
Trabajo Fin de Grado

Emulación de redes sensibles al tiempo (TSN)

Autor

Alex Gracia Rodŕıguez

Directores

José Luis Briz Velasco

Univ. Zaragoza

Héctor Blanco Alcaine

Intel Corporation | Intel Deutschland GmbH

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2024

AGRADECIMIENTOS

En primer lugar, quiero comenzar dando especialmente las gracias a mis tutores

de TFG José Luis Briz y Héctor Blanco por confiar en mı́ para realizar este proyecto,

y por todo el apoyo durante la realización del mismo. Su participación ha sido clave

durante todo el desarrollo del proyecto. Sin sus consejos y su experiencia el resultado

obtenido no habŕıa sido posible.

En segundo lugar quiero agradecer al subgrupo de investigación de TSN del gaZ por

su contribución de manera desinteresada a este TFG. Sus conocimientos y experiencia

han sido indispensables para el éxito de este proyecto.

También quiero agradecer al Insituto de Investigación en Ingenieŕıa de Aragón (I3A)

por permitirme realizar este TFG mediante una beca de iniciación a la investigación.

Sobretodo al, gaZ por permitirme utilizar su material como plataforma de experimen-

tación.

Además quiero agradecer a todos mis compañeros de carrera, sobretodo a mis com-

pañeros de Ingenieŕıa de Computadores, mis compañeros de prácticas y a mi ćırculo

más cercano, sin ellos este TFG no habŕıa sido posible.

Por último, agradecer a mi familia por todo su apoyo. En especial a mis padres

por la educación que me han brindado y por acompañarme y apoyarme durante todos

estos años.

Este trabajo ha sido financiado por MCIN/AEI/10.13039/501100011033 (PID2022-

136454NB-C22), Gobierno de Aragon (grupo T58 23R) e Insituto de Investigación en

Ingenieŕıa de Aragón (I3A, Conv. de Ayudas a Prácticas con TFG 2023)

I

II

RESUMEN

Este Trabajo de Fin de Grado (TFG) se centra en el desarrollo de una plataforma

para la emulación de redes Time-Sensitive Networking (TSN) sobre Mininet y en la

validación de la plataforma como mecanismo para el despliegue de planificaciones TSN

resultado de planificadores como[1]. Estas planificaciones garantizan cotas determinis-

tas de latencia para los flujos de la red en la capa de enlace. El trabajo desarrollado

ha permitido identificar aspectos clave en la implementación de redes TSN, y también

limitaciones de los componentes TSN en la plataforma de emulación. Como parte del

desarrollo de la plataforma se ha desarrollado una metodoloǵıa para la caracterización

de la plataforma, que permite caracterizar los distintos componentes con un impacto

mı́nimo. Esta metodoloǵıa se ha utilizado a continuación para analizar el impacto de

la plataforma hardware subyacente sobre los resultados de cálculo de latencias, anali-

zando diferentes configuraciones de kernel y hardware sobre sistemas con capacidades

distintas. Este trabajo ha contribuido a la creación de una plataforma novedosa de

emulación para el despliegue de casos de uso TSN cubriendo aspectos no considerados

o no detallados en trabajos previos. La metodoloǵıa, experimentación y conclusiones de

este TFG se van a presentar próximamente en la confrencia Time Sensitive Networking

and Applications (TSN&A) 2024,principal foro internacional anual de la industria y

academia sobre TSN, a donde se envió y en donde fue aceptada la comunicación co-

rrespondiente [2].

III

Abstract

This project focuses on the development of a platform for Time-Sensitive Net-

working (TSN) emulation over Mininet and on the validation of the platform as a

mechanism for the deployment of TSN schedules resulting from schedulers such as [1].

These schedulers guarantee deterministic latency bounds for network flows at the link

layer. The work developed has identified key issues in the implementation of TSN, as

well as limitations of the components in the emulation platform. As part of the plat-

form development, a methodology for timestamping and platform characterization has

been developed. It allows characterizing the different components with minimal impact.

This methodology was then used to analyze the impact of the underlying hardware on

latency calculations by analyzing different kernel and hardware configurations on sys-

tems with different capabilities. This work has contributed to the creation of a novel

emulation platform for the deployment of TSN use cases covering aspects not consi-

dered or not detailed in previous references. The methodology, experimentation and

conclusions of this work were submitted, accepted and will be presented at the Time

Sensitive Networking and Applications (TSN&A) 2024 Conference, the main annual

international forum for industry and academia related to TSN [2].

IV

Índice

1. Introducción 3

1.1. Motivación y contexto . 3

1.2. Objetivos . 4

1.2.1. Objetivos generales . 4

1.2.2. Objetivos espećıficos . 4

1.3. Alcance . 4

1.4. Metodoloǵıa y entorno de trabajo . 5

1.4.1. Consideraciones terminológicas 5

1.5. Planificación . 6

1.6. Estructura del documento . 6

2. Fundamentos 9

2.1. Conceptos generales . 9

2.1.1. Redes . 9

2.1.2. Linux Network Stack (LNS) . 9

2.1.3. Socket Buffer (SKB) . 11

2.1.4. Network Namespaces y Virtual Ethernet Pairs 11

2.1.5. Berkeley Packet Filter (BPF) 11

2.1.6. eXpress Data Path (XDP) . 12

2.1.7. Expulsión en el kernel . 14

2.2. Time-Sensitive Networking (TSN) . 15

2.2.1. Nodos TSN . 16

2.2.2. Flujo . 16

2.2.3. Sincronización del tiempo . 17

2.2.4. Control de flujo . 18

2.2.5. Gestión y configuración de recursos 20

2.2.6. Tolerancia a fallos . 21

2.3. Simulación, emulación y testbedding . 21

2.3.1. Conceptos generales . 21

V

2.3.2. Simulación de redes TSN . 22

2.3.3. Mininet . 22

2.3.4. Testbedding . 23

2.4. Trabajos relacionados . 23

3. TSN en Linux y Mininet 25

3.1. Elementos de soporte de TSN y virtualización 25

3.1.1. Linux Traffic Control . 25

3.1.2. Recursos de sincronización del tiempo en Linux 27

3.2. Configuración de Mininet para TSN . 27

3.2.1. Configuración de la plataforma subyacente 28

3.2.2. Emulación del IEEE802.1Qbv TAS 29

3.2.3. Soluciones al problema de etiquetado de clases de tráfico TSN en

Mininet . 29

3.2.4. Sincronización del tiempo en Mininet 31

4. Metodoloǵıa de cálculo de latencias sobre Mininet 33

4.1. Entorno experimental . 33

4.2. Metodoloǵıa de registro de tiempos . 34

4.2.1. Relojes del sistema . 35

4.2.2. Definición de tiempos registrados y latencias calculadas 36

4.2.3. Registro en el espacio del kernel 37

4.2.4. Registro en espacio de usuario 38

4.2.5. Análisis experimental de los métodos de registro de tiempos . . 39

4.3. Resultados del cálculo de latencias en las tres plataformas 41

4.3.1. Resultados CONF-1 . 41

4.3.2. Resultados CONF-2 . 42

4.3.3. Resultados CONF-3 . 43

5. Emulación de un Caso de Uso 47

5.1. Configuración y despliegue del sistema TSN 47

5.1.1. Instante cero . 47

5.1.2. Real-Time Client . 48

5.1.3. Emulación de tiempos de transmisión 48

5.1.4. Emulación del tiempo de propagación 50

5.2. Definición del Caso de Uso . 50

5.2.1. Flujos . 50

5.2.2. Planificación TSN de los flujos 50

VI

5.3. Resultados experimentales . 53

5.4. Consideraciones finales . 53

6. Conclusiones y ĺıneas abiertas 59

6.1. Discusión de resultados experimentales 59

6.1.1. Métodos de registro de tiempos 59

6.1.2. Influencia de la plataforma subyacente 59

6.2. Mininet como plataforma de emulación de sistemas TSN 60

6.3. Ĺıneas abiertas . 61

Bibliograf́ıa 63

Siglas 67

Lista de Figuras 71

Lista de Tablas 73

Anexos 74

A. Puesta en Marcha de Mininet 77

B. Resultado Planificación 79

B.1. Problema ILP . 79

B.2. Resultado ILP . 97

B.3. Implementación de la planificación en la plataforma 108

C. IEI DRPC-240-TGL 111

D. Diagramas de medición de latencias 113

1

2

Caṕıtulo 1

Introducción

1.1. Motivación y contexto

Time-Sensitive Networking (TSN) es un conjunto de tecnoloǵıas estándar del IEEE

orientadas a garantizar la sincronización y cumplimiento de restricciones temporales en

redes Ethernet e inalámbricas, permitiendo la interoperabilidad entre componentes de

diferentes fabricantes. TSN es especialmente relevante en la integración de tecnoloǵıas

operacionales y de la información (OT/IT) en la industria productiva, la distribución

eléctrica, y las redes intra vehiculares en automoción e industria aeroespacial. Permite

el despliegue de sistemas que requieren latencia ultra baja (Ultra-Low Latency (ULL)

networks), la reducción de costes y la mejora de la eficiencia.

TSN proporciona mecanismos de conformación (traffic shaping) y planificación del

tráfico para garantizar la calidad de servicio en redes en las convergen diferentes tipos

de tráfico. Uno de los problemas abiertos es la implantación de un planificación pre-

viamente calculada en un caso de uso real, debido a factores dif́ıciles de incluir en el

problema teórico de planificación. Aśı mismo, la tendencia al establecimiento de redes

definidas por software (Software Defined Network (SDN)) y en la nube (cloudification)

abre la v́ıa de test y validación de planificaciones y configuraciones TSN mediante

procedimiento de emulación, en ausencia de testbed hardware.

La investigación en planificación y conformado de tráfico (traffic shaping) en TSN

es una de las ĺıneas de investigación del gaZ (Grupo de Arquitectura de Computado-

res de Zaragoza) de la Universidad de Zaragoza, desarrollada en colaboración con el

CINVESTAV-IPN de Guadalajara, México, e Intel Deutschland GnbH. De esta cola-

boración han surgido hasta el momento dos contribuciones a revista ([3], [1]) y una

comunicación a conferencia internacional [2], fruto esta última de este TFG.

3

1.2. Objetivos

1.2.1. Objetivos generales

Mediante la realización de este TFG se persigue, por una parte, la ampliación de

conceptos relacionados con sistemas TR y redes, mediante la explotación integrada de

conocimientos y habilidades propias de la titulación. Por otra, se busca un acercamiento

tanto a los problemas y métodos propios de la investigación en TSN, como a la realidad

y práctica industrial en el campo.

1.2.2. Objetivos espećıficos

− Estudio de las utilidades TSN disponibles sobre Linux y de las tecnoloǵıas utili-

zadas en High Performance Networking (HPN).

− Análisis de Mininet como herramienta de emulación y puesta en marcha de com-

ponentes TSN.

− Análisis experimental de métodos de medida de tiempos en TSN sobre Mininet.

Propuesta de una metodoloǵıa de medida.

− Validación de una planificación de un caso de uso TSN sobre Mininet

Este TFG contribuye a las metas 9.2 / 9.2.1; 9.4/9.4.1; 9.5 / 9.5.2 de los Objetivos

de Desarrollo Sostenible.

1.3. Alcance

La consecución de los objetivos anteriores ha generado las siguientes entregables:

− Testbed de emulación TSN sobre Mininet, particularmente orientado a la valida-

ción de planificaciones, dotado de filtros, scripts de configuración, e instrumenta-

ción de registro de tiempos para cálculo de latencia y jitter según la metodoloǵıa

desarrollada en el TFG.

− Esta memoria de TFG con sus Anexos.

− Una comunicación aceptada en el principal foro internacional de TSN [2].

4

1.4. Metodoloǵıa y entorno de trabajo

El tipo de trabajo ha requerido una aproximación experimental, además de la obli-

gada consulta de fuentes. El estudio del rendimiento de sistemas como XDP, las di-

ferentes qdisc, la tecnoloǵıa TCC de Intel o la misma plataforma Mininet, resulta

eminentemente emṕırico. Para alcanzar los objetivos, se han ensayado alternativas pa-

ra comprobar las hipótesis que se han ido planteado, como se expone en los caṕıtulos

correspondientes. Además de los manuales de las diferentes tecnoloǵıas y plataformas

involucradas, también se ha realizado una búsqueda bibliográfica y se han localizado y

estudiado art́ıculos relacionados (Sec. 2.4).

La principal herramienta de trabajo ha sido Visual Studio Code [4] con las ex-

tensiones para Python [5] y C/C++[6]. Python ha sido utilizado junto con la Api de

Mininet [7] para el desarrollo de la plataforma de emulación ,mientras que C ha si-

do el lenguaje elegido para el desarrollo de los clientes y servidores a ejecutar sobre

Mininet[7] junto con los distintos método de profiling(Cap. 4). Por otro lado se ha

utilizado al biblioteca de Python matplotlib[8].

Para el desarrollo del software utilizado en este TFG se ha utilizado una máquina

virtual desplegada sobre virt-manager[9] para comprobar el cumplimiento de requisitos,

antes de desplegarlo mediante ssh sobre las diferentes plataformas de prueba.

Para el desarrollo de los diagramas utilizados en esta memoria se ha utilizado la

herramienta draw.io [10].

Esta memoria se ha redactado mediante Overleaf [11], editor colaborativo de LATEX.

La metodoloǵıa y entorno espećıfico de las partes experimentales describen en las

Secs. 4.1 y 4.2. Las diferentes plataformas hardware en la que se han realizado los

experimentos se pueden observar en la Tab. 4.1. Excepto en las Secs. 4.3.1 y 4.3.3, el

resto de resultados experimentales en este TFG se han obtenido bajo la configuración

CONF-2 (Sec. 4.1).

1.4.1. Consideraciones terminológicas

En esta memoria se traducen al español los términos comunes en Tecnoloǵıas de la

Información y la Comunicación, como por ejemplo trama (frame) o flujo (flow, stream).

Los términos talker, listener tienen connotaciones muy espećıficas en TSN pero en

todo caso los traducimos como emisor y receptor respectivamente. Preservamos sin

embargo en inglés términos espećıficos que raramente por no decir nunca se traducen

el campo, e.g. software, hardware, bridge, end station, shaping o end-to-end entre

otros. Reservamos e término núcleo para un core de una CPU, y utilizamos kernel

para referirnos al núcleo de un sistema operativo, algo por otra parte muy común

5

en el caso de Linux. Se ha hecho un esfuerzo para mantenerlos en cursiva. También

se marcan en typewriter parámetros, estructuras singulares de datos, metadatos y

elementos similares.

En la literatura sobre TSN, especialmente en la comercial, los términos bridge y

switch se utilizan indistintamente. En este trabajo utilizamos el término bridge, que es

el utilizado en las recomendaciones del estándar IEEE 802.1Q.

Por otra parte, el número de acrónimos relacionados con TSN evoluciona, muta,

y espanta a cualquier persona poco familiarizada con esta tecnoloǵıa. Por ello se han

generado enlaces para que en cualquier momento pueda consultarse la definición y

regresar al punto de lectura.1.

1.5. Planificación

El desarrollo de este TFG se ha realizado de manera progresiva. En la primera etapa

de desarrollo se estudió la documentación correspondiente a TSN. Además de localizar

trabajos relacionados con el trabajo a realizar. Una vez estudiado el material encontra-

do se procedió con el desarrollo de la plataforma de emulación.Una vez desarrollada la

plataforma de emulación se procedió a desarrollar una metodoloǵıa de medición válida

para la plataforma. Con la plataforma desarrollada y como culminación del TFG se

implemento un caso de uso TSN sobre la plataforma. Además durante toda la realiza-

ción del TFG se ha participado en las reuniones del grupo de investigación. La Fig.1.1

muestra las tareas y como se han repartido a lo largo del desarrollo del TFG.

1.6. Estructura del documento

Esta memoria de TFG se estructura como sigue. El Cap. 2 introduce los conocimien-

tos técnicos necesarios para el seguimiento de este TFG, especialmetnte en lo relativo

a TSN. El Cap. 3 identifica los diferentes mecanismos TSN incluidos en el kernel de

Linux y discute su integración en Mininet. El Cap. 4 desarrolla una metodoloǵıa de

registro de tiempos para el cálculo de latencia y jitter , a partir de diferentes opciones

de profiling, aśı como las posibles optimizaciones de la plataforma de emulación en su

conjunto. El Cap. 5 define y despliega un Caso de Uso sobre la plataforma de emulación

preparada a fin de validar el resultado de una planificación TSN, incidiendo en nue-

vas cuestiones que surgen al realizar la configuración y puesta en marcha. Finalmente,

el Cap. 6 recapitula los resultados experimentales, recoge conclusiones y traza ĺıneas

futuras.

1E.g. Alt-<flecha> en las utilidades de Adobe Acrobat©

6

Meses

Enero Febrero Marzo Abril Mayo Junio Julio Agosto

Estudio de material realacionado con TSN

Desarrollo plataforma de emulación

Desarrollo metodoloǵıa de medición

Implementación del Caso de Uso TSN

Desarrollo de la memoria

Reuniones grupo de investigación

Figura 1.1: Diagrama de Gant

7

8

Caṕıtulo 2

Fundamentos

En este caṕıtulo se definen los términos y se explican los conceptos necesarios para

que esta memoria sea autocontenida en lo posible. Existe una amplia literatura sobre

conceptos generales relacionados con redes (e.g. [12],[13]). En el caso de TSN, puede

encontrarse una visión general en [14, 15]).

2.1. Conceptos generales

2.1.1. Redes

Red de computadores Conjunto de nodos interconectados por un medio f́ısico que

se comunican entre śı.

Capa de enlace (DLL) Segunda capa del modelo OSI responsable del intercambio

de datos entre el host (nodo anfitrión) y el resto de elementos de la red a la

que esta conectado. Es habitual encontrarla referida como Layer 2 en inglés. Su

ejemplo más relevante en la es Ethernet .

Latencia (delay) Tiempo que tarda en transmitirse un paquete de datos desde su

origen hasta su destino.

jitter Fluctuación de la latencia. El jitter evalúa la diferencia de la latencia de dis-

tintas tramas mostrando la desviación con respecto a la latencia.

Virtual Local Area Network Mecanismo que permite generar distintas redes lógi-

cas a partir de una misma red f́ısica. Las tramas de red se etiquetan con un campo

VLAN en el que se indica a que VLAN (red lógica) pertenecen.

2.1.2. Linux Network Stack (LNS)

Linux Network Stack (LNS) engloba las soluciones software que permiten la co-

municación entre Linux y las tarjetas de red (NIC) mediante la recepción (Rx) y la

9

Figura 2.1: Esquema de la estructura de la Linux Network Stack.

10

transmisión (Tx) de las tramas de red desde las aplicaciones de usuario. La Fig.2.1

muestra las diferentes capas de la LNS.

Las herramientas de la LNS permiten al administrador interactuar con el tráfico de

red. Algunas como Linux Traffic Control (tc) son clave en este TFG, junto al sistema

de colas (qdisc) del LNS, especialmente la denominada Time-Aware Priority Shaper

(taprio) (Sec. 3.1.1).

2.1.3. Socket Buffer (SKB)

Todas las colas y búferes de la LNS del kernel utilizan una estructura común,

consistente en una lista de elementos struct sk buff (Socket Buffer (skb), Fig. 2.2).

Reúne información sobre todas las tramas que están siendo procesadas. Cada elemento

en skb almacena una trama junto a metadatos tales como el instante de recepción, el

instante en el que debe de ser transmitida o su prioridad (skb).

Los skb proporcionan una abstracción de los protocolos subyacentes, y elevan el

nivel de abstracción en la interacción de las aplicaciones de red con el sistema operativo.

Esto impacta en la latencia y el jitter de las aplicaciones utilizando dicho interfaz.

2.1.4. Network Namespaces y Virtual Ethernet Pairs

Los network namespaces son una funcionalidad integrada en el kernel de Linux que

permite que un proceso tenga su propia LNS aislada del resto de procesos del sistema.

Los virtual Ethernet pairs (pares veth) son parejas de interfaces de red que se uti-

lizan para interconectar procesos que se encuentran en diferentes network namespaces.

Para ello se genera una interfaz de red en cada uno de los distintos namespaces a

conectar.

Por defecto, los pares veth solo cuentan con una cola de recepción (RX queue)

y una de transmisión (Tx queue). Esto supone un problema a la hora de integrar

tecnoloǵıas TSN como taprio, que se fundamentan en la existencia de múltiples colas.

Este problema se aborda en la Sec. 3.2.2..

2.1.5. Berkeley Packet Filter (BPF)

Berkeley Packet Filtering (BPF) es un sistema que permite ejecutar de forma se-

gura funciones definidas desde programas de usuario dentro de las interfaces de red de

un kernel UNIX. Su ámbito de aplicación principal son reglas sobre paquetes de red

ejecutadas por el cortafuegos del kernel.

La codificación de estas funciones está sometida a unas restricciones cuyo cum-

plimiento se verifica antes de pasarlas al kernel mediante un compilador JIT como

11

Figura 2.2: Esquema de la estructura skb del kernel,Kernel Implemen-
tation of Sockets[16] Scientific Figure on ResearchGate. Available from:
https://www.researchgate.net/figure/Network-buffer-sk-buff fig1 285355742 [ac-
cessed 1 Sept 2024]

programas BPF para su ejecución en un entorno seguro, aislado del resto del sistema.

Supone una forma sencilla de extender la funcionalidad del kernel sin necesidad de

modificar su código estática o dinámicamente (mediante módulos).

BPF se basa en la arquitectura de lenguaje máquina del mismo nombre. Su versión

original de principios de los ’90 se transformó notablemente en el eBPF, al que actual-

mente nos referimos simplemente como BPF. Su función original (la relevante en este

TFG) es el filtrado eficiente y seguro las tramas recibidas, pero se utiliza también para

profiling o incremento de la seguridad en el kernel.

Mapas BPF

Un mapa en BPF es una estructura de datos compartida entre los programas BPF

y el kernel del sistema operativo. Los programas BPF acceden a los mapas bien para

comunicarse entre ellos, bien para hacerlo con procesos que se ejecutan a nivel de

usuario.

2.1.6. eXpress Data Path (XDP)

eXpress Data Packet (XDP) [17] es un sistema que permite el procesamiento de

las tramas de red en el nivel inicial de la LNS, sin pasar por el resto de niveles, incre-

12

Figura 2.3: Esquema de XDP

mentando drásticamente el rendimiento (Fig.2.3). XDP es de desarrollo relativamente

reciente. Surge para superar inconvenientes de métodos previos, fundamentalmente Da-

ta Plane Development Kit (DPDK) [18], aún en uso. Igualmente orientado al procesado

de tramas antes de que éstas alcancen la LNS, DPDK es tan eficiente como dependiente

del hardware subyacente, y mucho más complejo de utilizar de forma segura.

Basado en BPF, XDP permite que cada trama entrante sea procesada por un pro-

grama BPF establecido desde un programa de usuario. XDP instrumenta el driver del

NIC añadiendo una llamada (hook) al programa BPF asociado, justo en el retorno de

la rutina de servicio a interrupción, y antes de cualquier operación de asignación de

memoria (para evitar su sobrecoste temporal).

13

Usos habituales de XDP son, por ejemplo, enviar información sobre las tramas

recibidas a una aplicación de usuario, filtrar el tráfico de la red1, o reenviar las tramas

a otros interfaces de red o a procesos de usuario para su procesamiento.

2.1.7. Expulsión en el kernel

La expulsión de procesos (preemption) es un mecanismo mediante el que los sistemas

operativos controlan el reparto del tiempo de CPU entre las diferentes tareas sujetas

al planificador.

La expulsión (preemption) de procesos implica que el sistema operativo se apropia de

una CPU en la que se está ejecutando un proceso, expulsando a este último para ceder

el uso de dicha CPU a otro proceso. En planificadores orientados a multiprogramación

de propósito general, esto sucede por ejemplo cuando el proceso en curso agota su

cuota de uso consecutivo de CPU (time slice), a fin de conseguir un reparto equitativo

o ponderado de las CPUs entre los procesos preparados. En planificadores tiempo real

expulsivos, sucede cuando se activa una tarea de mayor prioridad que la que está en

curso. La explicación de esta cuestión queda fuera de los objetivos de este TFG y se

remite a la sección de documentación de los fuentes del kernel de Linux como referencia

preferible [19]. Incluimos aqúı una breve explicación, que permita comprender algunas

de las cuestiones abordadas en el TFG (e.g. Sec. 3.2.1).

La expulsión presenta un problema. El proceso a expulsar puede por ejemplo estar

ejecutando código del kernel en su propio contexto de proceso (i.e. tras una excepción

śıncrona derivada de una llamada al sistema o un fallo de validez por ejemplo), mo-

dificando una estructura cŕıtica accesible por otras excepciones. Si se le expulsa antes

de dejar en estado estable la modificación (e.g. una inserción en lista), todo el siste-

ma queda inestable y se producirán errores. La forma de gestionar este problema y la

exclusión mutua subyacente depende del propósito de cada sistema operativo y de la

arquitectura subyacente. En la actualidad Linux soporta tres modelos de expulsión, al

que se suman otros dos si se utiliza el parche PREEMPT RT para tiempo real.

