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Resumen

La busqueda de una descripcién cuantica de la gravedad sigue siendo uno de los mayores retos de
la fisica moderna. Aunque la estructura matemaética necesaria para formular una teoria consisten-
te de gravedad cuantica atin no esta clara, nuestra comprension del espacio-tiempo seguramente
se vera afectada. Existen argumentos sélidos que respaldan la hipotesis de que la relatividad
especial (SR) como la comprendemos podria ser solo una descripcion aproximada de la natura-
leza, dando lugar a una violacion de la invariancia Lorentz (LIV) a una cierta escala de energia
elevada. En este contexto, los mensajeros astrofisicos: neutrinos, rayos cosmicos y rayos-y, cons-
tituyen candidatos perfectos para buscar estas desviaciones respecto a SR. En este trabajo se
recogen los aspectos generales de LIV, junto a una revisiéon de las cotas tedricas y experimentales
més recientes en el ambito de la fisica de astroparticulas de alta energia. Se presenta un calculo
original de la anchura de desintegracion modificada para el proceso 7 — ¢* 4+ v, en un marco
de LIV. Los resultados muestran que la produccién de neutrinos subluminicos se ve favorecida
a altas energias, mientras que la produccién de neutrinos superluminicos esté suprimida. Final-
mente, se discute un método novedoso para las bisquedas de LIV basado en la composiciéon en

sabor del flujo de neutrinos astrofisicos en las fuentes.

Summary

The search for a quantum description of gravity remains one of the biggest puzzles of modern
physics. Although the mathematical structure for a consistent theory of quantum gravity is still
unclear, our current understanding of spacetime will surely be transformed. There are strong
arguments which support the hypothesis that special relativity (SR) as we conceive it may only
be an approximate description of nature, leading to a Lorentz invariance violation (LIV) at
some high-energy scale. In this context, astrophysical messengers, namely, neutrinos, cosmic rays
and ~-rays, make up the perfect candidates to look for these departures from SR. In this work,
general aspects of LIV are reviewed, together with an overview of the most recent theoretical
and experimental constraints in the domain of high-energy astroparticle physics. An original
calculation of the modified decay width for the process 7+ — ¢ + vy in a LIV framework is
presented. Results show that subluminal neutrino production is enhanced at high energies, while
superluminal neutrino production is supressed. Finally, a novel method for LIV searches based
on the flavour composition of the astrophysical neutrino flux at the sources is discussed.
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Notacion y convenios

A lo largo del trabajo emplearemos la misma notacion que Peskin y Schroeder [1]. Trabajaremos

en unidades naturales, en las cuales h = ¢ = 1. En este sistema,

[longitud] = [tiempo] = [energia] ! = [masa]~'.

El tensor métrico vendré dado por
Juv = gl“/ = dl&g (17 _17 _]-7 _1) :

Al trabajar con tensores, los indices griegos (o, f, ...) toman valores {0,1,2,3} = {t,z,y, 2},
mientras que los indices latinos (i, j, ...) denotan unicamente las tres componentes espaciales.
Denotaremos los cuadrivectores mediante p = p*, mientras que para los vectores espaciales

usaremos p, cuyo modulo representaremos por |p|. Ejemplos:

07 _p)

=" p) P = gup’ = (p
p-x=p'r,=gupr =p'2’ —p-x,

donde empleamos el convenio de suma de Einstein R*T, = 22:0 R Ty, por el cual dos

indices repetidos, uno covariante y otro contravariante, indican una suma.

Todos los valores de constantes fundamentales y magnitudes experimentales empleados en los
célculos y representaciones graficas han sido obtenidos de Review of Particle Physics (2022) [2].
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1| Introduccion

"Somos como enanos encaramados en los hombros
de gigantes. Vemos mds y mds lejos que nuestros
predecesores, no porque tengamos una vision mds
aguda o mayor altura, sino porque somos elevados
y transportados en su gigantesca estatura.”

— Bernardo de Chartres

ESDE SUS ORIGENES, el ser humano ha contemplado los cielos en busca de respuestas. La

luz procedente de estrellas lejanas nos ha guiado durante siglos a la hora de navegar los
mares, sembrar y cosechar los cultivos o incluso comprender la composiciéon quimica de los astros.
Hoy, vemos méas y més lejos que nuestros predecesores. El descubrimiento de neutrinos césmicos
en 2013 por la colaboracion IceCube [3] abrié una nueva ventana de observacion en astrofisica
y supuso el nacimiento de la astronomia multimensajero. Por primera vez en la historia, somos
capaces de observar el universo no solo a través de fotones, sino también neutrinos, rayos césmicos
y ondas gravitacionales. Esta ventana nos brinda la oportunidad de usar los desarrollos més
recientes en métodos experimentales para buscar huellas de nueva fisica a energias inalcanzables
en el laboratorio con la tecnologia actual. El objetivo de este trabajo consistird en explorar
la posibilidad de que la simetria Lorentz de relatividad especial no sea una simetria exacta
de la naturaleza y las consecuencias que esto tendria en la fisica de altas energias, centrando
nuestro analisis en el caso del neutrino. Antes de motivar la necesidad de este estudio, debemos

comprender primero su origen histoérico.

Al inicio del siglo pasado, la fisica estaba a punto de sufrir un cambio de paradigma. La mecanica
clasica, ya establecida desde el siglo XVII por Isaac Newton y reformulada mateméticamente
por J. L. Lagrange y W. R. Hamilton, se fundamentaba en las transformaciones de Galileo.
Estas transformaciones, definidas entre sistemas de referencia inerciales, se caracterizan por dejar
invariantes las ecuaciones de Newton y dan lugar a una regla de composicién de velocidades
aditiva, una idea intuitiva que parecia observarse en la experiencia cotidiana. Por otro lado,
el electromagnetismo se regia por las ecuaciones de Maxwell, quien a medidados del siglo XIX
fue capaz de sintetizar todo el conocimiento empirico sobre la electricidad y el magnetismo
en una descripciéon coherente del campo electromagnético. Sin embargo, las transformaciones
entre observadores inerciales que dejaban invariantes estas ecuaciones no se correspondian con
las transformaciones de Galileo. Estas fueron introducidas por H. A. Lorentz y ahora llevan su
nombre. A diferencia de las transformaciones de Galileo, las transformaciones de Lorentz prohiben
la aditividad de velocidades e incluso establecen una velocidad méaxima insuperable: la velocidad
de propagacion de las ondas electromagnéticas en el vacio, ¢. Ambas ideas eran incompatibles,
por lo que o bien las leyes de la mecénica debian ser modificadas o bien las ecuaciones de Maxwell
no eran correctas. Este choque entre las dos teorias fisicas mas exitosas hasta entonces dio lugar
a un debate: jes la fisica invariante Lorentz o invariante Galileo?

Tras el experimento realizado por Michelson y Morley en 1887 [4] con el objetivo de medir el
viento del éter, el hipotético medio fisico en que se propagarian las ondas electromagnéticas, se
comprob6 que no habia indicios de su existencia. A raiz de estos resultados, un joven Albert
Einstein postulé en 1905 [5], en primer lugar, el principio de relatividad, por el cual las leyes
fisicas deben ser iguales para todo observador inercial y, en segundo lugar, la invariabilidad de c.
De esta forma, medida desde cualquier sistema de referencia inercial, la luz siempre se propaga
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en el vacio a velocidad constante ¢, sea cual sea el estado de movimiento del observador. En otras
palabras, se postula que no solo la mecénica, sino toda la fisica debe ser invariante Lorentz. Habia

nacido la relatividad especial (SR) y, con ella, una nueva mecénica, la mecanica relativista.

Desde entonces, la fisica moderna se ha construido sobre los pilares establecidos por SR, desem-
bocando en las dos teorias fisicas méas exitosas hasta la fecha: la teoria cuéntica de campos (QFT)
y la relatividad general (GR) de Einstein. Por un lado, QFT es el marco tedrico que describe
la naturaleza a escala microscopica: las particulas elementales y las interacciones débil, electro-
magnética y fuerte; lo que nos ha permitido construir el Modelo Estandar (SM) de la fisica de
particulas. Por otro lado, GR explica la interacciéon gravitatoria desde la geometria diferencial y

forma la base del modelo cosmologico actual, ACDM, que describe la evoluciéon del universo.

No obstante, la fisica atraviesa en este momento una crisis que no difiere tanto de la que tuvo
lugar el siglo pasado: a pesar de sus éxitos en paralelo, estas dos teorias son incompatibles a
nivel fundamental y la descripciéon microscopica de la interaccion gravitatoria, necesaria para la
comprension de diferentes escenarios fisicos, es todavia un problema abierto. Independientemente
de cual sea la teoria de gravedad cuantica (QG) definitiva, es muy probable que nuestra concep-
cion actual del espacio-tiempo se vea alterada, como ocurri6 en su dia con el nacimiento de SR.
Esta idea, junto a la ausencia de una teorfa mateméaticamente consistente de QG, llevd a varios
fisicos a seguir una aproximacién fenomenolbgica al problema, tratando de postular propieda-
des que deberia exhibir una teoria completa de QG. Siguiendo esta filosofia bottom-up, surgio
la hipotesis de que la simetria fundamental de SR, conocida como invariancia Lorentz, podria
romperse a partir de una cierta escala de energia en el contexto de QG. Los efectos inducidos
por esta ruptura de simetria, que recibira el nombre de violacién de invariancia Lorentz (LIV),
podrian ser observados en mensajeros césmicos como neutrinos, UHECRSs o rayos-y a energias
muy superiores a las alcanzables por los aceleradores actuales y futuros. Recientemente, el auge
de la astronomia multimensajero ha convertido este campo de estudio en una de las propuestas
més prometedoras para la busqueda de efectos de QG.

Este trabajo tiene dos objetivos principales. En primer lugar, introducir al lector en las ideas
fundamentales de LIV mediante una revisiéon bibliografica de los resultados teéricos y experi-
mentales mas recientes en este campo; y, en segundo lugar, presentar un resultado original: el
célculo completo de la anchura de desintegraciéon del pion cargado en un marco de LIV y su
interpretacion en el contexto de la produccién de neutrinos en fuentes astrofisicas.

La estructura de la memoria es la siguiente. En la seccién 2 se introduciran las nociones bésicas
de LIV. Se comenzara formulando en la seccion 2.1 la ruptura de simetria a partir de la relacion
de dispersion relativista. Posteriormente, se analizarén en la seccién 2.2 las consecuencias de una
relacion de dispersiéon modificada, que clasificaremos en dos categorias: anomalias en tiempos de
vuelo y modificaciones en la cinematica de procesos. Por tltimo, se terminaré este capitulo con
la seccién 2.3, donde se motivard y desarrollara el estudio de LIV en el sector del neutrino. En
la seccién 3 se abordara la producciéon de neutrinos en la naturaleza, particularizando al caso de
los neutrinos astrofisicos. Seguidamente, se procedera en la secciéon 3.1 con el céalculo analitico
de la anchura de desintegracion del proceso 7+ — £ + 1, en un modelo de LIV no-universal que
solo afecta al neutrino. Los resultados obtenidos se interpretaran en la seccién 3.2. Finalmente,
en la seccion 4 se presentaran las conclusiones del trabajo y las lineas de trabajo futuro. El lector
interesado podra encontrar en los Anexos A y B una introduccién al calculo anterior en SR.



2| Violacion de invariancia Lorentz

La invariancia Lorentz constituye la simetria principal de la relatividad especial y nos permite
formular de manera natural el principio de relatividad. Bajo este principio, todos los observadores
inerciales deben experimentar las mismas leyes fisicas y sus medidas estaran relacionadas entre
si mediante transformaciones de Lorentz (boosts y rotaciones). Esto se traduce, por tanto, en la
covariancia Lorentz! de las ecuaciones, resaltando una de las principales consecuencias de SR:
todos los sistemas de referencia inerciales son completamente equivalentes.

La violaciéon de invariancia Lorentz (LIV) implica la ruptura de esta simetria y conduce a la
pérdida del principio de relatividad. Argumentos de QG sugieren que la simetria Lorentz de
SR se romperia a muy altas energias. Para ello, se basan en la hipétesis de que una particula
propagandose con una longitud de onda préxima a la longitud de Planck, {p = \/W/c3 ~1,62-
10735 m, podria explorar escalas en las que el espacio-tiempo presenta estructura, afectando a su
cineméatica mediante efectos no convencionales. De este modo, efectos de LIV que dominan a altas
energias tendrian su origen en la naturaleza microscopica del espacio-tiempo y su descubrimiento

constituiria un paso importante hacia una descripcién cuéantica de la gravedad.

La pérdida del principio de relatividad conlleva una importante consecuencia. Ahora, las leyes
fisicas seran diferentes para distintos observadores, por lo que cada uno debera describir la fisica
desde su propio sistema laboratorio. Cuando escribamos la ecuaciéon asociada a una ley fisica, sera
pertinente especificar qué observador “ve” esa ecuacién en concreto. Surge entonces la nocién de
un observador privilegiado, que usualmente se atribuye a aquel que mide el CMB completamente
isotropo. El hecho de que nosotros midamos el CMB practicamente isétropo nos indica que la

Tierra constituye una buena aproximacion a ese observador [6].

2.1. Relacion de dispersion modificada

La manera usual de incluir efectos de LIV es mediante una relaciéon energia-momento modificada
(MDR). En SR, la relacién de dispersiéon usual para una particula masiva viene dada por?

B = m?+ |pf?, (2.1)

que depende tnicamente de la masa, m, de la particula y el médulo de su momento lineal, p. Una
forma genérica de romper la invariancia Lorentz manteniendo la simetria rotacional es mediante

la adiciéon de un término extra en la expresion (2.1):
E? =m?+ [p]* [1+ f(\ |p])] (2:2)

donde f(\,|p|) es una funcién desconocida de |p| y un parametro A, que cuantifica como de
grande es la desviacion respecto a SR. Dado que la MDR debe reproducir (2.1) en un amplio
rango de energias para ser compatible con las observaciones actuales, la magnitud de f sera

'La covariancia Lorentz es una forma de expresar que todas las leyes fisicas deben tener la misma ex-
presion sea cual sea el sistema de referencia en el que se escriban (siempre que sea un sistema inercial).
Para ello, las ecuaciones deberan ser igualdades entre objetos mateméaticos que transformen de la mis-
ma forma bajo transformaciones de Lorentz. Estos objetos seran los tensores, cuya relevancia cobra atun
més sentido en el marco de GR, donde se extiende este concepto de covariancia a la covariancia general.

2A partir de ahora emplearemos unidades naturales, en las que ¢ = h = 1.
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muy pequena frente a la unidad para este intervalo de energias. Esto nos permitiré reescribir
la funcion f(A, |p|) como un desarrollo en serie de potencias de A. Siguiendo el convenio usual,

reescribiremos el parametro A como el inverso de una escala de energia caracteristica, A = Aillv,

Fulph = S an Aol = 3 a, ("") , (2.3)

Arv

expresando f como

donde vemos que, al tratarse de una funciéon adimensional, tendremos un desarrollo en potencias
del cociente |p|/Arry. Llegados a este punto y pensando en el objetivo de estudiar la fenomeno-
logia asociada a diferentes situaciones fisicas, nos restringiremos tnicamente al primer término
no nulo del desarrollo. El término de orden cero fue originalmente estudiado por S. Coleman y S.
Glashow en su primer trabajo sobre LIV en 1999 [7]. Nosotros, sin embargo, estamos interesados
en un efecto de LIV creciente con la energia, por lo que consideraremos las posibilidades n = 1
y n = 2. Introduciendo este primer término en (2.3), obtenemos:

1+a, <A|E|V)n] . (2.4)

Finalmente, podremos reabsorber el coeficiente a,, de la expresion (2.4) en la definicion de la

E2 ~ m2 + |p|2

escala Arry, de forma que la expresion general de la MDR sera

E2 ~ m2 + |p|2

Arrv

n
1+s<‘p’>] con n=12 y s==1, (2.5)

donde s indica el signo de la correccién y n el orden del primer término no nulo que se considera.

Para comprobar que esta MDR viola la LI, podemos recalcular el invariante p#p, = m? de SR
en el sistema de referencia privilegiado (y desde ahora, en el que trabajaremos siempre):

po = B2 — |pl2 ~ m2 |p|n+2
oy = Ip|" = m”+s

) (2.6)
Ay
donde ahora el invariante Lorentz p#p,,, que en SR se corresponde con el cuadrado de la masa de
la particula, depende de su momento lineal y, por tanto, del observador. Queda claro entonces
que el uso de una MDR de la forma (2.5) rompe la simetria entre sistemas de referencia inerciales
propia de SR.

