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Resumen

La búsqueda de una descripción cuántica de la gravedad sigue siendo uno de los mayores retos de
la física moderna. Aunque la estructura matemática necesaria para formular una teoría consisten-
te de gravedad cuántica aún no está clara, nuestra comprensión del espacio-tiempo seguramente
se verá afectada. Existen argumentos sólidos que respaldan la hipótesis de que la relatividad
especial (SR) como la comprendemos podría ser solo una descripción aproximada de la natura-
leza, dando lugar a una violación de la invariancia Lorentz (LIV) a una cierta escala de energía
elevada. En este contexto, los mensajeros astrofísicos: neutrinos, rayos cósmicos y rayos-γ, cons-
tituyen candidatos perfectos para buscar estas desviaciones respecto a SR. En este trabajo se
recogen los aspectos generales de LIV, junto a una revisión de las cotas teóricas y experimentales
más recientes en el ámbito de la física de astropartículas de alta energía. Se presenta un cálculo
original de la anchura de desintegración modificada para el proceso π+ → ℓ+ + νℓ en un marco
de LIV. Los resultados muestran que la producción de neutrinos sublumínicos se ve favorecida
a altas energías, mientras que la producción de neutrinos superlumínicos está suprimida. Final-
mente, se discute un método novedoso para las búsquedas de LIV basado en la composición en
sabor del flujo de neutrinos astrofísicos en las fuentes.

Summary

The search for a quantum description of gravity remains one of the biggest puzzles of modern
physics. Although the mathematical structure for a consistent theory of quantum gravity is still
unclear, our current understanding of spacetime will surely be transformed. There are strong
arguments which support the hypothesis that special relativity (SR) as we conceive it may only
be an approximate description of nature, leading to a Lorentz invariance violation (LIV) at
some high-energy scale. In this context, astrophysical messengers, namely, neutrinos, cosmic rays
and γ-rays, make up the perfect candidates to look for these departures from SR. In this work,
general aspects of LIV are reviewed, together with an overview of the most recent theoretical
and experimental constraints in the domain of high-energy astroparticle physics. An original
calculation of the modified decay width for the process π+ → ℓ+ + νℓ in a LIV framework is
presented. Results show that subluminal neutrino production is enhanced at high energies, while
superluminal neutrino production is supressed. Finally, a novel method for LIV searches based
on the flavour composition of the astrophysical neutrino flux at the sources is discussed.
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Notación y convenios

A lo largo del trabajo emplearemos la misma notación que Peskin y Schroeder [1]. Trabajaremos
en unidades naturales, en las cuales ℏ = c = 1. En este sistema,

[longitud] = [tiempo] = [energía]−1 = [masa]−1 .

El tensor métrico vendrá dado por

gµν = gµν = diag (1,−1,−1,−1) .

Al trabajar con tensores, los índices griegos (α, β, . . . ) toman valores {0, 1, 2, 3} ≡ {t, x, y, z},
mientras que los índices latinos (i, j, . . . ) denotan únicamente las tres componentes espaciales.
Denotaremos los cuadrivectores mediante p ≡ pµ, mientras que para los vectores espaciales
usaremos p, cuyo módulo representaremos por |p|. Ejemplos:

pµ = (p0,p) pµ = gµνp
ν = (p0,−p)

p · x = pµxµ = gµνp
µxν = p0x0 − p · x ,

donde empleamos el convenio de suma de Einstein Rα Tα =
∑3

α=0R
(α) T(α), por el cual dos

índices repetidos, uno covariante y otro contravariante, indican una suma.

Todos los valores de constantes fundamentales y magnitudes experimentales empleados en los
cálculos y representaciones gráficas han sido obtenidos de Review of Particle Physics (2022) [2].
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Lista de acrónimos y abreviaturas

SR: Special Relativity – Relatividad Especial

GR: General Relativity – Relatividad General

QFT: Quantum Field Theory – Teoría Cuántica de Campos

SM: Standard Model – Modelo Estándar

ΛCDM: Dark Energy and Cold Dark Matter Model

QG: Quantum Gravity – Gravedad Cuántica

LI: Lorentz Invariance – Invariancia Lorentz

LIV: Lorentz Invariance Violation – Violación de Invariancia Lorentz

GRB: Gamma Ray Burst – Estallido de Rayos Gamma

CR: Cosmic Ray – Rayo cósmico

UHECR: Ultra-High-Energy Cosmic Ray – Rayo Cósmico de muy Alta Energía

MDR: Modified Dispersion Relation – Relación de Dispersión Modificada

CMB: Cosmic Microwave Background – Fondo Cósmico de Microondas

EFT: Effective Field Theory – Teoría de Campos Efectiva

VPE: Vacuum Pair Emission – Emisión de Pares en el Vacío

NSpl: Neutrino Splitting – División de Neutrinos

Lista de símbolos

ℓP : Longitud de Planck

EP : Energía de Planck

Λ: Escala de violación de invariancia Lorentz

νℓL: Componente levógira del campo del neutrino νℓ

γCMB: Fotón del fondo cósmico de microondas (CMB)

∆+: Barión resonante (JP = 3/2+)

γϵ: Fotón del ambiente en una fuente astrofísica

GF : Constante de acoplo de Fermi

fπ: Constante de desintegración del pion

θC : Ángulo de Cabibbo
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1 | Introducción
"Somos como enanos encaramados en los hombros
de gigantes. Vemos más y más lejos que nuestros
predecesores, no porque tengamos una visión más
aguda o mayor altura, sino porque somos elevados
y transportados en su gigantesca estatura."

— Bernardo de Chartres

Desde sus orígenes, el ser humano ha contemplado los cielos en busca de respuestas. La
luz procedente de estrellas lejanas nos ha guiado durante siglos a la hora de navegar los

mares, sembrar y cosechar los cultivos o incluso comprender la composición química de los astros.
Hoy, vemos más y más lejos que nuestros predecesores. El descubrimiento de neutrinos cósmicos
en 2013 por la colaboración IceCube [3] abrió una nueva ventana de observación en astrofísica
y supuso el nacimiento de la astronomía multimensajero. Por primera vez en la historia, somos
capaces de observar el universo no solo a través de fotones, sino también neutrinos, rayos cósmicos
y ondas gravitacionales. Esta ventana nos brinda la oportunidad de usar los desarrollos más
recientes en métodos experimentales para buscar huellas de nueva física a energías inalcanzables
en el laboratorio con la tecnología actual. El objetivo de este trabajo consistirá en explorar
la posibilidad de que la simetría Lorentz de relatividad especial no sea una simetría exacta
de la naturaleza y las consecuencias que esto tendría en la física de altas energías, centrando
nuestro análisis en el caso del neutrino. Antes de motivar la necesidad de este estudio, debemos
comprender primero su origen histórico.

Al inicio del siglo pasado, la física estaba a punto de sufrir un cambio de paradigma. La mecánica
clásica, ya establecida desde el siglo XVII por Isaac Newton y reformulada matemáticamente
por J. L. Lagrange y W. R. Hamilton, se fundamentaba en las transformaciones de Galileo.
Estas transformaciones, definidas entre sistemas de referencia inerciales, se caracterizan por dejar
invariantes las ecuaciones de Newton y dan lugar a una regla de composición de velocidades
aditiva, una idea intuitiva que parecía observarse en la experiencia cotidiana. Por otro lado,
el electromagnetismo se regía por las ecuaciones de Maxwell, quien a medidados del siglo XIX
fue capaz de sintetizar todo el conocimiento empírico sobre la electricidad y el magnetismo
en una descripción coherente del campo electromagnético. Sin embargo, las transformaciones
entre observadores inerciales que dejaban invariantes estas ecuaciones no se correspondían con
las transformaciones de Galileo. Estas fueron introducidas por H. A. Lorentz y ahora llevan su
nombre. A diferencia de las transformaciones de Galileo, las transformaciones de Lorentz prohíben
la aditividad de velocidades e incluso establecen una velocidad máxima insuperable: la velocidad
de propagación de las ondas electromagnéticas en el vacío, c. Ambas ideas eran incompatibles,
por lo que o bien las leyes de la mecánica debían ser modificadas o bien las ecuaciones de Maxwell
no eran correctas. Este choque entre las dos teorías físicas más exitosas hasta entonces dio lugar
a un debate: ¿es la física invariante Lorentz o invariante Galileo?

Tras el experimento realizado por Michelson y Morley en 1887 [4] con el objetivo de medir el
viento del éter, el hipotético medio físico en que se propagarían las ondas electromagnéticas, se
comprobó que no había indicios de su existencia. A raíz de estos resultados, un joven Albert
Einstein postuló en 1905 [5], en primer lugar, el principio de relatividad, por el cual las leyes
físicas deben ser iguales para todo observador inercial y, en segundo lugar, la invariabilidad de c.
De esta forma, medida desde cualquier sistema de referencia inercial, la luz siempre se propaga
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1 Introducción

en el vacío a velocidad constante c, sea cual sea el estado de movimiento del observador. En otras
palabras, se postula que no solo la mecánica, sino toda la física debe ser invariante Lorentz. Había
nacido la relatividad especial (SR) y, con ella, una nueva mecánica, la mecánica relativista.

Desde entonces, la física moderna se ha construido sobre los pilares establecidos por SR, desem-
bocando en las dos teorías físicas más exitosas hasta la fecha: la teoría cuántica de campos (QFT)
y la relatividad general (GR) de Einstein. Por un lado, QFT es el marco teórico que describe
la naturaleza a escala microscópica: las partículas elementales y las interacciones débil, electro-
magnética y fuerte; lo que nos ha permitido construir el Modelo Estándar (SM) de la física de
partículas. Por otro lado, GR explica la interacción gravitatoria desde la geometría diferencial y
forma la base del modelo cosmológico actual, ΛCDM, que describe la evolución del universo.

No obstante, la física atraviesa en este momento una crisis que no difiere tanto de la que tuvo
lugar el siglo pasado: a pesar de sus éxitos en paralelo, estas dos teorías son incompatibles a
nivel fundamental y la descripción microscópica de la interacción gravitatoria, necesaria para la
comprensión de diferentes escenarios físicos, es todavía un problema abierto. Independientemente
de cuál sea la teoría de gravedad cuántica (QG) definitiva, es muy probable que nuestra concep-
ción actual del espacio-tiempo se vea alterada, como ocurrió en su día con el nacimiento de SR.
Esta idea, junto a la ausencia de una teoría matemáticamente consistente de QG, llevó a varios
físicos a seguir una aproximación fenomenológica al problema, tratando de postular propieda-
des que debería exhibir una teoría completa de QG. Siguiendo esta filosofía bottom-up, surgió
la hipótesis de que la simetría fundamental de SR, conocida como invariancia Lorentz, podría
romperse a partir de una cierta escala de energía en el contexto de QG. Los efectos inducidos
por esta ruptura de simetría, que recibirá el nombre de violación de invariancia Lorentz (LIV),
podrían ser observados en mensajeros cósmicos como neutrinos, UHECRs o rayos-γ a energías
muy superiores a las alcanzables por los aceleradores actuales y futuros. Recientemente, el auge
de la astronomía multimensajero ha convertido este campo de estudio en una de las propuestas
más prometedoras para la búsqueda de efectos de QG.

Este trabajo tiene dos objetivos principales. En primer lugar, introducir al lector en las ideas
fundamentales de LIV mediante una revisión bibliográfica de los resultados teóricos y experi-
mentales más recientes en este campo; y, en segundo lugar, presentar un resultado original: el
cálculo completo de la anchura de desintegración del pion cargado en un marco de LIV y su
interpretación en el contexto de la producción de neutrinos en fuentes astrofísicas.

La estructura de la memoria es la siguiente. En la sección 2 se introducirán las nociones básicas
de LIV. Se comenzará formulando en la sección 2.1 la ruptura de simetría a partir de la relación
de dispersión relativista. Posteriormente, se analizarán en la sección 2.2 las consecuencias de una
relación de dispersión modificada, que clasificaremos en dos categorías: anomalías en tiempos de
vuelo y modificaciones en la cinemática de procesos. Por último, se terminará este capítulo con
la sección 2.3, donde se motivará y desarrollará el estudio de LIV en el sector del neutrino. En
la sección 3 se abordará la producción de neutrinos en la naturaleza, particularizando al caso de
los neutrinos astrofísicos. Seguidamente, se procederá en la sección 3.1 con el cálculo analítico
de la anchura de desintegración del proceso π+ → ℓ++ νℓ en un modelo de LIV no-universal que
solo afecta al neutrino. Los resultados obtenidos se interpretarán en la sección 3.2. Finalmente,
en la sección 4 se presentarán las conclusiones del trabajo y las líneas de trabajo futuro. El lector
interesado podrá encontrar en los Anexos A y B una introducción al cálculo anterior en SR.
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2 | Violación de invariancia Lorentz

La invariancia Lorentz constituye la simetría principal de la relatividad especial y nos permite
formular de manera natural el principio de relatividad. Bajo este principio, todos los observadores
inerciales deben experimentar las mismas leyes físicas y sus medidas estarán relacionadas entre
sí mediante transformaciones de Lorentz (boosts y rotaciones). Esto se traduce, por tanto, en la
covariancia Lorentz1 de las ecuaciones, resaltando una de las principales consecuencias de SR:
todos los sistemas de referencia inerciales son completamente equivalentes.

La violación de invariancia Lorentz (LIV) implica la ruptura de esta simetría y conduce a la
pérdida del principio de relatividad. Argumentos de QG sugieren que la simetría Lorentz de
SR se rompería a muy altas energías. Para ello, se basan en la hipótesis de que una partícula
propagándose con una longitud de onda próxima a la longitud de Planck, ℓP =

√
ℏG/c3 ≈ 1, 62 ·

10−35 m, podría explorar escalas en las que el espacio-tiempo presenta estructura, afectando a su
cinemática mediante efectos no convencionales. De este modo, efectos de LIV que dominan a altas
energías tendrían su origen en la naturaleza microscópica del espacio-tiempo y su descubrimiento
constituiría un paso importante hacia una descripción cuántica de la gravedad.

La pérdida del principio de relatividad conlleva una importante consecuencia. Ahora, las leyes
físicas serán diferentes para distintos observadores, por lo que cada uno deberá describir la física
desde su propio sistema laboratorio. Cuando escribamos la ecuación asociada a una ley física, será
pertinente especificar qué observador “ve” esa ecuación en concreto. Surge entonces la noción de
un observador privilegiado, que usualmente se atribuye a aquel que mide el CMB completamente
isótropo. El hecho de que nosotros midamos el CMB prácticamente isótropo nos indica que la
Tierra constituye una buena aproximación a ese observador [6].

2.1. Relación de dispersión modificada

La manera usual de incluir efectos de LIV es mediante una relación energía-momento modificada
(MDR). En SR, la relación de dispersión usual para una partícula masiva viene dada por2

E2 = m2 + |p|2 , (2.1)

que depende únicamente de la masa, m, de la partícula y el módulo de su momento lineal, p. Una
forma genérica de romper la invariancia Lorentz manteniendo la simetría rotacional es mediante
la adición de un término extra en la expresión (2.1):

E2 = m2 + |p|2
[
1 + f(λ, |p|)

]
, (2.2)

donde f(λ, |p|) es una función desconocida de |p| y un parámetro λ, que cuantifica cómo de
grande es la desviación respecto a SR. Dado que la MDR debe reproducir (2.1) en un amplio
rango de energías para ser compatible con las observaciones actuales, la magnitud de f será

1La covariancia Lorentz es una forma de expresar que todas las leyes físicas deben tener la misma ex-
presión sea cual sea el sistema de referencia en el que se escriban (siempre que sea un sistema inercial).
Para ello, las ecuaciones deberán ser igualdades entre objetos matemáticos que transformen de la mis-
ma forma bajo transformaciones de Lorentz. Estos objetos serán los tensores, cuya relevancia cobra aún
más sentido en el marco de GR, donde se extiende este concepto de covariancia a la covariancia general.

2A partir de ahora emplearemos unidades naturales, en las que c = ℏ = 1.
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2 Violación de invariancia Lorentz

muy pequeña frente a la unidad para este intervalo de energías. Esto nos permitirá reescribir
la función f(λ, |p|) como un desarrollo en serie de potencias de λ. Siguiendo el convenio usual,
reescribiremos el parámetro λ como el inverso de una escala de energía característica, λ = Λ−1

LIV,
expresando f como

f(λ, |p|) =
∑
n

an λ
n|p|n =

∑
n

an

(
|p|
ΛLIV

)n

, (2.3)

donde vemos que, al tratarse de una función adimensional, tendremos un desarrollo en potencias
del cociente |p|/ΛLIV. Llegados a este punto y pensando en el objetivo de estudiar la fenomeno-
logía asociada a diferentes situaciones físicas, nos restringiremos únicamente al primer término
no nulo del desarrollo. El término de orden cero fue originalmente estudiado por S. Coleman y S.
Glashow en su primer trabajo sobre LIV en 1999 [7]. Nosotros, sin embargo, estamos interesados
en un efecto de LIV creciente con la energía, por lo que consideraremos las posibilidades n = 1

y n = 2. Introduciendo este primer término en (2.3), obtenemos:

E2 ≃ m2 + |p|2
[
1 + an

(
|p|
ΛLIV

)n
]
. (2.4)

Finalmente, podremos reabsorber el coeficiente an de la expresión (2.4) en la definición de la
escala ΛLIV, de forma que la expresión general de la MDR será

E2 ≃ m2 + |p|2
[
1 + s

(
|p|
ΛLIV

)n
]

con n = 1, 2 y s = ±1 , (2.5)

donde s indica el signo de la corrección y n el orden del primer término no nulo que se considera.

Para comprobar que esta MDR viola la LI, podemos recalcular el invariante pµpµ = m2 de SR
en el sistema de referencia privilegiado (y desde ahora, en el que trabajaremos siempre):

pµpµ ≡ E2 − |p|2 ≃ m2 + s
|p|n+2

Λn
LIV

, (2.6)

donde ahora el invariante Lorentz pµpµ, que en SR se corresponde con el cuadrado de la masa de
la partícula, depende de su momento lineal y, por tanto, del observador. Queda claro entonces
que el uso de una MDR de la forma (2.5) rompe la simetría entre sistemas de referencia inerciales
propia de SR.

