
La Transformación Wavelet y sus
Aplicaciones en el Procesamiento de

Imágenes

César Miravete Zarazaga
Trabajo de fin de grado de Matemáticas

Universidad de Zaragoza

Directores del trabajo: Francisco Gaspar y Carmen
Rodrigo

10 de julio de 2024

Abstract

The growing need to handle large amounts of data and the importance of maintaining information
integrity in critical applications have driven the development of advanced signal analysis and processing
techniques. In this context, the Wavelet Transform (WT) offers a robust and efficient solution, providing
powerful tools for compression, noise reduction, and multiresolution data analysis.

Wavelet theory was not consistently developed until the 1980s. Nevertheless, in 1909 Alfred Haar
presented the Haar wavelet, and it wasn’t until 1987 that Belgian mathematician Ingrid Daubechies
presented the first orthogonal compactly supported wavelet (known as Daubechies wavelets). From that
moment, wavelets began to be a powerful computational tool. Subsequently, in 1989, Stéphane Mallat
published what is known as multiresolution analysis (MRA), see [6].

In the first chapter of this work, we will cover all the necessary mathematical concepts to rigorously
define what wavelets and the wavelet transform are. A brief description of the Fourier transform will also
be provided as motivation. The most important concepts include the definition of Hilbert spaces such as
the L2 space, as well as its completeness and the decomposition of L2 functions into series as follows.
Given {ϕn}n∈N a basis of L2,

∀ f ∈ L2(a,b), f =
∞

∑
n=1

⟨ f ,ϕn⟩ϕn in L2(a,b).

In the second chapter, wavelets will be introduced. Mathematically, a wavelet is a function ψ ∈ L2(R)
that generates a family of functions through translation and scaling of a mother function:

ψ j,k = 2 j/2
ψ(2 jx− k) ∀ j,k ∈ Z

This family of functions forms an orthonormal basis of L2(R).
Attention will be given to Haar wavelets and how a function can be decomposed using scaling and

wavelet functions as follows,

fN = ∑
k∈Z

ckBk +
N−1

∑
j=0

∑
k∈Z

d j,kH j,k,

where Bk is the scaling function and H j,k are the wavelet functions. In a similar way, Daubechies wavelets
will be studied,

f (t) =
L−1

∑
k=0

akφL(t − k)+
J

∑
j=0

L−1

∑
k=0

d j,kψL(2 jt − k),

where φL(t − k) is the scaling function and ψL(2 jt − k) are the wavelet functions. The WT will also be
studied for its ability to decompose a signal into different frequencies, levels, and resolutions, allowing
for detailed analysis. Unlike the Fourier Transform, which provides global frequency information of
the signal, the WT offers additional details due to its local nature, which is especially useful for non-
stationary and short-duration signals.

Although theoretically continuous signals can exist, in practice, all signals are discrete. Therefore,
the Discrete Wavelet Transform (DWT) is primarily used, which transforms the input signal into a series
of approximation and detail coefficients, providing a multilevel representation that allows for multireso-
lution analysis (MRA).

III

IV Abstract

Finally, the third chapter will look into the applications of the Discrete Wavelet Transform. One
of the most prominent applications of the DWT is image compression. Algorithms like JPEG2000 use
the DWT to decompose the image into frequency sub-bands, addressing some of the issues of previous
algorithms like JPEG, which uses the Discrete Cosine Transform (DCT). By applying thresholds to the
approximation and detail coefficients, a significant reduction in file size is achieved without considerable
loss in visual quality. The DWT enables greater efficiency in compression due to its ability to concentrate
the signal’s information into a few significant coefficients.

Another important application of the DWT is noise reduction (denoising). This process involves
transforming a noisy signal into its wavelet coefficients (approximation and detail) and then, through
techniques such as coefficient thresholding and reconstruction using the Inverse Wavelet Transform,
recovering the original signal noise free.

Thresholding can be hard or soft, depending on the criteria used to nullify or reduce coefficients
below a certain threshold. This method is especially effective for signals with high-frequency noise.

Hard thresholding: d̃ j,k =

{
d j,k, if |d j,k|> λ

0, if |d j,k| ≤ λ
.

Soft thresholding: d̃ j,k =

{
sgn(d j,k)(|d j,k|−λ), if |d j,k|> λ

0, if |d j,k| ≤ λ
,

where d j,k are the wavelet coefficients, λ is the threshold and sgn(d j,k) is the sign of d j,k.
The ability of the DWT to efficiently represent data and its applications in compression and noise

reduction make it crucial in various fields. Besides those mentioned, the DWT is used in image and video
transmission, time series analysis, anomaly detection, and many other areas. Its flexibility and efficiency
ensure its relevance in modern signal processing.

The future of the WT and DWT looks promising, with potential applications in emerging areas
such as biomedical signal processing, pattern recognition in large datasets, and artificial intelligence.
Continued research in improving algorithms and adapting the WT to new technologies and needs ensures
its place as an indispensable tool in signal analysis and processing.

In summary, the Discrete Wavelet Transform (DWT) has proven to be an essential tool in signal
analysis and processing, providing an efficient and detailed representation of signals. Its applications in
image compression and noise reduction stand out for their effectiveness and efficiency, and its ability to
adapt to non-stationary and short-duration signals makes it invaluable in various fields.

Introducción

La creciente necesidad de manejar grandes cantidades de datos y la importancia de mantener la
integridad de la información en aplicaciones críticas han impulsado el desarrollo de técnicas avanzadas
de análisis y procesamiento de señales. La transformada wavelet ofrece una solución robusta y eficiente
para estos desafíos, proporcionando herramientas poderosas para la compresión, la eliminación de ruido
y el análisis de datos multirresolución.

El objetivo de este trabajo es mostrar cómo la transformada wavelet proporciona herramientas para
las aplicaciones anteriormente nombradas, para ello, en el primer capítulo trataremos todos los conceptos
matemáticos necesarios para poder definir de manera rigurosa qué son las wavelets y la transformada wa-
velet. También se describirá brevemente la transformada de Fourier como motivación. Los conceptos más
importantes son la definición de espacios de Hilbert tales como el espacio L2, así como la completitud
del mismo.

En el segundo capítulo se introduciran las wavelets. Matemáticamente, una wavelet es una función
ψ ∈ L2(R) que genera una familia de funciones mediante traslación y escalado de una función madre:

ψ j,k = 2 j/2
ψ(2 jx− k), ∀ j,k ∈ Z.

