CBS. La Fig. 2.5 muestra la estructura genérica de este shaper segin se
describe en el estandar IEEE 802.1Qbv.

El TAS esta formado por una estructura de hasta 8 colas diferentes para gestionar
diferentes tipos de trafico con la posibilidad de un shaper secundario por cola.

La transmision de las tramas asignadas a cada cola vienen definidas por unas Gate
Control List en las cuales para cada instante de tiempo se definen que colas pue-
den transmitir. Dichas GCL son el resultado de resolver un problema de planificacién
(2.2.4).

Cuando una trama llega al TAS se le asigna una cola dependiendo de la clase
asociada a dicha trama. Una vez la trama llega a la cola se verifica si la entrada de
la GCL activa. Si dicha cola puede transmitir la trama es enviada si no , la trama se
queda en la cola hasta que se pueda transmitir.

En el caso de la Fig 2.5 en el instante de tiempo T04, podran ser trasmitidas las
tramas que se encuentren encoladas en las colas siete y cinco y en el siguiente ciclo del

scheduler podran ser transmitidas las tramas de las colas 3 y 4.

Planificacion

El problema de planificacién de flujos con restricciones temporales y de jitter es

un problema NP-Completo, que se aborda mediante tres tipos de métodos: de opti-
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Figura 2.5: Estructura del TAS IEEE 802.1Qbv

mizacién, heuristicos y mixtos [22][23]. A partir de las planificaciones obtenidas por
estos métodos se sintetizan las GCL de los TAS (IEEE 802.1Qbv). Este problema de
planificacién en TSN y sintesis de GCL es una linea del proyecto de investigaciéon en
el que se enmarca este TFG (Sec. 1.1), a la que este TFG contribuye proporcionando
un testbed emulado (Cap. 3) y validando soluciones de planificacién propuestas en el

proyecto hasta ahora (Cap. 5).

2.2.5. Gestion y configuracion de recursos

La gestién recursos es un aspecto importante en TSN. No es central en este TFG
pero aparece inevitablemente al realizar configuraciones (Cap. 5) y por ello lo introdu-
cimos aqui.

El estandar IEEE 802.1Qat define el protocolo SRP mediante el cual los talkers
anuncian sus flujos al resto de los nodos de la red. Los bridges reciben el anuncio y en
caso de poder reservar los recursos necesarios para los flujos anunciados, remiten dicho
anuncio al resto de los nodos de la red.

La configuracién y gestiéon de una red TSN puede hacerse de forma centralizada
(Centralized Network Configurator (CNC)) o distribuida segun el caso de uso. IEEE
802.1Qcc define el protocolo centralizado Centralized Network Configurator (CNC), la
opcién mas utilizada hoy dia en sistemas industriales, y el interfaz Centralized User
Configuration (CUC) para desarrollar aplicaciones de usuario que interactien con CNC.

CUC/CNC permiten la configuracién de la red mediante protocolos de configuracion
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como NETCONF/RESTCONF o mediante modelos IEEE 802.1Q YANG.

La Fig. 2.6 ejemplifica un sistema de este tipo. El administrador define a través
de un Centralized User Configuration (CUC) la topologia de red, los flujos a ejecutar
juntos con sus restricciones y otros posibles parametros. E1 CUC carga estos datos en el
CNC. El CNC explora la red (nodos, enlaces, caracteristicas), realiza la configuracién,
calcula la planificacién y la despliega, verifica, y si todo esta en orden, inicializa y pone
en marcha el sistema.

Algunos fabricantes de bridges TSN ofrecen herramientas e interfaces de configura-
cion y gestion de recursos, pero se trata de un aspecto atin en investigaciéon y desarrollo,

con iniciativas como OpenCNC [24].

2.2.6. Tolerancia a fallos

Las recomendaciones TEEE 802.1CB e IEEE 802.1Qci de TSN aseguran de que
las tramas lleguen a destino en caso de fallo en algin nodo de la red, y permiten la

deteccion de nodos maliciosos. Este aspecto queda fuera de los objetivos de este TFG.

2.3. Simulacién, emulacién y testbedding

2.3.1. Conceptos generales

Simular supone disenar un modelo de un sistema fisico, en general con el propdsito
de registrar o controlar todos los posibles estados del modelo al menos durante un cier-
to intervalo de simulacion, sometiéndolo a unas entradas determinadas. Este modelo
recoge selectivamente caracteristicas del sistema fisico, segtin el propédsito de la simu-
lacion. Permite un seguimiento detallado de todas las variables del modelo deseadas,
disparando el coste temporal de la simulacién en funcién del grado de detalle.

La emulacion, por el contrario, sélo se ocupa de imitar el comportamiento del sis-
tema fisico, mediante virtualizaciéon por ejemplo, sin menoscabo de instrumentar el
sistema con técnicas similares a las utilizadas en un sistema real (e.g. hardware o
software profiling). El sistema emulado puede reemplazar al sistema fisico porque su
comportamiento (e.g. respuesta a cambios en las entradas) reproduce el del sistema
fisico.

En nuestro contexto, testbedding consiste en crear un prototipo de un sistema fisico
mediante componentes fisicos, cominmente dotado de un entorno de gestiéon y mo-
nitorizacién que facilita la realizacion de pruebas y la extraccion de métricas de su

comportamiento.
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Figura 2.6: Ejemplo de configuraciéon de una red TSN mediante un CNC.

2.3.2. Simulacién de redes TSN

La simulacién de redes consiste en crear modelos discretos de casos de uso (nodos,
enlaces, flujos y su planificaciéon segin restricciones). Creado el modelo, se generan
los eventos correspondientes al caso de uso y se obtienen las métricas del sistema
(e.g. latencias y jitter). Existen varias herramientas que permiten la simulacién de re-
des TSN. Por ejemplo NeSTiNg[25] es un framework que anade al simulador de redes
Omnet++[26] funcionalidades TSN tales como los shapers TAS y CBS. NeSTiNg/Om-
net++4 son gratuitos para instituciones académicas, y se distribuyen bajo una licencia
de c6digo abierto. RTaW-Pegase[27] es otro simulador, esta vez de pago, que soporta
la mayoria de las funcionalidades TSN.

El principal inconveniente de estos simuladores es su rendimiento, quedando limi-

tados en la préctica a casos de uso muy sencillos.

2.3.3. Mininet

Actualmente, el principal emulador de redes de cédigo abierto TSN es Mininet.
Mininet permite definir y ejecutar un conjunto de nodos (end points / hosts, bridges)

y enlaces sobre un tnico sistema Linux. Los hosts de Mininet se comportan como los
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fisicos. Mininet permite ejecutar sobre ellos aplicaciones de usuario que pueden enviar
tramas a través de interfaces virtuales como el veth de Linux, transmitiéndolas a través
de los switches también emulados.

Es posible disenar una red en Mininet que emule una red fisica, o bien disenar una
red fisica segtin la disenada en Mininet, de forma que en ambas plataformas se ejecuten
las mismas aplicaciones con igual cédigo binario.

En la Sec. 3.2.1 se abordaran detalles de implementacién y configuracién relevantes

para la metodologia de medicién de latencias.

2.3.4. Testbedding

La manera mas precisa de probar configuraciones TSN es la realizacién de las prue-
bas sobre una plataforma fisica (testbedding). Un modelo fisico (testbed) tipico in-
tegra bridges, hosts con tarjetas de red (NIC) que soportan estandares TSN, como
IEEES02.1AS para asegurar una sincronizacion temporal correcta.

Al comienzo del desarrollo de este TFG se consider6 desplegar los mecanismos TSN
utilizados sobre Mininet en hardware real. La principal dificultad han sido, por una
parte, los tiempos de entrega de los componentes necesarios? y, por otra, la imposibi-
lidad de acceder a plataformas de testbedding existentes en los plazos propios de un
TFG.

2.4. Trabajos relacionados

Existe un limitado niimero de trabajos relacionados con los problemas que presenta
la emulacién de TSN en Mininet [28][29]. Ambos identifican —y no siempre resuelven—
problemas de integracién de componentes TSN sobre los bridges generados por Mininet.
En la Sec. 3.2 llevamos a cabo nuestra propia identificacién y aporte de soluciones, sobre
la base de esos trabajos previos.

Por otro lado, existe un estudio sobre el efecto del implementar TAS en software,
comparandolo con su implementacién en un testbed hardware [30]. Los autores desa-
rrollan una metodologia de medida, pero no detallan su implementacion.

En [31] se recurre a una red TSN emulada sobre Mininet para estudiar las posibi-
lidades de una aproximacién SDN a la hora de implementar tolerancia a fallos en una
red TSN. El articulo se centra mas en utilizar las capacidades de SDN de Mininet que
en la implementacion de los mecanismos TSN existentes en Linux. También desarro-

llan una metodologia de profiling, cuya aproximacién diferente a la de [30] pero obtiene

2A fecha de escritura de este TFG el tiempo de espera para un equipamiento minimo con capaci-
dades TSN se sitda en un ano y medio
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resultados similares.
Ha sido ttil consultar [32], un trabajo que recoge bien las distintas utilidades TSN
existentes en el ecosistema Linux. Los autores despliegan dichas utilidades sobre un

testbed fisico, y no sobre un sistema emulado como en este TFG.
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Capitulo 3

TSN en Linux y Mininet

La emulacion de funcionalidades TSN en Mininet utiliza por una parte subsistemas
TSN especificos para Linux como Time-Aware Priority Shaper (taprio) o el protocolo
gPTP, y componentes de Linux para virtualizacion tales como Virtualized Ethernet
(veth) por otra. Estos elementos son relativamente recientes y siguen en desarrollo
activo, por lo que presentan problemas de estabilidad y compatibilidad entre versiones.
En este capitulo se describen en primer lugar los elementos utilizados en el TFG,
y a continuacién los problemas encontrados y las soluciones adoptadas durante su

integracion, configuracién y empleo.

3.1. Elementos de soporte de TSN y virtualizacion

3.1.1. Linux Traffic Control

Este subsistema se ocupa de clasificar, arbitrar y planificar las tramas que constitu-
yen el trafico de red mediante disciplinas de colas (qdisc) y filtros. Las qdisc encolan
las tramas entrantes y salientes del interfaz de red.

Existen dos tipos de qdisc:

Classful qdiscs Encolan y después desencolan las tramas en colas pertenecientes a

clases hijas.

Classless qdiscs Colas que no tienen ninguna clase hija.

Los filtros permiten ejecutar acciones directamente sobre las tramas de red. Los
usuarios pueden establecer filtros tanto en la entrada como en la salida, para modificar
tanto la trama como la meta-informacion de la misma. Por ejemplo, es posible crear un
filtro que modifique la clase a la que pertenece la trama es decir, que cambie el valor
del campo PCP de la cabecera VLAN de la trama.

A continuacion se describen algunas de las qdisc que permiten implementar fun-
cionalidades TSN.
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Taprio Qdisc

La disciplina taprio implementa una versién simplificada del TAS descrito en el
estandar IEEE 802.1Qbv. Se acopla a los puertos de salida (egress ports) de las inter-
faces de red. Permite definir la clase de trafico (traffic class, en adelante simplemente
clase) asociada a cada trama a partir de la prioridad interna de la misma, especificada
en su campo skb—priority. Su comportamiento es andlogo al definido en el estandar
1Qbv. Precisa por tanto asociar clases a valores del atributo PCP dentro del campo
VLAN de la cabecera de la trama. Esta diferencia representa actualmente un impedi-
mento a la hora de integrar taprio con Mininet. La Sec. 3.2 describe las opciones y la
solucién adoptada.

Ademas de asignar una clase a cada prioridad a cada prioridad, taprio requiere:
1. Asignar una cola para las tramas de cada clase.
2. Indicar el instante de inicio de la planificacion y el reloj de referencia a utilizar.

3. Inicializar la GCL conforme a la planificacién, indicando el tiempo que debe de

estar activa cada una de sus entradas.

CBS Qdisc

La CBS qdisc implementa el algoritmo de modulado de trafico homénimo introdu-
cido en la Sec. 2.2.4. En una red TSN es comin normalmente ajustar los parametros
del CBS segtn los requerimientos de ancho de banda de cada clase. Para ello, la CBS
gdisc se usa en combinaciéon con la qdisc mgprio, que permite definir a qué clase
de trafico pertenece una trama dependiendo de la prioridad interna de esta tultima.
Definida la clase a la que pertenece, la trama se envia a la qdisc configurada con los

parametros propios de dicha clase.

ETF Qdisc

ETF gdisc proporciona la funcionalidad Launch Time Control presente en controla-
dores de red como Intel(R) Ethernet Controller 1210© o Intel(R) Ethernet Controller
1226©. Launch Time Control permite especificar el momento preciso en el que una
trama es transmitida, de acuerdo a un reloj de referencia en el interfaz de red.

Las aplicaciones en espacio de usuario suministran este Launch Time al kernel como
una timestamp, utilizando el mecanismo de informacion auxiliar del interfaz de sockets.

El kernel encola y mantiene la trama en la ETF hasta que el reloj del sistema

alcanza el timestamp indicado en la trama para su envio. Este funcionamiento da lugar
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a problemas cuando se utiliza en emulacion, como se expondra la Sec. 5.1.2 al abordar
la configuracion y despliegue de un Caso de Uso.
Esta gdisc incluye ademés un modo estricto, en el que la trama se descarta si se

ha superado el Launch Time.

Netem Qdisc

La Network Emulation (netem) gdisc ha sido creada con el objetivo de ayudar con
el desarrollo de nuevos protocolos de red. No implementa ningiin mecanismo TSN, si no
que permite emular propiedades caracteristicas de redes reales tales como la corrupcién
o duplicacion de paquetes, o el tiempo de transmision.

netem puede ser utilizada en combinacion con otros componentes TSN como la

taprio qdisc como veremos en la Sec. 5.1.4.

Clsact Qdisc

Esta qdisc esta concebida como clasificador. Permite modificar skb—priority en
funcién de filtros de usuario que pueden acceder al valor PCP de las tramas. También
permite modificar PCP, lo que permite en un bridge alterar la clase a la que pertenece

una trama.

3.1.2. Recursos de sincronizacion del tiempo en Linux

LinuxPTP es una suite de servicios y utilidades para sincronizacion temporal basada
en IEEE 1588, disponible para entornos Linux. Los més relevantes son ptp4l y phc2sys.

ptp4l proporciona un servicio que implementa diferentes perfiles de PTP, uno de
ellos IEEE 802.1AS. Esto permite la sincronizacién precisa del reloj hardware alojado
en los interfaces de red con el GM.

phc2sys complementa la funcionalidad de ptp4l con un servicio capaz de sincroni-
zar el reloj incorporado en el interfaz de red con los relojes del sistema operativo (e.g.

CLOCK_REALTIME).

3.2. Configuracion de Mininet para TSN

Como parte del desarrollo de este TFG se ha implementado una plataforma que
emula una red TSN en Mininet, preparada para probar planificaciones sintetizadas
para el TAS TEEE 802.1Qbv.
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Network Root Network
Node H1 Namespace Bridge $1 N Node H2 Namespace
Node H1 SIEREE Node H2

(a) Procesos y namespaces en Mininet

—sshd(2133)——sshd(210692)——sshd(210879)——bash(210880)——sudo(211922)}——pstree(211923)
L—sshd(210887)——sshd(210958)——bash(210959)——sudo(211631 )——python3(211632)——bash(211637 )——controller(211710)

H1(211644 )———client(211918) # Proceso cliente que se ejecuta sobre el nodo H1
H2(211646)
H3(211648 j———server(211915) # Proceso servidor que se ejecuta sobre el nodo H3
H4(211650)
51(211655 )———Ilogger_single(211916) # Proceso de registro de medicidn que se ejecuta sobre 51
$2(211658 j———logger_single(211917) # Proceso de registro de medicién que se ejecuta sobre 52

(b) Procesos de Mininet sobre Linux para una topologia con dos bridges (S1, S2) interconec-
tados, con dos hosts conectados a cada bridge

Figura 3.1: Procesos desplegados por Mininet sobre Linux

3.2.1. Configuracién de la plataforma subyacente

Procesos Mininet

Mininet utiliza virtualizacién basada en procesos para la creacién de los nodos. Cada
nodo es un proceso Linux diferente. Los procesos de nodos host (end points) se ejecutan
cada uno en un network namespace propio. Todos los procesos correspondientes a
bridges se ejecutan en el root namespace. Para interconectar hosts y bridges, Mininet
utiliza pares veth (Sec. 2.1.4) que se comportan como un cable Ethernet fisico (Fig.
3.1Db).

Los procesos de usuario (e.g. emisores y receptores) que se ejecutan sobre los hosts
se emulan como procesos Linux hijos del proceso host sobre el que se ejecutan, y
comparten el mismo LNS. La Fig. 3.lilustra la correspondencia entre componentes
emulados, procesos y namespaces (a), y el desliegue de procesos en el sistema Linux
(b).

La configuracién de asignacion de estos procesos a ntcleos disponibles influye en el

calculo de latencias. Esto se analiza experimentalmente en la Sec. 4.3.3.

Modelo de expulsién

El kernel del sistema Linux anfitrion se ha configurado con dos modelos de expulsion

diferente, por un lado se ha configurado un preemptible kernel sin el parche PREEMPT_RT
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y otro kernel con el parche PREEMPT RT en modo fully preemptible kernel (RT) (ver
Sec. 2.1.7), siguiendo lo que parece ser practica habitual en la industria.

Los programas XDP, que se ejecutan sobre BPF, deberian de estar sometidos al
modelo de planificacion con el que se ha configurado el kernel. Sin embargo en versiones
antiguas de BPF y dependiendo de la versién, se inhibe la expulsién para asegurar que
no hay migracién y preservar el contenido de mapas temporalmente almacenados como
variables percpu[33]. Creemos que los posibles efectos laterales son irrelevantes, porque
en el curso de las experimentaciones en este TFG hemos observado que los programas
XDP tienen latencias muy pequenas. En todo caso conviene consignarlo, porque podria
ser un punto a considerar si en implementaciones reales aparecen efectos laterales ines-
perados a la hora de realizar mediciones temporales, o se observan desviaciones en el

cumplimiento de plazos tiempo real.

3.2.2. Emulacién del IEEE802.1Qbv TAS

La implementacion de un Time Aware Shaper en IEEE 802.1Qbv se fundamenta
en la existencia de varias colas para un determinado puerto de red. La emulacion se
realiza mediante la taprio qdisc (Sec. 3.1.1).

La emulacién de un bridge con Mininet requiere por tanto de multiples colas para
cada uno de sus puertos, que en el caso de las TX queues deberan estar sujetas a la
planificacién de un TAS.

Por lo tanto, el primer paso consiste en configurar taprio en los bridges de Mininet.
Esto representa un primer problema, debido a que Mininet crea por interfaces con una
sola cola. Los pares veth (Sec. 2.1.4 que Mininet utiliza para implementar los enlaces
entre nodos son estructuras del kernel. En consecuencia, ampliar el nimero de colas
de las interfaces supone modificar el kernel. Para ello, en el TFG se ha localizado y
utilizado un parche[34] que amplia a ocho las colas de las interfaces de red creadas

mediante pares veth.

3.2.3. Soluciones al problema de etiquetado de clases de trafi-
co TSN en Mininet

Adicién del etiquetado VLAN

Los bridges reciben tramas Ethernet y utilizan campos como el campo PCP de la
cabecera VLAN (Fig. 2.4) para asignar el trafico a una traffic class. Las traffic classes
son despues utilizadas por los algoritmos de conformado y planificacion como IEEE
802.1Qbv.
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Generador de Tramas

Recepcion de la trama en
la interfaz de entrada

Asignacion de la traffic
class comrespondiente
al campo PCP de la trama
mediante la friltros en

Recepcion de la trama en
la interfaz de entrada

la gaisc classct

Figura 3.2: Gestion de la identificacion de la clase de trafico de las tramas en emisores
(a), receptores (b) y bridges (c)

Sin embargo, las redes y bridges emulados con Mininet carecen tanto de dicha

funcionalidad como del propio soporte de Virtual LANs.

Para posibilitar el empleo de taprio, se ha ampliado el framework Mininet adap-
tando una nueva clase Host con etiquetado VLAN en sus interfaces. De este modo,
posibilitamos la emulacién del transito de tramas entre elementos de red, permitiendo

el tratamiento de traffic classes descrito anteriormente.

Configuracién de emisores y receptores

Los emisores envian las tramas a un puerto del nodo receptor mediante el interfaz de
sockets. Podrian etiquetar las tramas directamente, con un identificador (SO_-PRIORITY)
segun la clase de trafico a la que corresponda el flujo que emiten. Sin embargo, esto
determinaria estaticamente la cola del TAS a la que se dirige el flujo. Por este motivo,
es mucho mas util y flexible que los emisores no asignen estaticamente la prioridad,
asociando después cada puerto a una clase TSN (prioridad segiin subcampo PCP) en
tiempo de configuracion, con posibilidad de hacer cambios dindmicos.