2.2. Implicaciones fenomenológicas en la física de altas energías

Acabamos de ver que el empleo de una MDR nos permite crear un escenario de LIV dependiente
de la energía. Además, SR constituye una buena descripción de la naturaleza en un dominio de
energías muy amplio, por lo que el valor de ΛLIV debe ser muy grande. Usualmente, la escala de
energía ΛLIV se asocia con la energía de Planck bajo la suposición de que esta es la escala a la cual
los efectos de una nueva física relacionada con gravedad cuántica son evidentes. Volviendo a la
MDR (2.5), vemos que para apreciar estos efectos de manera notable, sería en principio necesario
que el cociente |p|/ΛLIV fuese del orden de la unidad. Para ello, necesitaríamos alcanzar energías
próximas a la escala de Planck, EP ≈ 1, 22 · 1028 eV.

Las partículas de mayor energía que se encuentran a nuestro alcance son los UHECRs, partículas
cargadas (principalmente protones, electrones y núcleos ligeros) que son aceleradas en fenómenos
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2 Violación de invariancia Lorentz

Figura 2.1: Ilustración esquemática de la producción y propagación de los UHECR hasta su detección en
la Tierra. Los UHECR de mayor energía se verán deflectados en menor medida por los campos magnéticos
en su propagación.

astrofísicos violentos, como las explosiones de Supernovas o los GRBs, y se propagan a través del
universo hasta alcanzar las capas altas de la atmósfera terrestre, donde interaccionan produciendo
cascadas de partículas secundarias. Este proceso se muestra en la Figura 2.1. El flujo de UHECRs
medido en la Tierra presenta un corte a partir de un cierto umbral de energía, en torno a
EGZK ≃ 5 · 1019 eV. Este cut-off en el flujo de UHECRs se conoce como el límite Greisen-
Zatsepin-Kuzmin (GZK). Su origen reside en la interacción de los protones de los UHECRs con
los fotones del CMB. Por encima de este umbral, los procesos

p+ γCMB → ∆+ → π+ + n y p+ γCMB → ∆+ → π0 + p (2.7)

están permitidos, donde el neutrón resultante se desintegrará (además de los piones) en p e− νe.
En consecuencia, ambos canales producirán como resultado protones cada vez menos energéticos,
hasta reducir su energía por debajo del umbral EGZK. De forma práctica, todos los protones de
los UHECRs generados a distancias mayores que ∼ 30Mpc llegarán a la Tierra con energías
por debajo de ∼ 1020 eV [8]. El CR de mayor energía registrada hasta la fecha fue detectado en
octubre de 1991 por el Fly’s Eye air shower detector en Utah (EE.UU.). En el artículo posterior,
se reportó la detección de un CR de (3, 2 ± 0, 9) · 1020 eV [9]. A pesar de ser la partícula más
energética jamás detectada, su energía sigue estando 8 órdenes de magnitud por debajo de la
escala de Planck. Debido a las restricciones impuestas por el límite GZK y el reducido flujo por
encima de este umbral, la posibilidad de observar directamente estos efectos de nueva física queda
descartada por completo. A escalas de energía típicas de observaciones de neutrinos y rayos-γ de
alta energía, en torno al TeV-PeV, el cociente3 |p|/ΛLIV de la MDR (2.5) variará entre 10−16 y
10−13, asumiendo que ΛLIV ∼ EP .

No obstante, existe un conjunto de situaciones físicas en las que estas desviaciones respecto a
SR, a priori despreciables, resultarán en efectos muy notables en las observaciones debido a
mecanismos de amplificación. Además, trabajar a menores energías nos permitirá abrir nuestro
abanico y usar observaciones de los diferentes mensajeros cósmicos: UHECRs, rayos-γ y neutri-
nos. Estos mecanismos de amplificación estudiados en fenomenología de LIV podrán clasificarse
en dos categorías principales: el estudio de los tiempos de vuelo de partículas de alta energía y
las modificaciones en la cinemática de procesos. A continuación veremos cómo estas pequeñas
desviaciones pueden conducir a efectos observables por los experimentos actuales.

3En el régimen ultra-relativista (|p| ≫ m) podremos hablar indistintamente del cociente entre la energía de la
partícula y la escala ΛLIV o el cociente entre el módulo de su momento lineal y la escala de LIV, |p|/ΛLIV.
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2 Violación de invariancia Lorentz

2.2.1. Tiempos de vuelo

En relatividad especial, una partícula sin masa se propagará siempre a la velocidad de la luz en
el vacío, c. En el marco de LIV, esto no será cierto: una partícula sin masa tendrá una velocidad
dependiente de su energía, que en el límite de bajas energías tenderá a su valor clásico, c. Veamos
que este efecto se deduce directamente de la MDR.

Consideremos la MDR (2.5) para una partícula sin masa:

E2 ≃ |p|2
[
1 + s

(
|p|
ΛLIV

)n
]
. (2.8)

La velocidad de la partícula vendrá dada por v = dE/d|p|, por lo que tomaremos la raíz de (2.8):

E ≃ |p|

√
1 + s

(
|p|
ΛLIV

)n

≃ |p|+ s
|p|n+1

2Λn
LIV

, (2.9)

donde hemos usado que (|p|/ΛLIV)
n ≪ 1 para aproximar

√
1± x ≃ 1 ± x/2. Así, podremos

calcular fácilmente la velocidad

v =
dE

d|p|
≃ 1 + s

(n+ 1)

2

(
|p|
ΛLIV

)n

. (2.10)

Analizando el resultado (2.10) vemos que, en el límite de bajas energías, |p|/ΛLIV → 0 y la velo-
cidad v → 1, la velocidad de la luz en el vacío (recordemos que trabajamos en unidades naturales
c = ℏ = 1). No obstante, para una partícula de muy alta energía, el efecto de LIV introducirá una
modificación en la velocidad dependiente de la energía. Esta modificación dependerá del modelo
de LIV que se considere, parametrizado por la elección de n = 1, 2 y s = ±1.

Fijémonos ahora en las consecuencias físicas que tiene la elección del signo s en la MDR. Un
modelo de LIV con s = −1 implicará que la velocidad será inferior a la unidad y decrecerá
conforme aumente su energía, independientemente del orden n de la corrección. Dado que su
velocidad será inferior a la de la luz a muy altas energías, a partículas con estas características se
les denomina partículas sublumínicas. Análogamente, para el caso s = +1 tendremos partículas
superlumínicas cuya velocidad crecerá con la energía. De ahora en adelante, usaremos estos
términos para caracterizar los modelos de LIV en lugar de especificar el valor del signo s = ±1.

Si bien para el rango de energías accesible las correcciones en la velocidad de las partículas de
alta energía son muy pequeñas, de orden (|p|/ΛLIV)

n, su propagación a lo largo de distancias
cosmológicas proporciona un mecanismo de amplificación de esta desviación respecto a SR. En
este escenario, partículas de muy alta energía producidas en fuentes astrofísicas lejanas podrían
llegar a la Tierra con un cierto retraso4 respecto a partículas de menor energía emitidas en el
mismo instante de tiempo. Los análisis de tiempo de vuelo constituyen uno de los métodos más
comunes para la realización de tests de LIV y son aplicables tanto a partículas sin masa como
a partículas masivas en el régimen ultra-relativista. Por ello, este tipo de búsquedas se realizan
mediante observaciones de rayos-γ y neutrinos muy energéticos.

4Según estudiemos partículas sublumínicas o superlumínicas podrá tratarse de un retraso o un adelanto en la
llegada, respectivamente. Usaremos el término “retraso” de forma general para referirnos a ambos escenarios.
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2 Violación de invariancia Lorentz

Al realizar análisis de retrasos en tiempos de vuelo (en inglés, time delays), es necesario tener en
cuenta los efectos de la expansión del universo en la propagación de las partículas. La expresión
correcta para calcular este retraso fue derivada por primera vez por U. Jacob y T. Piran en 2008
[10]. Hasta la fecha, los análisis llevados a cabo suponían que una partícula de alta energía y una
de baja energía recorrían la misma distancia propia, dando lugar a un resultado que difiere en
un factor5 (1 + z) del correcto. En realidad, es la distancia comóvil la que es igual para ambas
partículas, no la distancia propia.

Los análisis de este tipo emplean observaciones de fenómenos astrofísicos transitorios como GRBs
en el espectro de rayos-γ y neutrinos. Se buscan correlaciones entre la energía de las partículas y
su retraso en la llegada respecto al estallido inicial, detectado por medio de fotones de baja energía
que no serían afectados por LIV. Durante los últimos años, se han realizado diversos estudios
por parte de colaboraciones experimentales como ANTARES [11] con resultados no concluyentes
debido a las grandes incertidumbres en la distancia a las fuentes, que dificultan en gran medida la
elección de la ventana temporal a considerar. Un análisis más reciente usando datos de IceCube
fue publicado en 2023 por G. Amelino-Camelia et al, donde afirmaban haber encontrado fuertes
evidencias de retrasos en la propagación de neutrinos de alta energía correlacionados direccional
y temporalmente con GRBs [12]. Su ajuste a las medidas, asumiendo una MDR con n = 1,
proporciona una escala de LIV favorecida con un valor de ΛLIV = (9, 2± 1, 9)·10−2EP , aunque las
incertidumbres en las correlaciones de cada evento detectado con un GRB reducen notablemente
la significancia de este resultado.

Todos estos análisis se han realizado bajo la suposición de que el único efecto de física no conven-
cional a altas energías reside en la propagación. No obstante, como ha sido mostrado reciente-
mente por J. M. Carmona et al [13], esto no es correcto. Además de las anomalías en los tiempos
de vuelo de partículas sin masa, existen efectos como la aparición de canales de desintegración
para partículas antes estables que deben tenerse en cuenta a la hora de realizar un análisis consis-
tente. Estos efectos adicionales provienen de la consideración de modificaciones en la cinemática
de procesos debidos a LIV, que comentaremos a continuación.

2.2.2. Cinemática de procesos

La consecuencia más intuitiva de una MDR para una partícula es la aparición de anomalías en
su propagación libre. Sin embargo, estas desviaciones respecto a la relación de dispersión en SR
pueden inducir efectos muy relevantes en las secciones eficaces de interacción con otras partículas
o las anchuras de desintegración de ciertos procesos.

Uno de estos efectos inducidos más interesantes a nivel fenomenológico consiste en la aparición
de umbrales de energía a partir de los cuales ciertos procesos, antes prohibidos en SR, estarán
permitidos, y viceversa. Este escenario fue estudiado de forma general por D. Mattingly et al
en [14], donde caracterizaron las configuraciones de umbrales inferior y superior para reacciones
de dos partículas, A + B → C + D. Un ejemplo de esta fenomenología aparecerá al estudiar
un modelo de LIV para el neutrino, que a pesar de ser una partícula estable en el SM podrá
desintegrarse bajo ciertas condiciones a través de dos canales principales, como veremos en más
profundidad en la sección 2.3.

5Donde z es el redshift o corrimiento al rojo cosmológico, definido como 1 + z = λdet/λemit.
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2 Violación de invariancia Lorentz

Figura 2.2: Recopilación de las cotas inferiores más fuertes y recientes para la escala de LIV (ΛLIV)
provenientes de la ausencia de efectos no convencionales en las observaciones de retrasos en tiempos
de vuelo dependientes de la energía, desintegración de fotones, supresión en la formación de cascadas
atmosféricas y cambios en los umbrales de la producción de pares e−/e+. En azul se muestran los límites
sublumínicos (vγ < c) y en verde los límites superlumínicos (vγ > c). El cuadro izquierdo muestra el
orden de aproximación n = 1 y el derecho n = 2. Fuente: H. Martínez-Huerta et al (2020) [15].

Por otro lado, la fenomenología de LIV en el sector del fotón ha sido ampliamente estudiada en la
literatura. Algunos de los efectos de nueva física que aparecen en este sector incluyen la desinte-
gración del fotón, la producción de radiación Cherenkov en el vacío y la modificación de procesos
bien conocidos, como la producción de pares electrón-positrón; además de los ya mencionados
retrasos en tiempos de vuelo [15]. Todos estos efectos de nueva física han sido analizados por
diferentes colaboraciones experimentales como el High Energy Stereoscopic System (H.E.S.S.), el
High Altitude Water Cherenkov Observatory (HAWC) o el Major Atmospheric Gamma Imaging
Cherenkov Telescope (MAGIC), estableciendo fuertes cotas inferiores para el valor de ΛLIV. En la
Figura 2.2 se muestra una recopilación de estas cotas publicada en 2020 por H. Martínez-Huerta
et al [15]. Incluye estudios de retrasos en tiempos de vuelo y cinemática de procesos modificada,
así como las cotas proyectadas en ese momento para los experimentos LHAASO/WCDA y el
Cherenkov Telescope Array (CTA).

2.3. Modelo de LIV para el neutrino

En las secciones anteriores hemos analizado cómo se puede introducir un efecto de LIV en una
partícula y sus implicaciones en su propagación e interacción con otras partículas. Será interesante
preguntarnos ahora qué partículas deberían manifestar estos efectos en caso de existir una ruptura
de simetría Lorentz a altas energías.
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2 Violación de invariancia Lorentz

Los neutrinos son unas partículas muy especiales dentro del SM, con unas masas extremadamente
pequeñas en comparación con el resto de partículas y que solo interaccionan débilmente. Desde
su descubrimiento en 1956 por C. Cowan y F. Reines [16], su detección y caracterización ha
constituido un gran reto para la física experimental. Por ello, estas partículas elusivas constituyen
muy buenos candidatos para búsquedas de física más allá del SM, lo que incluye una posible
violación de la simetría Lorentz. El origen de su estudio como posibles pruebas de desviaciones
respecto a SR se remonta a 2011, cuando el experimento OPERA afirmó haber encontrado
evidencias de la propagación superlumínica6 de neutrinos [18] y diversos modelos teóricos fueron
publicados explorando esta posibilidad [19, 20]. Otro argumento a favor de estudiar efectos de
LIV únicamente en neutrinos proviene de los fuertes límites existentes sobre una MDR para los
leptones cargados. A raíz de estos límites, el estudio de un modelo de LIV solo para el sector del
neutrino está justificado, lo que ha sido ampliamente abarcado y argumentado en la literatura
[21-23].

Los modelos de LIV se clasifican en universales y no-universales, según si afectan a todas las
partículas por igual o a cada una de forma diferente, respectivamente. De ahora en adelante,
consideraremos un modelo no-universal de LIV que afecta únicamente al neutrino y que es,
además, independiente del sabor. A continuación veremos cómo implementar este modelo de
forma consistente como una extensión al SM.

Para empezar, supondremos que los neutrinos son partículas sin masa. El efecto de LIV se
introducirá en el marco de una teoría efectiva de campos (EFT) como una perturbación de orden
(1/Λ)n en la densidad lagrangiana asociada al campo del neutrino en la teoría libre:

L(ν)
free =

∑
ℓ

(
νℓ(iγ

µ∂µ)νℓ − s
1

Λn
νℓ γ

0(i∂0)
n+1νℓ

)
, (2.11)

mientras que el lagrangiano de interacción Lint se mantendrá inalterado [6]. El subíndice ℓ en
(2.11) indica el tipo de neutrino (e, µ, τ). El campo del neutrino cumplirá νℓ = νℓL, donde el
subíndice L se refiere a la quiralidad levógira del campo, y en la representación quiral será un
campo de Dirac con dos componentes nulas. Aplicando las ecuaciones de Euler-Lagrange a (2.11),
obtendremos las ecuaciones de movimiento para los campos:

νℓ :

(
iγµ∂µ − s

1

Λn
γ0(i∂0)

n+1

)
νℓ = 0 (2.12)

y su compleja conjugada para el campo νℓ. Estas son las ecuaciones de Dirac modificadas, cuyas
soluciones serán los campos νℓ y νℓ, espinores de Dirac modificados. Introduciendo una expan-
sión de ondas planas con soluciones positivas y negativas para el campo libre νℓ(x), uno puede
demostrar que las relaciones energía-momento para el neutrino y el antineutrino vendrán dadas,
respectivamente, por [6]:

|p| = Eν − s
En+1

ν

Λn
y |p| = Eν + (−1)n+1s

En+1
ν

Λn
, (2.13)

donde vemos que se obtiene una MDR para cada uno. Cabe destacar que la escala de LIV
introducida en (2.11) difiere en un factor 21/n de la usada en las secciones 2.1 y 2.2, Λn = 2Λn

LIV.
6Los resultados obtenidos por OPERA, bautizados como la anomalía de neutrinos superlumínicos, fueron más

tarde atribuidos a fallos en el equipamiento de medida. En particular, una conexión de fibra óptica entre un
receptor GPS y el reloj principal del experimento no había sido enroscada por completo, lo que generaba un
retraso en la señal de varias decenas de nanosegundos, dando lugar a una anomalía en la medida temporal por la
cual los neutrinos parecían viajar a velocidades superlumínicas [17].
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2 Violación de invariancia Lorentz

s = −1 s = +1

neutrino (ν) antineutrino (ν) neutrino (ν) antineutrino (ν)

n = 1 sublumínico superlumínico superlumínico sublumínico

n = 2 sublumínico sublumínico superlumínico superlumínico

Tabla 2.1: Recopilación de los comportamientos no estándar de los neutrinos y antineutrinos
en función del modelo de LIV. El signo s se ha introducido en (2.11) de forma que si s = −1 el
neutrino siempre será sublumínico, mientras que si s = +1 el neutrino siempre será superlumínico.

Esto es una cuestión de convenio. Durante el resto del trabajo emplearemos la parametrización
dada por Λ. Si analizamos las MDR (2.13) obtenidas para el neutrino y el antineutrino, vemos
que en el caso lineal (n = 1) el neutrino y el antineutrino tendrán comportamientos opuestos: uno
será sublumínico y otro superlumínico; mientras que en el caso cuadrático (n = 2), presentarán
el mismo comportamiento. Esto se resume en la Tabla 2.1.

Una vez analizados los efectos de LIV en la propagación libre de neutrinos y antineutrinos, revisa-
remos sus interacciones. Tal y como hemos comentado, el lagrangiano de interacción asociado al
campo del neutrino no se verá modificado por nuestro modelo de LIV y será igual al lagrangiano
de interacción en el SM. No obstante, como ya anticipamos en la sección 2.2.2, las anomalías en la
propagación de las partículas por el efecto de LIV darán lugar a modificaciones en la cinemática
de procesos.