Esta familia de funciones forma una base ortonormal de L2(R). Se prestará especial atención a las wave-
lets de Haar y a las wavelets de Daubechies.

También se estudiará cómo la transformada wavelet descompone una señal en diferentes frecuencias,
niveles y resoluciones, permitiendo así analizar dicha señal. A diferencia de la transformada de Fourier,
que proporciona información de la frecuencia global de la señal, la transformada wavelet ofrece deta-
lles adicionales por su naturaleza, que son especialmente útiles para señales no estacionarias y de corta
duración.

A pesar de que teóricamente podemos tener señales continuas, en la práctica, todas las señales son
discretas. Por eso, trataremos principalmente la conocida como transformada wavelet discreta (DWT), la
cual transforma la señal de entrada en un serie de coeficientes de aproximación y detalle, proporcionando
una representación por niveles que permite un análisis multirresolución (MRA).

Por último, en el tercer capítulo, se utilizará lo descrito en los dos capítulos anteriores de manera apli-
cada. Una de las aplicaciones más destacadas de la DWT es la compresión de imágenes, algoritmos como
JPEG2000 utilizan la DWT para descomponer la imagen en sub-bandas de frecuencia, solucionando así
algunos de los problemas de algoritmos anteriores como el JPEG que utiliza la transformada discreta del
coseno. Al aplicar umbrales a los coeficientes de aproximación y detalle, mencionados anteriormente,
se consigue una reducción considerable del tamaño de los archivos sin una pérdida significativa de la
calidad visual.

Otra de las aplicaciones más destacadas de la DWT es la técnica del denoising wavelet, que implica
la transformación de una señal ruidosa en sus coeficientes wavelet y, posteriormente, a través de diversas
técnicas como la umbralización de los coeficientes y la reconstrucción utilizando la transformada wavelet
inversa recuperar la imagen libre de ruido.

En conclusión, la capacidad de la DWT para representar datos es crucial en aplicaciones como la
transmisión de imágenes y videos, el análisis de series temporales, la detección de anomalías y muchas
otras áreas.

V

Índice general

Abstract III

Introducción V

1. Espacios de Hilbert, Espacios L2 y Transformada de Fourier 1
1.1. Espacios de funciones . 1
1.2. Transformada de Fourier . 4

2. Construcción de wavelets 7
2.1. Wavelet de Haar . 7
2.2. Transformada discreta y transformada rápida . 10
2.3. Análisis de multirresolución (MRA) . 11

2.3.1. Ejemplo . 12
2.4. Wavelets de Daubechies . 15
2.5. Transformada continua . 18

3. Aplicaciones 19
3.1. Reducción de ruido . 19
3.2. Compresión de imágenes . 22
3.3. Otras aplicaciones . 23

A. Código 25
A.1. Representación de series . 25
A.2. Wavelets de Daubechies . 27
A.3. Algortimo DWT en una señal . 28
A.4. Tratamiento de ruido (DWT) . 29
A.5. Tratamiento de ruido (MRA) . 31
A.6. Compresión . 34

Bibliografía 37

VII

Capítulo 1

Espacios de Hilbert, Espacios L2 y
Transformada de Fourier

Para poder abordar aplicaciones de la transformación wavelet, como el procesamiento de imáge-
nes, primero es necesario definir matemáticamente esta transformada así como la función wavelet y los
conceptos matemáticos necesarios para su desarrollo.

Nuestro objetivo en este capítulo es presentar los espacios L2 y los espacios de Hilbert, donde poste-
riormente definiremos las funciones wavelet. Además, se va a introducir la transformada de Fourier con
el objetivo de comparar y motivar la introducción de otro tipo de transformadas.

1.1. Espacios de funciones

Para el contenido de esta sección nos basamos en [[1], capítulos 1 y 5].

Definición 1.1. Un espacio vectorial sobre un campo F es un conjunto V de elementos llamados vectores
tal que existe una operación de adición, denotada +, definida como

V ×V →V

(u,v) 7→ u+ v,

y (V,+) forma un grupo abeliano. El elemento neutro de este grupo se denota como 0. También definimos
una operación de multiplicación por escalar

F×V →V

(f ,v) 7→ f v.

Para f ∈ F y v ∈ V , denotamos el producto escalar como f v. La multiplicación por escalar satisface las
siguientes propiedades.
Para todo a,b ∈ F y para todo u,v ∈V ,

(a) a(u+ v) = au+av,

(b) (a+b)v = av+bv,

(c) a(bv) = (ab)v,

(d) 1v = v,

(e) 0v = 0.

Denotamos este espacio vectorial como < V,F>.

1

2 Capítulo 1. Espacios de Hilbert, Espacios L2 y Transformada de Fourier

Definición 1.2. Dados u,v ∈V , definimos la distancia entre u y v como d(u,v) = |u− v|. Está definida
sobre el espacio vectorial <V,C>, y cumple lo siguiente:

d(u,v)≥ 0 para todo u,v ∈V . Si d(u,v) = 0, entonces u = v.

d(u,v) = d(v,u).

d(u,v)≥ d(u,w)+d(w,v).

Dado un espacio vectorial <V,C>

Definición 1.3. Un espacio vectorial se dice espacio pre-Hilbert si existe una función < ·, ·>: V ×V →
C de forma que para u,v,w ∈V y a ∈ C se tiene

< v,v >∈ R y < v,v >≥ 0. Se tiene que < v,v >= 0 si y solo si v = 0.

< u,v+w >=< u,v >+< u,w >.

< au,v >= a < u,v >.

< u,v >=< v,u >, donde la barra representa la operación conjugar compleja.

Definición 1.4. Dado un espacio pre-Hilbert se dice que una sucesión, {vn}n∈N es de Cauchy si para
todo ε > 0 existe N ∈ N de forma que para todo m,n > N se tiene que d(vm,vn)< ε .
Decimos que la sucesión es convergente si existe v ∈V de forma que para cualquier ε > 0 existe N ∈ N
tal que para todo n > N se tiene que d(v,vn)< ε. Decimos entonces que v es el límite de la sucesión.

Definición 1.5. Un espacio pre-Hilbert decimos que es completo si toda sucesión de Cauchy es conver-
gente. Los espacios pre-Hilbert completos reciben el nombre de espacios de Hilbert.

Definición 1.6. El espacio L2(a,b) es el conjunto de funciones f : (a,b)→R, tales que
∫ a

b
f 2(x) dx<∞.

