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SIDERA es un software de control de la infraestructura urbana: controla desde
semaforos y paneles de carretera hasta protocolos de actuacién ante emergencias en los
tuneles.

Su ndcleo es la LibRTDB, que almacena los datos de todos los dispositivos conectados
a SIDERA. Hasta ahora esta LIbRTDB se ejecuta en la memoria compartida de un
ordenador, obligando a que todo el nucleo de SIDERA se ejecute en la misma maquina.

Para preparar SIDERA para el futuro se ha querido renovar la LibRTDB, haciendo que
reparta los datos en varias maquinas independientes. Sin embargo este cambio debe ser
transparente: todo el cddigo ya existente en SIDERA debe seguir funcionando sin ninguna
alteracion.

La propuesta inicial fue usar Redis, una base de datos distribuida en red conocida en la
industria por su gran rendimiento, pero se encontré6 que para obtener buen rendimiento
debian enviarse las operaciones en lotes. La LibRTDB tiene una interfaz con operaciones
variable a variable, por lo que el rendimiento inicial fue pésimo.

Por ello se ha desarrollado una libreria que oculte la comunicacion con Redis,
agrupando operaciones variable a variable en lotes y solucionando otros problemas de
transparencia de Redis, de una forma similar a como funciona la jerarquia de memoria de
un procesador.

Los principales retos de este desarrollo son hacer frente a la consistencia distribuida y
la tolerancia a fallos, ambos muy complejos al trabajar con redes de larga distancia.

Para la consistencia se ha decidido usar Lazy Release Consistency, que al relajar la
coherencia logra un rendimiento excelente en red y, con un disefo cuidado, SIDERA podria
utilizarlo sin cambios.

Para la tolerancia a fallos se ha intentado reducir al minimo los puntos de fallo que
anade el sistema, delegando al maximo la integridad de los datos a Redis. Se ha logrado en
su mayoria, exceptuando algunos casos que supondrian una penalizacién de rendimiento
demasiado alta.

El resultado tiene un rendimiento muy elevado, logrando latencias medias cercanas a
las de la memoria principal de un ordenador y quedando cerca en ancho de banda con MPI,
una de las librerias mas usadas para High Performance Computing.

Con este proyecto se sienta la base para actualizar la LibRTDB, demostrando que es
posible distribuirla en red sin cambiar la interfaz original logrando un rendimiento muy
elevado. Tras esto, futuros proyectos la integraran en SIDERA y realizaran pruebas en
profundidad sobre la escalabilidad y la correccion del sistema.



1. Introduccion

Hace dos anos la multinacional SICE inicié un proyecto de investigacién para preparar
su software SIDERA para el futuro.

SIDERA es un SCADA urbano: Un programa informatico encargado del control técnico
de la infraestructura urbana como tuneles y carreteras. Es empleado por entidades publicas
como la DGT o el ayuntamiento de Sidney, y controla desde cada semaforo hasta los
protocolos de actuacion ante incendios.

Su pieza central es la LibRTDB: una libreria para almacenar datos que contiene toda la
informaciéon que se mueve por SIDERA en tiempo real. Su interfaz ofrece operaciones
simples de lectura y escritura variable a variable.

Actualmente la LibRTDB almacena los datos en una memoria compartida hardware (la
memoria principal de un procesador), y permite que todo SIDERA vea los mismos datos en
todo momento.

Esto provoca que todos los componentes de SIDERA que utilicen la LibRTDB tengan
que ejecutarse en la misma maquina, lo que restringe enormemente la escalabilidad del
servidor que la aloje.

El objetivo del proyecto es sentar las bases para que la LibRTDB trabaje sobre una
base de datos distribuida entre varios ordenadores mediante software, que permita escalar
de forma barata y eficiente.

1.1. Distributed Shared Memory (DSM)
La LibRTDB conceptualmente requiere una Distributed Shared Memory (DSM).

Una DSM es un almacén de datos en el que todos los clientes leen y escriben en unos
mismos datos compartidos (una Shared Memory), aunque en realidad los datos fisicos
estan repartidos en varias maquinas e incluso pueda haber distintas copias de los mismos
(Distributed).

Historicamente este tipo de sistemas han tenido un gran desarrollo tanto en hardware
como en software. Sin embargo su adopcion en las redes de larga distancia ha sido lenta
por las problematicas de consistencia y coherencia, que obligan a sincronizar los accesos
de los nodos del sistema en entornos con miles de nodos y redes extremadamente lentas.

Aproximaciones como Redis [9] han tenido una buena acogida a nivel industrial, pero
siguen teniendo problemas con el rendimiento y la flexibilidad de uso. Redis es muy usado
en la industria actual, pero obliga a cada sistema a adaptarse a la forma de programar por
lotes.

La LibRTDB tiene una interfaz con operaciones variable a variable que la hace
incompatible con los lotes, por lo que se ha desarrollado una DSM con Redis como nucleo
que ofrece operaciones variable a variable con buen rendimiento.



Para ello debe ponerse especial cuidado en reducir los puntos de sincronizacion y
comunicacion entre nodos, analizando en profundidad los requerimientos de consistencia y
sincronizacion para limitar la penalizacion de rendimiento de la red al maximo.

1.2. Solucion

Redis tiene un comportamiento muy similar al de la memoria principal de un procesador,
por lo que este sistema se ha inspirado en el funcionamiento de la jerarquia de memoria.

Cada usuario de la libreria tiene un buffer y una cache que controla y acelera la
comunicacion con Redis, y ofrecen tanto operaciones de lectura y escritura como
operaciones de sincronizacién para controlar la consistencia y la coherencia del sistema.

De esta forma permite programar en maquinas independientes utilizando variables
compartidas igual que en un lenguaje de alto nivel como C++, y obtener rendimientos
comparables a sistemas de High Performance Computing como MPI.

Con él se ha realizado una implementacion de la interfaz de la LibRTDB con un
funcionamiento basico, y futuros proyectos se encargaran de integrarlo en SIDERA y
comprobar la correccion en profundidad.

En este documento primero se desarrollara el contexto sobre el que se apoya todo el
disefio, asi como los requisitos que debe cumplir. Tras ello se explicara el funcionamiento
interno de cada nodo, y seguidamente los protocolos de comunicacion entre los mismos.

Por ultimo se hara un analisis basico de la correccion y el rendimiento, comparandolo
con el de Redisson (un cliente industrial de Redis) y contra MPI.

2. Contexto

2.1. SIDERAYLIbRTDB

SIDERA es un SCADA que unifica la gestiéon de todo tipo de infraestructuras en un solo
sistema, desde sistemas de trafico hasta sistemas industriales.

Ofrece una interfaz grafica [Figura 1] que permite interactuar con la infraestructura:
programar protocolos automaticos, monitorizar sensores...
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Figura 1 - Interfaz grafica de Sidera [A1.1]

Su nucleo es la LIbRTDB, una libreria que almacena los datos de todo el sistema:
sensores, servidores... (en contraposicion a otras BBDD con datos histéricos,
configuraciones etc).

A nivel informatico, la LibRTDB es una libreria de C++ que ofrece un almacenamiento
de datos compartido para todo el resto del codigo del backend de Sidera. Permite crear
regiones que contienen dispositivos, cada uno con sus propias variables (mediciones,
ubicacién geografica, sprites...). Cada variable a su vez contiene metadatos mas alla del
valor en si mismo.

La LibRTDB debe almacenar un numero variable y potencialmente muy grande de
dispositivos, permitir leerlos y escribirlos y ofrecer diversas operaciones de gestion como
generar listas de dispositivos. Para ello ofrece operaciones muy sencillas, que permiten leer
y escribir variable a variable.

Actualmente funciona sobre un sistema de memoria compartida en hardware,
empleando estructuras de datos tipo tabla hash y arboles de busqueda que almacenan los
datos. Esto tiene escalabilidad limitada, cara y con poca tolerancia a fallos, dado que solo
puede ejecutarse en una maquina de memoria compartida (que requieren muchisimo dinero
y energia para escalar).