En particular, si el neutrino o el antineutrino son superlumínicos, se convierten en partículas
inestables capaces de desintegrarse a través de dos canales principales: la producción de pares
electrón-positrón en el vacío (VPE) y la emisión de pares neutrino-antineutrino, también cono-
cida como Neutrino Splitting (NSpl). Estos nuevos procesos tendrán importantes consecuencias
fenomenológicas, como la predicción de una fuerte atenuación en el flujo de neutrinos de muy alta
energía. Los diagramas de Feynman asociados al proceso VPE se recogen en la Figura 2.3, donde
vemos que existen dos canales posibles para la desintegración. El canal neutro estará permitido
para todos los sabores, mientras que el canal cargado solo lo estará para el neutrino electrónico.

Además, dado que las partículas del estado final tienen masa, habrá un umbral de energía por
debajo del cual no se podrá dar el proceso [6]. La mínima energía requerida para el neutrino
inicial viene dada por

E
(VPE)
th = (2m2

eΛ
n)1/(2+n) , (2.14)

να

e+

e−

να

Z0

(a) VPE (canal neutro).

νe

e+

νe

e−

W+

(b) VPE (canal cargado).

Figura 2.3: Diagramas de Feynman para los procesos de producción de pares electrón-positrón
να → να e

−e+, mediados por corrientes neutras (a) y corrientes cargadas (b).
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2 Violación de invariancia Lorentz

donde me es la masa del electrón. En el límite Λ → ∞ (hacemos desaparecer el efecto de LIV)
vemos que el umbral E(VPE)

th → ∞ y el proceso está prohibido. A diferencia del VPE, el umbral
de energía para la emisión de pares neutrino-antineutrino es completamente despreciable debido
a la pequeña masa del neutrino, que hemos aproximado mν ≃ 0, luego

E
(NSpl)
th ≃ 0 . (2.15)

El diagrama de este proceso se muestra en la Figura 2.4, que solo será mediado por corrientes
neutras. Por otro lado, si el neutrino o el antineutrino son sublumínicos, estos procesos estarán
prohibidos y los únicos efectos posibles de LIV aparecerán en las interacciones responsables de
su producción o detección. Será esta primera situación la que nos ocupará durante el resto del
trabajo.

Debido a las ligaduras entre el comportamiento del neutrino y el antineutrino según el modelo
de LIV, Tabla 2.1, el estudio de toda la fenomenología asociada a las desintegraciones de partí-
culas superlumínicas será realmente complejo. La búsqueda de evidencias de esta nueva física a
altas energías necesitará de simulaciones numéricas para cuantificar desviaciones en el flujo de
neutrinos en la Tierra. Las comparaciones de este flujo simulado con las medidas de telescopios
de neutrinos como IceCube o KM3NeT permitirán establecer cotas inferiores para la escala Λ

en caso de no observar estos efectos, u obtener evidencias de una escala Λ favorecida en caso de
observarlos. Varios ejemplos de este tipo de análisis se pueden encontrar en [6].

Sin embargo, muy poca atención ha sido prestada en la literatura científica a los mecanismos
de producción de neutrinos y la forma en que LIV afectaría a estos. Si bien los efectos en la
propagación y la posible desintegración de neutrinos constituyen muy buenos candidatos para
búsquedas de LIV, ignorar los procesos envueltos en su producción constituye un gran error. No
tendría fundamento, por ejemplo, estudiar la desintegración de neutrinos superlumínicos si su
canal de producción estuviese inhibido, por lo que aquellos análisis que no incluyan efectos de
LIV en la producción de neutrinos serán inconsistentes. Dado que estos efectos se manifestarán a
energías muy elevadas, estaremos interesados en la componente astrofísica del flujo de neutrinos
en la Tierra. En la siguiente sección abordaremos el problema de la producción de neutrinos
astrofísicos en un marco de violación de invariancia Lorentz.

να

νβ

νβ

να

Z0

Figura 2.4: Diagrama de Feynman asociado a la emisión de pares neutrino-
antineutrino να → νανβνβ . El único canal posible para este proceso será el
mediado por el bosón Z0.
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3 | Producción de neutrinos en fuentes astrofísicas

Aunque no seamos conscientes de ello, vivimos en un baño continuo de neutrinos. El origen de
estas partículas tan especiales es muy diverso. Una fracción de ellas proviene de las reacciones
termonucleares que tienen lugar en el Sol, recibiendo el nombre de neutrinos solares. Otra frac-
ción tiene su origen en la Tierra y se produce mediante la desintegración beta (β±) de ciertos
isótopos inestables presentes en la naturaleza, dando lugar a los llamados geoneutrinos. Otra
buena parte de ellos, los neutrinos atmosféricos, proviene de la desintegración de partículas se-
cundarias producidas en la interacción de CRs con las capas altas de la atmósfera terrestre. La
lista continúa, pero a pesar de la gran variedad de fuentes de neutrinos, podemos organizarlos
de forma sencilla atendiendo a su posición en el espectro de energías, Figura 3.1.

Nosotros estaremos interesados en los neutrinos astrofísicos, que conforman la componente do-
minante del flujo en la Tierra por encima de los 100 TeV, aproximadamente, como se puede
apreciar en la Figura 3.1. Como su propio nombre indica, estos neutrinos tienen origen astrofí-
sico y se producen en fuentes galácticas o extragalácticas. A pesar de conocer su mecanismo de
producción, a día de hoy la búsqueda de fuentes puntuales y extensas de neutrinos astrofísicos
sigue siendo un problema abierto para el campo de la astronomía de neutrinos. Solo tres fuentes
han sido identificadas como posibles candidatas: el blazar TXS 0506+056, la galaxia activa NGC
1068 y, más recientemente, la Vía Láctea [24-26].

Los neutrinos astrofísicos de alta energía se producen principalmente mediante la desintegración
de piones cargados, π±, provenientes de la interacción de protones energéticos con el material
denso situado en el interior de las fuentes o con fotones de menor energía del ambiente, γϵ,
producidos a su vez por bremsstrahlung de electrones en regiones caracterizadas por la presencia
de campos magnéticos intensos [27]. En la Figura 3.2 se recoge un esquema de los procesos
anteriores, denominados usualmente como beam dump y photoproduction.

Figura 3.1: Espectro en energías del flujo de neutrinos en la Tierra integrado a
todas las direcciones y sumado sobre los tres sabores. Nótese que el efecto de las
oscilaciones no afectará al flujo combinado de νe, νµ y ντ que se muestra en la figura.
Las líneas continuas indican fuentes de neutrinos y las líneas punteadas fuentes de
antineutrinos. Las líneas punteadas y continuas superpuestas representan fuentes de
neutrinos y antineutrinos. Fuente: E. Vitagliano et al (2020) [28].
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3 Producción de neutrinos en fuentes astrofísicas

Figura 3.2: Esquema del principal mecanismo de producción de neutrinos astrofísicos en las fuentes.

Durante las siguientes secciones nos centraremos en la producción de neutrinos mediante los
procesos π± → ℓ± + νℓ, donde ℓ ≡ e, µ indica el leptón cargado y νℓ su respectivo neu-
trino/antineutrino. Este constituirá el canal dominante de producción.

3.1. Modificaciones en la desintegración del pion en LIV

A lo largo de esta sección afrontaremos un cálculo en QFT para estudiar la desintegración del
pion en un marco de LIV. El lector no familiarizado con este tipo de cálculos podrá encontrar en
el Anexo A una introducción completa al problema, abarcando desde nociones básicas de física
de partículas hasta el cálculo detallado de la desintegración en SR. Dado que la forma usual de
proceder consiste en explotar la LI y trabajar en el sistema CdM, se ha incluido un Anexo B con
el cálculo de SR en el sistema laboratorio, que servirá de entrenamiento para su análogo en LIV.

Consideremos un modelo de LIV no-universal que afecta solo al neutrino, inducido por un la-
grangiano libre modificado análogo a (2.11). La relación de dispersión para el neutrino vendrá
dada entonces por

|k| = Eν − s
En+1

ν

Λn
. (3.1)

A pesar de que en LIV el cuadrimomento k del neutrino pierde su interpretación física, será con-
veniente definir la 4-tupla k̃ = (|k|,k), pues nos permitirá emplear la notación relativista a nivel
formal. Nuestro objetivo ahora consistirá en calcular la anchura de desintegración modificada, Γ,
para el proceso7

π+ → ℓ+ + νℓ , (3.2)

que en el SM estará mediado por un bosón W+. Para realizar este cálculo emplearemos la teoría
V-A de las interacciones débiles. Uno podría pensar que el uso de una teoría efectiva de bajas
energías del SM para un cálculo en LIV no es un planteamiento correcto del problema. No
obstante, esta aproximación es perfectamente válida: independientemente de la energía del pion
inicial, la norma de su cuadrimomento será p2 = m2

π ≪ m2
W y las masas de los leptones cargados

cumplirán me,mµ ≪ mW , por lo que el propagador del bosón W se reducirá a

D̃µν ≃ i

m2
W

gµν , (3.3)

7El resultado será completamente equivalente para este proceso y para su conjugado de carga π− → ℓ− + νℓ,
por lo que bastará con considerar el proceso 3.2. El único matiz relevante al diferenciar entre uno y otro aparecerá
cuando consideremos un modelo de LIV completo. Según los parámetros n y s, los comportamientos del neutrino
y el antineutrino podrán ser iguales u opuestos, Tabla 2.1, por lo que el resultado de la anchura de desintegración
(que también dependerá de los parámetros n y s) deberá escogerse de forma acorde para cada proceso.
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3 Producción de neutrinos en fuentes astrofísicas

recuperando así el formalismo de la teoría V-A (ver sección A.2 para la discusión completa). El
diagrama de Feynman del proceso se muestra en la Figura 3.3.

3.1.1. Elemento de matriz

Comenzaremos calculando el elemento de matriz del proceso, que vendrá dado por

Mπ+→ℓ+νℓ = ⟨ℓ+(q, s′), νℓ(k̃, s′′)| −
GF√
2
J†
µJ

µ(0) |π+(p)⟩ , (3.4)

donde GF es la constante de acoplo de Fermi y Jµ(0) es la corriente cargada del lagrangiano
efectivo LF (x) = −GF√

2
J†
µJµ(x), evaluada en el origen. Cada corriente será suma de un término

hadrónico y otro leptónico Jµ = Jµ
ℓ + Jµ

h , que tienen la forma:

Jµ
ℓ =

∑
ℓ=e,µ,τ

ℓ γµ(1− γ5)νℓ (3.5)

y
Jµ
h = d

′
γµ(1− γ5)u+ s′γµ(1− γ5)c+ b

′
γµ(1− γ5)t . (3.6)

El apóstrofe (′) sobre los campos fermiónicos asociados a los quarks down, strange y bottom
que aparece en (3.6) indica que estos campos son autoestados de la interacción débil, no de la
fuerte, cuya relación vendrá parametrizada por el ángulo de Cabibbo, θC , Anexo A.2. De ahora
en adelante, denotaremos Mπ+→ℓ+νℓ ≡ Mfi. El único término que contribuirá al elemento de
matriz (3.4) será

Mfi = −GF√
2
⟨ℓ+(q, s′), νℓ(k̃, s′′)|J†

µ, ℓ J
µ
h (0) |π

+(p)⟩

= −GF√
2
⟨ℓ+(q, s′), νℓ(k̃, s′′)|

[
νℓ γµ(1− γ5)ℓ

]
(0)

[
d
′
γµ(1− γ5)u

]
(0) |π+(p)⟩ .

(3.7)

Expresando el campo d′ = d cos θC + s sin θC y separando los términos leptónico y hadrónico,
obtenemos:

Mfi = −GF cos θC√
2

⟨ℓ+(q, s′), νℓ(k̃, s′′)|
[
νℓ γµ(1− γ5)ℓ

]
(0)|0⟩︸ ︷︷ ︸

=M(L)
fi

⟨0|
[
dγµ(1− γ5)u

]
(0) |π+(p)⟩︸ ︷︷ ︸

=M(H)
fi

.

(3.8)

u

d

ν`(k̃, s
′′)

`+(q, s′)

π+(p) fπ

Figura 3.3: Diagrama de primer orden asociado a la desintegración del pion π+ en
LIV. El pion inicial tiene cuadrimomento p y espín s = 0, mientras que en el estado
final el leptón cargado tendrá cuadrimomento q y espín s′. El neutrino tendrá momento
lineal k, energía Eν y espín s′′.
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3 Producción de neutrinos en fuentes astrofísicas

El término hadrónico, M(H)
fi , no presenta ninguna diferencia respecto al cálculo realizado en SR,

pues solo hemos introducido el efecto de LIV en el lagrangiano libre del neutrino. Por tanto,
podremos usar el resultado obtenido en el Anexo A.3.2:

M(H)
fi = ⟨0|

[
dγµ(1− γ5)u

]
(0) |π+(p)⟩ = −fπpµ , (3.9)

donde se ha introducido la constante de desintegración del pion, fπ. Siguiendo el convenio ex-
plicado en la sección A.3.2, el valor de esta constante será fπ = 130, 56(2)(4)(13) MeV [2]. Para
calcular el término leptónico, M(L)

fi , procederemos de manera análoga a SR. Expresaremos el
estado final como la acción de operadores creación sobre el vacío y calcularemos su dual:

⟨ℓ+(q, s′) , νℓ(k̃, s′′)| =
√
2Eq

√
2Ek ⟨0| ak, s′′(νℓ) bq, s′(ℓ) . (3.10)

A continuación, escribiremos las expresiones de los campos libres νℓ(x) y ℓ(x) como una super-
posición de ondas planas evaluadas en el origen (x = 0) y operaremos con (3.10) de la manera
usual, obteniendo así:

M(L)
fi = ⟨ℓ+(q, s′), νℓ(k̃, s′′)|

[
νℓ γµ(1− γ5)ℓ

]
(0)|0⟩ = us

′′
ν (k̃) γµ(1− γ5) vs

′
ℓ (q) , (3.11)

un resultado equivalente al de SR, con la diferencia de que ahora us′′ν (k̃) será un espinor de Dirac
modificado y la relación energía-momento para el neutrino vendrá dada por la expresión (3.1).
Insertando (3.9) y (3.11) en (3.8), podremos escribir finalmente el elemento de matriz como

Mfi =
GF fπ cos θC√

2
us

′′
ν (k̃) γµ(1− γ5) vs

′
ℓ (q) p

µ . (3.12)

El elemento de matriz Mfi nos dará la amplitud de la probabilidad de transición entre el estado
inicial y el estado final del proceso. No obstante, nosotros estaremos interesados en su módulo
al cuadrado, que nos proporcionará la probabilidad real y que será la variable que aparezca en
la anchura de desintegración diferencial, dΓ. Además, como no estamos interesados en la polari-
zación de espín de las partículas finales, promediaremos el resultado a todas las combinaciones
posibles de s′ y s′′, definiendo: |Mfi|2 =

∑
spin |Mfi|2 =

∑
s′
∑

s′′ MfiM∗
fi. Así,

|Mfi|2 =
∑
s′

∑
s′′

G2
F f

2
π cos

2 θC
2

(
us

′′
ν (k̃) γµ(1− γ5) vs

′
ℓ (q)

)(
vs

′
ℓ (q) (1 + γ5) γν u

s′′
ν (k̃)

)
pµpν .

(3.13)
Haciendo uso de las relaciones de completitud para los espinores del leptón cargado y para los
espinores modificados del neutrino:∑

s′

vs
′

ℓ (q) v
s′
ℓ (q) = /q −mℓ y

∑
s′′

us
′′
ν (k̃)us

′′
ν (k̃) = /̃k +mν ≃ /̃k (3.14)

respectivamente, podremos reescribir el resultado (3.13) como

|Mfi|2 =
G2

F f
2
π cos

2 θC
2

Tr
(
/̃k γµ (1− γ5)(/q −mℓ)(1 + γ5) γν

)
pµpν , (3.15)

donde aparece la traza de un producto de matrices. Hemos introducido aquí la notación “slash”
de Feynman, /p = γµ p

µ. Las propiedades usuales de la traza de matrices γµ son bien conocidas
y nos permitirán calcular de forma sencilla la expresión (3.15), obteniendo así:

|Mfi|2 = 4G2
F f

2
π cos

2 θC
(
2 (q · p)(k̃ · p)−m2

π q · k̃
)
. (3.16)

15



3 Producción de neutrinos en fuentes astrofísicas

Este es el resultado que necesitamos para calcular la anchura de desintegración total en el sistema
de referencia laboratorio. Como veremos más adelante, será conveniente expresar el elemento de
matriz (3.16) en función de dos variables: la energía del pion inicial, Eπ, y la energía del neutrino,
Eν , resultando en

|Mfi|2 = 4G2
F f

2
π cos

2 θC

(
m2

ℓ (m
2
π −m2

ℓ )

2
−sm2

ℓ (Eπ−2Eν)
En+1

ν

Λn
+2(Eπ−Eν)

E2n+3
ν

Λ2n

)
, (3.17)

donde hemos empleado la MDR para el neutrino8 y la relación EπEν − p · k ≃ (m2
π −m2

ℓ )/2 +

sEn+2
ν /Λn, que se deduce empleando la conservación del momento lineal y la energía. Analizando

(3.17), vemos que cuando Λ → ∞ el resultado tiende al valor de SR, lo que nos asegura que a
bajas energías la simetría Lorentz permanece intacta. Por otro lado, cuando

En+2
π ≫ mℓmπΛ

n (3.18)

el tercer término de (3.17) dominará sobre el resto. Aparecerán así dos escalas de energía, según
usemos mℓ = me o mℓ = mµ en (3.18). La escala inferior podrá entenderse como un umbral
efectivo a partir del cual los efectos de LIV serán notables. Cuando la energía del pion sea mayor
que la escala superior, el elemento de matriz será completamente independiente de mℓ, dando
lugar a una probabilidad de transición igual para el neutrino electrónico y para el muónico. Esto
es un comportamiento completamente diferente respecto a SR, donde el canal de desintegración
π+ → e+νe está suprimido respecto al canal π+ → µ+νµ. Sin embargo, solo podremos sacar
conclusiones válidas a partir de la anchura Γ de cada proceso, no al nivel del elemento de matriz.