2.2. Implicaciones fenomenolbgicas en la fisica de altas energias

Acabamos de ver que el empleo de una MDR nos permite crear un escenario de LIV dependiente
de la energia. Ademés, SR constituye una buena descripciéon de la naturaleza en un dominio de
energias muy amplio, por lo que el valor de Ap1yv debe ser muy grande. Usualmente, la escala de
energia Ar v se asocia con la energia de Planck bajo la suposicién de que esta es la escala a la cual
los efectos de una nueva fisica relacionada con gravedad cuantica son evidentes. Volviendo a la
MDR (2.5), vemos que para apreciar estos efectos de manera notable, seria en principio necesario
que el cociente |p|/Arrv fuese del orden de la unidad. Para ello, necesitariamos alcanzar energias
proximas a la escala de Planck, Ep ~ 1,22 -10%eV.

Las particulas de mayor energia que se encuentran a nuestro alcance son los UHECRs, particulas
cargadas (principalmente protones, electrones y nucleos ligeros) que son aceleradas en fenémenos
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Aceleracion de UHECRs Interaccion / deteccién en la Tierra

—_

* Deflexion de la trayectoria por campos magnéticos
galacticos y extragalacticos

* Interaccion con y del CMB (limite GZK)

Figura 2.1: Tlustracién esquemaética de la produccion y propagaciéon de los UHECR hasta su deteccién en
la Tierra. Los UHECR de mayor energia se veran deflectados en menor medida por los campos magnéticos
en su propagacion.

astrofisicos violentos, como las explosiones de Supernovas o los GRBs, y se propagan a través del
universo hasta alcanzar las capas altas de la atmosfera terrestre, donde interaccionan produciendo
cascadas de particulas secundarias. Este proceso se muestra en la Figura 2.1. El flujo de UHECRs
medido en la Tierra presenta un corte a partir de un cierto umbral de energia, en torno a
Eqzk ~ 5 -10%eV. Este cut-off en el flujo de UHECRs se conoce como el limite Greisen-
Zatsepin-Kuzmin (GZK). Su origen reside en la interaccion de los protones de los UHECRSs con

los fotones del CMB. Por encima de este umbral, los procesos
p+yoms = AT w1t +n y  ptyomp = AT =7 +p (2.7)

estan permitidos, donde el neutron resultante se desintegrara (ademés de los piones) en pe™ 7.
En consecuencia, ambos canales producirdn como resultado protones cada vez menos energéticos,
hasta reducir su energia por debajo del umbral Eqgzk. De forma practica, todos los protones de
los UHECRs generados a distancias mayores que ~ 30 Mpc llegaran a la Tierra con energias
por debajo de ~ 1029 eV [8]. El CR de mayor energia registrada hasta la fecha fue detectado en
octubre de 1991 por el Fly’s Eye air shower detector en Utah (EE.UU.). En el articulo posterior,
se report6 la deteccién de un CR de (3,2 £ 0,9) - 102°eV [9]. A pesar de ser la particula mas
energética jamés detectada, su energia sigue estando 8 6rdenes de magnitud por debajo de la
escala de Planck. Debido a las restricciones impuestas por el limite GZK y el reducido flujo por
encima de este umbral, la posibilidad de observar directamente estos efectos de nueva fisica queda
descartada por completo. A escalas de energia tipicas de observaciones de neutrinos y rayos-vy de
alta energfa, en torno al TeV-PeV, el cociente® |p|/Apry de la MDR (2.5) variard entre 10710 y
10713, asumiendo que Apry ~ Ep.

No obstante, existe un conjunto de situaciones fisicas en las que estas desviaciones respecto a
SR, a priori despreciables, resultaran en efectos muy notables en las observaciones debido a
mecanismos de amplificacion. Ademas, trabajar a menores energias nos permitird abrir nuestro
abanico y usar observaciones de los diferentes mensajeros cosmicos: UHECRs, rayos-y y neutri-
nos. Estos mecanismos de amplificacién estudiados en fenomenologia de LIV podréan clasificarse
en dos categorias principales: el estudio de los tiempos de vuelo de particulas de alta energia y
las modificaciones en la cinematica de procesos. A continuacién veremos como estas pequenas

desviaciones pueden conducir a efectos observables por los experimentos actuales.

3En el régimen ultra-relativista (|p| > m) podremos hablar indistintamente del cociente entre la energia de la
particula y la escala Arrv o el cociente entre el médulo de su momento lineal y la escala de LIV, |p|/AvLiv.
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2.2.1. Tiempos de vuelo

En relatividad especial, una particula sin masa se propagara siempre a la velocidad de la luz en
el vacio, c. En el marco de LIV, esto no seré cierto: una particula sin masa tendra una velocidad
dependiente de su energia, que en el limite de bajas energias tenderé a su valor clasico, c. Veamos
que este efecto se deduce directamente de la MDR.

Consideremos la MDR (2.5) para una particula sin masa:

1+S<A’E|v> ] : (2.8)

La velocidad de la particula vendra dada por v = dE/d|p|, por lo que tomaremos la raiz de (2.8):

n+1
~|p|\/ +s ’p' "o ppl4+s P (2.9)

2 AEIV 7

~ |p|?

donde hemos usado que (|p|/ALv)” < 1 para aproximar /1 + 2z ~ 1+ x/2. Asi, podremos

calcular facilmente la velocidad

dE (n+1) < Ip| )n
V= ~14+8§—=-—= . 2.10
dp| — 2 Arrv (2.10)

Analizando el resultado (2.10) vemos que, en el limite de bajas energias, |p|/ALrv — 0y la velo-
cidad v — 1, la velocidad de la luz en el vacio (recordemos que trabajamos en unidades naturales
¢ = h =1). No obstante, para una particula de muy alta energia, el efecto de LIV introducira una
modificacién en la velocidad dependiente de la energia. Esta modificacion dependera del modelo
de LIV que se considere, parametrizado por la elecciéon de n =1,2 y s = £1.

Fijémonos ahora en las consecuencias fisicas que tiene la eleccion del signo s en la MDR. Un
modelo de LIV con s = —1 implicara que la velocidad sera inferior a la unidad y decrecera
conforme aumente su energia, independientemente del orden n de la correccién. Dado que su
velocidad seré inferior a la de la luz a muy altas energias, a particulas con estas caracteristicas se
les denomina particulas subluminicas. Anélogamente, para el caso s = +1 tendremos particulas
superluminicas cuya velocidad crecera con la energia. De ahora en adelante, usaremos estos

términos para caracterizar los modelos de LIV en lugar de especificar el valor del signo s = +1.

Si bien para el rango de energias accesible las correcciones en la velocidad de las particulas de
alta energia son muy pequenas, de orden (|p|/Arrv)", su propagacion a lo largo de distancias
cosmolbgicas proporciona un mecanismo de amplificaciéon de esta desviacién respecto a SR. En
este escenario, particulas de muy alta energia producidas en fuentes astrofisicas lejanas podrian

llegar a la Tierra con un cierto retraso®

respecto a particulas de menor energia emitidas en el
mismo instante de tiempo. Los analisis de tiempo de vuelo constituyen uno de los métodos mas
comunes para la realizaciéon de tests de LIV y son aplicables tanto a particulas sin masa como
a particulas masivas en el régimen ultra-relativista. Por ello, este tipo de busquedas se realizan

mediante observaciones de rayos-vy y neutrinos muy energéticos.

4Segiin estudiemos particulas subluminicas o superluminicas podra tratarse de un retraso o un adelanto en la
llegada, respectivamente. Usaremos el término “retraso” de forma general para referirnos a ambos escenarios.
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Al realizar anélisis de retrasos en tiempos de vuelo (en inglés, time delays), es necesario tener en
cuenta los efectos de la expansion del universo en la propagacion de las particulas. La expresion
correcta para calcular este retraso fue derivada por primera vez por U. Jacob y T. Piran en 2008
[10]. Hasta la fecha, los anélisis llevados a cabo suponian que una particula de alta energia y una
de baja energia recorrian la misma distancia propia, dando lugar a un resultado que difiere en
un factor® (1 + z) del correcto. En realidad, es la distancia comévil la que es igual para ambas
particulas, no la distancia propia.

Los analisis de este tipo emplean observaciones de fenémenos astrofisicos transitorios como GRBs
en el espectro de rayos-y y neutrinos. Se buscan correlaciones entre la energia de las particulas y
su retraso en la llegada respecto al estallido inicial, detectado por medio de fotones de baja energia
que no serfan afectados por LIV. Durante los tltimos afios, se han realizado diversos estudios
por parte de colaboraciones experimentales como ANTARES [11] con resultados no concluyentes
debido a las grandes incertidumbres en la distancia a las fuentes, que dificultan en gran medida la
eleccion de la ventana temporal a considerar. Un anélisis mas reciente usando datos de IceCube
fue publicado en 2023 por G. Amelino-Camelia et al, donde afirmaban haber encontrado fuertes
evidencias de retrasos en la propagaciéon de neutrinos de alta energia correlacionados direccional
y temporalmente con GRBs [12]. Su ajuste a las medidas, asumiendo una MDR con n = 1,
proporciona una escala de LIV favorecida con un valor de Apry = (9,24 1,9)-1072 Ep, aunque las
incertidumbres en las correlaciones de cada evento detectado con un GRB reducen notablemente
la significancia de este resultado.

Todos estos analisis se han realizado bajo la suposiciéon de que el tinico efecto de fisica no conven-
cional a altas energias reside en la propagaciéon. No obstante, como ha sido mostrado reciente-
mente por J. M. Carmona et al [13], esto no es correcto. Ademas de las anomalias en los tiempos
de vuelo de particulas sin masa, existen efectos como la apariciéon de canales de desintegracion
para particulas antes estables que deben tenerse en cuenta a la hora de realizar un analisis consis-
tente. Estos efectos adicionales provienen de la consideracion de modificaciones en la cinematica
de procesos debidos a LIV, que comentaremos a continuacion.

2.2.2. Cinemaéatica de procesos

La consecuencia més intuitiva de una MDR para una particula es la apariciéon de anomalias en
su propagacién libre. Sin embargo, estas desviaciones respecto a la relacion de dispersion en SR
pueden inducir efectos muy relevantes en las secciones eficaces de interaccién con otras particulas

o las anchuras de desintegracion de ciertos procesos.

Uno de estos efectos inducidos més interesantes a nivel fenomenoldgico consiste en la aparicién
de umbrales de energia a partir de los cuales ciertos procesos, antes prohibidos en SR, estaran
permitidos, y viceversa. Este escenario fue estudiado de forma general por D. Mattingly et al
en [14], donde caracterizaron las configuraciones de umbrales inferior y superior para reacciones
de dos particulas, A+ B — C + D. Un ejemplo de esta fenomenologia aparecera al estudiar
un modelo de LIV para el neutrino, que a pesar de ser una particula estable en el SM podra
desintegrarse bajo ciertas condiciones a través de dos canales principales, como veremos en mas

profundidad en la seccién 2.3.

5Donde z es el redshift o corrimiento al rojo cosmologico, definido como 1 4 z = Adet/Aemit-
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Figura 2.2: Recopilacion de las cotas inferiores méas fuertes y recientes para la escala de LIV (Apry)
provenientes de la ausencia de efectos no convencionales en las observaciones de retrasos en tiempos
de vuelo dependientes de la energia, desintegracion de fotones, supresiéon en la formaciéon de cascadas
atmosféricas y cambios en los umbrales de la produccion de pares e~ /e™. En azul se muestran los limites
subluminicos (v, < ¢) y en verde los limites superluminicos (v, > ¢). El cuadro izquierdo muestra el
orden de aproximacion n = 1 y el derecho n = 2. Fuente: H. Martinez-Huerta et al (2020) [15].

Por otro lado, la fenomenologia de LIV en el sector del foton ha sido ampliamente estudiada en la
literatura. Algunos de los efectos de nueva fisica que aparecen en este sector incluyen la desinte-
gracion del fotén, la produccion de radiacion Cherenkov en el vacio y la modificacién de procesos
bien conocidos, como la producciéon de pares electrén-positron; ademéas de los ya mencionados
retrasos en tiempos de vuelo [15]. Todos estos efectos de nueva fisica han sido analizados por
diferentes colaboraciones experimentales como el High Energy Stereoscopic System (H.E.S.S.), el
High Altitude Water Cherenkov Observatory (HAWC) o el Major Atmospheric Gamma Imaging
Cherenkov Telescope (MAGIC), estableciendo fuertes cotas inferiores para el valor de Ary. En la
Figura 2.2 se muestra una recopilaciéon de estas cotas publicada en 2020 por H. Martinez-Huerta
et al [15]. Incluye estudios de retrasos en tiempos de vuelo y cinemética de procesos modificada,
asi como las cotas proyectadas en ese momento para los experimentos LHAASO/WCDA y el
Cherenkov Telescope Array (CTA).

2.3. Modelo de LIV para el neutrino

En las secciones anteriores hemos analizado cémo se puede introducir un efecto de LIV en una
particula y sus implicaciones en su propagacion e interaccién con otras particulas. Sera interesante
preguntarnos ahora qué particulas deberian manifestar estos efectos en caso de existir una ruptura
de simetria Lorentz a altas energias.
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Los neutrinos son unas particulas muy especiales dentro del SM, con unas masas extremadamente
pequenas en comparacion con el resto de particulas y que solo interaccionan débilmente. Desde
su descubrimiento en 1956 por C. Cowan y F. Reines [16], su detecciéon y caracterizacion ha
constituido un gran reto para la fisica experimental. Por ello, estas particulas elusivas constituyen
muy buenos candidatos para bisquedas de fisica més alla del SM, lo que incluye una posible
violacion de la simetria Lorentz. El origen de su estudio como posibles pruebas de desviaciones
respecto a SR se remonta a 2011, cuando el experimento OPERA afirmé haber encontrado
evidencias de la propagacion superluminica’® de neutrinos [18] y diversos modelos tedricos fueron
publicados explorando esta posibilidad [19, 20]. Otro argumento a favor de estudiar efectos de
LIV tnicamente en neutrinos proviene de los fuertes limites existentes sobre una MDR para los
leptones cargados. A raiz de estos limites, el estudio de un modelo de LIV solo para el sector del
neutrino esta justificado, lo que ha sido ampliamente abarcado y argumentado en la literatura
[21-23].

Los modelos de LIV se clasifican en universales y no-universales, segin si afectan a todas las
particulas por igual o a cada una de forma diferente, respectivamente. De ahora en adelante,
consideraremos un modelo no-universal de LIV que afecta tnicamente al neutrino y que es,
ademés, independiente del sabor. A continuaciéon veremos cémo implementar este modelo de

forma consistente como una extensién al SM.

Para empezar, supondremos que los neutrinos son particulas sin masa. El efecto de LIV se
introduciré en el marco de una teoria efectiva de campos (EFT) como una perturbacion de orden
(1/A)™ en la densidad lagrangiana asociada al campo del neutrino en la teoria libre:

_ L _ o, 1
Eg“/e)e = Z <VK(Z’7M6;L)V€ — SF Vepy (200)"+ Vg> y (211)
l

mientras que el lagrangiano de interaccion Ly se mantendré inalterado [6]. El subindice ¢ en
(2.11) indica el tipo de neutrino (e, p, 7). El campo del neutrino cumplird vy = vyr, donde el
subindice L se refiere a la quiralidad levogira del campo, y en la representaciéon quiral serd un
campo de Dirac con dos componentes nulas. Aplicando las ecuaciones de Euler-Lagrange a (2.11),
obtendremos las ecuaciones de movimiento para los campos:

Ty i1, — s 2(i00)" ™ ) vy =0 (2.12)

¢ YOy A 00 ¢ = :

y su compleja conjugada para el campo vy. Estas son las ecuaciones de Dirac modificadas, cuyas
soluciones seran los campos vy y 7y, espinores de Dirac modificados. Introduciendo una expan-
sion de ondas planas con soluciones positivas y negativas para el campo libre vy(x), uno puede
demostrar que las relaciones energia-momento para el neutrino y el antineutrino vendran dadas,

respectivamente, por [6]:

Elz—i—l 1 EE'H
lp| =E, —s A7 y lp| = Ep + (—1)" 3# ; (2.13)

donde vemos que se obtiene una MDR para cada uno. Cabe destacar que la escala de LIV
introducida en (2.11) difiere en un factor 21/ de la usada en las secciones 2.1 y 2.2, A" = 2A%,,.