Definición 1.7. El producto escalar de dos funciones en L2(a,b) es < f ,g >=
∫ b

a
f (x)g(x) dx.

Definimos una norma asociada de la siguiente manera, || f ||=
√

< f , f > =

√∫ b

a
f 2(x) dx.

Teorema 1.1. El espacio L2(a,b) es completo.

Demostración. Sea fN una sucesión de Cauchy en L2(a,b). Consideramos fn una subsucesión tal que

|| fn(x)− fn+1(x)||=

√∫ b

a
| fn(x)− fn+1(x)|2 dx < 2−n.

Sea entonces

gm(x) =

√
m

∑
n=1

| fn(x)− fn+1(x)|2,

∫ b

a
|gm(x)|2 dx =

∫ b

a

m

∑
n=1

| fn(x)− fn+1(x)|2 dx =
m

∑
n=1

∫ b

a
| fn(x)− fn+1(x)|2 dx =

m

∑
n=1

|| fn(x)− fn+1(x)||2 < 1,

∫ b

a
|g∞(x)|2 dx =

∫ b

a
| lı́m

m→∞
gm(x)|2 dx =

∫ b

a
lı́m

m→∞
|gm(x)|2 dx = lı́m

m→∞

∫ b

a
|gm(x)|2 dx ≤ 1.

En el desarrollo anterior utilizamos que gm converge monótonamente. Entonces, por definición de espacio
L2, tenemos que g∞ ∈ L2(a,b). Por lo tanto, |g∞(x)|< ∞ en casi todo punto de (a,b) y

fm(x) = f1(x)−
m−1

∑
n=1

(fn(x)− fn+1(x))

TFG - César Miravete Zarazaga 3

converge puntualmente a f . Veamos pues que f es el limite de fn en sentido L2. Para cada x tenemos que

| fm(x)| ≤ | f1(x)|+
m−1

∑
n=1

| fn(x)− fn+1(x)|

= | f1(x)|+ |gm(x)| ≤ | f1(x)|+ |g∞(x)|,

y
| fm(x)|2 ≤ (| f1(x)|+ |g∞(x)|)2 ≤ 4máx{| f1(x)|2, |g∞(x)|2}.

Por lo tanto f1,g∞ ∈ L2, y por el teorema de convergencia dominada

lı́m
m→∞

∫ b

a
| fm(x)|2 dx =

∫ b

a
lı́m

m→∞
| fm(x)|2 dx =

∫ b

a
| f (x)|2 dx,

y ∫ b

a
| f (x)|2 dx = lı́m

m→∞

∫ b

a
| fm(x)|2 dx < ∞,

en consecuencia f ∈ L2.
| f (x)− fm(x)| ≤ | f (x)|+ | f1(x)|+ |g∞(x)|,

por lo tanto
| f (x)− fm(x)| ≤ 9máx{| f (x)|2, | f1(x)|2, |g∞(x)|2},

de nuevo por el teorema de la convergencia dominada

lı́m
m→∞

|| f − fm||2 = lı́m
m→∞

∫ b

a
| f (x)− fm(x)|2 dx =

∫ b

a
lı́m

m→∞
| f (x)− fn(x)|2 dx = 0.

Ahora que ya hemos visto que el espacio es completo veamos los conceptos de sistemas ortonormales
y bases en L2 que serán fundamentales para la introducción de las wavelets.

Definición 1.8. Sea {ϕn}n∈N un sistema ortonormal, es decir < ϕn,ϕm >=

{
0 si n ̸= m
1 si n = m

.

Además, si no existe otro sistema ortonormal que lo contenga se dice que es un sistema ortonormal
maximal o una base .

Teorema 1.2. Sea {ϕn}n∈N un sistema ortonormal en el espacio L2(a,b), las siguientes afirmaciones
son equivalentes.

1) {ϕn}n∈N es una base.

2) Si existe una función f ∈ L2(a,b) tal que < f ,ϕn >= 0 para todo n ∈ N entonces f = 0.

3) ∀ f ∈ L2(a,b), f =
∞

∑
n=1

< f ,ϕn > ϕn en L2.

4) ∀ f ∈ L2(a,b), || f ||2 =
∞

∑
n=1

< f ,ϕn >
2.

Demostración. Para la demostración empezamos viendo que 1) implica 2).
Supongamos que existe f ̸= 0 tal que < f ,ϕn >= 0 ∀n ∈N. Sea f̄ = f

|| f || . Si consideramos {ϕn}n∈N
⋃

f̄ ,
este sistema es ortonormal y contiene al anterior, por lo tanto tenemos una contradicción ya que {ϕn}n∈N
es base.

4 Capítulo 1. Espacios de Hilbert, Espacios L2 y Transformada de Fourier

Veamos ahora que 2) implica 3). Dada f ∈ L2(a,b), sea Sm =
m

∑
k=1

< f ,ϕk > ϕk, y llamamos g = lı́m
m→∞

Sm.

Basta entonces probar que < f −g,ϕn >= 0. ∀n ∈ N.
Como

< Sm,ϕn >=

{
< f ,ϕn > si m ≥ n
0 si m < n

,

entonces,

< f −g,ϕn >=< f − lı́m
m→∞

Sm,ϕn >=< f ,ϕn >− lı́m
m→∞

< Sm,ϕn >=< f ,ϕn >−< f ,ϕn >= 0.

Seguimos con 3) implica 4). Sea Sn =
n

∑
k=1

< f ,ϕk > ϕk, por lo que || f −Sn||2 = || f ||2 −
n

∑
k=1

< f ,ϕk >
2 .

Por otro lado, tenemos que, ya que Sn tiende a f , lı́m
n→∞

|| f −Sn||= 0, y se tiene que || f ||2 =
n

∑
k=1

< f ,ϕk >
2 .

Por último, vemos que 4) implica 1). Suponiendo que {ϕn}n∈N no es base, existe un sistema ortonormal

S que contiene estrictamente a {ϕn}n∈N. Sea f ∈ S tal que f ̸= ϕn ∀n ∈ N, || f ||2 =
∞

∑
n=1

< f ,ϕn >
2= 0.

1.2. Transformada de Fourier

El contenido de esta sección esta basado en [[1] capítulo 6].
Consideramos el siguiente sistema ortonormal,{

1√
2π

,
cos(x)√

π
,
sin(x)√

π
,
cos(2x)√

π
,
sin(2x)√

π
, . . .