La solucion que hemos adoptado, adaptada al caso de emulacién sobre Mininet,
se basa en asociar a cada puerto su prioridad mediante un filtro aplicado con la he-
rramienta iptables de Linux. Estos filtros almacenan dicha prioridad en el campo
skb—priority (Sec. 2.1.3) de las tramas que se envian a través de ese puerto. A su
vez, las interfaces VLAN implementan un mecanismo que traslada este valor al campo

PCP. Las Figs. 3.2 (a) y (b) esquematizan este procedimiento.
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Configuracion de los bridges

Ya hemos senalado que Mininet ignora el campo VLAN. En consecuencia, los bridges
creados en Mininet carecen de interfaz VLAN. Es decir, sus interfaces no acceden ni
interpretan dicho campo, reenviando las tramas segun su direccion de destino. En
consecuencia, no existe el mecanismo al que nos hemos referido en los hosts en donde
se ejecutan emisores y receptores, realice la copia o conversién skb—priority <> PCP.
Es necesario realizar la conversién manualmente.

En nuestro caso, interesa poder encolar cada trama cuando llega a taprio, en la
cola que le corresponda segun su clase, pero taprio no permite realizar esta asignacion
segin el valor PCP sino segun el campo skb—priority (ver Sec. 3.1.1). Por lo tanto
es necesario modificar el campo skb—priority de cada trama antes de que llegue a
taprio. La opcién mas viable consiste en crear un filtro en la entrada de las tramas al
kernel que inicialice skb—priority en funcién del PCP de la trama.

Para crear el filtro se consider6 iptables en primer lugar, pero tras examinar
a fondo la herramienta se determiné que no permite acceder al campo PCP de la
trama. Se consider$ también ebtables, que permitiria marcar la trama en funcién del
PCP para luego modificar skb—priority mediante otro filtro en iptables, pero no
fue posible utilizar esta herramienta por problemas de compatibilidad con el kernel,
modificado para adecuarlo a otras necesidades de este trabajo.

Se considerd disenar un filtro especifico y anadirlo al kernel, pero se considerd pre-
ferible buscar herramientas ya existentes que faciliten la compatibilidad y la migracién.

Por ello se configuré un filtro XDP para modificar un campo de la cabecera IP
de la trama segun el valor de PCP, y otro filtro posterior en iptables que modificar
skb—priority en consecuencia. El mecanismo como tal funciona, pero se desestimo
finalmente por ser excesivamente intrusivo y potencialmente lento, al requerir la inter-
vencion varias capas de red.

Finalmente se estudié y recurrié a la c1sact gdisc por las caracteristicas que hemos
descrito en la Sec. 3.1.1. Mediante tc, se crea y configura clsact como etapa previa a
la gdisc taprio (Fig. 3.2 (c)).

Con esta mejora se amplia de manera considerable la capacidad de Mininet de

emular una red con bridges implementando IEEE 802.1Qbv.

3.2.4. Sincronizaciéon del tiempo en Mininet

En una red TSN fisica es necesario contar con el protocolo gPTP para mantener
sincronizados los relojes de los nodos (Sec. 2.2.3).

En el caso de Mininet, todos los nodos se ejecutan (se emulan) como procesos
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sobre un mismo kernel, compartiendo el mismo reloj del sistema. Sin embargo, debe
considerarse la influencia de dos factores que pueden distorsionar las medidas.

El primero es el reloj del sistema operativo utilizado para muestrear los eventos.
Por ejemplo, en el caso de CLOCK_REALTIME, el sistema operativo no garantiza la au-
sencia de ajustes, incluso si ello supone la pérdida de la monotonicidad. Al utilizar
la escala UTC, también puede estar sometido a la introduccion de leap seconds para
compensar la ralentizacion de la rotacion de la Tierra. CLOCK_MONOTONIC proporciona
méas garantias y es la eleccién habitual en sistemas TR, pero sigue sujeto a potencia-
les ajustes de la frecuencia. Para eludir estos problemas, en este TFG se garantiza la
ausencia de interferencias tales como cambios manuales por parte del administrador,
o la sincronizacion del tiempo del sistema operativo utilizando NTP o PTP, mediante
la desactivacion de estos mecanismos. .

El segundo factor a considerar es el hardware subyacente. Desde el punto de vista del
hardware, los diferentes procesos involucrados pueden ejecutarse en diferentes ntcleos
(cores), y en un caso general, incluso en diferentes sockets. Por lo tanto, la arquitectura
hardware influye de manera determinante en el alineamiento de las mediciones de
procesos que no se ejecutan en el mismo niucleo. En el caso del hardware utilizado
con soporte Intel Time Coordinated Computing (TCC), la implementacién del Time
Stamp Counter (TSC) en el MPSoC garantiza que las medidas temporales registradas
en diferentes nicleos no presenten divergencias.

En el Cap. 4 se analizan experimentalmente los efectos de utilizar en Mininet co-
mo emulador TSN unos u otros relojes en el registro de tiempos mediante diferentes

métodos.
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Capitulo 4

Metodologia de calculo de latencias
sobre Mininet

Un objetivo importante de este TFG es establecer una metodologia fiable de medida
de tiempos en TSN sobre Mininet (Sec. 1.2). Para afrontar dicho objetivo ha sido
necesario estudiar a fondo toda la LNS, los recursos e interfaces disponibles en Mininet,
y los posibles sistemas de registro de tiempos (timestamping) de paso tramas utilizados

en los diferentes niveles.

4.1. Entorno experimental

Hemos instalado Mininet y realizado la experimentacién sobre tres plataformas
hardware con distintas capacidades, sobre las que se han aplicado diferentes optimiza-
ciones para TR (Tab. 4.1). La distribucién Linux es en todo los casos Ubuntu 20.04 TLS,
kernel 5.2.21. Las modificaciones y configuraciones necesarias para emular redes TSN
con Mininet son las expuestas en la Sec. 3.2. Cada nodo de la red en Mininet corres-
ponde a un proceso ejecutado sobre el sistema operativo anfitrién (Sec. 3.2.1), por lo
que hemos minimizado el posible impacto del resto de los procesos en el registro de

tiempos aislando cada proceso en un nticleo diferente de la CPU.

La Fig. 4.1 ilustra la topologia de red TSN emulada en este TFG a efectos expe-
rimentales. La red se compone de dos bridges interconectados (S1 y S2), con cuatro
end points (H1-H4). H1 y H4 estan conectados al bridge S1; H3 y H4 estan conecta-
dos al bridge S2. Para poder medir latencias se ha instalado en los bridges una gdisc
taprio con una configuracion especial que mantiene todas las colas abiertas para que

las tramas no sean bloqueadas por la qdisc.
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Configuracion CPU Opturrjljlfziacwn Modelo de expulsién | Resultados
Intel® Xeon® Gold 5120
CONF-1 CPU @ 2.20GHz 56 ntcleos No preemptible kernel Sec. 4.3.1
(core Skylake)
Intel® Xeon® Gold 5120
CONF-2 CPU @ 2.20GHz 56 nucleos Software f;fl{lE EggZT&EZ Sec. 4.3.2
(core Skylake) b P
11th Gen Intel®
Core™ i7-1185GRE . PREEMPT_RT Sec. 4.3.3
CONF-3 CPU @ 2.80GHz 4 ntcleos TCC nativo full preemption Anexo C
(core Tigerlake)

Tabla 4.1: Plataformas hardware usadas en la experimentacién. La distribucion Linux
es en todo los casos Ubuntu 20.04 TLS con kernel 5.2.21 (misma versién, en su caso,
del parche PREEMPT RT

51 52

Figura 4.1: Infraestructura de red TSN emulada sobre Mininet en el TFG.

4.2. Metodologia de registro de tiempos

Se ha comenzado caracterizando el comportamiento temporal de los elementos que
forman la red. Como primer paso, se han identificado los puntos del sistema que per-
miten obtener informacion temporal de las tramas.

Se ha determinado que en una red emulada en Mininet solamente se generan times-
tamps en el momento de recepcién de una trama [30]. Estos timestamps emulan los
generados en una red fisica por el kernel de un nodo cuando llega una nueva trama a
través del NIC. Ademads de estos timestamps, se pueden obtener también el instante
de tiempo en los que una trama es enviada desde una proceso de usuario en el nodo
emisor, y el instante en el que ha sido recibida por un proceso de usuario en el nodo

receptor.

34



4.2.1. Relojes del sistema

Los timestamps se generan a partir de los relojes del sistema de cada nodo. En
el caso de Mininet, todos los nodos se emulan mediante procesos que se ejecutan en
la misma méquina (Sec. 3.1b). A la hora de comparar dos timestamps, es necesario
asegurarse de que ambos han sido generados a partir del mismo reloj. Tras revisar los
diferentes temporizadores se ha considerado que los mas adecuados para los objetivos

de medicion que se persiguen son los siguientes:

1. CLOCK_REALTIME: Reloj de referencia en Linux. Marca el instante de tiempo con
precision de nanosegundos a partir del 1 de enero de 1970. Se ajusta para man-
tenerlo sincronizado con el tiempo UTC, incluyendo los segundos intercalares. Se

utiliza comtinmente para obtener la hora y la fecha actuales del sistema.

2. CLOCK_MONOTONIC: Contador mondtono creciente. Marca el tiempo transcurrido
desde algtin punto fijo en el pasado, generalmente los nanosegundos transcurridos
desde el arranque del sistema. En consecuencia no puede ser modificado direc-
tamente, a diferencia de el reloj CLOCK_REALTIME, aunque puede estar sujeto a
cambios en la frecuencia. Por este motivo es un contador muy utilizado en Linux

para temporizacion de tareas con restricciones TR.

La ISA puede proporcionar mecanismos méas precisos para la medicion del tiempo.
Un ejemplo es el acceso directo al Time Stamp Counter (TSC) a través de instrucciones
como rdtsc y rdtscp de la ISA Intel x86, utilizada por algunos kernel de Linux (no
todos) como la base de su infraestructura de temporizacién !. Este acceso de bajo nivel
proporciona medidas de ticks, que posteriormente son ajustadas para obtener picose-
gundos o nanosegundos. Estos procedimientos sin embargo tienen dos inconvenientes.
En primer lugar, son més precisos de lo necesario para lo que se persigue en nuestro
contexto. En segundo lugar, supone realizar modificaciones en el kernel, que introdu-
cen nuevas sobrecargas segun el nivel desde el que se accedan (e.g. desde el espacio de
usuario). Por ello, para este TFG se ha considerado més apropiado utilizar los relojes

y llamadas al sistema ofrecidas actualmente por Linux.

35



Etiqueta ‘ Significado ‘ Espacio ‘

T1 Tiempo en el que el proceso cliente que se ejecuta sobre el U
nodo emisor da la orden al kernel de enviar una trama.

T2 Tiempo de recepcion de la trama en la NIC (veth) de S1 K
T3 Tiempo de recepcion de la trama en la NIC (veth) de S2 K
T4 Tiempo de recepcién de la trama en 1 la NIC (veth) de H3 K
T5 Tiempo en el que el proceso que actiia como proceso servidor U
ejecutado sobre el receptor recibe una trama a través de un
socket.

Tabla 4.2: Caracteristicas de los marcadores temporales usados para cédlculo de latencias
en los diferentes experimentos. U/K: lectura en espacio de usuario / de kernel.

User process User process
T1

T5
Bridge S1 Bridge S2

Kernel

Hardware | 2 — L S Hardware

Hardware Hardware

End station (H1) End station (H3)

Figura 4.2: Puntos de registro de tiempos (Tab. 4.2)

4.2.2. Definicion de tiempos registrados y latencias calculadas

La Tab. 4.2 resume los marcadores registrados en la experimentacién de este TFG,
representados en la Fig. 4.2. Los relojes y método de registro usados se explicitan en
cada tipo de experimento. A partir de estos tiempos se han calculado las siguientes

latencias:

— Latencia end-to-end (e2e) - Tiempo transcurrido desde que un proceso cliente
ejecuta la llamada al sistema correspondiente al envio de una trama hasta que
dicha trama es recibida por un proceso que actiia como servidor en un nodo

receptor. Se calcula como e2e =T5 — T'1.

— Latencia end-to-end.nic (e2e.nic) - tiempo desde que las tramas son enviadas

hasta que son recibidas en el NIC del nodo destino. e2e.nic = T4 — T'1.

lrdtsc ha sido la opcién habitual para contar ciclos para medidas de rendimiento y no esté afectado
por cambios de frecuencia introducidos por mecanismos de ahorro energético basados en DVFS. Sin
embargo, en procesadores multicore requiere el uso de barreras de sincronizacién, ya que se ejecuta
fuera de orden, un problema especialmente en multicores. rdtscp aparece en CPUs més recientes de
Intel y actia en si misma como barrera de sincronizacion pero parece ser menos eficiente que rdtsc
usada con barreras de sincronizacién
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— Latencia de envio (sendL) - Tiempo transcurrido desde que un proceso da
la orden de transmitir una trama (T1), hasta que dicha trama es enviada por
el nodo. En nuestra plataforma podemos considerar propagacién y transmision
instantdneas?, de modo que tiempo efectivo de envio y tiempo de recepcién en

S1 (T2) pueden considerarse iguales. De este modo sendL = T2 — T'1.

— Tiempo de cémputo en bridges (latencia de los bridges, brL) - Tiempo em-
pleado en el procesado de una trama en el bridge, es decir, desde que la trama
llega (completa) al puerto de entrada del bridge hasta que se inserta en la cola
de salida. Se ha calculado como brL = T3 — T2 (= T4 — T3).

— Latencia en la recepcién de una trama (arrL) - Tiempo desde que una
trama es recibida por el kernel hasta que dicha trama es visible desde un proceso
de usuario que se ejecuta sobre el nodo. Se ha calculado como arrL =T5 — T4.
Esta latencia depende de la implementacién de la aplicaciéon de usuario que se
ejecuta en el nodo receptor. La hemos caracterizado por completitud, pero no
se tiene en cuenta a la hora de realizar una planificacion TSN y queda fuera
del estandar. Por estos motivos en el Cap.5 utilizamos la latencia e2e.nic como

referencia y no la latencia e2e.

4.2.3. Registro en el espacio del kernel

Registro de tiempos en los Virtual Ethernet Pairs

Como indicabamos en la Sec. 4.2, el kernel de Linux genera un timestamp basado
en CLOCK_REALTIME en el momento de enviar una trama a través de un par veth,
almacenandolo en la entrada del skb asociada a esa trama. Este timestamp representa
el tiempo de llegada de una trama a un nodo. Para acceder a estos timestamps desde
el espacio de usuario es necesario utilizar la interfaz de sockets de Linux.

En los nodos receptores es posible registrar el timestamp en las propias aplicaciones
que actian como receptoras (listeners) de un flujo), mediante un socket IP (AF_INET).
Utilizamos UDP como protocolo de capa de transporte ® a fin de que cada paquete
enviado por el socket corresponda a una trama en la red. Aunque TSN se localiza en
el nivel de red (DLL), es viable usar UDP (nivel de transporte) debido a que estamos
emulando el comportamiento (respuesta) del sistema, y la sobrecarga introducida puede

considerarse despreciable.

2Esta premisa es habitual en trabajos relacionados con planificacién en TSN, e.g. [35], [1]

3UDP es un protocolo sin conexién, y carece de procesado de comprobacién y correccién de errores.
En consecuencia es mucho més ligero que TCP, y es la opcién preferida en entornos TR en los que es
preferible descartar tramas que esperar a su reenvio
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En los bridges no hay emisores ni receptores por definicién, y es preciso anadir
un proceso instrumental para realizar el registro. Para ello recurrimos a un socket
AF_PACKET asociado a cada interfaz [30], que da acceso a las tramas de la capa 2 (nivel
del driver), fechadas por el propio kernel (interfaz veth) mediante CLOCK_RT. Esto limita
la medicién basada en AF_PACKET al uso de dicho contador, sin otra posibilidad.

La Fig. 4.3 (b) muestra el punto de registro de los timestamps en los bridges median-
te AF_PACKET, considerando que el tiempo avanza de arriba hacia abajo. El esquema
muestra que la validacion para comprobar que los timestamps pertenecen a la trama

que quiere ser analizada queda incluida en el célculo de brL.

Registro mediante XDP

XDP (Sec. 2.1.6), a diferencia de AF_PACKET, puede registrar timestamps utili-
zando cualquier reloj del sistema. En esta caracterizacion utilizamos preferentemente
CLOCK_MONQOTONIC por los motivos expuestos en la Sec. 4.2.1. XDP registra el valor
mediante la funcién bpf ktime get ns() del sistema BPF (Sec. 2.1.5). Se puede ac-
ceder a este timestamp desde un proceso de usuario a través de un mapa BPF. Este
procedimiento permite realizar un profiling de los bridges minimizando la sobrecarga.
La Fig. 4.3 (a) muestra el esquema de registro. Lo llevamos a cabo creando dos pro-
gramas XDP. El primero verifica si la trama pertenece a uno de los flujos a analizar,
y a continuacién obtiene el timestamp. El segundo obtiene el timestamp justo en la
recepcion del paquete (el programa XDP se ejecuta justo en el retorno de la rutina
de servicio a interrupcion, Sec. 2.1.6), y a continuacién verifica la trama. A diferencia
del registro mediante AF_PACKET (Fig. 4.3 (b)), el tiempo dedicado a validacién queda
excluido del calculo de brL. Es decir, experimentalmente cabe esperar valores menores
de tiempo de cémputo en el bridge (brL) respecto a la medicién via AF_PACKET, cuando
se caracteriza un bridge aislado.

Sin embargo, en el caso de querer analizar el comportamiento temporal de varios
bridges consecutivos en una tnica prueba, no es posible ignorar el tiempo de cémputo
de la solucién XDP. Como se puede deducir de la misma Fig.4.3 (a), la brL del segundo
bridge (Siguiente Nodo) incluird el tiempo en el que incurre XDP para la validacién de

la trama.

4.2.4. Registro en espacio de usuario

Los procesos de usuario pueden leer cualquier reloj del sistema, pasando el identi-
ficador del mismo como parametro de la llamada al sistema clock_gettime().
Hemos usado esta llamada para registrar el timestamp de transferencia de una

trama entre el espacio de usuario (7'1) y el de kernel (7'1), sea al enviarla o recibirla, y

38



XDP Bridge Profiling Af-Packet Bridge Profiling Latencia e2e

Nodo Anterior Nodo Anterior EDCEI LT
kemnel
Egress veth Egress veth Egress LNS

brL

brL
ele

Ingress Ingress veth
veth(Timestamping)
R SKB-CLONE Bridging Software

XDP-Timestamping sigui .

XDP-validacion del
paquete

Siguiente Nodo

Figura 4.3: Registro de tiempos y caracterizaciéon de tiempo de cémputo en bridges
(br L) mediante: (a) XDP sobre CLOCK_MONOTONIC y (b) AF_PACKET sobre CLOCK_RT.
En (c), registro de tiempos y cdlculo de e2e desde espacio de usuario (llamada al
sistema clock_gettime (CLOCK_MONOTONIC). El tiempo avanza de arriba hacia abajo.
Cada sombreado corresponde a un nodo. Por ejemplo nodo anterior y egress veth
corresponden al primer nodo del esquema.

también para el cdlculo de la latencia e2e. La Fig. 4.3 (¢) esquematiza el span temporal
del e2e calculado con este método, en un caso en el que no se estarian registrando

tiempos de paso por bridges con ningin método (XDP 6 AF_PACKET).

4.2.5. Analisis experimental de los métodos de registro de
tiempos

Vamos a realizar una experimentacién preliminar para estimar la hipdtesis de que
la metodologia basada en XDP permite calcular la latencia del bridge (brL) con un
impacto menor que la metodologia basada en AF_PACKET.

Se han generado 1000 tramas desde el nodo H1 al nodo H3 (Fig. 4.1). Segun los
resultados de laFig. 4.4, el registro de tiempos mediante XDP tiene efectivamente menos

impacto en brL que la solucion a través de AF_PACKET.
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Figura 4.4: Comparacion del impacto de registro de tiempos sobre un elemento me-
diante XDP y AF_PACKET en el célculo de latencia de bridges (brL, Sec. 4.2.2).

En una segunda comparacién, estudiamos también el impacto de ambos métodos
en la latencia e2e.nic. Recordemos que esta latencia es importante porque es la que
generalmente se pretende optimizar en los problemas de planificacion TSN. Se han
realizado tres pruebas, cuyos resultados se recogen en la Fig. 4.5. En la primera prueba
(Default) no se han activado mecanismos de profiling, de modo que no se registran
los timestamps T2 Y T3 (Sec. 4.2.2). Refleja unas condiciones similares al del calculo
de e2e en la Fig. 4.3 (c), pero excluyendo arrL. En la segunda y tercera pruebas se
realiza el registro respectivamente mediante XDP y AF_PACKET. El eje vertical indica
la latencia eZ2e.nic en ps.