5Los resultados obtenidos por OPERA, bautizados como la anomalia de neutrinos superluminicos, fueron mas
tarde atribuidos a fallos en el equipamiento de medida. En particular, una conexién de fibra 6ptica entre un
receptor GPS y el reloj principal del experimento no habia sido enroscada por completo, lo que generaba un
retraso en la senal de varias decenas de nanosegundos, dando lugar a una anomalia en la medida temporal por la
cual los neutrinos parecian viajar a velocidades superluminicas [17].
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s=—1 s=+41
neutrino (v) antineutrino (7) neutrino (¥)  antineutrino (7)
n =1 subluminico  superluminico  superluminico subluminico
n =2 subluminico subluminico superluminico  superluminico

Tabla 2.1: Recopilacién de los comportamientos no estandar de los neutrinos y antineutrinos
en funcion del modelo de LIV. El signo s se ha introducido en (2.11) de forma que si s = —1 el
neutrino siempre sera subluminico, mientras que si s = +1 el neutrino siempre seré superluminico.

Esto es una cuestion de convenio. Durante el resto del trabajo emplearemos la parametrizacion
dada por A. Si analizamos las MDR (2.13) obtenidas para el neutrino y el antineutrino, vemos
que en el caso lineal (n = 1) el neutrino y el antineutrino tendran comportamientos opuestos: uno
sera subluminico y otro superluminico; mientras que en el caso cuadratico (n = 2), presentaran

el mismo comportamiento. Esto se resume en la Tabla 2.1.

Una vez analizados los efectos de LIV en la propagacion libre de neutrinos y antineutrinos, revisa-
remos sus interacciones. Tal y como hemos comentado, el lagrangiano de interaccién asociado al
campo del neutrino no se vera modificado por nuestro modelo de LIV y seré igual al lagrangiano
de interacciéon en el SM. No obstante, como ya anticipamos en la secciéon 2.2.2, las anomalias en la
propagacién de las particulas por el efecto de LIV darén lugar a modificaciones en la cinematica

de procesos.

En particular, si el neutrino o el antineutrino son superluminicos, se convierten en particulas
inestables capaces de desintegrarse a través de dos canales principales: la producciéon de pares
electron-positron en el vacio (VPE) y la emision de pares neutrino-antineutrino, también cono-
cida como Neutrino Splitting (NSpl). Estos nuevos procesos tendran importantes consecuencias
fenomenologicas, como la prediccion de una fuerte atenuacion en el flujo de neutrinos de muy alta
energia. Los diagramas de Feynman asociados al proceso VPE se recogen en la Figura 2.3, donde
vemos que existen dos canales posibles para la desintegracion. El canal neutro estara permitido

para todos los sabores, mientras que el canal cargado solo lo estaré para el neutrino electrénico.

Ademas, dado que las particulas del estado final tienen masa, habra un umbral de energia por
debajo del cual no se podra dar el proceso |6]. La minima energia requerida para el neutrino

inicial viene dada por

BT = (2m2Am)/ e (2.14)
et et
— l/e
Ve ZO c Ve W+
Va e
(a) VPE (canal neutro). (b) VPE (canal cargado).

Figura 2.3: Diagramas de Feynman para los procesos de produccién de pares electréon-positron
Vo — Vo €~ el mediados por corrientes neutras (a) y corrientes cargadas (b).
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donde m, es la masa del electron. En el limite A — oo (hacemos desaparecer el efecto de LIV)
vemos que el umbral EE}Y PE) 5 o0 y el proceso esta prohibido. A diferencia del VPE, el umbral
de energia para la emisiéon de pares neutrino-antineutrino es completamente despreciable debido

a la pequena masa del neutrino, que hemos aproximado m, >~ 0, luego
NSpl
ENP) ~ 0 (2.15)

El diagrama de este proceso se muestra en la Figura 2.4, que solo serd mediado por corrientes
neutras. Por otro lado, si el neutrino o el antineutrino son subluminicos, estos procesos estarian
prohibidos y los tinicos efectos posibles de LIV apareceran en las interacciones responsables de
su produccién o deteccién. Seréd esta primera situaciéon la que nos ocupard durante el resto del

trabajo.

Debido a las ligaduras entre el comportamiento del neutrino y el antineutrino segtin el modelo
de LIV, Tabla 2.1, el estudio de toda la fenomenologia asociada a las desintegraciones de parti-
culas superluminicas seré realmente complejo. La basqueda de evidencias de esta nueva fisica a
altas energias necesitara de simulaciones numéricas para cuantificar desviaciones en el flujo de
neutrinos en la Tierra. Las comparaciones de este flujo simulado con las medidas de telescopios
de neutrinos como IceCube o KM3NeT permitiran establecer cotas inferiores para la escala A
en caso de no observar estos efectos, u obtener evidencias de una escala A favorecida en caso de
observarlos. Varios ejemplos de este tipo de analisis se pueden encontrar en [6].

Sin embargo, muy poca atenciéon ha sido prestada en la literatura cientifica a los mecanismos
de produccién de neutrinos y la forma en que LIV afectaria a estos. Si bien los efectos en la
propagaciéon y la posible desintegraciéon de neutrinos constituyen muy buenos candidatos para
bisquedas de LIV, ignorar los procesos envueltos en su produccion constituye un gran error. No
tendria fundamento, por ejemplo, estudiar la desintegraciéon de neutrinos superluminicos si su
canal de produccién estuviese inhibido, por lo que aquellos anélisis que no incluyan efectos de
LIV en la produccién de neutrinos seran inconsistentes. Dado que estos efectos se manifestaran a
energias muy elevadas, estaremos interesados en la componente astrofisica del flujo de neutrinos
en la Tierra. En la siguiente seccién abordaremos el problema de la produccién de neutrinos

astrofisicos en un marco de violaciéon de invariancia Lorentz.

Vg
Vg VA

Va
Figura 2.4: Diagrama de Feynman asociado a la emisiéon de pares neutrino-

antineutrino v, — vovgVg. El tnico canal posible para este proceso sera el
mediado por el bosén Z°.
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Aunque no seamos conscientes de ello, vivimos en un bano continuo de neutrinos. El origen de
estas particulas tan especiales es muy diverso. Una fraccién de ellas proviene de las reacciones
termonucleares que tienen lugar en el Sol, recibiendo el nombre de neutrinos solares. Otra frac-
cion tiene su origen en la Tierra y se produce mediante la desintegracion beta (%) de ciertos
is6topos inestables presentes en la naturaleza, dando lugar a los llamados geoneutrinos. Otra
buena parte de ellos, los neutrinos atmosféricos, proviene de la desintegraciéon de particulas se-
cundarias producidas en la interaccion de CRs con las capas altas de la atmosfera terrestre. La
lista continiia, pero a pesar de la gran variedad de fuentes de neutrinos, podemos organizarlos
de forma sencilla atendiendo a su posicion en el espectro de energias, Figura 3.1.

Nosotros estaremos interesados en los neutrinos astrofisicos, que conforman la componente do-
minante del flujo en la Tierra por encima de los 100 TeV, aproximadamente, como se puede
apreciar en la Figura 3.1. Como su propio nombre indica, estos neutrinos tienen origen astrofi-
sico y se producen en fuentes galdcticas o extragalacticas. A pesar de conocer su mecanismo de
produccién, a dia de hoy la busqueda de fuentes puntuales y extensas de neutrinos astrofisicos
sigue siendo un problema abierto para el campo de la astronomia de neutrinos. Solo tres fuentes
han sido identificadas como posibles candidatas: el blazar TXS 05064056, la galaxia activa NGC
1068 y, mas recientemente, la Via Lactea [24-26].

Los neutrinos astrofisicos de alta energia se producen principalmente mediante la desintegracion

de piones cargados, 7+

, provenientes de la interaccién de protones energéticos con el material
denso situado en el interior de las fuentes o con fotones de menor energia del ambiente, ~,
producidos a su vez por bremsstrahlung de electrones en regiones caracterizadas por la presencia
de campos magnéticos intensos [27]. En la Figura 3.2 se recoge un esquema de los procesos

anteriores, denominados usualmente como beam dump y photoproduction.
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Figura 3.1: Espectro en energias del flujo de neutrinos en la Tierra integrado a
todas las direcciones y sumado sobre los tres sabores. Noétese que el efecto de las
oscilaciones no afectara al flujo combinado de ve, v, y v, que se muestra en la figura.
Las lineas continuas indican fuentes de neutrinos y las lineas punteadas fuentes de
antineutrinos. Las lineas punteadas y continuas superpuestas representan fuentes de
neutrinos y antineutrinos. Fuente: E. Vitagliano et al (2020) [28].
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Figura 3.2: Esquema del principal mecanismo de produccién de neutrinos astrofisicos en las fuentes.

Durante las siguientes secciones nos centraremos en la produccién de neutrinos mediante los
procesos 7 — ¢* + v, donde ¢ = e,u indica el lepton cargado y vy su respectivo neu-

trino/antineutrino. Este constituira el canal dominante de produccion.

3.1. Modificaciones en la desintegracion del pion en LIV

A lo largo de esta seccion afrontaremos un calculo en QFT para estudiar la desintegracion del
pion en un marco de LIV. El lector no familiarizado con este tipo de célculos podra encontrar en
el Anexo A una introduccién completa al problema, abarcando desde nociones béasicas de fisica
de particulas hasta el calculo detallado de la desintegracion en SR. Dado que la forma usual de
proceder consiste en explotar la LI y trabajar en el sistema CdM, se ha incluido un Anexo B con
el célculo de SR en el sistema laboratorio, que servira de entrenamiento para su analogo en LIV.

\

Consideremos un modelo de LIV no-universal que afecta solo al neutrino, inducido por un la-
grangiano libre modificado anéalogo a (2.11). La relacion de dispersion para el neutrino vendra

dada entonces por

E'TH-I
14
An

A pesar de que en LIV el cuadrimomento k£ del neutrino pierde su interpretacion fisica, sera con-

k| = E, — s (3.1)

veniente definir la 4-tupla k= (||, k), pues nos permitira emplear la notacion relativista a nivel
formal. Nuestro objetivo ahora consistiré en calcular la anchura de desintegraciéon modificada, T,
para el proceso”

N A S R (3.2)

que en el SM estara mediado por un bosén W. Para realizar este calculo emplearemos la teorfa
V-A de las interacciones débiles. Uno podria pensar que el uso de una teoria efectiva de bajas
energias del SM para un calculo en LIV no es un planteamiento correcto del problema. No
obstante, esta aproximacion es perfectamente valida: independientemente de la energia del pion
inicial, la norma de su cuadrimomento sera p? = m?2 < m%v y las masas de los leptones cargados

cumplirdn me, m, < mw, por lo que el propagador del boson W se reducira a

w = —5 9w (3.3)

"El resultado sera completamente equivalente para este proceso y para su conjugado de carga 7~ — £~ + T,
por lo que bastaré con considerar el proceso 3.2. El Gnico matiz relevante al diferenciar entre uno y otro aparecera
cuando consideremos un modelo de LIV completo. Segun los parametros n y s, los comportamientos del neutrino
y el antineutrino podran ser iguales u opuestos, Tabla 2.1, por lo que el resultado de la anchura de desintegracién
(que también dependera de los parametros n y s) debera escogerse de forma acorde para cada proceso.

13



3 Produccion de neutrinos en fuentes astrofisicas

recuperando asi el formalismo de la teoria V-A (ver seccion A.2 para la discusion completa). El

diagrama de Feynman del proceso se muestra en la Figura 3.3.

3.1.1. Elemento de matriz
Comenzaremos calculando el elemento de matriz del proceso, que vendra dado por

M7r+~>€+l/g = <£+(q> 3/)7 W(i{? 3”)‘ - JTJM(O) ‘7?+(p)> ) (3'4)

donde G es la constante de acoplo de Fermi y J#(0) es la corriente cargada del lagrangiano
_Gr

V2
hadrénico y otro lepténico J* = Jé‘ + J!, que tienen la forma:

efectivo Lp(x) = JlJ H(x), evaluada en el origen. Cada corriente serd suma de un término

Jp= Y 1= (35)
l=e,u,T
y
T =dy" (1= )u+ 59" (1 =)+ By (1= 7). (3.6)

El apostrofe (/) sobre los campos fermionicos asociados a los quarks down, strange y bottom
que aparece en (3.6) indica que estos campos son autoestados de la interaccion débil, no de la
fuerte, cuya relacién vendra parametrizada por el dngulo de Cabibbo, 8¢, Anexo A.2. De ahora
en adelante, denotaremos M +_,s+,, = My;. El tinico término que contribuira al elemento de
matriz (3.4) sera

G / 7.n
Myi = —=E(0F(q,8), valk, ") JL, T (0) [ (p))

v2 ) | ) (3.7)
= ——Z (" (q,8), ve(k, 8")| [Feyu(1 — 7)) (0) [dy" (1 — +°)u] (0) 7 (p)) -

Expresando el campo d = dcosf¢c + ssinf¢ y separando los términos leptonico y hadrénico,

obtenemos:
My == EGEEE (0. ) il o) [72, (1= 1M OI0) O[3 = )] ) [ 0))
i) 0
(3.8)
Vé(l;:a S”)
U >
7T (p) < I

*(q,s")

Figura 3.3: Diagrama de primer orden asociado a la desintegracién del pion 7+ en
LIV. El pion inicial tiene cuadrimomento p y espin s = 0, mientras que en el estado
final el lepton cargado tendra cuadrimomento ¢ y espin s’. El neutrino tendra momento
lineal k, energia F, y espin s”.
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3 Produccion de neutrinos en fuentes astrofisicas

El término hadrénico, ./\/l%{)

, no presenta ninguna diferencia respecto al calculo realizado en SR,
pues solo hemos introducido el efecto de LIV en el lagrangiano libre del neutrino. Por tanto,

podremos usar el resultado obtenido en el Anexo A.3.2:

MUD = (0[[dy¥ (1 = +)u] (0) |7+ (p)) = —fup | (3.9)

donde se ha introducido la constante de desintegracion del pion, fr. Siguiendo el convenio ex-
plicado en la seccion A.3.2, el valor de esta constante serda fr = 130,56(2)(4)(13) MeV [2]. Para
calcular el término leptoénico, M%), procederemos de manera andloga a SR. Expresaremos el

estado final como la accién de operadores creaciéon sobre el vacio y calcularemos su dual:

(tt(q,5), I/g(l;:, s")| = \/2EqV/2Ex (0| ax, s (ve) by, s (£) - (3.10)

A continuacion, escribiremos las expresiones de los campos libres 7y(z) y ¢(z) como una super-
posicién de ondas planas evaluadas en el origen (x = 0) y operaremos con (3.10) de la manera
usual, obteniendo asi:

M = (04 (q,8"), ek, ") [Tevu(1 =72 (0)]0) = T (k) 7 (1 — %) v (q) | (3.11)

un resultado equivalente al de SR, con la diferencia de que ahora E;j"(l;:) serd un espinor de Dirac

modificado y la relacion energia-momento para el neutrino vendra dada por la expresion (3.1).

Insertando (3.9) y (3.11) en (3.8), podremos escribir finalmente el elemento de matriz como

_ GF frcostc
V2

El elemento de matriz M ¢; nos dara la amplitud de la probabilidad de transicion entre el estado

My @, (k) (1= %) of (@) p - (3.12)

inicial y el estado final del proceso. No obstante, nosotros estaremos interesados en su modulo
al cuadrado, que nos proporcionaré la probabilidad real y que sera la variable que aparezca en
la anchura de desintegracion diferencial, dI'. Ademés, como no estamos interesados en la polari-
zacion de espin de las particulas finales, promediaremos el resultado a todas las combinaciones
posibles de s" y s”, definiendo: |[M ;|2 =3 Mgy =3 My M, Asi,

spin

2 r2 2 _ , , Yo~
M = 5 CIE 00 (5 () 1= 4) 07 @) (57 (@) (1447 s ()

(3.13)
Haciendo uso de las relaciones de completitud para los espinores del leptén cargado y para los

espinores modificados del neutrino:

Sl @ =dg-me vy Y ul R (k) =Fk+m, =~ F (3.14)

s/

respectivamente, podremos reescribir el resultado (3.13) como

G2 f2 cos? O Tr

Myif* = 5

(Fvu (1 =~°) (¢ — me) (1 +°) %) pHp” (3.15)

donde aparece la traza de un producto de matrices. Hemos introducido aqui la notacién “slash”
de Feynman, p = v, p. Las propiedades usuales de la traza de matrices v son bien conocidas

y nos permitiran calcular de forma sencilla la expresion (3.15), obteniendo asi:
(Ml =4G% f7eos*bc (2(q - p)(k-p) —miq k). (3.16)
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3 Produccion de neutrinos en fuentes astrofisicas

Este es el resultado que necesitamos para calcular la anchura de desintegracion total en el sistema
de referencia laboratorio. Como veremos mas adelante, serd conveniente expresar el elemento de
matriz (3.16) en funcién de dos variables: la energia del pion inicial, E ., y la energia del neutrino,
E,, resultando en

M = 463 feost b (ST s, - 2m) L v2(m - B B ) )

donde hemos empleado la MDR para el neutrino® y la relacion E E, —p -k ~ (m2 — m?) /2 +
sE"2 /A", que se deduce empleando la conservacién del momento lineal y la energia. Analizando
(3.17), vemos que cuando A — oo el resultado tiende al valor de SR, lo que nos asegura que a

bajas energias la simetria Lorentz permanece intacta. Por otro lado, cuando
E"2 > mymg A" (3.18)

el tercer término de (3.17) dominara sobre el resto. Apareceran asi dos escalas de energia, segin
usemos my = me 0 my = my, en (3.18). La escala inferior podra entenderse como un umbral
efectivo a partir del cual los efectos de LIV seran notables. Cuando la energia del pion sea mayor
que la escala superior, el elemento de matriz serd completamente independiente de my, dando
lugar a una probabilidad de transicién igual para el neutrino electrénico y para el muoénico. Esto
es un comportamiento completamente diferente respecto a SR, donde el canal de desintegracion

+

T — eTv, estad suprimido respecto al canal 7 — pv,. Sin embargo, solo podremos sacar

conclusiones vélidas a partir de la anchura I' de cada proceso, no al nivel del elemento de matriz.