Por ello se pretende replicar la funcionalidad de la LibRTDB utilizando una solucién
software que pueda trabajar sobre maquinas independientes conectadas por red, de tal
forma que escalar el rendimiento del sistema solo requiera afadir mas maquinas
conectadas a través de redes de larga distancia (como internet).

Para que funcione un sistema asi se deben enfrentar dos problemas principales: la
enorme lentitud de las comunicaciones en red en comparacion con un procesador y la
consistencia y coherencia distribuidas.



2.2. Opciones existentes

En general, la LIbRTDB es una Distributed Shared Memory (DSM). Una DSM se
compone conceptualmente de dos partes:

- Shared Memory significa que todos los clientes leen y escriben en los mismos datos,
solo existe una copia de cada dato y todos pueden acceder a ella.

- Distributed significa que en realidad pueden existir varias copias de los datos, y es
responsabilidad de la DSM hacer que los clientes no se den cuenta.

Actualmente la LibRTDB funciona sobre una DSM implementada en hardware, como
son los multiprocesadores modernos. Sin embargo, escalar este tipo de hardware es
extremadamente complejo y caro.

La transicion mas directa seria utilizar un sistema DSM de software existente que
permita desplegar la LIbRTDB en varias maquinas sin que se note desde el resto de
SIDERA.

Una DSM basada en software escala de forma mucho mas barata, dado que utiliza
redes de larga distancia como el ethernet mucho mas baratas que las interconexiones en
los chips. Sin embargo también son mucho mas lentas, por lo que su desarrollo ha tenido
grandes dificultades.

2.2.1. Treadmarks

Treadmarks es una DSM software disefiada como proyecto de investigacion [A1.2].
Ofrece un espacio de direccionamiento completamente unificado, y un rendimiento muy
elevado basado en que cada nodo utilice los datos compartidos por separado y se
combinen solo en las operaciones de sincronizacion, de una forma similar a cémo funciona
github con los commits y merges.

Sin embargo Treadmarks es un sistema descentralizado en el que los propios usuarios
se reparten los datos, y se pretende que la LibRTDB tenga una base de datos central que
realice todo el almacenamiento. Los clientes solamente deben generar datos y consumirlos,
dado que el cliente podria ser por ejemplo un semaforo de carretera.

Ademas el auge de las DSM de este tipo fue en los afios 90, y encontrar
implementaciones recientes y accesibles para una empresa es notablemente complicado.

2.2.2. Redis

Un ejemplo de DSM muy utilizado hoy en dia es Redis, una base de datos distribuida
en red con buen rendimiento y facilidad de uso. Sin embargo para lograrlo se apoya en
técnicas que obligan al programador a adaptar el cdédigo, como la comunicacién por lotes.
Para obtener buen rendimiento, se deben agrupar las operaciones para enviarlas y
ejecutarlas a la vez en el servidor remoto de Redis.

El espacio de direccionamiento tampoco es completamente Unico, dado que cada lote
de operaciones debe contener datos albergados en un solo servidor (en realidad es incluso
mas restrictivo, pero este tema se tratara en la seccion [4.4.1]).



En términos hardware es equivalente a un procesador multicore con solo una memoria
principal multibanco: ejecuta todos los accesos globales con coherencia y consistencia, pero
con una latencia extremadamente alta. Permite enviar paquetes de operaciones a cada
banco, pero el programador debe conocerlos y asegurarse de separar las operaciones para
cada uno.

La LibRTDB ofrece operaciones variable a variable, por lo que usar Redis (o similares)
por si solo supone pagar la latencia de red en cada operacién. Puede servir de
almacenamiento central de los datos de la LibRTDB, pero se necesita una capa adicional
que oculte la comunicacion por lotes y el direccionamiento independiente entre servidores.

Para ello hay librerias de Redis que ofrecen funcionalidades adicionales, como
Redisson.

2.2.3. Redisson

Redisson es una de las librerias de Redis mas populares para Java por su gran
rendimiento, y ofrece optimizaciones al comunicarse con Redis como el bufferizado o
cacheado de datos.

Sin embargo sus garantias sobre la consistencia son laxas por la enorme complejidad
que conllevan, y su rendimiento se ve bastante penalizado por el mantenimiento de la
coherencia.

Redisson es una libreria para Java asi que no se podria haber usado en la LibRTDB,
pero se ha elegido como ejemplo porque es una de las librerias para Redis con mas soporte
(no existe nada similar en C++). En los benchmarks finales se utilizara para comparar los
rendimientos.

2.2.4. Propuesta

Por todo lo anterior se ha decidido desarrollar una DSM que utilice Redis como
almacenamiento central, traduciendo operaciones variable a variable por lotes y unificando
el direccionamiento.

A nivel de funcionalidad es similar a Redisson, pero con un disefio que tiene en cuenta
la consistencia distribuida completa del sistema y extrae el maximo rendimiento posible.

Con ello, la LibRTDB podra escalar en capacidad y rendimiento aumentando el cluster
de Redis, y desplegar componentes de SIDERA en varias maquinas independientes.

3. Interfaz

En lugar de hacer una solucion especifica para la LIbRTDB se han disefiado
operaciones genéricas mas versatiles y similares a una DSM de propdésito general, con las
que se ha escrito un wrapper sencillo con la interfaz de la LibRTDB.



3.1. Lecturas y escrituras

Se ofrece una interfaz similar a Redis [A1.7] con las siguientes estructuras de datos,
cada una identificada mediante una cadena de caracteres Unica.

- Diccionarios, que contienen a su vez identificadores textuales con un valor asociado.

- Conjuntos (sets), que contienen varios valores textuales sin orden.

- Variables clave-valor, que contienen directamente un valor textual.

- Colas de suscripcion, que permiten a los nodos suscribirse y recibir los datos que se
publiquen en ellas.

Las operaciones de diccionario son las mas optimizadas y las Unicas con cacheado,
dado que son las mas usadas en la LibRTDB (almacenan los dispositivos con sus
variables).

3.2. Operaciones de sincronizacion

Con estas operaciones se pueden sincronizar los nodos: manteniendo la consistencia y
coherencia de los datos, haciendo operaciones atomicas y coordinando las distintas
ejecuciones paralelas.

Se ofrecen:

- Barreras de sincronizacion, que permiten mantener la consistencia.

- Lectura-escritura condicional, que permiten ejecutar operaciones atémicas.
- Sincronizacion por eventos, que permiten propagar eventos entre los nodos.
- Barreras de ejecucion, que permiten coordinar la ejecucién de los nodos.

Estas operaciones requieren sincronizacién distribuida y por lo tanto tienen una
penalizacion mucho mayor que las operaciones de sincronizacién de un sistema tradicional,
dependiendo directamente de la velocidad de la red.

Disenar codigos con pocas sincronizaciones, operaciones atdmicas y secciones criticas
se vuelve por lo tanto mucho mas importante de lo que ya lo era.

3.2.1. Barreras de sincronizacion

Las barreras permiten al programador sincronizar explicitamente los nodos para
mantener la consistencia en ciertos puntos.

La mayoria de DSM trabajan con modelos de consistencia relajados, que permiten que
las operaciones se ejecuten en un orden distinto al original para mejorar el rendimiento.
Cuando el programador quiere asegurarse de que no se realicen reordenaciones, utiliza
este tipo de barreras. Cada sistema tiene barreras con sus propias semanticas, que
dependen del modelo de consistencia que se utilice.

En esta seccibn se va a discutir solamente la interfaz de las barreras. La
implementacién y sus implicaciones se desarrollaran en el apartado [5.1]. Estas barreras
siguen la interfaz de ARM [A1.3], que a su vez estadn basadas en el modelo Release
Consistency.
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Para las lecturas se usa la barrera acquire, que garantiza que el nodo ve todas las
escrituras globales hasta este punto (figura 2). Dicho de otro modo, ninguna operacion
posterior puede efectuarse antes de esta barrera.