− No Forced Preemption - Mientras un proceso está ejecutando código del kernel,

solo abandona la CPU si invoca voluntariamente (inovcación directa) al planifica-

dor (schedule()), o bien en el código de regreso de la última excepción anidada,

si aśı lo indica la variable need resched (lazy invocation). Es el modelo con menos

sobrecarga, y también menos agilidad.

− Voluntary Kernel Preemption - Variante de la anterior que añade invocaciones

1XDP permite filtrar (descartar) 24 millones de tramas por segundo sobre NIC convencional [17],
convirtiéndolo en una herramienta muy útil como defensa de ataques de denegación de servicio

14

voluntarias al planificador en el código del kernel que se ejecuta en conexto de

proceso (no en el que se ejecuta en contexto de interrupción), que tienen efec-

to sólo si existen procesos preparados de mayor prioridad. Mejora la respuesta

en equipos personales usados para trabajo y entretenimiento o comunicación, y

posiblemente se elimine en breve.

− Preemptible Kernel - Un proceso que ejecuta código de kernel (en contexto de

proceso) puede ser expulsado en cualquier momento excepto si está ejectuando

el código de una sección cŕıtica.

− Preemptible Kernel (RT) - Versión de la anterior en el patch PREEMPT RT en el

que las rutinas de kernel que se ejecutan en contexto de interrupción (rutinas de

servicio a interrupción, softirqs y tasklets) se implementan como kernel threads.

− Fully Preemptible Kernel (RT) - Todo el código del kernel es expulsable excepto

en secciones cŕıticas muy limitadas. Como en el caso anterior, rutinas de servicio

aśıncronas, softirqs y tasklets, se gestionan como kernel threads independientes).

En consecuencia todas las rutinas de excepción y actividades de kernel son plani-

ficadas, no entrelazadas. Es decir, por ejemplo la ocurrencia de una interrupción

conlleva la invocación del planificador, que dará paso a la correspondiente ru-

tina de servicio o no, según la prioridad que tenga asignada. Los spinlocks se

substituyen por semáforos mutex rt (un mecanismo bloqueante, por definición).

2.2. Time-Sensitive Networking (TSN)

TSN es un conjunto de mecanismos estandarizados por el IEEE 802.1 TSN Working

Group. Su objetivo principal es permitir establecer cotas deterministas de latencia

y jitter en flujos prioritarios (i.e. sometidos a restricciones temporales) sobre redes

Ethernet y WiFi convencionales. Describen mecanismos y procedimientos estándar

que facilitan la interoperabilidad de componentes de diferentes fabricantes. También

buscan proporcionar servicios estándar de calidad de servicio (QoS, gestión y tolerancia

a fallos, que las tecnoloǵıas propietarias no satisfacen o lo hacen sólo parcialmente.

El IEEE 802.1 TSN Working Group también cubre áreas relacionadas como la

sincronización del tiempo en una red Ethernet, o las garant́ıas de ancho de banda con

aplicaciones en el transporte de audio y v́ıdeo a través de una red Ethernet.

Los estándares TSN permiten que flujos de diferente criticidad convivan en la misma

red, de forma que los flujos no prioritarios no afecten a las latencias de los prioritarios.

15

2.2.1. Nodos TSN

Una red TSN consta de nodos terminales (end points o end stations) y de elementos

de comunicación (bridges). Dentro de los end points podemos diferenciarlos entre talkers

o listeners :

Listener (receptor) Nodo perteneciente a una red TSN que es el destino final de

un flujo. Un nodo puede ser tanto listener como talker al mismo tiempo.

Talker (emisor) Nodo perteneciente a una red TSN que es el origen de un flujo.

Bridge Nodo encargado de interconectar distintos nodos de una red y controlar el

tráfico.

2.2.2. Flujo

En TSN un flujo es una secuencia de tramas (frames) que comparten caracteŕısticas

y requisitos, como el mismo nodo de origen y mismas restricciones temporales. A cada

flujo se le asocia un código de prioridad codificado en el campo PCP (3 bits) de la

cabecera VLAN de su trama Ethernet (Fig. 2.4). Aśı, mecanismos como el TAS (IEEE

802.1Qbv, Sec. 2.2.4) pueden disponer de hasta ocho colas para gestionar hasta ocho

clases diferentes.

A efectos de clarificar la terminoloǵıa seguida en esta memoria según los estánda-

res y el uso habitual, conviene señalar que IEEE 802.1Q-2014 [20] (Anexo II) asocia

ocho prioridades diferentes a ocho clases de tráfico (traffic class) según sus requisitos

(Tab. 2.1). En la práctica, se distinguen menos clases según el ámbito de uso. Por

ejemplo, el Internet Industrial Consortium (iiC) distingue cinco clases (Tab. 2.2) en el

contexto IACS.

Sin embargo, se diferencian tres clases generales de tráfico a efectos de asignación

de recursos de red y modulación de tráfico sobre tecnoloǵıa TSN (ver e.g. [14]):

Clase CDT (Control-Data Traffic) Táfico de control de red o Excellent Effort que

requiere el menor retardo posible.

Clase A Tráfico de aplicaciones cŕıticas, que suele denominarse tráfico TSN, sensible

al tiempo (time-aware traffic), sujeto a restricciones temporales (time-constrained

y otras expresiones similares, que incluyen restricciones de audio y v́ıdeo.

Clase B Tráfico Best Effort (no prioritario) (BE).

16

Prioridad Tipo de tráfico
0 Background
1 Best Effort (BE)
2 Excellent effort
3 Aplicaciones cŕıticas
4 Video, < 100 ms latencia y jitter
5 Voz, < 10 ms latency and jitter
6 Internetwork control
7 Network control

Tabla 2.1: Asignación de prioridades a distintos tipos de tráfico [20]

Tipo de Tráfico Descripción
Control de red Tráfico de máxima prioridad

Excellent Effort
Tráfico necesario para
la configuración y gestión de la red

Tráfico de aplicaciones cŕıticas
Tramas que precisan
recepción con retardo limitado

Voz (audio)
Video

Tabla 2.2: Tipos de tráfico en redes TSN [21]

La asignación a cada flujo de los valores espećıficos codificados en el campo PCP se

realiza en la configuración de la TSN según el caso de uso y las capacidades de los mo-

duladores de tráfico (traffic shapers o simplemente shapers en lo sucesivo) disponibles

en la infraestructura. Parte del esfuerzo de este TFG se ha dirigido a la solución de

problemas de gestión del campo PCP relacionados con la configuración de la taprio

sobre Mininet (Sec. 3.1.1).

2.2.3. Sincronización del tiempo

Uno de los aspectos imprescindibles en TSN es la sincronización de los relojes de

los nodos de la red, un problema compartido con las redes industriales. Por ello, TSN

se apoya el sistema preexistente IEEE 1588 (Precision Time Protocol (PTP)), muy

conocido para sincronizar los relojes de los diferentes nodos.

El estándar IEEE 1588 define mecanismos generales de sincronización, aplicables a

diferentes tipos de redes, e incluso a distintos niveles dentro de la misma tecnoloǵıa. Por

ejemplo, define mecanismos de timestamping en la capa 2 o en el nivel IP. También

define una serie de aspectos parametrizables, como el intervalo de sincronización, e

incluso permite cierto nivel de personalización de las máquinas de estados asociadas al

protocolo.

17

Figura 2.4: Campos VLAN y PCP en una trama Ethernet

Las parametrizaciones del estándar IEEE 1588 reciben el nombre de perfiles. Un

perfil define valores espećıficos para los parámetros, y puede limitar las funcionalidades

y tipos de red a soportar para que un sistema se pueda considerar conforme al estándar.

PTP define el protocolo para propagar el tiempo proporcionado por un nodo de

referencia al resto e nodos de la red.

El protocolo elige un reloj denominado como grandmaster (GM) que es utilizado

como referencia por el resto de los relojes de la red. El GM env́ıa periódicamente

tramas de sincronización al resto de nodos de la red. El protocolo incluye mecanismos

para medir y cancelar los retardos de propagación en los que incurre el transito de los

mensajes desde el GM hasta los followers.

Las implementaciones basadas en software proporcionan desviaciones entre tiempo

en el GM y los followers por debajo de 1 ms. El soporte hardware permite reducir las

desviaciones por debajo de 1 us, alcanzando unos pocos nanosegundos.

TSN define un perfil de IEEE 1588 en el estándar IEEE 802.1AS, también conocido

como Generalized Precision Time Protocol (gPTP).

IEEE 802.1AS (alias gPTP) restringe el ámbito del protocolo a la capa de enlace

Ethernet (802.3) y Wi-Fi (802.11), lo que permite mejorar la precisión de la sincroniza-

ción. También especifica diferentes parámetros, como el numero de dominios temporales

soportados.

2.2.4. Control de flujo

Uno de los aspectos definidos en el estándar IEEE 802.1Q es el control de flujo para

redes TSN. Algunas de las extensiones relevantes integradas en dicho estándar son

802.1Qav ó 802.1Qbv, que especifican mecanismos para regular el tráfico y garantizar

plazos de entrega de los flujos prioritarios.

18

Modulado (shaping)

El control de tráfico consiste en administrar la cantidad y el tipo de flujo permitido

en la red. La modulación del tráfico (traffic shaping) consiste en limitar la tasa de

transmisión de los flujos.

IEEE 802.1Qav Credit Base Shapper (CBS)

CBS es un sistema basado en los algoritmos leaky bucket que limita el ancho de

banda que puede utilizar una clase de tráfico. Cada una de las colas de transmisión

(RX queues) tiene asociado un contador de crédito, que aumenta cuando no se están

transmitiendo tramas a través de esa cola y disminuye mientras se transmiten.

Cuando un trama llega a la cola se verifica el contador de créditos. La trama se

transmitirá si este contador es superior a un parámetro definido por el administrador

o el CNC (ver Sec. 2.2.5). En caso contrario quedará en la cola hasta que el contador

supere al parámetro.

IEEE 802.1Qbv Time Aware Shapper (TAS)

TAS es otro sistema de shaping basado en algoritmos leaky bucket, más flexible y

complejo que CBS. La Fig. 2.5 muestra la estructura genérica de este shaper según se

describe en el estándar IEEE 802.1Qbv.

El TAS está formado por una estructura de hasta 8 colas diferentes para gestionar

diferentes tipos de tráfico con la posibilidad de un shaper secundario por cola.

La transmisión de las tramas asignadas a cada cola vienen definidas por unas Gate

Control List en las cuales para cada instante de tiempo se definen que colas pue-

den transmitir. Dichas GCL son el resultado de resolver un problema de planificación

(2.2.4).

Cuando una trama llega al TAS se le asigna una cola dependiendo de la clase

asociada a dicha trama. Una vez la trama llega a la cola se verifica si la entrada de

la GCL activa. Si dicha cola puede transmitir la trama es enviada si no , la trama se

queda en la cola hasta que se pueda transmitir.

En el caso de la Fig 2.5 en el instante de tiempo T04, podrán ser trasmitidas las

tramas que se encuentren encoladas en las colas siete y cinco y en el siguiente ciclo del

scheduler podrán ser transmitidas las tramas de las colas 3 y 4.

Planificación

El problema de planificación de flujos con restricciones temporales y de jitter es

un problema NP-Completo, que se aborda mediante tres tipos de métodos: de opti-

19

Figura 2.5: Estructura del TAS IEEE 802.1Qbv

mización, heuŕısticos y mixtos [22][23]. A partir de las planificaciones obtenidas por

estos métodos se sintetizan las GCL de los TAS (IEEE 802.1Qbv). Este problema de

planificación en TSN y śıntesis de GCL es una ĺınea del proyecto de investigación en

el que se enmarca este TFG (Sec. 1.1), a la que este TFG contribuye proporcionando

un testbed emulado (Cap. 3) y validando soluciones de planificación propuestas en el

proyecto hasta ahora (Cap. 5).

2.2.5. Gestión y configuración de recursos

La gestión recursos es un aspecto importante en TSN. No es central en este TFG

pero aparece inevitablemente al realizar configuraciones (Cap. 5) y por ello lo introdu-

cimos aqúı.

El estándar IEEE 802.1Qat define el protocolo SRP mediante el cual los talkers

anuncian sus flujos al resto de los nodos de la red. Los bridges reciben el anuncio y en

caso de poder reservar los recursos necesarios para los flujos anunciados, remiten dicho

anuncio al resto de los nodos de la red.

La configuración y gestión de una red TSN puede hacerse de forma centralizada

(Centralized Network Configurator (CNC)) o distribuida según el caso de uso. IEEE

802.1Qcc define el protocolo centralizado Centralized Network Configurator (CNC), la

opción más utilizada hoy d́ıa en sistemas industriales, y el interfaz Centralized User

Configuration (CUC) para desarrollar aplicaciones de usuario que interactúen con CNC.

CUC/CNC permiten la configuración de la red mediante protocolos de configuración

20

como NETCONF/RESTCONF o mediante modelos IEEE 802.1Q YANG.

La Fig. 2.6 ejemplifica un sistema de este tipo. El administrador define a través

de un Centralized User Configuration (CUC) la topoloǵıa de red, los flujos a ejecutar

juntos con sus restricciones y otros posibles parámetros. El CUC carga estos datos en el

CNC. El CNC explora la red (nodos, enlaces, caracteŕısticas), realiza la configuración,

calcula la planificación y la despliega, verifica, y si todo está en orden, inicializa y pone

en marcha el sistema.

Algunos fabricantes de bridges TSN ofrecen herramientas e interfaces de configura-

ción y gestión de recursos, pero se trata de un aspecto aún en investigación y desarrollo,

con iniciativas como OpenCNC [24].

2.2.6. Tolerancia a fallos

Las recomendaciones IEEE 802.1CB e IEEE 802.1Qci de TSN aseguran de que

las tramas lleguen a destino en caso de fallo en algún nodo de la red, y permiten la

detección de nodos maliciosos. Este aspecto queda fuera de los objetivos de este TFG.

2.3. Simulación, emulación y testbedding

2.3.1. Conceptos generales

Simular supone diseñar un modelo de un sistema f́ısico, en general con el propósito

de registrar o controlar todos los posibles estados del modelo al menos durante un cier-

to intervalo de simulación, sometiéndolo a unas entradas determinadas. Este modelo

recoge selectivamente caracteŕısticas del sistema f́ısico, según el propósito de la simu-

lación. Permite un seguimiento detallado de todas las variables del modelo deseadas,

disparando el coste temporal de la simulación en función del grado de detalle.

La emulación, por el contrario, sólo se ocupa de imitar el comportamiento del sis-

tema f́ısico, mediante virtualización por ejemplo, sin menoscabo de instrumentar el

sistema con técnicas similares a las utilizadas en un sistema real (e.g. hardware o

software profiling). El sistema emulado puede reemplazar al sistema f́ısico porque su

comportamiento (e.g. respuesta a cambios en las entradas) reproduce el del sistema

f́ısico.

En nuestro contexto, testbedding consiste en crear un prototipo de un sistema f́ısico

mediante componentes f́ısicos, comúnmente dotado de un entorno de gestión y mo-

nitorización que facilita la realización de pruebas y la extracción de métricas de su

comportamiento.

21

Figura 2.6: Ejemplo de configuración de una red TSN mediante un CNC.

2.3.2. Simulación de redes TSN

La simulación de redes consiste en crear modelos discretos de casos de uso (nodos,

enlaces, flujos y su planificación según restricciones). Creado el modelo, se generan

los eventos correspondientes al caso de uso y se obtienen las métricas del sistema

(e.g. latencias y jitter). Existen varias herramientas que permiten la simulación de re-

des TSN. Por ejemplo NeSTiNg[25] es un framework que añade al simulador de redes

Omnet++[26] funcionalidades TSN tales como los shapers TAS y CBS. NeSTiNg/Om-

net++ son gratuitos para instituciones académicas, y se distribuyen bajo una licencia

de código abierto. RTaW-Pegase[27] es otro simulador, esta vez de pago, que soporta

la mayoŕıa de las funcionalidades TSN.

El principal inconveniente de estos simuladores es su rendimiento, quedando limi-

tados en la práctica a casos de uso muy sencillos.

2.3.3. Mininet

Actualmente, el principal emulador de redes de código abierto TSN es Mininet.

Mininet permite definir y ejecutar un conjunto de nodos (end points / hosts, bridges)

y enlaces sobre un único sistema Linux. Los hosts de Mininet se comportan como los

22

f́ısicos. Mininet permite ejecutar sobre ellos aplicaciones de usuario que pueden enviar

tramas a través de interfaces virtuales como el veth de Linux, transmitiéndolas a través

de los switches también emulados.

Es posible diseñar una red en Mininet que emule una red f́ısica, o bien diseñar una

red f́ısica según la diseñada en Mininet, de forma que en ambas plataformas se ejecuten

las mismas aplicaciones con igual código binario.

En la Sec. 3.2.1 se abordarán detalles de implementación y configuración relevantes

para la metodoloǵıa de medición de latencias.

2.3.4. Testbedding

La manera más precisa de probar configuraciones TSN es la realización de las prue-

bas sobre una plataforma f́ısica (testbedding). Un modelo f́ısico (testbed) t́ıpico in-

tegra bridges , hosts con tarjetas de red (NIC) que soportan estándares TSN, como

IEEE802.1AS para asegurar una sincronización temporal correcta.

Al comienzo del desarrollo de este TFG se consideró desplegar los mecanismos TSN

utilizados sobre Mininet en hardware real. La principal dificultad han sido, por una

parte, los tiempos de entrega de los componentes necesarios2 y, por otra, la imposibi-

lidad de acceder a plataformas de testbedding existentes en los plazos propios de un

TFG.

2.4. Trabajos relacionados

Existe un limitado número de trabajos relacionados con los problemas que presenta

la emulación de TSN en Mininet [28][29]. Ambos identifican —y no siempre resuelven—

problemas de integración de componentes TSN sobre los bridges generados por Mininet.

En la Sec. 3.2 llevamos a cabo nuestra propia identificación y aporte de soluciones, sobre

la base de esos trabajos previos.

Por otro lado, existe un estudio sobre el efecto del implementar TAS en software,

comparándolo con su implementación en un testbed hardware [30]. Los autores desa-

rrollan una metodoloǵıa de medida, pero no detallan su implementación.

En [31] se recurre a una red TSN emulada sobre Mininet para estudiar las posibi-

lidades de una aproximación SDN a la hora de implementar tolerancia a fallos en una

red TSN. El articulo se centra más en utilizar las capacidades de SDN de Mininet que

en la implementación de los mecanismos TSN existentes en Linux. También desarro-

llan una metodoloǵıa de profiling, cuya aproximación diferente a la de [30] pero obtiene

2A fecha de escritura de este TFG el tiempo de espera para un equipamiento mı́nimo con capaci-
dades TSN se sitúa en un año y medio

23

resultados similares.

Ha sido útil consultar [32], un trabajo que recoge bien las distintas utilidades TSN

existentes en el ecosistema Linux. Los autores despliegan dichas utilidades sobre un

testbed f́ısico, y no sobre un sistema emulado como en este TFG.

24

Caṕıtulo 3

TSN en Linux y Mininet

La emulación de funcionalidades TSN en Mininet utiliza por una parte subsistemas

TSN espećıficos para Linux como Time-Aware Priority Shaper (taprio) o el protocolo

gPTP, y componentes de Linux para virtualización tales como Virtualized Ethernet

(veth) por otra. Estos elementos son relativamente recientes y siguen en desarrollo

activo, por lo que presentan problemas de estabilidad y compatibilidad entre versiones.

En este caṕıtulo se describen en primer lugar los elementos utilizados en el TFG,

y a continuación los problemas encontrados y las soluciones adoptadas durante su

integración, configuración y empleo.

3.1. Elementos de soporte de TSN y virtualización

3.1.1. Linux Traffic Control

Este subsistema se ocupa de clasificar, arbitrar y planificar las tramas que constitu-

yen el tráfico de red mediante disciplinas de colas (qdisc) y filtros. Las qdisc encolan

las tramas entrantes y salientes del interfaz de red.

Existen dos tipos de qdisc:

Classful qdiscs Encolan y después desencolan las tramas en colas pertenecientes a

clases hijas.

Classless qdiscs Colas que no tienen ninguna clase hija.

Los filtros permiten ejecutar acciones directamente sobre las tramas de red. Los

usuarios pueden establecer filtros tanto en la entrada como en la salida, para modificar

tanto la trama como la meta-información de la misma. Por ejemplo, es posible crear un

filtro que modifique la clase a la que pertenece la trama es decir, que cambie el valor

del campo PCP de la cabecera VLAN de la trama.

A continuación se describen algunas de las qdisc que permiten implementar fun-

cionalidades TSN.

25

Taprio Qdisc

La disciplina taprio implementa una versión simplificada del TAS descrito en el

estándar IEEE 802.1Qbv. Se acopla a los puertos de salida (egress ports) de las inter-

faces de red. Permite definir la clase de tráfico (traffic class, en adelante simplemente

clase) asociada a cada trama a partir de la prioridad interna de la misma, especificada

en su campo skb→priority. Su comportamiento es análogo al definido en el estándar

1Qbv. Precisa por tanto asociar clases a valores del atributo PCP dentro del campo

VLAN de la cabecera de la trama. Esta diferencia representa actualmente un impedi-

mento a la hora de integrar taprio con Mininet. La Sec. 3.2 describe las opciones y la

solución adoptada.

Además de asignar una clase a cada prioridad a cada prioridad, taprio requiere:

1. Asignar una cola para las tramas de cada clase.

2. Indicar el instante de inicio de la planificación y el reloj de referencia a utilizar.

3. Inicializar la GCL conforme a la planificación, indicando el tiempo que debe de

estar activa cada una de sus entradas.

CBS Qdisc

La CBS qdisc implementa el algoritmo de modulado de tráfico homónimo introdu-

cido en la Sec. 2.2.4. En una red TSN es común normalmente ajustar los parámetros

del CBS según los requerimientos de ancho de banda de cada clase. Para ello, la CBS

qdisc se usa en combinación con la qdisc mqprio, que permite definir a qué clase

de tráfico pertenece una trama dependiendo de la prioridad interna de esta última.

Definida la clase a la que pertenece, la trama se env́ıa a la qdisc configurada con los

parámetros propios de dicha clase.

ETF Qdisc

ETF qdisc proporciona la funcionalidad Launch Time Control presente en controla-

dores de red como Intel(R) Ethernet Controller I210© o Intel(R) Ethernet Controller

I226©. Launch Time Control permite especificar el momento preciso en el que una

trama es transmitida, de acuerdo a un reloj de referencia en el interfaz de red.

Las aplicaciones en espacio de usuario suministran este Launch Time al kernel como

una timestamp, utilizando el mecanismo de informacion auxiliar del interfaz de sockets.

El kernel encola y mantiene la trama en la ETF hasta que el reloj del sistema

alcanza el timestamp indicado en la trama para su env́ıo. Este funcionamiento da lugar

26

a problemas cuando se utiliza en emulación, como se expondrá la Sec. 5.1.2 al abordar

la configuración y despliegue de un Caso de Uso.

Esta qdisc incluye además un modo estricto, en el que la trama se descarta si se

ha superado el Launch Time.

Netem Qdisc

La Network Emulation (netem) qdisc ha sido creada con el objetivo de ayudar con

el desarrollo de nuevos protocolos de red. No implementa ningún mecanismo TSN, si no

que permite emular propiedades caracteŕısticas de redes reales tales como la corrupción

o duplicación de paquetes, o el tiempo de transmisión.

netem puede ser utilizada en combinación con otros componentes TSN como la

taprio qdisc como veremos en la Sec. 5.1.4.

Clsact Qdisc

Esta qdisc está concebida como clasificador. Permite modificar skb→priority en

función de filtros de usuario que pueden acceder al valor PCP de las tramas. También

permite modificar PCP, lo que permite en un bridge alterar la clase a la que pertenece

una trama.

3.1.2. Recursos de sincronización del tiempo en Linux

LinuxPTP es una suite de servicios y utilidades para sincronización temporal basada

en IEEE 1588, disponible para entornos Linux. Los más relevantes son ptp4l y phc2sys.

ptp4l proporciona un servicio que implementa diferentes perfiles de PTP, uno de

ellos IEEE 802.1AS. Esto permite la sincronización precisa del reloj hardware alojado

en los interfaces de red con el GM.

phc2sys complementa la funcionalidad de ptp4l con un servicio capaz de sincroni-

zar el reloj incorporado en el interfaz de red con los relojes del sistema operativo (e.g.

CLOCK REALTIME).

3.2. Configuración de Mininet para TSN

Como parte del desarrollo de este TFG se ha implementado una plataforma que

emula una red TSN en Mininet, preparada para probar planificaciones sintetizadas

para el TAS IEEE 802.1Qbv.

27

(a) Procesos y namespaces en Mininet

(b) Procesos de Mininet sobre Linux para una topoloǵıa con dos bridges (S1, S2) interconec-
tados, con dos hosts conectados a cada bridge

Figura 3.1: Procesos desplegados por Mininet sobre Linux

3.2.1. Configuración de la plataforma subyacente

Procesos Mininet

Mininet utiliza virtualización basada en procesos para la creación de los nodos. Cada

nodo es un proceso Linux diferente. Los procesos de nodos host (end points) se ejecutan

cada uno en un network namespace propio. Todos los procesos correspondientes a

bridges se ejecutan en el root namespace. Para interconectar hosts y bridges , Mininet

utiliza pares veth (Sec. 2.1.4) que se comportan como un cable Ethernet f́ısico (Fig.