3.1.2. Anchura de desintegración

La anchura de desintegración diferencial del proceso en LIV vendrá dada por la expresión

dΓ = (2π)4 δ(Eπ − Eν − Eℓ) δ
(3)(p− k− q)

1

2Eπ
|Mfi|2

d3k

(2π)3 2Eν

d3q

(2π)3 2Eℓ
, (3.19)

donde ahora será necesario explicitar la conservación de la energía y la conservación del momento
lineal por separado. A diferencia de SR, no particularizaremos el problema al sistema CdM. La
anchura total se calculará, por tanto, integrando a todo el espacio de momentos del neutrino y
el leptón cargado:

Γ =
1

8Eπ(2π)2

∫
d3k

Eν
|Mfi|2

∫
d3q

Eℓ
δ(Eπ − Eν − Eℓ) δ

(3)(p− k− q) . (3.20)

Usando la propiedad (A.69), reescribiremos δ(3)(p − k − q) = δ(3)(q − q∗), con q∗ = p − k e
integraremos respecto al momento del leptón cargado:

Γ =
1

8Eπ(2π)2

∫
d3k

Eν
|Mfi|2

∫
d3q

Eℓ
δ(Eπ − Eν − Eℓ) δ

(3)(q− q∗)

=
1

8Eπ(2π)2

∫
d3k

Eν
|Mfi|2

δ
(
Eπ − Eν −

√
m2

ℓ + |q∗|2
)

√
m2

ℓ + |q∗|2
.

(3.21)

8Un detalle importante a destacar es que, siempre que trabajemos con la MDR, nos quedaremos a primer
orden de corrección en la escala Λ. De forma práctica, esto se traduce en que la relación de dispersión cuadrática
vendrá dada entonces por |k|2 ≃ E2

ν − 2sEn+2
ν /Λn.
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3 Producción de neutrinos en fuentes astrofísicas

A continuación, escribiremos |q∗|2 en función de las variables de integración. Como sabemos,
|q∗|2 = q∗ ·q∗ = (p−k) · (p−k) = |p|2+ |k|2− 2p ·k. No obstante, nos interesará expresar este
término en función de la energía del pion y la energía del neutrino, al igual que hemos hecho con
el elemento de matriz. Desarrollando, obtenemos

|q∗|2 = E2
π + E2

ν −m2
π − 2s

En+2
ν

Λn
− 2

√
E2

π −m2
π

(
Eν − s

En+1
ν

Λn

)
cos θ , (3.22)

siendo θ el ángulo formado por el momento lineal del pion, p y el momento lineal del neutrino,
k. Ahora, la delta de Dirac que impone la conservación de la energía en (3.21) proporcionará una
ligadura para la integral final entre la energía del neutrino y el ángulo θ. Procediendo de forma
análoga a SR, Anexo B, denotaremos

f(θ) = Eπ − Eν −

√
m2

ℓ + E2
π + E2

ν −m2
π − 2s

En+2
ν

Λn
− 2

√
E2

π −m2
π

(
Eν − s

En+1
ν

Λn

)
cos θ (3.23)

y aplicaremos la propiedad (A.69), lo que nos permitirá realizar la integral angular para el
momento del neutrino. Los ceros de (3.23), vendrán dados por

cos θ∗ = −
m2

π −m2
ℓ − 2EπEν + 2sEn+2

ν /Λn

2
√
E2

π −m2
π (Eν − sEn+1

ν /Λn)
con f(θ∗) = 0 , (3.24)

que determinará el ángulo θ en función de Eν , y su derivada será∣∣∣∣df(θ)dθ

∣∣∣∣
θ=θ∗

=

√
E2

π −m2
π (Eν − sEn+1

ν /Λn) sin θ∗

Eπ − Eν
. (3.25)

Reuniendo todo esto, podremos reescribir (3.21) como

Γ =
1

8Eπ(2π)2
√
E2

π −m2
π

∫ +∞

0
d|k| |k|2

|Mfi|2

Eν

∮
sin θ dθ dφ

δ(θ − θ∗)

(Eν − sEn+1
ν /Λn) sin θ∗

× Eπ − Eν√
m2

ℓ + E2
π + E2

ν −m2
π − 2sEn+2

ν /Λn − 2
√
E2

π −m2
π

(
Eν − sEn+1

ν /Λn
)
cos θ

,
(3.26)

donde hemos expresado el diferencial de volumen del espacio de momentos para el neutrino en
coordenadas esféricas. La integral al ángulo φ resultará en un factor 2π, mientras que la integral
sobre θ dará como resultado el integrando evaluado en θ = θ∗, obteniendo así:

Γ =
1

16π Eπ

√
E2

π −m2
π

∫ +∞

0
d|k| |k|2

|Mfi|2

Eν (Eν − sEn+1
ν /Λn)

Θ(θ∗)Θ(π − θ∗) . (3.27)

La funciones Θ que aparecen en (3.27) son las funciones escalón de Heaviside, que delimitarán el
intervalo de integración. Finalmente, expresaremos |k| en función de la energía del neutrino Eν ,
que será nuestra nueva variable de integración. Haciendo uso de la relación de dispersión (3.1),
la integral (3.27) podrá escribirse como

Γ =
1

16π Eπ

√
E2

π −m2
π

∫ Eν(θ∗=0)

Eν(θ∗=π)
dEν

(
1− s(n+ 1)En

ν /Λ
n
) (1− 2sEn

ν /Λ
n)

(1− sEn
ν /Λ

n)
|Mfi|2 . (3.28)

Entonces, podremos desarrollar (1− sEn
ν /Λ

n)−1 = 1 + sEn
ν /Λ

n +O((En
ν /Λ

n)2) y el integrando
de (3.28) podrá escribirse como un desarrollo en potencias de En

ν /Λ
n multiplicando al elemento

de matriz. Todos los factores desarrollables como una suma de potencias de En
ν /Λ

n se podrán
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3 Producción de neutrinos en fuentes astrofísicas

aproximar a orden 0, ya que En
ν /Λ

n ≪ 1. Por tanto, la integral (3.28) se reducirá a

Γ =
1

16π Eπ

√
E2

π −m2
π

∫ E
(max)
ν

E
(min)
ν

dEν |Mfi|2 , (3.29)

donde hemos renombrado los límites de integración como E
(min)
ν ≡ Eν(θ

∗ = π) y E
(max)
ν ≡

Eν(θ
∗ = 0). Empleando la expresión explícita (3.17) para el elemento de matriz en función de

las energías del pion inicial y del neutrino, podremos calcular el resultado final, obteniendo:

Γ =
G2

F f
2
π cos

2 θC

4π Eπ

√
E2

π −m2
π

(
m2

ℓ (m
2
π −m2

ℓ )

2
(Eν,max − Eν,min)

− s
m2

ℓ Eπ

n+ 2

(E n+2
ν,max − E n+2

ν,min )

Λn
+ s

2m2
ℓ

n+ 3

(E n+3
ν,max − E n+3

ν,min )

Λn

+
2Eπ

2n+ 4

(E 2n+4
ν,max − E 2n+4

ν,min )

Λ2n
− 2

2n+ 5

(E 2n+5
ν,max − E 2n+5

ν,min )

Λ2n

)
.

(3.30)

Para hallar la expresión final de la anchura Γ en función de la energía del pion, será necesa-
rio conocer la dependencia de E(min)

ν y E
(max)
ν con Eπ, que obtendremos como solución de las

siguientes ecuaciones:

s
En+2

ν,min

Λn
+ s

√
E2

π −m2
π

En+1
ν,min

Λn
− (Eπ +

√
E2

π −m2
π)Eν,min +

m2
π −m2

ℓ

2
= 0 (3.31)

y

s
En+2

ν,max

Λn
− s

√
E2

π −m2
π

En+1
ν,max

Λn
− (Eπ −

√
E2

π −m2
π)Eν,max +

m2
π −m2

ℓ

2
= 0 (3.32)

Las ecuaciones (3.31) y (3.32) provienen de particularizar (3.24) a los casos θ∗ = π y θ∗ = 0,
respectivamente. El modelo de LIV bajo estudio fijará los parámetros n, s y Λ. Una vez escogido
el modelo, se deberán resolver ambas ecuaciones para el neutrino electrónico (mℓ = me) y para
el neutrino muónico (mℓ = mµ) en función de la energía del pion, Eπ.

3.2. Consecuencias fenomenológicas de LIV en la producción de neutrinos

De ahora en adelante, consideraremos el caso lineal, n = 1, y exploraremos las implicaciones
físicas de los resultados obtenidos en la sección anterior. Este no solo será el caso de estudio más
sencillo, sino también el más interesante a nivel fenomenológico: el neutrino y el antineutrino
exhibirán comportamientos diferentes, Tabla 2.1. Por tanto, será este el escenario en el que
nos centraremos a partir de este momento. En él, (3.31) y (3.32) serán ecuaciones cúbicas en
las variables E(min)

ν y E
(max)
ν , respectivamente. Dado que las raíces de los polinomios de tercer

grado tienen una expresión analítica conocida, emplearemos herramientas computacionales para
calcular sus soluciones exactas para diferentes valores de Eπ a partir de las expresiones analíticas.
En la Figura 3.4 se muestran las fracciones de energía E(min)

ν /Eπ y E(max)
ν /Eπ obtenidas mediante

este procedimiento. El rango de energías comprendido entre entre E(min)
ν y E(max)

ν dará el intervalo
de integración para la variable Eν .

Hasta ahora, el único efecto de LIV en la desintegración del pion se ha manifestado en la mo-
dificación del elemento de matriz |Mfi|2 a muy altas energías, como se ha mostrado en (3.18).
Analizando las Figuras 3.4a y 3.4b, encontramos un segundo efecto que competirá con el an-
terior: el intervalo de energías posibles para el neutrino producido en la desintegración se verá

18



3 Producción de neutrinos en fuentes astrofísicas

(a) Límites de integración para la energía del neutrino electrónico, νe.

(b) Límites de integración para la energía del neutrino muónico, νµ.

Figura 3.4: Evolución de los valores E(min)
ν y E(max)

ν en función de la energía del pion inicial, normali-
zados respecto a Eπ, para los procesos π+ → e+νe (a) y π+ → µ+νµ (b) en un escenario de LIV lineal
(n = 1). El cálculo de las soluciones exactas y su representación gráfica se han implementado mediante un
programa en lenguaje Python, haciendo uso de las librerías NumPy y Matplotlib [29, 30]. Las pequeñas
fluctuaciones de E(max)

ν /Eπ que aparecen en (a) para el caso superlumínico con Λ = EP se deben a
errores de aproximación en el cálculo numérico de ciertas funciones de NumPy para números complejos.

modificado respecto a SR. En el escenario sublumínico, el intervalo se ensanchará hasta abarcar
todo el rango permitido, 0 ≲ Eν ≲ Eπ. Esto se aprecia de forma clara en la Figura 3.4b, donde la
energía máxima permitida para el neutrino muónico crece rápidamente en torno a Eπ ≈ 0, 1− 1

PeV, según la escala de LIV escogida. Para el neutrino electrónico, Figura 3.4a, este efecto no
es apreciable, pues la fracción de energía máxima en SR tiende muy rápidamente a la unidad a
bajas energías, mucho antes de que el efecto de LIV sea notable.

En el escenario superlumínico ocurrirá lo contrario: el intervalo de energías permitidas se verá
reducido a partir de un cierto umbral de energía, determinado por la escala Λ, y los límites
superior e inferior coincidirán por encima deEπ ≈ 10 PeV, aproximadamente. Dado que E(max)

ν →
E

(min)
ν ≈ 0, el pion se convertirá en una partícula estable a muy altas energías. Por último, vemos

que tanto en el caso sublumínico como en el caso superlumínico el límite inferior E(min)
ν para los

dos tipos de neutrinos no se verá afectado y tenderá a cero a partir de Eπ ≈ 1 GeV.
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Las modificaciones en la anchura de desintegración tendrán entonces dos orígenes diferenciados.
Por un lado, la probabilidad del proceso se verá afectada debido a las correcciones en la expresión
del elemento de matriz (3.17) y, por otro lado, aparecerá una modificación en el intervalo de
energías permitidas para el neutrino hijo, que delimita el intervalo de integración para la anchura
total, Figura 3.4. En el caso sublumínico, ambos efectos favorecerán la desintegración del pion,
mientras que en el caso superlumínico estos efectos serán contrarios entre sí. Será interesante
analizar ambos escenarios por sus posibles consecuencias físicas.

A continuación, representaremos gráficamente la anchura total de cada proceso frente a la ener-
gía del pion, cuya expresión analítica se ha obtenido en (3.30). Esto se recoge en la Figura 3.5.
Analizando estos resultados, observamos que la desintegración se verá favorecida en ambos pro-
cesos para el caso sublumínico. Además, dado que los límites de integración para el neutrino
electrónico y muónico coincidirán a partir de Eπ ≈ 108 − 1010 MeV, Figura 3.4, y el elemento de

(a) Anchura total del proceso π+ → e+νe.

(b) Anchura total del proceso π+ → µ+νµ.

Figura 3.5: Modificaciones en la anchura de desintegración total de los procesos π+ → e+νe (a) y
π+ → µ+νµ (b) inducidas por un modelo de LIV lineal (n = 1). Para representar gráficamente este
resultado se ha evaluado la expresión analítica (3.30) en los límites E(min)

ν y E
(max)
ν calculados en

la Figura 3.4. La franja roja delimita el rango de energías no permitido para el pion, Eπ < mπ.
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matriz será independiente del sabor a muy altas energías, la anchura de desintegración presen-
tará la misma tendencia para los procesos π+ → e+νe y π+ → µ+νµ. Las principales diferencias
se manifestarán en el escenario superlumínico. El umbral efectivo de reducción del intervalo de
energías permitido para el neutrino coincidirá en ambos procesos con el inicio de la atenuación
de la anchura de desintegración, Γ. Sin embargo, el término de corrección de orden En

ν /Λ
n en

(3.17) dependerá del cuadrado de la masa del leptón cargado. Dado que m2
e/m

2
µ ≃ 2, 3 · 10−5,

la contribución de este término en el caso del proceso π+ → e+νe será despreciable frente a su
análogo en el proceso π+ → µ+νµ y dominará por tanto el término de orden E2n

ν /Λ2n, definido
positivo, que dará lugar al crecimiento inicial de la anchura en torno a Eπ ≈ 107 − 109 MeV. A
mayor energía, la reducción de E(max)

ν /Eπ se impondrá y provocará la caída de Γ, de modo que
en el caso superlumínico el pion se convertirá en una partícula estable.

Todo esto será válido para el estudio de la producción de neutrinos. No obstante, en la naturaleza
existen tanto neutrinos como antineutrinos, y uno deberá ser cuidadoso al interpretar los resulta-
dos obtenidos en este trabajo. El primer paso consiste en escoger un modelo de LIV, determinado
por la escala Λ y los parámetros n y s, y comprobar en la Tabla 2.1 cuál será el comportamiento
del neutrino y del antineutrino. Si el neutrino es (super)sublumínico, acudiremos a los resultados9

para el carácter (super)sublumínico de la escala Λ escogida. De igual manera, si el antineutrino
es (super)sublumínico, acudiremos a los resultados para el carácter (super)sublumínico.

Las búsquedas actuales de señales de LIV en el sector del neutrino se fundamentan en los aná-
lisis de retrasos en tiempos de vuelo y la búsqueda de su posible desintegración. No obstante,
estos nuevos resultados abren la puerta a considerar un efecto adicional en estas búsquedas:
la proporción de los sabores de neutrinos astrofísicos en las fuentes se verá modificada a altas
energías. Esto no resulta evidente en la Figura 3.5, por lo que representaremos el branching ratio
Γπ+→ e+νe/Γπ+→µ+νµ en función de la energía del pion, Figura 3.6. Vemos entonces que, si bien a
bajas energías la producción de neutrinos electrónicos está suprimida, existirá un cierto intervalo
de energía en el cual la proporción de νe y νµ en la fuente será comparable. Además, por encima
de un cierto umbral determinado por la escala Λ, esta proporción será constante y únicamente
dependerá del comportamiento (super)sublumínico del neutrino.

Figura 3.6: Proporción de neutrinos νe y νµ producidos en una fuente astrofísica como función de Eπ.

9Nótese que en este trabajo únicamente hemos estudiado los resultados asociados al caso lineal n = 1. El caso
cuadrático n = 2 deberá ser estudiado de forma análoga.
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4 | Conclusiones

Al inicio de este trabajo se ha motivado el estudio de la violación de invariancia Lorentz como
una posible ruptura de simetría en la naturaleza, para posteriormente proceder con un repaso
general de su formulación y sus implicaciones en la física de altas energías. La idea de una
ruptura de simetría Lorentz ha sido ampliamente estudiada en la literatura, desde los trabajos
más teóricos sobre la estructura matemática de este concepto [31] hasta los numerosos análisis
de datos llevados a cabo por grandes colaboraciones experimentales [11, 15]. Sin embargo, y a
pesar del auge actual de la fenomenología de QG en el marco de la astronomía multimensajero,
el estudio de LIV en la producción de neutrinos de alta energía sigue siendo un área muy poco
explorada. Esto viene ocasionado, principalmente, por la escasez de datos experimentales de
neutrinos astrofísicos de muy alta energía, siendo insuficiente incluso para testar las predicciones
del SM sobre los mecanismos de producción de neutrinos en las fuentes.

Los resultados obtenidos en este trabajo ponen de manifiesto el gran potencial que presenta el
estudio de fuentes astrofísicas para búsquedas de LIV: a energías por encima de un determinado
umbral, el proceso π+ → e+νe dejará de estar suprimido respecto a π+ → µ+νµ y la proporción
en sabor νe/νµ se aproximará a la unidad. Además, a energías 4 órdenes de magnitud por encima
de este umbral, el efecto de LIV será completamente independiente de la escala Λ y la proporción
νe/νµ → 1 en el caso sublumínico, mientras que en el caso superlumínico el pion se convertirá
en una partícula estable. Un estudio completo de LIV en el sector del neutrino deberá incorpo-
rar todas las modificaciones comentadas desde su producción hasta su detección en la Tierra,
incluyendo la propagación a lo largo de distancias cosmológicas, donde el fenómeno de las oscila-
ciones de neutrinos jugará también un papel relevante. Desde el punto de vista experimental, la
infraestructura tecnológica y la escasez de eventos de alta energía han constituido los principales
limitantes durante las últimas décadas a la hora de constreñir posibles desviaciones ocasionadas
por LIV en las observaciones de telescopios de neutrinos. Esta situación, sin embargo, podría
verse alterada en las próximas décadas.