Lectura / escritura

Los accesos
pueden cruzar
...................... Acqu”e SDlDEF‘I una
direccion

Lectura / escritura v

Figura 2 - Ordenaciones permitidas respecto a una barrera acquire

La barrera release garantiza que hasta este punto todas las escrituras del nodo son
visibles por todo el mundo (Figura 3). Dicho de otro modo, ninguna operacién previa puede
efectuarse después de esta barrera.

Lectura / escritura

Los accesos
pueden cruzar
...................... Releasg ------========emenaen. solo en una
direccion

Lectura / escritura

Figura 3 - Ordenaciones permitidas respecto a una barrera release
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3.2.2. Lectura-escritura condicional

La lectura-escritura condicional permite leer, operar y escribir un dato sin que ningun
otro proceso lo haya modificado en medio. Las dos operaciones de nuevo siguen la interfaz
de ARM [A1.3].

- La operacion de lectura exclusiva lee el dato y realiza una barrera acquire, para que
la seccidn critica posterior lea datos consistentes.

- La operacion de escritura exclusiva realiza una barrera release para hacer visible la
seccion critica previa, y escribe un valor nuevo en la variable solamente si el dato no
ha sido modificado desde la lectura exclusiva anterior.

A continuacion se puede ver un diagrama de flujo con el protocolo seguido para hacer
una lectura-escritura atomica [Figura 4]. Las lineas discontinuas representan ldgica
ejecutada por el programa principal, y las continuas logica interna del sistema.

Programa principal

Inicio lectura

exclusiva v

Inicio escritura
exclusiva

Leer del servidor
y obtener timestamp
atomicamente

Barrera release

V
Barrera acquire

¥

Volver al programa Comparar timestamp ~\_Timestamps iguales [ gyoityra | .
principal previa con la actual completada

Generar dato a escribir

Timestamps no coinciden o
ha pasado menos de un microsegundo

Figura 4 - Diagrama de flujo de una lectura-escritura condicional

Combinando estas dos operaciones pueden construirse otras operaciones de alto nivel
igual que en las librerias para el hardware moderno. Junto al sistema se han implementado
varias utilidades de alto nivel iguales que la libreria estandar de C++ como los std::atomics,
apoyandose en estas operaciones basicas.

También se ofrece una operacion de mas alto nivel: increment. Incrementa un valor
entero con la cantidad que se pida de forma atomica, reduciendo el coste de dos
comunicaciones a una sola y ahorrando las barreras.
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3.2.3. Eventos

También se ofrece un sistema similar a los modelos de mensajeria, que permite enviar
eventos entre los nodos para sincronizarlos. En ciertos casos es mas facil y eficiente usarlos
para la sincronizacion, frente a la memoria compartida.

Esta integrado en los protocolos de la memoria compartida principal, de forma que
cumple sus propiedades de sincronizacion y pueden usarse en conjunto.

Un ejemplo de uso:

Varios nodos estan trabajando y deben esperar a que todos hayan terminado para
proseguir. Una variable compartida almacena cuantos nodos han terminado.

En memoria compartida, mientras esperan a terminar todos los nodos deben estar
constantemente haciendo accesos a la base de datos compartida hasta que la variable
llegue al numero correcto. Esto gasta recursos y ralentiza que los nodos pendientes
aumenten la variable cuando terminen.

Usando los eventos cada nodo incrementa la variable al terminar y se quedan a la
espera del evento de terminacién. Cuando el ultimo nodo incremente la variable, enviara el
evento y todos proseguiran la ejecucion.

3.2.4. Barrera de ejecucion

Utilizando el sistema de eventos se ofrece una barrera de ejecucién, que bloquea a los
nodos que la ejecuten hasta que N nodos (donde N es un parametro) estén bloqueados en
ella.

Esta barrera tiene dos modos:

El mas sencillo espera a que los nodos hayan ejecutado todo el cédigo previo a la
barrera.

El modo completo (y por defecto), ademas de la operacién anterior, realiza una
sincronizacién de los datos y los hace consistentes hasta ese punto.

Para ello ejecuta:

- Barrerarelease
- Barrera de ejecucién
- Barrera acquire
- Barrera de ejecucién

La segunda barrera de ejecucioén es tedricamente innecesaria, pero facilita el uso para
el programador dado que la barrera acquire puede tener tiempos de ejecucion muy dispares
entre nodos. Esto provoca que algunos nodos salgan de la barrera mucho antes que otros,
lo cual puede tener resultados dificiles de predecir por ejemplo en la mediciéon de tiempos
en benchmarks.
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3.3. Librerias de alto nivel

Para facilitar el uso del sistema se han clonado varias clases de la libreria estandar de
C++, implementandolas con capacidades distribuidas. Por ejemplo, puede cambiarse un
std::vector por un vector distribuido y desplegar un programa concurrente en varias
maquinas sin ningun otro cambio.

La libreria ofrece vectores de enteros y de strings, mutex, enteros atdmicos y mapas
hash (unordered map).

Se aplican diversas optimizaciones como almacenar los enteros directamente como
caracteres ascii, quedando cada entero de 4 bytes como 4 caracteres a almacenar en la
base de datos. Asi se pasa de 10 caracteres decimales que se requeririan para enviar cada
entero a solo 4 bytes, ahorrando ancho de banda.

El mutex es una implementacién de un mutex clasico: no es tolerante a fallos. Si el
nodo que lo posee muere, el mutex queda bloqueado infinitamente pese a que el sistema
haya propagado sus accesos sin fallos. Hay modelos de mutex distribuidos tolerantes a
fallos, cuyas implementaciones pueden apoyarse en este sistema.

4. Diseno

Como se ha mencionado antes Redis es equivalente a una memoria principal
multibanco, con una latencia y ancho de banda muy altos. Este disefio esta basado en la
jerarquia de memoria de un procesador, que soluciona el mismo problema. La estructura es
muy similar, aunque para adaptarlo a las exigencias de las redes de larga distancia
requerira algunas modificaciones importantes.

La jerarquia de memoria de un multiprocesador se compone por una pareja
cache-buffer para cada procesador y una memoria principal compartida (puede haber varios
niveles, pero para este proyecto este modelo es suficiente).

El buffer almacena temporalmente las escrituras que ejecuta el procesador y las envia
todas a la vez, y la cache lee los datos que necesita el procesador en bloques y los guarda
para reusarlos mas adelante.

Siguiendo este modelo, en la figura 5 se puede ver la arquitectura de alto nivel de todo
el sistema. Representa el flujo de datos a través de las distintas capas y componentes.
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figura 5 - Arquitectura de alto nivel del sistema

- El buffer agrupa las escrituras que envia el controlador principal, y cada cierto
tiempo las envia a la base de datos.

- El controlador de memoria almacena los datos que requiera el programa principal, y
se los proporciona cada vez que los necesite.

- La capa de conexién proporciona una interfaz agnéstica a la tecnologia de base de
datos, y permite que se pueda cambiar facilmente a sistemas distintos a Redis.

- El controlador principal coordina los componentes internos para ejecutar las
operaciones de la interfaz.

4.1.1. Espacios de direccionamiento

Redis utiliza un mecanismo de slots para separar los datos entre servidores. Existen
16384 slots, cada variable se asigna a un slot mediante un hash y cada slot a un servidor
mediante configuracion.

Al enviar operaciones al cluster debe garantizarse que cada lote solo contiene datos de
un slot, por lo que se deberian separar en 16384 grupos distintos y enviarlos por separado.
En lugar de eso, se utiliza un mecanismo de direcciones fisicas y virtuales para obligar a
Redis a gestionar un solo slot por servidor y permitir al propio sistema gestionar la
reparticion de datos.

Internamente, los nombres de los datos (llamados direcciones) se estructuran en
direcciones virtuales y fisicas. Cada direccion fisica va asociada de forma unica a uno de los
servidores, para permitir tener varias bases de datos independientes.

El nombre que asigna el programador a cada variable se llama direccién virtual.
Internamente esas direcciones se traducen a fisicas, afladiendo informacion del servidor en
el que esta la variable de forma unica y universal mediante funciones de hash.