3.1b).

Los procesos de usuario (e.g. emisores y receptores) que se ejecutan sobre los hosts

se emulan como procesos Linux hijos del proceso host sobre el que se ejecutan, y

comparten el mismo LNS. La Fig. 3.1ilustra la correspondencia entre componentes

emulados, procesos y namespaces (a), y el desliegue de procesos en el sistema Linux

(b).

La configuración de asignación de estos procesos a núcleos disponibles influye en el

cálculo de latencias. Esto se analiza experimentalmente en la Sec. 4.3.3.

Modelo de expulsión

El kernel del sistema Linux anfitrión se ha configurado con dos modelos de expulsión

diferente, por un lado se ha configurado un preemptible kernel sin el parche PREEMPT RT

28

y otro kernel con el parche PREEMPT RT en modo fully preemptible kernel (RT) (ver

Sec. 2.1.7), siguiendo lo que parece ser práctica habitual en la industria.

Los programas XDP, que se ejecutan sobre BPF, debeŕıan de estar sometidos al

modelo de planificación con el que se ha configurado el kernel. Sin embargo en versiones

antiguas de BPF y dependiendo de la versión, se inhibe la expulsión para asegurar que

no hay migración y preservar el contenido de mapas temporalmente almacenados como

variables percpu[33]. Creemos que los posibles efectos laterales son irrelevantes, porque

en el curso de las experimentaciones en este TFG hemos observado que los programas

XDP tienen latencias muy pequeñas. En todo caso conviene consignarlo, porque podŕıa

ser un punto a considerar si en implementaciones reales aparecen efectos laterales ines-

perados a la hora de realizar mediciones temporales, o se observan desviaciones en el

cumplimiento de plazos tiempo real.

3.2.2. Emulación del IEEE802.1Qbv TAS

La implementación de un Time Aware Shaper en IEEE 802.1Qbv se fundamenta

en la existencia de varias colas para un determinado puerto de red. La emulación se

realiza mediante la taprio qdisc (Sec. 3.1.1).

La emulación de un bridge con Mininet requiere por tanto de múltiples colas para

cada uno de sus puertos, que en el caso de las TX queues deberán estar sujetas a la

planificación de un TAS.

Por lo tanto, el primer paso consiste en configurar taprio en los bridges de Mininet.

Esto representa un primer problema, debido a que Mininet crea por interfaces con una

sola cola. Los pares veth (Sec. 2.1.4 que Mininet utiliza para implementar los enlaces

entre nodos son estructuras del kernel. En consecuencia, ampliar el número de colas

de las interfaces supone modificar el kernel. Para ello, en el TFG se ha localizado y

utilizado un parche[34] que ampĺıa a ocho las colas de las interfaces de red creadas

mediante pares veth.

3.2.3. Soluciones al problema de etiquetado de clases de tráfi-
co TSN en Mininet

Adición del etiquetado VLAN

Los bridges reciben tramas Ethernet y utilizan campos como el campo PCP de la

cabecera VLAN (Fig. 2.4) para asignar el trafico a una traffic class. Las traffic classes

son despues utilizadas por los algoritmos de conformado y planificacion como IEEE

802.1Qbv.

29

(a)

(b)

(c)

Figura 3.2: Gestión de la identificación de la clase de tráfico de las tramas en emisores
(a), receptores (b) y bridges (c)

Sin embargo, las redes y bridges emulados con Mininet carecen tanto de dicha

funcionalidad como del propio soporte de Virtual LANs.

Para posibilitar el empleo de taprio, se ha ampliado el framework Mininet adap-

tando una nueva clase Host con etiquetado VLAN en sus interfaces. De este modo,

posibilitamos la emulación del tránsito de tramas entre elementos de red, permitiendo

el tratamiento de traffic classes descrito anteriormente.

Configuración de emisores y receptores

Los emisores env́ıan las tramas a un puerto del nodo receptor mediante el interfaz de

sockets. Podŕıan etiquetar las tramas directamente, con un identificador (SO PRIORITY)

según la clase de tráfico a la que corresponda el flujo que emiten. Sin embargo, esto

determinaŕıa estáticamente la cola del TAS a la que se dirige el flujo. Por este motivo,

es mucho mas útil y flexible que los emisores no asignen estáticamente la prioridad,

asociando después cada puerto a una clase TSN (prioridad según subcampo PCP) en

tiempo de configuración, con posibilidad de hacer cambios dinámicos.

La solución que hemos adoptado, adaptada al caso de emulación sobre Mininet,

se basa en asociar a cada puerto su prioridad mediante un filtro aplicado con la he-

rramienta iptables de Linux. Estos filtros almacenan dicha prioridad en el campo

skb→priority (Sec. 2.1.3) de las tramas que se env́ıan a través de ese puerto. A su

vez, las interfaces VLAN implementan un mecanismo que traslada este valor al campo

PCP. Las Figs. 3.2 (a) y (b) esquematizan este procedimiento.

30

Configuración de los bridges

Ya hemos señalado que Mininet ignora el campo VLAN. En consecuencia, los bridges

creados en Mininet carecen de interfaz VLAN. Es decir, sus interfaces no acceden ni

interpretan dicho campo, reenviando las tramas según su dirección de destino. En

consecuencia, no existe el mecanismo al que nos hemos referido en los hosts en donde

se ejecutan emisores y receptores, realice la copia o conversión skb→priority ↔ PCP.

Es necesario realizar la conversión manualmente.

En nuestro caso, interesa poder encolar cada trama cuando llega a taprio, en la

cola que le corresponda según su clase, pero taprio no permite realizar esta asignación

según el valor PCP sino según el campo skb→priority (ver Sec. 3.1.1). Por lo tanto

es necesario modificar el campo skb→priority de cada trama antes de que llegue a

taprio. La opción más viable consiste en crear un filtro en la entrada de las tramas al

kernel que inicialice skb→priority en función del PCP de la trama.

Para crear el filtro se consideró iptables en primer lugar, pero tras examinar

a fondo la herramienta se determinó que no permite acceder al campo PCP de la

trama. Se consideró también ebtables, que permitiŕıa marcar la trama en función del

PCP para luego modificar skb→priority mediante otro filtro en iptables, pero no

fue posible utilizar esta herramienta por problemas de compatibilidad con el kernel,

modificado para adecuarlo a otras necesidades de este trabajo.

Se consideró diseñar un filtro espećıfico y añadirlo al kernel, pero se consideró pre-

ferible buscar herramientas ya existentes que faciliten la compatibilidad y la migración.

Por ello se configuró un filtro XDP para modificar un campo de la cabecera IP

de la trama según el valor de PCP, y otro filtro posterior en iptables que modificar

skb→priority en consecuencia. El mecanismo como tal funciona, pero se desestimó

finalmente por ser excesivamente intrusivo y potencialmente lento, al requerir la inter-

vención varias capas de red.

Finalmente se estudió y recurrió a la clsact qdisc por las caracteŕısticas que hemos

descrito en la Sec. 3.1.1. Mediante tc, se crea y configura clsact como etapa previa a

la qdisc taprio (Fig. 3.2 (c)).

Con esta mejora se ampĺıa de manera considerable la capacidad de Mininet de

emular una red con bridges implementando IEEE 802.1Qbv.

3.2.4. Sincronización del tiempo en Mininet

En una red TSN f́ısica es necesario contar con el protocolo gPTP para mantener

sincronizados los relojes de los nodos (Sec. 2.2.3).

En el caso de Mininet, todos los nodos se ejecutan (se emulan) como procesos

31

sobre un mismo kernel, compartiendo el mismo reloj del sistema. Sin embargo, debe

considerarse la influencia de dos factores que pueden distorsionar las medidas.

El primero es el reloj del sistema operativo utilizado para muestrear los eventos.

Por ejemplo, en el caso de CLOCK REALTIME, el sistema operativo no garantiza la au-

sencia de ajustes, incluso si ello supone la pérdida de la monotonicidad. Al utilizar

la escala UTC, también puede estar sometido a la introducción de leap seconds para

compensar la ralentización de la rotación de la Tierra. CLOCK MONOTONIC proporciona

más garant́ıas y es la elección habitual en sistemas TR, pero sigue sujeto a potencia-

les ajustes de la frecuencia. Para eludir estos problemas, en este TFG se garantiza la

ausencia de interferencias tales como cambios manuales por parte del administrador,

o la sincronización del tiempo del sistema operativo utilizando NTP o PTP, mediante

la desactivación de estos mecanismos. .

El segundo factor a considerar es el hardware subyacente. Desde el punto de vista del

hardware, los diferentes procesos involucrados pueden ejecutarse en diferentes núcleos

(cores), y en un caso general, incluso en diferentes sockets. Por lo tanto, la arquitectura

hardware influye de manera determinante en el alineamiento de las mediciones de

procesos que no se ejecutan en el mismo núcleo. En el caso del hardware utilizado

con soporte Intel Time Coordinated Computing (TCC), la implementación del Time

Stamp Counter (TSC) en el MPSoC garantiza que las medidas temporales registradas

en diferentes núcleos no presenten divergencias.

En el Cap. 4 se analizan experimentalmente los efectos de utilizar en Mininet co-

mo emulador TSN unos u otros relojes en el registro de tiempos mediante diferentes

métodos.

32

Caṕıtulo 4

Metodoloǵıa de cálculo de latencias
sobre Mininet

Un objetivo importante de este TFG es establecer una metodoloǵıa fiable de medida

de tiempos en TSN sobre Mininet (Sec. 1.2). Para afrontar dicho objetivo ha sido

necesario estudiar a fondo toda la LNS, los recursos e interfaces disponibles en Mininet,

y los posibles sistemas de registro de tiempos (timestamping) de paso tramas utilizados

en los diferentes niveles.

4.1. Entorno experimental

Hemos instalado Mininet y realizado la experimentación sobre tres plataformas

hardware con distintas capacidades, sobre las que se han aplicado diferentes optimiza-

ciones para TR (Tab. 4.1). La distribución Linux es en todo los casos Ubuntu 20.04 TLS,

kernel 5.2.21. Las modificaciones y configuraciones necesarias para emular redes TSN

con Mininet son las expuestas en la Sec. 3.2. Cada nodo de la red en Mininet corres-

ponde a un proceso ejecutado sobre el sistema operativo anfitrión (Sec. 3.2.1), por lo

que hemos minimizado el posible impacto del resto de los procesos en el registro de

tiempos aislando cada proceso en un núcleo diferente de la CPU.

La Fig. 4.1 ilustra la topoloǵıa de red TSN emulada en este TFG a efectos expe-

rimentales. La red se compone de dos bridges interconectados (S1 y S2), con cuatro

end points (H1-H4). H1 y H4 están conectados al bridge S1; H3 y H4 están conecta-

dos al bridge S2. Para poder medir latencias se ha instalado en los bridges una qdisc

taprio con una configuración especial que mantiene todas las colas abiertas para que

las tramas no sean bloqueadas por la qdisc.

33

Configuración CPU
Optimización

TR
Modelo de expulsión Resultados

CONF-1
Intel® Xeon® Gold 5120
CPU @ 2.20GHz 56 núcleos

(core Skylake)
No preemptible kernel Sec. 4.3.1

CONF-2
Intel® Xeon® Gold 5120
CPU @ 2.20GHz 56 núcleos

(core Skylake)
Software

PREEMPT RT
full preemption

Sec. 4.3.2

CONF-3

11th Gen Intel®

CoreTM i7-1185GRE
CPU @ 2.80GHz 4 núcleos

(core Tigerlake)

TCC nativo
PREEMPT RT
full preemption

Sec. 4.3.3
Anexo C

Tabla 4.1: Plataformas hardware usadas en la experimentación. La distribución Linux
es en todo los casos Ubuntu 20.04 TLS con kernel 5.2.21 (misma versión, en su caso,
del parche PREEMPT RT

Figura 4.1: Infraestructura de red TSN emulada sobre Mininet en el TFG.

4.2. Metodoloǵıa de registro de tiempos

Se ha comenzado caracterizando el comportamiento temporal de los elementos que

forman la red. Como primer paso, se han identificado los puntos del sistema que per-

miten obtener información temporal de las tramas.

Se ha determinado que en una red emulada en Mininet solamente se generan times-

tamps en el momento de recepción de una trama [30]. Estos timestamps emulan los

generados en una red f́ısica por el kernel de un nodo cuando llega una nueva trama a

través del NIC. Además de estos timestamps , se pueden obtener también el instante

de tiempo en los que una trama es enviada desde una proceso de usuario en el nodo

emisor, y el instante en el que ha sido recibida por un proceso de usuario en el nodo

receptor.

34

4.2.1. Relojes del sistema

Los timestamps se generan a partir de los relojes del sistema de cada nodo. En

el caso de Mininet, todos los nodos se emulan mediante procesos que se ejecutan en

la misma máquina (Sec. 3.1b). A la hora de comparar dos timestamps , es necesario

asegurarse de que ambos han sido generados a partir del mismo reloj. Tras revisar los

diferentes temporizadores se ha considerado que los más adecuados para los objetivos

de medición que se persiguen son los siguientes:

1. CLOCK REALTIME: Reloj de referencia en Linux. Marca el instante de tiempo con

precisión de nanosegundos a partir del 1 de enero de 1970. Se ajusta para man-

tenerlo sincronizado con el tiempo UTC, incluyendo los segundos intercalares. Se

utiliza comúnmente para obtener la hora y la fecha actuales del sistema.

2. CLOCK MONOTONIC: Contador monótono creciente. Marca el tiempo transcurrido

desde algún punto fijo en el pasado, generalmente los nanosegundos transcurridos

desde el arranque del sistema. En consecuencia no puede ser modificado direc-

tamente, a diferencia de el reloj CLOCK REALTIME, aunque puede estar sujeto a

cambios en la frecuencia. Por este motivo es un contador muy utilizado en Linux

para temporización de tareas con restricciones TR.

La ISA puede proporcionar mecanismos más precisos para la medición del tiempo.

Un ejemplo es el acceso directo al Time Stamp Counter (TSC) a través de instrucciones

como rdtsc y rdtscp de la ISA Intel x86, utilizada por algunos kernel de Linux (no

todos) como la base de su infraestructura de temporización 1. Este acceso de bajo nivel

proporciona medidas de ticks, que posteriormente son ajustadas para obtener picose-

gundos o nanosegundos. Estos procedimientos sin embargo tienen dos inconvenientes.

En primer lugar, son más precisos de lo necesario para lo que se persigue en nuestro

contexto. En segundo lugar, supone realizar modificaciones en el kernel, que introdu-

cen nuevas sobrecargas según el nivel desde el que se accedan (e.g. desde el espacio de

usuario). Por ello, para este TFG se ha considerado más apropiado utilizar los relojes

y llamadas al sistema ofrecidas actualmente por Linux.

35

Etiqueta Significado Espacio

T1 Tiempo en el que el proceso cliente que se ejecuta sobre el
nodo emisor da la orden al kernel de enviar una trama.

U

T2 Tiempo de recepción de la trama en la NIC (veth) de S1 K

T3 Tiempo de recepción de la trama en la NIC (veth) de S2 K

T4 Tiempo de recepción de la trama en l la NIC (veth) de H3 K

T5 Tiempo en el que el proceso que actúa como proceso servidor
ejecutado sobre el receptor recibe una trama a través de un
socket.

U

Tabla 4.2: Caracteŕısticas de los marcadores temporales usados para cálculo de latencias
en los diferentes experimentos. U/K: lectura en espacio de usuario / de kernel.

Figura 4.2: Puntos de registro de tiempos (Tab. 4.2)

4.2.2. Definición de tiempos registrados y latencias calculadas

La Tab. 4.2 resume los marcadores registrados en la experimentación de este TFG,

representados en la Fig. 4.2. Los relojes y método de registro usados se explicitan en

cada tipo de experimento. A partir de estos tiempos se han calculado las siguientes

latencias:

− Latencia end-to-end (e2e) - Tiempo transcurrido desde que un proceso cliente

ejecuta la llamada al sistema correspondiente al env́ıo de una trama hasta que

dicha trama es recibida por un proceso que actúa como servidor en un nodo

receptor. Se calcula como e2e = T5− T1.

− Latencia end-to-end.nic (e2e.nic) - tiempo desde que las tramas son enviadas

hasta que son recibidas en el NIC del nodo destino. e2e.nic = T4− T1.

1rdtsc ha sido la opción habitual para contar ciclos para medidas de rendimiento y no está afectado
por cambios de frecuencia introducidos por mecanismos de ahorro energético basados en DVFS. Sin
embargo, en procesadores multicore requiere el uso de barreras de sincronización, ya que se ejecuta
fuera de orden, un problema especialmente en multicores. rdtscp aparece en CPUs más recientes de
Intel y actúa en śı misma como barrera de sincronización pero parece ser menos eficiente que rdtsc

usada con barreras de sincronización

36

− Latencia de env́ıo (sendL) - Tiempo transcurrido desde que un proceso da

la orden de transmitir una trama (T1), hasta que dicha trama es enviada por

el nodo. En nuestra plataforma podemos considerar propagación y transmisión

instantáneas2, de modo que tiempo efectivo de env́ıo y tiempo de recepción en

S1 (T2) pueden considerarse iguales. De este modo sendL = T2− T1.

− Tiempo de cómputo en bridges (latencia de los bridges , brL) - Tiempo em-

pleado en el procesado de una trama en el bridge, es decir, desde que la trama

llega (completa) al puerto de entrada del bridge hasta que se inserta en la cola

de salida. Se ha calculado como brL = T3− T2 (= T4− T3).

− Latencia en la recepción de una trama (arrL) - Tiempo desde que una

trama es recibida por el kernel hasta que dicha trama es visible desde un proceso

de usuario que se ejecuta sobre el nodo. Se ha calculado como arrL = T5− T4.

Esta latencia depende de la implementación de la aplicación de usuario que se

ejecuta en el nodo receptor. La hemos caracterizado por completitud, pero no

se tiene en cuenta a la hora de realizar una planificación TSN y queda fuera

del estándar. Por estos motivos en el Cap.5 utilizamos la latencia e2e.nic como

referencia y no la latencia e2e.

4.2.3. Registro en el espacio del kernel

Registro de tiempos en los Virtual Ethernet Pairs

Como indicábamos en la Sec. 4.2, el kernel de Linux genera un timestamp basado

en CLOCK REALTIME en el momento de enviar una trama a través de un par veth,

almacenándolo en la entrada del skb asociada a esa trama. Este timestamp representa

el tiempo de llegada de una trama a un nodo. Para acceder a estos timestamps desde

el espacio de usuario es necesario utilizar la interfaz de sockets de Linux.

En los nodos receptores es posible registrar el timestamp en las propias aplicaciones

que actúan como receptoras (listeners) de un flujo), mediante un socket IP (AF INET).

Utilizamos UDP como protocolo de capa de transporte 3 a fin de que cada paquete

enviado por el socket corresponda a una trama en la red. Aunque TSN se localiza en

el nivel de red (DLL), es viable usar UDP (nivel de transporte) debido a que estamos

emulando el comportamiento (respuesta) del sistema, y la sobrecarga introducida puede

considerarse despreciable.

2Esta premisa es habitual en trabajos relacionados con planificación en TSN, e.g. [35], [1]
3UDP es un protocolo sin conexión, y carece de procesado de comprobación y corrección de errores.

En consecuencia es mucho más ligero que TCP, y es la opción preferida en entornos TR en los que es
preferible descartar tramas que esperar a su reenv́ıo

37

En los bridges no hay emisores ni receptores por definición, y es preciso añadir

un proceso instrumental para realizar el registro. Para ello recurrimos a un socket

AF PACKET asociado a cada interfaz [30], que da acceso a las tramas de la capa 2 (nivel

del driver), fechadas por el propio kernel (interfaz veth) mediante CLOCK RT. Esto limita

la medición basada en AF PACKET al uso de dicho contador, sin otra posibilidad.

La Fig. 4.3 (b) muestra el punto de registro de los timestamps en los bridges median-

te AF PACKET, considerando que el tiempo avanza de arriba hacia abajo. El esquema

muestra que la validación para comprobar que los timestamps pertenecen a la trama

que quiere ser analizada queda incluida en el cálculo de brL.

Registro mediante XDP

XDP (Sec. 2.1.6), a diferencia de AF PACKET, puede registrar timestamps utili-

zando cualquier reloj del sistema. En esta caracterización utilizamos preferentemente

CLOCK MONOTONIC por los motivos expuestos en la Sec. 4.2.1. XDP registra el valor

mediante la función bpf ktime get ns() del sistema BPF (Sec. 2.1.5). Se puede ac-

ceder a este timestamp desde un proceso de usuario a través de un mapa BPF. Este

procedimiento permite realizar un profiling de los bridges minimizando la sobrecarga.

La Fig. 4.3 (a) muestra el esquema de registro. Lo llevamos a cabo creando dos pro-

gramas XDP. El primero verifica si la trama pertenece a uno de los flujos a analizar,

y a continuación obtiene el timestamp. El segundo obtiene el timestamp justo en la

recepción del paquete (el programa XDP se ejecuta justo en el retorno de la rutina

de servicio a interrupción, Sec. 2.1.6), y a continuación verifica la trama. A diferencia

del registro mediante AF PACKET (Fig. 4.3 (b)), el tiempo dedicado a validación queda

excluido del cálculo de brL. Es decir, experimentalmente cabe esperar valores menores

de tiempo de cómputo en el bridge (brL) respecto a la medición v́ıa AF PACKET, cuando

se caracteriza un bridge aislado.

Sin embargo, en el caso de querer analizar el comportamiento temporal de varios

bridges consecutivos en una única prueba, no es posible ignorar el tiempo de cómputo

de la solución XDP. Como se puede deducir de la misma Fig.4.3 (a), la brL del segundo

bridge (Siguiente Nodo) incluirá el tiempo en el que incurre XDP para la validación de

la trama.

4.2.4. Registro en espacio de usuario

Los procesos de usuario pueden leer cualquier reloj del sistema, pasando el identi-

ficador del mismo como parámetro de la llamada al sistema clock gettime().

Hemos usado esta llamada para registrar el timestamp de transferencia de una

trama entre el espacio de usuario (T1) y el de kernel (T1′), sea al enviarla o recibirla, y

38

Figura 4.3: Registro de tiempos y caracterización de tiempo de cómputo en bridges
(brL) mediante: (a) XDP sobre CLOCK MONOTONIC y (b) AF PACKET sobre CLOCK RT.
En (c), registro de tiempos y cálculo de e2e desde espacio de usuario (llamada al
sistema clock gettime(CLOCK MONOTONIC). El tiempo avanza de arriba hacia abajo.
Cada sombreado corresponde a un nodo. Por ejemplo nodo anterior y egress veth
corresponden al primer nodo del esquema.

también para el cálculo de la latencia e2e. La Fig. 4.3 (c) esquematiza el span temporal

del e2e calculado con este método, en un caso en el que no se estaŕıan registrando

tiempos de paso por bridges con ningún método (XDP ó AF PACKET).

4.2.5. Análisis experimental de los métodos de registro de
tiempos

Vamos a realizar una experimentación preliminar para estimar la hipótesis de que

la metodoloǵıa basada en XDP permite calcular la latencia del bridge (brL) con un

impacto menor que la metodoloǵıa basada en AF PACKET.

Se han generado 1000 tramas desde el nodo H1 al nodo H3 (Fig. 4.1). Según los

resultados de laFig. 4.4, el registro de tiempos mediante XDP tiene efectivamente menos

impacto en brL que la solución a través de AF PACKET.

39

Figura 4.4: Comparación del impacto de registro de tiempos sobre un elemento me-
diante XDP y AF PACKET en el cálculo de latencia de bridges (brL, Sec. 4.2.2).

En una segunda comparación, estudiamos también el impacto de ambos métodos

en la latencia e2e.nic. Recordemos que esta latencia es importante porque es la que

generalmente se pretende optimizar en los problemas de planificación TSN. Se han

realizado tres pruebas, cuyos resultados se recogen en la Fig. 4.5. En la primera prueba

(Default) no se han activado mecanismos de profiling, de modo que no se registran

los timestamps T2 Y T3 (Sec. 4.2.2). Refleja unas condiciones similares al del cálculo

de e2e en la Fig. 4.3 (c), pero excluyendo arrL. En la segunda y tercera pruebas se

realiza el registro respectivamente mediante XDP y AF PACKET. El eje vertical indica

la latencia e2e.nic en µs.

XDP resulta en un jitter superior, menos valores at́ıpicos y menor e2e.nic respec-

to a AF PACKET. Con todo, estas diferencias entre ambos métodos son en la práctica

despreciables, debido al mayor impacto que tienen otros elementos en el el registro de

tiempos de paso de tramas y en el cálculo de e2e.nic, como veremos en la Sec. 5.1.2.

A la vista de estos resultados, para realizar el profiling de bridges en la Sec. 4.3 se

ha utilizado el método basado en XDP, debido a su menor impacto en brL respecto

a AF PACKET (Fig. 4.4). Sin embargo, para emular el Caso de Uso TSN en el Cap.5 se

40

Figura 4.5: Comparación de resultados de cálculo de e2e.nic a partir del registro de
tiempos en tramas mediante XDP y AF PACKET. El caso Default se añade como refe-
rencia (ver texto).

ha optado por el método basado en AF PACKET, debido a que en este caso se pretende

caracterizar ambos bridges en el mismo experimento además de medir e2e.nic. Por

otra parte, el método basado en AF PACKET es más sencillo de utilizar (no requiere la

realización e inyección de programas XDP), y también más flexible a la hora de analizar

distintos flujos.