3.1.2. Anchura de desintegraciéon

La anchura de desintegracion diferencial del proceso en LIV vendra dada por la expresion

d3k d3q
(27)32E, (2m)3 2E,

1
T = (2)*§(Ex — B, — B0) 5 (b — k — q) o[ M (3.19)

donde ahora sera necesario explicitar la conservacion de la energia y la conservacién del momento
lineal por separado. A diferencia de SR, no particularizaremos el problema al sistema CdM. La
anchura total se calculara, por tanto, integrando a todo el espacio de momentos del neutrino y
el lepton cargado:

1 43k
T 8E,(2m?2 ) E,

. d3
Ml [ EL6(B, — B, — E)6®(p—k—q). (3.20)

T
E,

Usando la propiedad (A.69), reescribiremos ) (p —k — q) = 6®)(q — q*), con q* = p —k e
integraremos respecto al momento del leptén cargado:

1 Bk [d%
F=—— [ —=|Mpy|* | — 6B —E, —E))6®(q—q*

1 &k AP 5(En —E, - \/W) (3.21)
i _

— [ —
8E,(2m) E, m2 + |q* |2

8Un detalle importante a destacar es que, siempre que trabajemos con la MDR, nos quedaremos a primer
orden de correccion en la escala A. De forma préctica, esto se traduce en que la relacién de dispersion cuadratica
vendra dada entonces por |k|*> ~ E2 — 2sE0T2 /A",

16



3 Produccion de neutrinos en fuentes astrofisicas

A continuacién, escribiremos |q*|? en funcién de las variables de integracion. Como sabemos,
lq*|? =q*-q* = (p—k)- (p—k) = |p|?> + |k|? — 2p - k. No obstante, nos interesara expresar este
término en funcién de la energia del pion y la energia del neutrino, al igual que hemos hecho con

el elemento de matriz. Desarrollando, obtenemos
) ) ) ) Ent2 n+1

*
’q‘ :ETI'+EV_m7T_2S Xn K”

siendo € el dngulo formado por el momento lineal del pion, p y el momento lineal del neutrino,

E2 —m2 (E,, —s )cos@ , (3.22)

k. Ahora, la delta de Dirac que impone la conservacion de la energia en (3.21) proporcionara una
ligadura para la integral final entre la energia del neutrino y el dngulo 6. Procediendo de forma
analoga a SR, Anexo B, denotaremos

ELHQ Eg-‘rl
f<9>=Ew—Eu—\/m3+E7%+E3—m%—2s AN -] (oA

)cos 0 (3.23)

y aplicaremos la propiedad (A.69), lo que nos permitira realizar la integral angular para el
momento del neutrino. Los ceros de (3.23), vendran dados por
m2 —m? —2E.E, + 2s ETT2 /A"

cosf* = ——F con 0*) =0, 3.24
2v/E2 —m2 (E, — sE}T/An) 1) (3.24)

que determinara el angulo € en funcién de E,, y su derivada sera

df (0) _ VER-mi(E, — sEnTL/A™) sin 0 ‘ (3.25)
df |p_g- E.—-E,
Reuniendo todo esto, podremos reescribir (3.21) como
1 o0 ‘Mfi‘Qf . 6(0 —07)
= dk| [k|* ="~ ¢ sinfdfd
8E,(2m)2\/E2 — m2 /0 e i E, 4 (E, — sE}T JAn) sin 6~
Er —E, (3.26)

\/m§ + E2 4+ E2 —m2 — 2sENT2 /An — 2, /E2 — m?2 (El, - SEg—H/A")COSH

donde hemos expresado el diferencial de volumen del espacio de momentos para el neutrino en
coordenadas esféricas. La integral al &ngulo ¢ resultara en un factor 27, mientras que la integral
sobre 6 dara como resultado el integrando evaluado en 6§ = 6*, obteniendo asi:

| Mi|?

1 too
- 2 2 / dlk| [k/* nt1
167 Ex\/E2 —m2 Jo E, (E, — sE]" JA™)

La funciones © que aparecen en (3.27) son las funciones escalon de Heaviside, que delimitaran el

0(6")0(r — %) . (3.27)

intervalo de integracion. Finalmente, expresaremos |k| en funcion de la energia del neutrino F,,
que serd nuestra nueva variable de integracion. Haciendo uso de la relacion de dispersion (3.1),

la integral (3.27) podré escribirse como

E,(6*=0)

167rE \/E2 —m2 JE,(0*=n)

Entonces, podremos desarrollar (1 — sE?/A™)™1 =1+ sE?/A™ + O((E?/A™)?) y el integrando
de (3.28) podra escribirse como un desarrollo en potencias de E}}/A™ multiplicando al elemento

1 - 2sE7/A")

(1—s(n+1)E}/A") ((1 ) (Mp?.  (3.28)

de matriz. Todos los factores desarrollables como una suma de potencias de E}'/A™ se podran
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3 Produccion de neutrinos en fuentes astrofisicas

aproximar a orden 0, ya que E'/A™ < 1. Por tanto, la integral (3.28) se reducira a

1 ESmax)
. I
167 Enx/EZ — m2 J gimin

donde hemos renombrado los limites de integracién como B = E,(0* =m)y E

dB, Myl (3.29)

l(/max) =

E,(6* = 0). Empleando la expresion explicita (3.17) para el elemento de matriz en funcion de

las energias del pion inicial y del neutrino, podremos calcular el resultado final, obteniendo:

G2 f2cos’0c  [(m2(m2 —m?
L fﬂ ( ¢ ( é) (El/,max - El/,min)

=
A Ex\/E2 — m2 2
2 3
. m? Er (EZI?I—’F—lE%X - Eg;in ) 2 m? (Elf?r—;gx - E;f;in ) (330)
n+2 An n+3 An
4
L 2B, (BRL-BRL) 2 (BRR- BRI
2n + 4 A2n 2n+5 A2n '
Para hallar la expresion final de la anchura I' en funciéon de la energia del pion, serd necesa-
rio conocer la dependencia de El(,mm) y El(,max) con FE., que obtendremos como soluciéon de las

siguientes ecuaciones:

7L+2 En+1 m2 _ m2
T+ sVEZ —m2 =08 — (Ex o+ VEZ — m2) By + 5 =0 (3.31)
' 12 +1 2 2
Ep Ep ~
I 5 /ER =2 =0 — (B — /ER = m2) By + 5t = 0 (3.32)

Las ecuaciones (3.31) y (3.32) provienen de particularizar (3.24) a los casos 0* = 7y 6* = 0,
respectivamente. El modelo de LIV bajo estudio fijara los parametros n, s y A. Una vez escogido
el modelo, se deberan resolver ambas ecuaciones para el neutrino electronico (my = m.) y para
el neutrino muoénico (my; = m,,) en funcién de la energia del pion, Er.

3.2. Consecuencias fenomenolégicas de LIV en la producciéon de neutrinos

De ahora en adelante, consideraremos el caso lineal, n = 1, y exploraremos las implicaciones
fisicas de los resultados obtenidos en la seccién anterior. Este no solo sera el caso de estudio més
sencillo, sino también el més interesante a nivel fenomenologico: el neutrino y el antineutrino
exhibiran comportamientos diferentes, Tabla 2.1. Por tanto, serd este el escenario en el que
nos centraremos a partir de este momento. En ¢él, (3.31) y (3.32) seran ecuaciones cubicas en
las variables E,Smin) y El(,max), respectivamente. Dado que las raices de los polinomios de tercer
grado tienen una expresion analitica conocida, emplearemos herramientas computacionales para
calcular sus soluciones exactas para diferentes valores de E; a partir de las expresiones analiticas.
En la Figura 3.4 se muestran las fracciones de energia Eﬁmin) J/Ery El(,max) /E obtenidas mediante
este procedimiento. El rango de energias comprendido entre entre El(,min) y E,Smax) daré el intervalo
de integraciéon para la variable F,,.

Hasta ahora, el tnico efecto de LIV en la desintegracion del pion se ha manifestado en la mo-
dificacion del elemento de matriz |[My;|> a muy altas energias, como se ha mostrado en (3.18).
Analizando las Figuras 3.4a y 3.4b, encontramos un segundo efecto que competira con el an-

terior: el intervalo de energias posibles para el neutrino producido en la desintegraciéon se vera
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Figura 3.4: Evolucién de los valores E,Emin) y E,Smax) en funcion de la energia del pion inicial, normali-
zados respecto a Ey, para los procesos 7t — eTv, (a) y 7t — pTv, (b) en un escenario de LIV lineal
(n =1). El calculo de las soluciones exactas y su representacion grafica se han implementado mediante un
programa en lenguaje Python, haciendo uso de las librerfas NumPy y Matplotlib [29, 30]. Las pequenas
fluctuaciones de El(,max) /E. que aparecen en (a) para el caso superluminico con A = Ep se deben a

errores de aproximacion en el calculo numérico de ciertas funciones de NumPy para ntmeros complejos.

modificado respecto a SR. En el escenario subluminico, el intervalo se ensanchara hasta abarcar
todo el rango permitido, 0 < E, < E;. Esto se aprecia de forma clara en la Figura 3.4b, donde la
energia maxima permitida para el neutrino muoénico crece rapidamente en torno a F; ~ 0,1 —1
PeV, segtin la escala de LIV escogida. Para el neutrino electronico, Figura 3.4a, este efecto no
es apreciable, pues la fraccion de energia méxima en SR tiende muy réapidamente a la unidad a
bajas energias, mucho antes de que el efecto de LIV sea notable.

En el escenario superluminico ocurriré lo contrario: el intervalo de energias permitidas se vera

reducido a partir de un cierto umbral de energia, determinado por la escala A, y los limites

superior e inferior coincidiran por encima de E; =~ 10 PeV, aproximadamente. Dado que El(,max) —

min . .. . , L1
E,S ) ~ 0, el pion se convertira en una particula estable a muy altas energias. Por tultimo, vemos

.. .- L. . . min
que tanto en el caso subluminico como en el caso superluminico el limite inferior E,S ) para los

dos tipos de neutrinos no se vera afectado y tenderé a cero a partir de E; ~ 1 GeV.
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Las modificaciones en la anchura de desintegracion tendran entonces dos origenes diferenciados.
Por un lado, la probabilidad del proceso se veré afectada debido a las correcciones en la expresion
del elemento de matriz (3.17) y, por otro lado, aparecerd una modificacion en el intervalo de
energias permitidas para el neutrino hijo, que delimita el intervalo de integracién para la anchura
total, Figura 3.4. En el caso subluminico, ambos efectos favorecerédn la desintegracion del pion,
mientras que en el caso superluminico estos efectos seran contrarios entre si. Sera interesante

analizar ambos escenarios por sus posibles consecuencias fisicas.

A continuacion, representaremos graficamente la anchura total de cada proceso frente a la ener-
gia del pion, cuya expresion analitica se ha obtenido en (3.30). Esto se recoge en la Figura 3.5.
Analizando estos resultados, observamos que la desintegraciéon se vera favorecida en ambos pro-
cesos para el caso subluminico. Ademés, dado que los limites de integraciéon para el neutrino
electrénico y muénico coincidiran a partir de E; ~ 10% — 10'° MeV, Figura 3.4, y el elemento de
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Figura 8.5: Modificaciones en la anchura de desintegracion total de los procesos 77 — e, (a) y
7t — ptv, (b) inducidas por un modelo de LIV lineal (n = 1). Para representar graficamente este
resultado se ha evaluado la expresion analitica (3.30) en los limites ES™™ y ES™™) calculados en

la Figura 3.4. La franja roja delimita el rango de energias no permitido para el pion, E, < m.
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matriz serd independiente del sabor a muy altas energias, la anchura de desintegracién presen-
tard la misma tendencia para los procesos nt — e*v, y 7 — ptv,. Las principales diferencias
se manifestardn en el escenario superluminico. El umbral efectivo de reduccion del intervalo de
energias permitido para el neutrino coincidird en ambos procesos con el inicio de la atenuaciéon
de la anchura de desintegracion, I'. Sin embargo, el término de correccion de orden EJ'/A™ en
(3.17) dependera del cuadrado de la masa del leptén cargado. Dado que m? /mi ~ 231075,
la contribucién de este término en el caso del proceso 7™ — eTv, sera despreciable frente a su
anélogo en el proceso 7™ — ptv, y dominard por tanto el término de orden E2" /A", definido
positivo, que dara lugar al crecimiento inicial de la anchura en torno a Fr ~ 107 — 109 MeV. A
mayor energia, la reducciéon de Eﬁmax) /Er se impondra y provocara la caida de I', de modo que

en el caso superluminico el pion se convertird en una particula estable.

Todo esto seré valido para el estudio de la produccién de neutrinos. No obstante, en la naturaleza
existen tanto neutrinos como antineutrinos, y uno deberé ser cuidadoso al interpretar los resulta-
dos obtenidos en este trabajo. El primer paso consiste en escoger un modelo de LIV, determinado
por la escala A y los parametros n y s, y comprobar en la Tabla 2.1 cual sera el comportamiento
del neutrino y del antineutrino. Si el neutrino es (super)subluminico, acudiremos a los resultados’
para el caracter (super)subluminico de la escala A escogida. De igual manera, si el antineutrino
es (super)subluminico, acudiremos a los resultados para el caracter (super)subluminico.

Las busquedas actuales de sefiales de LIV en el sector del neutrino se fundamentan en los ana-
lisis de retrasos en tiempos de vuelo y la busqueda de su posible desintegracién. No obstante,
estos nuevos resultados abren la puerta a considerar un efecto adicional en estas biisquedas:
la proporcion de los sabores de neutrinos astrofisicos en las fuentes se vera modificada a altas
energias. Esto no resulta evidente en la Figura 3.5, por lo que representaremos el branching ratio
Dot etv /Tt pty, € funcioén de la energia del pion, Figura 3.6. Vemos entonces que, si bien a
bajas energias la produccién de neutrinos electrénicos esta suprimida, existira un cierto intervalo
de energfa en el cual la proporcién de v, y v, en la fuente serd comparable. Ademaés, por encima
de un cierto umbral determinado por la escala A, esta proporcién seré constante y tnicamente

dependera del comportamiento (super)subluminico del neutrino.

10!
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Figura 3.6: Proporcién de neutrinos v, y v, producidos en una fuente astrofisica como funcién de E.

9Noétese que en este trabajo tinicamente hemos estudiado los resultados asociados al caso lineal n = 1. El caso
cuadratico n = 2 debera ser estudiado de forma anéloga.
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4| Conclusiones

Al inicio de este trabajo se ha motivado el estudio de la violacién de invariancia Lorentz como
una posible ruptura de simetria en la naturaleza, para posteriormente proceder con un repaso
general de su formulacién y sus implicaciones en la fisica de altas energias. La idea de una
ruptura de simetria Lorentz ha sido ampliamente estudiada en la literatura, desde los trabajos
mas tedricos sobre la estructura matematica de este concepto [31] hasta los numerosos anéalisis
de datos llevados a cabo por grandes colaboraciones experimentales [11, 15]. Sin embargo, y a
pesar del auge actual de la fenomenologia de QG en el marco de la astronomia multimensajero,
el estudio de LIV en la produccién de neutrinos de alta energfa sigue siendo un area muy poco
explorada. Esto viene ocasionado, principalmente, por la escasez de datos experimentales de
neutrinos astrofisicos de muy alta energia, siendo insuficiente incluso para testar las predicciones
del SM sobre los mecanismos de produccién de neutrinos en las fuentes.