Por ejemplo, para Redis una variable llamada “dias” se convierte en “{XXXX}:dias”,
donde XXXX es el identificador del servidor en el que va la variable. Ese identificador, al
estar entre corchetes, hace que las variables de ese servidor siempre caigan en el mismo
slot (que légicamente deberia estar alojado en el propio servidor).
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Asi, cada vez que el usuario quiera acceder a una variable se traduce la direccion a
fisica y se va a buscar al servidor apropiado. La traduccion se hace en la capa de conexion,
dado que es dependiente de la tecnologia de BBDD que se utilice.

De esta forma los slots se reducen de 16384 a 1 por cada nodo fisico de Redis, lo cual
con clusteres pequerios (<100) mejora el rendimiento al incrementar la cantidad de variables
que pueden enviarse juntas a cada servidor fisico. Si cada servidor tiene varios slots, las
variables de cada slot deben enviarse en lotes independientes.

En otros contextos de uso (como con cientos de servidores), es posible que interese
mas evitar la sobrecarga del identificador y usar directamente los slots.

Ademas, este mecanismo puede utilizarse para trabajar sin cambiar la interfaz con otros
sistemas de base de datos que no utilicen slots.

4.2. Controlador de memoria

El controlador de memoria almacena los diccionarios en memoria local por si se vuelven
a necesitar.

Cluster de
Red datos

Y
R

Cargador 1 S
de 1

bloques

Almacén local de . : N
principal bloques C 2
con BD o

Ac
automatico

Operaciones direclas

Figura 6 - Arquitectura del controlador de memoria

Cada diccionario contiene una variable especial llamada timestamp, que representa el
ultimo instante de tiempo en el que ha sido escrito y permite realizar tareas de consistencia
y sincronizacién. En Redis este timestamp tiene precision de microsegundo.

Cada vez que el controlador principal quiere leer en un diccionario, comprueba si lo
tiene almacenado en local y lo lee directamente si lo tiene. Si no lo tiene carga el diccionario
completo del servidor y lee el valor.

Cada cierto tiempo configurable o durante las operaciones de consistencia, el
actualizador lee de nuevo todos los diccionarios obsoletos. Para ello compara los
timestamps locales de cada bloque con los del servidor y actualiza o invalida (borra)
aquellos que no coincidan.

16



También se permite sincronizar la cache invalidandola por completo. Se realiza mucho
mas rapido que las actualizaciones, y en ciertos casos puede ser beneficioso para el
rendimiento.

Los datos se almacenan con direcciones virtuales para acelerar las lecturas, y la
traduccion a direcciones fisicas la realiza la capa de conexién a cada peticién de lectura.
Las lecturas a estructuras no cacheables (todas las que no son diccionarios) se realizan
directamente en el servidor principal.

4.3. Buffer

El buffer recibe los datos del controlador principal y los almacena temporalmente en la
estructura de datos apropiada. Cada cierto tiempo configurable o durante las operaciones
de consistencia estos datos se envian a la base de datos principal.

Hilos R?d Cluster de datos

asincronos

Hilo de : —

escritura

Merge buffer

Buffer Hilo de Conexién —
Controlador I Datos para escritura con DB :
principal Li cada servidor —

escritura

anj de | | Q
; -

Operaciones
directas

Figura 7 - Arquitectura del buffer
Se divide en tres capas:

- La capa sincrona se ejecuta cada vez que el programa principal quiere realizar una
escritura, almacenando el dato en la estructura interna apropiada.

- Cuando se debe vaciar el buffer, primero se reestructuran los datos para separarlos
por el servidor que los aloja. Tras esto, varios hilos paralelos envian paquete a
paquete los datos al servidor correspondiente.

- La tercera capa es la de conexion con BD, que asigna cada variable a un servidor y
envia los datos.

Hay dos estructuras internas para almacenar los datos dependiendo del tipo de
operacion.

- Por un lado hay un merge buffer que almacena las operaciones de tipo diccionario.
Esta estructura agrupa las escrituras por diccionario, sobreescribe valores antiguos
con nuevos ahorrando escrituras y permite enviar cada diccionario a Redis en una
Unica escritura multiple, lo que gana bastante rendimiento.

- Por otro lado, para el resto de estructuras de datos se gestiona un buffer secuencial
que almacena el resto de operaciones en orden.
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En el modo de consistencia Release Consistency (comentado posteriormente) ademas
se permite la reordenacion de las escrituras dentro del buffer, de tal forma que las escrituras
al mismo bloque se pueden agrupar aunque no se ejecuten seguidas.

Las escrituras de diccionario se envian a Redis en forma de scripts Lua (que en Redis
se garantiza que son atémicos dentro de cada servidor). Estos scripts llevan empaquetados
bloques de datos y los escriben en el servidor con escrituras multiples, actualizando el
timestamp de cada diccionario de forma atomica.

Todas las escrituras en diccionarios se realizan también en la memoria local incluso
aunque el dato no estuviera cacheado. Permitir enviar directamente las escrituras al
servidor si el dato no esta cacheado (write arround on miss) supone en este caso gestionar
una casuistica de consistencia compleja que ralentiza el sistema e introduce posibles fallos
de diseno.

Ademas si una escritura coincide con el valor actual que tiene la memoria local se
elimina por completo. De esta forma se evita la escritura por completo si no ha cambiado el
valor, como por ejemplo un sensor que actualiza sus mediciones cada muy poco tiempo
pese a que sus mediciones no han cambiado.

4.3.1. Cache de escritura retardada

Una arquitectura alternativa seria utilizar una cache con escritura retardada: la escritura
se efectua solo en la cache (el controlador de memoria en este caso) y no se envia hasta
que se invalide el bloque completo.

El motivo por el que no se ha usado es que la gestion de bloques potencialmente muy
grandes y de tamario variable complica el envio al invalidar, requiriendo bastante computo
para decidir qué parte del bloque se envia y cual no o malgastando ancho de banda
enviandolo entero.

Ademas, en Sidera hay pocos procesos que lean y escriban a la vez: los datos escritos
los usaran otros procesos por lo que interesa hacer visible la escritura lo antes posible.

5. Protocolos de comunicacion

Siguiendo el modelo anterior aparecen dos problematicas ya conocidas: la consistencia
y la coherencia.

- Por un lado aparecen los modelos de consistencia: conjuntos de reglas y garantias
sobre la ordenacion de los accesos globales a memoria, y como los ven los
procesadores.

- Por otro lado, mantener datos coherentes supone que cuando un procesador lee un
dato, esta leyendo el ultimo valor escrito por cualquiera de los otros procesadores.

Hay muchos modelos de consistencia mas y menos estrictos en la ordenacion, y cada
sistema puede elegir el que mas le convenga como compromiso entre facilidad de uso y
rendimiento.
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Sin embargo hay un problema, y es que la mayoria de modelos de consistencia clasicos
tienen implicita una coherencia totalmente estricta, en lugar de permitir modelos mas
relajados.

Para mantener la coherencia generalmente se utilizan protocolos basados en
invalidaciones: cuando un procesador quiere escribir un dato debe invalidar (borrar) todas
las otras copias que existan de forma que él tenga la Unica copia.

Existe otro modelo, el de actualizacion, que envia el valor nuevo escrito en lugar de una
invalidacion. Ambos son similares en cuanto a su comportamiento, y elegir uno u otro es un
compromiso entre ahorrar latencia o ancho de banda.

Independientemente de que el mensaje sea de invalidacion o de actualizacioén, el buffer
escritor debe quedarse bloqueado hasta que todas las caches con el dato hayan aceptado
la operacion. Esto tiene un coste aceptable en hardware gracias a la velocidad de la red de
un chip, pero prohibitivo en redes de larga distancia.

5.1. Modelos de consistencia

Los modelos de consistencia son conjuntos de reglas y garantias sobre la ordenacién
de los accesos a memoria. Modelos mas relajados permiten obtener un mejor rendimiento,
a costa de ofrecer al programador menos garantias sobre la ordenacion global del
programa.