4.3. Resultados del cálculo de latencias en las tres

plataformas

4.3.1. Resultados CONF-1

La Fig. 4.6 muestra (de izquierda a derecha) las latencias sendL, brL, arrL y e2e

calculadas sobre sobre un kernel en configuración CONF-1 (Tab. 4.1). La mayor parte

de la latencia punto a punto viene dado por el tiempo que tarda el kernel en enviar una

trama desde que es recibida por el receptor hasta que llega a la aplicación de usuario.

El tiempo de cómputo de los bridges es bastante más reducido en comparación con el

41

Figura 4.6: Comparación de latencias. Configuración CONF-1 (Tab. 4.1)

retardo causado por los receptores y los emisores. Aún aśı, el jitter es muy elevado,

con una latencia que varia entre 60 µs (mejor caso) y 250 µs (peor caso).

4.3.2. Resultados CONF-2

Para intentar reducir el jitter de la metodoloǵıa de registro se han seguido las suge-

rencias de Intel para la ejecución de aplicaciones tiempo real sobre procesadores Intel

de propósito general. No existen en el caso de la microarquitectura Intel core Skylake,

por lo que se han seguido las sugerencias para la arquitectura Intel core Tigerlake[36]:

− Desactivación de todos los estados de ahorro de enerǵıa de la CPU.

− Utilización en el kernel de un reloj espećıfico de la CPU llamado time stamp

counter como reloj de sistema.

− Desactivación del watchdog y del controlador encargado de manejar la frecuencia

de las CPUs.

− Configuración del kernel para que, en caso de entrar en estado idle, la CPU

permanezca en estado activo.

42

Figura 4.7: Comparación de latencias. Configuración CONF-2 (Tab. 4.1)

Adicionalmente, se han aplicado otras dos optimizaciones relativas a Mininet:

− Aislamiento de los núcleos que se asignarán a los procesos de Mininet del pla-

nificador de tareas, de forma que el scheduler no pueda ejecutar procesos sobre

dichas CPUs.

− Parametrización del planificador del kernel para que ejecute las rutinas de servi-

cio a interrupción sobre núcleos determinados, i.e. CPUs no asignadas a ningún

proceso Mininet.

Gracias a estas modificaciones se reducen latencia y jitter medio (Fig. 4.7), aunque

siguen presentes los valores at́ıpicos que aparećıan en la plataforma sin optimización

(Fig. 4.6).

4.3.3. Resultados CONF-3

Con el objetivo de eliminar, o al menos reducir, los valores at́ıpicos encontrados en la

Sec. 4.3.1, hemos podido experimentar también sobre un PC industrial IEI DRPC-240-

TGL Fanless (Anexo C), que incorpora Intel TCC configurable por BIOS (CONF-3,

43

(a) Resultados CONF-3: asignación permutada 1

(b) Resultados CONF-3: asignación permutada 2

(c) Resultados CONF-3: asignación permutada 3

Figura 4.8: Resultados con tres permutaciones en la asignación de procesos a los cuatro
núcleos disponibles en CONF-3

44

Tab. 4.1), optimizado para procesos TR. Ha habido que renunciar a algunas carac-

teŕısticas del sistema a fin de poder utilizar en lo posible las mismas configuraciones de

Mininet, recursos TSN, distribución de Linux, kernel y parche PREEMPT RT preparados

en este TFG.

Se realizado el profiling con la metodoloǵıa basada en AF PACKET, ya que es la

utilizada en el despliegue de un caso de uso (Cap. 5), en el que el número de proce-

sos desplegados sobre la plataforma es menor que el número de núcleos disponibles,

afectando al resultado de la plataforma.

Se han asignado tres de los cuatro núcleos a los procesos de la emulación. El cuarto

se utiliza para el resto de los procesos del sistema.

CONF-3 reduce notablemente los at́ıpicos, pero el resultado y las latencias vaŕıan

notablemente, dependiendo de la asignación de procesos a núcleos que se realice. Por

ejemplo, en las Figs. 4.8a y 4.8b los tiempos de cómputo de los bridge S1 y S2 son

diferentes entre śı. En la Fig. 4.8a la latencia e2e en la Fig. 4.8a es mayor que la de la

Fig. 4.8b.

Por otra parte, en la Fig. 4.8c los bridges S1 Y S2 tienen el mismo tiempo de

cómputo, sin embargo arrL es muy dispar, obteniendo un jitter superior al resto de

asignaciones. Las distintas permutaciones en la asignación de procesos a núcleos se han

realizado de manera aleatoria.

45

46

Caṕıtulo 5

Emulación de un Caso de Uso

El despliegue y emulación de un Caso de Uso abordado en este caṕıtulo ha resultado

imprescindible para comprobar la congruencia y eficacia del sistema de emulación y

metodoloǵıa de medida expuestas en caṕıtulos anteriores, cumpliendo aśı los objetivos

espećıficos de este TFG (Sec. 1.2).

Este despliegue ha sido útil, además, para revelar algunas cuestiones adicionales

que no hab́ıan aparecido en el análisis y experimentación metodológicas efectuadas en

el Cap. 4, y que aparecen al realizar la configuración y puesta en marcha de un sistema

para un Caso de Uso determinado.

En este TFG la configuración de la topoloǵıa, bridges , configuración de la planifica-

ción y puesta en marcha del sistema emulado sobre Mininet se realiza mediante scripts

propios ((Sec. 5.1). Esto nos permite aprender de abajo arriba detalles que afectan a la

metodoloǵıa de medida de tiempos, y tener un mayor control sobre los procedimientos.

Seguidamente, en la Sec. 5.2, definimos el Caso de Uso, desplegado sobre la infraes-

tructura de red emulada en el Cap. 4 para llevar a cabo la experimentación metodológica

(Fig. 4.1).

5.1. Configuración y despliegue del sistema TSN

5.1.1. Instante cero

El despliegue de un Caso de Uso implica definir el momento en el que, configurados

todos nodos, topoloǵıa, y planificación, comienzan a circular los flujos TSN de modo

que el env́ıo de tramas se realice en los instantes que les corresponde. Son parte de

los aspectos determinados por las recomendaciones IEEE 802.1Q para la gestión de

recursos (ver Sec. 2.2.5). Este instante cero de puesta en marcha es utilizado tanto por

los clientes emisores como por las taprio qdisc situadas en los bridges .

Hemos creado un script en Python que, a través de la API de Mininet, genera

en primer lugar la red, define a continuación el timestamp que se va a tomar como

47

instante cero, y lanza finalmente todos los procesos del sistema. Estos procesos quedan

en estado de espera hasta que se alcanza el tiempo definido como instante cero.

5.1.2. Real-Time Client

En una plataforma f́ısica existen mecanismos que permiten enviar paquetes al medio

de transmisión en un instante preciso. Un ejemplo es el LaunchTime presente en la

NIC Intel(R) Ethernet Controller I210©. Linux ofrece la ETF qdisc (Sec. 3.1.1) para

explotar dicha funcionalidad hardware, pero la hemos descartado como solución en

emulación porque su implementación software añade un jitter considerable.

Para conseguir una precisión aceptable en emulación, se ha implementado un cliente

que genera tramas UDP dirigidas a un puerto determinado. El env́ıo de tramas se realiza

siguiendo un modelo t́ıpico de activación periódica de tareas tiempo real, tomando

como referencia el instante cero (Sec. 5.1.1). A partir de dicho instante, se obtienen los

instantes en los que deben de ser transmitidos el resto de los paquetes.

Para poder realizar una planificación correcta de los flujos TSN es necesario identi-

ficar la variación entre los instantes en los que las tramas deben enviarse y el instante

en el que realmente se env́ıan. El instante de tiempo T1’ es el momento en el que el

planificador indica que la trama debe de ser enviada por el nodo emisor, mientras que

el instante en el que se env́ıa la trama viene dado por T1. En la Fig. 5.1 se observa que

ambos instantes (T1 y T1’) pueden llegar a diferir entre 60 y 80 µs para todas las tra-

mas, en una plataforma con optimización TR moderada como CONF-2 (Tab. 4.1). Es

preciso considerar este retardo a la hora de caracterizar el sistema para parametrizar el

problema de planificación de modo que su solución sea correcta, no sólo anaĺıticamente

(lo cual que depende del método de cálculo) sino una vez trasladada la planificación a

la plataforma emulada mediante inicialización de las taprio (Sec. 5.2.2).

5.1.3. Emulación de tiempos de transmisión

El tiempo de transmisión es un parámetro utilizado en planificación de flujos TSN.

Se define como el tiempo que tarda en enviarse la trama al medio f́ısico por el que va

a ser transmitido. En una una red TSN f́ısica, el TAS tiene que mantener abierta la

puerta que corresponda no más tarde del instante en el que la trama empieza a ser

enviada al medio f́ısico hasta no antes del instante en el que se haya transmitido el

último bit de la misma (ventana de apertura / transmisión). En nuestro caso no existe

un medio f́ısico, ya que trabajamos sobre una red emulada. Por ello hemos ponderado

maneras de emular dicho comportamiento utilizando las qdisc de linux, optando por

utilizar netem (Sec. 3.1.1) como clase hija de taprio.

48

Figura 5.1: Retardo en el env́ıo de tramas (configuración CONF-2 (Tab. 4.1).

La qdisc taprio está implementada de forma que la planificación se aplica la

salida de la clase hija, en nuestro caso netem. Podemos por tanto emular el tiempo de

transmisión colocando una netem por cola del TAS, i.e. como clase hija de taprio, y

añadiendo a cada una de esas netem dicho tiempo de transmisión. De esta forma, una

trama que se encuentre dentro de la qdisc netem solo podrá ser transmitida en el caso

de que la qdisc taprio permita su transmisión (intervalo de transmisión establecido

en la GCL según la planificación), que es nuestro objetivo. La Fig. 5.2 ilustra la esta

estructura de qdisc para emula un TAS.

Esta implementación conlleva el problema de que la primera trama que entra a cada

una de las netem qdisc que se encuentran como salida de las taprio desaparece. Por

ejemplo, en el caso del flujo 0, la trama número 1 desaparecerá en el bridge S1, y la

trama número dos desaparecerá en el bridge S2. No se ha encontrado la causa de este

problema, por lo que se ha solucionado considerando el primer hiperperiodo como fase

transitoria, comenzando el registro de tiempos a partir del segundo.

49

5.1.4. Emulación del tiempo de propagación

En redes de computadores se entiende por tiempo de propagación (Tp) el tiempo que

tarda una señal en llegar del emisor al receptor. Puede calcularse como Tp = Ll/VF ,

donde Ll y VF son respectivamente la longitud y el Factor de Velocidad del enlace 1.

La emulación de tiempos de propagación no puede realizarse basándonos en la

solución adoptada para los tiempos de transmisión, es decir, añadiendo una nueva

netem que añada un tiempo. Pese a que la netem sea una classful qdisc (i.e. que puede

tener clases hijas), la taprio realizaŕıa el shaping sobre las tramas con el tiempo de

transmisión ya añadido. Es decir, las tramas estaŕıan listas para transmitir fuera de la

ventana de apertura de puerta determinada por la planificación.

La solución requiere una modificación del kernel. Como se expuso en la Sec. 3.2.3,

se ha decidido en este TFG atenerse a parches, herramientas e interfaces ya existentes.

Por otra parte, se trata de un tiempo despreciable en el contexto de los casos de uso

industriales que son prioritariamente objetivo del TFG (Sec. 1.2).

5.2. Definición del Caso de Uso

5.2.1. Flujos

La Tab. 5.1 muestra los flujos desplegados sobre la infraestructura de red de la

Fig. 4.1 emulada en Mininet.

5.2.2. Planificación TSN de los flujos

La planificación de estos flujos sobre la topoloǵıa objetivo se ha realizado median-

te el método propuesto en [1], basado en un PPLM preacondicionado mediante una

heuŕıstica. Los parámetros necesarios son los siguientes:

− Flujos : Definición de los distintos flujos TSN a emular sobre la plataforma. Los

parámetros a definir para cada flujo son los siguientes:

• Tiempo de transmisión

• Nodo Origen

• Nodo Destino

1El Factor de Velocidad (Velocity Factor es una razón relativa a la velocidad de la luz, que depende
del medio y tipo de señal. En el vaćıo por ejemplo es 1, en aire 0.999 y en enlaces de cobre vaŕıa según
sus caracteŕısticas (e.g. 0.5 - 0.8). El concepto de señal a transmitir vaŕıa también según el medio. En
cobre por ejemplo se refiere al periodo de variación de la tensión, y en fibra óptica a un pulso de luz.
Conviene tener en cuenta que dicha variación no se corresponde directamente con un bit. Por ejemplo
en Fast Ethernet (modelo 4B5B) se codifican 4 bits cada 5 pulsos de tensión. Pueden ampliarse estos
conceptos en textos generales de redes y comunicaciones como [37] y [12].

50

Figura 5.2: Disposición de taprio y netem para la emulación del tiempo de transmisión

Flujo Talker Listener Periodo Deadline
0 h1 h3 10 ms 10 ms
1 h2 h3 20 ms 20 ms
2 h4 h3 30 ms 30 ms

Tabla 5.1: Flujos del Use Case

• bridges a atravesar

− Tiempo de propagación (Sec. 5.1.4)

− Tiempo de cómputo: Tiempo necesario para procesar una trama en el bridge:

desde el puerto de entrada hasta la cola de salida.

− Desfase de reloj: Máximo desfase que puede tener el reloj de un nodo con

respecto al reloj maestro.

Mediante estos parámetros la herramienta formula las restricciones del PPLM que

utilizamos [1]), lo resuelve y genera las entradas de las GCL para los TAS de cada

bridge (Sec. 2.2.4). En nuestro caso, emulamos los TAS mediante la taprio qdisc. El

script de Python ya mencionado en la Sec. 5.1.1 también inicializa las taprio a partir

de las GCL generadas por el planificador.

Parametrización del planificador

Se ha decidido considerar un tiempo de transmisión de 100 µs, basado en consulta de

casos. Como tiempo de cómputo, tomamos un brL de 10µs, a partir de la caracterización

51

realizada con la metodoloǵıa expuesta en la Sec. 4.3.

El desfase de reloj es uno de los factores que contribuyen al jitter en cualquier

plataforma2, junto a las caracteŕısticas de las NIC (veth en nuestro caso) y bridges

entre otros. En una red en Mininet, el desfase de reloj es cero debido a que todos los

nodos comparten el mismo reloj. Pero no los otros factores del jitter estructural de la

plataforma (Sec. 4.3). Por ello, las ventanas de apertura calculadas en la planificación

pueden resultar insuficientes.

Por ejemplo, si una trama tiene que ser enviada en el instante 100, un planificador

agnóstico respecto al jitter generará la entrada GCL de modo que la puerta del TAS se

abra en el instante 100 y se cierre en 100 + el tiempo de propagación. Un planificador

con jitter (desfase de reloj más otros factores) igual a 10 por ejemplo, fijará la apertura

de la puerta del TAS en el instante 90 (= 100 − 10) y el cierre en el instante 100 +

tiempo de propagación + 10. La ventana de apertura será más amplia, y permitirá

aceptar tramas con jitter de 10 unidades de tiempo.

El planificador que utilizamos [1], en una práctica muy habitual en este tipo de

planificadores, no considera el jitter estructural como parámetro, sino únicamente el

desfase de reloj (cero en Mininet)3. Por este motivo, utilizamos el parámetro desfase

de reloj para considerar el jitter no nulo de nuestra plataforma de emulación.

Los valores at́ıpicos observados en la Sec. 4.3 se encuentran alrededor de los 200 µs

por encima de la media aproximadamente (Fig.4.7). Además, observábamos 80 µs

adicionales de retraso en el env́ıo de las tramas (T1−T1′+sendL, Fig.5.1) y otros 10 µs

adicionales en caso de que estén activados los mecanismos de profiling mencionados en

la Sec.4.2.2 para registro de tiempos de paso de tramas por bridges . Con estos datos,

de manera conservadora, podemos estimar un jitter conjunto de 500 µs. Este es el valor

que hemos trasladado como parámetro de desfase de reloj al planificados, a fin de que

las aperturas y cierres generadas sean suficientemente amplias para el paso de tramas

con jitter .

Finalmente, conviene observar que en un sistema f́ısico, además de las tramas de

los flujos TSN, circulan tramas necesarias para la configuración de la red, como las

del protocolo spaning tree de los bridges o las de ARP. Estas tramas no existen en el

sistema que emulamos.

2Podŕıamos denominarlo jitter estructural, para diferenciarlo del jitter introducido por otras capas
(que no se consideran en TSN) y del jitter de planificación, que los planificadores t́ıpicamente intentan
minimizar pero dif́ıcilmente eliminan completamente

3En parte o en todo, porque una vez desplegado un caso de uso con su planificación es preciso
verificar y a menudo reajustar dicha planificación. La planificación dinámica, o los ajustes dinámicos
de una planificación, es un problema abierto y una activa ĺınea de investigación actualmente en TSN.

52

5.3. Resultados experimentales

Para verificar el correcto funcionamiento del sistema, especialmente que las tramas

de red se env́ıan en los instantes indicados por la planificación, se han utilizado las

herramientas desarrolladas en el Cap. 4.

Una vez definida y configurada la planificación en la taprio, se han generado tramas

en los instantes indicados por el planificador que emulan los flujos con el Real-Time

Client desarrollado 5.1.2. Se han verificado los timestamps generados por las tramas

asociadas a los flujos para calcular la latencia punto a punto e2e.nic (Sec. 4.2.2), que es

la que se considera en TSN para fijar el cumplimiento de los deadlines requeridos por los

flujos (Tab. 5.1), y cuya optimización es precisamente objeto de los planificadores TSN.

La medida de esta e2e.nic se realiza con el método basado en AF PACKET por las razones

que se expusieron en la discusión metodológica (Sec. 4.2.5), y con el registro de tiempos

activado en los bridges (a fin de poder observar el cumplimiento de tiempos de paso de

tramas). Esto último implica que los valores de e2e.nic obtenidos son ligeramente más

altos que los que se obtendŕıan sin la sobrecarga de ese profiling en los bridges (cabe

recordar aqúı la Fig. 4.4).

Las gráficas de la Fig. 5.3 permiten comprobar que las latencias e2e.nic de los flujos

planificados no superan en ningún caso el deadline definido para cada uno de los flujos

(Tab. 5.1). Por ejemplo, en el caso de la Fig. 5.3a, no hay ninguna latencia superior a

los 10 ms, y por lo tanto todas las tramas de dicho flujo cumplen con las restricciones

temporales.Los valores de e2e.nic at́ıpicos que aparecen son los esperables, porque se

sitúa dentro del jitter estimado en base a la caracterización del mismo en la plataforma

de emulación.

Las Figs. 5.4 y 5.5 visualizan que las tramas atraviesan las ventanas de apertura

de los TAS (taprio) de los bridges conforme a la planificación aplicada. Se muestra

para cada bridge la gráfica con las ventanas de apertura de sus puertas para cada

flujo (segmentos coloreados de las Figs. 5.4a y 5.5a), y la gráfica con los intervalos en

los que realmente las tramas atraviesan dichas puertas (segmentos coloreados de las

Figs. 5.4b y 5.5b). Visualmente es fácil comprobar que los segmentos de paso de trama

son menores (y se sitúan dentro de) los segmentos de apertura de puerta.

5.4. Consideraciones finales

El objetivo de este caṕıtulo ha sido comprobar que el sistema emulado, configurado

conforme a lo expuesto en el Cap. 3, y caracterizado conforme a la metodoloǵıa es-

tablecida en el Cap. 4, permite comprobar el funcionamiento de una planificación del

53

(a) Latencia de las tramas asociadas al Flujo 0

(b) Latencia de las tramas asociadas al Flujo
1

(c) Latencia de las tramas asociadas al Flujo 2

Figura 5.3: Latencia de las tramas asociadas a diferentes flujos

54

(a) Planificación asociada al bridge S1

(b) Paso de las tramas por el bridge S1

Figura 5.4: Planificación y Paso de tramas asociadas al bridge S1

55

(a) Planificación asociada al bridge S2

(b) Paso de las tramas por el bridge S2

Figura 5.5: Planificación y Paso de tramas asociadas al bridge S2

56

tipo de la propuesta en [1].

En la Sec. 2.2.5 se introdujo el modus operandi en un despliegue real. Se proporciona

un sistema de gestión (control plane) la definición de flujos, topoloǵıa de red (el propio

sistema la puede descubrir), tipo de planificación o posibles parámetros determinados

de antemano. El sistema configura la red, calcula la planificación y la verifica. Si es

correcta, se pone en marcha el sistema (o se añaden nuevos flujos al sistema en marcha).

Si no pasa la verificación, se recalibra y se calcula una nueva planificación.

De forma similar a dicho modus operandi, en caso de utilizar la plataforma de

emulación y metodoloǵıa expuestas en este TFG para casos de uso, correspondeŕıa

repetir las emulaciones ajustando por ejemplo el parámetro de jitter , para estimar o

ajustar la capacidad del sistema. Algo que puede ser útil como paso previo a trasladar

el caso de uso a un testbed o a un sistema definitivo.

57

58

Caṕıtulo 6

Conclusiones y ĺıneas abiertas

6.1. Discusión de resultados experimentales

6.1.1. Métodos de registro de tiempos

El método de registro basado en llamada al sistema es una elección sencilla y sufi-

ciente para el cálculo de la latencia de extremo a extremo (end to end, e2e), especial-

mente porque en Mininet la sincronización temporal de los contadores está asegurada

al tratarse de procesos ejecutados sobre un mismo sistema operativo y hardware. El

recurso a un contador u otro (CLOCK MONOTONIC vs. CLOCK RT) no parece de influencia

relevante, aunque CLOCK MONOTONIC es la opción lógica en un sistema con restricciones

TR.

Se han evaluado dos métodos de registro de tiempo para caracterización de bridges ,

respectivamente basados en XDP y AF PACKET, y se concluye que ambos pueden ser

utilizados con este fin. Los resultados experimentales indican que el método implemen-

tado con XDP puede proporcionar una cota más ajustada del tiempo de cómputo de

bridges (brL, Fig.4.4) que la solución basada en AF PACKET. En todo caso la diferencia

entre ambos métodos es de unos pocos µs, y en el caso de utilizarse para medir la

latencia e2e.nic, que es la considerada en planificación TSN, las diferencias pueden

considerarse negligibles, siendo AF PACKET más sencillo y flexible en su uso. Por ese

motivo, la comprobación de la planificación en el Caso de Uso del Cap. 5 se ha rea-

lizado mediante AF PACKET, tanto para registrar tiempos para el cálculo de la e2e.nic

como para registrar simultáneamente tiempos de paso de tramas por las puertas de los

TAS (taprio) en bridges .

6.1.2. Influencia de la plataforma subyacente

Los resultados obtenidos muestran que el despliegue de la plataforma de emulación

sobre una CPU con gran número de núcleos (56 núcleos, CONF-1 y CONF-2) per-

59

mite latencias relativamente ajustadas, a costa de un considerable aumento del jitter

(Figs. 4.6 y 4.7).

La utilización de un PC industrial optimizado para tiempo real mediante el sistema

Intel TCC (Anexo C) permite disminuir claramente los valores at́ıpicos y la latencia

e2e.nic, pero los resultados vaŕıan según la asignación de procesos Mininet a los cuatro

núcleos disponibles (Fig. 4.8). Este tipo de plataformas, con Intel TCC disponible,

son conservadoras hoy d́ıa en el número de núcleos (4 - 12 hasta donde hemos podido

comprobar) y memoria, debido particularmente a compromisos coste - rendimiento.

Esto obliga a compartir núcleos para varios procesos Mininet, que no pueden ejecutarse

aislados como en CONF-1 y CONF-2. La asignación de más de un proceso de emulación

por núcleo y consiguiente falta de aislamiento provoca variaciones en el resultado de

los cambios de contexto, y en el comportamiento de los mecanismos especulativos

(p.ej. predicción de saltos) y de ocultación de latencia (prebúsqueda, comportamiento

de la jerarqúıa de memoria en general). Ello provoca por ejemplo conflictos diferentes

en el acceso a memoria principal en cada caso. Ello influye en el registro de tiempos y,

por ende, en las latencias y el jitter finalmente calculados. De usarse como plataforma

de emulación, supone caracterizar el comportamiento de Mininet para cada Caso de

Uso y ensayar permutaciones en la asignación de procesos a núcleos hasta encontrar

latencias satisfactorias.

El mejor de los escenarios consiste obviamente en disponer de un multicore que

soporte el sistema Intel TCC nativo, y que además cuente con un número de núcleos

que minimice el número de procesos por núcleo, a fin de aislar cada uno de los procesos

de emulación. Posiblemente no tiene mucho sentido para optimizar la emulación de

sistemas TSN mediante Mininet, pero puede tenerlo en el caso de TSN como SDN

(cloudification).

La conclusión más importante es que una planificación será siempre correcta, con in-

dependencia de la plataforma de emulación, siempre que se caractericen correctamente

las latencias y se parametrice el planificador coherentemente.