Los resultados obtenidos en este trabajo ponen de manifiesto el gran potencial que presenta el
estudio de fuentes astrofisicas para bisquedas de LIV: a energias por encima de un determinado
umbral, el proceso 77 — eTv, dejard de estar suprimido respecto a 7t — pFv, y la proporcion
en sabor v, /v, se aproximara a la unidad. Ademaés, a energias 4 6rdenes de magnitud por encima
de este umbral, el efecto de LIV sera completamente independiente de la escala A y la proporcion
Ve/Vy — 1 en el caso subluminico, mientras que en el caso superluminico el pion se convertira
en una particula estable. Un estudio completo de LIV en el sector del neutrino debera incorpo-
rar todas las modificaciones comentadas desde su produccién hasta su deteccion en la Tierra,
incluyendo la propagacion a lo largo de distancias cosmolégicas, donde el fenémeno de las oscila-
ciones de neutrinos jugara también un papel relevante. Desde el punto de vista experimental, la
infraestructura tecnolégica y la escasez de eventos de alta energia han constituido los principales
limitantes durante las tltimas décadas a la hora de constrenir posibles desviaciones ocasionadas
por LIV en las observaciones de telescopios de neutrinos. Esta situacion, sin embargo, podria
verse alterada en las proximas décadas.

Actualmente, dos nuevos telescopios de neutrinos, ARCA y ORCA, estan en proceso de cons-
truccion en las profundidades del mar Mediterrdneo. Una vez completado, ARCA, acrénimo de
Astroparticle Research with Cosmics in the Abyss, sera el telescopio mas avanzado del mundo,
con un volumen de detecciéon de 1 km?, aproximadamente, con la posibilidad de una ampliacion
aun mayor [32]. Anélogamente, IceCube, el mayor telescopio de neutrinos en la actualidad, co-
menzara en breve un gran proyecto de mejora de su detector. IceCube-Gen2, su sucesor, tratara
de buscar fuentes de neutrinos césmicos hasta el EeV y se espera que esté operativo para el
ano 2033 [33]. Estos proximos desarrollos abriran la puerta a la realizacion de nuevos analisis de
datos con una estadistica sin precedentes y la busqueda de efectos de nueva fisica a energias muy
superiores a las accesibles hoy dia. Es en este contexto donde los resultados presentados en este
trabajo podrén ser contrastados con las observaciones, lo que permitira establecer nuevas cotas
inferiores para la escala A o incluso determinar un valor de A favorecido, en caso de encontrar

correlaciones con un cierto modelo de LIV.

Por otro lado, el estudio de la produccién de neutrinos en fuentes astrofisicas conllevara también
una serie de retos que haran de estos analisis una tarea muy compleja. Si bien es cierto que el
mecanismo principal de produccién de estos neutrinos es la desintegraciéon de piones cargados,
existen también otras posibilidades. Por tanto, cada tipo de fuente podra exhibir un comporta-
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miento ligeramente diferente segtin su naturaleza, composicién y otros factores que intervendréin
en el proceso, lo que resultara en un fondo no deseado para el analisis de la proporcién en sabor
del flujo de neutrinos. Para solucionarlo, uno deberia considerar el estudio de fuentes aisladas
cuyos mecanismos de produccién y aceleracién de particulas de alta energia sean bien conoci-
dos. Sin embargo, esto presenta otras dificultades anadidas, como la necesidad de una resolucién
direccional extremadamente pequena o la escasez de eventos por encima del PeV.

Hasta que el desarrollo de la nueva tecnologia de deteccién nos permita llevar a cabo estudios
precisos, serd necesario explorar todas las implicaciones fenomenolégicas que presentaria un es-
cenario de LIV en la produccién de neutrinos. Una continuaciéon natural de este trabajo incluira
el estudio del caso cuadratico, n = 2, para el que serad interesante obtener de nuevo la evolu-
cion de los limites El(,min) y E,Smax) en funcion de la energia del pion, asi como las anchuras de
desintegracion I'v+ o+, ¥ It 5 4, Otra extension posible de los resultados obtenidos en la
seccion 3.2 consistird en obtener la distribucién de probabilidad asociada a la fraccién de ener-
gia E,/E; del neutrino hijo y analizar su comportamiento para valores de E, elevados, lo que
aportard mayor informacion sobre el proceso respecto a E,Smin) /Ery E,Smax) /Er, que tnicamen-
te delimitan el soporte de la distribucién. Una vez estudiada toda la casuistica asociada a los
diferentes modelos de LIV en la desintegracion del pion, se deberéd considerar la desintegracion
del (anti)muon u* — e + v, + 7, en un marco de LIV analogo al introducido en la seccion 3.1.
De esta forma, seré posible concatenar la desintegracién de piones cargados en las fuentes con
las sucesivas desintegraciones posteriores de las particulas hijas inestables: los (anti)muones y los
(anti)neutrinos superluminicos. Estudiando esta cadena de desintegracion con las nuevas anchu-
ras modificadas, podré construirse un modelo completo de produccién para el flujo de neutrinos

de muy alta energia, que podré ser testado experimentalmente en las préximas décadas.
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Anexos

A | Desintegracion del pion en relatividad especial

Nuestro objetivo a lo largo de este apartado consistira en calcular de forma rigurosa la anchura
de desintegracion asociada al proceso 7 — ¢* + v en un marco relativista sin ningtn efecto de
nueva fisica. Comprender en profundidad este desarrollo seré un paso fundamental para introducir
posteriormente efectos de violaciéon de invariancia Lorentz en la cinematica del proceso, que
constituye el fin ultimo de este trabajo. Atacar ese complejo problema sin previo entrenamiento
o intuicién no serfa muy inteligente, por lo que optaremos por tomar el camino aparentemente
mas largo, que en muchas ocasiones suele ser también el més conveniente y gratificante. Por
tanto, se recomienda encarecidamente la lectura de este anexo al lector no familiarizado con este

tipo de célculos en QFT. Ahora si, sin méas dilacién, procedamos con el calculo.

A.1. Planteamiento del problema

Comencemos por nuestro protagonista, el pion. Los piones son particulas subatémicas mediadoras
de la interaccion fuerte residual, la interaccién que mantiene unidos a los nucleones (protones y
neutrones) en el nicleo atémico. El pion fue teorizado inicialmente por el fisico japonés Hideki
Yukawa en 1935 [34] en un intento de explicar la fuerza nuclear fuerte entre nucleones mediante
el intercambio de un bosén masivo, para el cual estim6é una masa de m, ~ 100 MeV asumiendo
que se trataba de una fuerza de corto alcance, del orden de 2 fm. Fue finalmente en 1947 cuando
el grupo de Cecil Powell en Bristol [35] descubrié en los rayos cosmicos (CR) una nueva particula
de masa intermedia que cumplia con lo esperado, a la que bautizaron como mesén-m (o pion)
para diferenciarla del previamente descubierto mesén-u (o muon), también presente en los CR.

Hoy dia sabemos que el pion no es una sola particula, sino tres diferentes: 7+, 7~ y 7°. Los dos
primeros, con carga eléctrica, forman un par particula-antiparticula, mientras que el pion neutro
es su propia antiparticula. Los piones no aparecen en el Modelo Estandar, pues no son particulas
elementales, sino sistemas ligados con J¥ = 0~ conformados por un quark y un antiquark. De
hecho, es un sistema tan fuertemente ligado que su masa es, aproximadamente, unas 20 veces
mayor que la masa de sus constituyentes, Tabla A.1. Esto serd muy importante tenerlo en cuenta
a la hora de calcular la amplitud de probabilidad del proceso de desintegracién, como veremos
mas adelante, pues no podremos considerar el pion como un estado asintético de dos quarks
libres, un quark up y un quark down.

Carga eléctrica (e)  Masa (MeV)  Composicion  Vida media (s)

at +1 139, 57039(18) ud 2,6033(5) - 1078
- -1 139, 57039(18) du 2,6033(5) - 1078
70 0 134,9768(5) uu /dd 8,43(13) - 10717

Tabla A.1: Propiedades de los piones (J¥ = 07) y medidas experimentales de ciertas magnitudes
de interés. Como podemos apreciar, la masa del 7% es de ~ 140 MeV, mientras que las masas de
los quarks u y d son 2,16 MeV y 4,67 MeV, respectivamente. Fuente: PDG (2022) [2].
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Si bien existen diferentes canales de desintegracién para cada uno, nosotros nos centraremos en

+

la desintegracion de un 7= en un lepton cargado y su repectivo neutrino/antineutrino:

7Ti—>£i+l/g,

donde £ = e, i1, tal que el ntmero leptonico total y el ntimero leptonico por familia se conserve
en el proceso. Cabe destacar que la desintegracion al leptén 7 no serd posible, pues este tiene
una masa de m, ~ 1777 MeV, mayor que la del pion. Asi, los procesos que nos conciernen seran

los siguientes:

+ +

at s et 4, ™ —>,u+—+—1/“

T —e 47, (O VR o P

Nos bastara con calcular uno de estos procesos, pues el procedimiento para el resto sera comple-
tamente anédlogo. Ademas, trabajar en el marco de la relatividad especial simplificard en gran
medida el trabajo, pues podremos calcular la anchura de desintegraciéon del proceso en el sistema
centro de masas del pion inicial y, una vez obtenido el resultado, calcular su valor en cualquier
otro sistema de referencia mediante una transformacion de Lorentz. En un marco de LIV, esto
ya no sera posible, por lo que cada observador se vera obligado a describir la fisica del problema

anicamente desde su sistema de referencia.

A.2. Teoria V-A de las interacciones débiles

La teoria V-A de las interacciones débiles tiene sus origenes en la teoria de Fermi de la desintegra-
cion beta [36], propuesta por el fisico italiano en 1933. En su version inicial, Fermi sugeria que los
procesos (3 en los nucleos atémicos podrian describirse mediante corrientes cargadas, en analogia
a la formulacion de la entonces atn joven electrodinamica cuantica (QED). Ademaés, propuso
una densidad lagrangiana asociada a estas corrientes cargadas inspirandose en la empleada para

las corrientes cargadas en QED, £ = ej,(fm)A“, escribiendo!?:

L =G ihe = GUpyuun) (@ uy) | (A1)

donde reemplazo la carga eléctrica e por una nueva constante de acoplo (G, ahora conocida como
la constante de acoplo de Fermi, Gr. Es importante destacar que los campos estan evaluados en
el mismo punto del espacio-tiempo. Es decir, supuso que se trataba de una interaccién puntual.
Para el avance significativo de la teorfa, hubo que esperar a 1956, cuando la brillante fisica
Madame Wu llev6 a cabo en Columbia el experimento que probd la violacion de la conservacion
de la paridad en las interacciones débiles [37], estudiando la desintegracion 8 de nticleos de %°Co.
Este descubrimiento fue la clave que llevé a la reformulaciéon de la estructura de las corrientes
débiles cargadas, incluyendo un término axial: Jy (v*) — Jy (v*) — Ja(7*75).

OPara ser mas precisos, su resultado original fue una expresiéon general donde consideraba la corriente total
como suma de 5 términos, cada uno construido a partir de una de las cinco formas bilineales covariantes de Dirac
(de forma que la teoria sea covariante Lorentz). Introdujo asi un Hamiltoniano para las interacciones débiles
H, =3, %(ﬂpOiun)(ﬂeOiuu) + h.c., donde los O; son una de las siguientes formas bilineales: Os = 1, Oy = v,
Or = 0", Oa = v"~® y Op = ~°. Los subindices (S,V,...) denotan el nombre de la forma bilineal (escalar,

vector, tensor, vector axial y pseudoescalar, respectivamente) y 0" = 5[v*,v"]. Fue tras escribir esta expresion
general que opt6 por completar la analogia con QED limitandose al caso de una forma bilineal vectorial, ec. (A.1).
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(a) Teoria del Modelo Estandar. (b) Teoria efectiva de bajas energias.

Figura A.1: La desintegracion del pion puede estudiarse tanto en el SM como en su aproximacion
a bajas energias. En el SM (a), el bosoén W es el propagador entre los dos vértices de interaccion.
Cada vértice tiene lugar en un punto distinto del espacio-tiempo, por lo que el par £+ v, se produce
en una posicién y en un instante de tiempo diferente a la aniquilaciéon del par u d. En la teoria V-A
(b), se asume que el efecto del propagador es tan reducido que se puede modelar el proceso como
un unico vértice de interaccion puntual con un acoplo equivalente a los dos vértices del SM.

Esta combinacién, que tinicamente requiere de reemplazar v* por v*(1 —+°) en la definicién de
las corrientes introducida por Fermi, viola automaticamente la conservacion de paridad. Asi nacio
la teoria V-A, en honor a la estructura de las corrientes que permitié describir mateméticamente
lo que se observaba en los experimentos.

Actualmente, la teoria V-A se concibe como el limite a bajas energias de la teoria electrodébil,
incluida en el Modelo Estandar, cuya estructura completa solo se revela a energias comparables
con las masas de los bosones W* y Z0, que median la interaccion electrodébil junto al fotén. Dado
que my = 80,377(12) GeV y mz = 91,1876(21) GeV [2]|, podremos estudiar la desintegracion
de los piones en esta aproximaciéon de bajas energias y, a pesar de que a nivel fundamental el
proceso esta mediado por un bosén W, el hecho de que la norma del cuadrimomento del pion
sea despreciable frente a myy, nos permitira usar una teoria de campos efectivall, la teorfa V-A.

Ahora ya estamos perfectamente equipados para introducir el lagrangiano efectivo y proceder
con el calculo del proceso. Si bien es posible deducir la forma del lagrangiano y las corrientes
a partir de su formulacién en el Modelo Estandar, esto ya ha sido cubierto ampliamente en la
literatura, por lo que no entraremos en ello aqui. El lector interesado puede consultar [38]. En
el Modelo Estandar, la desintegraciéon del pion viene dada por el proceso ilustrado en la Figura
A.la, donde se incluye el propagador asociado al boséon W. Como vemos, no se trata de una
interaccion puntual, pues hay dos vértices de interacciéon diferentes, cada uno con un acoplo g.
En el limite a bajas energfas, tendremos que p? < m%v y podremos modelar el proceso como una
interaccion puntual, sin necesidad de un propagador. Asi, el intercambio del bosén masivo W se
reduce a una interaccién de cuatro fermiones en el limite de bajas energfas, Figura A.1b. Como
ya hemos comentado, el acoplo en la teoria V-A vendra dado por la constante Gp, con

Gr _ o

V2 8mi,

siendo g la constante de acoplo en el SM y G = 1,1663788(6) - 107> GeV 2 [2].