}
=

{
1√
2π

,
cos(nx)√

π
,
sin(nx)√

π

}
n∈N

que es base de L2(−π,π). Por el Teorema 1.1, toda función f ∈ L2(−π,π) puede escribirse como

f =
a0

2
+

∞

∑
n=1

(an cos(nx)+bn sin(nx)) ,

con
an =

1
π

∫
π

−π

f (x)cos(nx) dx,

bn =
1
π

∫
π

−π

f (x)sin(nx) dx.

A la función escrita de esta manera la llamamos serie de Fourier. Es importante darse cuenta de que
una función de esta forma es periódica e infinita. Más adelante introduciremos las wavelets, las cuales
tienen diferentes propiedades, entre ellas que son localizadas, veremos esto en el siguiente capítulo con
un ejemplo.

Definición 1.9. (Transformada de Fourier). Sea f ∈ L1(R), la transformada de Fourier de f es

F [f](w) = f̃ (w) =
1√
2π

∫
∞

−∞

f (t)e−iwt dt.

Definición 1.10. (Transformada inversa de Fourier). Dada f̃ (w) la transformada de Fourier de f , defini-
mos la transformación inversa como,

F−1[f̃ (w)] = f (t) =
1√
2π

∫
∞

−∞

f̃ (w)eiwt dw.

TFG - César Miravete Zarazaga 5

Ejemplo 1. Veamos la utilidad de representar señales por series de Fourier. La función

f (x) = |x|, (1.1)

escrita como serie de Fourier es

f (x)∼
∞

∑
n=1

(an cos(nx)+bn sin(nx))

=
π

2
+

∞

∑
n=1

2
πn2 ((−1)n −1)cos(nx)).

La reprentación con 5 términos viene dada en la Figura 1.1, dónde se observa una buena aproximación
debido a que la extensión 2π periódica es continua.

Figura 1.1: Aproximación por Fourier de (1.1).

Ejemplo 2. Veamos un ejemplo de serie de Fourier que motive la introducción de las wavelets. La
función

f (x) =


π/2, x ∈ (0,π),
0, x = 0,
−π/2 x ∈ (−π,0),

(1.2)

es constante en dos tramos como vemos en la Figura 1.2 (ver trazado en color azul). Al escribirla como
serie de Fourier tenemos que

f (x) = 2
∞

∑
n=1

sin((2n−1)x)
2n−1

,

lo cual para valores pequeños de n no da una buena aproximación en torno al 0.

En ambas Figuras 1.1 y 1.2 vemos en azul la función y en rojo discontinuo la aproximación por
serie de Fourier utilizando 5 y 20 términos de cada serie respectivamente. Como se puede observar la
aproximación es mejor en el Ejemplo 1 ya que la función es continua y su extensión periódica también
lo es. En el Ejemplo 2 tenemos el problema en torno al 0 y el conocido como fenomeno de Gibbs (mala
aproximación en los extremos donde la función presenta una discontinuidad).

6 Capítulo 1. Espacios de Hilbert, Espacios L2 y Transformada de Fourier

Figura 1.2: Aproximación por Fourier de (1.2).

Capítulo 2

Construcción de wavelets

A diferencia de la transformada de Fourier, que utiliza funciones periódicas para descomponer se-
ñales, la transformada wavelet es especialmente útil para analizar funciones no periódicas y transitorias.
En lugar de la periodicidad, las wavelets emplean funciones localizadas tanto en el tiempo como en la
frecuencia, permitiendo una mejor representación del comportamiento local de las señales. Este enfoque
se conoce como transformación en ventana. Nuestro objetivo es encontrar una base ortonormal alterna-
tiva que supere las limitaciones de Fourier en el análisis local de las funciones. Después de introducir el
concepto de wavelets y sus propiedades fundamentales, volveremos a examinar el ejemplo presentado
en las Figura 1.1 y 1.2 para ilustrar la mejora en la representación de señales no periódicas.

Definición 2.1. Llamaremos wavelet a una función ψ ∈ L2(R) si la famila de funciones

ψ j,k = 2 j/2
ψ(s jx− k) ∀ j,k ∈ Z (2.1)

forma una base ortonormal de L2(R). Entonces dicha famila de funciones se llama base wavelet.

2.1. Wavelet de Haar

Cualquier función de L2 puede ser aproximada con funciones indicadoras,

χn,k(x) =

{
1, 2−nk ≤ x < 2−n(k+1),
0, en otro caso.

Por lo tanto, para toda función f ∈ L2 existen funciones indicadoras tales que

fn(x) = ∑
k∈Z

cn,kχn,k(x), n ∈ N,

de manera que,
lı́m
n→∞

|| fn − f ||= 0.

Definimos

Vn =

{
gn

∣∣∣∣gn = ∑
k∈Z

an,kχn,k, (an,k)k∈Z ∈ l2

}
.

Entonces, {Vn} es una sucesión de subespacios de L2 que aproxima L2 en sentido que para toda función
f ∈ L2 hay funciones fn ∈Vn tales que

lı́m
n→∞

|| fn − f ||= 0.

Llamamos a {Vn} una aproximación de L2. Es evidente que conforme más grande es la n el espacio Vn

tiene una mejor resolución. También es claro que⋃
n∈Z

Vn = L2, (2.2)

7

8 Capítulo 2. Construcción de wavelets

y ⋂
n∈Z

Vn = /0. (2.3)

Para construir la base del espacio Vn, tomamos una base ortonormal de V0. Sea

B(x) =

{
1, 0 ≤ x < 1,
0, en otro caso,

(2.4)

que es la función característica del intervalo [0,1). Es claro que el conjunto de funciones {B(x− k)}k∈Z
forma una base ortonormal de V0. Por lo tanto, una base ortonormal de Vn puede ser construida ampliando
el sistema de V0. Para una función f ∈ L2, se define

fn,k(x) = 2n/2 f (2nx− k), k ∈ Z, n ∈ Z. (2.5)

Entonces, el sistema de funciones {Bn,k}k∈Z, donde Bn,k se define como en (2.5) a partir de B en (2.4), es
una base ortonormal para Vn.
Apoyándonos en lo anterior, podemos construir una base ortonormal para L2. Sea Wn el complemento
ortogonal de Vn con respecto a Vn+1, es decir

Wn ⊕Vn =Vn+1, Wn ⊥Vn.