XDP resulta en un jitter superior, menos valores atipicos y menor e2e.nic respec-
to a AF_PACKET. Con todo, estas diferencias entre ambos métodos son en la practica
despreciables, debido al mayor impacto que tienen otros elementos en el el registro de
tiempos de paso de tramas y en el calculo de e2e.nic, como veremos en la Sec. 5.1.2.

A la vista de estos resultados, para realizar el profiling de bridges en la Sec. 4.3 se
ha utilizado el método basado en XDP, debido a su menor impacto en brL respecto
a AF PACKET (Fig. 4.4). Sin embargo, para emular el Caso de Uso TSN en el Cap.5 se
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Figura 4.5: Comparacién de resultados de cédlculo de e2e.nic a partir del registro de
tiempos en tramas mediante XDP y AF_PACKET. El caso Default se anade como refe-
rencia (ver texto).

ha optado por el método basado en AF_PACKET, debido a que en este caso se pretende
caracterizar ambos bridges en el mismo experimento ademas de medir e2e.nic. Por
otra parte, el método basado en AF_PACKET es mas sencillo de utilizar (no requiere la
realizacion e inyeccién de programas XDP), y también més flexible a la hora de analizar

distintos flujos.

4.3. Resultados del calculo de latencias en las tres
plataformas

4.3.1. Resultados CONF-1

La Fig. 4.6 muestra (de izquierda a derecha) las latencias sendL, brL, arrL y e2e
calculadas sobre sobre un kernel en configuracién CONF-1 (Tab. 4.1). La mayor parte
de la latencia punto a punto viene dado por el tiempo que tarda el kernel en enviar una
trama desde que es recibida por el receptor hasta que llega a la aplicacién de usuario.

El tiempo de computo de los bridges es bastante mas reducido en comparacién con el
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Figura 4.6: Comparacién de latencias. Configuracion CONF-1 (Tab. 4.1)

retardo causado por los receptores y los emisores. Aun asi, el jitter es muy elevado,

con una latencia que varia entre 60 us (mejor caso) y 250 us (peor caso).

4.3.2. Resultados CONF-2

Para intentar reducir el jitter de la metodologia de registro se han seguido las suge-
rencias de Intel para la ejecucion de aplicaciones tiempo real sobre procesadores Intel
de propdsito general. No existen en el caso de la microarquitectura Intel core Skylake,

por lo que se han seguido las sugerencias para la arquitectura Intel core Tigerlake[36):

— Desactivacion de todos los estados de ahorro de energia de la CPU.

— Utilizacién en el kernel de un reloj especifico de la CPU llamado time stamp

counter como reloj de sistema.

— Desactivacién del watchdog y del controlador encargado de manejar la frecuencia
de las CPUs.

— Configuracion del kernel para que, en caso de entrar en estado idle, la CPU

permanezca en estado activo.
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Figura 4.7: Comparacién de latencias. Configuracion CONF-2 (Tab. 4.1)

Adicionalmente, se han aplicado otras dos optimizaciones relativas a Mininet:

— Aislamiento de los ntcleos que se asignaran a los procesos de Mininet del pla-
nificador de tareas, de forma que el scheduler no pueda ejecutar procesos sobre
dichas CPUs.

— Parametrizacién del planificador del kernel para que ejecute las rutinas de servi-
cio a interrupcién sobre ntcleos determinados, i.e. CPUs no asignadas a ningin

proceso Mininet.

Gracias a estas modificaciones se reducen latencia y jitter medio (Fig. 4.7), aunque

siguen presentes los valores atipicos que aparecian en la plataforma sin optimizacién

(Fig. 4.6).

4.3.3. Resultados CONF-3

Con el objetivo de eliminar, o al menos reducir, los valores atipicos encontrados en la
Sec. 4.3.1, hemos podido experimentar también sobre un PC industrial IET DRPC-240-
TGL Fanless (Anexo C), que incorpora Intel TCC configurable por BIOS (CONF-3,
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Figura 4.8: Resultados con tres permutaciones en la asignacion de procesos a los cuatro
nicleos disponibles en CONF-3
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Tab. 4.1), optimizado para procesos TR. Ha habido que renunciar a algunas carac-
teristicas del sistema a fin de poder utilizar en lo posible las mismas configuraciones de
Mininet, recursos TSN, distribucién de Linux, kernel y parche PREEMPT_RT preparados
en este TFG.

Se realizado el profiling con la metodologia basada en AF_PACKET, ya que es la
utilizada en el despliegue de un caso de uso (Cap. 5), en el que el nimero de proce-
sos desplegados sobre la plataforma es menor que el nimero de nicleos disponibles,
afectando al resultado de la plataforma.

Se han asignado tres de los cuatro nicleos a los procesos de la emulacion. El cuarto
se utiliza para el resto de los procesos del sistema.

CONF-3 reduce notablemente los atipicos, pero el resultado y las latencias varian
notablemente, dependiendo de la asignacion de procesos a nucleos que se realice. Por
ejemplo, en las Figs. 4.8a y 4.8b los tiempos de cémputo de los bridge S1 y S2 son
diferentes entre si. En la Fig. 4.8a la latencia e2e en la Fig. 4.8a es mayor que la de la
Fig. 4.8b.

Por otra parte, en la Fig. 4.8c los bridges S1 Y S2 tienen el mismo tiempo de
céomputo, sin embargo arrL es muy dispar, obteniendo un jitter superior al resto de
asignaciones. Las distintas permutaciones en la asignacion de procesos a ntcleos se han

realizado de manera aleatoria.
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Capitulo 5

Emulacion de un Caso de Uso

El despliegue y emulacion de un Caso de Uso abordado en este capitulo ha resultado
imprescindible para comprobar la congruencia y eficacia del sistema de emulacion y
metodologia de medida expuestas en capitulos anteriores, cumpliendo asi los objetivos
especificos de este TFG (Sec. 1.2).

Este despliegue ha sido 1til, ademés, para revelar algunas cuestiones adicionales
que no habian aparecido en el andlisis y experimentacion metodologicas efectuadas en
el Cap. 4, y que aparecen al realizar la configuracién y puesta en marcha de un sistema
para un Caso de Uso determinado.

En este TFG la configuracién de la topologia, bridges, configuracion de la planifica-
cién y puesta en marcha del sistema emulado sobre Mininet se realiza mediante scripts
propios ((Sec. 5.1). Esto nos permite aprender de abajo arriba detalles que afectan a la
metodologia de medida de tiempos, y tener un mayor control sobre los procedimientos.

Seguidamente, en la Sec. 5.2, definimos el Caso de Uso, desplegado sobre la infraes-
tructura de red emulada en el Cap. 4 para llevar a cabo la experimentacién metodolégica
(Fig. 4.1).

5.1. Configuracion y despliegue del sistema TSN

5.1.1. Instante cero

El despliegue de un Caso de Uso implica definir el momento en el que, configurados
todos nodos, topologia, y planificaciéon, comienzan a circular los flujos TSN de modo
que el envio de tramas se realice en los instantes que les corresponde. Son parte de
los aspectos determinados por las recomendaciones IEEE 802.1Q) para la gestion de
recursos (ver Sec. 2.2.5). Este instante cero de puesta en marcha es utilizado tanto por
los clientes emisores como por las taprio qdisc situadas en los bridges.

Hemos creado un script en Python que, a través de la API de Mininet, genera

en primer lugar la red, define a continuacion el timestamp que se va a tomar como
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instante cero, y lanza finalmente todos los procesos del sistema. Estos procesos quedan

en estado de espera hasta que se alcanza el tiempo definido como instante cero.

5.1.2. Real-Time Client

En una plataforma fisica existen mecanismos que permiten enviar paquetes al medio
de transmision en un instante preciso. Un ejemplo es el LaunchTime presente en la
NIC Intel(R) Ethernet Controller 1210©. Linux ofrece la ETF qdisc (Sec. 3.1.1) para
explotar dicha funcionalidad hardware, pero la hemos descartado como solucién en
emulacién porque su implementacion software anade un jitter considerable.

Para conseguir una precision aceptable en emulacion, se ha implementado un cliente
que genera tramas UDP dirigidas a un puerto determinado. El envio de tramas se realiza
siguiendo un modelo tipico de activacién periddica de tareas tiempo real, tomando
como referencia el instante cero (Sec. 5.1.1). A partir de dicho instante, se obtienen los
instantes en los que deben de ser transmitidos el resto de los paquetes.

Para poder realizar una planificacion correcta de los flujos TSN es necesario identi-
ficar la variacion entre los instantes en los que las tramas deben enviarse y el instante
en el que realmente se envian. El instante de tiempo T1’ es el momento en el que el
planificador indica que la trama debe de ser enviada por el nodo emisor, mientras que
el instante en el que se envia la trama viene dado por T1. En la Fig. 5.1 se observa que
ambos instantes (T1 y T1’) pueden llegar a diferir entre 60 y 80 us para todas las tra-
mas, en una plataforma con optimizacién TR moderada como CONF-2 (Tab. 4.1). Es
preciso considerar este retardo a la hora de caracterizar el sistema para parametrizar el
problema de planificacién de modo que su solucién sea correcta, no sélo analiticamente
(lo cual que depende del método de cdlculo) sino una vez trasladada la planificacién a

la plataforma emulada mediante inicializacién de las taprio (Sec. 5.2.2).

5.1.3. Emulacién de tiempos de transmisién

El tiempo de transmisiéon es un parametro utilizado en planificaciéon de flujos TSN.
Se define como el tiempo que tarda en enviarse la trama al medio fisico por el que va
a ser transmitido. En una una red TSN fisica, el TAS tiene que mantener abierta la
puerta que corresponda no méas tarde del instante en el que la trama empieza a ser
enviada al medio fisico hasta no antes del instante en el que se haya transmitido el
ultimo bit de la misma (ventana de apertura / transmision). En nuestro caso no existe
un medio fisico, ya que trabajamos sobre una red emulada. Por ello hemos ponderado
maneras de emular dicho comportamiento utilizando las qdisc de linux, optando por

utilizar netem (Sec. 3.1.1) como clase hija de taprio.
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Figura 5.1: Retardo en el envio de tramas (configuracion CONF-2 (Tab. 4.1).

La qdisc taprio estd implementada de forma que la planificaciéon se aplica la
salida de la clase hija, en nuestro caso netem. Podemos por tanto emular el tiempo de
transmision colocando una netem por cola del TAS, i.e. como clase hija de taprio, y
anadiendo a cada una de esas netem dicho tiempo de transmision. De esta forma, una
trama que se encuentre dentro de la gdisc netem solo podré ser transmitida en el caso
de que la qdisc taprio permita su transmisién (intervalo de transmisién establecido
en la GCL segun la planificacién), que es nuestro objetivo. La Fig. 5.2 ilustra la esta

estructura de qdisc para emula un TAS.

Esta implementacion conlleva el problema de que la primera trama que entra a cada
una de las netem qdisc que se encuentran como salida de las taprio desaparece. Por
ejemplo, en el caso del flujo 0, la trama nimero 1 desaparecera en el bridge S1, y la
trama numero dos desaparecerd en el bridge S2. No se ha encontrado la causa de este
problema, por lo que se ha solucionado considerando el primer hiperperiodo como fase

transitoria, comenzando el registro de tiempos a partir del segundo.
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5.1.4. Emulacién del tiempo de propagacion

En redes de computadores se entiende por tiempo de propagacion (1},) el tiempo que
tarda una senal en llegar del emisor al receptor. Puede calcularse como T, = L;/Vp,
donde L; y Vi son respectivamente la longitud y el Factor de Velocidad del enlace !.

La emulaciéon de tiempos de propagacién no puede realizarse basandonos en la
solucion adoptada para los tiempos de transmision, es decir, anadiendo una nueva
netem que aniada un tiempo. Pese a que la netem sea una classful gdisc (i.e. que puede
tener clases hijas), la taprio realizaria el shaping sobre las tramas con el tiempo de
transmisiéon ya anadido. Es decir, las tramas estarian listas para transmitir fuera de la
ventana de apertura de puerta determinada por la planificacién.

La solucion requiere una modificacion del kernel. Como se expuso en la Sec. 3.2.3,
se ha decidido en este TFG atenerse a parches, herramientas e interfaces ya existentes.
Por otra parte, se trata de un tiempo despreciable en el contexto de los casos de uso

industriales que son prioritariamente objetivo del TFG (Sec. 1.2).

5.2. Definicion del Caso de Uso

5.2.1. Flujos

La Tab. 5.1 muestra los flujos desplegados sobre la infraestructura de red de la

Fig. 4.1 emulada en Mininet.

5.2.2. Planificacion TSN de los flujos

La planificacién de estos flujos sobre la topologia objetivo se ha realizado median-
te el método propuesto en [1], basado en un PPLM preacondicionado mediante una

heuristica. Los parametros necesarios son los siguientes:

— Flujos : Definicién de los distintos flujos TSN a emular sobre la plataforma. Los
parametros a definir para cada flujo son los siguientes:
e Tiempo de transmisién
e Nodo Origen

e Nodo Destino

LEl Factor de Velocidad ( Velocity Factor es una razén relativa a la velocidad de la luz, que depende
del medio y tipo de senal. En el vacio por ejemplo es 1, en aire 0.999 y en enlaces de cobre varia segin
sus caracteristicas (e.g. 0.5 - 0.8). El concepto de sefial a transmitir varfa también segin el medio. En
cobre por ejemplo se refiere al periodo de variacion de la tensioén, y en fibra 6ptica a un pulso de luz.
Conviene tener en cuenta que dicha variacién no se corresponde directamente con un bit. Por ejemplo
en Fast Ethernet (modelo 4B5B) se codifican 4 bits cada 5 pulsos de tensién. Pueden ampliarse estos
conceptos en textos generales de redes y comunicaciones como [37] y [12].
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Figura 5.2: Disposicion de taprio y netem para la emulacién del tiempo de transmision

Flujo | Talker | Listener | Periodo | Deadline
0 hl h3 10 ms 10 ms
1 h2 h3 20 ms 20 ms
2 h4 h3 30 ms 30 ms

Tabla 5.1: Flujos del Use Case

e bridges a atravesar
— Tiempo de propagacién (Sec. 5.1.4)

— Tiempo de cémputo: Tiempo necesario para procesar una trama en el bridge:

desde el puerto de entrada hasta la cola de salida.

— Desfase de reloj: Méximo desfase que puede tener el reloj de un nodo con

respecto al reloj maestro.

Mediante estos parametros la herramienta formula las restricciones del PPLM que
utilizamos [1]), lo resuelve y genera las entradas de las GCL para los TAS de cada
bridge (Sec. 2.2.4). En nuestro caso, emulamos los TAS mediante la taprio gdisc. El
script de Python ya mencionado en la Sec. 5.1.1 también inicializa las taprio a partir

de las GCL generadas por el planificador.

Parametrizacion del planificador

Se ha decidido considerar un tiempo de transmisién de 100 us, basado en consulta de

casos. Como tiempo de computo, tomamos un brL de 10us, a partir de la caracterizacion
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realizada con la metodologia expuesta en la Sec. 4.3.

El desfase de reloj es uno de los factores que contribuyen al jitter en cualquier
plataforma?, junto a las caracteristicas de las NIC (veth en nuestro caso) y bridges
entre otros. En una red en Mininet, el desfase de reloj es cero debido a que todos los
nodos comparten el mismo reloj. Pero no los otros factores del jitter estructural de la
plataforma (Sec. 4.3). Por ello, las ventanas de apertura calculadas en la planificacién

pueden resultar insuficientes.

Por ejemplo, si una trama tiene que ser enviada en el instante 100, un planificador
agnostico respecto al jitter generara la entrada GCL de modo que la puerta del TAS se
abra en el instante 100 y se cierre en 100 + el tiempo de propagacién. Un planificador
con jitter (desfase de reloj més otros factores) igual a 10 por ejemplo, fijard la apertura
de la puerta del TAS en el instante 90 (= 100 — 10) y el cierre en el instante 100 +
tiempo de propagaciéon + 10. La ventana de apertura serd mas amplia, y permitira

aceptar tramas con jitter de 10 unidades de tiempo.

El planificador que utilizamos [1], en una préactica muy habitual en este tipo de
planificadores, no considera el jitter estructural como parametro, sino inicamente el
desfase de reloj (cero en Mininet)3. Por este motivo, utilizamos el pardmetro desfase

de reloj para considerar el jitter no nulo de nuestra plataforma de emulacion.

Los valores atipicos observados en la Sec. 4.3 se encuentran alrededor de los 200 us
por encima de la media aproximadamente (Fig.4.7). Ademads, observabamos 80 us
adicionales de retraso en el envio de las tramas (7’1 —7'1'+sendL, Fig.5.1) y otros 10 us
adicionales en caso de que estén activados los mecanismos de profiling mencionados en
la Sec.4.2.2 para registro de tiempos de paso de tramas por bridges. Con estos datos,
de manera conservadora, podemos estimar un jitter conjunto de 500 us. Este es el valor
que hemos trasladado como parametro de desfase de reloj al planificados, a fin de que
las aperturas y cierres generadas sean suficientemente amplias para el paso de tramas

con jitter.

Finalmente, conviene observar que en un sistema fisico, ademas de las tramas de
los flujos TSN, circulan tramas necesarias para la configuracion de la red, como las
del protocolo spaning tree de los bridges o las de ARP. Estas tramas no existen en el

sistema que emulamos.

2Podriamos denominarlo jitter estructural, para diferenciarlo del jitter introducido por otras capas
(que no se consideran en TSN) y del jitter de planificacién, que los planificadores tipicamente intentan
minimizar pero dificilmente eliminan completamente

3En parte o en todo, porque una vez desplegado un caso de uso con su planificacién es preciso
verificar y a menudo reajustar dicha planificaciéon. La planificacién dinamica, o los ajustes dindmicos
de una planificacién, es un problema abierto y una activa linea de investigacién actualmente en TSN.
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5.3. Resultados experimentales

Para verificar el correcto funcionamiento del sistema, especialmente que las tramas
de red se envian en los instantes indicados por la planificacién, se han utilizado las
herramientas desarrolladas en el Cap. 4.

Una vez definida y configurada la planificacién en la taprio, se han generado tramas
en los instantes indicados por el planificador que emulan los flujos con el Real-Time
Client desarrollado 5.1.2. Se han verificado los timestamps generados por las tramas
asociadas a los flujos para calcular la latencia punto a punto e2e.nic (Sec. 4.2.2), que es
la que se considera en TSN para fijar el cumplimiento de los deadlines requeridos por los
flujos (Tab. 5.1), y cuya optimizacién es precisamente objeto de los planificadores TSN.
La medida de esta e2e.nic se realiza con el método basado en AF_PACKET por las razones
que se expusieron en la discusiéon metodoldgica (Sec. 4.2.5), y con el registro de tiempos
activado en los bridges (a fin de poder observar el cumplimiento de tiempos de paso de
tramas). Esto dltimo implica que los valores de e2e.nic obtenidos son ligeramente mas
altos que los que se obtendrian sin la sobrecarga de ese profiling en los bridges (cabe
recordar aqui la Fig. 4.4).

Las graficas de la Fig. 5.3 permiten comprobar que las latencias e2e.nic de los flujos
planificados no superan en ninguin caso el deadline definido para cada uno de los flujos
(Tab. 5.1). Por ejemplo, en el caso de la Fig. 5.3a, no hay ninguna latencia superior a
los 10 ms, y por lo tanto todas las tramas de dicho flujo cumplen con las restricciones
temporales.Los valores de e2e.nic atipicos que aparecen son los esperables, porque se
sittia dentro del jitter estimado en base a la caracterizacion del mismo en la plataforma
de emulacion.

Las Figs. 5.4 y 5.5 visualizan que las tramas atraviesan las ventanas de apertura
de los TAS (taprio) de los bridges conforme a la planificacién aplicada. Se muestra
para cada bridge la grafica con las ventanas de apertura de sus puertas para cada
flujo (segmentos coloreados de las Figs. 5.4a y 5.5a), y la gréfica con los intervalos en
los que realmente las tramas atraviesan dichas puertas (segmentos coloreados de las
Figs. 5.4b y 5.5b). Visualmente es ficil comprobar que los segmentos de paso de trama

son menores (y se sitian dentro de) los segmentos de apertura de puerta.