(A.2)

"Uno podria pensar que, aunque esta aproximacion sea perfectamente valida a bajas energias, su aplicaciéon
al problema que nos concierne, el estudio de desviaciones respecto de SR a escalas de energia proximas a la de
Planck, careceria de sentido alguno. Esto es un punto importante a destacar y en el que debemos profundizar
para asegurarnos que nuestro célculo tiene sentido en el marco de LIV. La discusion se recoge en la secciéon 3.1.
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El lagrangiano efectivo para procesos mediados por corrientes cargadas, como en nuestro caso,

viene dado por

_Gr
V2

donde cada corriente esta compuesta por un término hadrénico y otro lepténico J* = J; + JY,

Lp= Jhae, (A.3)

que tienen la forma:

Jh=> A=) (A.4)
l=e,u,T
y
Tt =dy" (1= )u+ 59" (1= )e+ 5y (1= 2)t . (A.5)

La ecuacion (A.3) se conoce como el lagrangiano de Fermi. Cabe destacar un aspecto relevante
de la corriente hadronica (A.5). Los campos fermionicos asociados a los quarks down, strange y
bottom que aparecen en ella tienen un apostrofe (') para indicar que estos campos son autoestados
de la interaccion débil y no de la fuerte. La relaciéon entre ambos viene dada, de forma general,
por la matriz Cabibbo-Kobayashi-Maskawa (CKM), que se representa usualmente de la siguiente

manera:
d Vud Vus Vup d
sS1=1Vea Ves Vo | |s] - (A.6)
v Via Vis V) \b

Esto sera importante, pues cuando hablamos de la composicién en quarks de los piones, Tabla
A.1, nos referimos de forma implicita a los autoestados de la interacciéon fuerte. Ademas, también
es comun usar como parametro de mezcla el dngulo de Cabibbo, ¢ ~ 13,02° [2]. En primera

aproximacion, b’ ~ b y la matriz CKM se reduce a:

d _ cosfc sinfc d . (A7)
s —sinfo  cos ¢ s

A.3. Amplitud de probabilidad del proceso

Estamos ya en condiciones de calcular la amplitud de probabilidad asociada a la desintegracion
7t — ¢* + ;. Como es costumbre al trabajar en problemas donde existen interacciones entre

los campos, consideraremos nuestro Hamiltoniano del sistema
H = Ho + Hint , (A-8)

donde trataremos el segundo término como una perturbacion respecto al término libre. Ademas,
de ahora en adelante emplearemos la imagen de interaccion de la mecénica cuéntica, aunque
no siempre se manifieste en la notacion de forma explicita. En esta imagen, los operadores (y
por tanto los campos) evolucionan en el tiempo con el Hamiltoniano libre Hp, mientras que
los estados lo hacen con el término de interaccién. De esta forma, un operador arbitrario Ag,
independiente del tiempo en la imagen de Schrédinger, tendré la siguiente forma en la imagen
de interaccién:

Af(t) = etHolt=to) g g=iHo(t=t0) | (A.9)
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Por tanto, nuestro Hamiltoniano total en la imagen de interaccion serda H(t) = Ho+ H(t), donde

hemos definido el Hamiltoniano de interaccién en esta imagen como
Hi(t) = etolt=to) fp, , e=tHolt=to) (A.10)

Notese que en la nueva imagen Hy no presentard dependencia temporal, pues conmuta con el

+iHg (tfto)

operador e . Por otro lado, la evolucién de los estados vendra dada por el operador de

evolucion U(t, 1), que en la imagen de interaccion se define de la siguiente manera:

Ult,ty) = T{exp (z /t: dt’ Hl(t’)) } : (A.11)

siendo T el operador de ordenaciéon temporal, que nos permite definir el producto ordenado

temporalmente de campos u operadores, como se muestra en la expresion (A.12).

P(y) () y? >

o(x)p(y) Yo < 20 (A.12)

T{6(y)é(x))} = {

Tomemos ahora nuestro estado inicial del sistema a tiempo tg, que denotaremos por [i(tp)). La
evolucion de este estado hasta un tiempo ¢ podra obtenerse mediante la accién del operador

evolucién sobre el estado:

donde U(t,tg) viene dado por (A.11). Estamos interesados en conocer la probabilidad de que
el estado inicial en ¢y evolucione a un estado final concreto, que denotaremos por |f). Es decir,
queremos calcular la amplitud de transicion entre los estados [|i(tg)) v |f), que en mecénica

cuantica no es otra cosa que
(f1i(2)) = {FIU(E, t0) lito)) (A.14)

la accion del dual de |f) sobre el estado tras la evolucion. En nuestro caso, debemos matizar un
aspecto importante sobre estos estados. Siempre que estudiemos un proceso como el de la Figura
A.1b, consideraremos los estados inicial y final como estados asintéticamente libres. En otras
palabras, supondremos que en el limite ¢ty — —o0, el estado inicial |i(¢g)) es un autoestado del
Hamiltoniano con energfa y momento definidos, p = (p°, p). Analogamente, denotaremos como
|f) = |f(t)) a un estado asintético en el limite ¢ — +o0o. Fisicamente, lo que estamos diciendo
es que para t — 400, las particulas estdn tan alejadas que no existe interaccién, por lo que

evolucionan como estados libres con una energia y un momento bien definidos'?.

Tomando el limite t — +o00 y tg — —o0 y denotando los estados asintoticos como |i) = |i(tg)) v
|fY = |f(t)), tendremos que la amplitud de probabilidad de la desintegracion seré

At oty = (flU(H00, —00) [i) = (f S i) , (A.15)

donde |i) = |7 (p)) ¥ |f) = [(T(q), ve(k)). Se define asi la matriz S = U(+00, —c0), también
conocida como “matriz de scattering”. Existe todo un formalismo construido a partir de esta
matriz para facilitar los calculos de secciones eficaces de scattering y anchuras de desintegracion,
que desemboca en la conocida féormula de reduccion de Lehmann-Symanzik-Zimmermann (LSZ).

12Por supuesto, en caso de que tratemos con un estado multiparticula, como nuestro estado final, cada una por
separado debera cumplir estos requisitos: ser un estado de energia y momento definidos. Ademaés de estos, como
veremos mas adelante, deberan ser también autoestados de la helicidad. Es decir, tendran un espin definido.
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Esta formula simplifica en gran medida el calculo de los elementos de matriz del operador 7T
(relacionado con la matriz S mediante S =1+ ¢7). Sin embargo, en nuestro caso particular no
podremos aplicar este formalismo, pues los campos que aparecen en el lagrangiano de interacciéon
(A.3) no describen todas las particulas que vemos en los estados inicial y final. Concretamente,
el pion, el estado inicial de nuestro sistema. Por tanto, no tenemos otra opcién que continuar con

la derivacién general del resultado.

Tal y como habiamos definido en (A.11), la expresion analitica de la matriz S = U(+00, —00)

U(+00, —00) = T{exp<—i /+°° dt’ HI(t’)> } , (A.16)

—00

sera

que podremos expandir en serie de Taylor como:

U(400, —0) = T{l —z‘/m dt' Hi(t") + (21;)2 (/W> dt’ Hl(t’))2+ e } : (A.17)

—0 : —00

La posibilidad de realizar la expansién en serie de la exponencial abre la puerta a fragmentar
el problema inicial en muchos otros de menor dificultad: el calculo de los sucesivos términos del
desarrollo. Esta idea constituye la esencia de la teoria de perturbaciones. A primer orden de
aproximacion, tendremos que

+oo
At T{H(#)} =1 —i / dt’ Hi(t) (A.18)

—00

400
U(+00, —00) ~ 1 —i/

—00

donde hemos usado que T{H(t)} = Hj(t), pues todos los campos en el Hamiltoniano estan eva-
luados en el mismo instante de tiempo. Ademaés, fijémonos que podremos escribir el Hamiltoniano
como la integral a todo el volumen de la densidad Hamiltoniana, tal que:

U(+o0,—00) ~1 —i/d4:c Hi(x) . (A.19)
Introduciendo esto en la expresion (A.15) para la amplitud de probabilidad, obtenemos

Aty ey = (| U (400, —00) i) ~ (f]1 / d'z M () |i)

A.20
= (fli) —i/d4w (fIHi(z) i) (420
~—

=0
donde vemos que el término de orden cero se anula, pues los estados inicial y final son ortogona-
les. Ademas, usando que P* es el operador de traslacion espaciotemporal, podremos escribir la

densidad Hamiltoniana como A A
Hi(z) = P H;(0) e (A.21)

Insertando esto en la expresion (A.20), podremos desarrollar el resultado, obteniendo finalmente:
Ant s th, = —i/d4$ (F1 P2 1 (0) e P i) = —i/d4x =P (£ 11(0) [4)

= —i(2m)* 6 (Py — P) (f| H1(0) |i) .

(A.22)

De forma natural, aparece aqui la conservacion de la energia y el momento (codificado en la
conservacion del cuadrimomento total del sistema) como consecuencia general de la invariancia
del problema bajo traslaciones en el tiempo y el espacio. El factor (27)* proviene de la definicion
de la delta de Dirac en cuatro dimensiones, 6 (P) = [ (gjr“@ e’ donde P = P* y Pz = P,at.
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Por otro lado, P; y Py representan los cuadrimomentos del sistema en el estado inicial y fi-
nal, respectivamente, que como ya hemos comentado anteriormente estan bien definidos. Estos
provienen de la accién de los operadores de traslacion 1P gobre los estados inicial y final. La
misma manipulacion puede llevarse a cabo para potencias arbitrarias de H(x), pudiendo extraer

la delta de Dirac de la misma manera a todos los 6rdenes en teoria de perturbaciones [38].

A continuacion, redefiniremos'? el resultado obtenido en (A.22), denotando:
Api =i (2m) sW(Py — P) My, (A.23)

De ahora en adelante, trabajaremos tinicamente con la matriz M, dejando a un lado el factor
i(2m)* y la delta de Dirac, que simplemente impone la conservacién del cuadrimomento del
sistema. Es decir, estaremos interesados en calcular el elemento M;, dado por

Mot ey, = =7 (q) , ve(R) H1(0) [77(p)) (A.24)

el elemento de matriz de la densidad Hamiltoniana evaluada en x = 0. Esto es una consecuencia
de la invariancia bajo traslaciones espaciotemporales del problema, que nos permitiré situarnos en
el origen de nuestro sistema de referencia sin pérdida de generalidad. Recordando que la densidad
Hamiltoniana asociada a un lagrangiano viene dada por H(z) = >, IL;(x)do¢s(x) — L(x), con
II(z) = m, y que en el lagrangiano de interaccion de la teoria V-A (A.3) no aparecen
derivadas, tendremos que II;(x) = 0 Vi, luego H(z) = —L(x). Asi, podemos escribir

Moy, = —(jg<e+<q>, ve(k)| JLT(0) [+ (9) (A.25)

INnc1so. Dependencia funcional de los operadores en la imagen de interaccion.

Cabe destacar que la dependencia funcional de H;(t) con los campos sera la misma que
la de H;nt, con la diferencia de que los campos que aparecen en Hj(t) seran las soluciones
libres de la ecuaciéon de Dirac. Algo que no deberia sorprendernos, pues la unitariedad
de los operadores exp(—iHyt) nos permite hacer esto (recordemos que en esta imagen
los operadores evolucionan con el Hamiltoniano libre). Tomemos como ejemplo sencillo la

densidad Hamiltoniana H;,: = %qﬁ“. En la imagen de interaccién:

H[(t) — eiHot é¢4 e—iHot — %eiHot ¢ 1 ¢ 1 ¢ 1 ¢ e—iHot

4!
— I eZH()t ere_ZHot e’LHot ¢ e—’LHoIiezHot (b e—ZHot €1Hot ¢ e—lHot (A26)
¢1(t) #r1(t) ér(t) ér(t)
A
= Iqbz}(t) )

y en el caso de que ¢ sea un campo escalar real, por ejemplo, la forma de ¢;(t) seré la
solucion mas general de la ecuacion de Klein-Gordon libre, véase:

d3p

(2m)3./2E,

13La notacién empleada hasta ahora, denotando la amplitud del proceso mediante Ayi, se ha introducido

61(z) = 61 () + &7 () = / (ape™ ™" + ale?") | (A.27)

meramente para una mayor claridad en la exposicion del desarrollo. El convenio usado para definir la matriz
M es, sin embargo, estdndar y es extensamente empleado en la literatura. En muchas ocasiones se suele definir
directamente M = —G—\/gJ:[ J# y sus elementos dan las diferentes amplitudes de los procesos i — f.
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El elemento de matriz (A.25) es el término en el que realmente estaremos interesados, y el que
aparecerd en la expresion de la anchura de desintegracion diferencial, que calcularemos en la
siguiente seccion. Consideremos entonces el proceso ilustrado en la Figura A.2, donde un 7+
con cuadrimomento p y espin nulo (recordemos que J¥(7) = 07) se desintegra en un antilepton
cargado /T con cuadrimomento ¢ y espin s, y en un neutrino vy con cuadrimomento k y espin
s”. Hasta ahora no ha sido necesario especificar los espines de las particulas finales, pero sera
importante de ahora en adelante para realizar el célculo. Por lo general, los experimentos que
buscan medir la anchura de desintegracion de estos procesos son ciegos frente a los espines de
las particulas en el estado final, por lo que una vez obtenido el resultado tendremos que sumar

las contribuciones de todas las configuraciones de espin de las particulas finales.

Denotaremos entonces nuestros estados de forma mas precisa como

i) =17 () v If)=W"(g,s), v(k,s")), (A.28)

y procederemos con el calculo de My; = —G—\/g( f]J,JLJ #(0)|i). Desarrollando las corrientes:

_ T(qu wy_ (7t i @ u

_ gt B il u T oqw o '
= Ju,h‘]h —I—J%hJ@ +JH7£Jh +JM,£J1J ,

donde obtenemos un término puramente hadrénico, un término puramente lepténico y dos tér-
minos mixtos. Es directo ver que los términos puros no contribuiran a la amplitud. Todo estado
general puede descomponerse en su parte hadronica y su parte leptonica, tal que 1)) = 1), ®]1)),.
Asi, una corriente puramente hadronica, por ejemplo, solo actuard sobre el espacio asociado a

los estados |9}y, de forma que, en un caso como el nuestro donde |i) = |i)n v |f) = |f)e :

1L Ty = ((Fle ) TE T8 (1m @ li)e)= (100 @ (O], TE b =0, (A.30)
=0

y de la misma manera para el término lepténico puro. Por otro lado, de los términos mixtos
inicamente uno de ellos contribuira, concretamente el JZL EJ;L‘ , que “sube la carga” sobre el
estado leptonico inicial (el vacio) y “baja la carga” sobre el estado hadroénico inicial (el pion 7).

Vg (k7 SN)
u >
T (p) 4 _
d <
% (g, ")
Figura A.2: Diagrama de primer orden asociado a la desintegracion del pion 7% en la

aproximacion de bajas energfas. El pion inicial tiene cuadrimomento p y espin s = 0,
mientras que en el estado final los cuadrimomentos y espines del lepton cargado y el
neutrino son (g, s’) y (k, s”), respectivamente. En el proceso deberan conservarse tanto

el cuadrimomento como el momento angular del sistema.
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Asi, la tinica contribucién'® a la corriente nos permitira escribir (A.25) como:

Myi==E (19} TEO) ) (A.31)

Recordando las expresiones para las corrientes (A.4) y (A.5), y procediendo de forma anéloga
a los calculos anteriores, podemos deducir facilmente que los términos de cada corriente que
contribuyen a la amplitud serén solo los de los campos asociados a particulas del estado inicial
o final, véase:

Th o(0) = [Ze (1 = 9°))(0)

— (A.32)
JE0) = [T4#(1 =) 0).
luego el elemento de matriz (A.31) vendra dado por
GF o1 — :
Myi = === {fl [Feyu(L = 7°)](0) [d A" (1 —~°)u] (0) |d)
V2 ' (A.33)

= - CE 0 1[5y, 7)) O) [ (1 =271 01

donde hemos introducido el angulo de Cabibbo tal que d = dcos 0¢c + ssin B¢, pues recordemos
que en el estado inicial del pion tenemos d y no d . Escribiendo ahora los estados inicial y final
de forma explicita y separando el elemento de matriz en su parte lepténica y su parte hadroénica,

llegamos finalmente a:

G cosfOc

Myi ===

(€(a,8'), ve(k, ") [Zevu(1 =) (0)[0)(O] [ dy (1 — ~*)u] (0) [77 (p)) -
Calcularemos por separado el elemento de matriz leptonico y el hadronico.

A.3.1. Elemento de matriz leptonico

A continuacion, calcularemos tinicamente la parte leptonica del elemento M¢; (A.34), que tiene

la siguiente formas:

MG = (0 (q,5), vk, 8")| [Peyu(1 = 7)) (0)[0) . (A.35)

El estado final podra escribirse a partir de operadores creacién actuando sobre el “vacio” del
espacio de Fock asociado a cada campo. En nuestro caso, podremos escribirlo como

0 (q,5') , va(k,s")) = \/2Eq/2Ex bl (0) af, . (v) |0) (A.36)

donde af y b son los operadores de creacion de particula y antiparticula, respectivamente (cada
uno asociado a un campo de Dirac, que denotamos entre paréntesis). Las raices provienen de la

normalizaciéon de los estados en el dominio relativista. Entonces, calcularemos su dual:

T
(€ (0. ) k")) = (16 velh,s"))) = +/2Bqy/2Ee (b o (€) af, () [0))
= \/2Eq\/ 2Ek 0| CLk’SN vy quS/(f) .

14Geguin la desintegracion que consideremos, el término mixto que contribuira a la corriente sera uno u otro.