6.2. Mininet como plataforma de emulación de sis-

temas TSN

Mininet ha resultado ser una plataforma satisfactoria para emular casos de uso TSN,

pese a que no se ha diseñado con este objetivo. El trabajo desarrollado en este TFG

muestra que es posible, con algunas limitaciones, crear una plataforma para comprobar

resultados de planificación, uno de los objetivos de la ĺınea de investigación en la que

se enmarca el trabajo, siempre que se tengan en cuenta ciertos aspectos.

60

Una de las principales limitaciones de la plataforma viene dada por la necesidad

de disponer de una versión del kernel de Linux compatible con el parche espećıfico

que permite integrar la taprio en Mininet. Esto impide a fecha de escritura de esta

memoria la utilización de mecanismos implementados en versiones más recientes del

kernel de Linux. Una de estas funcionalidades es, por ejemplo, la combinación de la

taprio qdisc con la ETF qdisc, que permite reducir el jitter de los bridges . Otra

importante es el uso de xdp-hints, que permitiŕıa desarrollar un nuevo mecanismo de

registro de tiempos. Estas nuevas versiones también permitiŕıan utilizar herramientas

de testing de redes TSN como Isochron.

El esfuerzo de comprobación de un planificador sobre un caso de uso (Cap. 5),

mediante la configuración Mininet/Linux discutida en el Cap. 3 y la caracterización y

metodoloǵıa expuestas en el Cap. 4 ha evidenciado aspectos interesantes relativos a la

configuración y puesta en marcha del sistema en emulación, como la consideración de

un instante cero y de una estrategia de inicio del sistema. Más importante, si cabe, ha

sido la parametrización correcta del algoritmo de planificación utilizado (un sistema

propuesto en el grupo de investigación, basado en formular y solucionar un PPLM [1].

En particular, la estimación del jitter en base a la caracterización realizada en el Cap. 4.

6.3. Ĺıneas abiertas

Enumeramos algunas de las cuestiones abiertas en el curso del TFG, que juzgamos

interesantes para trabajos futuros.

En relación a metodoloǵıa de medida y caracterización, creemos que hay dos aspec-

tos poco desarrollados y que van más allá del problema espećıfico de emulación:

− Estudiar el uso de la instrucciones rdtsc y rdtscp de Intel, cuyo rendimiento y

comportamiento pueden actualmente variar según la plataforma.

− Caracterización de factores espećıficos que contribuyen al jitter .

Aspectos más espećıficos ligados a Mininet como plataforma de emulación seŕıan

los siguientes:

− Diseño de un parche del kernel para emular el tiempo de transmisión

− Actualización del parche de las veth para que permita integrar utilidades TSN

actuales como la taprio qdisc junto a la ETF qdisc.

− Desarrollo o adaptación de un framework que permita realizar despliegues au-

tomáticos sobre la plataforma.

61

− Comparación de resultados emulación / testbedding basados en la metodoloǵıa

planteada.

− Realización de pruebas sobre un plataformas con Intel TCC y un mayor número

de núcleos.

62

Bibliograf́ıa

[1] Alitzel G. Torres-Maćıas, Juan Segarra, José L. Briz, Antonio Ramı́rez-Treviño,

and Héctor Blanco-Alcaine. Fast ieee802.1qbv gate scheduling through integer

linear programming. IEEE Access, pages 1–1, 2024.

[2] A. Gracia, J. L. Briz, H Blanco-Alcaine, Juan Segarra, A. Torres, and A. Ramı́rez-

Treviño. Cracking down overheads in tsn emulation over mininet, 2024. Stuttgart

(Germany), 1-3 Oct. 2024.

[3] A.G. Torres-Maćıas, A. Ramirez-Treviño, J.L. Briz, J. Segarra, and H. Blanco-

Alcaine. Modeling time-sensitive networking using timed continuous petri nets.

IFAC-PapersOnLine, 58(1):300–305, 2024. 17th IFACWorkshop on discrete Event

Systems WODES 2024.

[4] Visual studio code. https://code.visualstudio.com/.

[5] Python extension for visual studio code. https://marketplace.visualstudio.

com/items?itemName=ms-python.python.

[6] https://marketplace.visualstudio.com/items?itemName=ms-vscode.

cpptools-extension-pack.

[7] Mininet. https://mininet.org/.

[8] Matplotlib: Visualization with python. https://matplotlib.org/.

[9] https://virt-manager.org/.

[10] Diagrams net. dagrams.net: Security-first diagramming for teams. https://www.

diagrams.net/.

[11] Overleaf. Overleaf, the online latex editor. https://www.overleaf.com.

[12] L.L. Peterson and B.S. Davie. Computer Networks: A Systems Approach. The

Morgan Kaufmann Series in Networking. Elsevier Science, 2021.

63

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools-extension-pack
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools-extension-pack
https://mininet.org/
https://matplotlib.org/
https://virt-manager.org/
https://www.diagrams.net/
https://www.diagrams.net/
https://www.overleaf.com

[13] A.S. Tanenbaum and D.J. Wetherall. Computer Networks. Pearson custom library.

Pearson, 2013.

[14] Ahmed Nasrallah, Akhilesh S. Thyagaturu, Ziyad Alharbi, Cuixiang Wang, Xing

Shao, Martin Reisslein, and Hesham ElBakoury. Ultra-low latency (ull) networks:

The ieee tsn and ietf detnet standards and related 5g ull research. IEEE Commu-

nications Surveys & Tutorials, 21(1):88–145, 2019.

[15] Youhwan Seol, Doyeon Hyeon, Junhong Min, Moonbeom Kim, and Jeongyeup

Paek. Timely Survey of Time-Sensitive Networking: Past and Future Directions.

IEEE Access, 9:142506–142527, 2021.

[16] Sameer Seth and M. Venkatesulu. Kernel Implementation of Sockets, pages 101–

119. 01 2008.

[17] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fasta-

bend, Tom Herbert, David Ahern, and David Miller. The express data path: fast

programmable packet processing in the operating system kernel. In CoNEXT ’18,

page 54–66, New York, NY, USA, 2018. Association for Computing Machinery.

[18] The Linux Foundation. Myth-busting dpdk in 2020, 2020. https:

//nextgeninfra.io/wp-content/uploads/2020/07/AvidThink-Linux-

Foundation-Myth-busting-DPDK-in-2020-Research-Brief-REV-B.pdf.

[19] kernel.org. Documentación expulsión del kernel. https://git.kernel.org/pub/

scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.preempt.

[20] IEEE. IEEE Standard for Local and Metropolitan Area Networks–Bridges and

Bridged Networks, IEEE Standard 802.1Q-2014, 2014.

[21] Industrial Internet Consortium (iiC). Time Sensitive Networks for Flexible Ma-

nufacturing Testbed Characterization and Mapping of Converged Traffic Types,

2019.

[22] Thomas Stüber, Lukas Osswald, Steffen Lindner, and Michael Menth. A survey

of scheduling algorithms for the time-aware shaper in time-sensitive networking

(tsn). IEEE Access, 11:61192–61233, 2023.

[23] Hamza Chahed and Andreas Kassler. TSN network scheduling - challenges and

approaches. Network, 3(4):585–624, 2023.

64

https://nextgeninfra.io/wp-content/uploads/2020/07/AvidThink-Linux-Foundation-Myth-busting-DPDK-in-2020-Research-Brief-REV-B.pdf
https://nextgeninfra.io/wp-content/uploads/2020/07/AvidThink-Linux-Foundation-Myth-busting-DPDK-in-2020-Research-Brief-REV-B.pdf
https://nextgeninfra.io/wp-content/uploads/2020/07/AvidThink-Linux-Foundation-Myth-busting-DPDK-in-2020-Research-Brief-REV-B.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.preempt
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/Kconfig.preempt

[24] Hamza Chahed and Andreas J. Kassler. Software-defined time sensitive networks

configuration and management. In 2021 IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN), pages 124–128, 2021.

[25] Nesting. https://gitlab.com/ipvs/nesting.

[26] Omnet++. https://omnetpp.org/.

[27] Rtaw-pegase. https://www.realtimeatwork.com/rtaw-pegase/.

[28] Alexander Oliver Mildner. Evaluation of Online Schedule Synthesis Algorithms

for Time-Based Scheduled Time Sensitive Networks. Master’s thesis, Department

of Informatics, City, State, 2019. MSc Thesis. Supervisor: Prof. Dr.-Ing. Georg

Carle. Advisors: Max Helm, Benedikt Jaeger, Dr. Marcel Wagner (Intel), Héctor

Blanco Alcaine (Intel).

[29] Maxime Samson, Thomas Vergnaud, Éric Dujardin, Laurent Ciarletta, and Ye-

Qiong Song. A model-based approach to automatic generation of tsn network

simulations. 2022 IEEE 18th International Conference on Factory Communication

Systems (WFCS), pages 1–8, 2022.

[30] Marian Ulbricht, Javier Acevedo, Surik Krdoyan, and Frank H. P. Fitzek. Emula-

tion vs. reality: Hardware/software co-design in emulated and real time-sensitive

networks. European Wireless 2021; 26th European Wireless Conference, pages 1–7,

2021.

[31] Gagan Nandha Kumar, Kostas Katsalis, Panagiotis Papadimitriou, Paul Pop,

and Georg Carle. Failure handling for time-sensitive networks using sdn

and source routing. In Proceedings of 2021 IEEE 7th International Confe-

rence on Network Softwarization, pages 226–234, United States, 2021. IEEE.

7¡sup¿th¡/sup¿International Conference on Network Softwarization, NetSoft 2021

; Conference date: 28-06-2021 Through 02-07-2021.

[32] Ferenc Fejes, Péter Antal, and Márton Kerekes. The tsn building blocks in linux,

2022.

[33] Jakub Sitnicki. Bpf and kernel preemption. https://lore.kernel.org/bpf/

CAMy7=ZWPc279vnKK6L1fssp5h7cb6cqS9_EuMNbfVBg_ixmTrQ@mail.gmail.com/

T/. [Online; accessed 7-July-2024].

[34] Mininettsn paches for integrating tsn in mininet. https://github.com/

ulbricht-inr/MininetTSN.

65

https://gitlab.com/ipvs/nesting
https://omnetpp.org/
https://www.realtimeatwork.com/rtaw-pegase/
https://lore.kernel.org/bpf/CAMy7=ZWPc279vnKK6L1fssp5h7cb6cqS9_EuMNbfVBg_ixmTrQ@mail.gmail.com/T/
https://lore.kernel.org/bpf/CAMy7=ZWPc279vnKK6L1fssp5h7cb6cqS9_EuMNbfVBg_ixmTrQ@mail.gmail.com/T/
https://lore.kernel.org/bpf/CAMy7=ZWPc279vnKK6L1fssp5h7cb6cqS9_EuMNbfVBg_ixmTrQ@mail.gmail.com/T/
https://github.com/ulbricht-inr/MininetTSN
https://github.com/ulbricht-inr/MininetTSN

[35] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmeĺık, and Wilfried Steiner.

Scheduling real-time communication in ieee 802.1qbv time sensitive networks. In

Proceedings of the 24th International Conference on Real-Time Networks and Sys-

tems, RTNS ’16, page 183–192, New York, NY, USA, 2016. Association for Com-

puting Machinery.

[36] Intel Co. 11 th gen intel® core™ processors real-time tuning guide. https:

//www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https:

//cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%

2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-

%25201.3.pdf.

[37] William H. Tranter Rodger E. Ziemer. Principles of Communications. Technology

& Engineering. John Wiley & Sons,, 2014.

[38] medium.com. Learn network namespaces and virtual ethernet (veth) devi-

ces with graphs. https://medium.com/@amazingandyyy/introduction-to-

network-namespaces-and-virtual-ethernet-veth-devices-304e0c02d084.

[39] mininet.org. Guia de instalación de mininet. https://mininet.org/download/.

[40] Ahmed Nasrallah, Venkatraman Balasubramanian, Akhilesh Thyagaturu, Martin

Reisslein, and Hesham ElBakoury. Reconfiguration algorithms for high precision

communications in time sensitive networks. In 2019 IEEE Globecom Workshops

(GC Wkshps), pages 1–6, 2019.

[41] Ingo Lütkebohle. BWorld Robot Control Software, 2008. http://aiweb.techfak.

uni-bielefeld.de/content/bworld-robot-control-software/.

[42] Acontis Technologies. Building a rt kernel in ubuntu. https://www.acontis.

com/en/building-a-real-time-linux-kernel-in-ubuntu-preemptrt.html.

66

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdrdv2-public.intel.com/640980/Real-Time%2520Tuning%2520Guide%2520-%252011th%2520Gen%2520Intel%2520Core%2520Processors%2520-%25201.3.pdf
https://medium.com/@amazingandyyy/introduction-to-network-namespaces-and-virtual-ethernet-veth-devices-304e0c02d084
https://medium.com/@amazingandyyy/introduction-to-network-namespaces-and-virtual-ethernet-veth-devices-304e0c02d084
https://mininet.org/download/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
https://www.acontis.com/en/building-a-real-time-linux-kernel-in-ubuntu-preemptrt.html
https://www.acontis.com/en/building-a-real-time-linux-kernel-in-ubuntu-preemptrt.html

Siglas

ETF Earliest TxTime First. 26, 48, 61

netem Network Emulation. 27, 48–51, 72

skb Socket Buffer. 11, 12, 37, 71

taprio Time-Aware Priority Shaper. 11, 17, 25–27, 29–31, 33, 47–51, 53, 59, 61, 72

tc Linux Traffic Control. 11

veth Virtualized Ethernet. 11, 25, 28, 29, 36–38, 52, 61

API Application Programming Interface. 47

ARP Address Resolution Protocol. 52

BE Best Effort (no prioritario). 16, 17

BPF Berkeley Packet Filtering. 11–13, 29, 38

CBS Credit Base Shapper. 19, 22, 26

CNC Centralized Network Configurator. 19–22, 71

CPU Central Processing Unit. 42, 43, 59

CUC Centralized User Configuration. 20, 21

DLL Data Link Layer. 9, 37

DPDK Data Plane Development Kit. 13

eBPF Extended Berkeley Packet Filter. 12

GCL Gate Control List. 19, 20, 26, 49, 51, 52

GM Grandmaster. 18, 27

67

gPTP Generalized Precision Time Protocol. 18, 25, 31

HPN High Performance Networking. 4

IACS Industrial Automation and Control Systems. 16

iiC Internet Industrial Consortium. 16

ISA Instruction Set Architecture. 35

IT Information Technology. 3

JIT Just-In-Time. 11

LNS Linux Network Stack. 9, 11–13, 28, 33

MPSoC Multiprocessor System on a Chip. 32

NIC Network Interface Card. 9, 13, 14, 23, 34, 36, 48, 52

NTP Network Time Protocol. 32

OT Operational Technology. 3

PCP Priority Code Point. 16–18, 25–27, 29–31, 71

PPLM Problema de Programación Lineal Mixta. 50, 51, 61

PTP Precision Time Protocol. 17, 18, 27, 32

QoS Quality of Service. 15

SDN Software Defined Network. 3, 23, 60

SRP Stream Reservation Protocol. 20

TAS Time Aware Shapper. 16, 19, 20, 22, 23, 26, 27, 29, 30, 48, 49, 51–53, 59, 71

TCP Transmission Control Protocol. 37

TFG Trabajo de Fin de Grado. 3–6, 11, 12, 14, 17, 20, 21, 23–25, 27, 29, 32–36, 45,

47, 50, 57, 60, 61, 71, I, III

TR Tiempo Real. 4, 32–35, 37, 45, 48, 59

68

TSN Time-Sensitive Networking. 3–7, 9, 11, 15–18, 20–27, 30–34, 37, 40, 45, 47, 48,

50, 52, 53, 59–61, 71, 73, I, III, IV

UDP User Datagram Protocol. 37, 48

ULL Ultra-Low Latency. 3

VLAN Virtual Local Area Network. 9, 16, 18, 25, 26, 29–31, 71

XDP eXpress Data Packet. 5, 12–14, 29, 31, 38–41, 59, 71, 72, 114, 115

69

70

Lista de Figuras

1.1. Diagrama de Gant . 7

2.1. Esquema de la estructura de la Linux Network Stack. 10

2.2. Esquema de la estructura skb del kernel,Kernel Implementation of Sockets[16]

Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Network-

buffer-sk-buff fig1 285355742 [accessed 1 Sept 2024] 12

2.3. Esquema de XDP . 13

2.4. Campos VLAN y PCP en una trama Ethernet 18

2.5. Estructura del TAS IEEE 802.1Qbv . 20

2.6. Ejemplo de configuración de una red TSN mediante un CNC. 22

3.1. Procesos desplegados por Mininet sobre Linux 28

3.2. Gestión de la identificación de la clase de tráfico de las tramas en emi-

sores (a), receptores (b) y bridges (c) 30

4.1. Infraestructura de red TSN emulada sobre Mininet en el TFG. 34

4.2. Puntos de registro de tiempos (Tab. 4.2) 36

4.3. Registro de tiempos y caracterización de tiempo de cómputo en bridges

(brL) mediante: (a) XDP sobre CLOCK MONOTONIC y (b) AF PACKET sobre

CLOCK RT. En (c), registro de tiempos y cálculo de e2e desde espacio

de usuario (llamada al sistema clock gettime(CLOCK MONOTONIC). El

tiempo avanza de arriba hacia abajo. Cada sombreado corresponde a un

nodo. Por ejemplo nodo anterior y egress veth corresponden al primer

nodo del esquema. 39

4.4. Comparación del impacto de registro de tiempos sobre un elemento

mediante XDP y AF PACKET en el cálculo de latencia de bridges (brL,

Sec. 4.2.2). 40

4.5. Comparación de resultados de cálculo de e2e.nic a partir del registro

de tiempos en tramas mediante XDP y AF PACKET. El caso Default se

añade como referencia (ver texto). 41

71

4.6. Comparación de latencias. Configuración CONF-1 (Tab. 4.1) 42

4.7. Comparación de latencias. Configuración CONF-2 (Tab. 4.1) 43

4.8. Resultados con tres permutaciones en la asignación de procesos a los

cuatro núcleos disponibles en CONF-3 44

5.1. Retardo en el env́ıo de tramas (configuración CONF-2 (Tab. 4.1). . . . 49

5.2. Disposición de taprio y netem para la emulación del tiempo de transmisión 51

5.3. Latencia de las tramas asociadas a diferentes flujos 54

5.4. Planificación y Paso de tramas asociadas al bridge S1 55

5.5. Planificación y Paso de tramas asociadas al bridge S2 56

C.1. IEI DRPC-240 TGL . 111

D.1. Medición de la latencia sendL con la solución basada en AF PACKET . . 114

D.2. medición de la latencia sendL con la solución basada en XDP 114

D.3. Medición de la latencia arrL con la solución basada en XDP 115

D.4. Medición de la latencia arrL con la solución basada en AF PACKET . . 115

D.5. Medición de la latencia e2e . 116

D.6. Medición de la latencia e2e.nic con la solución basada en AF PACKET . 117

72

Lista de Tablas

2.1. Asignación de prioridades a distintos tipos de tráfico [20] 17

2.2. Tipos de tráfico en redes TSN [21] . 17

4.1. Plataformas hardware usadas en la experimentación. La distribución

Linux es en todo los casos Ubuntu 20.04 TLS con kernel 5.2.21 (misma

versión, en su caso, del parche PREEMPT RT 34

4.2. Caracteŕısticas de los marcadores temporales usados para cálculo de la-

tencias en los diferentes experimentos. U/K: lectura en espacio de usua-

rio / de kernel. 36

5.1. Flujos del Use Case . 51

73

74

Anexos

75

Anexos A

Puesta en Marcha de Mininet

Para la instalación de Mininet se han seguido los pasos de [39]. Se ha instalado la

versión 2.3.0. Algunos de los enlaces del script de instalación no funcionan correcta-

mente y ha sido necesario actualizarlos.

Una vez instalado Mininet se ha procedido a instalar un kernel 5.2.21-rt15, y aplicar

el parche PREEMPT RT y el parche que aumenta el número de colas de los virtual ethernet

pairs:

mkdir kernel

cd kernel

wget https :// mirrors.edge.kernel.org/pub/ \

linux/kernel/v5.x/linux -5.2.21. tar.gz

wget \

https :// mirrors.edge.kernel.org/pub/linux/kernel/ \

projects/rt/5.2/ patch -5.2.21 - rt15.patch.gz

tar -xzf linux -5.2.21. tar.gz

xz -d patch -5.2.21 - rt15.patch.gz

git clone https :// github.com/ulbricht -inr/MininetTSN

cp MininetTSN -master/diif.patch linux -5.2.21/ drivers/net

cd drivers/net

patch -p4 < diff.patch

cd ../..

patch -p1 < ../patch -5.2.21 - rt15.patch

Además también es necesario utilizar el compilador gcc v8 en caso de utilizar una

versión mas moderna el kernel no se compilará con éxito.

77

Una vez aplicados los parches y modificado el compilador, se sigue la rutina habitual

de parcheado y construcción de un kernel de Linux. Puede encontrarse información para

hacerlo de forma nativa en Ubuntu por ejemplo en [42].

78

Anexos B

Resultado Planificación

B.1. Problema ILP

/* **** flow 0 **** */

/* Frame period: 10000 microseconds */

/* Frame transmission time: 100 microseconds */

/* Traversed nodes: [(1001, 1), (1, 2), (2, 1003)] */

/* Start node: (1001, 1) */

/* End nodes: {(2, 1003)} */

/* Required end-to-end time: 10000 microseconds */

/* Weight for WFQ: 1 */

/* **** flow 1 **** */

/* Frame period: 20000 microseconds */

/* Frame transmission time: 100 microseconds */

/* Traversed nodes: [(1002, 1), (1, 2), (2, 1003)] */

/* Start node: (1002, 1) */

/* End nodes: {(2, 1003)} */

/* Required end-to-end time: 20000 microseconds */

/* Weight for WFQ: 1 */

/* **** flow 2 **** */

/* Frame period: 30000 microseconds */

/* Frame transmission time: 100 microseconds */

/* Traversed nodes: [(1004, 2), (2, 1003)] */

/* Start node: (1004, 2) */

/* End nodes: {(2, 1003)} */

/* Required end-to-end time: 30000 microseconds */

/* Weight for WFQ: 1 */

79

/* Hyperperiod: 60000 microseconds */

/* Number of hyperperiods to anayze: 2 */

/* 9 windows in node/port (1, 2) with (Flow, Frame) order: [(0, 0), (1, 0), (0, 1),

(0, 2), (1, 1), (0, 3), (0, 4), (1, 2), (0, 5)] */

/* 11 windows in node/port (2, 1003) with (Flow, Frame) order: [(2, 0), (0, 0), (1,

0), (0, 1), (0, 2), (1, 1), (2, 1), (0, 3), (0, 4), (1, 2), (0, 5)] */

/* 6 windows in node/port (1001, 1) with (Flow, Frame) order: [(0, 0), (0, 1), (0, 2),

(0, 3), (0, 4), (0, 5)] */

/* 2 windows in node/port (1004, 2) with (Flow, Frame) order: [(2, 0), (2, 1)] */

/* 3 windows in node/port (1002, 1) with (Flow, Frame) order: [(1, 0), (1, 1), (1, 2)]

*/

/* Maximum number of windows per port: 11 */

/* Objective function */

max: timeMargin;

/* Flow offset constraints (for each flow) */

/* 0 <= flow_offset (default unless free variable)*/

/* flow_offset < flow_period */

st0offset < 10000;

st1offset < 20000;

st2offset < 30000;

/* Frame ready constraints from source end-station (for each frame) */

/* frame_ready = flow_period*num_frame + flow_offset */

st0fr0sw1001pt1ready = 0 + st0offset;

st0fr1sw1001pt1ready = 10000 + st0offset;

st0fr2sw1001pt1ready = 20000 + st0offset;

st0fr3sw1001pt1ready = 30000 + st0offset;

st0fr4sw1001pt1ready = 40000 + st0offset;

st0fr5sw1001pt1ready = 50000 + st0offset;

st1fr0sw1002pt1ready = 0 + st1offset;

st1fr1sw1002pt1ready = 20000 + st1offset;

80

st1fr2sw1002pt1ready = 40000 + st1offset;

st2fr0sw1004pt2ready = 0 + st2offset;

st2fr1sw1004pt2ready = 30000 + st2offset;