5.4. Consideraciones finales

El objetivo de este capitulo ha sido comprobar que el sistema emulado, configurado
conforme a lo expuesto en el Cap. 3, y caracterizado conforme a la metodologia es-

tablecida en el Cap. 4, permite comprobar el funcionamiento de una planificacion del
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Figura 5.3: Latencia de las tramas asociadas a diferentes flujos
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Flujo 1 — — —
Flujo 0 | — — — — —
0 10000 20000 30000 40000 50000 60000
Tiempo (us)
EE Flujo 0 Trama 0: 1100.0ps - 2200.0ps EEE Flujo 0 Trama 2: 21100.0ps - 22200.0pys ~ EEE Flujo 0 Trama 4: 41100.0ys - 42200.0ps
BN Flujo 1 Trama 0: 2200.0ps - 3300.0us I Flujo 1 Trama 1: 22200.0ps - 23300.0us WM Flujo 1 Trama 2: 42200.0ys - 43300.0ps

B Flujo 0 Trama 1: 11100.0ps - 12200.0us MM Flujo 0 Trama 3: 31100.0ps - 32200.0ys M Flujo 0 Trama 5: 51100.0ps - 52200.0us

(a) Planificacién asociada al bridge S1

Paso de las tramas por el Bridge S1

Flujo 1 - - -
Flujo 0 - - - - L] -
0 10000 20000 30000 40000 50000 60000
Time(us)
EEE Flujo 0 Trama 0: 1165.0us - 1281.0us B Flujo 0 Trama 2: 21184.0ps - 21299.0ys MMM Flujo O Trama 4: 41164.0us - 41280.0us
EEm Flujo 1 Trama 0: 2268.0s - 2384.0ps BN Flujo 1 Trama 1: 22267.0ps - 22382.0us WM Flujo 1 Trama 2: 42266.0ps - 42381.0us

EEE Flujo 0 Trama 1: 11165.0ps - 11281.0pys MM Flujo 0 Trama 3: 31184.0ps - 31300.0ys WM Flujo 0 Trama 5: 51182.0ps - 51298.0s

(b) Paso de las tramas por el bridge S1

Figura 5.4: Planificacién y Paso de tramas asociadas al bridge S1
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Figura 5.5: Planificacion y Paso de tramas asociadas al bridge S2
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tipo de la propuesta en [1].

En la Sec. 2.2.5 se introdujo el modus operandi en un despliegue real. Se proporciona
un sistema de gestion (control plane) la definicién de flujos, topologia de red (el propio
sistema la puede descubrir), tipo de planificacién o posibles pardmetros determinados
de antemano. El sistema configura la red, calcula la planificacién y la verifica. Si es
correcta, se pone en marcha el sistema (o se anaden nuevos flujos al sistema en marcha).
Si no pasa la verificacién, se recalibra y se calcula una nueva planificacién.

De forma similar a dicho modus operandi, en caso de utilizar la plataforma de
emulacién y metodologia expuestas en este TFG para casos de uso, corresponderia
repetir las emulaciones ajustando por ejemplo el parametro de jitter, para estimar o
ajustar la capacidad del sistema. Algo que puede ser 1til como paso previo a trasladar

el caso de uso a un testbed o a un sistema definitivo.
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Capitulo 6

Conclusiones y lineas abiertas

6.1. Discusion de resultados experimentales

6.1.1. Meétodos de registro de tiempos

El método de registro basado en llamada al sistema es una eleccion sencilla y sufi-
ciente para el célculo de la latencia de extremo a extremo (end to end, e2e), especial-
mente porque en Mininet la sincronizacién temporal de los contadores estd asegurada
al tratarse de procesos ejecutados sobre un mismo sistema operativo y hardware. El
recurso a un contador u otro (CLOCK_.MONOTONIC vs. CLOCK_RT) no parece de influencia
relevante, aunque CLOCK_MONOTONIC es la opcidon logica en un sistema con restricciones
TR.

Se han evaluado dos métodos de registro de tiempo para caracterizacion de bridges,
respectivamente basados en XDP y AF_PACKET, y se concluye que ambos pueden ser
utilizados con este fin. Los resultados experimentales indican que el método implemen-
tado con XDP puede proporcionar una cota mas ajustada del tiempo de computo de
bridges (brL, Fig.4.4) que la solucién basada en AF_PACKET. En todo caso la diferencia
entre ambos métodos es de unos pocos us, y en el caso de utilizarse para medir la
latencia e2e.nic, que es la considerada en planificacién TSN, las diferencias pueden
considerarse negligibles, siendo AF_PACKET mas sencillo y flexible en su uso. Por ese
motivo, la comprobacién de la planificacién en el Caso de Uso del Cap. 5 se ha rea-
lizado mediante AF_PACKET, tanto para registrar tiempos para el calculo de la e2e.nic
como para registrar simultaneamente tiempos de paso de tramas por las puertas de los

TAS (taprio) en bridges.

6.1.2. Influencia de la plataforma subyacente

Los resultados obtenidos muestran que el despliegue de la plataforma de emulaciéon

sobre una CPU con gran nimero de nucleos (56 nicleos, CONF-1 y CONF-2) per-
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mite latencias relativamente ajustadas, a costa de un considerable aumento del jitter
(Figs. 4.6 y 4.7).

La utilizacién de un PC industrial optimizado para tiempo real mediante el sistema
Intel TCC (Anexo C) permite disminuir claramente los valores atipicos y la latencia
e2e.nic, pero los resultados varian segin la asignacion de procesos Mininet a los cuatro
ntcleos disponibles (Fig. 4.8). Este tipo de plataformas, con Intel TCC disponible,
son conservadoras hoy dia en el nimero de nicleos (4 - 12 hasta donde hemos podido
comprobar) y memoria, debido particularmente a compromisos coste - rendimiento.
Esto obliga a compartir nicleos para varios procesos Mininet, que no pueden ejecutarse
aislados como en CONF-1 y CONF-2. La asignacién de més de un proceso de emulacion
por nicleo y consiguiente falta de aislamiento provoca variaciones en el resultado de
los cambios de contexto, y en el comportamiento de los mecanismos especulativos
(p-€j. prediccién de saltos) y de ocultacién de latencia (prebisqueda, comportamiento
de la jerarquia de memoria en general). Ello provoca por ejemplo conflictos diferentes
en el acceso a memoria principal en cada caso. Ello influye en el registro de tiempos y,
por ende, en las latencias y el jitter finalmente calculados. De usarse como plataforma
de emulacién, supone caracterizar el comportamiento de Mininet para cada Caso de
Uso y ensayar permutaciones en la asignacion de procesos a ntcleos hasta encontrar
latencias satisfactorias.

El mejor de los escenarios consiste obviamente en disponer de un multicore que
soporte el sistema Intel TCC nativo, y que ademas cuente con un nimero de ntcleos
que minimice el niimero de procesos por nicleo, a fin de aislar cada uno de los procesos
de emulacion. Posiblemente no tiene mucho sentido para optimizar la emulacion de
sistemas TSN mediante Mininet, pero puede tenerlo en el caso de TSN como SDN
(cloudification).

La conclusion mas importante es que una planificacién sera siempre correcta, con in-
dependencia de la plataforma de emulacion, siempre que se caractericen correctamente

las latencias y se parametrice el planificador coherentemente.

6.2. Mininet como plataforma de emulacion de sis-
temas TSN

Mininet ha resultado ser una plataforma satisfactoria para emular casos de uso TSN,
pese a que no se ha disenado con este objetivo. El trabajo desarrollado en este TFG
muestra que es posible, con algunas limitaciones, crear una plataforma para comprobar
resultados de planificacién, uno de los objetivos de la linea de investigacién en la que

se enmarca el trabajo, siempre que se tengan en cuenta ciertos aspectos.

60



Una de las principales limitaciones de la plataforma viene dada por la necesidad
de disponer de una version del kernel de Linux compatible con el parche especifico
que permite integrar la taprio en Mininet. Esto impide a fecha de escritura de esta
memoria la utilizacion de mecanismos implementados en versiones mas recientes del
kernel de Linux. Una de estas funcionalidades es, por ejemplo, la combinacion de la
taprio qdisc con la ETF qdisc, que permite reducir el jitter de los bridges. Otra
importante es el uso de xdp-hints, que permitiria desarrollar un nuevo mecanismo de
registro de tiempos. Estas nuevas versiones también permitirian utilizar herramientas
de testing de redes TSN como Isochron.

El esfuerzo de comprobaciéon de un planificador sobre un caso de uso (Cap. 5),
mediante la configuracién Mininet/Linux discutida en el Cap. 3 y la caracterizacién y
metodologia expuestas en el Cap. 4 ha evidenciado aspectos interesantes relativos a la
configuracion y puesta en marcha del sistema en emulacion, como la consideracion de
un instante cero y de una estrategia de inicio del sistema. Mas importante, si cabe, ha
sido la parametrizacién correcta del algoritmo de planificacién utilizado (un sistema
propuesto en el grupo de investigacién, basado en formular y solucionar un PPLM [1].

En particular, la estimacion del jitter en base a la caracterizacion realizada en el Cap. 4.

6.3. Lineas abiertas

Enumeramos algunas de las cuestiones abiertas en el curso del TFG, que juzgamos
interesantes para trabajos futuros.
En relacién a metodologia de medida y caracterizacion, creemos que hay dos aspec-

tos poco desarrollados y que van mas alla del problema especifico de emulacion:

— Estudiar el uso de la instrucciones rdtsc y rdtscp de Intel, cuyo rendimiento y

comportamiento pueden actualmente variar segun la plataforma.

— Caracterizaciéon de factores especificos que contribuyen al jitter.

Aspectos mas especificos ligados a Mininet como plataforma de emulacién serian

los siguientes:

— Diseno de un parche del kernel para emular el tiempo de transmisiéon

— Actualizacion del parche de las veth para que permita integrar utilidades TSN

actuales como la taprio qdisc junto a la ETF qdisc.

— Desarrollo o adaptacién de un framework que permita realizar despliegues au-

tomaticos sobre la plataforma.
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— Comparacién de resultados emulacién / testbedding basados en la metodologia

planteada.

— Realizacién de pruebas sobre un plataformas con Intel TCC y un mayor nimero

de nucleos.

62



Bibliografia

1]

[6]

[7]
8]
[9]

[10]

[11]

[12]

Alitzel G. Torres-Macias, Juan Segarra, José L. Briz, Antonio Ramirez-Trevino,
and Héctor Blanco-Alcaine. Fast ieee802.1qbv gate scheduling through integer
linear programming. [EEE Access, pages 1-1, 2024.

A. Gracia, J. L. Briz, H Blanco-Alcaine, Juan Segarra, A. Torres, and A. Ramirez-
Trevino. Cracking down overheads in tsn emulation over mininet, 2024. Stuttgart
(Germany), 1-3 Oct. 2024.

A.G. Torres-Macias, A. Ramirez-Trevino, J.L. Briz, J. Segarra, and H. Blanco-
Alcaine. Modeling time-sensitive networking using timed continuous petri nets.
IFAC-PapersOnLine, 58(1):300-305, 2024. 17th IFAC Workshop on discrete Event
Systems WODES 2024.

Visual studio code. https://code.visualstudio.com/.

Python extension for visual studio code. https://marketplace.visualstudio.

com/items?itemName=ms-python.python.

https://marketplace.visualstudio.com/items?itemName=ms-vscode.

cpptools-extension-pack.

Mininet. https://mininet.org/.

Matplotlib: Visualization with python. https://matplotlib.org/.
https://virt-manager.org/.

Diagrams net. dagrams.net: Security-first diagramming for teams. https://www.

diagrams.net/.
Overleaf. Overleaf, the online latex editor. https://www.overleaf.com.

L.L. Peterson and B.S. Davie. Computer Networks: A Systems Approach. The

Morgan Kaufmann Series in Networking. Elsevier Science, 2021.

63


https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools-extension-pack
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools-extension-pack
https://mininet.org/
https://matplotlib.org/
https://virt-manager.org/
https://www.diagrams.net/
https://www.diagrams.net/
https://www.overleaf.com

[13]

[14]

[15]

[16]

[17]

[22]

[23]

A.S. Tanenbaum and D.J. Wetherall. Computer Networks. Pearson custom library.
Pearson, 2013.

Ahmed Nasrallah, Akhilesh S. Thyagaturu, Ziyad Alharbi, Cuixiang Wang, Xing
Shao, Martin Reisslein, and Hesham ElBakoury. Ultra-low latency (ull) networks:
The ieee tsn and ietf detnet standards and related 5g ull research. IEEE Commu-
nications Surveys € Tutorials, 21(1):88-145, 2019.

Youhwan Seol, Doyeon Hyeon, Junhong Min, Moonbeom Kim, and Jeongyeup
Paek. Timely Survey of Time-Sensitive Networking: Past and Future Directions.
IEEE Access, 9:142506-142527, 2021.

Sameer Seth and M. Venkatesulu. Kernel Implementation of Sockets, pages 101—
119. 01 2008.

Toke Hgiland-Jgrgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fasta-
bend, Tom Herbert, David Ahern, and David Miller. The express data path: fast
programmable packet processing in the operating system kernel. In CoNEXT 18,
page 54-66, New York, NY, USA, 2018. Association for Computing Machinery.

The Linux Foundation. Myth-busting dpdk in 2020, 2020. https:
//nextgeninfra.io/wp-content/uploads/2020/07/AvidThink-Linux-
Foundation-Myth-busting-DPDK-in-2020-Research-Brief-REV-B.pdf.

kernel.org. Documentacion expulsion del kernel. https://git.kernel.org/pub/

scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.preempt.

IEEE. IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks, IEEE Standard 802.1Q-2014, 2014.

Industrial Internet Consortium (iiC). Time Sensitive Networks for Flexible Ma-
nufacturing Testbed Characterization and Mapping of Converged Traffic Types,
2019.

Thomas Stiiber, Lukas Osswald, Steffen Lindner, and Michael Menth. A survey
of scheduling algorithms for the time-aware shaper in time-sensitive networking
(tsn). IEEE Access, 11:61192-61233, 2023.

Hamza Chahed and Andreas Kassler. TSN network scheduling - challenges and
approaches. Network, 3(4):585-624, 2023.

64


https://nextgeninfra.io/wp-content/uploads/2020/07/AvidThink-Linux-Foundation-Myth-busting-DPDK-in-2020-Research-Brief-REV-B.pdf
https://nextgeninfra.io/wp-content/uploads/2020/07/AvidThink-Linux-Foundation-Myth-busting-DPDK-in-2020-Research-Brief-REV-B.pdf
https://nextgeninfra.io/wp-content/uploads/2020/07/AvidThink-Linux-Foundation-Myth-busting-DPDK-in-2020-Research-Brief-REV-B.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.preempt
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.preempt

[24]

[29]

[30]

[31]

[34]

Hamza Chahed and Andreas J. Kassler. Software-defined time sensitive networks
configuration and management. In 2021 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), pages 124-128, 2021.

Nesting. https://gitlab.com/ipvs/nesting.
Omnet++. https://omnetpp.org/.
Rtaw-pegase. https://www.realtimeatwork.com/rtaw-pegase/.

Alexander Oliver Mildner. Evaluation of Online Schedule Synthesis Algorithms
for Time-Based Scheduled Time Sensitive Networks. Master’s thesis, Department
of Informatics, City, State, 2019. MSc Thesis. Supervisor: Prof. Dr.-Ing. Georg
Carle. Advisors: Max Helm, Benedikt Jaeger, Dr. Marcel Wagner (Intel), Héctor
Blanco Alcaine (Intel).

Maxime Samson, Thomas Vergnaud, Eric Dujardin, Laurent Ciarletta, and Ye-
Qiong Song. A model-based approach to automatic generation of tsn network
simulations. 2022 IEEFE 18th International Conference on Factory Communication
Systems (WFCS), pages 1-8, 2022.

Marian Ulbricht, Javier Acevedo, Surik Krdoyan, and Frank H. P. Fitzek. Emula-
tion vs. reality: Hardware/software co-design in emulated and real time-sensitive

networks. Furopean Wireless 2021; 26th Furopean Wireless Conference, pages 1-7,
2021.

Gagan Nandha Kumar, Kostas Katsalis, Panagiotis Papadimitriou, Paul Pop,
and Georg Carle. Failure handling for time-sensitive networks using sdn
and source routing. In Proceedings of 2021 IEEE 7th International Confe-
rence on Network Softwarization, pages 226-234, United States, 2021. IEEE.
7isup/ thj/sup¢International Conference on Network Softwarization, NetSoft 2021
; Conference date: 28-06-2021 Through 02-07-2021.

Ferenc Fejes, Péter Antal, and Marton Kerekes. The tsn building blocks in linux,
2022.

Jakub Sitnicki. Bpf and kernel preemption. https://lore.kernel.org/bpf/
CAMy7=ZWPc279vnKK6L1fsspbh7cb6cqS9_EuMNbfVBg_ixmTrQ@mail.gmail.com/
T/. [Online; accessed 7-July-2024].

Mininettsn paches for integrating tsn in mininet.  https://github.com/

ulbricht-inr/MininetTSN.

65


https://gitlab.com/ipvs/nesting
https://omnetpp.org/
https://www.realtimeatwork.com/rtaw-pegase/
https://lore.kernel.org/bpf/CAMy7=ZWPc279vnKK6L1fssp5h7cb6cqS9_EuMNbfVBg_ixmTrQ@mail.gmail.com/T/
https://lore.kernel.org/bpf/CAMy7=ZWPc279vnKK6L1fssp5h7cb6cqS9_EuMNbfVBg_ixmTrQ@mail.gmail.com/T/
https://lore.kernel.org/bpf/CAMy7=ZWPc279vnKK6L1fssp5h7cb6cqS9_EuMNbfVBg_ixmTrQ@mail.gmail.com/T/
https://github.com/ulbricht-inr/MininetTSN
https://github.com/ulbricht-inr/MininetTSN

[35]

[39]

[40]

Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelik, and Wilfried Steiner.
Scheduling real-time communication in ieee 802.1qbv time sensitive networks. In
Proceedings of the 24th International Conference on Real-Time Networks and Sys-
tems, RTNS ’16, page 183-192, New York, NY, USA, 2016. Association for Com-
puting Machinery.

Intel Co. 11 th gen intel®) core™ processors real-time tuning guide. https:
//www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https:
//cdrdv2-public.intel.com/640980/Real-Time%2520Tuning’%2520Guide’,
2520-7%252011th%2520Gen’%2520Intel’2520Core2520Processors2520-
%25201.3. pdf.

William H. Tranter Rodger E. Ziemer. Principles of Communications. Technology
& Engineering. John Wiley & Sons,, 2014.

medium.com. Learn network namespaces and virtual ethernet (veth) devi-
ces with graphs. https://medium.com/@amazingandyyy/introduction-to-

network-namespaces—and-virtual-ethernet-veth-devices-304e0c02d084.
mininet.org. Guia de instalacién de mininet. https://mininet.org/download/.

Ahmed Nasrallah, Venkatraman Balasubramanian, Akhilesh Thyagaturu, Martin
Reisslein, and Hesham ElBakoury. Reconfiguration algorithms for high precision
communications in time sensitive networks. In 2019 IEEE Globecom Workshops
(GC Wkshps), pages 1-6, 2019.

Ingo Liitkebohle. BWorld Robot Control Software, 2008. http://aiweb.techfak.

uni-bielefeld.de/content/bworld-robot-control-software/.

Acontis Technologies. Building a rt kernel in ubuntu. https://www.acontis.

com/en/building-a-real-time-linux-kernel-in-ubuntu-preemptrt.html.