(A.37)

Para el proceso a un leptén y un antineutrino, 7~ — £~ Uy, el término relevante sera J t J# mientras que para
p p y I b " hYe q p
la desintegracion a un antileptén y un neutrino, 77 — £y, sera Ji o JIE.
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Introduciendo lo anterior en la expresion (A.35), llegamos a

M =0+ (q,8), vk, s")] [Teyu(l —WJ (o> 0)
= (0 v/2Ex axe, s () 7¢(0) [0) 7, (1 =) (0] \/2Eq bq, & 0), (A.38)

S, Se

donde hemos separado los términos asociados al campo del neutrino y del leptén cargado, que
denotaremos por S, y Sy, respectivamente. Esta notacién se ha introducido tinicamente para
una mayor claridad en la exposicién, pues a continuacién calcularemos cada uno de ellos por
separado. Recordemos que, al trabajar en la imagen de interaccion, los campos que aparecen en
la expresion (A.38) seran los campos de Dirac libres asociados al neutrino y al leptén cargado,
evaluados en z = 0. Por tanto, el calculo de S, y Sy se simplificaré en gran medida, como veremos

a continuacion. Comencemos por S,:
S, = (0] v/2Ex ax. s Jﬁ Z ( b °(p) + al, s(p)) 10)

dp 2Ex B
/ 2m)® /2B, 2 Z ( (0] ax, s bp s 10) ¥°(p) + (0] ax, s al, , [0) @ (p))

:/ dp \/\/gz (0] axe o al, . [0) 7 (p) (A.39)

_ d3p V2Ey
/ )3 \/2E, Z

[ dp 2Ex 2
/ )3 /2, Z

Usando ahora que el anticonmutador asociado a los operadores creaciéon y destruccion de parti-

(p) (01 {ax, o, b, ;}10) = (0] af, , axc o1 [0) )
=0

0‘ {a’k sy Qp, s} ’0>

culas (y antiparticulas) para el campo de Dirac viene dado por

{ap,r . aly o} = {bp,r, bl 3 = 27)*6® (p — q) by , (A.40)

podremos desarrollar (A.39) y aplicar las propiedades usuales de la delta de Kronecker en el

sumatorio y la delta de Dirac en la integral:

d? D 26 7
Sl,:/ = szE Z 2) (0] (27)%6D (K — p) 6.4 0)
. d3p 2E 75 ( )
Y Dk p)a. 0)
VI
Vo

(A.41)

d*p =" (p) 5 (k — p) =

Obteniendo finalmente que el término S, no es mas que el adjunto de Dirac del espinor us”(k)
para el neutrino, con cuadrimomento k y espin s”. Ahora, calcularemos de forma analoga el

término Sy.
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Asi, tenemos:

Sy = (0] /24 bq73// )+ b 0" () [0)

(ap,su
27) w/2Ep T2

d’p +/2Eq
= 0] b s’ s 0 s + (0] b s bT s 0) v°
/(Qﬂ)?, \/Es;:g« | bq, _;Lp, 0) u®(p) + (0] bq, s by, 5 10) v (p))

:/MF

Z (0] bg, s 0L, 4 10) v*(p) (A.42)

=/dpv 23 0 (00t 8010~ 018 b 0)

=0

0|{bq E p s}‘0>

:/dp\/ﬁz

que, usando de nuevo la relacion (A.40) para el anticonmutador, resulta en:

=/ T V2 Z p) (0] (27)6) (@ — p) 8y [0)

ps 1,2

v*(p) (27)%0®) (q — p) b 5 (0]0)
——

V2Ep s=1,2 (A.43)

V2Eq 2By .
= [ &@p = 10"(p)6®(a-p) = = 0” (q)
V2E, 2F,

S/

=v°(q),

donde obtenemos el espinor v asociado al campo de Dirac del antileptéon £+ con cuadrimomento g
y espin s’. Reuniendo los términos S, y Sy, podremos reescribir finalmente el elemento de matriz
leptonico (A.35) como
L o /
MG = (k) 31 = %) 0 (0) - (A.44)

A.3.2. Elemento de matriz hadrénico

Una vez obtenida la contribucion de la corriente lepténica a M ;, calcularemos la contribucion
de la corriente hadrénica asociada a los quarks entre el estado inicial del pion y el vacio. El

elemento de matriz hadrénico vendra dado por
MG = {0/[dy* (1 = 77)u] (0) [+ (p)) - (A45)

A diferencia de como hemos hecho con el término lepténico M%), ahora no podremos descompo-
ner el estado del pion como operadores de creacién de un quark up y un antiquark down actuando
sobre el vacio, pues los quarks que lo conforman no son particulas libres. En un estado ligado sen-
cillo, como el &tomo de hidrégeno, por ejemplo, la masa del sistema se obtiene sumando las masas
de sus constituyentes (el proton y el electron) y restando una cierta cantidad, que denominamos
energia de ligadura del sistema. En este ejemplo, la energia de ligadura del estado fundamental es
de Ej ~ 13,6 eV, completamente despreciable frente a la masa del electron, m, ~ 511 keV [2], v,
por lo tanto, frente a la masa de los constituyentes del sistema libre, m. +m,,. Esto es lo que uno
esperaria encontrar en un sistema en que la interacciéon puede tratarse de forma perturbativa.

Sin embargo, esto no ocurre en QCD.
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Los constituyentes del pion (71), los quarks u y d, poseen unas masas de m, =~ 2,16 MeV y
mg ~ 4,67 MeV, repectivamente [2]. Al medir experimentalmente la masa del sistema ligado 7™,
se obtiene un valor de m + ~ 140 MeV, ver Tabla A.1. Esto significa que la contribucién de las
masas de los quarks es practicamente despreciable frente a la masa del sistema ligado. Casi la
totalidad de la masa del pion proviene de la energia del campo del gluon creado por los quarks u
y d, asi como por otros efectos mas complicados propios de QCD, que quedan fuera de nuestro
alcance en este trabajo. Todos estos constituyen efectos no perturbativos, que no seremos capaces
de cuantificar con las herramientas usuales.

Para solventar este problema, se introduce la constante de desintegraciéon del pion, f,. Dado que
el pion es un pseudoescalar (su paridad intriseca es P, = —1), puede mostrarse que el elemento
de matriz (0] d~v*(1 — v°)u|7T) es un cuadrivector Lorentz [38]. Por tanto, teniendo en cuenta
que el estado inicial del pion tiene espin nulo, la tnica magnitud con la que podemos describir el
sistema (y por tanto la dependencia de Mgc[f) ), serd su cuadrimomento, p = p*, recordemos la
Figura A.2. Asi, podremos parametrizar la expresion (A.45) como

MUD — (0][@"(1 = 47)d] (0) |+ (p) = — b (A.46)

donde se incluye f; como una constante de proporcionalidad. Esta solucién al problema seré
muy ventajosa, pues midiendo su valor de forma experimental podremos emplearla para realizar
calculos de este tipo. Existen diferentes convenios para la definicién de f, que pueden diferir en
un factor 2 o v/2 del aqui empleado. Nosotros seguiremos el convenio usado por Maggiore [38].
En ¢él, esta constante tiene un valor de fr = 130,56(2)(4)(13) MeV [2].

A.3.3. Elemento de matriz total y suma sobre los espines

Reuniendo las expresiones (A.44) y (A.46) podremos expresar finalmente el elemento de matriz

(A.34) del proceso como:

G T cos g s
My, = Ffﬂc @ (k) v 0 (1 =) 05 () - (A7)

Introduciendo la notacién “slash” de Feynman, p = v, p", y usando la conservacion del cuadri-
momento p = k + ¢, podremos reescribir el término anterior en funciéon de magnitudes asociadas

a las particulas finales. Entonces,

_ W (@ WKL =7") o7 (@) + 7 (R)g(1 =) o7 (0))

= SRR (! (k1 = %) of () + 5 () (400 (@)

y al expresar el resultado de esta forma podremos usar que los espinores @, (k) y v¢(q) cumplen

My
(A.48)

cada uno su respectiva ecuacion de Dirac: @, (k)(F —m,) ~ u,(k)} = 0 para el neutrino (bajo la
aproximacion m, =~ 0) y (¢ +my)ve(q) = 0 para el lepton cargado. Asi, el primer sumando de la
ec. (A.48) se anulara y el elemento de matriz quedara:

GF frmycosfc g
V2 )

Este es el resultado que buscédbamos calcular. Sin embargo, la anchura de desintegracién no

Myi = (k) (1+7°) of () |- (A.49)

dependera de M f;, sino de su médulo al cuadrado, |[Mg;|? = My, M,
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Figura A.3: Esquema de la desintegracion 7+ — £Tv,. Los momentos de las particulas
finales se muestran en negro (flecha de puntos), mientras que los espines se representan
en azul. Este es el unico estado de polarizacion de espin posible para la desintegracion
¥y, por tanto, el tnico término que contribuird en la suma (A.50).

Ademas, como puede apreciarse en la expresion (A.49), el elemento de matriz M f; depende de los
espines de las particulas finales a través de las helicidades s’ y s” del lepton cargado y el neutrino,
respectivamente. Dado que nosotros estaremos interesados en la anchura de desintegraciéon no
polarizada, pues es lo que mediran por lo general nuestros detectores, definiremos de la forma
usual:

Mpl? =D M=) > My M. (A.50)

spin s’ s

Esta suma a todas las combinaciones posibles de espines de las particulas involucradas en la
interaccion es una practica usual en este tipo de calculos. Sin embargo, en el caso particular
que nos concierne, Figura A.2, podemos realizar un rapido analisis del proceso para comprobar
que dnicamente existe una posibilidad asociada al estado final. En el limite sin masa, m, ~ 0,
un campo levogiro (y por tanto de quiralidad definida) describe a una particula con helicidad
h = —1/2 y a su antiparticula con helicidad h = +1/2. Por tanto, el neutrino v, en el estado final
de la desintegracion del 7 sera levogiro, con h,, = —1/2. Ahora, si analizamos el problema desde
el sistema centro de masas, el momento lineal total del sistema seréd nulo, lo que implicara que el
momento del leptéon cargado £ debera ser de igual modulo y sentido contrario al del neutrino.
Dado que el espin del pién es cero, la conservaciéon del momento angular impondra entonces que
la helicidad del lepton cargado sea también negativa, hy = —1/2, ver Figura A.3.

A pesar de que la unica contribucién a la suma provenga de la configuracion de espines con
helicidades negativas para el neutrino y el leptén cargado, seguird siendo conveniente realizar la
suma sobre todas las configuraciones aplicando las relaciones de completitud:

YMowp)@wp)=p+m y > ()T =p-—m, (A.51)

s=1,2 s=1,2

pues estas reglas son completamente generales y, como veremos a continuacién, nos serdn de gran

utilidad. Asi, comencemos calculando

. GF frmgcosOc (g s' f
My = —=E \/g ¢ (uy (k) (1 +7°) v (q))

A.52
= GO0 ) (1 = ) (k) A
\/5 14 v )
donde hemos usado que (Y°)T = 7 y la relacién v°74° = —%+®. Denotando por cte. al prefactor

constante que aparece en la expresion del elemento de matriz (A.49) y su conjugado (A.52),

procederemos con el calculo de [Mg;[%:

M2 =S5 My My = cte2 3577 () (14+97) 07 (@) (@) (1= 77) ) (k) . (A53)

/ !

S S
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De forma practica, la expresion anterior no es més que un producto de matrices y vectores fila
y columna, cuyo resultado es un escalar. Un truco muy util y que simplificard enormemente
este calculo consistira en escribir de forma explicita el producto matricial, empleando los indices
pertinentes para denotar los elementos de cada matriz y las componentes de cada vector. De esta
forma, podremos expresar (A.54) como

Myl =cte Y3 () (k) (147°) 5 (07 (@) 5 (07 (@) 5 (1 =7°) gy (i (R),, (A54)

S/

donde los indices repetidos se suman entre si. Ahora, podremos reorganizar el producto como
més nos convenga, pues los elementos conmutan entre si (estamos tratando con escalares). Asi,

escribiremos:

Mil? = cte.? Y (w) (k) (@ (), (1+77) 05 > (07 (9)5 (77 (@) 5 (1=77)5»  (A55)

S//

=(123Aa :(ﬁ—\;%z)ﬁa

donde hemos introducido las relaciones de completitud (A.51). Analizando los indices de (A.55)

vemos que el calculo anterior no seré otra cosa que la traza de una matriz, dada por

(Mpil* = cte? (F)aa (1+7%)ap (¢ — me)ps (1= 7°)sn

A.56
=cte.? Tr(k (14+7°) (¢ — me) (1 —1°)) . ( )

Usando la linealidad de la traza y las relaciones {7°, v#} = 0, podremos desarrollar la expresion

anterior:
Tr(k(1+7°) (g —me) (1= 7)) = 2 Tr(kg) — 2 Te(v k) (A.57)

pudiendo emplear ahora dos propiedades bien conocidas de la traza [39]: Tr(}ég) = 4k, q" y
Tr(y°k¢) = 0, obteniendo finalmente:

(Myil* = G% f7 cos® 0o mi 4k g™ | (A.58)

Este es el resultado general que necesitaremos a la hora de calcular la anchura de desintegracion
total del proceso en un sistema de referencia dado. Ahora bien, como es costumbre hacer cuando
se trata el problema de la desintegraciéon de una particula en relatividad especial, nos situaremos
en el sistema centro de masas para simplificar el célculo a realizar. Esto se vera reflejado también
en el resultado (A.58). Por conservacion del cuadrimomento, tendremos que ¢" = pH — k.
Entonces, podremos escribir el producto k,g" de (A.58) como

kugt =k (p' — k') = kupt — kuk" . (A.59)

Por un lado, tendremos que en el sistema CdM el pion esta en reposo y su cuadrimomento queda
p' = (mg,0), de forma que k,p" = E, my. Por otro lado, el invariante relativista k,k* para el
neutrino se anularé, pues k,k* = m?2 ~ 0. Entonces, en el sistema CdM, la expresion (A.58) se
reduciré a

(Myil* = 4G% 2 cos* Oc mimg E, , (A.60)

que serd la que emplearemos en la seccidén que sigue para obtener finalmente la anchura de
desintegracion del proceso. Notese que, dado que estamos tratando con una desintegracion a dos
cuerpos, el espectro de energias de los productos sera discreto, con E, = (m? mf) /2m .

i
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A.4. Anchura de desintegracion

Tras un largo camino repleto de calculos y derivaciones de resultados, finalmente reunimos todo
lo necesario para proceder con el calculo de la anchura de desintegracion del proceso 7™ — £T 1.
Antes de comenzar, recapitulemos brevemente el trabajo que hemos realizado en los anteriores
apartados. En primer lugar, hemos introducido a los piones 7% y 7%, comentando de forma
resumida su naturaleza y sus propiedades béasicas, que hemos sintetizado en la Tabla A.1, asi
como los principales canales de desintegracion de los piones cargados 7*. Posteriormente, hemos
desarrollado el marco tedrico bajo el que describimos las interacciones débiles en el régimen de
bajas energias, la teoria de campos efectiva V-A, cuyo origen nos remonta a la teoria de Fermi
de la desintegracion beta.

Una vez asentadas las bases y el marco tedrico del calculo, hemos derivado la forma de calcular
el elemento de matriz asociado al proceso, también conocido como la amplitud de probabilidad,
a primer orden en teoria de perturbaciones (A.22). Asi, hemos introducido la definicién usual
del elemento de matriz My; (A.24), que hemos calculado a lo largo de las secciones A.3.1, A.3.2
y A.3.3, obteniendo finalmente la expresion (A.49). El dltimo paso ha consistido en calcular el
modulo al cuadrado del elemento de matriz no polarizado, que hemos definido como ]W\Q y
que hemos particularizado para el sistema de referencia CdM, alcanzando la expresion (A.60).

La anchura de desintegraciéon diferencial en un proceso a dos cuerpos, como el que nos ocupa

aqui, vendra dada por la siguiente expresion:

d3q d3k
(27)3 2Eq (27)3 2B

aT = (2 69 (p — g — k) | M2 (A.61)
2E,

donde p, ¢, k son los cuadrimomentos del pion, el leptén cargado y el neutrino, respectivamente,
siguiendo el convenio mantenido hasta ahora, Figura A.2. Esta expresion es valida sea cual sea el
sistema de referencia en el que vayamos a trabajar (por supuesto, siempre que empleemos la forma
general (A.58) para |[My;|?). A continuacion, particularizaremos la anchura de desintegracion
diferencial al sistema CdM. Para ello, usaremos que el cuadrimomento del pion se reducira a
p* = (m,0). De esta forma, podremos escribir:

1

2mg

d3q Bk

dr' = (2m)* §(mz — By — B,) 6@ (q + k) (2m)%2Eq (27)3 2By
q

| Miil?