/* Frame start in first switch constraints (for each frame) */

/* frame_ready <= frame_start */

st0fr0sw1001pt1ready <= st0fr0sw1001pt1start;

st0fr1sw1001pt1ready <= st0fr1sw1001pt1start;

st0fr2sw1001pt1ready <= st0fr2sw1001pt1start;

st0fr3sw1001pt1ready <= st0fr3sw1001pt1start;

st0fr4sw1001pt1ready <= st0fr4sw1001pt1start;

st0fr5sw1001pt1ready <= st0fr5sw1001pt1start;

st0fr0sw1pt2ready <= st0fr0sw1pt2start;

st0fr1sw1pt2ready <= st0fr1sw1pt2start;

st0fr2sw1pt2ready <= st0fr2sw1pt2start;

st0fr3sw1pt2ready <= st0fr3sw1pt2start;

st0fr4sw1pt2ready <= st0fr4sw1pt2start;

st0fr5sw1pt2ready <= st0fr5sw1pt2start;

st0fr0sw2pt1003ready <= st0fr0sw2pt1003start;

st0fr1sw2pt1003ready <= st0fr1sw2pt1003start;

st0fr2sw2pt1003ready <= st0fr2sw2pt1003start;

st0fr3sw2pt1003ready <= st0fr3sw2pt1003start;

st0fr4sw2pt1003ready <= st0fr4sw2pt1003start;

st0fr5sw2pt1003ready <= st0fr5sw2pt1003start;

st1fr0sw1002pt1ready <= st1fr0sw1002pt1start;

st1fr1sw1002pt1ready <= st1fr1sw1002pt1start;

st1fr2sw1002pt1ready <= st1fr2sw1002pt1start;

st1fr0sw1pt2ready <= st1fr0sw1pt2start;

st1fr1sw1pt2ready <= st1fr1sw1pt2start;

st1fr2sw1pt2ready <= st1fr2sw1pt2start;

st1fr0sw2pt1003ready <= st1fr0sw2pt1003start;

st1fr1sw2pt1003ready <= st1fr1sw2pt1003start;

st1fr2sw2pt1003ready <= st1fr2sw2pt1003start;

st2fr0sw1004pt2ready <= st2fr0sw1004pt2start;

st2fr1sw1004pt2ready <= st2fr1sw1004pt2start;

st2fr0sw2pt1003ready <= st2fr0sw2pt1003start;

81

st2fr1sw2pt1003ready <= st2fr1sw2pt1003start;

/* Frame completion constraints */

/* flowXframeYswitchZcomplete = flowXframeYswitchZstart + flowXframeYtransmissionTime */

st0fr0sw1001pt1complete = st0fr0sw1001pt1start + 100;

st0fr0sw1pt2complete = st0fr0sw1pt2start + 100;

st0fr0sw2pt1003complete = st0fr0sw2pt1003start + 100;

st0fr1sw1001pt1complete = st0fr1sw1001pt1start + 100;

st0fr1sw1pt2complete = st0fr1sw1pt2start + 100;

st0fr1sw2pt1003complete = st0fr1sw2pt1003start + 100;

st0fr2sw1001pt1complete = st0fr2sw1001pt1start + 100;

st0fr2sw1pt2complete = st0fr2sw1pt2start + 100;

st0fr2sw2pt1003complete = st0fr2sw2pt1003start + 100;

st0fr3sw1001pt1complete = st0fr3sw1001pt1start + 100;

st0fr3sw1pt2complete = st0fr3sw1pt2start + 100;

st0fr3sw2pt1003complete = st0fr3sw2pt1003start + 100;

st0fr4sw1001pt1complete = st0fr4sw1001pt1start + 100;

st0fr4sw1pt2complete = st0fr4sw1pt2start + 100;

st0fr4sw2pt1003complete = st0fr4sw2pt1003start + 100;

st0fr5sw1001pt1complete = st0fr5sw1001pt1start + 100;

st0fr5sw1pt2complete = st0fr5sw1pt2start + 100;

st0fr5sw2pt1003complete = st0fr5sw2pt1003start + 100;

st1fr0sw1002pt1complete = st1fr0sw1002pt1start + 100;

st1fr0sw1pt2complete = st1fr0sw1pt2start + 100;

st1fr0sw2pt1003complete = st1fr0sw2pt1003start + 100;

st1fr1sw1002pt1complete = st1fr1sw1002pt1start + 100;

st1fr1sw1pt2complete = st1fr1sw1pt2start + 100;

st1fr1sw2pt1003complete = st1fr1sw2pt1003start + 100;

st1fr2sw1002pt1complete = st1fr2sw1002pt1start + 100;

st1fr2sw1pt2complete = st1fr2sw1pt2start + 100;

st1fr2sw2pt1003complete = st1fr2sw2pt1003start + 100;

st2fr0sw1004pt2complete = st2fr0sw1004pt2start + 100;

st2fr0sw2pt1003complete = st2fr0sw2pt1003start + 100;

st2fr1sw1004pt2complete = st2fr1sw1004pt2start + 100;

st2fr1sw2pt1003complete = st2fr1sw2pt1003start + 100;

82

/* Path completion constraints */

/* flowXframeYswitchZcomplete + (propagation_time+processing_time) <= flowXframeYswitchZNEXTready */

st0fr0sw1001pt1complete + 10 <= st0fr0sw1pt2ready;

st0fr1sw1001pt1complete + 10 <= st0fr1sw1pt2ready;

st0fr2sw1001pt1complete + 10 <= st0fr2sw1pt2ready;

st0fr3sw1001pt1complete + 10 <= st0fr3sw1pt2ready;

st0fr4sw1001pt1complete + 10 <= st0fr4sw1pt2ready;

st0fr5sw1001pt1complete + 10 <= st0fr5sw1pt2ready;

st0fr0sw1pt2complete + 10 <= st0fr0sw2pt1003ready;

st0fr1sw1pt2complete + 10 <= st0fr1sw2pt1003ready;

st0fr2sw1pt2complete + 10 <= st0fr2sw2pt1003ready;

st0fr3sw1pt2complete + 10 <= st0fr3sw2pt1003ready;

st0fr4sw1pt2complete + 10 <= st0fr4sw2pt1003ready;

st0fr5sw1pt2complete + 10 <= st0fr5sw2pt1003ready;

st1fr0sw1002pt1complete + 10 <= st1fr0sw1pt2ready;

st1fr1sw1002pt1complete + 10 <= st1fr1sw1pt2ready;

st1fr2sw1002pt1complete + 10 <= st1fr2sw1pt2ready;

st1fr0sw1pt2complete + 10 <= st1fr0sw2pt1003ready;

st1fr1sw1pt2complete + 10 <= st1fr1sw2pt1003ready;

st1fr2sw1pt2complete + 10 <= st1fr2sw2pt1003ready;

st2fr0sw1004pt2complete + 10 <= st2fr0sw2pt1003ready;

st2fr1sw1004pt2complete + 10 <= st2fr1sw2pt1003ready;

/* Frame order constraints */

/* flowXframeYswitchZcomplete <= flowXframeY+1switchZstart */

st0fr0sw1001pt1complete <= st0fr1sw1001pt1start;

st0fr1sw1001pt1complete <= st0fr2sw1001pt1start;

st0fr2sw1001pt1complete <= st0fr3sw1001pt1start;

st0fr3sw1001pt1complete <= st0fr4sw1001pt1start;

st0fr4sw1001pt1complete <= st0fr5sw1001pt1start;

st0fr0sw1pt2complete <= st0fr1sw1pt2start;

st0fr1sw1pt2complete <= st0fr2sw1pt2start;

st0fr2sw1pt2complete <= st0fr3sw1pt2start;

st0fr3sw1pt2complete <= st0fr4sw1pt2start;

st0fr4sw1pt2complete <= st0fr5sw1pt2start;

83

st0fr0sw2pt1003complete <= st0fr1sw2pt1003start;

st0fr1sw2pt1003complete <= st0fr2sw2pt1003start;

st0fr2sw2pt1003complete <= st0fr3sw2pt1003start;

st0fr3sw2pt1003complete <= st0fr4sw2pt1003start;

st0fr4sw2pt1003complete <= st0fr5sw2pt1003start;

st1fr0sw1002pt1complete <= st1fr1sw1002pt1start;

st1fr1sw1002pt1complete <= st1fr2sw1002pt1start;

st1fr0sw1pt2complete <= st1fr1sw1pt2start;

st1fr1sw1pt2complete <= st1fr2sw1pt2start;

st1fr0sw2pt1003complete <= st1fr1sw2pt1003start;

st1fr1sw2pt1003complete <= st1fr2sw2pt1003start;

st2fr0sw1004pt2complete <= st2fr1sw1004pt2start;

st2fr0sw2pt1003complete <= st2fr1sw2pt1003start;

/* Gate open/close constraints (ordered gates) */

/* 0 == gateFirstgapOpenOffset */

/* gateFirstgapCloseOffset = gateXopenOffset */

/* gateXopenOffset <= gateXcloseOffset */

/* gateXcloseOffset = gateXgapOpenOffset */

/* gateXgapOpenOffset <= gateXgapCloseOffset */

/* gateXgapCloseOffset = gateX+1openOffset */

/* gateLastopenOffset <= gateLastcloseOffset */

/* gateLastcloseOffset = gateLastgapOpenOffset */

/* gateLastgapOpenOffset <= gateLastgapCloseOffset */

/* gateLastgapCloseOffset = Hyperperiod */

0 = sw1pt2gt0w0gapOpenOffset;

sw1pt2gt0w0gapOpenOffset <= sw1pt2gt0w0gapCloseOffset;

sw1pt2gt0w0gapCloseOffset = sw1pt2gt0w0openOffset;

sw1pt2gt0w0openOffset <= sw1pt2gt0w0closeOffset;

sw1pt2gt0w0closeOffset = sw1pt2gt1w0gapOpenOffset;

sw1pt2gt1w0gapOpenOffset <= sw1pt2gt1w0gapCloseOffset;

sw1pt2gt1w0gapCloseOffset = sw1pt2gt1w0openOffset;

sw1pt2gt1w0openOffset <= sw1pt2gt1w0closeOffset;

sw1pt2gt1w0closeOffset = sw1pt2gt0w1gapOpenOffset;

sw1pt2gt0w1gapOpenOffset <= sw1pt2gt0w1gapCloseOffset;

sw1pt2gt0w1gapCloseOffset = sw1pt2gt0w1openOffset;

84

sw1pt2gt0w1openOffset <= sw1pt2gt0w1closeOffset;

sw1pt2gt0w1closeOffset = sw1pt2gt0w2gapOpenOffset;

sw1pt2gt0w2gapOpenOffset <= sw1pt2gt0w2gapCloseOffset;

sw1pt2gt0w2gapCloseOffset = sw1pt2gt0w2openOffset;

sw1pt2gt0w2openOffset <= sw1pt2gt0w2closeOffset;

sw1pt2gt0w2closeOffset = sw1pt2gt1w1gapOpenOffset;

sw1pt2gt1w1gapOpenOffset <= sw1pt2gt1w1gapCloseOffset;

sw1pt2gt1w1gapCloseOffset = sw1pt2gt1w1openOffset;

sw1pt2gt1w1openOffset <= sw1pt2gt1w1closeOffset;

sw1pt2gt1w1closeOffset = sw1pt2gt0w3gapOpenOffset;

sw1pt2gt0w3gapOpenOffset <= sw1pt2gt0w3gapCloseOffset;

sw1pt2gt0w3gapCloseOffset = sw1pt2gt0w3openOffset;

sw1pt2gt0w3openOffset <= sw1pt2gt0w3closeOffset;

sw1pt2gt0w3closeOffset = sw1pt2gt0w4gapOpenOffset;

sw1pt2gt0w4gapOpenOffset <= sw1pt2gt0w4gapCloseOffset;

sw1pt2gt0w4gapCloseOffset = sw1pt2gt0w4openOffset;

sw1pt2gt0w4openOffset <= sw1pt2gt0w4closeOffset;

sw1pt2gt0w4closeOffset = sw1pt2gt1w2gapOpenOffset;

sw1pt2gt1w2gapOpenOffset <= sw1pt2gt1w2gapCloseOffset;

sw1pt2gt1w2gapCloseOffset = sw1pt2gt1w2openOffset;

sw1pt2gt1w2openOffset <= sw1pt2gt1w2closeOffset;

sw1pt2gt1w2closeOffset = sw1pt2gt0w5gapOpenOffset;

sw1pt2gt0w5gapOpenOffset <= sw1pt2gt0w5gapCloseOffset;

sw1pt2gt0w5gapCloseOffset = sw1pt2gt0w5openOffset;

sw1pt2gt0w5openOffset <= sw1pt2gt0w5closeOffset;

sw1pt2gt0w5closeOffset = sw1pt2gt1w6gapOpenOffset;

sw1pt2gt1w6gapOpenOffset <= sw1pt2gt1w6gapCloseOffset;

sw1pt2gt1w6gapCloseOffset = 60000;

0 = sw2pt1003gt2w0gapOpenOffset;

sw2pt1003gt2w0gapOpenOffset <= sw2pt1003gt2w0gapCloseOffset;

sw2pt1003gt2w0gapCloseOffset = sw2pt1003gt2w0openOffset;

sw2pt1003gt2w0openOffset <= sw2pt1003gt2w0closeOffset;

sw2pt1003gt2w0closeOffset = sw2pt1003gt0w0gapOpenOffset;

sw2pt1003gt0w0gapOpenOffset <= sw2pt1003gt0w0gapCloseOffset;

sw2pt1003gt0w0gapCloseOffset = sw2pt1003gt0w0openOffset;

sw2pt1003gt0w0openOffset <= sw2pt1003gt0w0closeOffset;

85

sw2pt1003gt0w0closeOffset = sw2pt1003gt1w0gapOpenOffset;

sw2pt1003gt1w0gapOpenOffset <= sw2pt1003gt1w0gapCloseOffset;

sw2pt1003gt1w0gapCloseOffset = sw2pt1003gt1w0openOffset;

sw2pt1003gt1w0openOffset <= sw2pt1003gt1w0closeOffset;

sw2pt1003gt1w0closeOffset = sw2pt1003gt0w1gapOpenOffset;

sw2pt1003gt0w1gapOpenOffset <= sw2pt1003gt0w1gapCloseOffset;

sw2pt1003gt0w1gapCloseOffset = sw2pt1003gt0w1openOffset;

sw2pt1003gt0w1openOffset <= sw2pt1003gt0w1closeOffset;

sw2pt1003gt0w1closeOffset = sw2pt1003gt0w2gapOpenOffset;

sw2pt1003gt0w2gapOpenOffset <= sw2pt1003gt0w2gapCloseOffset;

sw2pt1003gt0w2gapCloseOffset = sw2pt1003gt0w2openOffset;

sw2pt1003gt0w2openOffset <= sw2pt1003gt0w2closeOffset;

sw2pt1003gt0w2closeOffset = sw2pt1003gt1w1gapOpenOffset;

sw2pt1003gt1w1gapOpenOffset <= sw2pt1003gt1w1gapCloseOffset;

sw2pt1003gt1w1gapCloseOffset = sw2pt1003gt1w1openOffset;

sw2pt1003gt1w1openOffset <= sw2pt1003gt1w1closeOffset;

sw2pt1003gt1w1closeOffset = sw2pt1003gt2w1gapOpenOffset;

sw2pt1003gt2w1gapOpenOffset <= sw2pt1003gt2w1gapCloseOffset;

sw2pt1003gt2w1gapCloseOffset = sw2pt1003gt2w1openOffset;

sw2pt1003gt2w1openOffset <= sw2pt1003gt2w1closeOffset;

sw2pt1003gt2w1closeOffset = sw2pt1003gt0w3gapOpenOffset;

sw2pt1003gt0w3gapOpenOffset <= sw2pt1003gt0w3gapCloseOffset;

sw2pt1003gt0w3gapCloseOffset = sw2pt1003gt0w3openOffset;

sw2pt1003gt0w3openOffset <= sw2pt1003gt0w3closeOffset;

sw2pt1003gt0w3closeOffset = sw2pt1003gt0w4gapOpenOffset;

sw2pt1003gt0w4gapOpenOffset <= sw2pt1003gt0w4gapCloseOffset;

sw2pt1003gt0w4gapCloseOffset = sw2pt1003gt0w4openOffset;

sw2pt1003gt0w4openOffset <= sw2pt1003gt0w4closeOffset;

sw2pt1003gt0w4closeOffset = sw2pt1003gt1w2gapOpenOffset;

sw2pt1003gt1w2gapOpenOffset <= sw2pt1003gt1w2gapCloseOffset;

sw2pt1003gt1w2gapCloseOffset = sw2pt1003gt1w2openOffset;

sw2pt1003gt1w2openOffset <= sw2pt1003gt1w2closeOffset;

sw2pt1003gt1w2closeOffset = sw2pt1003gt0w5gapOpenOffset;

sw2pt1003gt0w5gapOpenOffset <= sw2pt1003gt0w5gapCloseOffset;

sw2pt1003gt0w5gapCloseOffset = sw2pt1003gt0w5openOffset;

sw2pt1003gt0w5openOffset <= sw2pt1003gt0w5closeOffset;

sw2pt1003gt0w5closeOffset = sw2pt1003gt1w6gapOpenOffset;

86

sw2pt1003gt1w6gapOpenOffset <= sw2pt1003gt1w6gapCloseOffset;

sw2pt1003gt1w6gapCloseOffset = 60000;

0 = sw1001pt1gt0w0gapOpenOffset;

sw1001pt1gt0w0gapOpenOffset <= sw1001pt1gt0w0gapCloseOffset;

sw1001pt1gt0w0gapCloseOffset = sw1001pt1gt0w0openOffset;

sw1001pt1gt0w0openOffset <= sw1001pt1gt0w0closeOffset;

sw1001pt1gt0w0closeOffset = sw1001pt1gt0w1gapOpenOffset;

sw1001pt1gt0w1gapOpenOffset <= sw1001pt1gt0w1gapCloseOffset;

sw1001pt1gt0w1gapCloseOffset = sw1001pt1gt0w1openOffset;

sw1001pt1gt0w1openOffset <= sw1001pt1gt0w1closeOffset;

sw1001pt1gt0w1closeOffset = sw1001pt1gt0w2gapOpenOffset;

sw1001pt1gt0w2gapOpenOffset <= sw1001pt1gt0w2gapCloseOffset;

sw1001pt1gt0w2gapCloseOffset = sw1001pt1gt0w2openOffset;

sw1001pt1gt0w2openOffset <= sw1001pt1gt0w2closeOffset;

sw1001pt1gt0w2closeOffset = sw1001pt1gt0w3gapOpenOffset;

sw1001pt1gt0w3gapOpenOffset <= sw1001pt1gt0w3gapCloseOffset;

sw1001pt1gt0w3gapCloseOffset = sw1001pt1gt0w3openOffset;

sw1001pt1gt0w3openOffset <= sw1001pt1gt0w3closeOffset;

sw1001pt1gt0w3closeOffset = sw1001pt1gt0w4gapOpenOffset;

sw1001pt1gt0w4gapOpenOffset <= sw1001pt1gt0w4gapCloseOffset;

sw1001pt1gt0w4gapCloseOffset = sw1001pt1gt0w4openOffset;

sw1001pt1gt0w4openOffset <= sw1001pt1gt0w4closeOffset;

sw1001pt1gt0w4closeOffset = sw1001pt1gt0w5gapOpenOffset;

sw1001pt1gt0w5gapOpenOffset <= sw1001pt1gt0w5gapCloseOffset;

sw1001pt1gt0w5gapCloseOffset = sw1001pt1gt0w5openOffset;

sw1001pt1gt0w5openOffset <= sw1001pt1gt0w5closeOffset;

sw1001pt1gt0w5closeOffset = sw1001pt1gt1w6gapOpenOffset;

sw1001pt1gt1w6gapOpenOffset <= sw1001pt1gt1w6gapCloseOffset;

sw1001pt1gt1w6gapCloseOffset = 60000;

0 = sw1004pt2gt2w0gapOpenOffset;

sw1004pt2gt2w0gapOpenOffset <= sw1004pt2gt2w0gapCloseOffset;

sw1004pt2gt2w0gapCloseOffset = sw1004pt2gt2w0openOffset;

sw1004pt2gt2w0openOffset <= sw1004pt2gt2w0closeOffset;

sw1004pt2gt2w0closeOffset = sw1004pt2gt2w1gapOpenOffset;

sw1004pt2gt2w1gapOpenOffset <= sw1004pt2gt2w1gapCloseOffset;

87

sw1004pt2gt2w1gapCloseOffset = sw1004pt2gt2w1openOffset;

sw1004pt2gt2w1openOffset <= sw1004pt2gt2w1closeOffset;

sw1004pt2gt2w1closeOffset = sw1004pt2gt3w2gapOpenOffset;

sw1004pt2gt3w2gapOpenOffset <= sw1004pt2gt3w2gapCloseOffset;

sw1004pt2gt3w2gapCloseOffset = 60000;

0 = sw1002pt1gt1w0gapOpenOffset;

sw1002pt1gt1w0gapOpenOffset <= sw1002pt1gt1w0gapCloseOffset;

sw1002pt1gt1w0gapCloseOffset = sw1002pt1gt1w0openOffset;

sw1002pt1gt1w0openOffset <= sw1002pt1gt1w0closeOffset;

sw1002pt1gt1w0closeOffset = sw1002pt1gt1w1gapOpenOffset;

sw1002pt1gt1w1gapOpenOffset <= sw1002pt1gt1w1gapCloseOffset;

sw1002pt1gt1w1gapCloseOffset = sw1002pt1gt1w1openOffset;

sw1002pt1gt1w1openOffset <= sw1002pt1gt1w1closeOffset;

sw1002pt1gt1w1closeOffset = sw1002pt1gt1w2gapOpenOffset;

sw1002pt1gt1w2gapOpenOffset <= sw1002pt1gt1w2gapCloseOffset;

sw1002pt1gt1w2gapCloseOffset = sw1002pt1gt1w2openOffset;

sw1002pt1gt1w2openOffset <= sw1002pt1gt1w2closeOffset;

sw1002pt1gt1w2closeOffset = sw1002pt1gt2w3gapOpenOffset;

sw1002pt1gt2w3gapOpenOffset <= sw1002pt1gt2w3gapCloseOffset;

sw1002pt1gt2w3gapCloseOffset = 60000;

/* Gap calculation */

/* brigeXportYgap = sum(bridgeXportYgaps) */

/* maxgap = sum(bridgeXportYgap) */

sw1pt2gap = + sw1pt2gt0w0gapCloseOffset - sw1pt2gt0w0gapOpenOffset

sw1pt2gt1w0gapCloseOffset - sw1pt2gt1w0gapOpenOffset + sw1pt2gt0w1gapCloseOffset -

sw1pt2gt0w1gapOpenOffset + sw1pt2gt0w2gapCloseOffset - sw1pt2gt0w2gapOpenOffset +

sw1pt2gt1w1gapCloseOffset - sw1pt2gt1w1gapOpenOffset + sw1pt2gt0w3gapCloseOffset -

sw1pt2gt0w3gapOpenOffset + sw1pt2gt0w4gapCloseOffset - sw1pt2gt0w4gapOpenOffset +

sw1pt2gt1w2gapCloseOffset - sw1pt2gt1w2gapOpenOffset + sw1pt2gt0w5gapCloseOffset -

sw1pt2gt0w5gapOpenOffset + sw1pt2gt1w6gapCloseOffset - sw1pt2gt1w6gapOpenOffset;

sw2pt1003gap = + sw2pt1003gt2w0gapCloseOffset - sw2pt1003gt2w0gapOpenOffset +

sw2pt1003gt0w0gapCloseOffset - sw2pt1003gt0w0gapOpenOffset +

88

sw2pt1003gt1w0gapCloseOffset - sw2pt1003gt1w0gapOpenOffset +

sw2pt1003gt0w1gapCloseOffset - sw2pt1003gt0w1gapOpenOffset +

sw2pt1003gt0w2gapCloseOffset - sw2pt1003gt0w2gapOpenOffset +

sw2pt1003gt1w1gapCloseOffset - sw2pt1003gt1w1gapOpenOffset +

sw2pt1003gt2w1gapCloseOffset - sw2pt1003gt2w1gapOpenOffset +

sw2pt1003gt0w3gapCloseOffset - sw2pt1003gt0w3gapOpenOffset +

sw2pt1003gt0w4gapCloseOffset - sw2pt1003gt0w4gapOpenOffset +

sw2pt1003gt1w2gapCloseOffset - sw2pt1003gt1w2gapOpenOffset +

sw2pt1003gt0w5gapCloseOffset - sw2pt1003gt0w5gapOpenOffset +

sw2pt1003gt1w6gapCloseOffset - sw2pt1003gt1w6gapOpenOffset;

sw1001pt1gap = + sw1001pt1gt0w0gapCloseOffset - sw1001pt1gt0w0gapOpenOffset +

sw1001pt1gt0w1gapCloseOffset - sw1001pt1gt0w1gapOpenOffset +

sw1001pt1gt0w2gapCloseOffset - sw1001pt1gt0w2gapOpenOffset +

sw1001pt1gt0w3gapCloseOffset - sw1001pt1gt0w3gapOpenOffset +

sw1001pt1gt0w4gapCloseOffset - sw1001pt1gt0w4gapOpenOffset +

sw1001pt1gt0w5gapCloseOffset - sw1001pt1gt0w5gapOpenOffset +

sw1001pt1gt1w6gapCloseOffset - sw1001pt1gt1w6gapOpenOffset;

sw1004pt2gap = + sw1004pt2gt2w0gapCloseOffset - sw1004pt2gt2w0gapOpenOffset +

sw1004pt2gt2w1gapCloseOffset - sw1004pt2gt2w1gapOpenOffset +

sw1004pt2gt3w2gapCloseOffset - sw1004pt2gt3w2gapOpenOffset;

sw1002pt1gap = + sw1002pt1gt1w0gapCloseOffset - sw1002pt1gt1w0gapOpenOffset +

sw1002pt1gt1w1gapCloseOffset - sw1002pt1gt1w1gapOpenOffset +

sw1002pt1gt1w2gapCloseOffset - sw1002pt1gt1w2gapOpenOffset +

sw1002pt1gt2w3gapCloseOffset - sw1002pt1gt2w3gapOpenOffset;

maxgap = + sw1pt2gap + sw2pt1003gap + sw1001pt1gap + sw1004pt2gap + sw1002pt1gap;