Por lo descrito anteriormente en (2.2) y (2.3), se tiene que,

L2 =
⊕
n∈Z

Wn, Wn ⊥Wn′ ,n ̸= n′. (2.6)

Como los espacios estan construidos a base de 2n-dilataciones basta con encontar una base ortonormal
para W0.Para ello, definimos la función de Haar, introducida por el matemático alemán Haar (1909), y
dada por

H(x) =


1, 0 ≤ x < 1

2 ,

−1, 1
2 ≤ x < 1,

0, en otro caso.

(2.7)

Podemos usar las funciones correspondientes a la base wavelet definida por {Hn,k}k∈Z, donde Hn,k
se define como en (2.5) a partir de H en (2.7) para descomponer cualquier función como una serie de
funciones de Haar. Veamos primero que la familia de funciones {Hn,k(x)}n,k∈N, definida como en (2.5)
es una base del espacio L2.

Teorema 2.1. Sea Hk(x) = H(x− k),k ∈ Z. Entonces Hk es base ortonormal de W0. En consecuencia
Hn,k, definida como en (2.5) a partir de H en (2.7), es base ortonormal del espacio Wn.

Demostración. Tenemos que probar que Hk forma una base ortonormal de W0. Es claro que {Hk(x)}k∈Z
es un sistema ortonormal de W0. Veamos que también es una base. Sea g una función de W0, entonces
g ∈V1 y existe una sucesión (ck) ∈ l2 de manera que

g = ∑
k∈Z

ckB1,k = ∑
l∈Z

(c2lB1,2l + c2l+1B1,2l+1).

Como g ⊥V0, tenemos que c2l+1 =−c2l. Véase que Hl =
1√
2
(B1,2l −B1,2l+1). Entonces,

g =
√

2 ∑
l∈Z

c2lHl, (c2l) ∈ l2.

Por lo tanto tenemos ya que el sistema {Hn,k(x)}n,k∈Z forma una base ortonormal de L2.

TFG - César Miravete Zarazaga 9

Visto lo anterior tenemos que cualquier función de L2 puede ser expresada como serie de funciones
de Haar de la forma que sigue,

f = ∑
n,k∈Z

dk,nHn,k,

donde dk,n =< f ,Hn,k > .

Siguiendo con el desarrollo, debido a que Vj =
⊕
k< j

Wk y que Vj se reduce al espacio trivial cuando j

tiende a menos infinito, tenemos que f puede ser representada como

f = ∑
k∈Z

c j,kB j,k + ∑
n≥ j

∑
k∈Z

dn,kHn,k.

Sin perdida de generalidad, se puede tomar j = 0 y definir la serie de Haar truncada como

fN = ∑
k∈Z

ckBk +
N−1

∑
j=0

∑
k∈Z

d j,kH j,k. (2.8)

La forma de calcular los coeficientes es lo que veremos en la Sección 2.4 y es conocido como el algoritmo
de la trasformada rápida.

Veamos ahora los ejemplos propuestos en el capítulo anterior aproximados con funciones Haar.

Ejemplo 3. La función f (x) = |x| aproximada por la base wavelet de Haar usando 20 términos viene
dada por la Figura 2.1.

Figura 2.1: Aproximación por Haar de (1.1).

Ejemplo 4. La función

f (x) =


π/2, x ∈ (0,π),
0, x = 0,
−π/2 x ∈ (−π,0),

aproximada por la base wavelet de Haar queda representada en la Figura 2.2

10 Capítulo 2. Construcción de wavelets

Figura 2.2: Aproximación por Haar de (1.2).

Como podemos observar, dependiendo de las características de cada función, será más conveniente
usar una base de funciones u otra. En general, veremos que para las aplicaciones en imágenes y señales,
será mejor utilizar las wavelets de Haar u otros tipos que manejen adecuadamente los cambios locales de
las funciones.

2.2. Transformada discreta y transformada rápida

Definición 2.2. Una señal discreta es una función que se define solo en valores discretos de la variable.
Matemáticamente, una señal discreta x[n] se define como:

x : N→ R,

donde n ∈ N es la variable discreta . Una señal discreta, de longitud N se puede representar como un
vector en el espacio RN :

x = {x[0],x[1],x[2], . . . ,x[N −1]}.

A nivel de aplicaciones de la transformada wavelet, como la eliminación de ruido y la compresión, es
necesaria la transformada discreta (DWT por sus siglas en inglés), la cual descompone una señal discreta
en componentes de diferente frecuencia y resolución lo cual es útil para analizar características locales
de una señal. Antes de pasar con el algoritmo de la transformada, primero es necesario presentar lo que
llamamos filtros.

Definición 2.3. Un filtro es una sucesión que transforma una señal de entrada en una señal de salida
mediante la atenuación, amplificación o modificación de ciertas componentes de frecuencia de la señal
original. Los filtros pueden ser utilizados para eliminar el ruido, resaltar ciertas características de la
señal, o separar distintas componentes de la señal. En términos matemáticos, la operación de un filtro se
describe mediante la convolución. Para señales discretas, la salida y[n] con entrada x[n] y filtro f [n] de
longitud K se define como:

y[n] = (x∗ f)[n] =
K−1

∑
k=0

x[k] f [n− k]. (2.9)

TFG - César Miravete Zarazaga 11

Los tipos de filtros que utilizaremos en las siguientes secciones son los siguientes.
Un filtro pasa-bajos (LPF por sus siglas en inglés) permite el paso de frecuencias bajas y atenúa las
frecuencias altas. En el contexto de la DWT este filtro extrae las aproximaciones de la señal,es decir, la
parte suave o de baja frecuencia que contiene la información más global de la señal.
Un filtro pasa-altos (HPF por sus siglas en inglés) permite el paso de las frecuencias altas y atenúa
las frecuencias bajas. Este filtro extrae los detalles de la señal, capturando las variaciones rápidas o las
componentes de alta frecuencia que contienen información sobre los cambios locales en la señal.
Los filtros no son más que una succesión de números, distinta para cada wavelet en particular, la cual se
utiliza para hacer una convolución con la señal, más adelante veremos un ejemplo.

2.3. Análisis de multirresolución (MRA)

Definición 2.4. Un análisis de multirresolución (MRA por sus siglas en inglés) de L2 es un anidamiento
de subespacios de L2

· · · ⊂V−1 ⊂V0 ⊂V1 ⊂ ·· ·

que cumple lo siguiente.