66


https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://medium.com/@amazingandyyy/introduction-to-network-namespaces-and-virtual-ethernet-veth-devices-304e0c02d084
https://medium.com/@amazingandyyy/introduction-to-network-namespaces-and-virtual-ethernet-veth-devices-304e0c02d084
https://mininet.org/download/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
https://www.acontis.com/en/building-a-real-time-linux-kernel-in-ubuntu-preemptrt.html
https://www.acontis.com/en/building-a-real-time-linux-kernel-in-ubuntu-preemptrt.html

Siglas

ETF Earliest TxTime First. 26, 48, 61

netem Network Emulation. 27, 48-51, 72

skb Socket Buffer. 11, 12, 37, 71

taprio Time-Aware Priority Shaper. 11, 17, 25-27, 29-31, 33, 47-51, 53, 59, 61, 72
tc Linux Traffic Control. 11

veth Virtualized Ethernet. 11, 25, 28, 29, 36-38, 52, 61

API Application Programming Interface. 47

ARP Address Resolution Protocol. 52

BE Best Effort (no prioritario). 16, 17

BPF Berkeley Packet Filtering. 11-13, 29, 38

CBS Credit Base Shapper. 19, 22, 26
CNC Centralized Network Configurator. 19-22, 71
CPU Central Processing Unit. 42, 43, 59

CUC Centralized User Configuration. 20, 21

DLL Data Link Layer. 9, 37

DPDK Data Plane Development Kit. 13
eBPF Extended Berkeley Packet Filter. 12

GCL Gate Control List. 19, 20, 26, 49, 51, 52
GM Grandmaster. 18, 27

67



gPTP Generalized Precision Time Protocol. 18, 25, 31

HPN High Performance Networking. 4

TACS Industrial Automation and Control Systems. 16
1iC Internet Industrial Consortium. 16
ISA Instruction Set Architecture. 35

IT Information Technology. 3

JIT Just-In-Time. 11

LNS Linux Network Stack. 9, 11-13, 28, 33

MPSoC Multiprocessor System on a Chip. 32

NIC Network Interface Card. 9, 13, 14, 23, 34, 36, 48, 52

NTP Network Time Protocol. 32

OT Operational Technology. 3

PCP Priority Code Point. 16-18, 25-27, 29-31, 71
PPLM Problema de Programacién Lineal Mixta. 50, 51, 61

PTP Precision Time Protocol. 17, 18, 27, 32

QoS Quality of Service. 15

SDN Software Defined Network. 3, 23, 60

SRP Stream Reservation Protocol. 20

TAS Time Aware Shapper. 16, 19, 20, 22, 23, 26, 27, 29, 30, 48, 49, 51-53, 59, 71
TCP Transmission Control Protocol. 37

TFG Trabajo de Fin de Grado. 3-6, 11, 12, 14, 17, 20, 21, 23-25, 27, 29, 32-36, 45,
47, 50, 57, 60, 61, 71, I, 111

TR Tiempo Real. 4, 32-35, 37, 45, 48, 59

68



TSN Time-Sensitive Networking. 3-7, 9, 11, 15-18, 20-27, 30-34, 37, 40, 45, 47, 48,
50, 52, 53, 59-61, 71, 73, I, I, IV

UDP User Datagram Protocol. 37, 48

ULL Ultra-Low Latency. 3

VLAN Virtual Local Area Network. 9, 16, 18, 25, 26, 29-31, 71

XDP eXpress Data Packet. 5, 12-14, 29, 31, 3841, 59, 71, 72, 114, 115

69



70



Lista de Figuras

1.1. Diagrama de Gant . . . . . . . . .. .. ... 7

2.1. Esquema de la estructura de la Linux Network Stack. . . . . . .. . .. 10
2.2. Esquema de la estructura skb del kernel, Kernel Implementation of Sockets[16]

Scientific Figure on ResearchGate. Available from: https://www.researchgate.net /figure/Ne

buffer-sk-buff figl 285355742 [accessed 1 Sept 2024] . . . . . . . .. .. 12
2.3. Esquema de XDP . . . . ... 13
2.4. Campos VLAN y PCP en una trama Ethernet . . . . . . .. ... ... 18
2.5. Estructura del TAS IEEE 802.1Qbv . . . . . . . . . . . ... ... ... 20
2.6. Ejemplo de configuracién de una red TSN mediante un CNC. . . . . . 22
3.1. Procesos desplegados por Mininet sobre Linux . . . . ... ... .... 28

3.2. Gestion de la identificacion de la clase de trafico de las tramas en emi-

sores (a), receptores (b) y bridges (¢) . . . . . . .. ... ... 30
4.1. Infraestructura de red TSN emulada sobre Mininet en el TFG. . . . . . 34
4.2. Puntos de registro de tiempos (Tab. 4.2) . . .. .. .. ... ... ... 36

4.3. Registro de tiempos y caracterizacion de tiempo de cémputo en bridges
(br L) mediante: (a) XDP sobre CLOCK_MONOTONIC y (b) AF_PACKET sobre
CLOCK RT. En (c), registro de tiempos y cdlculo de e2e desde espacio
de usuario (llamada al sistema clock gettime (CLOCK_MONOTONIC). El
tiempo avanza de arriba hacia abajo. Cada sombreado corresponde a un
nodo. Por ejemplo nodo anterior y egress veth corresponden al primer
nodo del esquema. . . . . . ... .. 39
4.4. Comparacion del impacto de registro de tiempos sobre un elemento
mediante XDP y AF_PACKET en el cdlculo de latencia de bridges (brL,
Sec. 4.2.2). . . Lo 40
4.5. Comparacion de resultados de calculo de e2e.nic a partir del registro
de tiempos en tramas mediante XDP y AF_PACKET. El caso Default se

anade como referencia (ver texto). . . . . . ... ... 41

71



4.6.
4.7.
4.8.

0.1
0.2
2.3.
0.4.
2.5.

C.1.

D.1.
D.2.
D.3.
D.4.
D.5.
D.6.

Comparacién de latencias. Configuraciéon CONF-1 (Tab. 4.1) . . . . . . 42
Comparacion de latencias. Configuraciéon CONF-2 (Tab. 4.1) . . . . . . 43
Resultados con tres permutaciones en la asignacion de procesos a los

cuatro nucleos disponibles en CONF-3 . . . . ... .. ... ... ... 44
Retardo en el envio de tramas (configuracion CONF-2 (Tab. 4.1). . . . 49
Disposicion de taprio y netem para la emulacion del tiempo de transmision 51
Latencia de las tramas asociadas a diferentes flujos . . . . . . . .. .. 54
Planificacién y Paso de tramas asociadas al bridge S1 . . . . . . .. .. 55
Planificacién y Paso de tramas asociadas al bridge S2 . . . . . . . . .. 56
IEI DRPC-240 TGL . . . . . . . . . . . 111
Medicion de la latencia sendL con la solucion basada en AF_PACKET . . 114
medicion de la latencia sendL con la solucion basada en XDP . . . . . 114
Medicion de la latencia arrL con la solucién basada en XDP . . . . . 115
Medicion de la latencia arrL con la solucién basada en AF PACKET . . 115
Medicion de la latencia e2e . . . . . . . . ... 116
Medicion de la latencia e2e.nic con la solucién basada en AF_PACKET . 117

72



Lista de Tablas

2.1.
2.2.

4.1.

4.2.

o.1.

Asignacién de prioridades a distintos tipos de trafico [20] . . . . . . ..
Tipos de trafico en redes TSN [21] . . . . . . .. ... ... ... ...

Plataformas hardware usadas en la experimentacion. La distribucién
Linux es en todo los casos Ubuntu 20.04 TLS con kernel 5.2.21 (misma
version, en su caso, del parche PREEMPTRT . . . . . . . ... ... ...
Caracteristicas de los marcadores temporales usados para calculo de la-
tencias en los diferentes experimentos. U/K: lectura en espacio de usua-

rio /de kernel. . .. ..o

Flujos del Use Case . . . . . . . . . . . . . . .

73



74



Anexos

75






Anexos A

Puesta en Marcha de Mininet

Para la instalacién de Mininet se han seguido los pasos de [39]. Se ha instalado la
version 2.3.0. Algunos de los enlaces del script de instalacion no funcionan correcta-

mente y ha sido necesario actualizarlos.

Una vez instalado Mininet se ha procedido a instalar un kernel 5.2.21-rt15, y aplicar
el parche PREEMPT RT y el parche que aumenta el niimero de colas de los virtual ethernet

pairs:

mkdir kernel
cd kernel

wget https://mirrors.edge.kernel.org/pub/ \
linux/kernel/v5.x/linux-5.2.21.tar.gz

t
zfipsf//mirrors.edge.kernel.org/pub/linux/kernel/ \
projects/rt/5.2/patch-5.2.21-rt15.patch.gz
tar -xzf linux-5.2.21.tar.gz
xz -d patch-5.2.21-rt15.patch.gz
git clone https://github.com/ulbricht-inr/MininetTSN

cp MininetTSN-master/diif.patch linux-5.2.21/drivers/net

cd drivers/net
patch -p4 < diff.patch

cd ../..

patch -pl < ../patch-5.2.21-rt15.patch

Ademas también es necesario utilizar el compilador gce v8 en caso de utilizar una

versiéon mas moderna el kernel no se compilard con éxito.

7



Una vez aplicados los parches y modificado el compilador, se sigue la rutina habitual
de parcheado y construccion de un kernel de Linux. Puede encontrarse informacién para

hacerlo de forma nativa en Ubuntu por ejemplo en [42].
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Anexos B

Resultado Planificacion

B.1. Problema ILP

/*x kxkx flow O *xk*x *x/
/* Frame period: 10000 microseconds */
/* Frame transmission time: 100 microseconds */
/* Traversed nodes: [(1001, 1), (1, 2), (2, 1003)] */
/* Start node: (1001, 1) */
/* End nodes: {(2, 1003)} */
/* Required end-to-end time: 10000 microseconds */
/* Weight for WFQ: 1 */
/% kkkx flow 1 *kkkk x/
/* Frame period: 20000 microseconds */
/* Frame transmission time: 100 microseconds */
/* Traversed nodes: [(1002, 1), (1, 2), (2, 1003)] */
/* Start node: (1002, 1) */
/* End nodes: {(2, 1003)} */
/* Required end-to-end time: 20000 microseconds */
/* Weight for WFQ: 1 */
/% kkxkx flow 2 *kkkk x/
/* Frame period: 30000 microseconds */
/* Frame transmission time: 100 microseconds */
/* Traversed nodes: [(1004, 2), (2, 1003)] */
/* Start node: (1004, 2) */
/* End nodes: {(2, 1003)} */
/* Required end-to-end time: 30000 microseconds */

/* Weight for WFQ: 1 */
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/* Hyperperiod: 60000 microseconds */

/* Number of hyperperiods to anayze: 2 */

/* 9 windows in node/port (1, 2) with (Flow, Frame) order: [(0, 0), (1, 0), (0, 1),
(0, 2), (1, 1), (0, 3), (0, 4), (1, 2), (0, B)] =/

/* 11 windows in node/port (2, 1003) with (Flow, Frame) order: [(2, 0), (0, 0), (1,
0, (0, 1, (, 2, (1, 1), (2, 1), (0, 3), (0, 4, (1, 2), (0, 5)] */

/* 6 windows in node/port (1001, 1) with (Flow, Frame) order: [(0, 0), (0, 1), (O,
(0, 3), (0, 4), (0, 5)] =/

/* 2 windows in node/port (1004, 2) with (Flow, Frame) order: [(2, 0), (2, 1)] */
/* 3 windows in node/port (1002, 1) with (Flow, Frame) order: [(1, 0), (1, 1), (1,
*/

/* Maximum number of windows per port: 11 */

/* Objective function */

max: timeMargin;

/* Flow offset constraints (for each flow) */

/* 0 <= flow_offset (default unless free variable)x*/
/* flow_offset < flow_period */

stOoffset < 10000;

stloffset < 20000;

st2o0ffset < 30000;

/* Frame ready constraints from source end-station (for each frame) */

/* frame_ready = flow_period*num_frame + flow_offset */

st0frOswl00lptiready = 0 + stOoffset;

st0friswl001lptiready = 10000 + stOoffset;
st0fr2swl001ptiready = 20000 + stOoffset;
st0fr3swl001ptiready = 30000 + stOoffset;
st0fr4swl001lptiready = 40000 + stOoffset;
st0fr5swl001ptiready = 50000 + stOoffset;
st1frOswl002ptiready = 0 + stloffset;

stlfriswl002ptiready = 20000 + stloffset;
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st1fr2swl002ptiready = 40000 + stloffset;
st2frOswl004pt2ready = 0 + st2offset;
st2fri1swl004pt2ready = 30000 + st2offset;

/* Frame start in first switch constraints (for each frame) */

/* frame_ready <= frame_start */

st0frOsw1001ptiready
stO0friswl001ptiready
stO0fr2sw1001ptiready
st0fr3swl001ptiready
stO0fr4swlO0lptiready
stOfrbswl001ptiready
stO0frOswlpt2ready
stOfriswlpt2ready
stO0fr2swlpt2ready
stO0fr3swlpt2ready
stOfr4swlpt2ready
stOfr5swipt2ready
st0frOsw2pt1003ready
stOfrisw2pt1003ready
st0fr2sw2pt1003ready
st0fr3sw2pt1003ready
st0fr4sw2pt1003ready
stOfrb5sw2pt1003ready
st1frOsw1002ptiready
st1friswl002ptiready
stlfr2swl002ptiready
stlfrOswlpt2ready <=
stlfriswlpt2ready <=
stlfr2swipt2ready <=
st1frOsw2pt1003ready
st1frisw2pt1003ready
st1fr2sw2pt1003ready
st2frOsw1004pt2ready
st2friswl004pt2ready
st2frOsw2pt1003ready

<=

st0frOswl001lptistart;
stOfriswlOOlptistart;
st0fr2swl001ptistart;
st0fr3swl001ptistart;
stOfr4swlOOlptistart;
stOfrbswlO0lptistart;

stOfrOswlpt2start;

stOfriswlpt2start;

stOfr2swipt2start;

stOfr3swlpt2start;

stOfr4swipt2start;

stOfr5swipt2start;

stO0frOsw2pt1003start;
stOfrlsw2pt1003start;
stOfr2sw2pt1003start;
st0fr3sw2pt1003start;
stOfr4sw2pt1003start;
stOfrbsw2pt1003start;
st1frOswl002ptistart;
st1friswl002ptistart;
stlfr2swl002ptistart;

stlfrOswlpt2start;

stlfriswlpt2start;

stlfr2swlpt2start;

st1frOsw2pt1003start;
stlfrisw2pt1003start;
st1fr2sw2pt1003start;
st2frOswl1004pt2start;
st2frlswl004pt2start;
st2frOsw2pt1003start;
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st2frisw2pt1003ready <= st2frlsw2pt1003start;

/* Frame completion constraints */

/* flowXframeYswitchZcomplete = flowXframeYVYswitchZstart + flowXframeYtransmissionT
st0frOswl00lpticomplete = stOfrOswlOOlptlistart + 100;
stO0frOswlpt2complete = stOfrOswlpt2start + 100;
st0frOsw2pt1003complete = stO0frOsw2pt1003start + 100;
stO0friswl00lpticomplete = stOfriswlOOlptistart + 100;
stOfriswlpt2complete = stOfrilswlpt2start + 100;
stO0frisw2pt1003complete = stOfrlsw2pt1003start + 100;
st0fr2swl00lpticomplete = stOfr2swl0Olptlistart + 100;
stOfr2swipt2complete = stOfr2swlpt2start + 100;
st0fr2sw2pt1003complete = stOfr2sw2pt1003start + 100;
st0fr3swl001lpticomplete = stO0fr3swl00lptistart + 100;
stOfr3swlpt2complete = stOfr3swlpt2start + 100;
st0fr3sw2pt1003complete = stOfr3sw2pt1003start + 100;
st0fr4swl00lpticomplete = stOfr4swlOOlptistart + 100;
stOfrdswipt2complete = stOfrdswlpt2start + 100;
st0frdsw2pt1003complete = stOfr4sw2pt1003start + 100;
stO0frbswl00lpticomplete = stOfrbswl0Olptlistart + 100;
stOfrbswilpt2complete = stOfrbswlpt2start + 100;
st0frb5sw2pt1003complete = stOfrbsw2pt1003start + 100;
st1frOswl002pticomplete = stlfrOswl002ptistart + 100;
stlfrOswlpt2complete = stlfrOswlpt2start + 100;
st1frOsw2pt1003start + 100;
stlfriswl002ptistart + 100;

st1frOsw2pt1003complete

st1friswl002pticomplete
stlfriswlpt2complete = stlfriswlpt2start + 100;

stlfrlsw2pt1003start + 100;
stlfr2swl002ptistart + 100;

stlfrisw2pt1003complete

st1fr2swl002pticomplete
stlfr2swipt2complete = stilfr2swipt2start + 100;

stlfr2sw2pt1003complete = stlfr2sw2pt1003start + 100;
st2frOswl1004pt2complete = st2frOswl004pt2start + 100;
st2frOsw2pt1003complete = st2frOsw2pt1003start + 100;
st2friswl004pt2complete = st2frlswl004pt2start + 100;

st2frisw2pt1003complete = st2frlsw2pt1003start + 100;
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/* Path completion constraints */

/* flowXframeYswitchZcomplete + (propagation_time+processing_time) <= flowXframeYsw
st0frOswl001lpticomplete + 10 <= stOfrOswlpt2ready;
stOfrlswlOOlpticomplete + 10 <= stOfrlswlpt2ready;
st0fr2swl00lpticomplete + 10 <= stOfr2swlpt2ready;
st0fr3swl001lpticomplete + 10 <= stOfr3swlpt2ready;
stOfr4swl00lpticomplete + 10 <= stOfrdswipt2ready;
st0frb5swl001lpticomplete + 10 <= stOfrbSswlpt2ready;
stOfrOswlpt2complete + 10 <= stO0frOsw2pt1003ready;
stOfriswlpt2complete + 10 <= stOfrilsw2pt1003ready;
stOfr2swipt2complete + 10 <= stO0fr2sw2pt1003ready;
stOfr3swilpt2complete + 10 <= stO0fr3sw2pt1003ready;
stOfr4swlpt2complete + 10 <= stOfr4sw2pt1003ready;
stOfrbswlpt2complete + 10 <= stO0frb5sw2pt1003ready;
st1frOswl002pticomplete + 10 <= stlfrOswlpt2ready;

stlfriswl002pticomplete + 10 <= stlfrilswlpt2ready;

A
I

st1fr2swl002pticomplete + 10 stlfr2swipt2ready;
st1frOswlpt2complete + 10 <= st1frOsw2pt1003ready;
stlfriswlpt2complete + 10 <= stlfrlsw2pt1003ready;
stlfr2swipt2complete + 10 <= stlfr2sw2pt1003ready;
st2frOsw1004pt2complete + 10 <= st2frOsw2pt1003ready;

st2friswl004pt2complete + 10 <= st2frisw2pt1003ready;

/* Frame order constraints */

/* flowXframeYswitchZcomplete <= flowXframeY+lswitchZstart */
st0frOswl001lpticomplete <= stOfrlswl0O0lptlstart;
stO0friswl001lpticomplete <= stOfr2swl00lptlstart;
stO0fr2sw1001pticomplete <= stOfr3swlOOlptlstart;
st0fr3swl001lpticomplete <= stOfr4swl0Olptlstart;
st0fr4swlO00lpticomplete <= stOfrbswlOOlptlstart;
stOfrOswlpt2complete <= stOfrlswlpt2start;
stOfriswlpt2complete <= stOfr2swilpt2start;
stOfr2swipt2complete <= stOfr3swlpt2start;
stO0fr3swlpt2complete <= stOfrédswlpt2start;
stOfr4swlpt2complete <= stOfrbswlpt2start;
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st0frOsw2pt1003complete
stO0frisw2pt1003complete
st0fr2sw2pt1003complete
st0fr3sw2pt1003complete
stO0fr4sw2pt1003complete
st1frOswl002pticomplete
st1lfriswl002pticomplete
stlfrOswlpt2complete <=
stlfriswlpt2complete <=
st1frOsw2pt1003complete
stlfrisw2pt1003complete
st2frOswl004pt2complete
st2frOsw2pt1003complete

stOfrisw2pt1003start;
stO0fr2sw2pt1003start;
stO0fr3sw2pt1003start;
stO0frdsw2pt1003start;
stOfrbsw2pt1003start;
stlfriswl002ptistart;
st1fr2swl002ptistart;
stlfriswlpt2start;

stlfr2swipt2start;

<= stlfrlsw2pt1003start;
<= stlfr2sw2pt1003start;
<= st2frlswl004pt2start;
<= st2frlsw2pt1003start;

/* Gate open/close constraints (ordered gates) */

/*
/*
/%
/%
/%
/%
/*
/*
/*
/*
0
swlpt2gtOwOgapOpenOffset <= swlpt2gtOwOgapCloseOffset;