Actualmente, dos nuevos telescopios de neutrinos, ARCA y ORCA, están en proceso de cons-
trucción en las profundidades del mar Mediterráneo. Una vez completado, ARCA, acrónimo de
Astroparticle Research with Cosmics in the Abyss, será el telescopio más avanzado del mundo,
con un volumen de detección de 1 km3, aproximadamente, con la posibilidad de una ampliación
aún mayor [32]. Análogamente, IceCube, el mayor telescopio de neutrinos en la actualidad, co-
menzará en breve un gran proyecto de mejora de su detector. IceCube-Gen2, su sucesor, tratará
de buscar fuentes de neutrinos cósmicos hasta el EeV y se espera que esté operativo para el
año 2033 [33]. Estos próximos desarrollos abrirán la puerta a la realización de nuevos análisis de
datos con una estadística sin precedentes y la búsqueda de efectos de nueva física a energías muy
superiores a las accesibles hoy día. Es en este contexto donde los resultados presentados en este
trabajo podrán ser contrastados con las observaciones, lo que permitirá establecer nuevas cotas
inferiores para la escala Λ o incluso determinar un valor de Λ favorecido, en caso de encontrar
correlaciones con un cierto modelo de LIV.

Por otro lado, el estudio de la producción de neutrinos en fuentes astrofísicas conllevará también
una serie de retos que harán de estos análisis una tarea muy compleja. Si bien es cierto que el
mecanismo principal de producción de estos neutrinos es la desintegración de piones cargados,
existen también otras posibilidades. Por tanto, cada tipo de fuente podrá exhibir un comporta-
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miento ligeramente diferente según su naturaleza, composición y otros factores que intervendrán
en el proceso, lo que resultará en un fondo no deseado para el análisis de la proporción en sabor
del flujo de neutrinos. Para solucionarlo, uno debería considerar el estudio de fuentes aisladas
cuyos mecanismos de producción y aceleración de partículas de alta energía sean bien conoci-
dos. Sin embargo, esto presenta otras dificultades añadidas, como la necesidad de una resolución
direccional extremadamente pequeña o la escasez de eventos por encima del PeV.

Hasta que el desarrollo de la nueva tecnología de detección nos permita llevar a cabo estudios
precisos, será necesario explorar todas las implicaciones fenomenológicas que presentaría un es-
cenario de LIV en la producción de neutrinos. Una continuación natural de este trabajo incluirá
el estudio del caso cuadrático, n = 2, para el que será interesante obtener de nuevo la evolu-
ción de los límites E(min)

ν y E
(max)
ν en función de la energía del pion, así como las anchuras de

desintegración Γπ+→ e+νe y Γπ+→µ+νµ . Otra extensión posible de los resultados obtenidos en la
sección 3.2 consistirá en obtener la distribución de probabilidad asociada a la fracción de ener-
gía Eν/Eπ del neutrino hijo y analizar su comportamiento para valores de Eπ elevados, lo que
aportará mayor información sobre el proceso respecto a E(min)

ν /Eπ y E(max)
ν /Eπ, que únicamen-

te delimitan el soporte de la distribución. Una vez estudiada toda la casuística asociada a los
diferentes modelos de LIV en la desintegración del pion, se deberá considerar la desintegración
del (anti)muon µ+ → e+ + νe + νµ en un marco de LIV análogo al introducido en la sección 3.1.
De esta forma, será posible concatenar la desintegración de piones cargados en las fuentes con
las sucesivas desintegraciones posteriores de las partículas hijas inestables: los (anti)muones y los
(anti)neutrinos superlumínicos. Estudiando esta cadena de desintegración con las nuevas anchu-
ras modificadas, podrá construirse un modelo completo de producción para el flujo de neutrinos
de muy alta energía, que podrá ser testado experimentalmente en las próximas décadas.
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Anexos

A | Desintegración del pion en relatividad especial

Nuestro objetivo a lo largo de este apartado consistirá en calcular de forma rigurosa la anchura
de desintegración asociada al proceso π± → ℓ± + νℓ en un marco relativista sin ningún efecto de
nueva física. Comprender en profundidad este desarrollo será un paso fundamental para introducir
posteriormente efectos de violación de invariancia Lorentz en la cinemática del proceso, que
constituye el fin último de este trabajo. Atacar ese complejo problema sin previo entrenamiento
o intuición no sería muy inteligente, por lo que optaremos por tomar el camino aparentemente
más largo, que en muchas ocasiones suele ser también el más conveniente y gratificante. Por
tanto, se recomienda encarecidamente la lectura de este anexo al lector no familiarizado con este
tipo de cálculos en QFT. Ahora sí, sin más dilación, procedamos con el cálculo.

A.1. Planteamiento del problema

Comencemos por nuestro protagonista, el pion. Los piones son partículas subatómicas mediadoras
de la interacción fuerte residual, la interacción que mantiene unidos a los nucleones (protones y
neutrones) en el núcleo atómico. El pion fue teorizado inicialmente por el físico japonés Hideki
Yukawa en 1935 [34] en un intento de explicar la fuerza nuclear fuerte entre nucleones mediante
el intercambio de un bosón masivo, para el cual estimó una masa de mπ ≃ 100 MeV asumiendo
que se trataba de una fuerza de corto alcance, del orden de 2 fm. Fue finalmente en 1947 cuando
el grupo de Cecil Powell en Bristol [35] descubrió en los rayos cósmicos (CR) una nueva partícula
de masa intermedia que cumplía con lo esperado, a la que bautizaron como mesón-π (o pion)
para diferenciarla del previamente descubierto mesón-µ (o muon), también presente en los CR.

Hoy día sabemos que el pion no es una sola partícula, sino tres diferentes: π+, π− y π0. Los dos
primeros, con carga eléctrica, forman un par partícula-antipartícula, mientras que el pion neutro
es su propia antipartícula. Los piones no aparecen en el Modelo Estándar, pues no son partículas
elementales, sino sistemas ligados con JP = 0− conformados por un quark y un antiquark. De
hecho, es un sistema tan fuertemente ligado que su masa es, aproximadamente, unas 20 veces
mayor que la masa de sus constituyentes, Tabla A.1. Esto será muy importante tenerlo en cuenta
a la hora de calcular la amplitud de probabilidad del proceso de desintegración, como veremos
más adelante, pues no podremos considerar el pion como un estado asintótico de dos quarks
libres, un quark up y un quark down.

Carga eléctrica (e) Masa (MeV) Composición Vida media (s)

π+ +1 139, 57039(18) u d 2, 6033(5) · 10−8

π− −1 139, 57039(18) d u 2, 6033(5) · 10−8

π0 0 134, 9768(5) uu / d d 8, 43(13) · 10−17

Tabla A.1: Propiedades de los piones (JP = 0−) y medidas experimentales de ciertas magnitudes
de interés. Como podemos apreciar, la masa del π± es de ≃ 140 MeV, mientras que las masas de
los quarks u y d son 2, 16 MeV y 4, 67 MeV, respectivamente. Fuente: PDG (2022) [2].
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Si bien existen diferentes canales de desintegración para cada uno, nosotros nos centraremos en
la desintegración de un π± en un leptón cargado y su repectivo neutrino/antineutrino:

π± → ℓ± + νℓ ,

donde ℓ ≡ e, µ , tal que el número leptónico total y el número leptónico por familia se conserve
en el proceso. Cabe destacar que la desintegración al leptón τ no será posible, pues este tiene
una masa de mτ ≃ 1777 MeV, mayor que la del pion. Así, los procesos que nos conciernen serán
los siguientes:

π+ → e+ + νe π+ → µ+ + νµ

π− → e− + νe π− → µ− + νµ .

Nos bastará con calcular uno de estos procesos, pues el procedimiento para el resto será comple-
tamente análogo. Además, trabajar en el marco de la relatividad especial simplificará en gran
medida el trabajo, pues podremos calcular la anchura de desintegración del proceso en el sistema
centro de masas del pion inicial y, una vez obtenido el resultado, calcular su valor en cualquier
otro sistema de referencia mediante una transformación de Lorentz. En un marco de LIV, esto
ya no será posible, por lo que cada observador se verá obligado a describir la física del problema
únicamente desde su sistema de referencia.

A.2. Teoría V-A de las interacciones débiles

La teoría V-A de las interacciones débiles tiene sus orígenes en la teoría de Fermi de la desintegra-
ción beta [36], propuesta por el físico italiano en 1933. En su versión inicial, Fermi sugería que los
procesos β en los núcleos atómicos podrían describirse mediante corrientes cargadas, en analogía
a la formulación de la entonces aún joven electrodinámica cuántica (QED). Además, propuso
una densidad lagrangiana asociada a estas corrientes cargadas inspirándose en la empleada para
las corrientes cargadas en QED, L = ej

(em)
µ Aµ, escribiendo10:

Lβ = Gjn→p
µ jµν→e = G(upγµun)(ueγ

µuν) , (A.1)

donde reemplazó la carga eléctrica e por una nueva constante de acoplo G, ahora conocida como
la constante de acoplo de Fermi, GF . Es importante destacar que los campos están evaluados en
el mismo punto del espacio-tiempo. Es decir, supuso que se trataba de una interacción puntual.
Para el avance significativo de la teoría, hubo que esperar a 1956, cuando la brillante física
Madame Wu llevó a cabo en Columbia el experimento que probó la violación de la conservación
de la paridad en las interacciones débiles [37], estudiando la desintegración β de núcleos de 60Co.
Este descubrimiento fue la clave que llevó a la reformulación de la estructura de las corrientes
débiles cargadas, incluyendo un término axial: JV (γµ) → JV (γ

µ)− JA(γ
µγ5).

10Para ser más precisos, su resultado original fue una expresión general donde consideraba la corriente total
como suma de 5 términos, cada uno construido a partir de una de las cinco formas bilineales covariantes de Dirac
(de forma que la teoría sea covariante Lorentz). Introdujo así un Hamiltoniano para las interacciones débiles
Hw =

∑
i
Gi
2
(upOiun)(ueOiuν)+h.c., donde los Oi son una de las siguientes formas bilineales: OS = 1, OV = γµ,

OT = σµν , OA = γµγ5 y OP = γ5. Los subíndices (S, V, ...) denotan el nombre de la forma bilineal (escalar,
vector, tensor, vector axial y pseudoescalar, respectivamente) y σµν ≡ i

2
[γµ, γν ]. Fue tras escribir esta expresión

general que optó por completar la analogía con QED limitándose al caso de una forma bilineal vectorial, ec. (A.1).
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(b) Teoría efectiva de bajas energías.

Figura A.1: La desintegración del pion puede estudiarse tanto en el SM como en su aproximación
a bajas energías. En el SM (a), el bosón W es el propagador entre los dos vértices de interacción.
Cada vértice tiene lugar en un punto distinto del espacio-tiempo, por lo que el par ℓ+ νℓ se produce
en una posición y en un instante de tiempo diferente a la aniquilación del par u d. En la teoría V-A
(b), se asume que el efecto del propagador es tan reducido que se puede modelar el proceso como
un único vértice de interacción puntual con un acoplo equivalente a los dos vértices del SM.

Esta combinación, que únicamente requiere de reemplazar γµ por γµ(1− γ5) en la definición de
las corrientes introducida por Fermi, viola automáticamente la conservación de paridad. Así nació
la teoría V-A, en honor a la estructura de las corrientes que permitió describir matemáticamente
lo que se observaba en los experimentos.

Actualmente, la teoría V-A se concibe como el límite a bajas energías de la teoría electrodébil,
incluida en el Modelo Estándar, cuya estructura completa solo se revela a energías comparables
con las masas de los bosonesW± y Z0, que median la interacción electrodébil junto al fotón. Dado
que mW = 80, 377(12) GeV y mZ = 91, 1876(21) GeV [2], podremos estudiar la desintegración
de los piones en esta aproximación de bajas energías y, a pesar de que a nivel fundamental el
proceso está mediado por un bosón W , el hecho de que la norma del cuadrimomento del pion
sea despreciable frente a mW , nos permitirá usar una teoría de campos efectiva11, la teoría V-A.

Ahora ya estamos perfectamente equipados para introducir el lagrangiano efectivo y proceder
con el cálculo del proceso. Si bien es posible deducir la forma del lagrangiano y las corrientes
a partir de su formulación en el Modelo Estándar, esto ya ha sido cubierto ampliamente en la
literatura, por lo que no entraremos en ello aquí. El lector interesado puede consultar [38]. En
el Modelo Estándar, la desintegración del pion viene dada por el proceso ilustrado en la Figura
A.1a, donde se incluye el propagador asociado al bosón W . Como vemos, no se trata de una
interacción puntual, pues hay dos vértices de interacción diferentes, cada uno con un acoplo g.
En el límite a bajas energías, tendremos que p2 ≪ m2

W y podremos modelar el proceso como una
interacción puntual, sin necesidad de un propagador. Así, el intercambio del bosón masivo W se
reduce a una interacción de cuatro fermiones en el límite de bajas energías, Figura A.1b. Como
ya hemos comentado, el acoplo en la teoría V-A vendrá dado por la constante GF , con

GF√
2
=

g2

8m2
W

, (A.2)

siendo g la constante de acoplo en el SM y GF = 1, 1663788(6) · 10−5 GeV−2 [2].

11Uno podría pensar que, aunque esta aproximación sea perfectamente válida a bajas energías, su aplicación
al problema que nos concierne, el estudio de desviaciones respecto de SR a escalas de energía próximas a la de
Planck, carecería de sentido alguno. Esto es un punto importante a destacar y en el que debemos profundizar
para asegurarnos que nuestro cálculo tiene sentido en el marco de LIV. La discusión se recoge en la sección 3.1.
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El lagrangiano efectivo para procesos mediados por corrientes cargadas, como en nuestro caso,
viene dado por

LF = −GF√
2
J†
µJ

µ , (A.3)

donde cada corriente está compuesta por un término hadrónico y otro leptónico Jµ = Jµ
ℓ + Jµ

h ,
que tienen la forma:

Jµ
ℓ =

∑
ℓ=e,µ,τ

ℓ γµ(1− γ5)νℓ (A.4)

y
Jµ
h = d

′
γµ(1− γ5)u+ s′γµ(1− γ5)c+ b

′
γµ(1− γ5)t . (A.5)

La ecuación (A.3) se conoce como el lagrangiano de Fermi. Cabe destacar un aspecto relevante
de la corriente hadrónica (A.5). Los campos fermiónicos asociados a los quarks down, strange y
bottom que aparecen en ella tienen un apóstrofe (′) para indicar que estos campos son autoestados
de la interacción débil y no de la fuerte. La relación entre ambos viene dada, de forma general,
por la matriz Cabibbo-Kobayashi-Maskawa (CKM), que se representa usualmente de la siguiente
manera: 

d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 . (A.6)

Esto será importante, pues cuando hablamos de la composición en quarks de los piones, Tabla
A.1, nos referimos de forma implícita a los autoestados de la interacción fuerte. Además, también
es común usar como parámetro de mezcla el ángulo de Cabibbo, θC ≃ 13, 02◦ [2]. En primera
aproximación, b′ ≃ b y la matriz CKM se reduce a:d′

s′

 =

 cos θC sin θC
−sin θC cos θC

d
s

 . (A.7)

A.3. Amplitud de probabilidad del proceso

Estamos ya en condiciones de calcular la amplitud de probabilidad asociada a la desintegración
π± → ℓ± + νℓ. Como es costumbre al trabajar en problemas donde existen interacciones entre
los campos, consideraremos nuestro Hamiltoniano del sistema

H = H0 +Hint , (A.8)

donde trataremos el segundo término como una perturbación respecto al término libre. Además,
de ahora en adelante emplearemos la imagen de interacción de la mecánica cuántica, aunque
no siempre se manifieste en la notación de forma explícita. En esta imagen, los operadores (y
por tanto los campos) evolucionan en el tiempo con el Hamiltoniano libre H0, mientras que
los estados lo hacen con el término de interacción. De esta forma, un operador arbitrario AS ,
independiente del tiempo en la imagen de Schrödinger, tendrá la siguiente forma en la imagen
de interacción:

AI(t) = eiH0(t−t0)AS e
−iH0(t−t0) . (A.9)
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Por tanto, nuestro Hamiltoniano total en la imagen de interacción será H(t) = H0+HI(t), donde
hemos definido el Hamiltoniano de interacción en esta imagen como

HI(t) = eiH0(t−t0)Hint e
−iH0(t−t0) . (A.10)

Nótese que en la nueva imagen H0 no presentará dependencia temporal, pues conmuta con el
operador e±iH0(t−t0). Por otro lado, la evolución de los estados vendrá dada por el operador de
evolución U(t, t0), que en la imagen de interacción se define de la siguiente manera:

U(t, t0) = T

{
exp

(
−i

∫ t

t0

dt′HI(t
′)

)}
, (A.11)

siendo T el operador de ordenación temporal, que nos permite definir el producto ordenado
temporalmente de campos u operadores, como se muestra en la expresión (A.12).

T{ϕ(y)ϕ(x)} =

{
ϕ(y)ϕ(x) y0 > x0

ϕ(x)ϕ(y) y0 < x0
(A.12)

Tomemos ahora nuestro estado inicial del sistema a tiempo t0, que denotaremos por |i(t0)⟩. La
evolución de este estado hasta un tiempo t podrá obtenerse mediante la acción del operador
evolución sobre el estado:

|i(t)⟩ = U(t, t0) |i(t0)⟩ , (A.13)

donde U(t, t0) viene dado por (A.11). Estamos interesados en conocer la probabilidad de que
el estado inicial en t0 evolucione a un estado final concreto, que denotaremos por |f⟩. Es decir,
queremos calcular la amplitud de transición entre los estados |i(t0)⟩ y |f⟩, que en mecánica
cuántica no es otra cosa que

⟨f |i(t)⟩ = ⟨f |U(t, t0) |i(t0)⟩ , (A.14)

la acción del dual de |f⟩ sobre el estado tras la evolución. En nuestro caso, debemos matizar un
aspecto importante sobre estos estados. Siempre que estudiemos un proceso como el de la Figura
A.1b, consideraremos los estados inicial y final como estados asintóticamente libres. En otras
palabras, supondremos que en el límite t0 → −∞, el estado inicial |i(t0)⟩ es un autoestado del
Hamiltoniano con energía y momento definidos, p = (p0,p). Análogamente, denotaremos como
|f⟩ ≡ |f(t)⟩ a un estado asintótico en el límite t → +∞. Físicamente, lo que estamos diciendo
es que para t → ±∞, las partículas están tan alejadas que no existe interacción, por lo que
evolucionan como estados libres con una energía y un momento bien definidos12.

Tomando el límite t→ +∞ y t0 → −∞ y denotando los estados asintóticos como |i⟩ ≡ |i(t0)⟩ y
|f⟩ ≡ |f(t)⟩, tendremos que la amplitud de probabilidad de la desintegración será

Aπ+→ ℓ+νℓ = ⟨f |U(+∞,−∞) |i⟩ = ⟨f |S |i⟩ , (A.15)

donde |i⟩ = |π+(p)⟩ y |f⟩ = |ℓ+(q) , νℓ(k)⟩. Se define así la matriz S = U(+∞,−∞), también
conocida como “matriz de scattering”. Existe todo un formalismo construido a partir de esta
matriz para facilitar los cálculos de secciones eficaces de scattering y anchuras de desintegración,
que desemboca en la conocida fórmula de reducción de Lehmann-Symanzik-Zimmermann (LSZ).