(1) ∩ j∈ZVj = {0},

(2) ∪ j∈ZVj = L2,

(3) f (·) ∈Vj si y solo si f (2·) ∈Vj+1,

(4) existe una función (función escala) φ ∈V0 de forma que {φ(x−n)}n∈Z es una base de V0, y existen
dos constantes A,B > 0 de forma que, para todo (cn) ∈ l2 se cumple la siguiente inecuación,

A ∑
n∈N

|cn|2 ≤

∣∣∣∣∣
∣∣∣∣∣∑n∈Ncnφ(x−n)

∣∣∣∣∣
∣∣∣∣∣
2

≤ B ∑
n∈N

|cn|2.

Las propiedades anteriores aseguran que las funciones pueden ser representadas a diferentes niveles
de resolución. Así, las funciones pueden ser descompuestas en diferentes resoluciones y luego recombi-
nadas para recuperar la función original.

El análisis de multirresolución (MRA) es una herramienta fundamental en el procesamiento de se-
ñales mediante wavelets. Permite descomponer una señal en componentes de diferentes resoluciones, lo
que facilita la extracción de características y el análisis de detalles a distintas escalas. Este proceso de
descomposición es esencial para aplicaciones en compresión de datos, eliminación de ruido y análisis de
frecuencias.
Partiendo de una señal discreta en el contexto de MRA, se utilizan wavelets ortogonales que permiten
descomponer y reconstruir una señal sin pérdida de información. El proceso de descomposición se reali-
za aplicando filtros de paso bajo y de paso alto a la señal original para obtener aproximaciones y detalles.
Este proceso se repite sobre las aproximaciones obtenidas en cada nivel para obtener las aproximaciones
y detalles del siguiente nivel. Veamos como se aplican los filtros, que no son más que una señal l[n] para
los LPF y h[n] para los HPF, ambas de longitud K. La señal x[n] es de longitud N

Aproximaciones (LPF)

A1[n] =
∞

∑
k=−∞

x[k]l[n− k], (2.10)

Detalles (HPF)

D1[n] =
∞

∑
k=−∞

x[k]h[n− k]. (2.11)

12 Capítulo 2. Construcción de wavelets

Además de los filtros luego hay que aplicar el submuestreo,es decir, tomar uno de cada dos valores para
ir reduciendo el tamaño en cada nivel. Lo cual es lo mismo que utilizar la siguiente fórmula,

y[n] =
∞

∑
k=−∞

x[2n+ k] f [k], (2.12)

donde y es la señal de salida y f el filtro correspondiente El resultado de esta primera descomposición son
las aproximaciones A1 y los detalles D1. Las aproximaciones A1 se vuelven a descomponer utilizando los
mismos filtros para obtener A2 y D2. Este proceso se repite hasta alcanzar el nivel deseado J, obteniendo
AJ y DJ .

El proceso inverso se utiliza para reconstruir la señal original a partir de las componentes de aproxi-
mación y detalle. Para reconstruir la señal en el nivel j−1,

A j−1[n] =
∞

∑
k=−∞

(
A↑

j [k] · l[n− k]+D↑
j [k] ·h[n− k]

)
, (2.13)

donde A↑
j significa la señal A j sobremuestreada, explicaremos este término más adelante en un ejemplo.

Si el índice quedara fuera de la longitud del filtro o la señal este sería 0. Este proceso se repite hasta
reconstruir la señal original a partir de AJ y todos los D j (donde j = 1,2, . . . ,J).
Como es evidente, el MRA no es más que aplicar el algoritmo de DWT sucesivamente primero sobre la
señal y posteriormente sobre las aproximaciones de cada nivel hasta llegar al nivel deseado.

2.3.1. Ejemplo

Para entender el algoritmo de la DWT y el MRA, veamos un ejemplo sencillo de una señal basado
en la wavelet de Haar, puede verse el códido en el Apéndice A.3. Consideremos una señal discreta x[n]
de longitud 8:

x = {4,6,10,12,14,16,18,20}.

Los filtros utilizados en la transformada de Haar son los siguientes:
1. Filtro Pasa-Bajos (LPF) l:

l =
{

1√
2
,

1√
2

}
.

2. Filtro Pasa-Altos (HPF) h:

h =

{
1√
2
,− 1√

2

}
.

Para cada par de muestras en x[n], aplicamos los filtros como en (2.12) con sus filtros correspondientes.
Aproximaciones (LPF):

A1[0] =
∞

∑
k=−∞

(x[2 ·0+ k]l[k]) = x[0]l[0]+ x[1]l[1] = 4 · 1√
2
+6 · 1√

2
=

10√
2
= 5

√
2,

A1[1] =
∞

∑
k=−∞

(x[2 ·1+ k]l[k]) = x[2]l[0]+ x[3]l[1] =
1√
2
(10+12) =

22√
2
= 11

√
2,

A1[2] =
1√
2
(14+16) =

30√
2
= 15

√
2,

A1[3] =
1√
2
(18+20) =

38√
2
= 19

√
2.

TFG - César Miravete Zarazaga 13

Detalles (HPF):

D1[0] =
1

∑
k=0

(x[2 ·0+ k]h[k]) = x[0]h[0]+ x[1]h[1] = 4 · 1√
2
−6 · 1√

2
=

−2√
2
=−

√
2,

D1[1] =
1√
2
(10−12) =

−2√
2
=−

√
2,

D1[2] =
1√
2
(14−16) =

−2√
2
=−

√
2,

D1[3] =
1√
2
(18−20) =

−2√
2
=−

√
2.

A1 y D1 son las aproximaciones y detalles de primer nivel o los coeficientes de la transformada wavelet.
Con ellos podemos seguir aplicando el mismo algoritmo para obtener los siguientes niveles, lo que sería
el MRA.
Por lo tanto, aplicamos de nuevo los filtros a las aproximaciones A1 obtenidas en el primer paso.

Aproximaciones del Segundo Nivel (LPF):

A2[0] =
1

∑
k=0

(A1[2 ·0+ k]l[k]) = A1[0]l[0]+A1[1]l[1] = 5
√

2 · 1√
2
+11

√
2 · 1√

2
=

16
√

2√
2

= 16,

A2[1] =
1√
2
(15

√
2+19

√
2) =

34
√

2√
2

= 34.