0 == gateFirstgapOpenOffset */
gateFirstgapCloseOffset = gateXopenOffset */

gateXopenOffset <= gateXcloseOffset */

gateXcloseOffset = gateXgapOpenOffset */

gateXgapOpenOffset <= gateXgapCloseOffset */
gateXgapCloseOffset = gateX+lopenOffset */

gateLastopenOffset <= gateLastcloseOffset */

gateLastcloseOffset = gateLastgapOpenOffset */

gateLastgapOpenOffset <= gatelastgapCloseOffset */

gateLastgapCloseOffset = Hyperperiod */

swlpt2gtOwOgapOpenOffset;

swlpt2gtOwOgapCloseOffset swlpt2gtOwOopenOffset;

swilpt2gtOwlOopenOffset <= swlpt2gtOwOcloseOffset;

swlpt2gtOwOcloseOffset = swilpt2gtlwOgapOpenOffset;

swlpt2gtlwOgapOpenOffset <= swilpt2gtlwOgapCloseOffset;

swlpt2gtlwOgapCloseOffset swlpt2gtlwOopenOffset;

swlpt2gtiwOopenOffset <= swlpt2gtlwOcloselffset;

swlpt2gtlwOcloseOffset = swlpt2gtOwlgapOpenOffset;

swlpt2gtOwlgapOpenOffset <= swlpt2gtOwlgapCloseOffset;

swilpt2gtOwlgapCloseOffset swlpt2gtOwlopenOffset;
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swlpt2gtOwlopenOffset <= swlpt2gtOwlcloseOffset;

swlpt2gtOwlcloseOffset = swlpt2gtOw2gapOpenOffset;
swlpt2gtOw2gaplpenOffset <= swlpt2gtOw2gapCloselffset;
swlpt2gtOw2gapCloselffset = swlpt2gtOw2openOffset;
swlpt2gtOw2openOffset <= swlpt2gtOw2closeOffset;
swlpt2gtOw2closelffset = swilipt2gtlwlgapOpenOffset;
swlpt2gtiwlgapOpenOffset <= swlpt2gtlwlgapCloseOffset;
swipt2gtiwlgapCloseOffset = swipt2gtiwlopenOffset;
swlpt2gtlwlopenOffset <= swlpt2gtlwlcloselffset;
swlpt2gtlwlcloseOffset = swlpt2gtOw3gapOpenOffset;
swlpt2gtOw3gaplpenOffset <= swlpt2gtOw3gapCloselffset;
swlpt2gtOw3gapCloselffset = swlpt2gtOw3openOffset;
swlpt2gtOw3openOffset <= swlpt2gtOw3closeOffset;
swlpt2gtOw3closelffset = swlpt2gtOwdgapOpenOffset;
swlpt2gtOwd4gapOpenOffset <= swlpt2gtOwdgapCloseOffset;
swlpt2gtOwdgapCloseOffset = swlpt2gtOwdopenOffset;
swlpt2gtOwdopenOffset <= swlpt2gtOwdcloselffset;
swlpt2gtOwdcloseOffset = swilpt2gtlw2gapOpenOffset;
swilpt2gtiw2gapOpenOffset <= swlpt2gtlw2gapCloselffset;
swilpt2gtiw2gapClose0ffset = swlpt2gtlw2openOffset;
swlpt2gtiw2openOffset <= swlpt2gtlw2closeOffset;
swlpt2gtiw2closelffset = swlpt2gtOwbgapOpenOffset;
swlpt2gtOwbgapOpenOffset <= swlpt2gtOwbgapCloseOffset;
swlpt2gtOwbgapCloselffset = swlpt2gtOwbopenOffset;
swlpt2gtOwbopenOffset <= swlpt2gtOwbcloselffset;

swlpt2gtOwbcloselffset = swlpt2gtlwbgapOpenOffset;
swilpt2gtiwbgaplpenOffset <= swlpt2gtlwbgapCloselffset;

swlpt2gtlwbgapClose0ffset = 60000;

0 = sw2pt1003gt2wOgapOpenOffset;

sw2pt1003gt2wOgapOpenlffset <= sw2pt1003gt2wlgapCloselffset;
sw2pt1003gt2wlgapCloselffset = sw2pt1003gt2wlopenOffset;
sw2pt1003gt2wlopenOffset <= sw2pt1003gt2wOcloselffset;
sw2pt1003gt2wlcloselffset

sw2pt1003gtOwOgapOpenOffset;
sw2pt1003gtOwOgapOpenlffset <= sw2pt1003gtOwOgapCloselffset;
sw2pt1003gtOwlgapCloselffset = sw2pt1003gtOwlOopenlffset;
sw2pt1003gtOwlopenOffset <= sw2pt1003gtOwOcloselffset;
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sw2pt1003gtOwOcloselffset = sw2pt1003gtlwOgaplpenOffset;
sw2pt1003gtiwOgapOpenOffset <= sw2pt1003gtiwlOgapCloselffset;
sw2pt1003gtilwOgapCloselffset = sw2pt1003gtiwlopenOffset;
sw2pt1003gtiwlopenOffset <= sw2pt1003gtliwOcloselffset;
sw2pt1003gtiwOcloselffset

sw2pt1003gtOwlgapOpenOffset;
sw2pt1003gtOwlgapOpenOffset <= sw2pt1003gtOwlgapCloselffset;
sw2pt1003gtOwlgapCloselffset = sw2pt1003gtOwlopenOffset;
sw2pt1003gtOwlopenOffset <= sw2pt1003gtOwlcloselffset;
sw2pt1003gtOwlcloseOffset

sw2pt1003gtOw2gaplpenOffset;
sw2pt1003gtOw2gapOpenOffset <= sw2pt1003gtOw2gapCloselffset;
sw2pt1003gtOw2gapCloselffset = sw2pt1003gtOw2openlffset;
sw2pt1003gtOw2openOffset <= sw2pt1003gtOw2closelffset;
sw2pt1003gtOw2closelffset

sw2pt1003gtiwlgapOpenOffset;
sw2pt1003gtiwlgapOpenOffset <= sw2pt1003gtiwlgapCloselffset;
sw2pt1003gtiwlgapCloselffset = sw2pt1003gtiwlopenOffset;
sw2pt1003gtiwlopenOffset <= sw2pt1003gtiwlcloselffset;

sw2pt1003gtiwlcloselffset = sw2pt1003gt2wlgaplpenOffset;
sw2pt1003gt2wlgapOpenOffset <= sw2pt1003gt2wlgapCloselffset;
sw2pt1003gt2wlgapCloselffset = sw2pt1003gt2wlopenOffset;
sw2pt1003gt2wlopenOffset <= sw2pt1003gt2wlcloselffset;

sw2pt1003gt2wlicloselffset

sw2pt1003gtOw3gapOpenlffset;
sw2pt1003gtOw3gapOpenOffset <= sw2pt1003gtOw3gapCloselffset;
sw2pt1003gtOw3gapCloselffset = sw2pt1003gtOw3openOffset;
sw2pt1003gtOw3openOffset <= sw2pt1003gtOw3closelffset;
sw2pt1003gtOw3closelffset

sw2pt1003gtOwdgapOpenOffset;
sw2pt1003gtOwdgapOpenOffset <= sw2pt1003gtOwdgapCloselffset;
sw2pt1003gtOwdgapCloselffset = sw2pt1003gtOwdopenOffset;
sw2pt1003gtOwdopenOffset <= sw2pt1003gtOwdcloselffset;
sw2pt1003gtOwdcloselffset

sw2pt1003gtiw2gapOpenlffset;
sw2pt1003gtiw2gapOpenOffset <= sw2pt1003gtiw2gapCloselffset;
sw2pt1003gtiw2gapCloselffset = sw2pt1003gtiw2openOffset;
sw2pt1003gtiw2openOffset <= sw2pt1003gtiw2closelffset;
sw2pt1003gtiw2closeOffset

sw2pt1003gtOwbgapOpenOffset;
sw2pt1003gtOwbgapOpenlffset <= sw2pt1003gtOwbgapCloselffset;
sw2pt1003gtOwbgapCloselffset = sw2pt1003gtOwbopenOffset;
sw2pt1003gtOwbopenOffset <= sw2pt1003gtOwbcloselffset;
sw2pt1003gtOwbcloselffset = sw2pt1003gtiwbgaplpenOffset;
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sw2pt1003gtiwbgapOpenlffset <= sw2pt1003gtlwbgapCloselffset;
sw2pt1003gtlwbgapCloselffset = 60000;

0 = swl001ptlgtOwOgapOpenOffset;

sw1l001pt1lgtOwOgapOpenOffset <= swl001ptlgtOwOgapCloseOffset;
swl001ptlgtOwOgapCloseOffset = swl001ptlgtOwOopenOffset;
sw1001pt1gtOwOopenOffset <= swl001lptlgtOwOcloseOffset;
sw1001ptigtOwOcloseOffset

swl001ptlgtOwlgapOpenOffset;
swl001ptlgtOwlgapOpenOffset <= swl001lptlgtOwlgapCloseOffset;
swl001ptlgtOwlgapCloseOffset = swl001lptlgtOwlopenOffset;
swl001lptlgtOwlopenOffset <= swl00lptlgtOwlcloseOffset;
swl001lptlgtOwlcloseOffset

sw1l001ptlgtOw2gapOpenOffset;
swl001ptlgtOw2gapOpenOffset <= swl001lptlgtOw2gapCloselffset;
swl001ptlgtOw2gapCloselffset = swl001lptlgtOw2openOffset;
sw1001ptlgtOw2openOffset <= swl001lptlgtOw2closeOffset;
swl001lptlgtOw2closeOffset

sw1l001ptlgtOw3gapOpenOffset;
swl001ptlgtOw3gapOpenOffset <= swl001lptlgtOw3gapCloselffset;
swl001ptlgtOw3gapCloseOffset = swl001lptlgtOw3openOffset;
swl001ptlgtOw3openOffset <= swl001lptlgtOw3closelffset;
swl001ptlgtOw3closeOffset

swl001ptigtOwd4gapOpenOffset;
sw1l001ptlgtOwdgapOpenOffset <= swl001lptlgtOwdgapCloselOffset;
swl001ptlgtOwdgapCloseOffset = swl001lptlgtOwdopenOffset;
sw1001ptlgtOwdopenOffset <= swl001lptlgtOwdcloseOffset;
swl001lptlgtOwdcloseOffset

sw1001ptlgtOwbgapOpenOffset;
swl001ptlgtOwbgapOpenOffset <= swl001lptlgtOwbgapCloselffset;
swl001ptlgtOwbgapCloseOffset = swl001lptlgtOwbopenOffset;
swl001ptlgtOwbopenOffset <= swl001lptlgtOwbcloselffset;
swl001ptlgtOwbcloseOffset

swl001ptligtiw6gapOpenOffset;
swl001ptlgtlwbgapOpenOffset <= swl00lptlgtlwbgapCloselffset;
swl001ptlgtlwbgapCloseOffset = 60000;

0 = swl004pt2gt2wOgapOpenOffset;

sw1004pt2gt2wOgapOpenOffset <= swl004pt2gt2wlgapCloselffset;
sw1004pt2gt2wlgapCloselffset = swl004pt2gt2wlopenOffset;
sw1l004pt2gt2wlopenlffset <= swl004pt2gt2wOcloselffset;
sw1004pt2gt2wlcloselffset

sw1l004pt2gt2wlgapOpenOffset;
sw1004pt2gt2wigapOpenOffset <= swl004pt2gt2wligapCloseOffset;
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sw1004pt2gt2wlgapCloselffset = swl004pt2gt2wlopenOffset;
sw1004pt2gt2wlopenOffset <= swl004pt2gt2wlcloselffset;
sw1004pt2gt2wlcloselffset

sw1004pt2gt3w2gaplpenOffset;
sw1l004pt2gt3w2gaplpenlffset <= swl004pt2gt3w2gapCloselffset;
sw1004pt2gt3w2gapCloselffset = 60000;

0 = swl002ptlgtiwOgapOpenOffset;

sw1002ptigtiwOgapOpenOffset <= swl002ptigtiwOgapCloselffset;
sw1002ptligtlwOgapCloseOffset = swl002ptligtiwOopenOffset;
sw1002ptligtiwOopenOffset <= swl002ptlgtlwlOcloselffset;
sw1002ptligtiwOcloseOffset

sw1002ptigtlwlgapOpenOffset;
swl002ptigtiwlgapOpenOffset <= swl002ptlgtlwlgapCloselffset;
swl002ptigtiwlgapCloselffset = swl002ptigtlwlopenOffset;
sw1002ptigtiwlopenOffset <= swl002ptigtiwlcloseOffset;
swl002ptigtiwlcloseOffset

sw1002ptigtlw2gapOpenOffset;
sw1002ptigtiw2gapOpenlffset <= swl002ptlgtlw2gapCloselffset;
swl002ptigtiw2gapCloselffset = swl002ptligtiw2openOffset;
swl002ptigtiw2openOffset <= swl002ptlgtlw2closelffset;
swl002ptigtiw2closelffset

sw1002ptigt2w3gapOpenOffset;
sw1002ptigt2w3gapOpenlffset <= swl002ptlgt2w3gapCloselffset;
sw1l002ptligt2w3gapCloselffset = 60000;

/* Gap calculation */

/* brigeXportYgap = sum(bridgeXportYgaps) */

/* maxgap = sum(bridgeXportYgap) */

swlpt2gap = + swlpt2gtOwOgapCloseOffset - swlpt2gtOwOgapOpenOffset
swlpt2gtlwOgapCloseOffset - swlpt2gtlwOgapOpenOffset + swlpt2gtOwlgapCloseOffset -

swlpt2gtOwlgapOpenOffset + swlpt2gtOw2gapCloselffset - swlpt2gtOw2gapOpenOffset +
swlpt2gtlwlgapCloseOffset - swlpt2gtlwlgapOpenOffset + swlpt2gtOw3gapCloseOffset -
swlpt2gtOw3gapOpenOffset + swlpt2gtOwdgapCloselffset - swlpt2gtOw4dgapOpenOffset +
swlpt2gtlw2gapCloseOffset - swlpt2gtlw2gapOpenOffset + swlpt2gtOwbgapCloseOffset -

swlpt2gtOwbgapOpenOffset + swlpt2gtlwbgapCloselffset - swlpt2gtlwbgapOpenOffset;

sw2pt1003gap = + sw2pt1003gt2wlOgapCloselffset - sw2pt1003gt2wOgaplpenOffset +
sw2pt1003gtOwlgapCloselffset - sw2pt1003gtOwlOgaplpenOffset +
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sw2pt1003gtiwOgapCloseOffset - sw2pt1003gtlwOgapOpenOffset +
sw2pt1003gtOwlgapCloseOffset - sw2pt1003gtOwlgapOpenOffset +
sw2pt1003gtOw2gapCloselffset - sw2pt1003gtOw2gaplpenOffset +
sw2pt1003gtiwlgapCloseOffset - sw2pt1003gtliwlgapOpenOffset +
sw2pt1003gt2wligapCloselffset - sw2pt1003gt2wlgaplpenOffset +
sw2pt1003gtOw3gapCloselffset - sw2pt1003gtOw3gaplpenOffset +
sw2pt1003gtOwdgapCloselffset - sw2pt1003gtOwdgapOpenOffset +
sw2pt1003gtiw2gapCloselffset - sw2pt1003gtiw2gapOpenOffset +
sw2pt1003gtOwbgapCloselffset - sw2pt1003gtOwbgapOpenOffset +
sw2pt1003gtiwbgapCloselffset - sw2pt1003gtlwbgapOpenOffset;
swl00lptlgap = + swl001lptlgtOwOgapCloseOffset - swl001lptlgtOwOgapOpenOffset +
swl001lptlgtOwlgapCloseOffset - swl0O0lptlgtOwlgapOpenOffset +
swl001ptlgtOw2gapCloselffset - swl001lptlgtOw2gapOpenOffset +
swl001ptlgtOw3gapCloselffset - swl001lptlgtOw3gapOpenOffset +
swl001ptlgtOwdgapCloseOffset - swl001lptlgtOwdgapOpenOffset +
swl001ptlgtOwbgapCloseOffset - swl001lptlgtOwbgapOpenOffset +
swl001lptlgtlwb6gapCloseOffset - swl0OlptlgtlwbgapOpenOffset;

swl004pt2gap = + swl004pt2gt2wlOgapCloselffset - swl004pt2gt2wlOgapOpenOffset +
sw1l004pt2gt2wlgapCloselffset - swl004pt2gt2wlgaplOpenOffset +
sw1004pt2gt3w2gapCloselffset - swl004pt2gt3w2gaplpenOffset;

swl002ptigap = + swl002ptligtlwOgapCloseOffset - swl002ptigtlwOgapOpenOffset +
swl002ptigtiwlgapCloseOffset - swl002ptigtlwlgapOpenOffset +
swl002ptigtiw2gapCloselffset - swl002ptligtlw2gapOpenOffset +
swl002ptigt2w3gapCloselffset - swl002ptlgt2w3gaplOpenOffset;

maxgap = + swilpt2gap + sw2ptl1003gap + swl0Olptlgap + swl004pt2gap + swl002ptlgap;

/* Frame start offset constraints */

/* flowXframeYswitchZstart = flowXframeYswitchZoffset + SUM( NUMwindow
flowXframeYswitchZwindowNUMwindow ) */

st0frOswl001ptistart = stOfrOswl00lptloffset + 0 stOfrOswl00lptlwindowOhpO + 60000
st0frOswl1001ptiwindowOhpl;

stO0frOswlipt2start = stOfrOswlpt2offset + 0 stOfrOswlpt2windowOhpO + 60000
st0frOswlpt2windowOhpl;

st0frOsw2pt1003start = stO0frOsw2pt1003offset + 0 stOfrOsw2pt1003windowOhpO + 60000
st0frOsw2pt1003windowOhp1l;
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stOfriswl0O0lptistart = stOfrlswlOOlptloffset + O stOfrlswlOOlptiwindowlhpO
st0friswl001lptiwindowlhpl;

stOfriswlpt2start = stOfrlswlpt2offset + 0 stOfrlswlpt2windowlhpO + 60000
stOfriswlpt2windowlhpl;

stO0frisw2pt1003start = stOfrisw2pt1003offset + 0 stOfrlsw2pt1003windowlhpO
stO0fri1sw2pt1003windowlhpl;

st0fr2swl001lptistart = stOfr2swl00lptloffset + 0 stOfr2swl001ptiwindow2hpO
st0fr2swl001ptiwindow2hpl;

stOfr2swipt2start = stOfr2swipt2offset + 0 stOfr2swlpt2window2hpO + 60000
stO0fr2swlpt2window2hpl;

st0fr2sw2pt1003start = stOfr2sw2pt10030ffset + 0 stOfr2sw2pt1003window2hpO
st0fr2sw2pt1003window2hpl;

st0fr3swl001lptistart = stO0fr3swl00lptloffset + 0 stOfr3swl001lptlwindow3hpO
st0fr3swl001ptiwindow3hpl;

stO0fr3swlpt2start = stOfr3swilpt2offset + 0 stOfr3swlpt2window3hpO + 60000
stO0fr3swlpt2window3hpl;

st0fr3sw2pt1003start = stO0fr3sw2pt1003offset + 0 stOfr3sw2pt1003window3hpO
st0fr3sw2pt1003window3hpl;

st0fr4swl00lptistart = stOfr4swlOOlptloffset + 0 stOfr4swl00lptiwindow4hpO
st0fr4swl001ptiwindow4hpl;

stOfrdswlpt2start = stOfrdswlpt2offset + 0 stOfrdswlpt2window4hpO + 60000
stO0fr4swlpt2windowdhpl;

st0fr4sw2pt1003start = stOfr4sw2pt1003offset + 0 stOfr4sw2pt1003window4hpO
st0fr4sw2pt1003windowdhpl;

st0frb5swl001ptistart = stOfrbswlO0lptloffset + 0 stOfr5swl001ptiwindowbhpO
st0fr5swl001ptiwindowbhpl;

stOfrbswipt2start = stOfrbswilpt2offset + 0 stOfrbswlpt2windowbhpO + 60000
stOfrbswlpt2windowbhpl;

stOfrbsw2pt1003start = stOfrb5sw2pt1003offset + 0 stOfrb5sw2pt1003windowbhpO
st0frb5sw2pt1003windowbhpl;

st1frOswl002ptlistart = st1frOswl002ptloffset + 0 stlfrOswl002ptiwindowOhpO
st1frOswl002ptiwindowOhpl;

stlfrOswlpt2start = stlfrOswlpt2offset + 0 stlfrOswlpt2windowOhpO + 60000
st1frOswlpt2windowOhp1l;

st1frOsw2pt1003start = st1frOsw2pt10030ffset + 0 stlfrOsw2pt1003windowOhpO
st1frOsw2pt1003windowOhp1l;

stlfriswlO02ptistart = stlfriswl002ptloffset + O stlfriswl002ptiwindowlhpO
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stlfriswl002ptiwindowlhpl;

stlfriswlpt2start = stlfrilswlpt2offset + 0 stlfrlswlpt2windowlhpO + 60000
stlfriswlpt2windowlhpl;

stlfrisw2pt1003start = stlfrilsw2pt10030ffset + 0 stlfrlsw2pt1003windowlhpO
stlfrlsw2pt1003windowlhpl;

stlfr2swl002ptistart = stlfr2swl002ptloffset + 0 stlfr2swl002ptlwindow2hpO
st1fr2swl1002ptiwindow2hpl;

stlfr2swipt2start = stlfr2swipt2offset + 0 stlfr2swlpt2window2hpO + 60000
stlfr2swlpt2window2hpl;

st1fr2sw2pt1003start = stlfr2sw2pt1003offset + 0 stlfr2sw2pt1003window2hpO
st1fr2sw2pt1003window2hpl;

st2frOswl004pt2start = st2frOswl004pt2offset + 0 st2frOswl004pt2windowOhpO
st2frOswl1004pt2windowOhpl;

st2frOsw2pt1003start = st2frOsw2pt1003offset + 0 st2frOsw2pt1003windowOhpO
st2frOsw2pt1003windowOhpl;

st2friswl004pt2start = st2friswl004pt2offset + 0 st2frlswl004pt2windowlhpO
st2fri1swl004pt2windowlhpl;

st2frisw2pt1003start = st2frisw2pt1003offset + 0 st2frlsw2pt1003windowlhpO
st2frisw2pt1003windowlhpl;