12Por supuesto, en caso de que tratemos con un estado multipartícula, como nuestro estado final, cada una por
separado deberá cumplir estos requisitos: ser un estado de energía y momento definidos. Además de estos, como
veremos más adelante, deberán ser también autoestados de la helicidad. Es decir, tendrán un espín definido.
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Esta fórmula simplifica en gran medida el cálculo de los elementos de matriz del operador iT
(relacionado con la matriz S mediante S = 1 + iT ). Sin embargo, en nuestro caso particular no
podremos aplicar este formalismo, pues los campos que aparecen en el lagrangiano de interacción
(A.3) no describen todas las partículas que vemos en los estados inicial y final. Concretamente,
el pion, el estado inicial de nuestro sistema. Por tanto, no tenemos otra opción que continuar con
la derivación general del resultado.

Tal y como habíamos definido en (A.11), la expresión analítica de la matriz S ≡ U(+∞,−∞)

será

U(+∞,−∞) = T

{
exp

(
−i

∫ +∞

−∞
dt′HI(t

′)

)}
, (A.16)

que podremos expandir en serie de Taylor como:

U(+∞,−∞) = T

{
1 − i

∫ +∞

−∞
dt′HI(t

′) +
(−i)2

2!

(∫ +∞

−∞
dt′HI(t

′)

)2

+ . . .

}
. (A.17)

La posibilidad de realizar la expansión en serie de la exponencial abre la puerta a fragmentar
el problema inicial en muchos otros de menor dificultad: el cálculo de los sucesivos términos del
desarrollo. Esta idea constituye la esencia de la teoría de perturbaciones. A primer orden de
aproximación, tendremos que

U(+∞,−∞) ≃ 1 − i

∫ +∞

−∞
dt′ T{HI(t

′)} = 1 − i

∫ +∞

−∞
dt′HI(t

′) , (A.18)

donde hemos usado que T{HI(t)} = HI(t), pues todos los campos en el Hamiltoniano están eva-
luados en el mismo instante de tiempo. Además, fijémonos que podremos escribir el Hamiltoniano
como la integral a todo el volumen de la densidad Hamiltoniana, tal que:

U(+∞,−∞) ≃ 1 − i

∫
d4x HI(x) . (A.19)

Introduciendo esto en la expresión (A.15) para la amplitud de probabilidad, obtenemos

Aπ+→ ℓ+νℓ = ⟨f |U(+∞,−∞) |i⟩ ≃ ⟨f |1 − i

∫
d4x HI(x) |i⟩

= ⟨f |i⟩︸︷︷︸
=0

−i
∫
d4x ⟨f |HI(x) |i⟩ ,

(A.20)

donde vemos que el término de orden cero se anula, pues los estados inicial y final son ortogona-
les. Además, usando que P̂µ es el operador de traslación espaciotemporal, podremos escribir la
densidad Hamiltoniana como

HI(x) = eiP̂ x HI(0) e
−iP̂ x . (A.21)

Insertando esto en la expresión (A.20), podremos desarrollar el resultado, obteniendo finalmente:

Aπ+→ ℓ+νℓ ≃ −i
∫
d4x ⟨f | eiP̂ x HI(0) e

−iP̂ x |i⟩ = −i
∫
d4x ei(Pf−Pi)x ⟨f |HI(0) |i⟩

= −i(2π)4 δ(4)(Pf − Pi) ⟨f |HI(0) |i⟩ .
(A.22)

De forma natural, aparece aquí la conservación de la energía y el momento (codificado en la
conservación del cuadrimomento total del sistema) como consecuencia general de la invariancia
del problema bajo traslaciones en el tiempo y el espacio. El factor (2π)4 proviene de la definición
de la delta de Dirac en cuatro dimensiones, δ(4)(P ) =

∫
d4x
(2π)4

eiPx, donde P ≡ Pµ y Px ≡ Pµx
µ.
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Por otro lado, Pi y Pf representan los cuadrimomentos del sistema en el estado inicial y fi-
nal, respectivamente, que como ya hemos comentado anteriormente están bien definidos. Estos
provienen de la acción de los operadores de traslación e±iP̂ x sobre los estados inicial y final. La
misma manipulación puede llevarse a cabo para potencias arbitrarias de HI(x), pudiendo extraer
la delta de Dirac de la misma manera a todos los órdenes en teoría de perturbaciones [38].

A continuación, redefiniremos13 el resultado obtenido en (A.22), denotando:

Afi = i (2π)4 δ(4)(Pf − Pi)Mfi , (A.23)

De ahora en adelante, trabajaremos únicamente con la matriz M, dejando a un lado el factor
i(2π)4 y la delta de Dirac, que simplemente impone la conservación del cuadrimomento del
sistema. Es decir, estaremos interesados en calcular el elemento Mfi, dado por

Mπ+→ ℓ+νℓ = −⟨ℓ+(q) , νℓ(k)|HI(0) |π+(p)⟩ , (A.24)

el elemento de matriz de la densidad Hamiltoniana evaluada en x = 0. Esto es una consecuencia
de la invariancia bajo traslaciones espaciotemporales del problema, que nos permitirá situarnos en
el origen de nuestro sistema de referencia sin pérdida de generalidad. Recordando que la densidad
Hamiltoniana asociada a un lagrangiano viene dada por H(x) =

∑
iΠi(x)∂0ϕi(x) − L(x), con

Πi(x) = ∂L
∂(∂0ϕi(x))

, y que en el lagrangiano de interacción de la teoría V-A (A.3) no aparecen
derivadas, tendremos que Πi(x) = 0 ∀i, luego HI(x) = −LI(x). Así, podemos escribir

Mπ+→ ℓ+νℓ = −GF√
2
⟨ℓ+(q) , νℓ(k)| J†

µJ
µ(0) |π+(p)⟩ . (A.25)

Inciso. Dependencia funcional de los operadores en la imagen de interacción.

Cabe destacar que la dependencia funcional de HI(t) con los campos será la misma que
la de Hint, con la diferencia de que los campos que aparecen en HI(t) serán las soluciones
libres de la ecuación de Dirac. Algo que no debería sorprendernos, pues la unitariedad
de los operadores exp(−iH0t) nos permite hacer esto (recordemos que en esta imagen
los operadores evolucionan con el Hamiltoniano libre). Tomemos como ejemplo sencillo la
densidad Hamiltoniana Hint =

λ
4!ϕ

4. En la imagen de interacción:

HI(t) = eiH0t λ

4!
ϕ4 e−iH0t =

λ

4!
eiH0t ϕ 1 ϕ 1 ϕ 1 ϕ e−iH0t

=
λ

4!
eiH0t ϕ e−iH0t︸ ︷︷ ︸

ϕI(t)

eiH0t ϕ e−iH0t︸ ︷︷ ︸
ϕI(t)

eiH0t ϕ e−iH0t︸ ︷︷ ︸
ϕI(t)

eiH0t ϕ e−iH0t︸ ︷︷ ︸
ϕI(t)

=
λ

4!
ϕ4I(t) ,

(A.26)

y en el caso de que ϕ sea un campo escalar real, por ejemplo, la forma de ϕI(t) será la
solución más general de la ecuación de Klein-Gordon libre, véase:

ϕI(x) = ϕ+I (x) + ϕ−I (x) =

∫
d3p

(2π)3
√

2Ep

(
ape

−ipx + a†pe
ipx

)
. (A.27)

13La notación empleada hasta ahora, denotando la amplitud del proceso mediante Afi, se ha introducido
meramente para una mayor claridad en la exposición del desarrollo. El convenio usado para definir la matriz
M es, sin embargo, estándar y es extensamente empleado en la literatura. En muchas ocasiones se suele definir
directamente M = −GF√

2
J†
µJ

µ y sus elementos dan las diferentes amplitudes de los procesos i → f .
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El elemento de matriz (A.25) es el término en el que realmente estaremos interesados, y el que
aparecerá en la expresión de la anchura de desintegración diferencial, que calcularemos en la
siguiente sección. Consideremos entonces el proceso ilustrado en la Figura A.2, donde un π+

con cuadrimomento p y espín nulo (recordemos que JP (π) = 0−) se desintegra en un antileptón
cargado ℓ+ con cuadrimomento q y espín s′, y en un neutrino νℓ con cuadrimomento k y espín
s′′. Hasta ahora no ha sido necesario especificar los espines de las partículas finales, pero será
importante de ahora en adelante para realizar el cálculo. Por lo general, los experimentos que
buscan medir la anchura de desintegración de estos procesos son ciegos frente a los espines de
las partículas en el estado final, por lo que una vez obtenido el resultado tendremos que sumar
las contribuciones de todas las configuraciones de espín de las partículas finales.

Denotaremos entonces nuestros estados de forma más precisa como

|i⟩ = |π+(p)⟩ y |f⟩ = |ℓ+(q, s′) , νℓ(k, s′′)⟩ , (A.28)

y procederemos con el cálculo de Mfi = −GF√
2
⟨f |J†

µJµ(0)|i⟩. Desarrollando las corrientes:

J†
µJ

µ =
(
Jµ, h + Jµ, ℓ

)†(
Jµ
h + Jµ

ℓ

)
=

(
J†
µ, h + J†

µ, ℓ

)(
Jµ
h + Jµ

ℓ

)
= J†

µ, h J
µ
h + J†

µ, h J
µ
ℓ + J†

µ, ℓ J
µ
h + J†

µ, ℓ J
µ
ℓ ,

(A.29)

donde obtenemos un término puramente hadrónico, un término puramente leptónico y dos tér-
minos mixtos. Es directo ver que los términos puros no contribuirán a la amplitud. Todo estado
general puede descomponerse en su parte hadrónica y su parte leptónica, tal que |ψ⟩ = |ψ⟩h⊗|ψ⟩ℓ.
Así, una corriente puramente hadrónica, por ejemplo, solo actuará sobre el espacio asociado a
los estados |ψ⟩h, de forma que, en un caso como el nuestro donde |i⟩ = |i⟩h y |f⟩ = |f⟩ℓ :

⟨f |J†
µ, h J

µ
h |i⟩ =

(
⟨f |ℓ ⊗ ⟨f |h

)
J†
µ, h J

µ
h

(
|i⟩h ⊗ |i⟩ℓ

)
= ⟨f |0⟩ℓ︸ ︷︷ ︸

=0

⊗ ⟨0| J†
µ, h J

µ
h |i⟩h = 0 , (A.30)

y de la misma manera para el término leptónico puro. Por otro lado, de los términos mixtos
únicamente uno de ellos contribuirá, concretamente el J†

µ, ℓ J
µ
h , que “sube la carga” sobre el

estado leptónico inicial (el vacío) y “baja la carga” sobre el estado hadrónico inicial (el pion π+).

u

d

ν`(k, s
′′)

`+(q, s′)

π+(p) fπ

Figura A.2: Diagrama de primer orden asociado a la desintegración del pion π+ en la
aproximación de bajas energías. El pion inicial tiene cuadrimomento p y espín s = 0,
mientras que en el estado final los cuadrimomentos y espines del leptón cargado y el
neutrino son (q, s′) y (k, s′′), respectivamente. En el proceso deberán conservarse tanto
el cuadrimomento como el momento angular del sistema.
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Así, la única contribución14 a la corriente nos permitirá escribir (A.25) como:

Mfi = −GF√
2
⟨f | J†

µ, ℓ J
µ
h (0) |i⟩ . (A.31)

Recordando las expresiones para las corrientes (A.4) y (A.5), y procediendo de forma análoga
a los cálculos anteriores, podemos deducir fácilmente que los términos de cada corriente que
contribuyen a la amplitud serán solo los de los campos asociados a partículas del estado inicial
o final, véase:

J†
µ, ℓ(0) ≡

[
νℓ γµ(1− γ5)ℓ

]
(0)

Jµ
h (0) ≡

[
d
′
γµ(1− γ5)u

]
(0) ,

(A.32)

luego el elemento de matriz (A.31) vendrá dado por

Mfi = −GF√
2
⟨f |

[
νℓ γµ(1− γ5)ℓ

]
(0)

[
d
′
γµ(1− γ5)u

]
(0) |i⟩

= −GF cos θC√
2

⟨f |
[
νℓ γµ(1− γ5)ℓ

]
(0)

[
dγµ(1− γ5)u

]
(0) |i⟩ ,

(A.33)

donde hemos introducido el ángulo de Cabibbo tal que d′ = d cos θC + s sin θC , pues recordemos
que en el estado inicial del pion tenemos d y no d′. Escribiendo ahora los estados inicial y final
de forma explícita y separando el elemento de matriz en su parte leptónica y su parte hadrónica,
llegamos finalmente a:

Mfi = −GF cos θC√
2

⟨ℓ+(q, s′) , νℓ(k, s′′)|
[
νℓ γµ(1− γ5)ℓ

]
(0)|0⟩⟨0|

[
dγµ(1− γ5)u

]
(0) |π+(p)⟩ .

(A.34)
Calcularemos por separado el elemento de matriz leptónico y el hadrónico.

A.3.1. Elemento de matriz leptónico

A continuación, calcularemos únicamente la parte leptónica del elemento Mfi (A.34), que tiene
la siguiente forma:

M(L)
fi = ⟨ℓ+(q, s′) , νℓ(k, s′′)|

[
νℓ γµ(1− γ5)ℓ

]
(0) |0⟩ . (A.35)

El estado final podrá escribirse a partir de operadores creación actuando sobre el “vacío” del
espacio de Fock asociado a cada campo. En nuestro caso, podremos escribirlo como

|ℓ+(q, s′) , νℓ(k, s′′)⟩ =
√
2Eq

√
2Ek b

†
q, s′(ℓ) a

†
k, s′′(νℓ) |0⟩ , (A.36)

donde a† y b† son los operadores de creación de partícula y antipartícula, respectivamente (cada
uno asociado a un campo de Dirac, que denotamos entre paréntesis). Las raíces provienen de la
normalización de los estados en el dominio relativista. Entonces, calcularemos su dual:

⟨ℓ+(q, s′) , νℓ(k, s′′)| =
(
|ℓ+(q, s′) , νℓ(k, s′′)⟩

)†
=

√
2Eq

√
2Ek

(
b†q, s′(ℓ) a

†
k, s′′(νℓ) |0⟩

)†

=
√

2Eq

√
2Ek ⟨0| ak, s′′(νℓ) bq, s′(ℓ) .

(A.37)

14Según la desintegración que consideremos, el término mixto que contribuirá a la corriente será uno u otro.
Para el proceso a un leptón y un antineutrino, π− → ℓ−νℓ, el término relevante será J†

µ, h Jµ
ℓ , mientras que para

la desintegración a un antileptón y un neutrino, π+ → ℓ+νℓ, será J†
µ, ℓ J

µ
h .
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Introduciendo lo anterior en la expresión (A.35), llegamos a

M(L)
fi = ⟨ℓ+(q, s′) , νℓ(k, s′′)|

[
νℓ γµ(1− γ5)ℓ

]
(0) |0⟩

= ⟨0|
√
2Ek ak, s′′(νℓ) νℓ(0) |0⟩︸ ︷︷ ︸

Sν

γµ(1− γ5) ⟨0|
√
2Eq bq, s′(ℓ) ℓ(0) |0⟩︸ ︷︷ ︸

Sℓ

, (A.38)

donde hemos separado los términos asociados al campo del neutrino y del leptón cargado, que
denotaremos por Sν y Sℓ, respectivamente. Esta notación se ha introducido únicamente para
una mayor claridad en la exposición, pues a continuación calcularemos cada uno de ellos por
separado. Recordemos que, al trabajar en la imagen de interacción, los campos que aparecen en
la expresión (A.38) serán los campos de Dirac libres asociados al neutrino y al leptón cargado,
evaluados en x = 0. Por tanto, el cálculo de Sν y Sℓ se simplificará en gran medida, como veremos
a continuación. Comencemos por Sν :

Sν = ⟨0|
√
2Ek ak, s′′

∫
d3p

(2π)3
√
2Ep

∑
s=1,2

(
bp, s v

s(p) + a†p, s u
s(p)

)
|0⟩

=

∫
d3p

(2π)3

√
2Ek√
2Ep

∑
s=1,2

(
⟨0| ak, s′′ bp, s |0⟩︸ ︷︷ ︸

=0

vs(p) + ⟨0| ak, s′′ a†p, s |0⟩us(p)
)

=

∫
d3p

(2π)3

√
2Ek√
2Ep

∑
s=1,2

⟨0| ak, s′′ a†p, s |0⟩us(p)

=

∫
d3p

(2π)3

√
2Ek√
2Ep

∑
s=1,2

us(p)
(
⟨0| {ak, s′′ , a†p, s} |0⟩ − ⟨0| a†p, s ak, s′′ |0⟩︸ ︷︷ ︸

=0

)

=

∫
d3p

(2π)3

√
2Ek√
2Ep

∑
s=1,2

us(p) ⟨0| {ak, s′′ , a†p, s} |0⟩

(A.39)

Usando ahora que el anticonmutador asociado a los operadores creación y destrucción de partí-
culas (y antipartículas) para el campo de Dirac viene dado por

{ap, r , a†q, s} = {bp, r , b†q, s} = (2π)3δ(3)(p− q) δrs , (A.40)

podremos desarrollar (A.39) y aplicar las propiedades usuales de la delta de Kronecker en el
sumatorio y la delta de Dirac en la integral:

Sν =

∫
d3p

(2π)3

√
2Ek√
2Ep

∑
s=1,2

us(p) ⟨0| (2π)3δ(3)(k− p) δs′′ s |0⟩

=

∫
d3p

(2π)3

√
2Ek√
2Ep

∑
s=1,2

us(p) (2π)3δ(3)(k− p) δs′′ s ⟨0|0⟩︸︷︷︸
=1

=

∫
d3p

√
2Ek√
2Ep

us
′′
(p) δ(3)(k− p) =

√
2Ek√
2Ek

us
′′
(k)

= us
′′
(k) .