Detalles del Segundo Nivel (HPF):

D2[0] =
1

∑
k=0

(A1[2 ·0+ k]h[k]) = A1[0]h[0]+A1[1]h[1] = 5
√

2 · 1√
2
−11

√
2 · 1√

2
=

−6
√

2√
2

=−6, ,

D2[1] =
1√
2
(15

√
2−19

√
2) =

−4
√

2√
2

=−4.

Aplicamos nuevamente los filtros a las aproximaciones A2.
Aproximaciones del Tercer Nivel (LPF):

A3[0] =
1

∑
k=0

(A2[2 ·0+ k]l[k]) = A2[0]l[0]+A2[1]l[1] = 16 · 1√
2
+34 · 1√

2
=

50√
2
= 25

√
2.

Detalles del Tercer Nivel (HPF):

D3[0] =
1

∑
k=0

(A2[2 ·0+ k]h[k]) = A2[0]h[0]+A2[1]h[1] = 16 · 1√
2
−34 · 1√

2
=

−18√
2

=−9
√

2.

Hemos descompuesto la señal original x[n] en sus componentes de aproximación y detalles a varios
niveles, obteniendo lo siguiente:

Aproximaciones del Tercer Nivel A3= {25
√

2},

Detalles del Tercer Nivel D3= {−9
√

2},

Detalles del Segundo Nivel D2= {−6,−4},

Detalles del Primer Nivel D1= {−
√

2,−
√

2,−
√

2,−
√

2}.

14 Capítulo 2. Construcción de wavelets

Ahora vamos a utilizar los filtros y el denominado sobremuestreo que explicaremos más adelante, pa-
ra reconstruir las aproximaciones del nivel anterior. Por lo que empezamos tomando las aproximaciones
y los detalles del nivel tres para obtener las aproximaciones del nivel dos.

Filtro Pasa-Bajos (LPF) l:

l =
{

1√
2
,

1√
2

}
.

Filtro Pasa-Altos (HPF) h:

h =

{
1√
2
,− 1√

2

}
.

El sobremuestreo consiste en insertar tantos ceros como posiciones en los detalles y aproximaciones de
manera intercalada. Veamos el primer paso con detalle. Insertamos un cero en A3 y en D3 resultando en
A↑

3 = (25
√

2,0) y D↑
3 = (−9

√
2,0) . Ahora aplicamos los filtros correspondiente a detalles y aproxima-

ciones de nivel tres y sumamos para obtener las aproximaciones de nivel dos, ver (2.13).

Aproximaciones del Segundo Nivel (LPF):

A2[0] =
∞

∑
k=−∞

(
A↑

3[k] · l[0− k]+D↑
3[k] ·h[0− k]

)
= A↑

3[0]h[0]+D↑
3[0]h[0]+A↑

3[−1]l[1]+D↑
3[−1]h[1] =

= 25
√

2 · 1√
2
+(−9

√
2) · 1√

2
+0 · 1√

2
+0 · −1√

2
= 25−9 = 16,

A2[1] =
∞

∑
k=−∞

(
A↑

3[k] · l[1− k]+D↑
3[k] ·h[1− k]

)
= A↑

3[0]l[1]+D↑
3[0]h[1]+A↑

3[1]l[0]+D↑
3[1]h[0] =

= 25
√

2 · 1√
2
+(−9

√
2) · −1√

2
+0 · 1√

2
+0 · 1√

2
= 25+9 = 34.

La variable del sumatorio k recorre todos los valores pero donde las señales no toman valor se toma
por cero, por lo tanto, solo hay dos sumandos, ya que los filtros tienen longitud dos. Reconstruimos las
aproximaciones del primer nivel a partir de las del segundo nivel. Primero hacemos el sobremuestreo y
obtenemos A↑

2 = (16,0,34,0) y D↑
2 = (−6,0,−4,0).

Aproximaciones del Primer Nivel (LPF):

A1[0] =
∞

∑
k=−∞

(
A↑

2[k] · l[0− k]+D↑
2[k] ·h[0− k]

)
= A↑

2[0]l[0]+D↑
2[0]h[0]+A↑

2[−1]l[1]+D↑
2[−1]h[1] =

= 16 · 1√
2
+(−6) · 1√

2
+0 · 1√

2
+0 · −1√

2
=

10√
2
= 5

√
2,

A1[1] = A↑
2[1]l[0]+D↑

2[1]h[0]+A↑
2[0]l[1]+D↑

2[0]h[1] =

= 0 · 1√
2
+0 · 1√

2
+16 · 1√

2
+(−6) · −1√

2
=

22√
2
= 11

√
2,

A1[2] = A↑
2[2]l[0]+D↑

2[2]h[0]+A↑
2[1]l[1]+D↑

2[1]h[1] =

= 34 · 1√
2
+(−4) · 1√

2
+0 · 1√

2
+0 · −1√

2
=

30√
2
= 15

√
2,

A1[3] = A↑
2[3]l[0]+D↑

2[3]h[0]+A↑
2[2]l[1]+D↑

2[2]h[1] =

= 0 · 1√
2
+0 · 1√

2
+34 · 1√

2
+(−4) · −1√

2
=

38√
2
= 19

√
2.

Reconstruimos la señal original a partir de las aproximaciones del primer nivel. Primero hacemos el so-
bremuestreo y obtenemos A↑

1 =(5
√

2,0,11
√

2,0,15
√

2,0,19
√

2,0) y D↑
1 =(−

√
2,0,−

√
2,0,−

√
2,0,−

√
2,0).

TFG - César Miravete Zarazaga 15

Señal Original Reconstruida (LPF):

x[0] =
∞

∑
k=−∞

(
A↑

1[k] · l[0− k]+D↑
1[k] ·h[0− k]

)
= A↑

1[0]l[0]+D↑
2[0]h[0]+A↑

1[−1]l[1]+D↑
1[−1]h[1] =

= 5
√

2 · 1√
2
+(−

√
2) · 1√

2
+0 · 1√

2
+0 · −1√

2
= 5−1 = 4,

x[1] = A↑
1[1]l[0]+D↑

2[1]h[0]+A↑
1[0]l[1]+D↑

1[0]h[1] =

= 0 · 1√
2
+0 · 1√

2
+5

√
2 · 1√

2
+(−

√
2) · −1√

2
= 5+1 = 6,

x[2] = A↑
1[2]l[0]+D↑

2[2]h[0]+A↑
1[1]l[1]+D↑

1[1]h[1] =

= 11
√

2 · 1√
2
+(−

√
2) · 1√

2
+0 · 1√

2
+0 · −1√

2
= 11−1 = 10,

x[3] = A↑
1[3]l[0]+D↑

1[3]h[0]+A↑
1[2]l[1]+D↑

1[2]h[1]