/* 1 = flowXframeYswitchZwindowO + flowXframeYswitchZwindowl +... */

1 = + stOfrOswl001ptlwindowOhpO + stO0frOswl00lptlwindowOhpl;
= + stOfrOswlpt2windowOhpO + stOfrOswlpt2windowOhpl;
= + st0frOsw2pt1003windowOhpO0 + stOfrOsw2pt1003windowOhpl;
= + stOfri1swl00lptiwindowlhpO + stOfrlswl0O0lptiwindowlhpl;
= + stOfrlswlpt2windowlhpO + stOfrlswlpt2windowlhpl;
= + stOfrilsw2pt1003windowlhp0 + stOfrlsw2pt1003windowlhpl;
= + st0fr2swl001ptiwindow2hpO + stOfr2swl00lptlwindow2hpl;
= + stOfr2swilpt2window2hp0 + stOfr2swlpt2window2hpl;
st0fr2sw2pt1003window2hp0 + stO0fr2sw2pt1003window2hpl;
= + st0fr3swl001lptiwindow3hp0 + stO0fr3swl001lptlwindow3hpl;
= + stOfr3swlpt2window3hp0 + stOfr3swlpt2window3hpl;
= + st0fr3sw2pt1003window3hp0 + stOfr3sw2pt1003window3hpl;
= + stO0fr4swl00lptiwindow4hpO + stOfr4swl0O0lptlwindow4hpl;
= + stOfrdswlpt2window4hpO + stOfrdswlpt2windowdhpl;
= + stO0fr4sw2pt1003window4hp0 + stOfr4sw2pt1003windowdhpl;
= + stO0frbswl001ptlwindowbhpO + stOfrbswl00lptlwindowbhpl;
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= + stOfrbswlpt2windowbhpO + stOfrbswlpt2windowbhpl;
= + stOfrbsw2pt1003windowbhp0 + stOfrbsw2pt1003windowbShpl;
= + st1frOswl002ptiwindowOhpO + st1frOswl002ptlwindowOhpl;

= + stlfrOswlpt2windowOhpO + stlfrOswlpt2windowOhpl;
= + st1frOsw2pt1003windowOhpO + stlfrOsw2pt1003windowOhpl;
= + stlfrlswl002ptlwindowlhpO + stlfrlswl002ptlwindowlhpl;

= + stlfriswlpt2windowlhpO + stlfrilswlpt2windowlhpl;

st1frisw2pt1003windowlhp0 + stlfrlsw2pt1003windowlhpl;

= + stlfr2swl002ptiwindow2hp0 + stlfr2swl002ptiwindow2hpl;

= + stlfr2swlpt2window2hpO + stlfr2swlpt2window2hpl;

= + stlfr2sw2pt1003window2hp0 + stlfr2sw2pt1003window2hpl;
= + st2frOswl1004pt2windowOhpO + st2frOswl1004pt2windowOhpl;
= + st2frOsw2pt1003windowOhp0 + st2frOsw2pt1003windowOhpl;
= + st2fri1swl004pt2windowlhp0 + st2frlswl004pt2windowlhpl;
= + st2fri1sw2pt1003windowlhp0 + st2frilsw2pt1003windowlhpl;
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/* Gate to frame transmission start constraints */

/* gateXopenOffset = flowXframeYswitchZstartoffset

swl001ptigtOwOopenOffset = stOfrOswlOOlptloffset
swlpt2gtOwlOopenOffset = stOfrOswlpt2offset - 500;
sw2pt1003gtOwlopenOffset = stOfrOsw2pt1003offset
swl001lptlgtOwlopenOffset = stOfrlswl0O0lptloffset
swlpt2gtOwlopenOffset = stOfrlswlpt2offset - 500;
stO0frisw2pt10030ffset
swl001ptlgtOw2openOffset = stOfr2swl00lptloffset
swlpt2gtOw2openOffset = stOfr2swipt2offset - 500;
sw2pt1003gtOw2openlffset = stOfr2sw2pt1003offset
swl001ptigtOw3openOffset = stOfr3swlO001lptloffset
swlpt2gtOw3openOffset = stOfr3swlpt2offset - 500;
st0fr3sw2pt1003offset
st0fr4swl001ptloffset
swlpt2gtOwdopenOffset = stOfrdswlpt2offset - 500;
sw2pt1003gtOwdopenOffset = stOfrdsw2pt1003offset
swl001ptlgtOwbopenOffset = stOfrb5swl00lptloffset
swlpt2gtOwbopenOffset = stOfrbswlpt2offset - 500;
sw2pt1003gtOwbopenlffset = stOfrbsw2pt1003offset

sw2pt1003gtOwlopenOffset

sw2pt1003gtOw3openlffset

swl001ptlgtOwdopenOffset
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sw1002ptigtiwOopenOffset =
swlpt2gtlwOopenOffset =
sw2pt1003gtiwlOopenOffset

sw1l002ptigtiwlopenOffset
swilpt2gtiwlopenOffset =
sw2pt1003gtiwlopenOffset =
sw1002ptigtiw2openOffset =
swlpt2gtiw2openOffset =

sw2pt1003gtiw2openOffset

sw1004pt2gt2wlopenOffset
sw2pt1003gt2wlopenOffset
sw1004pt2gt2wlopenOffset

sw2pt1003gt2wlopenOffset

/* Gate to frame transmission complete constraints

st1frOswl002ptloffset
stlfrOswipt2offset - 500;
st1frOsw2pt1003offset
st1friswl002ptloffset
stlfriswlpt2offset - 500;
stlfrisw2pt1003offset
st1fr2swl002ptloffset
st1lfr2swipt2offset - 500;
st1fr2sw2pt1003offset
st2frOsw1004pt2offset
st2frOsw2pt1003offset
st2friswl004pt2offset
st2frisw2pt10030ffset

500;

500;
500;

500;
500;

500;
500;
500;
500;
500;

*/

/* flowXframeYswitchZstartoffset + flowXframeYtransmissionTime

+ MaxClockError =

gateXcloseOffset */

st0frOswl001ptloffset + 100 + 500 = swl001lptlgtOwOcloseOffset;
stOfrOswlpt2offset + 100 + 500 = swlpt2gtOwOcloseOffset;
st0frOsw2pt10030ffset + 100 + 500 = sw2pt1003gtOwOcloselffset;
st0frilswl001lptloffset + 100 + 500 = swl00lptlgtOwlcloseOffset;
stOfrlswlpt2offset + 100 + 500 = swlpt2gtOwlcloseOffset;
stO0frisw2pt1003offset + 100 + 500 = sw2pt1003gtOwlcloseOffset;
st0fr2swl001ptloffset + 100 + 500 = swl001lptlgtOw2closeOffset;
stOfr2swipt2offset + 100 + 500 = swlpt2gtOw2closeOffset;

st0fr2sw2pt1003offset + 100 + 500
st0fr3swl001ptloffset + 100 + 500

sw2pt1003gtOw2closelffset;
swl001ptlgtOw3closeOffset;

stOfr3swilpt2offset + 100 + 500 = swlpt2gtOw3closelffset;

st0fr3sw2pt1003offset + 100 + 500
st0fr4swl001lptloffset + 100 + 500

sw2pt1003gtOw3closelffset;
sw1001ptigtOwdcloseOffset;

stOfrdswlpt2offset + 100 + 500 = swlpt2gtOwdcloseOffset;

st0fr4sw2pt1003offset + 100 + 500
st0fr5swl001ptlioffset + 100 + 500

sw2pt1003gtOwdcloselffset;
swl001ptlgtOwbcloseOffset;

stOfrbswipt2offset + 100 + 500 = swlpt2gtOwbcloseOffset;

stO0frbsw2pt10030ffset + 100 + 500
st1frOswl002ptloffset + 100 + 500

sw2pt1003gtOwbcloselffset;
swl002ptigtiwOcloseOffset;
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stlfrOswlpt2offset + 100 + 500 = swlpt2gtlwOcloseOffset;

st1frOsw2pt1003offset + 100 + 500 = sw2pt1003gtiwOcloseOffset;
stlfriswl002ptloffset + 100 + 500 = swl002ptligtliwlcloseOffset;
stlfriswlpt2offset + 100 + 500 = swlpt2gtiwlcloseOffset;

stlfrisw2pt10030ffset + 100 + 500 = sw2pt1003gtiwlcloselffset;
stlfr2swl002ptloffset + 100 + 500 = swl1l002ptigtiw2closelffset;
stlfr2swipt2offset + 100 + 500 = swlpt2gtiw2closeOffset;

st1fr2sw2pt1003offset + 100 + 500 = sw2pt1003gtiw2closelffset;
st2frOswl1004pt2offset + 100 + 500 = swl004pt2gt2wlOcloseOffset;
st2frOsw2pt1003offset + 100 + 500 = sw2pt1003gt2wlOcloseOffset;
st2friswl004pt2offset + 100 + 500 = swl004pt2gt2wicloseOffset;
st2frisw2pt1003offset + 100 + 500 = sw2pt1003gt2wicloselffset;

/* Time margin constraints */

/* time_margin = flowXtime_margin + flowYtime_margin... */

timeMargin = + stOtimeMargin + stltimeMargin + st2timeMargin;

/* flowXtime_margin <= flowXframeYtime_margin */
stOtimeMargin <= stOfrOtimeMargin;
stOtimeMargin <= stOfrltimeMargin;
stOtimeMargin <= stOfr2timeMargin;
stOtimeMargin <= stOfr3timeMargin;
stOtimeMargin <= stOfr4timeMargin;
stOtimeMargin <= stOfr5timeMargin;
stltimeMargin <= stlfrOtimeMargin;
stltimeMargin <= stlfrltimeMargin;
stltimeMargin <= stlfr2timeMargin;
st2timeMargin <= st2frOtimeMargin;

st2timeMargin <= st2frltimeMargin;

/* flowXframeYtime_margin <= e2e_requirement - flowXframeYdelay */
stOfrOtimeMargin = 10000 - stOfrOdelay;
stOfritimeMargin = 10000 - stOfrldelay;
stOfr2timeMargin = 10000 - stOfr2delay;
stOfr3timeMargin = 10000 - stOfr3delay;
stOfr4timeMargin = 10000 - stOfrddelay;
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stOfr5timeMargin = 10000 - stOfrbdelay;
stlfrOtimeMargin = 20000 - stlfrOdelay;
stlfritimeMargin = 20000 - stlfrildelay;
stlfr2timeMargin = 20000 - stlfr2delay;
st2frOtimeMargin = 30000 - st2frOdelay;
st2fritimeMargin = 30000 - st2frldelay;

/* Frame delay constraints */

/* frame_delay = frame_complete + (propagation_time+processing_time)
- frame_offset */

st0frOsw2pt1003complete + 10 - stO0frOswl0Olptlready <= stOfrOdelay;
stOfrisw2pt1003complete + 10 - stOfrlswlOOlptlready <= stOfrldelay;
stO0fr2sw2pt1003complete + 10 - stOfr2swl0O0lptlready <= stOfr2delay;
st0fr3sw2pt1003complete + 10 - st0fr3swl00lptliready <= stOfr3delay;
st0fr4sw2pt1003complete + 10 - stOfr4swlOOlptlready <= stOfrédelay;

st0frb5sw2pt1003complete + 10 - stOfrbswl00lptliready <= stOfrbdelay;
st1frOsw2pt1003complete + 10 - stl1frOswl002ptliready <= stlfrOdelay;
stlfrisw2pt1003complete + 10 - stlfrlswl002ptliready <= stlfrldelay;
stlfr2sw2pt1003complete + 10 - stlfr2swl002ptlready <= stlfr2delay;
st2frOsw2pt1003complete + 10 - st2frOswl004pt2ready <= st2frOdelay;
st2frilsw2pt1003complete + 10 - st2frlswl004pt2ready <= st2frildelay;

/* Jitter constraints */

/* flowXaverage_delay = sum(flowXframeYdelay) / max_frames */

stOavgDelay = + 0.166667 stOfrOdelay + 0.166667 stOfrldelay + 0.166667 stOfr2delay
+ 0.166667 stOfr3delay + 0.166667 stOfrddelay + 0.166667 stOfrbdelay;

+ 0.333333 stlfrOdelay + 0.333333 stlfrldelay + 0.333333 stlfr2delay;
+ 0.500000 st2frOdelay + 0.500000 st2frildelay;

stlavgDelay

st2avgDelay

/* flowXaverage_delay - flowXframeYdelay <= flowXframeYjitter */
/* flowXframeYdelay - flowXaverage_delay <= flowXframeYjitter */
stOavgDelay - stOfrOdelay <= stOfrOjitter;
st0frOdelay - stOavgDelay <= stOfrOjitter;
stOavgDelay - stOfrldelay <= stOfrljitter;
stOfrldelay - stOavgDelay <= stOfrljitter;

95



stOavgDelay
stOfr2delay
stOavgDelay
stO0fr3delay
stOavgDelay
stOfrddelay
stOavgDelay
stOfrbdelay
stlavgDelay
st1frOdelay
stlavgDelay
stlfrldelay
stlavgDelay
stlfr2delay
st2avgDelay
st2frOdelay
st2avgDelay
st2frldelay

/* flowXframeYjitter <=
stOfrOjitter
stOfrljitter
stOfr2jitter
stOfr3jitter
stOfrdjitter
stOfr5jitter
stifrOjitter
stifrljitter
stlfr2jitter
st2frOjitter
st2frljitter

/* flowXjitter <=

stOfr2delay
stOavgDelay
stO0fr3delay
stOavgDelay
stOfrddelay
stOavgDelay
stOfrbdelay
stOavgDelay
st1frOdelay
stlavgDelay
stlfrldelay
stlavgDelay
stlfr2delay
stlavgDelay
st2frOdelay
st2avgDelay
st2frldelay
st2avgDelay

stOjitter;
stOjitter;
stOjitter;
stOjitter;
stOjitter;
stOjitter;
stljitter;
stljitter;
stljitter;
st2jitter;
st2jitter;

stOjitter <= maxjitter;

stljitter <= maxjitter;

st2jitter <= maxjitter;

stOfr2jitter;
stOfr2jitter;
stOfr3jitter;
stOfr3jitter;
stOfrdjitter;
stOfr4jitter;
stOfr5jitter;
stOfr5jitter;
stlfrOjitter;
stlfrOjitter;
stlfrljitter;
stlfrljitter;
stlfr2jitter;
stilfr2jitter;
st2frOjitter;
st2frOjitter;
st2frljitter;
st2frljitter;

flowXjitter */

maxjitter */

96



/* Binary variables (hyperperiod where each frame is transmitted)*/

bin st0frOswl001lptlwindowOhpO, stOfrOswl00lptlwindowOhpl, stOfrOswlpt2windowOhpO,
st0frOswlpt2windowOhpl, stOfrOsw2pt1003windowOhpO, stOfrOsw2pt1003windowOhpl,
st0fr1swl001ptilwindowlhpO, stOfrlswlO0Olptlwindowlhpl, stOfrlswlpt2windowlhpO,
stOfriswlpt2windowlhpl, stOfrlsw2pt1003windowlhpO, stOfrlsw2pt1003windowlhpl,
st0fr2swl1001ptiwindow2hpO, stOfr2swl00lptlwindow2hpl, stOfr2swlpt2window2hpO,
stO0fr2swlpt2window2hpl, stOfr2sw2pt1003window2hp0O, stOfr2sw2pt1003window2hpl,
st0fr3swl001ptiwindow3hpO, stOfr3swl00lptlwindow3hpl, stOfr3swlpt2window3hpO,
stO0fr3swlpt2window3dhpl, stOfr3sw2pt1003window3hpO, stOfr3sw2pt1003window3hpl,
st0fr4swl1001ptiwindowdhpO, stOfr4swl00lptlwindowdhpl, stOfrd4swlpt2window4hpO,
stOfrdswlpt2windowdhpl, stOfr4sw2pt1003window4hpO, stOfr4sw2pt1003window4dhpl,
stO0frbswl001ptiwindowbhpO, stOfrbswl00lptlwindowbhpl, stOfrbSswlpt2windowbhpO,
stOfrbswilpt2windowbhpl, stOfrbsw2pt1003windowbhpO, stOfrbsw2pt1003windowbhpl,
st1frOsw1002ptlwindowOhpO, stlfrOswl002ptlwindowOhpl, stlfrOswlpt2windowOhpO,
stlfrOswlpt2windowOhpl, stlfrOsw2pt1003windowOhpO, stlfrOsw2pt1003windowOhpl,
stlfriswl002ptiwindowlhpO, stlfrlswl002ptiwindowlhpl, stlfrilswlpt2windowlhpO,
stlfriswlpt2windowlhpl, stlfrlsw2pt1003windowlhpO, stlfrlsw2pt1003windowlhpl,
st1fr2swl1002ptiwindow2hpO, stlfr2swl002ptlwindow2hpl, stilfr2swlpt2windowZ2hpO,
stlfr2swipt2window2hpl, stlfr2sw2pt1003window2hp0O, stlfr2sw2pt1003window2hpl,
st2frOswl1004pt2windowOhpO, st2frOswl004pt2windowOhpl, st2frOsw2pt1003windowOhpO,
st2frOsw2pt1003windowOhpl, st2frlswl004pt2windowlhpO, st2frilswl004pt2windowlhpl,
st2fri1sw2pt1003windowlhpO, st2frlsw2pt1003windowlhpl;

B.2. Resultado ILP

Actual values of the variables:
Value of objective function: 59120.00000000

Actual values of the variables:

timeMargin 59120
stOoffset 1490
stloffset 2590
st2offset 500
st0frOswl001ptiready 1490
stOfriswl00lptiready 11490
st0fr2swl001ptiready 21490
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st0fr3swl001ptiready
stOfr4swl001ptiready
st0fr5swl001ptiready
st1frOswl1002ptiready
stlfriswl002ptiready
stlfr2swl002ptiready
st2frOsw1004pt2ready
st2fri1swl004pt2ready
st0frOswl00lptilstart
stO0friswl0O0lptistart
st0fr2swl001ptlistart
st0fr3swl001ptistart
stO0fr4swlOOlptistart
stO0frbswl00lptistart
st0frOswlpt2ready
stOfrOswlpt2start
stOfriswlpt2ready
stOfriswlpt2start
stO0fr2swipt2ready
stOfr2swipt2start
stOfr3swlpt2ready
stOfr3swipt2start
stOfr4swlpt2ready
stOfr4swlpt2start
stOfrbswipt2ready
stOfrbswipt2start
stO0frOsw2pt1003ready
st0frOsw2pt1003start
stOfrisw2pt1003ready
stO0frisw2pt1003start
st0fr2sw2pt1003ready
stO0fr2sw2pt1003start
stO0fr3sw2pt1003ready
st0fr3sw2pt1003start
st0fr4sw2pt1003ready
stO0fr4sw2pt1003start
stOfrbsw2pt1003ready

31490
41490
51490
2590
22590
42590
500
30500
1490
11490
21490
31490
41490
51490
1600
1600
11600
11600
21600
21600
31600
31600
41600
41600
51600
51600
1710
1710
11710
11710
21710
21710
31710
31710
41710
41710
51710
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stO0frbsw2pt1003start
st1frOswl002ptilstart
stlfriswl002ptistart
st1fr2swl002ptistart
stlfrOswlpt2ready
stlfrOswlpt2start
stlfriswlpt2ready
stlfriswlpt2start
stlfr2swlpt2ready
stlfr2swipt2start
st1frOsw2pt1003ready
st1frOsw2pt1003start
stlfrisw2pt1003ready
stlfrisw2pt1003start
st1fr2sw2pt1003ready
stlfr2sw2pt1003start
st2frOswl1004pt2start
st2friswl004pt2start
st2frOsw2pt1003ready
st2frOsw2pt1003start
st2frisw2pt1003ready
st2frisw2pt1003start
st0frOswl001lpticomplete
stOfrOswlpt2complete
st0frOsw2pt1003complete
stO0friswl0O0lpticomplete
stOfriswlipt2complete
stOfrisw2pt1003complete
st0fr2swl00lpticomplete
stOfr2swilpt2complete
st0fr2sw2pt1003complete
st0fr3swl001pticomplete
stO0fr3swlpt2complete
st0fr3sw2pt1003complete
st0fr4swl00lpticomplete
stOfrdswipt2complete
st0fr4sw2pt1003complete