(A.41)

Obteniendo finalmente que el término Sν no es más que el adjunto de Dirac del espinor us′′(k)
para el neutrino, con cuadrimomento k y espín s′′. Ahora, calcularemos de forma análoga el
término Sℓ.
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Así, tenemos:

Sℓ = ⟨0|
√

2Eq bq, s′

∫
d3p

(2π)3
√
2Ep

∑
s=1,2

(
ap, s u

s(p) + b†p, s v
s(p)

)
|0⟩

=

∫
d3p

(2π)3

√
2Eq√
2Ep

∑
s=1,2

(
⟨0| bq, s′ ap, s |0⟩︸ ︷︷ ︸

=0

us(p) + ⟨0| bq, s′ b†p, s |0⟩ vs(p)
)

=

∫
d3p

(2π)3

√
2Eq√
2Ep

∑
s=1,2

⟨0| bq, s′ b†p, s |0⟩ vs(p)

=

∫
d3p

(2π)3

√
2Eq√
2Ep

∑
s=1,2

vs(p)
(
⟨0| {bq, s′ , b†p, s} |0⟩ − ⟨0| b†p, s bq, s′ |0⟩︸ ︷︷ ︸

=0

)

=

∫
d3p

(2π)3

√
2Eq√
2Ep

∑
s=1,2

vs(p) ⟨0| {bq, s′ , b†p, s} |0⟩ ,

(A.42)

que, usando de nuevo la relación (A.40) para el anticonmutador, resulta en:

Sℓ =

∫
d3p

(2π)3

√
2Eq√
2Ep

∑
s=1,2

vs(p) ⟨0| (2π)3δ(3)(q− p) δs′ s |0⟩

=

∫
d3p

(2π)3

√
2Eq√
2Ep

∑
s=1,2

vs(p) (2π)3δ(3)(q− p) δs′ s ⟨0|0⟩︸︷︷︸
=1

=

∫
d3p

√
2Eq√
2Ep

vs
′
(p) δ(3)(q− p) =

√
2Eq√
2Eq

vs
′
(q)

= vs
′
(q) ,

(A.43)

donde obtenemos el espinor v asociado al campo de Dirac del antileptón ℓ+ con cuadrimomento q
y espín s′. Reuniendo los términos Sν y Sℓ, podremos reescribir finalmente el elemento de matriz
leptónico (A.35) como

M(L)
fi = us

′′
ν (k) γµ(1− γ5) vs

′
ℓ (q) . (A.44)

A.3.2. Elemento de matriz hadrónico

Una vez obtenida la contribución de la corriente leptónica a Mfi, calcularemos la contribución
de la corriente hadrónica asociada a los quarks entre el estado inicial del pion y el vacío. El
elemento de matriz hadrónico vendrá dado por

M(H)
fi = ⟨0|

[
dγµ(1− γ5)u

]
(0) |π+(p)⟩ . (A.45)

A diferencia de como hemos hecho con el término leptónico M(L)
fi , ahora no podremos descompo-

ner el estado del pion como operadores de creación de un quark up y un antiquark down actuando
sobre el vacío, pues los quarks que lo conforman no son partículas libres. En un estado ligado sen-
cillo, como el átomo de hidrógeno, por ejemplo, la masa del sistema se obtiene sumando las masas
de sus constituyentes (el protón y el electrón) y restando una cierta cantidad, que denominamos
energía de ligadura del sistema. En este ejemplo, la energía de ligadura del estado fundamental es
de EI ≃ 13, 6 eV, completamente despreciable frente a la masa del electrón, me ≃ 511 keV [2], y,
por lo tanto, frente a la masa de los constituyentes del sistema libre, me+mp. Esto es lo que uno
esperaría encontrar en un sistema en que la interacción puede tratarse de forma perturbativa.
Sin embargo, esto no ocurre en QCD.
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Los constituyentes del pion (π+), los quarks u y d, poseen unas masas de mu ≃ 2, 16 MeV y
md ≃ 4, 67 MeV, repectivamente [2]. Al medir experimentalmente la masa del sistema ligado π+,
se obtiene un valor de mπ+ ≃ 140 MeV, ver Tabla A.1. Esto significa que la contribución de las
masas de los quarks es prácticamente despreciable frente a la masa del sistema ligado. Casi la
totalidad de la masa del pion proviene de la energía del campo del gluon creado por los quarks u
y d, así como por otros efectos más complicados propios de QCD, que quedan fuera de nuestro
alcance en este trabajo. Todos estos constituyen efectos no perturbativos, que no seremos capaces
de cuantificar con las herramientas usuales.

Para solventar este problema, se introduce la constante de desintegración del pion, fπ. Dado que
el pion es un pseudoescalar (su paridad intríseca es Pπ = −1), puede mostrarse que el elemento
de matriz ⟨0| d γµ(1 − γ5)u |π+⟩ es un cuadrivector Lorentz [38]. Por tanto, teniendo en cuenta
que el estado inicial del pion tiene espín nulo, la única magnitud con la que podemos describir el
sistema (y por tanto la dependencia de M(H)

fi ), será su cuadrimomento, p ≡ pµ, recordemos la
Figura A.2. Así, podremos parametrizar la expresión (A.45) como

M(H)
fi = ⟨0|

[
dγµ(1− γ5)u

]
(0) |π+(p)⟩ = −fπpµ , (A.46)

donde se incluye fπ como una constante de proporcionalidad. Esta solución al problema será
muy ventajosa, pues midiendo su valor de forma experimental podremos emplearla para realizar
cálculos de este tipo. Existen diferentes convenios para la definición de fπ, que pueden diferir en
un factor 2 o

√
2 del aquí empleado. Nosotros seguiremos el convenio usado por Maggiore [38].

En él, esta constante tiene un valor de fπ = 130, 56(2)(4)(13) MeV [2].

A.3.3. Elemento de matriz total y suma sobre los espines

Reuniendo las expresiones (A.44) y (A.46) podremos expresar finalmente el elemento de matriz
(A.34) del proceso como:

Mfi =
GF fπ cos θC√

2
us

′′
ν (k) γµ p

µ(1− γ5) vs
′

ℓ (q) . (A.47)

Introduciendo la notación “slash” de Feynman, /p = γµ p
µ, y usando la conservación del cuadri-

momento p = k+ q, podremos reescribir el término anterior en función de magnitudes asociadas
a las partículas finales. Entonces,

Mfi =
GF fπ cos θC√

2

(
us

′′
ν (k)/k(1− γ5) vs

′
ℓ (q) + us

′′
ν (k)/q(1− γ5) vs

′
ℓ (q)

)
=
GF fπ cos θC√

2

(
us

′′
ν (k)/k(1− γ5) vs

′
ℓ (q) + us

′′
ν (k) (1 + γ5)/q v

s′
ℓ (q)

)
,

(A.48)

y al expresar el resultado de esta forma podremos usar que los espinores uν(k) y vℓ(q) cumplen
cada uno su respectiva ecuación de Dirac: uν(k)(/k−mν) ≃ uν(k)/k = 0 para el neutrino (bajo la
aproximación mν ≃ 0) y (/q+mℓ) vℓ(q) = 0 para el leptón cargado. Así, el primer sumando de la
ec. (A.48) se anulará y el elemento de matriz quedará:

Mfi = −GF fπmℓ cos θC√
2

us
′′
ν (k) (1 + γ5) vs

′
ℓ (q) . (A.49)

Este es el resultado que buscábamos calcular. Sin embargo, la anchura de desintegración no
dependerá de Mfi, sino de su módulo al cuadrado, |Mfi|2 = MfiM∗

fi.
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Figura A.3: Esquema de la desintegración π+ → ℓ+νℓ. Los momentos de las partículas
finales se muestran en negro (flecha de puntos), mientras que los espines se representan
en azul. Este es el único estado de polarización de espín posible para la desintegración
y, por tanto, el único término que contribuirá en la suma (A.50).

Además, como puede apreciarse en la expresión (A.49), el elemento de matriz Mfi depende de los
espines de las partículas finales a través de las helicidades s′ y s′′ del leptón cargado y el neutrino,
respectivamente. Dado que nosotros estaremos interesados en la anchura de desintegración no
polarizada, pues es lo que medirán por lo general nuestros detectores, definiremos de la forma
usual:

|Mfi|2 =
∑
spin

|Mfi|2 =
∑
s′

∑
s′′

MfiM∗
fi . (A.50)

Esta suma a todas las combinaciones posibles de espines de las partículas involucradas en la
interacción es una práctica usual en este tipo de cálculos. Sin embargo, en el caso particular
que nos concierne, Figura A.2, podemos realizar un rápido análisis del proceso para comprobar
que únicamente existe una posibilidad asociada al estado final. En el límite sin masa, mν ≃ 0,
un campo levógiro (y por tanto de quiralidad definida) describe a una partícula con helicidad
h = −1/2 y a su antipartícula con helicidad h = +1/2. Por tanto, el neutrino νℓ en el estado final
de la desintegración del π+ será levógiro, con hν = −1/2. Ahora, si analizamos el problema desde
el sistema centro de masas, el momento lineal total del sistema será nulo, lo que implicará que el
momento del leptón cargado ℓ+ deberá ser de igual módulo y sentido contrario al del neutrino.
Dado que el espín del pión es cero, la conservación del momento angular impondrá entonces que
la helicidad del leptón cargado sea también negativa, hℓ = −1/2, ver Figura A.3.

A pesar de que la única contribución a la suma provenga de la configuración de espines con
helicidades negativas para el neutrino y el leptón cargado, seguirá siendo conveniente realizar la
suma sobre todas las configuraciones aplicando las relaciones de completitud :∑

s=1,2

us(p)us(p) = /p+m y
∑
s=1,2

vs(p) vs(p) = /p−m , (A.51)

pues estas reglas son completamente generales y, como veremos a continuación, nos serán de gran
utilidad. Así, comencemos calculando

M∗
fi = −GF fπmℓ cos θC√

2

(
us

′′
ν (k) (1 + γ5) vs

′
ℓ (q)

)†

= −GF fπmℓ cos θC√
2

vs
′
ℓ (q) (1− γ5)us

′′
ν (k) ,

(A.52)

donde hemos usado que (γ0)† = γ0 y la relación γ5γ0 = −γ0γ5. Denotando por cte. al prefactor
constante que aparece en la expresión del elemento de matriz (A.49) y su conjugado (A.52),
procederemos con el cálculo de |Mfi|2:

|Mfi|2 =
∑
s′

∑
s′′

MfiM∗
fi = cte.2

∑
s′

∑
s′′

us
′′
ν (k) (1 + γ5) vs

′
ℓ (q) v

s′
ℓ (q) (1− γ5)us

′′
ν (k) . (A.53)
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De forma práctica, la expresión anterior no es más que un producto de matrices y vectores fila
y columna, cuyo resultado es un escalar. Un truco muy útil y que simplificará enormemente
este cálculo consistirá en escribir de forma explícita el producto matricial, empleando los índices
pertinentes para denotar los elementos de cada matriz y las componentes de cada vector. De esta
forma, podremos expresar (A.54) como

|Mfi|2 = cte.2
∑
s′

∑
s′′

(
us

′′
ν (k)

)
α

(
1 + γ5

)
αβ

(
vs

′
ℓ (q)

)
β

(
vs

′
ℓ (q)

)
δ

(
1− γ5

)
δλ

(
us

′′
ν (k)

)
λ
, (A.54)

donde los índices repetidos se suman entre sí. Ahora, podremos reorganizar el producto como
más nos convenga, pues los elementos conmutan entre sí (estamos tratando con escalares). Así,
escribiremos:

|Mfi|2 = cte.2
∑
s′′

(
us

′′
ν (k)

)
λ

(
us

′′
ν (k)

)
α︸ ︷︷ ︸

=(/k)λα

(
1 + γ5

)
αβ

∑
s′

(
vs

′
ℓ (q)

)
β

(
vs

′
ℓ (q)

)
δ︸ ︷︷ ︸

=(/q−mℓ)βδ

(
1− γ5

)
δλ
, (A.55)

donde hemos introducido las relaciones de completitud (A.51). Analizando los índices de (A.55)
vemos que el cálculo anterior no será otra cosa que la traza de una matriz, dada por

|Mfi|2 = cte.2 (/k)λα (1 + γ5)αβ (/q −mℓ)βδ (1− γ5)δλ

= cte.2 Tr
(
/k (1 + γ5) (/q −mℓ) (1− γ5)

)
.

(A.56)

Usando la linealidad de la traza y las relaciones {γ5, γµ} = 0, podremos desarrollar la expresión
anterior:

Tr
(
/k (1 + γ5) (/q −mℓ) (1− γ5)

)
= 2Tr(/k/q)− 2Tr(γ5/k/q) , (A.57)

pudiendo emplear ahora dos propiedades bien conocidas de la traza [39]: Tr(/k/q) = 4kµq
µ y

Tr(γ5/k/q) = 0, obteniendo finalmente:

|Mfi|2 = G2
F f

2
π cos2 θC m2

ℓ 4kµq
µ . (A.58)

Este es el resultado general que necesitaremos a la hora de calcular la anchura de desintegración
total del proceso en un sistema de referencia dado. Ahora bien, como es costumbre hacer cuando
se trata el problema de la desintegración de una partícula en relatividad especial, nos situaremos
en el sistema centro de masas para simplificar el cálculo a realizar. Esto se verá reflejado también
en el resultado (A.58). Por conservación del cuadrimomento, tendremos que qµ = pµ − kµ.
Entonces, podremos escribir el producto kµqµ de (A.58) como

kµq
µ = kµ(p

µ − kµ) = kµp
µ − kµk

µ . (A.59)

Por un lado, tendremos que en el sistema CdM el pion está en reposo y su cuadrimomento queda
pµ = (mπ, 0), de forma que kµpµ = Eν mπ. Por otro lado, el invariante relativista kµkµ para el
neutrino se anulará, pues kµkµ = m2

ν ≃ 0. Entonces, en el sistema CdM, la expresión (A.58) se
reducirá a

|Mfi|2 = 4G2
F f

2
π cos2 θC m2

ℓ mπ Eν , (A.60)

que será la que emplearemos en la sección que sigue para obtener finalmente la anchura de
desintegración del proceso. Nótese que, dado que estamos tratando con una desintegración a dos
cuerpos, el espectro de energías de los productos será discreto, con Eν = (m2

π −m2
ℓ )/2mπ .
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A.4. Anchura de desintegración

Tras un largo camino repleto de cálculos y derivaciones de resultados, finalmente reunimos todo
lo necesario para proceder con el cálculo de la anchura de desintegración del proceso π+ → ℓ+νℓ.
Antes de comenzar, recapitulemos brevemente el trabajo que hemos realizado en los anteriores
apartados. En primer lugar, hemos introducido a los piones π± y π0, comentando de forma
resumida su naturaleza y sus propiedades básicas, que hemos sintetizado en la Tabla A.1, así
como los principales canales de desintegración de los piones cargados π±. Posteriormente, hemos
desarrollado el marco teórico bajo el que describimos las interacciones débiles en el régimen de
bajas energías, la teoría de campos efectiva V-A, cuyo origen nos remonta a la teoría de Fermi
de la desintegración beta.

Una vez asentadas las bases y el marco teórico del cálculo, hemos derivado la forma de calcular
el elemento de matriz asociado al proceso, también conocido como la amplitud de probabilidad,
a primer orden en teoría de perturbaciones (A.22). Así, hemos introducido la definición usual
del elemento de matriz Mfi (A.24), que hemos calculado a lo largo de las secciones A.3.1, A.3.2
y A.3.3, obteniendo finalmente la expresión (A.49). El último paso ha consistido en calcular el
módulo al cuadrado del elemento de matriz no polarizado, que hemos definido como |Mfi|2 y
que hemos particularizado para el sistema de referencia CdM, alcanzando la expresión (A.60).

La anchura de desintegración diferencial en un proceso a dos cuerpos, como el que nos ocupa
aquí, vendrá dada por la siguiente expresión:

dΓ = (2π)4 δ(4)(p− q − k)
1

2Ep
|Mfi|2

d3q

(2π)3 2Eq

d3k

(2π)3 2Ek
, (A.61)

donde p, q, k son los cuadrimomentos del pion, el leptón cargado y el neutrino, respectivamente,
siguiendo el convenio mantenido hasta ahora, Figura A.2. Esta expresión es válida sea cual sea el
sistema de referencia en el que vayamos a trabajar (por supuesto, siempre que empleemos la forma
general (A.58) para |Mfi|2). A continuación, particularizaremos la anchura de desintegración
diferencial al sistema CdM. Para ello, usaremos que el cuadrimomento del pion se reducirá a
pµ = (mπ, 0). De esta forma, podremos escribir:

dΓ = (2π)4 δ(mπ − Eℓ − Eν) δ
(3)(q+ k)

1

2mπ
|Mfi|2

d3q

(2π)3 2Eq

d3k

(2π)3 2Ek
. (A.62)

La primera delta expresará la conservación de la energía en el proceso, mientras que δ(3)(q+ k)

impondrá la conservación del momento total del sistema, que en el CdM se visualiza de forma
trivial, con q = −k. Finalmente, introduciendo el resultado (A.60) para el elemento de matriz
en nuestro sistema de referencia, obtenemos

dΓ =
G2

F f
2
π cos2 θC m2

ℓ

8π2
δ(mπ − Eℓ − Eν) δ

(3)(q+ k)
d3q

Eℓ
d3k , (A.63)

donde hemos introducido la notación Eℓ ≡ Eq y Eν ≡ Ek para mayor claridad. Integrando sobre
d3k a todo el espacio de momentos, vemos que el único término relevante para la integración será
la delta, de forma que

∫
d3k δ(3)(q+ k) = 1, por lo que el resultado quedará reducido a

dΓ =
G2

F f
2
π cos2 θC m2

ℓ

8π2
δ(mπ − Eℓ − Eν)

d3q

Eℓ
. (A.64)
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Para integrar (A.64), primero escribiremos el diferencial de volumen en el espacio de momentos,
d3q, en coordenadas esféricas:

d3q = |q|2 dq dΩ = |q| |q| dq︸ ︷︷ ︸
=EℓdEℓ

dΩ =
√
E2

ℓ −m2
ℓ Eℓ dEℓ dΩ , (A.65)

donde dΩ = sin θ dθ dφ es el diferencial de ángulo sólido. Hemos usado además la relación
Eℓ dEℓ = |q| dq, que puede obtenerse fácilmente a partir de la relación de dispersión relati-
vista Eℓ(q) = (m2

ℓ + |q|2)1/2. Por otro lado, la aproximación mν ≃ 0 nos permitirá escribir
la energía del neutrino como Eν ≃ |k| = |q| = (E2

ℓ − m2
ℓ )

1/2, que podremos introducir en la
expresión de la delta de Dirac que aparece en (A.64) y que impone la conservación de la energía
en el proceso. Insertando todo esto en la anchura diferencial (A.64), obtenemos

dΓ =
G2

F f
2
π cos2 θC m2

ℓ

8π2
δ
(
Eℓ +

√
E2

ℓ −m2
ℓ −mπ

)√
E2

ℓ −m2
ℓ dEℓ dΩ , (A.66)

que ahora sí podemos integrar a todas las direcciones (posibles orientaciones del momento del
leptón cargado) y a todo el intervalo de energía permitido:

Γ =
G2

F f
2
π cos2 θC m2

ℓ

8π2

∮
dΩ

∫ +∞

0
dEℓ

√
E2

ℓ −m2
ℓ δ

(
Eℓ +

√
E2

ℓ −m2
ℓ −mπ

)
=
G2

F f
2
π cos2 θC m2

ℓ

2π

∫ +∞

0
dEℓ

√
E2

ℓ −m2
ℓ δ

(
Eℓ +

√
E2

ℓ −m2
ℓ −mπ

)
.