5.1.1. Release consistency

Un modelo muy usado por su rendimiento es Release Consistency [A1.4] [A1.2] (Intel
Itanium, y parecido a ARMv8), que delega la consistencia a las operaciones de
sincronizacion y permite reordenacion completa en los accesos normales.

Este modelo proviene de una observacion sobre el software: los accesos concurrentes
correctos estan protegidos en una seccion critica mediante variables especiales como los
mutex. Mientras un procesador ejecuta una seccién critica, el propio mutex evita que otros
procesadores tengan acceso a los datos.

Esta afirmaciéon se refiere a programas concurrentes correctamente sincronizados, en
software de alto nivel. Optimizando a bajo nivel se hace de todo, pero esa clase de
programadores se adaptan para extraer el maximo rendimiento a este modelo de
consistencia también. De ahora en adelante se hablara de programas de alto nivel
correctamente sincronizados.

Aprovechandose de eso Release Consistency elimina por completo la consistencia
dentro de la seccion critica, y solo propaga las escrituras al llegar a la barrera de salida de
la seccién critica. Esta barrera se llama release barrier, y supone la propagaciéon de todos
los cambios hechos en la seccidn critica al resto de procesadores.

Para entrar en la seccion critica se ejecuta una acquire barrier, que en este caso evita
que puedan reordenarse las lecturas antes de la barrera y asi evitar que salgan de la
seccion critica.
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Por su parte, las operaciones para variables de sincronizacién como la lectura-escritura
exclusiva tienen Processor Consistency (que es parecida a la consistencia secuencial, la
mas estricta que hay).

Sin embargo aun puede optimizarse mas: este modelo mantiene la coherencia en todo
momento. Cuando se ejecuta una release barrier y las escrituras se hacen efectivas, deben
propagarse en ese momento a todos los procesadores que tengan los datos cacheados.
Esto encarece enormemente la operacién y complica el tratamiento de fallos (comentados
mas adelante).

5.1.2. Lazy release consistency (LRC)

Para solucionar el problema con la coherencia se sigue la evolucion natural del
concepto anterior: un procesador solo necesita ver datos coherentes cuando accede a la
seccion critica, porque si no esta dentro directamente no deberia acceder a datos
compartidos. Eliminando esa restriccion en la coherencia, queda Lazy Release Consistency

[A1.4] [A1.2].

Esto implica que la coherencia ya no es necesaria hasta que se realiza una barrera
acquire. Al realizar una barrera release las escrituras deben efectuarse en la memoria
principal, pero el procesador no tiene que quedar bloqueado hasta que el resto reciban los
datos. El resto de procesadores solo necesitaran recibir los datos cuando ejecuten una
barrera acquire.

Este modelo de consistencia es el paso necesario para tener DSM distribuidas en redes
de larga distancia, ya que soluciona el problema de la coherencia (que es de los que mas
lastra el rendimiento). Treadmarks [A1.2] sigue este modelo de consistencia,
aprovechandolo en un protocolo descentralizado bastante complejo que combina las
escrituras de los nodos de una forma parecida a cémo funciona github con los commits y
merges.

5.1.3. Implementacion

Generalmente Lazy Release Consistency requiere sistemas bastante complejos de
relojes logicos vectoriales, que permitan gestionar una ordenacion en los accesos globales
a los datos compartidos.

Sin embargo este sistema cuenta con la ventaja de no ser descentralizado, y gracias a
ello el modelo Lazy Release Consistency se implementa de forma muy eficiente y directa.

La barrera release debe vaciar el buffer por completo, enviando las escrituras a la base
de datos central. Como se ha explicado, no hace falta ninguna comunicacion con el resto de
nodos/procesadores.

La barrera acquire debe garantizar que la cache no contenga ningun dato incoherente
ni inconsistente hasta este punto. Para ello puede o bien actualizar todos los datos distintos
a los de la base de datos central o bien invalidar la cache al completo, o bien combinar
ambas opciones.

Como realizar una actualizaciéon completa es muy caro, el programador puede elegir si
actualizar o invalidar la cache por completo (esto ultimo se efectia muy rapido). La opcion
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de combinar ambas opciones requeriria heuristicas para decidir qué datos mantener y
cudles invalidar, por lo que queda como desarrollo futuro.

Las operaciones de sincronizacién, como se ha mencionado, deben cumplir Processor
Consistency. La implementacion las envia directamente a la base de datos central saltando
el buffer y la cache, garantizando asi consistencia secuencial al ser serializadas por Redis.

Por ultimo la consistencia secuencial que ve cada procesador en sus propios accesos
se implementa de forma similar al hardware. En este caso las escrituras siempre deben
efectuarse también en la cache, trayendo el bloque si no esta cacheado (no se permite write
around on miss). De esta forma se evita tener que usar store forwarding, que tiene una
gestion complicada y sobrecarga de rendimiento al implementarse en software.

Para implementar las operaciones de lectura-escritura condicional se compara el
timestamp del bloque al leer y al escribir. Si no ha cambiado y ha pasado mas de un
microsegundo (para evitar colisiones entre dos procesos que accedan en el mismo
microsegundo), significa que nadie mas ha escrito entre ambas.

5.2. Propagacion de escrituras

Para propagar las escrituras hay dos opciones: las notificaciones y el polling.

- En el sistema de notificaciones cada nodo envia mensajes con escrituras o
invalidaciones al resto de nodos. Es el sistema utilizado en hardware, que requiere
que las otras caches reciban el mensaje de invalidacién lo antes posible para
bloquear lo minimo al escritor. En el mundo del software, es conceptualmente un
sistema de colas de suscripcion.

- En el sistema de polling cada nodo pide a la base de datos central las escrituras que
no haya visto todavia cada cierto tiempo. Este sistema habitualmente tiene una
complejidad menor, pero tarda mucho mas en propagar las escrituras.

En conjuncién con la base de datos central y con el modelo Lazy Release Consistency,
en el que cada nodo soOlo necesita actualizar sus datos durante las barreras acquire, el
sistema de polling se vuelve interesante. Su principal ventaja es que evita al servidor central
gestionar qué nodos tienen cada variable para enviarles las escrituras, lo cual ahorra
bastante cémputo y memoria. También simplifica la tolerancia a fallos.

Por ello se ha decidido usar el polling: Cada nodo comprueba las variables obsoletas
cada cierto tiempo comparando sus timestamps y actualiza los valores nuevos en la cache.

5.3. Tolerancia a fallos

Hay tres tipos de fallo en red:

- Una maquina puede romperse en cualquier momento y perder sus datos
- Una o varias maquinas pueden quedarse aisladas del resto por un fallo en la red
- Una maquina puede tener valores erréneos por un mal funcionamiento del sistema

Para solucionar los tres tipos de fallos el sistema se apoya en la base de datos central,
intentando no afiadir ningun punto de fallo adicional en la mayoria de casos.
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Ha de notarse que Redis no es completamente tolerante a fallos: hay casos poco
frecuentes en los que puede perder algunas escrituras. Al escribir en un nodo master de
Redis, éste lo confirma y propaga el valor a sus réplicas de forma asincrona. Si el master
cae antes de propagar el valor a todas las réplicas, hay casos poco frecuentes en los que
una réplica sin la escritura se convertira en el nuevo master (perdiéndose asi).

Redis intenta evitar este caso, pero no lo garantiza porque supondria una pérdida
grande de rendimiento. Puede verse mas informacion sobre los casos de fallo de Redis en
la seccion Write Safety en [A1.8].

5.3.1. Tipo 1: Fallos totales

Los fallos totales no tienen problema en las lecturas, pero si en las escrituras. Las
escrituras se envian cada cierto tiempo a la base de datos central, donde estan aseguradas,
pero mientras estén en el buffer pendientes de enviar todavia pueden perderse.

Este tipo de fallos es imposible de evitar por completo a menos que se elimine el buffer,
dado que es inherente a su funcionamiento. Por ello puede configurarse para desactivarlo o
para utilizar latencia 0, de tal forma que solo acumule escrituras mientras envia el paquete
anterior (lo cual reduce notablemente la ventana de fallo con un rendimiento aceptable).