(A.62)

La primera delta expresaré la conservacion de la energia en el proceso, mientras que (5(3)(q + k)
impondra la conservaciéon del momento total del sistema, que en el CdM se visualiza de forma
trivial, con q = —k. Finalmente, introduciendo el resultado (A.60) para el elemento de matriz

en nuestro sistema de referencia, obtenemos

3
(o — By — By)6® (q+ k) T2 a3 (A.63)

_ G% f2 cos® 0cm? 5
Bt

dar
82

donde hemos introducido la notacion Ey = Eq y E, = E) para mayor claridad. Integrando sobre
d3k a todo el espacio de momentos, vemos que el tinico término relevante para la integracion sera
la delta, de forma que [ A3k 6 (3)(q + k) =1, por lo que el resultado quedara reducido a

G2 2 2 6 2 d3
ir — Grfx ‘;TSQ % §(my — By — E,) fq . (A.64)
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Para integrar (A.64), primero escribiremos el diferencial de volumen en el espacio de momentos,

d3q, en coordenadas esféricas:

d*q=|d|*dqdQ = |d| |q|dg d2 = \/E? — m? E,dE,dS2, (A.65)

——

=E,dE,
donde df)2 = sinfdfdp es el diferencial de angulo s6lido. Hemos usado ademas la relacion
E,dE; = |q|dq, que puede obtenerse facilmente a partir de la relacién de dispersion relati-

vista E¢(q) = (m2 + |q|?)!/2. Por otro lado, la aproximacién m, ~ 0 nos permitira escribir
la energfa del neutrino como E, ~ |k| = |q| = (E? — m%)l/ 2 que podremos introducir en la
expresion de la delta de Dirac que aparece en (A.64) y que impone la conservacion de la energia

en el proceso. Insertando todo esto en la anchura diferencial (A.64), obtenemos

G2 2 29 2
dr = Ffﬂ‘;‘:; S §(Bo+ \J B} = m} = my )\ B} = m3 dBedS, (A.66)

que ahora si podemos integrar a todas las direcciones (posibles orientaciones del momento del

lepton cargado) y a todo el intervalo de energia permitido:

2 r2 9 +oo
r_ G7% fz cos cmg?{dﬂ/ m?é(Eg—i— /Ez mﬁ>
GQ 2 29 +o00
- FfWC;S cmi dE“/Eg—mzé(Egﬂ/Eg—m%—mw).
T 0

Empleando la propiedad (A.69) de la delta, identificaremos f(Ey) = Fy + (EZ — m2)Y/2 — my,
cuyo tnico cero vendra dado por Ef = (m2 + m32)/2m;. Asi, tendremos que |f'(Eo)|gy=E; =

(A.67)

2m2/(m2 — m?) y podremos reescribir la anchura total como

G2 f2 COS2 90 m2 m +oo *
= Fﬂ47r f<1_m§>/0 dEg\/mé(Ez—Ez)

2 £2 0a2 2 2
_ G% fxcos 90m4< m£> B2 —m?

(A.68)

47

donde hemos aplicado la propiedad (A.70) de la delta de Dirac para resolver la integral.

INnciso. Propiedades de la delta de Dirac.

Es muy comiin encontrar en calculos de secciones eficaces y anchuras de desintegracion
integrales del tipo [ dz 6(f(x))u(x), donde aparece la delta de una funcién de la variable
de integracion. Para resolverlas, se emplea una propiedad muy ttil de la delta de Dirac

como funcién generalizada:

Z|f,

que nos permite reescribir el integrando como una suma de términos del tipo §(z — z;),

tal que f(z;) =0 Vi=1,...,N, (A.69)

|1' =Z;

cuya integracion es trivial gracias a la propiedad usual:

+oo
/ dz g(z)o(x — x;) = g(z;) (A.70)

—00
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Introduciendo el valor de Ej en la expresion (A.68), obtendremos finalmente la anchura de

desintegracion del proceso en el sistema centro de masas:

r

2
cony G f2 cos® O mi ma ( mj > ' (A.71)

T bty Sn

Como era de esperar, esta anchura depende tinicamente de las masas del pion y el lepton cargado.
Gracias a la simetria Lorentz de la teoria, podremos calcular ahora la anchura de desintegracion
en cualquier otro sistema de referencia mediante una transformacién de Lorentz. El inverso de
la anchura, I'"!, tiene unidades de tiempo y, por tanto, transformara bajo boosts con el factor

relativista y(v) = \/11_7, siendo v la velocidad relativa entre los dos sistemas. Es decir, para un

observador que se mueva con velocidad v relativa al sistema CdM, el pion tendré una energia

E; = mgv(v), luego
E
I YE;) =v@) T (my) = =T (my) (A.72)
My
y podremos escribir la regla general de transformacion para la anchura de desintegracion como

T(E,) = % T(my) . (A.73)

De esta forma, la anchura de desintegracién del proceso en un sistema de referencia general a
primer orden en teoria de perturbaciones vendra dada por:

2 2 .2 2,2 2\ 2
_ G% fz cos® 0o mymy (1 B mz> 1

F7T+—>€+Vg (Eﬂ’) - ST m2 F . (A74)

Vemos entonces que la dependencia de la anchura con la energia inicial del pion sera I' oc E 1.
P <y . I(rt +

Resultara interesante calcular también el cociente w

M(rt—etue)

canales de desintegracion sera el dominante. Recordemos que la masa de una particula es igual

para comprobar cual de los dos

a la de su antiparticula, por lo que al depender (A.74) tnicamente de las masas y la energia del
pion:
D(r™ = p~ 7)) (= — e 1,)
D(rt — pty,) Y D(rt — efre)

como ya habfamos avanzado al inicio de la seccion A.1. Esto nos permitira hablar del proceso

=1, (A.75)

asociado al £ o ¢~ de forma indistinguible. No obstante, si calculamos

I'(rt — etre)

~1,283-107% A.76
L(rt — pty,) ’ ’ ( )

podemos comprobar que el canal dominante serd la desintegracion al muon (antimuon). El re-

sultado experimental de esta medida es conocido [2] y viene dado por

[(nt — etre)
I'(rt — ptyy,)

= (1,230 4 0,004) - 107 . (A7)
exp
La discrepancia entre el calculo tedrico a primer orden y la medida experimental se sitia en
torno al 4 %. Considerando las correcciones asociadas a términos perturbativos de orden superior
podremos disminuir la discrepancia entre ambos. No obstante, conocer el grado de discrepancia
que alcanzamos restringiéndonos a primer orden en el calculo serd de gran importancia a la hora
de incorporar efectos de nueva fisica, pues nos permitird cuantificar si una posible desviacion
respecto del resultado “tradicional” predicho por el Modelo Estandar es significativa o si resulta

imprescindible considerar términos de orden superior en el desarrollo.
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Figura A.4: Anchura de desintegracion a primer orden para los procesos a un muon (antimuon) y
un electron (positron) en funcion de la energia inicial del pion. La franja roja delimita el rango de
energias no permitido, que esta acotado por la minima enegia permitida para el pion, F; = m,, dada
por su masa en reposo. Las anchuras calculadas para el sistema CdM en (A.71) se corresponden con
los puntos evaluados en T'(E,; = m.).

Sabiendo que el error relativo cometido es aproximadamente del 4 %, tenemos la seguridad de
que las conclusiones sobre los resultados en el modelo de LIV que presentamos en este trabajo
seran robustas. En un escenario en el que la discrepancia obtenida en este célculo hubiera sido
muy superior al 10 %, por ejemplo, deberiamos considerar las correcciones de orden superior para

contrastar los resultados con las medidas experimentales y poder sacar conclusiones.

Para terminar con los comentarios relativos al resultado obtenido en (A.74), resultara interesante
representar las anchuras de los dos procesos considerados en funcion de la energia del pion inicial.
Esto se recoge en la Figura A.4, donde se puede apreciar de forma directa la dependencia de la
anchura I' con la energia y la fuerte supresion del canal 7+ — eTv, respecto al 7t — uty,,
cuyo origen proviene de la diferencia de masas entre el electrén y el muon. Llegados a este punto,
ya reunimos todo el conocimiento necesario para explorar efectos de violaciéon de invariancia
Lorentz en la desintegraciéon de piones cargados. Un escenario que, como hemos comentado
en el parrafo anterior, resulta muy robusto y atractivo a nivel fenomenolégico para explorar

desviaciones respecto al caso ‘“clésico” que acabamos de estudiar.

44



B| Sistema laboratorio en SR: anchura de desintegracion

A lo largo del Anexo A, hemos realizado un repaso general de las ideas fundamentales que son
necesarias para el estudio de la desintegracion del pion en el marco de SR. Tras calcular el
elemento de matriz total |M;|? en la seccion A.3.3, hemos explotado la simetria Lorentz de la
relatividad especial para calcular la anchura total, I'(E;), a partir de la anchura en el sistema
centro de masas, I'(mz), lo que simplifica notablemente el trabajo. En LIV, sin embargo, nos
veremos obligados a trabajar siempre en el sistema laboratorio, por lo que tendremos que integrar
directamente la anchura diferencial en este sistema de referencia. A continuacién mostraremos
el procedimiento para calcular la anchura total en el sistema laboratorio en SR, que nos sera de

gran utilidad cuando posteriormente abordemos este mismo célculo en un escenario de LIV.

Comencemos escribiendo la anchura de desintegraciéon diferencial:

d3k d3q
(2m)3 2By (2m)32E,

1
dr = 2m)* W (p — k — q) = | Mi|?

’E, (B.1)

donde p, ¢, k son los cuadrimomentos del pion, el leptén cargado y el neutrino, respectivamente;
e introduciremos de nuevo la notaciéon Ep, = Er, Eq = E; y Ex = E, para mayor claridad. El
‘2

elemento de matriz [My;|* es invariante Lorentz, por lo que su valor en el sistema laboratorio

seré igual que el calculado en la seccion A.3.3 para el sistema CdM:
(Myi|? = 2G% f2 cos® 0o mi (m2 —m3) . (B.2)

Integrando la anchura diferencial (B.1) sobre el espacio de momentos del lepton cargado y el

neutrino, obtenemos la expresion a calcular para la anchura total:

2 3
’Q;Z’E / h ~ B, - E)i¥(p-k-q), (B.3)
donde hemos separado la delta de Dirac que impone la conservacion del cuadrimomento en (B.1)
en la delta asociada a la conservacion de la energia y la asociada a la conservaciéon del momento
lineal. Ademés, hemos reescrito los términos constantes del integrando (incluido el elemento de
matriz) fuera de la integral. Usando la propiedad (A.69), podremos escribir 6 (p — k — q) =
5(3)(q —q*) con g* = p — k e integrar respecto al momento del leptén cargado:

M2 [ dPk .
|27sz’E/ /5E ~E, — E)6®(a-q)

. B.4
M2 dgka(Eﬁ—Ey— \/mi+ g \2> (B4)
= 2 .
8(27’() Eﬂ- E,/ / %_’_ ’q*’2

A continuacion, expresaremos |q*|? en funcién de las variables de integracion, de forma que

4 P=q"q*=(p—-k)- (p—k)=|p/*+ k|- 2p-k

(B.5)
= |p|* + [k|* — 2|p| k| cos

siendo 6 el dngulo formado por el momento lineal del neutrino y la direccién de propagacion del
pion, que tomaremos como +z sin pérdida de generalidad, Figura B.1.
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Figura B.1: Descomposicion del momento lineal del neutrino, k, en coordenadas esféricas.
La direccién z se escoge por conveniencia como la direccién de propagaciéon del pion, con
momento lineal p.

Usando las relaciones de dispersion relativistas para el pion y el neutrino (m, ~ 0), podremos

escribir (B.5) como

lq*|?> = E2 —m2 + E? — 2E,\/E2 — m2 cosf . (B.6)

Insertando este resultado en la expresion de la anchura total (B.4), obtenemos:

-— (5E—E—\/ 2 L B2 _m2 L B2 —9F.JEZ —m2 P
|Mfl|2 d3k < ™ 14 m€+ T mﬂ_+ v v put mﬂ.COS )

~ ’(2n)2E, | E,

(B.7)

\/m§+E7%—m?T+E3—2EZ, E2 —m?2 cosf

Como vemos en (B.7), la delta de Dirac que impone la conservacion de la energia en el proceso
ahora puede verse como una ligadura entre la energia del neutrino y el dngulo 6. Para integrar
esta expresion interpretaremos la funcién dentro de la delta de Dirac como una funcién del
angulo 6, lo que nos permitira conocer el valor de 6 en funcién de la energia del neutrino, E,,.
Asi, definimos:

f0)=E,—E, — \/mg—i-E% —m2+ E2—2E,\/E2 —m2 cosf (B.8)

pudiendo aplicar ahora la propiedad (A.69) para reescribir la delta de Dirac de (B.7) como

5(£(0)) = ‘5()’ ) domde  f(09) =0, (B.9)
0=0*

Comenzamos buscando el cero de la funcion f(#), que vendra dado por

2EE, —m%+m?

2E,\/EZ — m2

(B.10)

cos 0" =

y su derivada evaluada en ese punto

daf(0) _ E,\/E2 —m2 sin 0" (B.11)
o |,y E. B, ‘ '
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Ahora, con las expresiones (B.10), (B.11) y empleando la propiedad (B.9), podremos expresar la

delta como
ETI‘ - El/

o6) = E,\/EZ —m2 sin 6*

Por otro lado, escribiremos el diferencial de volumen del espacio de momentos para el neutrino

5(0 — 07 (B.12)

en coordenadas esféricas:
Bk = |k|? dk dQ = E2dE, dS (B.13)

siendo dQ) = sinfdfdy el diferencial de angulo solido. Introduciendo (B.12) y (B.13) en la
integral de la anchura total (B.7), obtenemos:

8(2m)2Ery/EZ —mz Jo sin 6* \/m% + E2—m2+4 E2—2FE,\/E2—m2 cosf
[Myil®

8(27)2E/E2 —m2 Jo

400 ™ 2w
dEl,/ / sinfdfdp (Ex — E,)0(0 —0%)
0=0 J =0
1
sin@*\/m% +E2—m2+4 E2—2FE,\/E2—m2 cosf
(B.14)

La integral sobre el d&ngulo ¢ nos dara un factor 27, mientras que la integral sobre # dara como

X

resultado el integrando evaluado en 6 = 6* unicamente si 6* € [0, 7]. Esta condicion debera
incluirse en el resultado mediante la funcién escalon de Heaviside. Asi, podremos escribir el
resultado de (B.14) como

r— | M i |2 Feo JE sin0* (B, — E,) ©(0*)O (7 — 6%)
= v )
16m Ex\/EZ —mZ Jo sin&*\/mz—i-E?r—m,2r+E,§—2E,,\/E72T—m72T cos 0*
(B.15)
donde las funciones de Heaviside limitaran el intervalo de integracién entre los valores E,Smm) =

E, (0 =m)y B = E,(0* = 0). Sustituyendo la expresion (B.10) de cosf* en (B.15),

obtenemos:
|Mfz'|2 E,(6*=0)

I =
167 Ex\/E2 — m2 JE,(6*=n)

dE, . (B.16)

INcISO. Funcion escalén de Heaviside.

La funcién escaldon de Heaviside se define como:

0 sixz <O
O(z) = _ (B.17)
1 six >0,

que ademas presenta la siguiente propiedad:
O(—z)=1-0(z) . (B.18)
Haciendo uso de (B.17) y (B.18) podremos definir un intervalo [a, b) no nulo escribiendo
Oz —a)O(b—1x), (B.19)

que valdré cero cuando x ¢ [a,b) y uno cuando x € [a, b).
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Finalmente, determinaremos los limites de integracién para la variable E, a partir de las condi-

ciones que aparecen en (B.16). Haciendo uso de la expresion (B.10), tendremos que:

2 _ 2
0 =1 = Em = Tor — Ty (B.20)
2(Er + /E2 —m2)
y
(max) m72r — ’I?’Lg (B 21)
=0 =— E™ = ) .
Y 2(E; — /EZ - m2)
luego la integral (B.16) dara como resultado
12 e 2
(Ml (Ml < mz)
I'= E = 1-— . B.22
167T Eﬂ-\/ E72r - m% v E(min) 167T Eﬂ' m721' ( )

Sustituyendo ahora la expresion del elemento de matriz (B.2) en el resultado de (B.22), obtenemos
la expresion final para la anchura de desintegracion total del proceso en el sistema laboratorio:

G2 f? cos? O m2 m? m2\? 1
I_‘7T+4>£+l/g (Er) = Eon 81 £ (1 — m§> R (B.23)
e ﬂ'

que coincide con el resultado (A.74) calculado en la secciéon A.4, como era de esperar.
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