(A.67)

Empleando la propiedad (A.69) de la delta, identificaremos f(Eℓ) = Eℓ + (E2
ℓ −m2

ℓ )
1/2 −mπ,

cuyo único cero vendrá dado por E∗
ℓ = (m2

π + m2
ℓ )/2mπ. Así, tendremos que |f ′(Eℓ)|Eℓ=E∗

ℓ
=

2m2
π/(m

2
π −m2

ℓ ) y podremos reescribir la anchura total como

Γ =
G2

F f
2
π cos2 θC m2

ℓ

4π

(
1−

m2
ℓ

m2
π

)∫ +∞

0
dEℓ

√
E2

ℓ −m2
ℓ δ(Eℓ − E∗

ℓ )

=
G2

F f
2
π cos2 θC m2

ℓ

4π

(
1−

m2
ℓ

m2
π

)√
E∗2

ℓ −m2
ℓ ,

(A.68)

donde hemos aplicado la propiedad (A.70) de la delta de Dirac para resolver la integral.

Inciso. Propiedades de la delta de Dirac.

Es muy común encontrar en cálculos de secciones eficaces y anchuras de desintegración
integrales del tipo

∫
dx δ(f(x))u(x), donde aparece la delta de una función de la variable

de integración. Para resolverlas, se emplea una propiedad muy útil de la delta de Dirac
como función generalizada:

δ(f(x)) =
N∑
i=0

δ(x− xi)

|f ′(x)|x=xi

tal que f(xi) = 0 ∀i = 1, . . . , N , (A.69)

que nos permite reescribir el integrando como una suma de términos del tipo δ(x − xi),
cuya integración es trivial gracias a la propiedad usual:∫ +∞

−∞
dx g(x) δ(x− xi) = g(xi) . (A.70)
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Introduciendo el valor de E∗
ℓ en la expresión (A.68), obtendremos finalmente la anchura de

desintegración del proceso en el sistema centro de masas:

Γ
(CDM)
π+→ ℓ+νℓ

=
G2

F f
2
π cos2 θC m2

ℓ mπ

8π

(
1−

m2
ℓ

m2
π

)2

. (A.71)

Como era de esperar, esta anchura depende únicamente de las masas del pión y el leptón cargado.
Gracias a la simetría Lorentz de la teoría, podremos calcular ahora la anchura de desintegración
en cualquier otro sistema de referencia mediante una transformación de Lorentz. El inverso de
la anchura, Γ−1, tiene unidades de tiempo y, por tanto, transformará bajo boosts con el factor
relativista γ(v) = 1√

1−v2
, siendo v la velocidad relativa entre los dos sistemas. Es decir, para un

observador que se mueva con velocidad v relativa al sistema CdM, el pion tendrá una energía
Eπ = mπγ(v), luego

Γ−1(Eπ) = γ(v) Γ−1(mπ) =
Eπ

mπ
Γ−1(mπ) (A.72)

y podremos escribir la regla general de transformación para la anchura de desintegración como

Γ(Eπ) =
mπ

Eπ
Γ(mπ) . (A.73)

De esta forma, la anchura de desintegración del proceso en un sistema de referencia general a
primer orden en teoría de perturbaciones vendrá dada por:

Γπ+→ ℓ+νℓ (Eπ) =
G2

F f
2
π cos2 θC m2

ℓ m
2
π

8π

(
1−

m2
ℓ

m2
π

)2
1

Eπ
. (A.74)

Vemos entonces que la dependencia de la anchura con la energía inicial del pion será Γ ∝ E−1
π .

Resultará interesante calcular también el cociente Γ(π+→µ+νµ)
Γ(π+→ e+νe)

para comprobar cuál de los dos
canales de desintegración será el dominante. Recordemos que la masa de una partícula es igual
a la de su antipartícula, por lo que al depender (A.74) únicamente de las masas y la energía del
pion:

Γ(π− → µ− νµ)

Γ(π+ → µ+νµ)
= 1 y

Γ(π− → e− νe)

Γ(π+ → e+νe)
= 1 , (A.75)

como ya habíamos avanzado al inicio de la sección A.1. Esto nos permitirá hablar del proceso
asociado al ℓ+ o ℓ− de forma indistinguible. No obstante, si calculamos

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
≃ 1, 283 · 10−4 , (A.76)

podemos comprobar que el canal dominante será la desintegración al muon (antimuon). El re-
sultado experimental de esta medida es conocido [2] y viene dado por

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)

∣∣∣∣
exp

= (1, 230± 0, 004) · 10−4 . (A.77)

La discrepancia entre el cálculo teórico a primer orden y la medida experimental se sitúa en
torno al 4%. Considerando las correcciones asociadas a términos perturbativos de orden superior
podremos disminuir la discrepancia entre ambos. No obstante, conocer el grado de discrepancia
que alcanzamos restringiéndonos a primer orden en el cálculo será de gran importancia a la hora
de incorporar efectos de nueva física, pues nos permitirá cuantificar si una posible desviación
respecto del resultado “tradicional” predicho por el Modelo Estándar es significativa o si resulta
imprescindible considerar términos de orden superior en el desarrollo.

43



Figura A.4: Anchura de desintegración a primer orden para los procesos a un muon (antimuon) y
un electrón (positrón) en función de la energía inicial del pion. La franja roja delimita el rango de
energías no permitido, que está acotado por la mínima enegía permitida para el pion, Eπ = mπ, dada
por su masa en reposo. Las anchuras calculadas para el sistema CdM en (A.71) se corresponden con
los puntos evaluados en Γ(Eπ = mπ).

Sabiendo que el error relativo cometido es aproximadamente del 4%, tenemos la seguridad de
que las conclusiones sobre los resultados en el modelo de LIV que presentamos en este trabajo
serán robustas. En un escenario en el que la discrepancia obtenida en este cálculo hubiera sido
muy superior al 10%, por ejemplo, deberíamos considerar las correcciones de orden superior para
contrastar los resultados con las medidas experimentales y poder sacar conclusiones.

Para terminar con los comentarios relativos al resultado obtenido en (A.74), resultará interesante
representar las anchuras de los dos procesos considerados en función de la energía del pion inicial.
Esto se recoge en la Figura A.4, donde se puede apreciar de forma directa la dependencia de la
anchura Γ con la energía y la fuerte supresión del canal π+ → e+νe respecto al π+ → µ+νµ,
cuyo origen proviene de la diferencia de masas entre el electrón y el muon. Llegados a este punto,
ya reunimos todo el conocimiento necesario para explorar efectos de violación de invariancia
Lorentz en la desintegración de piones cargados. Un escenario que, como hemos comentado
en el párrafo anterior, resulta muy robusto y atractivo a nivel fenomenológico para explorar
desviaciones respecto al caso “clásico” que acabamos de estudiar.
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B | Sistema laboratorio en SR: anchura de desintegración

A lo largo del Anexo A, hemos realizado un repaso general de las ideas fundamentales que son
necesarias para el estudio de la desintegración del pion en el marco de SR. Tras calcular el
elemento de matriz total |Mfi|2 en la sección A.3.3, hemos explotado la simetría Lorentz de la
relatividad especial para calcular la anchura total, Γ(Eπ), a partir de la anchura en el sistema
centro de masas, Γ(mπ), lo que simplifica notablemente el trabajo. En LIV, sin embargo, nos
veremos obligados a trabajar siempre en el sistema laboratorio, por lo que tendremos que integrar
directamente la anchura diferencial en este sistema de referencia. A continuación mostraremos
el procedimiento para calcular la anchura total en el sistema laboratorio en SR, que nos será de
gran utilidad cuando posteriormente abordemos este mismo cálculo en un escenario de LIV.

Comencemos escribiendo la anchura de desintegración diferencial:

dΓ = (2π)4 δ(4)(p− k − q)
1

2Ep
|Mfi|2

d3k

(2π)3 2Ek

d3q

(2π)3 2Eq
, (B.1)

donde p, q, k son los cuadrimomentos del pion, el leptón cargado y el neutrino, respectivamente;
e introduciremos de nuevo la notación Ep ≡ Eπ, Eq ≡ Eℓ y Ek ≡ Eν para mayor claridad. El
elemento de matriz |Mfi|2 es invariante Lorentz, por lo que su valor en el sistema laboratorio
será igual que el calculado en la sección A.3.3 para el sistema CdM:

|Mfi|2 = 2G2
F f

2
π cos2 θC m2

ℓ (m
2
π −m2

ℓ ) . (B.2)

Integrando la anchura diferencial (B.1) sobre el espacio de momentos del leptón cargado y el
neutrino, obtenemos la expresión a calcular para la anchura total:

Γ =
|Mfi|2

8(2π)2Eπ

∫
d3k

Eν

∫
d3q

Eℓ
δ(Eπ − Eν − Eℓ) δ

(3)(p− k− q) , (B.3)

donde hemos separado la delta de Dirac que impone la conservación del cuadrimomento en (B.1)
en la delta asociada a la conservación de la energía y la asociada a la conservación del momento
lineal. Además, hemos reescrito los términos constantes del integrando (incluido el elemento de
matriz) fuera de la integral. Usando la propiedad (A.69), podremos escribir δ(3)(p − k − q) =

δ(3)(q− q∗) con q∗ = p− k e integrar respecto al momento del leptón cargado:

Γ =
|Mfi|2

8(2π)2Eπ

∫
d3k

Eν

∫
d3q

Eℓ
δ(Eπ − Eν − Eℓ) δ

(3)(q− q∗)

=
|Mfi|2

8(2π)2Eπ

∫
d3k

Eν

δ
(
Eπ − Eν −

√
m2

ℓ + |q∗|2
)

√
m2

ℓ + |q∗|2
.

(B.4)

A continuación, expresaremos |q∗|2 en función de las variables de integración, de forma que

|q∗|2 = q∗ · q∗ = (p− k) · (p− k) = |p|2 + |k|2 − 2p · k
= |p|2 + |k|2 − 2 |p| |k| cos θ ,

(B.5)

siendo θ el ángulo formado por el momento lineal del neutrino y la dirección de propagación del
pion, que tomaremos como +ẑ sin pérdida de generalidad, Figura B.1.
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Figura B.1: Descomposición del momento lineal del neutrino, k, en coordenadas esféricas.
La dirección ẑ se escoge por conveniencia como la dirección de propagación del pion, con
momento lineal p.

Usando las relaciones de dispersión relativistas para el pion y el neutrino (mν ≃ 0), podremos
escribir (B.5) como

|q∗|2 = E2
π −m2

π + E2
ν − 2Eν

√
E2

π −m2
π cos θ . (B.6)

Insertando este resultado en la expresión de la anchura total (B.4), obtenemos:

Γ =
|Mfi|2

8(2π)2Eπ

∫
d3k

Eν

δ

(
Eπ − Eν −

√
m2

ℓ + E2
π −m2

π + E2
ν − 2Eν

√
E2

π −m2
π cos θ

)
√
m2

ℓ + E2
π −m2

π + E2
ν − 2Eν

√
E2

π −m2
π cos θ

. (B.7)

Como vemos en (B.7), la delta de Dirac que impone la conservación de la energía en el proceso
ahora puede verse como una ligadura entre la energía del neutrino y el ángulo θ. Para integrar
esta expresión interpretaremos la función dentro de la delta de Dirac como una función del
ángulo θ, lo que nos permitirá conocer el valor de θ en función de la energía del neutrino, Eν .
Así, definimos:

f(θ) = Eπ − Eν −
√
m2

ℓ + E2
π −m2

π + E2
ν − 2Eν

√
E2

π −m2
π cos θ , (B.8)

pudiendo aplicar ahora la propiedad (A.69) para reescribir la delta de Dirac de (B.7) como

δ(f(θ)) =
δ(θ − θ∗)

|df(θ)dθ |θ=θ∗
donde f(θ∗) = 0 . (B.9)

Comenzamos buscando el cero de la función f(θ), que vendrá dado por

cos θ∗ =
2EπEν −m2

π +m2
ℓ

2Eν

√
E2

π −m2
π

(B.10)

y su derivada evaluada en ese punto∣∣∣∣df(θ)dθ

∣∣∣∣
θ=θ∗

=
Eν

√
E2

π −m2
π sin θ∗

Eπ − Eν
. (B.11)
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Ahora, con las expresiones (B.10), (B.11) y empleando la propiedad (B.9), podremos expresar la
delta como

δ(f(θ)) =
Eπ − Eν

Eν

√
E2

π −m2
π sin θ∗

δ(θ − θ∗) . (B.12)

Por otro lado, escribiremos el diferencial de volumen del espacio de momentos para el neutrino
en coordenadas esféricas:

d3k = |k|2 dk dΩ = E2
ν dEν dΩ , (B.13)

siendo dΩ = sin θ dθ dφ el diferencial de ángulo sólido. Introduciendo (B.12) y (B.13) en la
integral de la anchura total (B.7), obtenemos:

Γ =
|Mfi|2

8(2π)2Eπ

√
E2

π −m2
π

∫ +∞

0
dEν

∮
dΩ

(Eπ − Eν) δ(θ − θ∗)

sin θ∗
√
m2

ℓ + E2
π −m2

π + E2
ν − 2Eν

√
E2

π −m2
π cos θ

=
|Mfi|2

8(2π)2Eπ

√
E2

π −m2
π

∫ +∞

0
dEν

∫ π

θ=0

∫ 2π

φ=0
sin θ dθ dφ (Eπ − Eν) δ(θ − θ∗)

× 1

sin θ∗
√
m2

ℓ + E2
π −m2

π + E2
ν − 2Eν

√
E2

π −m2
π cos θ

.

(B.14)

La integral sobre el ángulo φ nos dará un factor 2π, mientras que la integral sobre θ dará como
resultado el integrando evaluado en θ = θ∗ únicamente si θ∗ ∈ [0, π]. Esta condición deberá
incluirse en el resultado mediante la función escalón de Heaviside. Así, podremos escribir el
resultado de (B.14) como

Γ =
|Mfi|2

16π Eπ

√
E2

π −m2
π

∫ +∞

0
dEν

sin θ∗ (Eπ − Eν)Θ(θ∗)Θ(π − θ∗)

sin θ∗
√
m2

ℓ + E2
π −m2

π + E2
ν − 2Eν

√
E2

π −m2
π cos θ∗

,

(B.15)
donde las funciones de Heaviside limitarán el intervalo de integración entre los valores E(min)

ν =

Eν(θ
∗ = π) y E

(max)
ν = Eν(θ

∗ = 0). Sustituyendo la expresión (B.10) de cos θ∗ en (B.15),
obtenemos:

Γ =
|Mfi|2

16π Eπ

√
E2

π −m2
π

∫ Eν(θ∗=0)

Eν(θ∗=π)
dEν . (B.16)

Inciso. Función escalón de Heaviside.

La función escalón de Heaviside se define como:

Θ(x) =

 0 si x < 0

1 si x ≥ 0 ,
(B.17)

que además presenta la siguiente propiedad:

Θ(−x) = 1−Θ(x) . (B.18)

Haciendo uso de (B.17) y (B.18) podremos definir un intervalo [a, b) no nulo escribiendo

Θ(x− a)Θ(b− x) , (B.19)

que valdrá cero cuando x /∈ [a, b) y uno cuando x ∈ [a, b).
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Finalmente, determinaremos los límites de integración para la variable Eν a partir de las condi-
ciones que aparecen en (B.16). Haciendo uso de la expresión (B.10), tendremos que:

θ∗ = π =⇒ E(min)
ν =

m2
π −m2

ℓ

2(Eπ +
√
E2

π −m2
π)

(B.20)

y

θ∗ = 0 =⇒ E(max)
ν =

m2
π −m2

ℓ

2(Eπ −
√
E2

π −m2
π)
, (B.21)

luego la integral (B.16) dará como resultado

Γ =
|Mfi|2

16π Eπ

√
E2

π −m2
π

Eν

∣∣∣∣∣
E

(max)
ν

E
(min)
ν

=
|Mfi|2

16π Eπ

(
1−

m2
ℓ

m2
π

)
. (B.22)

Sustituyendo ahora la expresión del elemento de matriz (B.2) en el resultado de (B.22), obtenemos
la expresión final para la anchura de desintegración total del proceso en el sistema laboratorio:

Γπ+→ ℓ+νℓ (Eπ) =
G2

F f
2
π cos2 θC m2

ℓ m
2
π

8π

(
1−

m2
ℓ

m2
π

)2
1

Eπ
, (B.23)

que coincide con el resultado (A.74) calculado en la sección A.4, como era de esperar.

48


	Notación y convenios
	Lista de acrónimos y abreviaturas
	Lista de símbolos
	Introducción
	Violación de invariancia Lorentz
	Relación de dispersión modificada
	Implicaciones fenomenológicas en la física de altas energías
	Tiempos de vuelo
	Cinemática de procesos

	Modelo de LIV para el neutrino

	Producción de neutrinos en fuentes astrofísicas
	Modificaciones en la desintegración del pion en LIV
	Elemento de matriz
	Anchura de desintegración

	Consecuencias fenomenológicas de LIV en la producción de neutrinos

	Conclusiones
	Bibliografía
	Desintegración del pion en relatividad especial
	Planteamiento del problema
	Teoría V-A de las interacciones débiles
	Amplitud de probabilidad del proceso
	Elemento de matriz leptónico
	Elemento de matriz hadrónico
	Elemento de matriz total y suma sobre los espines

	Anchura de desintegración

	Sistema laboratorio en SR: anchura de desintegración