5.3.2. Tipo 2: Particiones de red

Las particiones de red estan relacionadas con la coherencia y la consistencia del
sistema. En un sistema que mantenga la coherencia completamente se requeririan
protocolos capaces de detectar nodos desaparecidos y expulsarlos, con capacidad para
detectarlos y reincorporarlos si vuelven a aparecer. Las bases de datos distribuidas hacen
esto.

Sin embargo al relajar la coherencia este caso se simplifica: Cuando un nodo se
desconecta del servidor central se queda sin coherencia indefinidamente, sin poder realizar
sincronizaciones de ningun tipo. Solo los nodos en la subred del servidor podran realizar
sincronizaciones con el mismo.

Mientras se admitan las reordenaciones el nodo seguira funcionando solamente con
sus datos locales, y cuando ejecute una barrera de sincronizacién se quedara bloqueado
hasta que recupere la conexion con el servidor.

Las particiones del propio cluster no suponen un gran problema, dado que cada nodo
s6lo podra realizar sincronizaciones de sus variables si tiene conexion con el servidor Unico
que las alberga. Los problemas de comunicacion entre nodos como la comunicacién con las
réplicas son responsabilidad del propio sistema de base de datos.

5.3.3. Tipo 3: Fallos bizantinos

Los fallos bizantinos implican que los datos que contiene el sistema pueden
corromperse. Mientras estén en la base de datos central, es ella la encargada de mantener
la integridad de los datos. Los nodos que consuman datos de ella pueden asumir que tienen
el valor correcto.
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Sin embargo, es posible que los datos se corrompan dentro de la propia cache. Este
caso no esta solucionado, dado que requeriria una gran sobrecarga al afiadir mecanismos
de redundancia.

6. Tests

Estos tests tienen como objetivo comprobar que todas las funciones basicas del
sistema funcionan correctamente. Para ello se utilizan tests unitarios que comprueban la
ejecucion basica de las operaciones de lectura y escritura, y tests experimentales que
comprueban las barreras y la consistencia.

Por ultimo los dos benchmarks comprueban el resultado correcto de las ejecuciones,
permitiendo comprobar el correcto funcionamiento en un uso general un poco mas
complejo.

Garantizar que un sistema tan complejo funciona completamente es una tarea que se
escapa de este proyecto, por lo que el objetivo de estos tests es comprobar un
funcionamiento béasico y en el futuro otros proyectos integraran la nueva LibRTDB y
comprobaran su correccion en profundidad.

Seran necesarios tests en profundidad, con entornos de prueba mas elaborados (varias
maquinas ejecutando en paralelo programas complejos) y comprobaciones tedricas de los
protocolos, por ejemplo con redes de Petri.

6.1. Tests unitarios

Se han realizado tests unitarios de todas las operaciones de la interfaz del sistema, que
comprueban que los datos se leen y escriben correctamente, asi como a la interfaz de la
libRTDB de SIDERA.

Cada test escribe en una de las estructuras de datos, realiza una barrera release y
seguidamente lee, comparando el resultado obtenido con el escrito previamente. Estos tests
se hacen con/sin buffer y con/sin cache, con consistencia secuencial y LRC.

Este proceso se repite con todas las operaciones del anexo [A2] exceptuando las de
rendimiento y las de sincronizacion. Las operaciones de sincronizacion se prueban en los
tests experimentales explicados a continuacion.

6.2. Tests experimentales

Para probar las barreras y la consistencia, se utiliza un test que incrementa una variable
compartida desde varios nodos. Primero lo hace bloqueando el mutex de la libreria de alto
nivel, después repite el tests utilizando la clase de enteros atdomicos. También se ha
probado a dormir al nodo 1 ms mientras ha bloqueado el mutex, favoreciendo asi
condiciones de carrera.

Si al final la variable contiene el nimero de nodos por el niumero de incrementos por
nodo, el tests se ha ejecutado sin errores de concurrencia ni consistencia. Al ejecutar el test
durante horas (en los tres entornos de prueba de los benchmarks) y obtener resultados
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correctos, las probabilidades de que haya errores de consistencia son muy bajas. Sin
embargo, la Unica forma de asegurarse es mediante comprobaciones formales.

También se ha implementado el quicksort paralelo utilizando la clase Distributed Vector
para comunicar los threads, para probar la tolerancia a concurrencia del sistema. Cada
thread realiza una particion en torno al pivote y reordena su trozo, generando
recursivamente dos threads nuevos que ordenen los dos trozos resultantes.

6.3. Benchmarks

Para comprobar el correcto funcionamiento en programas algo mas complejos, los
benchmarks de multiplicacién de vectores y contador de palabras al final comprueban el
resultado, asegurandose de que toda la ejecucion haya sido correcta.

7. Rendimiento

Se ha realizado un analisis teérico del costo de red de cada operacion, asi como tres
benchmarks para medir distintos aspectos del rendimiento.

El primer test busca nimeros primos de forma paralela, generando numeros aleatorios
y aplicando un test de primalidad. El objetivo del test es portar un programa concurrente a
uno distribuido haciendo cambios minimos en el cédigo, y comprobar la escalabilidad.

El segundo test multiplica dos vectores muy grandes y comprueba el resultado, para
medir el rendimiento frente a Redisson. Se mide la latencia media por elemento y el
slowdown respecto a usar la memoria local del ordenador.

El Ultimo test cuenta el nUmero de palabras de una coleccién de documentos. Compara
el rendimiento frente a MPI, principalmente la utilizacién del ancho de banda de red para
poder propagar los documentos y procesarlos en ambos sistemas.

7.1. Analisis teorico

El rendimiento del sistema en general va ligado al ancho de banda, para enviar las
escrituras y actualizar los datos cacheados. Sin embargo, si el cacheado no se aprovecha
correctamente el rendimiento de las lecturas pasa a depender directamente de la latencia
de red.

- Los hits en lecturas y escrituras requieren acceder exclusivamente a la memoria
local.

- Las escrituras se envian al servidor directamente, sin bloqueos para mantener la
coherencia. Solo influye el ancho de banda con el servidor.

- Las lecturas-escrituras condicionales requieren pagar dos veces la latencia de red, y
tienen el coste afiadido de ejecutar una barrera acquire y release.

- Las barreras acquire y release son las mas caras, dado que suponen actualizar toda
la cache y enviar todas las escrituras pendientes. Son mayoritariamente
dependientes del ancho de banda.

24



Como la barrera acquire puede llegar a ser muy cara si hay muchos datos cacheados,
puede elegirse realizar una invalidacion completa para convertirla en una operacion muy
rapida a costa de perder los datos cacheados.

7.2. Busqueda de primos

7.2.1. Disefo: busqueda de primos

Este codigo busca numeros primos, pero esta disefiado para trabajar en una maquina
concurrente empleando threads de C++. El thread principal encola enteros aleatorios entre
1 y 1.000.000.000, empleando 123456789 como semilla para que las ejecuciones siempre
sean iguales.

Varios threads van desencolando numeros, les aplican un test de primalidad [A1.6] y
guardan aquellos que sean primos. Al final de la ejecucién, afaden todos los primos
encontrados a un vector compartido y acumulan en una variable compartida la cantidad de
numeros que han procesado, para medir el rendimiento.

Este test hace un uso intensivo de la CPU, y tiene un gran paralelismo. Para escalar el
rendimiento, se ha cambiado el vector de resultados por un Distributed Vector y la variable
acumulador por un Distributed atomic.

Solo con esos cambios (y una barrera de ejecucion al principio y al final para que las
métricas de rendimiento se capturen correctamente), el test se puede ejecutar en varias
maquinas independientes, multiplicando el rendimiento.

7.2.2. Hardware

El test se ha desplegado en un cluster formado por dos maquinas: una con 8 cores de
un Ryzen 5700x y otra con 4 cores de un intel 4710HQ, conectadas por una red de 1Gb con
25 us de latencia.