51710
2590
22590
42590
2700
2700
22700
22700
42700
42700
2810
2810
22810
22810
42810
42810
500
30500
610
610
30610
30610
1590
1700
1810
11590
11700
11810
21590
21700
21810
31590
31700
31810
41590
41700
41810
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stO0frbswl001pticomplete
stOfrbswilpt2complete
st0fr5sw2pt1003complete
st1frOswl002pticomplete
stlfrOswlpt2complete
st1frOsw2pt1003complete
st1lfriswl002pticomplete
stlfriswlpt2complete
stlfrisw2pt1003complete
st1fr2swl002pticomplete
stlfr2swipt2complete
stlfr2sw2pt1003complete
st2frOswl004pt2complete
st2frOsw2pt1003complete
st2frilswl004pt2complete
st2frisw2pt1003complete
swlpt2gtOwOgapOpenOffset
swlpt2gtOwOgapCloseOffset
swlpt2gtOwOopenOffset
swlpt2gtOwOcloseOffset
swlpt2gtlwOgapOpenOffset
swlpt2gtlwOgapCloseOffset
swlpt2gtlwOopenOffset
swlpt2gtiwlOcloseOffset
swlpt2gtOwlgapOpenOffset
swlpt2gtOwlgapCloseOffset
swlpt2gtOwlopenOffset
swlpt2gtOwlcloseOffset
swlpt2gtOw2gapOpenOffset
swlpt2gtOw2gapCloseOffset
swlpt2gtOw2openOffset
swlpt2gtOw2closeOffset
swlpt2gtiwlgapOpenOffset
swlpt2gtlwlgapCloseOffset
swlpt2gtiwlopenOffset
swilpt2gtiwlcloseOffset
swlpt2gtOw3gaplpenOffset

51590
51700
51810
2690
2800
2910
22690
22800
22910
42690
42800
42910
600
710
30600
30710

1100
1100
2200
2200
2200
2200
3300
3300
11100
11100
12200
12200
21100
21100
22200
22200
22200
22200
23300
23300
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swlpt2gtOw3gapCloseOffset
swlpt2gtOw3openOffset
swlpt2gtOw3closelffset
swlpt2gtOwdgapOpenOffset
swilpt2gtOwdgapCloseOffset
swlpt2gtOwdopenOffset
swlpt2gtOwdcloseOffset
swlpt2gtlw2gapOpenOffset
swlpt2gtlw2gapCloseOffset
swlpt2gtlw2openOffset
swlpt2gtiw2closelffset
swlpt2gtOwbgapOpenOffset
swlpt2gtOwbgapCloseOffset
swlpt2gtOwbopenOffset
swlpt2gtOwbcloseOffset
swlpt2gtlwbgapOpenOffset
swlpt2gtlwbgapCloseOffset
sw2pt1003gt2wOgapOpenOffset
sw2pt1003gt2wOgapCloseOffset
sw2pt1003gt2wlopenOffset
sw2pt1003gt2wlcloselffset
sw2pt1003gtOwOgapOpenlffset
sw2pt1003gtOwOgapCloseOffset
sw2pt1003gtOwlOopenOffset
sw2pt1003gtOwlcloselffset
sw2pt1003gtilwOgapOpenOffset
sw2pt1003gtlwOgapCloseOffset
sw2pt1003gtiwlopenOffset
sw2pt1003gtiwOclose0ffset
sw2pt1003gtOwlgapOpenOffset
sw2pt1003gtOwlgapCloseOffset
sw2pt1003gtOwlopenOffset
sw2pt1003gtOwlcloseOffset
sw2pt1003gtOw2gaplpenlffset
sw2pt1003gtOw2gapCloselffset
sw2pt1003gtOw2openOffset
sw2pt1003gtOw2closelffset

31100

31100
32200

32200
41100

41100
42200

42200
42200

42200
43300

43300
51100

51100
52200

52200
60000

110
110
1210
1210
1210
1210
2310
2310
2310
2310
3410
3410
11210
11210
12310
12310
21210
21210
22310
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sw2pt1003gtiwlgapOpenOffset
sw2pt1003gtiwlgapCloselffset
sw2pt1003gtiwlopenOffset
sw2pt1003gtiwlcloselffset
sw2pt1003gt2wlgapOpenlffset
sw2pt1003gt2wligapCloselffset
sw2pt1003gt2wlopenOffset
sw2pt1003gt2wilcloseOffset
sw2pt1003gtOw3gapOpenOffset
sw2pt1003gtOw3gapCloselffset
sw2pt1003gtOw3openOffset
sw2pt1003gtOw3closelffset
sw2pt1003gtOwi4gapOpenlffset
sw2pt1003gtOwdgapCloseOffset
sw2pt1003gtOwdopenlffset
sw2pt1003gtOwdcloselffset
sw2pt1003gtiw2gapOpenOffset
sw2pt1003gtiw2gapCloselffset
sw2pt1003gtiw2openOffset
sw2pt1003gtiw2closelffset
sw2pt1003gtOwbgapOpenlffset
sw2pt1003gtOwbgapCloselffset
sw2pt1003gtOwbopenlffset
sw2pt1003gtOwbcloselffset
sw2pt1003gtiwbgapOpenOffset
sw2pt1003gtiwbgapCloselffset
swl001ptlgtOwOgapOpenOffset
swl001ptlgtOwOgapCloselffset
sw1l001ptlgtOwOopenOffset
swl001ptlgtOwOcloseOffset
swl001ptlgtOwlgapOpenOffset
swl001ptlgtOwlgapCloseOffset
sw1001ptigtOwlopenOffset
swl001lptlgtOwlcloseOffset
sw1l001ptlgtOw2gapOpenOffset
swl001ptlgtOw2gapCloselffset
swl001ptlgtOw2openOffset

22310
22310
22310
23410
23410
30110
30110
31210
31210
31210
31210
32310
32310
41210
41210
42310
42310
42310
42310
43410
43410
51210
51210
52310
52310
60000

990
990
2090
2090
10990
10990
12090
12090
20990
20990
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swl001ptlgtOw2closeOffset
swl001ptlgtOw3gapOpenOffset
swl001ptlgtOw3gapCloseOffset
swl001ptlgtOw3openOffset
swl001ptlgtOw3closeOffset
sw1l001ptlgtOwdgapOpenOffset
sw1l001ptlgtOwdgapCloseOffset
swl001ptlgtOwdopenOffset
swl001ptlgtOwdcloseOffset
swl001ptlgtOwbgapOpenOffset
swl001ptlgtOwbgapCloseOffset
swl001ptlgtOwbopenOffset
swl001ptlgtOwbcloseOffset
swl001ptligtiw6gapOpenOffset
swl001lptlgtlwbgapCloseOffset
sw1004pt2gt2wlgapOpenOffset
sw1004pt2gt2wlgapCloseOffset
sw1004pt2gt2wlopenOffset
sw1004pt2gt2wOcloselffset
sw1l004pt2gt2wlgapOpenOffset
sw1l004pt2gt2wlgapCloselffset
sw1004pt2gt2wlopenOffset
sw1004pt2gt2wlcloseOffset
sw1004pt2gt3w2gaplpenOffset
sw1004pt2gt3w2gapCloselffset
sw1002ptlgtlwOgapOpenOffset
sw1002ptlgtlwOgapCloseOffset
sw1l002ptigtiwOopenOffset
sw1l002ptigtiwOcloseOffset
sw1002ptigtiwlgapOpenOffset
sw1002ptigtiwlgapCloseOffset
sw1002ptigtiwlopenOffset
sw1002ptigtiwlcloseOffset
sw1002ptigtliw2gapOpenOffset
sw1002ptligtlw2gapCloseOffset
sw1l002ptigtiw2openOffset
swl002ptigtiw2closeOffset

22090
22090
30990
30990
32090
32090
40990
40990
42090
42090
50990
50990
52090
52090
60000

1100
1100
30000

30000
31100
31100
60000

2090
2090
3190
3190
22090
22090
23190
23190
42090
42090
43190
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sw1002ptigt2w3gapOpenOffset 43190
sw1002ptigt2w3gapCloselffset 60000
swlpt2gap 50100
sw2pt1003gap 47900
swl001ptigap 53400
sw1004pt2gap 57800
sw1002ptigap 56700
maxgap 265900
st0frOswl001ptloffset 1490
st0frOsw1001ptiwindowOhpO 1
st0frOsw1001ptlwindowOhpl 0
stOfrOswlpt2offset 1600
st0frOswlpt2windowOhpO 1
stO0frOswlpt2windowOhpl 0
st0frOsw2pt1003offset 1710
st0frOsw2pt1003windowOhpO 1
st0frOsw2pt1003windowOhpl 0
stO0friswl001ptloffset 11490
st0fri1swl001ptiwindowlhpO 1
stO0fr1swl00lptiwindowlhpl 0
stOfriswlpt2offset 11600
stOfriswlpt2windowlhpO 1
stOfriswlpt2windowlhpl 0
stO0frisw2pt10030ffset 11710
st0frisw2pt1003windowlhpO 1
stO0frisw2pt1003windowlhpl 0
st0fr2swl001ptloffset 21490
st0fr2swl1001ptilwindow2hpO 1
st0fr2swl001ptiwindow2hpl 0
stOfr2swlpt2offset 21600
stOfr2swipt2window2hpO 1
stO0fr2swlpt2window2hpl 0
st0fr2sw2pt1003offset 21710
st0fr2sw2pt1003window2hp0 1
st0fr2sw2pt1003window2hpl 0
st0fr3swl001ptloffset 31490
st0fr3swl001ptilwindow3hpO 1
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st0fr3sw1001ptiwindow3hpl
stO0fr3swlpt2offset
stO0fr3swlpt2window3hpO
stO0fr3swlpt2window3hpl
st0fr3sw2pt10030ffset
st0fr3sw2pt1003window3hp0
st0fr3sw2pt1003window3hpl
st0fr4swl001lptloffset
st0fr4swl1001ptiwindow4hpO
st0fr4sw1001ptiwindowdhpl
stOfrdswipt2offset
stOfré4swlpt2window4hpO
stOfrdswlpt2windowdhpl
st0fr4sw2pt1003offset
st0fr4sw2pt1003window4hpO
st0fr4sw2pt1003window4hpl
stO0frbswl001ptloffset
st0fr5sw1001ptiwindowbhpO
st0fr5sw1001ptlwindowbhpl
stOfrbswilpt2offset
stOfrbswilpt2windowbhpO
stOfrbswlpt2windowbhpl
st0frb5sw2pt1003offset
st0fr5sw2pt1003windowbhpO
st0fr5sw2pt1003windowbhpl
st1frOswl002ptloffset
st1frOsw1002ptiwindowOhpO
st1frOswl002ptiwindowOhpl
stlfrOswlpt2offset
st1frOswlpt2windowOhpO
st1frOswipt2windowOhpl
st1frOsw2pt1003offset
st1frOsw2pt1003windowOhpO
st1frOsw2pt1003windowOhpl
st1friswl002ptloffset
stlfriswl002ptiwindowlhpO
stlfriswl002ptiwindowlhpl

31600

31710

41490

41600

41710

51490

51600

51710

2590

2700

2810

22590
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stlfriswlpt2offset
stlfriswlpt2windowlhpO
stlfriswlpt2windowlhpl
stlfrisw2pt1003offset
stlfrisw2pt1003windowlhpO
stlfrisw2pt1003windowlhpl
st1fr2swl002ptloffset
st1fr2sw1002ptiwindow2hp0
st1fr2sw1002ptiwindow2hpl
stlfr2swilpt2offset
st1lfr2swipt2window2hpO
stlfr2swipt2window2hpl
st1fr2sw2pt1003o0ffset
st1fr2sw2pt1003window2hpO
st1fr2sw2pt1003window2hpl
st2frOswl1004pt2offset
st2frOsw1004pt2windowOhpO
st2frOsw1004pt2windowOhpl
st2frOsw2pt1003offset
st2frOsw2pt1003windowOhpO
st2frOsw2pt1003windowOhpl
st2fr1swl004pt2offset
st2fr1swl1004pt2windowlhpO
st2fr1swl1004pt2windowlhpl
st2frisw2pt1003offset
st2fri1sw2pt1003windowlhpO
st2frisw2pt1003windowlhpl
stOtimeMargin
stltimeMargin
st2timeMargin
stOfrOtimeMargin
stOfritimeMargin
stOfr2timeMargin
stOfr3timeMargin
stOfr4timeMargin
stOfrbtimeMargin
stlfrOtimeMargin

22700

22810

42590

42700

42810

500

610

30500

30610

9670
19670
29780

9670

9670

9670

9670

9670

9670
19670
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stifritimeMargin
stlfr2timeMargin
st2frOtimeMargin
st2fritimeMargin
stO0frOdelay
stOfrldelay
stO0fr2delay
stOfr3delay
stOfrddelay
stOfrbdelay
st1lfrOdelay
stlfrldelay
stlfr2delay
st2frOdelay
st2frldelay
stOavgDelay
stlavgDelay
st2avgDelay
stOfrOjitter
stOfrljitter
stOfr2jitter
stOfr3jitter
stOfrdjitter
stOfr5jitter
stifrOjitter
stifrljitter
stlfr2jitter
st2frOjitter
st2frljitter
stOjitter
stljitter
st2jitter

maxjitter

19670
19670
29780
29780
330
330
330
330
330
330
330
330
330
220
220

330.001

O O O O O O o o o

330
220

.00066
.00066
.00066
.00066
.00066
.00066
.00033
.00033
.00033

0.00066
0.00033

.00066
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B.3. Implementacion de la planificaciéon en la pla-
taforma

Configuracion Bridge 1:

gdisc taprio 100: dev sl-eth3 root refcnt 9 tc 4

map 0 123000000000000
queues offset O count 1 offset 1 count 1 offset 2 count 1 offset 3 count 1
clockid REALTIME base-time O cycle-time O cycle-time-extension O base-time
1721988236209191740 cycle-time 60000000 cycle-time-extension O
index 0 cmd S gatemask Oxl1 interval 1100000
index 1 cmd S gatemask 0x2 interval 1100000

index 8 cmd S gatemask Oxl1 interval 7800000
gatemask 0x2 interval 1100000

gatemask Oxl1 interval 8900000

index 2 cmd S gatemask Ox4 interval 1100000
index 3 cmd S gatemask Ox1 interval 7800000
index 4 cmd S gatemask 0x2 interval 1100000
index 5 cmd S gatemask Oxl1 interval 8900000
index 6 cmd S gatemask 0x2 interval 1100000
index 7 cmd S gatemask 0x4 interval 1100000

S

S

index 9 cmd
index 10 cmd
index 11 cmd S gatemask 0x2 interval 1100000
gatemask Ox4 interval 1100000
gatemask Oxl1 interval 7800000
gatemask 0x2 interval 1100000

gatemask Ox1 interval 7800000

index 12 cmd
index 13 cmd

index 14 cmd

0 N »n2 »n1 nn wm

index 15 cmd
qdisc pfifo 0: dev sl-eth3 parent 100:8 limit 1000p
qdisc pfifo 0: dev sl-eth3 parent 100:7 limit 1000p
qdisc pfifo 0: dev sl-eth3 parent 100:6 limit 1000p
: dev sl-eth3 parent 100:5 limit 1000p
gqdisc pfifo 0: dev sl-eth3 parent 100:1 limit 1000p
qdisc netem 30: dev sl-eth3 parent 100:3 limit 1000 delay 99us
gqdisc netem 40: dev sl-eth3 parent 100:4 limit 1000 delay 99us

qdisc netem 20: dev sl-eth3 parent 100:2 limit 1000 delay 99us

qdisc pfifo

SO O O O O

Configuracion Bridge S2:
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gdisc taprio 100: dev s2-ethl root refcnt 9 tc 4

map 0 123000000000000
queues offset O count 1 offset 1 count 1 offset 2 count 1 offset 3 count 1
clockid REALTIME base-time O cycle-time O cycle-time-extension O base-time
1721988236209191740 cycle-time 60000000 cycle-time-extension 0O
index 0 cmd S gatemask Oxl1 interval 110000
index 1 cmd S gatemask 0x8 interval 1100000

index 2 cmd S gatemask 0x2 interval 1100000
index 3 cmd S gatemask Ox4 interval 1100000
index 4 cmd S gatemask Ox1 interval 7800000
index 5 cmd S gatemask 0x2 interval 1100000
index 6 cmd S gatemask Oxl1 interval 8900000
index 7 cmd S gatemask 0x2 interval 1100000
index 8 cmd S gatemask Ox4 interval 1100000
index 9 cmd S gatemask Oxl interval 6700000

index 10 cmd S gatemask 0x8 interval 1100000

S

index 11 cmd S gatemask 0x2 interval 1100000

index 12 cmd S gatemask Ox1 interval 8900000

index 13 cmd S gatemask 0x2 interval 1100000

index 14 cmd S gatemask 0x4 interval 1100000
S gatemask 0Oxl1 interval 7800000
S gatemask 0x2 interval 1100000
S

gatemask Oxl1 interval 7690000

index 15 cmd
index 16 cmd
index 17 cmd
qdisc pfifo 0: dev s2-ethl parent 100:8 limit 1000p
: dev s2-ethl parent 100:7 1limit 1000p
: dev s2-ethl parent 100:6 limit 1000p
: dev s2-ethl parent 100:5 limit 1000p
qdisc pfifo 0: dev s2-ethl parent 100:1 limit 1000p
gqdisc netem 30: dev s2-ethl parent 100:3 limit 1000 delay 99us
qdisc netem 40: dev s2-ethl parent 100:4 limit 1000 delay 99us

qdisc pfifo
qdisc pfifo
qdisc pfifo

SO O O O O

qdisc netem 20: dev s2-ethl parent 100:2 limit 1000 delay 99us
qdisc clsact ffff: dev s2-ethl parent ffff:fffl
qdisc noqueue 0: dev s2-eth2 root refcnt 2

gqdisc noqueue 0: dev s2-eth3 root refcnt 2
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Configuracidén hl:

iptables -t mangle -A POSTROUTING -p udp --dport
iptables -t mangle -A POSTROUTING -p udp --dport
iptables -t mangle -A POSTROUTING -p udp --dport

qdisc noqueue 0: dev lo root refcnt 2
gqdisc netem 100: dev hl-ethO root refcnt 9 limit
qdisc noqueue O: dev hl-eth0.10 root refcnt 2

Configutacién h2:
iptables -t mangle -A POSTROUTING -p udp --dport
iptables -t mangle -A POSTROUTING -p udp --dport
iptables -t mangle -A POSTROUTING -p udp --dport
qdisc noqueue 0: dev lo root refcnt 2
qdisc netem 100: dev h2-ethO root refcnt 9 limit

gqdisc noqueue O: dev h2-eth0.10 root refcnt 2

Configuracién h4:
iptables -t mangle -A POSTROUTING -p udp --dport
iptables -t mangle -A POSTROUTING -p udp --dport
iptables -t mangle -A POSTROUTING -p udp --dport
qdisc noqueue 0: dev lo root refcnt 2
qdisc netem 100: dev h3-ethO root refcnt 9 limit

gdisc noqueue 0: dev h3-eth0.10 root refcnt 2

6666
Tt
8888

1000

6666
Tt
8888

1000

6666
Tt
8888

1000

—-j CLASSIFY --set-class 0:1
-j CLASSIFY --set-class 0:2
—-j CLASSIFY --set-class 0:3
delay 99us

-j CLASSIFY --set-class 0:1
—-j CLASSIFY --set-class 0:2
—-j CLASSIFY --set-class 0:3
delay 99us

—-j CLASSIFY --set-class 0:1
-j CLASSIFY --set-class 0:2
—-j CLASSIFY --set-class 0:3
delay 99us

Solo se han configurado las interfaces de red necesarias para el Use Case
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Anexos C

IEI DRPC-240-TGL

Figura C.1: IEI DRPC-240 TGL

— Model: DRPC-240-TGL-U-i7TRD-R10
— Manufacturer: https://www.ieiworld.com/en/product/model.php?II=871

— CPU: 11th Gen Intel® Core™ i7-1185GRE CPU @ 2.80GHz 4 cores (core Ti-
gerlake)

— RAM: 16 GB DDR4-3200
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Anexos D

Diagramas de medicion de latencias

En este anexo se incluyen los diagramas que representan las metodologias de medida

definidas en el Cap.4.

113



Af-Packet SendL Profiling

sendL

veth{Timestamping)

SKB-CLONE
Validacién del
paquete

Siguiente Nodo

Figura D.1: Medicién de la latencia sendL con la solucién basada en AF_PACKET

XDP SendL Profiling

sendL

XDP Timestamping

XDP-Validacion del
paquete

Siguiente Nodo

Figura D.2: medicién de la latencia sendL con la soluciéon basada en XDP

114



XDP ArrL Profiling

ArrL

Figura D.3: Medicién de la latencia arrL con la solucién basada en XDP

Af-Packet ArrL Profiling

v

Arrl

Figura D.4: Medicién de la latencia arrL con la solucién basada en AF_PACKET
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ele

Figura D.5: Medicién de la latencia e2e
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e2e.nic

Figura D.6: Medicién de la latencia e2e.nic con la soluciéon basada en AF_PACKET
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