/* Frame start offset constraints */

/* flowXframeYswitchZstart = flowXframeYswitchZoffset + SUM(NUMwindow

flowXframeYswitchZwindowNUMwindow) */

st0fr0sw1001pt1start = st0fr0sw1001pt1offset + 0 st0fr0sw1001pt1window0hp0 + 60000

st0fr0sw1001pt1window0hp1;

st0fr0sw1pt2start = st0fr0sw1pt2offset + 0 st0fr0sw1pt2window0hp0 + 60000

st0fr0sw1pt2window0hp1;

st0fr0sw2pt1003start = st0fr0sw2pt1003offset + 0 st0fr0sw2pt1003window0hp0 + 60000

st0fr0sw2pt1003window0hp1;

89

st0fr1sw1001pt1start = st0fr1sw1001pt1offset + 0 st0fr1sw1001pt1window1hp0 + 60000

st0fr1sw1001pt1window1hp1;

st0fr1sw1pt2start = st0fr1sw1pt2offset + 0 st0fr1sw1pt2window1hp0 + 60000

st0fr1sw1pt2window1hp1;

st0fr1sw2pt1003start = st0fr1sw2pt1003offset + 0 st0fr1sw2pt1003window1hp0 + 60000

st0fr1sw2pt1003window1hp1;

st0fr2sw1001pt1start = st0fr2sw1001pt1offset + 0 st0fr2sw1001pt1window2hp0 + 60000

st0fr2sw1001pt1window2hp1;

st0fr2sw1pt2start = st0fr2sw1pt2offset + 0 st0fr2sw1pt2window2hp0 + 60000

st0fr2sw1pt2window2hp1;

st0fr2sw2pt1003start = st0fr2sw2pt1003offset + 0 st0fr2sw2pt1003window2hp0 + 60000

st0fr2sw2pt1003window2hp1;

st0fr3sw1001pt1start = st0fr3sw1001pt1offset + 0 st0fr3sw1001pt1window3hp0 + 60000

st0fr3sw1001pt1window3hp1;

st0fr3sw1pt2start = st0fr3sw1pt2offset + 0 st0fr3sw1pt2window3hp0 + 60000

st0fr3sw1pt2window3hp1;

st0fr3sw2pt1003start = st0fr3sw2pt1003offset + 0 st0fr3sw2pt1003window3hp0 + 60000

st0fr3sw2pt1003window3hp1;

st0fr4sw1001pt1start = st0fr4sw1001pt1offset + 0 st0fr4sw1001pt1window4hp0 + 60000

st0fr4sw1001pt1window4hp1;

st0fr4sw1pt2start = st0fr4sw1pt2offset + 0 st0fr4sw1pt2window4hp0 + 60000

st0fr4sw1pt2window4hp1;

st0fr4sw2pt1003start = st0fr4sw2pt1003offset + 0 st0fr4sw2pt1003window4hp0 + 60000

st0fr4sw2pt1003window4hp1;

st0fr5sw1001pt1start = st0fr5sw1001pt1offset + 0 st0fr5sw1001pt1window5hp0 + 60000

st0fr5sw1001pt1window5hp1;

st0fr5sw1pt2start = st0fr5sw1pt2offset + 0 st0fr5sw1pt2window5hp0 + 60000

st0fr5sw1pt2window5hp1;

st0fr5sw2pt1003start = st0fr5sw2pt1003offset + 0 st0fr5sw2pt1003window5hp0 + 60000

st0fr5sw2pt1003window5hp1;

st1fr0sw1002pt1start = st1fr0sw1002pt1offset + 0 st1fr0sw1002pt1window0hp0 + 60000

st1fr0sw1002pt1window0hp1;

st1fr0sw1pt2start = st1fr0sw1pt2offset + 0 st1fr0sw1pt2window0hp0 + 60000

st1fr0sw1pt2window0hp1;

st1fr0sw2pt1003start = st1fr0sw2pt1003offset + 0 st1fr0sw2pt1003window0hp0 + 60000

st1fr0sw2pt1003window0hp1;

st1fr1sw1002pt1start = st1fr1sw1002pt1offset + 0 st1fr1sw1002pt1window1hp0 + 60000

90

st1fr1sw1002pt1window1hp1;

st1fr1sw1pt2start = st1fr1sw1pt2offset + 0 st1fr1sw1pt2window1hp0 + 60000

st1fr1sw1pt2window1hp1;

st1fr1sw2pt1003start = st1fr1sw2pt1003offset + 0 st1fr1sw2pt1003window1hp0 + 60000

st1fr1sw2pt1003window1hp1;

st1fr2sw1002pt1start = st1fr2sw1002pt1offset + 0 st1fr2sw1002pt1window2hp0 + 60000

st1fr2sw1002pt1window2hp1;

st1fr2sw1pt2start = st1fr2sw1pt2offset + 0 st1fr2sw1pt2window2hp0 + 60000

st1fr2sw1pt2window2hp1;

st1fr2sw2pt1003start = st1fr2sw2pt1003offset + 0 st1fr2sw2pt1003window2hp0 + 60000

st1fr2sw2pt1003window2hp1;

st2fr0sw1004pt2start = st2fr0sw1004pt2offset + 0 st2fr0sw1004pt2window0hp0 + 60000

st2fr0sw1004pt2window0hp1;

st2fr0sw2pt1003start = st2fr0sw2pt1003offset + 0 st2fr0sw2pt1003window0hp0 + 60000

st2fr0sw2pt1003window0hp1;

st2fr1sw1004pt2start = st2fr1sw1004pt2offset + 0 st2fr1sw1004pt2window1hp0 + 60000

st2fr1sw1004pt2window1hp1;

st2fr1sw2pt1003start = st2fr1sw2pt1003offset + 0 st2fr1sw2pt1003window1hp0 + 60000

st2fr1sw2pt1003window1hp1;

/* 1 = flowXframeYswitchZwindow0 + flowXframeYswitchZwindow1 +... */

1 = + st0fr0sw1001pt1window0hp0 + st0fr0sw1001pt1window0hp1;

1 = + st0fr0sw1pt2window0hp0 + st0fr0sw1pt2window0hp1;

1 = + st0fr0sw2pt1003window0hp0 + st0fr0sw2pt1003window0hp1;

1 = + st0fr1sw1001pt1window1hp0 + st0fr1sw1001pt1window1hp1;

1 = + st0fr1sw1pt2window1hp0 + st0fr1sw1pt2window1hp1;

1 = + st0fr1sw2pt1003window1hp0 + st0fr1sw2pt1003window1hp1;

1 = + st0fr2sw1001pt1window2hp0 + st0fr2sw1001pt1window2hp1;

1 = + st0fr2sw1pt2window2hp0 + st0fr2sw1pt2window2hp1;

1 = + st0fr2sw2pt1003window2hp0 + st0fr2sw2pt1003window2hp1;

1 = + st0fr3sw1001pt1window3hp0 + st0fr3sw1001pt1window3hp1;

1 = + st0fr3sw1pt2window3hp0 + st0fr3sw1pt2window3hp1;

1 = + st0fr3sw2pt1003window3hp0 + st0fr3sw2pt1003window3hp1;

1 = + st0fr4sw1001pt1window4hp0 + st0fr4sw1001pt1window4hp1;

1 = + st0fr4sw1pt2window4hp0 + st0fr4sw1pt2window4hp1;

1 = + st0fr4sw2pt1003window4hp0 + st0fr4sw2pt1003window4hp1;

1 = + st0fr5sw1001pt1window5hp0 + st0fr5sw1001pt1window5hp1;

91

1 = + st0fr5sw1pt2window5hp0 + st0fr5sw1pt2window5hp1;

1 = + st0fr5sw2pt1003window5hp0 + st0fr5sw2pt1003window5hp1;

1 = + st1fr0sw1002pt1window0hp0 + st1fr0sw1002pt1window0hp1;

1 = + st1fr0sw1pt2window0hp0 + st1fr0sw1pt2window0hp1;

1 = + st1fr0sw2pt1003window0hp0 + st1fr0sw2pt1003window0hp1;

1 = + st1fr1sw1002pt1window1hp0 + st1fr1sw1002pt1window1hp1;

1 = + st1fr1sw1pt2window1hp0 + st1fr1sw1pt2window1hp1;

1 = + st1fr1sw2pt1003window1hp0 + st1fr1sw2pt1003window1hp1;

1 = + st1fr2sw1002pt1window2hp0 + st1fr2sw1002pt1window2hp1;

1 = + st1fr2sw1pt2window2hp0 + st1fr2sw1pt2window2hp1;

1 = + st1fr2sw2pt1003window2hp0 + st1fr2sw2pt1003window2hp1;

1 = + st2fr0sw1004pt2window0hp0 + st2fr0sw1004pt2window0hp1;

1 = + st2fr0sw2pt1003window0hp0 + st2fr0sw2pt1003window0hp1;

1 = + st2fr1sw1004pt2window1hp0 + st2fr1sw1004pt2window1hp1;

1 = + st2fr1sw2pt1003window1hp0 + st2fr1sw2pt1003window1hp1;

/* Gate to frame transmission start constraints */

/* gateXopenOffset = flowXframeYswitchZstartoffset - MaxClockError */

sw1001pt1gt0w0openOffset = st0fr0sw1001pt1offset - 500;

sw1pt2gt0w0openOffset = st0fr0sw1pt2offset - 500;

sw2pt1003gt0w0openOffset = st0fr0sw2pt1003offset - 500;

sw1001pt1gt0w1openOffset = st0fr1sw1001pt1offset - 500;

sw1pt2gt0w1openOffset = st0fr1sw1pt2offset - 500;

sw2pt1003gt0w1openOffset = st0fr1sw2pt1003offset - 500;

sw1001pt1gt0w2openOffset = st0fr2sw1001pt1offset - 500;

sw1pt2gt0w2openOffset = st0fr2sw1pt2offset - 500;

sw2pt1003gt0w2openOffset = st0fr2sw2pt1003offset - 500;

sw1001pt1gt0w3openOffset = st0fr3sw1001pt1offset - 500;

sw1pt2gt0w3openOffset = st0fr3sw1pt2offset - 500;

sw2pt1003gt0w3openOffset = st0fr3sw2pt1003offset - 500;

sw1001pt1gt0w4openOffset = st0fr4sw1001pt1offset - 500;

sw1pt2gt0w4openOffset = st0fr4sw1pt2offset - 500;

sw2pt1003gt0w4openOffset = st0fr4sw2pt1003offset - 500;

sw1001pt1gt0w5openOffset = st0fr5sw1001pt1offset - 500;

sw1pt2gt0w5openOffset = st0fr5sw1pt2offset - 500;

sw2pt1003gt0w5openOffset = st0fr5sw2pt1003offset - 500;

92

sw1002pt1gt1w0openOffset = st1fr0sw1002pt1offset - 500;

sw1pt2gt1w0openOffset = st1fr0sw1pt2offset - 500;

sw2pt1003gt1w0openOffset = st1fr0sw2pt1003offset - 500;

sw1002pt1gt1w1openOffset = st1fr1sw1002pt1offset - 500;

sw1pt2gt1w1openOffset = st1fr1sw1pt2offset - 500;

sw2pt1003gt1w1openOffset = st1fr1sw2pt1003offset - 500;

sw1002pt1gt1w2openOffset = st1fr2sw1002pt1offset - 500;

sw1pt2gt1w2openOffset = st1fr2sw1pt2offset - 500;

sw2pt1003gt1w2openOffset = st1fr2sw2pt1003offset - 500;

sw1004pt2gt2w0openOffset = st2fr0sw1004pt2offset - 500;

sw2pt1003gt2w0openOffset = st2fr0sw2pt1003offset - 500;

sw1004pt2gt2w1openOffset = st2fr1sw1004pt2offset - 500;

sw2pt1003gt2w1openOffset = st2fr1sw2pt1003offset - 500;

/* Gate to frame transmission complete constraints */

/* flowXframeYswitchZstartoffset + flowXframeYtransmissionTime

+ MaxClockError = gateXcloseOffset */

st0fr0sw1001pt1offset + 100 + 500 = sw1001pt1gt0w0closeOffset;

st0fr0sw1pt2offset + 100 + 500 = sw1pt2gt0w0closeOffset;

st0fr0sw2pt1003offset + 100 + 500 = sw2pt1003gt0w0closeOffset;

st0fr1sw1001pt1offset + 100 + 500 = sw1001pt1gt0w1closeOffset;

st0fr1sw1pt2offset + 100 + 500 = sw1pt2gt0w1closeOffset;

st0fr1sw2pt1003offset + 100 + 500 = sw2pt1003gt0w1closeOffset;

st0fr2sw1001pt1offset + 100 + 500 = sw1001pt1gt0w2closeOffset;

st0fr2sw1pt2offset + 100 + 500 = sw1pt2gt0w2closeOffset;

st0fr2sw2pt1003offset + 100 + 500 = sw2pt1003gt0w2closeOffset;

st0fr3sw1001pt1offset + 100 + 500 = sw1001pt1gt0w3closeOffset;

st0fr3sw1pt2offset + 100 + 500 = sw1pt2gt0w3closeOffset;

st0fr3sw2pt1003offset + 100 + 500 = sw2pt1003gt0w3closeOffset;

st0fr4sw1001pt1offset + 100 + 500 = sw1001pt1gt0w4closeOffset;

st0fr4sw1pt2offset + 100 + 500 = sw1pt2gt0w4closeOffset;

st0fr4sw2pt1003offset + 100 + 500 = sw2pt1003gt0w4closeOffset;

st0fr5sw1001pt1offset + 100 + 500 = sw1001pt1gt0w5closeOffset;

st0fr5sw1pt2offset + 100 + 500 = sw1pt2gt0w5closeOffset;

st0fr5sw2pt1003offset + 100 + 500 = sw2pt1003gt0w5closeOffset;

st1fr0sw1002pt1offset + 100 + 500 = sw1002pt1gt1w0closeOffset;

93

st1fr0sw1pt2offset + 100 + 500 = sw1pt2gt1w0closeOffset;

st1fr0sw2pt1003offset + 100 + 500 = sw2pt1003gt1w0closeOffset;

st1fr1sw1002pt1offset + 100 + 500 = sw1002pt1gt1w1closeOffset;

st1fr1sw1pt2offset + 100 + 500 = sw1pt2gt1w1closeOffset;

st1fr1sw2pt1003offset + 100 + 500 = sw2pt1003gt1w1closeOffset;

st1fr2sw1002pt1offset + 100 + 500 = sw1002pt1gt1w2closeOffset;

st1fr2sw1pt2offset + 100 + 500 = sw1pt2gt1w2closeOffset;

st1fr2sw2pt1003offset + 100 + 500 = sw2pt1003gt1w2closeOffset;

st2fr0sw1004pt2offset + 100 + 500 = sw1004pt2gt2w0closeOffset;

st2fr0sw2pt1003offset + 100 + 500 = sw2pt1003gt2w0closeOffset;

st2fr1sw1004pt2offset + 100 + 500 = sw1004pt2gt2w1closeOffset;

st2fr1sw2pt1003offset + 100 + 500 = sw2pt1003gt2w1closeOffset;

/* Time margin constraints */

/* time_margin = flowXtime_margin + flowYtime_margin... */

timeMargin = + st0timeMargin + st1timeMargin + st2timeMargin;

/* flowXtime_margin <= flowXframeYtime_margin */

st0timeMargin <= st0fr0timeMargin;

st0timeMargin <= st0fr1timeMargin;

st0timeMargin <= st0fr2timeMargin;

st0timeMargin <= st0fr3timeMargin;

st0timeMargin <= st0fr4timeMargin;

st0timeMargin <= st0fr5timeMargin;

st1timeMargin <= st1fr0timeMargin;

st1timeMargin <= st1fr1timeMargin;

st1timeMargin <= st1fr2timeMargin;

st2timeMargin <= st2fr0timeMargin;

st2timeMargin <= st2fr1timeMargin;

/* flowXframeYtime_margin <= e2e_requirement - flowXframeYdelay */

st0fr0timeMargin = 10000 - st0fr0delay;

st0fr1timeMargin = 10000 - st0fr1delay;

st0fr2timeMargin = 10000 - st0fr2delay;

st0fr3timeMargin = 10000 - st0fr3delay;

st0fr4timeMargin = 10000 - st0fr4delay;

94

st0fr5timeMargin = 10000 - st0fr5delay;

st1fr0timeMargin = 20000 - st1fr0delay;

st1fr1timeMargin = 20000 - st1fr1delay;

st1fr2timeMargin = 20000 - st1fr2delay;

st2fr0timeMargin = 30000 - st2fr0delay;

st2fr1timeMargin = 30000 - st2fr1delay;

/* Frame delay constraints */

/* frame_delay = frame_complete + (propagation_time+processing_time)

- frame_offset */

st0fr0sw2pt1003complete + 10 - st0fr0sw1001pt1ready <= st0fr0delay;

st0fr1sw2pt1003complete + 10 - st0fr1sw1001pt1ready <= st0fr1delay;

st0fr2sw2pt1003complete + 10 - st0fr2sw1001pt1ready <= st0fr2delay;

st0fr3sw2pt1003complete + 10 - st0fr3sw1001pt1ready <= st0fr3delay;

st0fr4sw2pt1003complete + 10 - st0fr4sw1001pt1ready <= st0fr4delay;

st0fr5sw2pt1003complete + 10 - st0fr5sw1001pt1ready <= st0fr5delay;

st1fr0sw2pt1003complete + 10 - st1fr0sw1002pt1ready <= st1fr0delay;

st1fr1sw2pt1003complete + 10 - st1fr1sw1002pt1ready <= st1fr1delay;

st1fr2sw2pt1003complete + 10 - st1fr2sw1002pt1ready <= st1fr2delay;

st2fr0sw2pt1003complete + 10 - st2fr0sw1004pt2ready <= st2fr0delay;

st2fr1sw2pt1003complete + 10 - st2fr1sw1004pt2ready <= st2fr1delay;

/* Jitter constraints */

/* flowXaverage_delay = sum(flowXframeYdelay) / max_frames */

st0avgDelay = + 0.166667 st0fr0delay + 0.166667 st0fr1delay + 0.166667 st0fr2delay

+ 0.166667 st0fr3delay + 0.166667 st0fr4delay + 0.166667 st0fr5delay;

st1avgDelay = + 0.333333 st1fr0delay + 0.333333 st1fr1delay + 0.333333 st1fr2delay;

st2avgDelay = + 0.500000 st2fr0delay + 0.500000 st2fr1delay;

/* flowXaverage_delay - flowXframeYdelay <= flowXframeYjitter */

/* flowXframeYdelay - flowXaverage_delay <= flowXframeYjitter */

st0avgDelay - st0fr0delay <= st0fr0jitter;

st0fr0delay - st0avgDelay <= st0fr0jitter;

st0avgDelay - st0fr1delay <= st0fr1jitter;

st0fr1delay - st0avgDelay <= st0fr1jitter;

95

st0avgDelay - st0fr2delay <= st0fr2jitter;

st0fr2delay - st0avgDelay <= st0fr2jitter;

st0avgDelay - st0fr3delay <= st0fr3jitter;

st0fr3delay - st0avgDelay <= st0fr3jitter;

st0avgDelay - st0fr4delay <= st0fr4jitter;

st0fr4delay - st0avgDelay <= st0fr4jitter;

st0avgDelay - st0fr5delay <= st0fr5jitter;

st0fr5delay - st0avgDelay <= st0fr5jitter;

st1avgDelay - st1fr0delay <= st1fr0jitter;

st1fr0delay - st1avgDelay <= st1fr0jitter;

st1avgDelay - st1fr1delay <= st1fr1jitter;

st1fr1delay - st1avgDelay <= st1fr1jitter;

st1avgDelay - st1fr2delay <= st1fr2jitter;

st1fr2delay - st1avgDelay <= st1fr2jitter;

st2avgDelay - st2fr0delay <= st2fr0jitter;

st2fr0delay - st2avgDelay <= st2fr0jitter;

st2avgDelay - st2fr1delay <= st2fr1jitter;

st2fr1delay - st2avgDelay <= st2fr1jitter;

/* flowXframeYjitter <= flowXjitter */

st0fr0jitter <= st0jitter;

st0fr1jitter <= st0jitter;

st0fr2jitter <= st0jitter;

st0fr3jitter <= st0jitter;

st0fr4jitter <= st0jitter;

st0fr5jitter <= st0jitter;

st1fr0jitter <= st1jitter;

st1fr1jitter <= st1jitter;

st1fr2jitter <= st1jitter;

st2fr0jitter <= st2jitter;

st2fr1jitter <= st2jitter;

/* flowXjitter <= maxjitter */

st0jitter <= maxjitter;

st1jitter <= maxjitter;

st2jitter <= maxjitter;

96

/* Binary variables (hyperperiod where each frame is transmitted)*/

bin st0fr0sw1001pt1window0hp0, st0fr0sw1001pt1window0hp1, st0fr0sw1pt2window0hp0,

st0fr0sw1pt2window0hp1, st0fr0sw2pt1003window0hp0, st0fr0sw2pt1003window0hp1,

st0fr1sw1001pt1window1hp0, st0fr1sw1001pt1window1hp1, st0fr1sw1pt2window1hp0,

st0fr1sw1pt2window1hp1, st0fr1sw2pt1003window1hp0, st0fr1sw2pt1003window1hp1,

st0fr2sw1001pt1window2hp0, st0fr2sw1001pt1window2hp1, st0fr2sw1pt2window2hp0,

st0fr2sw1pt2window2hp1, st0fr2sw2pt1003window2hp0, st0fr2sw2pt1003window2hp1,

st0fr3sw1001pt1window3hp0, st0fr3sw1001pt1window3hp1, st0fr3sw1pt2window3hp0,

st0fr3sw1pt2window3hp1, st0fr3sw2pt1003window3hp0, st0fr3sw2pt1003window3hp1,

st0fr4sw1001pt1window4hp0, st0fr4sw1001pt1window4hp1, st0fr4sw1pt2window4hp0,

st0fr4sw1pt2window4hp1, st0fr4sw2pt1003window4hp0, st0fr4sw2pt1003window4hp1,

st0fr5sw1001pt1window5hp0, st0fr5sw1001pt1window5hp1, st0fr5sw1pt2window5hp0,

st0fr5sw1pt2window5hp1, st0fr5sw2pt1003window5hp0, st0fr5sw2pt1003window5hp1,

st1fr0sw1002pt1window0hp0, st1fr0sw1002pt1window0hp1, st1fr0sw1pt2window0hp0,

st1fr0sw1pt2window0hp1, st1fr0sw2pt1003window0hp0, st1fr0sw2pt1003window0hp1,

st1fr1sw1002pt1window1hp0, st1fr1sw1002pt1window1hp1, st1fr1sw1pt2window1hp0,

st1fr1sw1pt2window1hp1, st1fr1sw2pt1003window1hp0, st1fr1sw2pt1003window1hp1,

st1fr2sw1002pt1window2hp0, st1fr2sw1002pt1window2hp1, st1fr2sw1pt2window2hp0,

st1fr2sw1pt2window2hp1, st1fr2sw2pt1003window2hp0, st1fr2sw2pt1003window2hp1,

st2fr0sw1004pt2window0hp0, st2fr0sw1004pt2window0hp1, st2fr0sw2pt1003window0hp0,

st2fr0sw2pt1003window0hp1, st2fr1sw1004pt2window1hp0, st2fr1sw1004pt2window1hp1,

st2fr1sw2pt1003window1hp0, st2fr1sw2pt1003window1hp1;

B.2. Resultado ILP

Actual values of the variables:

Value of objective function: 59120.00000000

Actual values of the variables:

timeMargin 59120

st0offset 1490

st1offset 2590

st2offset 500

st0fr0sw1001pt1ready 1490

st0fr1sw1001pt1ready 11490

st0fr2sw1001pt1ready 21490

97

st0fr3sw1001pt1ready 31490

st0fr4sw1001pt1ready 41490

st0fr5sw1001pt1ready 51490

st1fr0sw1002pt1ready 2590

st1fr1sw1002pt1ready 22590

st1fr2sw1002pt1ready 42590

st2fr0sw1004pt2ready 500

st2fr1sw1004pt2ready 30500

st0fr0sw1001pt1start 1490

st0fr1sw1001pt1start 11490

st0fr2sw1001pt1start 21490

st0fr3sw1001pt1start 31490

st0fr4sw1001pt1start 41490

st0fr5sw1001pt1start 51490

st0fr0sw1pt2ready 1600

st0fr0sw1pt2start 1600

st0fr1sw1pt2ready 11600

st0fr1sw1pt2start 11600

st0fr2sw1pt2ready 21600

st0fr2sw1pt2start 21600

st0fr3sw1pt2ready 31600

st0fr3sw1pt2start 31600

st0fr4sw1pt2ready 41600

st0fr4sw1pt2start 41600

st0fr5sw1pt2ready 51600

st0fr5sw1pt2start 51600

st0fr0sw2pt1003ready 1710

st0fr0sw2pt1003start 1710

st0fr1sw2pt1003ready 11710

st0fr1sw2pt1003start 11710

st0fr2sw2pt1003ready 21710

st0fr2sw2pt1003start 21710

st0fr3sw2pt1003ready 31710

st0fr3sw2pt1003start 31710

st0fr4sw2pt1003ready 41710

st0fr4sw2pt1003start 41710

st0fr5sw2pt1003ready 51710

98

st0fr5sw2pt1003start 51710

st1fr0sw1002pt1start 2590

st1fr1sw1002pt1start 22590

st1fr2sw1002pt1start 42590

st1fr0sw1pt2ready 2700

st1fr0sw1pt2start 2700

st1fr1sw1pt2ready 22700

st1fr1sw1pt2start 22700

st1fr2sw1pt2ready 42700

st1fr2sw1pt2start 42700

st1fr0sw2pt1003ready 2810

st1fr0sw2pt1003start 2810

st1fr1sw2pt1003ready 22810

st1fr1sw2pt1003start 22810

st1fr2sw2pt1003ready 42810

st1fr2sw2pt1003start 42810

st2fr0sw1004pt2start 500

st2fr1sw1004pt2start 30500

st2fr0sw2pt1003ready 610

st2fr0sw2pt1003start 610

st2fr1sw2pt1003ready 30610

st2fr1sw2pt1003start 30610

st0fr0sw1001pt1complete 1590

st0fr0sw1pt2complete 1700

st0fr0sw2pt1003complete 1810

st0fr1sw1001pt1complete 11590

st0fr1sw1pt2complete 11700

st0fr1sw2pt1003complete 11810

st0fr2sw1001pt1complete 21590

st0fr2sw1pt2complete 21700

st0fr2sw2pt1003complete 21810

st0fr3sw1001pt1complete 31590

st0fr3sw1pt2complete 31700

st0fr3sw2pt1003complete 31810

st0fr4sw1001pt1complete 41590

st0fr4sw1pt2complete 41700

st0fr4sw2pt1003complete 41810

99

st0fr5sw1001pt1complete 51590

st0fr5sw1pt2complete 51700

st0fr5sw2pt1003complete 51810

st1fr0sw1002pt1complete 2690

st1fr0sw1pt2complete 2800

st1fr0sw2pt1003complete 2910

st1fr1sw1002pt1complete 22690

st1fr1sw1pt2complete 22800

st1fr1sw2pt1003complete 22910

st1fr2sw1002pt1complete 42690

st1fr2sw1pt2complete 42800

st1fr2sw2pt1003complete 42910

st2fr0sw1004pt2complete 600

st2fr0sw2pt1003complete 710

st2fr1sw1004pt2complete 30600

st2fr1sw2pt1003complete 30710

sw1pt2gt0w0gapOpenOffset 0

sw1pt2gt0w0gapCloseOffset 1100

sw1pt2gt0w0openOffset 1100

sw1pt2gt0w0closeOffset 2200

sw1pt2gt1w0gapOpenOffset 2200

sw1pt2gt1w0gapCloseOffset 2200

sw1pt2gt1w0openOffset 2200

sw1pt2gt1w0closeOffset 3300

sw1pt2gt0w1gapOpenOffset 3300

sw1pt2gt0w1gapCloseOffset 11100

sw1pt2gt0w1openOffset 11100

sw1pt2gt0w1closeOffset 12200

sw1pt2gt0w2gapOpenOffset 12200

sw1pt2gt0w2gapCloseOffset 21100

sw1pt2gt0w2openOffset 21100

sw1pt2gt0w2closeOffset 22200

sw1pt2gt1w1gapOpenOffset 22200

sw1pt2gt1w1gapCloseOffset 22200

sw1pt2gt1w1openOffset 22200

sw1pt2gt1w1closeOffset 23300

sw1pt2gt0w3gapOpenOffset 23300

100

sw1pt2gt0w3gapCloseOffset 31100

sw1pt2gt0w3openOffset 31100

sw1pt2gt0w3closeOffset 32200

sw1pt2gt0w4gapOpenOffset 32200

sw1pt2gt0w4gapCloseOffset 41100

sw1pt2gt0w4openOffset 41100

sw1pt2gt0w4closeOffset 42200

sw1pt2gt1w2gapOpenOffset 42200

sw1pt2gt1w2gapCloseOffset 42200

sw1pt2gt1w2openOffset 42200

sw1pt2gt1w2closeOffset 43300

sw1pt2gt0w5gapOpenOffset 43300

sw1pt2gt0w5gapCloseOffset 51100

sw1pt2gt0w5openOffset 51100

sw1pt2gt0w5closeOffset 52200

sw1pt2gt1w6gapOpenOffset 52200

sw1pt2gt1w6gapCloseOffset 60000

sw2pt1003gt2w0gapOpenOffset 0

sw2pt1003gt2w0gapCloseOffset 110

sw2pt1003gt2w0openOffset 110

sw2pt1003gt2w0closeOffset 1210

sw2pt1003gt0w0gapOpenOffset 1210

sw2pt1003gt0w0gapCloseOffset 1210

sw2pt1003gt0w0openOffset 1210

sw2pt1003gt0w0closeOffset 2310

sw2pt1003gt1w0gapOpenOffset 2310

sw2pt1003gt1w0gapCloseOffset 2310

sw2pt1003gt1w0openOffset 2310

sw2pt1003gt1w0closeOffset 3410

sw2pt1003gt0w1gapOpenOffset 3410

sw2pt1003gt0w1gapCloseOffset 11210

sw2pt1003gt0w1openOffset 11210

sw2pt1003gt0w1closeOffset 12310

sw2pt1003gt0w2gapOpenOffset 12310

sw2pt1003gt0w2gapCloseOffset 21210

sw2pt1003gt0w2openOffset 21210

sw2pt1003gt0w2closeOffset 22310

101

sw2pt1003gt1w1gapOpenOffset 22310

sw2pt1003gt1w1gapCloseOffset 22310

sw2pt1003gt1w1openOffset 22310

sw2pt1003gt1w1closeOffset 23410

sw2pt1003gt2w1gapOpenOffset 23410

sw2pt1003gt2w1gapCloseOffset 30110

sw2pt1003gt2w1openOffset 30110

sw2pt1003gt2w1closeOffset 31210

sw2pt1003gt0w3gapOpenOffset 31210

sw2pt1003gt0w3gapCloseOffset 31210

sw2pt1003gt0w3openOffset 31210

sw2pt1003gt0w3closeOffset 32310

sw2pt1003gt0w4gapOpenOffset 32310

sw2pt1003gt0w4gapCloseOffset 41210

sw2pt1003gt0w4openOffset 41210

sw2pt1003gt0w4closeOffset 42310

sw2pt1003gt1w2gapOpenOffset 42310

sw2pt1003gt1w2gapCloseOffset 42310

sw2pt1003gt1w2openOffset 42310

sw2pt1003gt1w2closeOffset 43410

sw2pt1003gt0w5gapOpenOffset 43410

sw2pt1003gt0w5gapCloseOffset 51210

sw2pt1003gt0w5openOffset 51210

sw2pt1003gt0w5closeOffset 52310

sw2pt1003gt1w6gapOpenOffset 52310

sw2pt1003gt1w6gapCloseOffset 60000

sw1001pt1gt0w0gapOpenOffset 0

sw1001pt1gt0w0gapCloseOffset 990

sw1001pt1gt0w0openOffset 990

sw1001pt1gt0w0closeOffset 2090

sw1001pt1gt0w1gapOpenOffset 2090

sw1001pt1gt0w1gapCloseOffset 10990

sw1001pt1gt0w1openOffset 10990

sw1001pt1gt0w1closeOffset 12090

sw1001pt1gt0w2gapOpenOffset 12090

sw1001pt1gt0w2gapCloseOffset 20990

sw1001pt1gt0w2openOffset 20990

102

sw1001pt1gt0w2closeOffset 22090

sw1001pt1gt0w3gapOpenOffset 22090

sw1001pt1gt0w3gapCloseOffset 30990

sw1001pt1gt0w3openOffset 30990

sw1001pt1gt0w3closeOffset 32090

sw1001pt1gt0w4gapOpenOffset 32090

sw1001pt1gt0w4gapCloseOffset 40990

sw1001pt1gt0w4openOffset 40990

sw1001pt1gt0w4closeOffset 42090

sw1001pt1gt0w5gapOpenOffset 42090

sw1001pt1gt0w5gapCloseOffset 50990

sw1001pt1gt0w5openOffset 50990

sw1001pt1gt0w5closeOffset 52090

sw1001pt1gt1w6gapOpenOffset 52090

sw1001pt1gt1w6gapCloseOffset 60000

sw1004pt2gt2w0gapOpenOffset 0

sw1004pt2gt2w0gapCloseOffset 0

sw1004pt2gt2w0openOffset 0

sw1004pt2gt2w0closeOffset 1100

sw1004pt2gt2w1gapOpenOffset 1100

sw1004pt2gt2w1gapCloseOffset 30000

sw1004pt2gt2w1openOffset 30000

sw1004pt2gt2w1closeOffset 31100

sw1004pt2gt3w2gapOpenOffset 31100

sw1004pt2gt3w2gapCloseOffset 60000

sw1002pt1gt1w0gapOpenOffset 0

sw1002pt1gt1w0gapCloseOffset 2090

sw1002pt1gt1w0openOffset 2090

sw1002pt1gt1w0closeOffset 3190

sw1002pt1gt1w1gapOpenOffset 3190

sw1002pt1gt1w1gapCloseOffset 22090

sw1002pt1gt1w1openOffset 22090

sw1002pt1gt1w1closeOffset 23190

sw1002pt1gt1w2gapOpenOffset 23190

sw1002pt1gt1w2gapCloseOffset 42090

sw1002pt1gt1w2openOffset 42090

sw1002pt1gt1w2closeOffset 43190

103

sw1002pt1gt2w3gapOpenOffset 43190

sw1002pt1gt2w3gapCloseOffset 60000

sw1pt2gap 50100

sw2pt1003gap 47900

sw1001pt1gap 53400

sw1004pt2gap 57800

sw1002pt1gap 56700

maxgap 265900

st0fr0sw1001pt1offset 1490

st0fr0sw1001pt1window0hp0 1

st0fr0sw1001pt1window0hp1 0

st0fr0sw1pt2offset 1600

st0fr0sw1pt2window0hp0 1

st0fr0sw1pt2window0hp1 0

st0fr0sw2pt1003offset 1710

st0fr0sw2pt1003window0hp0 1

st0fr0sw2pt1003window0hp1 0

st0fr1sw1001pt1offset 11490

st0fr1sw1001pt1window1hp0 1

st0fr1sw1001pt1window1hp1 0

st0fr1sw1pt2offset 11600

st0fr1sw1pt2window1hp0 1

st0fr1sw1pt2window1hp1 0

st0fr1sw2pt1003offset 11710

st0fr1sw2pt1003window1hp0 1

st0fr1sw2pt1003window1hp1 0

st0fr2sw1001pt1offset 21490

st0fr2sw1001pt1window2hp0 1

st0fr2sw1001pt1window2hp1 0

st0fr2sw1pt2offset 21600

st0fr2sw1pt2window2hp0 1

st0fr2sw1pt2window2hp1 0

st0fr2sw2pt1003offset 21710

st0fr2sw2pt1003window2hp0 1

st0fr2sw2pt1003window2hp1 0

st0fr3sw1001pt1offset 31490

st0fr3sw1001pt1window3hp0 1

104

st0fr3sw1001pt1window3hp1 0

st0fr3sw1pt2offset 31600

st0fr3sw1pt2window3hp0 1

st0fr3sw1pt2window3hp1 0

st0fr3sw2pt1003offset 31710

st0fr3sw2pt1003window3hp0 1

st0fr3sw2pt1003window3hp1 0

st0fr4sw1001pt1offset 41490

st0fr4sw1001pt1window4hp0 1

st0fr4sw1001pt1window4hp1 0

st0fr4sw1pt2offset 41600

st0fr4sw1pt2window4hp0 1

st0fr4sw1pt2window4hp1 0

st0fr4sw2pt1003offset 41710

st0fr4sw2pt1003window4hp0 1

st0fr4sw2pt1003window4hp1 0

st0fr5sw1001pt1offset 51490

st0fr5sw1001pt1window5hp0 1

st0fr5sw1001pt1window5hp1 0

st0fr5sw1pt2offset 51600

st0fr5sw1pt2window5hp0 1

st0fr5sw1pt2window5hp1 0

st0fr5sw2pt1003offset 51710

st0fr5sw2pt1003window5hp0 1

st0fr5sw2pt1003window5hp1 0

st1fr0sw1002pt1offset 2590

st1fr0sw1002pt1window0hp0 1

st1fr0sw1002pt1window0hp1 0

st1fr0sw1pt2offset 2700

st1fr0sw1pt2window0hp0 1

st1fr0sw1pt2window0hp1 0

st1fr0sw2pt1003offset 2810

st1fr0sw2pt1003window0hp0 1

st1fr0sw2pt1003window0hp1 0

st1fr1sw1002pt1offset 22590

st1fr1sw1002pt1window1hp0 1

st1fr1sw1002pt1window1hp1 0

105

st1fr1sw1pt2offset 22700

st1fr1sw1pt2window1hp0 1

st1fr1sw1pt2window1hp1 0

st1fr1sw2pt1003offset 22810

st1fr1sw2pt1003window1hp0 1

st1fr1sw2pt1003window1hp1 0

st1fr2sw1002pt1offset 42590

st1fr2sw1002pt1window2hp0 1

st1fr2sw1002pt1window2hp1 0

st1fr2sw1pt2offset 42700

st1fr2sw1pt2window2hp0 1

st1fr2sw1pt2window2hp1 0

st1fr2sw2pt1003offset 42810

st1fr2sw2pt1003window2hp0 1

st1fr2sw2pt1003window2hp1 0

st2fr0sw1004pt2offset 500

st2fr0sw1004pt2window0hp0 1

st2fr0sw1004pt2window0hp1 0

st2fr0sw2pt1003offset 610

st2fr0sw2pt1003window0hp0 1

st2fr0sw2pt1003window0hp1 0

st2fr1sw1004pt2offset 30500

st2fr1sw1004pt2window1hp0 1

st2fr1sw1004pt2window1hp1 0

st2fr1sw2pt1003offset 30610

st2fr1sw2pt1003window1hp0 1

st2fr1sw2pt1003window1hp1 0

st0timeMargin 9670

st1timeMargin 19670

st2timeMargin 29780

st0fr0timeMargin 9670

st0fr1timeMargin 9670

st0fr2timeMargin 9670

st0fr3timeMargin 9670

st0fr4timeMargin 9670

st0fr5timeMargin 9670

st1fr0timeMargin 19670

106

st1fr1timeMargin 19670

st1fr2timeMargin 19670

st2fr0timeMargin 29780

st2fr1timeMargin 29780

st0fr0delay 330

st0fr1delay 330

st0fr2delay 330

st0fr3delay 330

st0fr4delay 330

st0fr5delay 330

st1fr0delay 330

st1fr1delay 330

st1fr2delay 330

st2fr0delay 220

st2fr1delay 220

st0avgDelay 330.001

st1avgDelay 330

st2avgDelay 220

st0fr0jitter 0.00066

st0fr1jitter 0.00066

st0fr2jitter 0.00066

st0fr3jitter 0.00066

st0fr4jitter 0.00066

st0fr5jitter 0.00066

st1fr0jitter 0.00033

st1fr1jitter 0.00033

st1fr2jitter 0.00033

st2fr0jitter 0

st2fr1jitter 0

st0jitter 0.00066

st1jitter 0.00033

st2jitter 0

maxjitter 0.00066

107

B.3. Implementación de la planificación en la pla-

taforma

Configuración Bridge 1:

qdisc taprio 100: dev s1-eth3 root refcnt 9 tc 4

map 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0

queues offset 0 count 1 offset 1 count 1 offset 2 count 1 offset 3 count 1

clockid REALTIME base-time 0 cycle-time 0 cycle-time-extension 0 base-time

1721988236209191740 cycle-time 60000000 cycle-time-extension 0

index 0 cmd S gatemask 0x1 interval 1100000

index 1 cmd S gatemask 0x2 interval 1100000

index 2 cmd S gatemask 0x4 interval 1100000

index 3 cmd S gatemask 0x1 interval 7800000

index 4 cmd S gatemask 0x2 interval 1100000

index 5 cmd S gatemask 0x1 interval 8900000

index 6 cmd S gatemask 0x2 interval 1100000

index 7 cmd S gatemask 0x4 interval 1100000

index 8 cmd S gatemask 0x1 interval 7800000

index 9 cmd S gatemask 0x2 interval 1100000

index 10 cmd S gatemask 0x1 interval 8900000

index 11 cmd S gatemask 0x2 interval 1100000

index 12 cmd S gatemask 0x4 interval 1100000

index 13 cmd S gatemask 0x1 interval 7800000

index 14 cmd S gatemask 0x2 interval 1100000

index 15 cmd S gatemask 0x1 interval 7800000

qdisc pfifo 0: dev s1-eth3 parent 100:8 limit 1000p

qdisc pfifo 0: dev s1-eth3 parent 100:7 limit 1000p

qdisc pfifo 0: dev s1-eth3 parent 100:6 limit 1000p

qdisc pfifo 0: dev s1-eth3 parent 100:5 limit 1000p

qdisc pfifo 0: dev s1-eth3 parent 100:1 limit 1000p

qdisc netem 30: dev s1-eth3 parent 100:3 limit 1000 delay 99us

qdisc netem 40: dev s1-eth3 parent 100:4 limit 1000 delay 99us

qdisc netem 20: dev s1-eth3 parent 100:2 limit 1000 delay 99us

Configuración Bridge S2:

108

qdisc taprio 100: dev s2-eth1 root refcnt 9 tc 4

map 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0

queues offset 0 count 1 offset 1 count 1 offset 2 count 1 offset 3 count 1

clockid REALTIME base-time 0 cycle-time 0 cycle-time-extension 0 base-time

1721988236209191740 cycle-time 60000000 cycle-time-extension 0

index 0 cmd S gatemask 0x1 interval 110000

index 1 cmd S gatemask 0x8 interval 1100000

index 2 cmd S gatemask 0x2 interval 1100000

index 3 cmd S gatemask 0x4 interval 1100000

index 4 cmd S gatemask 0x1 interval 7800000

index 5 cmd S gatemask 0x2 interval 1100000

index 6 cmd S gatemask 0x1 interval 8900000

index 7 cmd S gatemask 0x2 interval 1100000

index 8 cmd S gatemask 0x4 interval 1100000

index 9 cmd S gatemask 0x1 interval 6700000

index 10 cmd S gatemask 0x8 interval 1100000

index 11 cmd S gatemask 0x2 interval 1100000

index 12 cmd S gatemask 0x1 interval 8900000

index 13 cmd S gatemask 0x2 interval 1100000

index 14 cmd S gatemask 0x4 interval 1100000

index 15 cmd S gatemask 0x1 interval 7800000

index 16 cmd S gatemask 0x2 interval 1100000

index 17 cmd S gatemask 0x1 interval 7690000

qdisc pfifo 0: dev s2-eth1 parent 100:8 limit 1000p

qdisc pfifo 0: dev s2-eth1 parent 100:7 limit 1000p

qdisc pfifo 0: dev s2-eth1 parent 100:6 limit 1000p

qdisc pfifo 0: dev s2-eth1 parent 100:5 limit 1000p

qdisc pfifo 0: dev s2-eth1 parent 100:1 limit 1000p

qdisc netem 30: dev s2-eth1 parent 100:3 limit 1000 delay 99us

qdisc netem 40: dev s2-eth1 parent 100:4 limit 1000 delay 99us

qdisc netem 20: dev s2-eth1 parent 100:2 limit 1000 delay 99us

qdisc clsact ffff: dev s2-eth1 parent ffff:fff1

qdisc noqueue 0: dev s2-eth2 root refcnt 2

qdisc noqueue 0: dev s2-eth3 root refcnt 2

109

Configuración h1:

iptables -t mangle -A POSTROUTING -p udp --dport 6666 -j CLASSIFY --set-class 0:1

iptables -t mangle -A POSTROUTING -p udp --dport 7777 -j CLASSIFY --set-class 0:2

iptables -t mangle -A POSTROUTING -p udp --dport 8888 -j CLASSIFY --set-class 0:3

qdisc noqueue 0: dev lo root refcnt 2

qdisc netem 100: dev h1-eth0 root refcnt 9 limit 1000 delay 99us

qdisc noqueue 0: dev h1-eth0.10 root refcnt 2

Configutación h2:

iptables -t mangle -A POSTROUTING -p udp --dport 6666 -j CLASSIFY --set-class 0:1

iptables -t mangle -A POSTROUTING -p udp --dport 7777 -j CLASSIFY --set-class 0:2

iptables -t mangle -A POSTROUTING -p udp --dport 8888 -j CLASSIFY --set-class 0:3

qdisc noqueue 0: dev lo root refcnt 2

qdisc netem 100: dev h2-eth0 root refcnt 9 limit 1000 delay 99us

qdisc noqueue 0: dev h2-eth0.10 root refcnt 2

Configuración h4:

iptables -t mangle -A POSTROUTING -p udp --dport 6666 -j CLASSIFY --set-class 0:1

iptables -t mangle -A POSTROUTING -p udp --dport 7777 -j CLASSIFY --set-class 0:2

iptables -t mangle -A POSTROUTING -p udp --dport 8888 -j CLASSIFY --set-class 0:3

qdisc noqueue 0: dev lo root refcnt 2

qdisc netem 100: dev h3-eth0 root refcnt 9 limit 1000 delay 99us

qdisc noqueue 0: dev h3-eth0.10 root refcnt 2

Solo se han configurado las interfaces de red necesarias para el Use Case

110

Anexos C

IEI DRPC-240-TGL

Figura C.1: IEI DRPC-240 TGL

− Model: DRPC-240-TGL-U-i7RD-R10

− Manufacturer: https://www.ieiworld.com/en/product/model.php?II=871

− CPU: 11th Gen Intel® CoreTM i7-1185GRE CPU @ 2.80GHz 4 cores (core Ti-

gerlake)

− RAM: 16 GB DDR4-3200

111

https://www.ieiworld.com/en/product/model.php?II=871

112

Anexos D

Diagramas de medición de latencias

En este anexo se incluyen los diagramas que representan las metodoloǵıas de medida

definidas en el Cap.4.

113

Figura D.1: Medición de la latencia sendL con la solución basada en AF PACKET

Figura D.2: medición de la latencia sendL con la solución basada en XDP

114

Figura D.3: Medición de la latencia arrL con la solución basada en XDP

Figura D.4: Medición de la latencia arrL con la solución basada en AF PACKET

115

Figura D.5: Medición de la latencia e2e

116

Figura D.6: Medición de la latencia e2e.nic con la solución basada en AF PACKET

117

	Introducción
	Motivación y contexto
	Objetivos
	Objetivos generales
	Objetivos específicos

	Alcance
	Metodología y entorno de trabajo
	Consideraciones terminológicas

	Planificación
	Estructura del documento

	Fundamentos
	Conceptos generales
	Redes
	Linux Network Stack (LNS)
	Socket Buffer (SKB)
	Network Namespaces y Virtual Ethernet Pairs
	Berkeley Packet Filter (BPF)
	eXpress Data Path (XDP)
	Expulsión en el kernel

	Time-Sensitive Networking (TSN)
	Nodos TSN
	Flujo
	Sincronización del tiempo
	Control de flujo
	Gestión y configuración de recursos
	Tolerancia a fallos

	Simulación, emulación y testbedding
	Conceptos generales
	Simulación de redes TSN
	Mininet
	Testbedding

	Trabajos relacionados

	TSN en Linux y Mininet
	Elementos de soporte de TSN y virtualización
	Linux Traffic Control
	Recursos de sincronización del tiempo en Linux

	Configuración de Mininet para TSN
	Configuración de la plataforma subyacente
	Emulación del IEEE802.1Qbv TAS
	Soluciones al problema de etiquetado de clases de tráfico TSN en Mininet
	Sincronización del tiempo en Mininet

	Metodología de cálculo de latencias sobre Mininet
	Entorno experimental
	Metodología de registro de tiempos
	Relojes del sistema
	Definición de tiempos registrados y latencias calculadas
	Registro en el espacio del kernel
	Registro en espacio de usuario
	Análisis experimental de los métodos de registro de tiempos

	Resultados del cálculo de latencias en las tres plataformas
	Resultados CONF-1
	Resultados CONF-2
	Resultados CONF-3

	Emulación de un Caso de Uso
	Configuración y despliegue del sistema TSN
	Instante cero
	Real-Time Client
	Emulación de tiempos de transmisión
	Emulación del tiempo de propagación

	Definición del Caso de Uso
	Flujos
	Planificación TSN de los flujos

	Resultados experimentales
	Consideraciones finales

	Conclusiones y líneas abiertas
	Discusión de resultados experimentales
	Métodos de registro de tiempos
	Influencia de la plataforma subyacente

	Mininet como plataforma de emulación de sistemas TSN
	Líneas abiertas

	Bibliografía
	Siglas
	Lista de Figuras
	Lista de Tablas
	Anexos
	Puesta en Marcha de Mininet
	Resultado Planificación
	Problema ILP
	Resultado ILP
	Implementación de la planificación en la plataforma

	IEI DRPC-240-TGL
	Diagramas de medición de latencias