Se utilizan workers con 2 threads de cémputo y 1 de generacion de primos. El test
distribuido despliega 4 workers en el Ryzen y 2 en el Intel, sumando 12 hilos de cémputo
totales mas los 3 del cluster de redis. El test local utiliza un solo worker en el Ryzen.

7.2.3. Rendimiento

En la [Figura 9] se puede ver la cantidad de numeros procesados por segundo en
ambas ejecuciones. La primera se ha ejecutado utilizando 2 threads de una maquina de
memoria compartida. La segunda en 12 threads con variables distribuidas.
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2 thread vs 12 threads

B Machine threads [l Distributed workers
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Figura 9 - Numeros procesados por segundo

7.2.4. Resultados

Empleando este sistema puede desplegarse de forma distribuida coédigo concurrente
con cambios minimos, y ganar una cantidad notable de rendimiento y capacidad de
memoria. En este caso se ha obtenido un speedup de 7.6.

En los siguientes benchmarks, se comparara este sistema contra otros sistemas

distribuidos populares para poner en contexto la penalizacién y el uso de la red.

7.3. Multiplicacion de vectores

7.3.1. Disefo: Multiplicacion de vectores

En la multiplicacién de vectores cada proceso inicializa un trozo de dos vectores de
enteros de 32 bits, los multiplica y guarda el resultado en un tercero.

Tras esto los nodos se intercambian los trozos, comprueban el resultado y lo comunican
al nodo principal, que imprime si todos los trozos son correctos. A lo largo del test se
realizan 6 accesos por elemento.

7.3.2. Implementacion

Para probar el resultado se van a comparar Redisson, una libreria popular de Redis
para Java por su gran rendimiento, MPI y este sistema.
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Como este sistema no esta disefiado para trabajar con vectores, para todos los calculos
se han usado mapas hash de enteros (unordered map en C++ y HashMap en Java) en lugar
de vectores clasicos. Asi todas las implementaciones trabajan en las mismas condiciones
de optimizacién de memoria y uso del hardware.

En el caso de Redisson se utilizan mapas de enteros, dejando que la propia libreria
decida la mejor forma de optimizarlo.

7.3.3. Tests a comparar
Se comparan varias versiones:

- Java nativo, utilizando HashMap de enteros

- C++ nativo, utilizando unordered map de enteros

- Este sistema y Redisson en el custer 1y 2.

- Accesos directos a Redis en el cluster 1 y 2 sin ninguna optimizacién de red, en Java
y en C++

Para pasar a distribuido el cédigo C++ ha bastado con sustituir el codigo local por los
vectores distribuidos de la libreria de alto nivel.

En el caso de Redisson ha habido que remodelar el cédigo, invirtiendo bastante tiempo
en probar las mejores configuraciones y optimizaciones para obtener un buen rendimiento.
Se han utilizado batches (la forma de utilizar lotes de operaciones en Redisson) para las
escrituras, y la clase RLocalCachedMap para las lecturas. Antes de hacer las lecturas se
precargan los datos con preloadCache().

Los vectores tienen 1 millén de elementos, 4MB cada uno.

7.3.4. Hardware empleado

Cluster 1. Todo se ejecuta en la misma maquina: un ordenador de escritorio con un
ryzen 5700x y ram DDR4 3600mhz. La conexion con Redis se hace mediante loopback de
unos 50us de latencia.

Cluster 2, Lab000. El test se ejecuta en el mismo ordenador del cluster 1. Redis se
ejecuta de forma remota en lab000 de Unizar conectados a través de internet con 20-30ms
de latencia.

7.3.5. Tiempos de ejecucién

A continuacién, en la [figura 10] pueden verse los tiempos de cada ejecucion. En los
apartados posteriores se analizaran estos resultados. Las celdas que estan medidas en una
unidad de tiempo distinta estan resaltadas en amarillo
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Local Redisson Redisson Comunicacion | Comunicacion directa
cache/TFG cache/TFG directa con con Redis (Cluster 2,
Redis (Cluster | lab000)

(Cluster 1) (Cluster 2) 1)
Java 1,23s 55/4s 5.940s 400s 2.800min
C++ 1,22s 1,9s 4,29s 335s 3.000min

Figura 10 - Tiempos de ejecucion de la multiplicacion de vectores

7.3.6. Slowdowns

En las [Figura 11] y [Figura 12] pueden verse el slowdown de cada libreria respecto a su
version local.

Slowdown, menos es mejor

B Redisson [l TFG

10000

1000

100

10

Misma maquina Lab000

Figura 11 - Slowdown entre usar variables locales del lenguaje y remotas, menos es
mejor
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Slowdown Este sistema Redisson

Cluster 1 1,56 45

Cluster 2, Lab000 3,5 4.830

Figura 12 - Desglose de slowdowns entre variables locales y remotas

Con este sistema hay un slowdown de 3.5 en el cluster 2, nada mal teniendo en cuenta
que Lab000 tiene una latencia 2,5 millones de veces superior a una memoria RAM
promedio.

Por su parte Redisson tiene un slowdown de 4.830, que aun asi sigue estando bastante
lejos del slowdown de 127.000 de la comunicacion directa sin optimizaciones.

7.3.7. Latencia media de acceso

En la tabla [Figura 13] se incluye la latencia media de los accesos a memoria. Para
ponerlo en contexto, la latencia de la memoria RAM en idle del ordenador del cluster 1 es de
76.6 ns, medidos con la utilidad de intel MLC [A1.5].

Latencia media por C++ nativo Este sistema Redisson
acceso

Cluster 1 206 ns 310 ns 9.166 ns
Cluster 2, Lab000 30 ms 715 ns 1ms

Figura 13 - Latencias medias de acceso

Redisson tiene una latencia bastante mas alta, pero aun asi muy inferior al cliente sin
optimizaciones. La latencia de acceso del sistema es muy cercana a la de la memoria local
(en este caso 206ns), gracias a que casi todos los accesos se hacen directamente en
memoria local sin bloquear para accesos en red.

La diferencia viene de los niveles de indireccion al acceder a los datos internamente, y
del uso de mutex para sincronizar internamente la cache. Mejorando la implementacion esta
diferencia podria reducirse considerablemente.

Puede observarse que la latencia media obtenida con variables locales es mayor que la
tedrica. Esto se debe a que esa latencia tedrica es de accesos directos sin carga, y al afadir
una carga intensiva desde varios threads como hace este benchmark esa latencia aumenta.

7.3.8. Resultados

Comparando los resultados de Redisson y este sistema, queda un speedup de 29 en el
cluster 1y de 1.384 en el cluster 2, ambos a favor del segundo.

29



Pese a que Redisson ofrece una optimizacion bastante buena, el disefio basado en
Lazy Release Consistency que retrasa la propagacion de datos al maximo permite exprimir
casi por completo la red, obteniendo un rendimiento comparable a sistemas manuales como
MPI.

7.4. Contador de palabras

En el contador de palabras, el nodo lider (el Unico que tiene los documentos) o la base
de datos Redis empieza con una coleccion de documentos textuales cargada en memoria.
Cada nodo va recibiendo documentos y contando el nimero de palabras (concretamente el
numero de espacios) que tiene cada documento. Al final lo ponen en comun y el nodo lider
imprime el numero total de palabras de la coleccion.

Se compara el tiempo desde que el nodo lider comienza a enviar documentos hasta
que imprime el resultado por pantalla.

La coleccion de documentos pesa 1.9GB, y esta compuesta por 700.000 ficheros de
unos 3KB de media.

7.4.1. MPI

MPI es una libreria que permite ejecutar programas distribuidos en varias maquinas,
comunicandolas mediante paso de mensajes.

Es una capa poco mas de alto nivel que el trafico directo TCP, gracias a lo que obtiene
el maximo rendimiento de la red pero a costa de la complejidad de programar con paso de
mensajes. Por ello es de los sistemas mas usados en HPC.

7.4.2. Implementacion

Redis tiene la coleccion almacenada en un Distributed Vector en el que cada
documento es un string.

Cada nodo recorre un trozo del vector de strings, acumula el numero de palabras en
ellos y lo almacena en un Distributed atomic int de resultados.

En MPI un nodo remoto tiene la coleccién en disco y la carga en memoria (este tiempo
no se cuenta). Este nodo serializa los documentos, los envia asincronamente al resto y
gueda a la espera de los resultados mediante una operacion gather.

7.4.3. Hardware empleado

Los workers que cuentan palabras se ejecutan en la misma maquina que el cluster 1 de
multiplicacion de vectores, con un AMD R7 5700x y ram DDR4 3600mhz.

Los documentos estan almacenados en una maquina con un Intel 17 4710HQ,
conectados mediante un switch con 350us de latencia y 117.75 MB/s de ancho de banda.
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7.4.4. Tiempo de ejecucion

Se ha ejecutado el test variando el numero de nodos que cuentan palabras. En la tabla
[Figura 14] puede verse la evolucién de MPI y este sistema.

Tiempo de ejecuciéon - ms, menos es mejor

= MPI == TFG

25.000

20.000

15.000

10.000

5.000

Nodos

Figura 14 - Tiempo de ejecucion del test variando el numero de nodos

MPI tiene tiempos de ejecucién ligeramente inferiores, o que es de esperar siendo que
MPI es practicamente trafico TCP directo. Este sistema es ligeramente mas lento que MPI,
pero con una abstraccion completa que oculta todo el trafico en red.

Para escribir el codigo, ha bastado con utilizar un vector distribuido en el que todos los
nodos lean y escriban directamente.

En MPI ha habido que serializar la coleccion, enviar mensajes a cada nodo con su trozo
de datos y des-serializar los documentos en cada nodo. Tras contar las palabras, es
necesaria otra comunicacién colectiva para combinar los resultados obtenidos.

Puede verse que ambos sistemas llegan al limite a los 4 nodos. Esto se debe a que
llegan al limite de ancho de banda para transmitir los documentos, y pasados los 4 nodos
solo se congestiona la red o el servidor de Redis.

En el caso de Redis esta congestion es mas notable, llegando incluso a perder algo de
rendimiento. Probablemente se deba a que las barreras de ejecucion con muchos nodos
aumentan mas en latencia en un servidor congestionado que los mensajes directos de MPI,
que solo dependen de la gestion de congestion del switch.
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7.4.5. Ancho de banda

En la [Figura 15] puede verse el ancho de banda total de datos procesados, calculado
como el tamafio de la coleccién (1.9GB) entre el tiempo de ejecucion.

Ambos sistemas quedan bastante cerca del maximo tedrico de 117MB/s del switch, que
es el cuello de botella del benchmark.

Throughput de documentos total, MB/s

= MPI == TFG

/’-’f
100 &=

75
50
25
0
2 4 6 8 10 12 14 16
Nodos

Figura 15 - Throughput total al variar los nodos

En la [Figura 16] se puede ver el ancho de banda al enviar los documentos a Redis y al
distribuirlos entre los workers en MPI. Puede observarse que en Redis el ancho de banda
se mantiene constante, dado que depende solo del ancho de banda entre el nodo lider y
Redis. En el caso de MPI el ancho de banda aumenta ligeramente con los nodos, al poder
paralelizar mejor los envios.
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Ancho de banda en escritura, MB/s

= MP| == TFG
125
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Figura 16 - Ancho de banda al enviar los documentos

7.4.6. Resultados

Pese a que MPI tiene mejor rendimiento este sistema queda muy cerca, lo cual es un
logro teniendo en cuenta que MPI es la principal libreria para High Performance Computing.

La utilizacion del ancho de banda de red es casi maxima, teniendo algo de penalizacién
probablemente por las tablas hash que almacenan los datos internamente. En un futuro,
cambiar las tablas hash por arrays y optimizar al maximo la estructura interna permitiria
incrementar la utilizacion de la red.

8. Conclusion

Como resultado queda un sistema que permite desplegar un programa concurrente en
decenas de maquinas, para incrementar el rendimiento y la capacidad de memoria con
cambios minimos.

Gracias a utilizar Lazy Release Consistency consigue ocultar la penalizacion de red en
gran medida, logrando anchos de banda cercanos a MPI y latencias de acceso medias
cercanas a una memoria RAM. La tolerancia a fallos no ha podido garantizarse al completo
por la penalizacién de rendimiento que supondria, pero si se han logrado unas garantias
basicas.

Las operaciones de sincronizacion permiten mantener la consistencia completa del
sistema, integrandose a la perfeccién en la interfaz de C++ y ofreciendo funcionalidades
adicionales como las barreras de ejecucion.
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Sin embargo, todavia queda un gran trabajo para demostrar que el sistema esta listo
para un entorno real. Los sistemas distribuidos son especialmente complejos de verificar,
quedando fuera del planteamiento original del proyecto. Sera en las siguientes fases del
desarrollo donde se realice una verificacion completa, empleando mucho mas tiempo y
recursos para ello.

De esta forma se sientan las bases para la nueva LibRTDB de SIDERA, de forma que
pueda escalar el rendimiento y el almacenamiento afiadiendo maquinas al cluster de Redis
y permita desplegar componentes de SIDERA en maquinas independientes con facilidad.
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2. Lista de operaciones

Todas las variables son inputs para la funcién, salvo aquellas que tengan un out delante que
son variables de salida.

Los tipos de las variables son los de C++, siendo OptionalString un renombre de
std:.optional<std::string>.

Las flechas representan el tipo del resultado que devuelve cada funcion, y None significa
gue no devuelven ningun resultado.

Si la variable tiene un = con un valor, es el valor por defecto si no se proporciona ese
parametro (misma sintaxis que en C++)

El texto con // es la descripcién de cada funcién inmediatamente debajo
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Constructor (string host, int port, int nConcurrency=1, int BUFFER_LATENCY=50, int
CACHE_LATENCY=100, int PIPE_SIZE=10000, bool _USE_BUFFER = true, bool
_USE_CACHE = true, base_cache_consistency cache_consistency_mode =
base_cache_consistency::LRC)

2.2. Control

/I All previous write operations will be performed before this operation.
Release_sync () => None

/I All following read operations will be performed after this point.

Acquire_sync (bool invalidate = false) => None

// No memory operation can be reordered through this point

Full_sync (bool invalidate = false) => None

/I Deletes all cached blocks, and returns whether there were any or not
Clear_cache () => bool

// Returns “Pong” if there is conection with DB, empty string otherwise

ping () => string

/I Waits for nNodes to execute this barrier, and then continues

/I If sync_consistency is true, it also performs a full synchronization of shared data
barrier_synchronization (string barrierName, int nNodes, bool sync_consistency = true)

=> None

2.3. Lecturas

/I If the variable exists returns the value of variableName in BlockName,

/[ if it does not exists returns NullOpt

hget(string blockName, string variableName) => OptionalString

hget_exclusive_acquire(string blockName, string sKey) => OptionalString

get (string blockName) => OptionalString

wait_event (string name) => string
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sismember (string setName, string varName) => bool

smembers (string setName, out unordered_set<string> members) => long long

smembers (string setName, out set<string> members) => long long

scard (string setName) => long long

2.4. Escrituras

hset (string blockName, string varName, string value) => bool

hsetnx (string blockName, string varName, string value) => bool

hset_exclusive_release (string blockName, string varName, string value) => bool

sadd (string setName, string value) => long long

srem (string setName, string value) => long long

hdel (string blockName, string varName) => long long

hdel (string blockName, iterator beginVars, iterator endVars) => long long
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del (string blockName) => long long

increment (string name, int number) => long long

send_event (string name, string content) => None

set (string key, string value) => bool

setnx (string key, string value) => bool

2.5. Rendimiento

Get_hit_count () => long long

Get_miss_count () => long long

get_hit_ratio () => double

get_miss_ratio () => double

get_block_avg_time () => double

get_n_cached_blocks () => long long

get_cache_memory_size () => long long
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print_cache () => None

preload (string blockName) => bool

preload (vector<string> blockNames) => bool
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