= 0 · 1√
2
+0 · 1√

2
+11

√
2 · 1√

2
+(−

√
2) · −1√

2
= 11+1 = 12,

x[4] = A↑
1[4]l[0]+D↑

1[4]h[0]+A↑
1[3]l[1]+D↑

1[3]h[1]

= 15
√

2 · 1√
2
+(−

√
2) · 1√

2
+0 · 1√

2
+0 · −1√

2
= 15−1 = 14,

x[5] = A↑
1[5]l[0]+D↑

1[5]h[0]+A↑
1[4]l[1]+D↑

1[4]h[1]

= 0 · 1√
2
+0 · 1√

2
+15

√
2 · 1√

2
+(−

√
2) · −1√

2
= 15+1 = 16,

x[6] = A↑
1[6]l[0]+D↑

1[6]h[0]+A↑
1[5]l[1]+D↑

1[5]h[1]

= 19
√

2 · 1√
2
+(−

√
2) · 1√

2
+0 · 1√

2
+0 · −1√

2
= 19−1 = 18,

x[7] = A↑
1[7]l[0]+D↑

1[7]h[0]+A↑
1[6]l[1]+D↑

1[6]h[1]

= 0 · 1√
2
+0 · 1√

2
+19

√
2 · 1√

2
+(−

√
2) · −1√

2
= 19+1 = 20.

Señal Original Reconstruida:

x = {4,6,10,12,14,16,18,20}.

En el siguiente capítulo veremos como podemos aplicar lo anterior en el tratamiento de imágenes.

2.4. Wavelets de Daubechies

Para lo descrito en esta sección se utiliza [[1], capítulo 8 sección 2 y [2] capítulo 10]
Las wavelets de Daubechies se construyen a partir de una secuencia de coeficientes, conocidos co-

mo coeficientes de filtro, que satisfacen ciertas propiedades. El proceso involucra la construcción de la
función de escala φ(t) y la función wavelet ψ(t).

La función de escala φL(t) de orden L, satisface la siguiente relación de escala,

φL(t) =
√

2
2L−1

∑
k=0

l[k]φL(2t − k),

donde lk son los coeficientes de escala y L es el orden de Daubechies. Estos coeficientes deben cumplir
ciertas condiciones para garantizar la ortogonalidad y compacidad de la wavelet. Son los que usamos
como filtros cuando aplicamos la DWT o MRA.
Los coeficientes de escala l[k] deben satisfacer las siguientes condiciones de ortogonalidad,

16 Capítulo 2. Construcción de wavelets

L−1

∑
k=0

l[k]l[k+2m] = δm,0

donde δm,0 es el delta de Kronecker, que es 1 si m = 0 y 0 en caso contrario. Esto asegura que las
funciones φL(t − k) sean ortogonales entre sí.

La función wavelet ψ(t) se define en términos de la función de escala φ(t) y los coeficientes h[k],
que están relacionados con lk como sigue,

h[k] = (−1)kl[2L−1− k]. (2.14)

La función wavelet ψ(t) se expresa como,

ψL(t) =
√

2
L−1

∑
k=0

h[k]φL(2t − k).

Esta función es la conocida como wavelet de Daubechies de orden L ≥ 2.
Para ilustrar con un ejemplo concreto, consideremos la wavelet de Daubechies de orden L = 2, de-

notemosla a partir de ahora por Db2, que tiene 4 coeficientes de filtro .
Los coeficientes l[k] para Db2 son,

l[0] =
1+

√
3

4
√

2
, l[1] =

3+
√

3
4
√

2
, l[2] =

3−
√

3
4
√

2
, l[3] =

1−
√

3
4
√

2
.

Los coeficientes h[k] se calculan como se ha descrito en (2.14), es decir,

h[0] = l[3] =
1−

√
3

4
√

2
, h[1] =−l[2] =−3−

√
3

4
√

2
, h[2] = l[1] =

3+
√

3
4
√

2
,

h[3] =−l[0] =−1+
√

3
4
√

2
.

En la práctica, la transformada wavelet se realiza de manera discreta. La señal f (t) se descompone
en una serie de coeficientes de detalle y aproximación usando las funciones de escala y wavelet.
La señal f (t) puede ser representada como,

f (t) =
L−1

∑
k=0

akφL(t − k)+
J

∑
j=0

L−1

∑
k=0

d j,kψL(2 jt − k),

donde ak son los coeficientes de aproximación y d j,k son los coeficientes de detalle en diferentes niveles
de resolución j. Como puede observarse, es una generalización de la ecuación en (2.8) ya que la wavelet
de Haar es la de Daubechies de grado 1.

Para la aplicación como en el Ejemplo 2.3.1 se usará el mismo método de DWT aplicando ahora los
nuevos filtros l y h.

Descomposición: La señal se descompone aplicando los filtros de escala y wavelet en diferentes
niveles. Esto produce una serie de coeficientes que representan la señal en distintas resoluciones.

Reconstrucción: La señal original se puede reconstruir a partir de estos coeficientes utilizando la
transformada inversa de wavelet, que implica aplicar los filtros inversos correspondientes.

Para la descomposición y reconstrucción de la señal utilizamos el algoritmo de la DWT aplicando
los filtros correspondientes a la wavelet que estemos utilizando en cada caso, para este caso DbL. A
continuación, vemos algunos de los coeficientes para diferentes órdenes de Daubechies, ver Cuadro 2.1.

A continuación, en la Figura 2.3 vemos las representaciones de las funciones escala y wavelet de
Daubechies de órdenes 1 a 4, calculadas en MATLAB, ver Apéndice A.2. Cabe resaltar, como ya se ha
mencionado anteriormente, que para orden 1 la wavelet de Daubechies es la wavelet de Haar.

TFG - César Miravete Zarazaga 17

Orden Coeficientes del Filtro lk

Db1(Haar)
l[0] = 1√

2
l[1] = 1√

2

Db2

l[0] = 1+
√

3
4
√

2

l[1] = 3+
√

3
4
√

2

l[2] = 3−
√

3
4
√

2

l[3] = 1−
√

3
4
√

2

Db3

l[0]≈ 0,3326705529500826
l[1]≈ 0,8068915093110928
l[2]≈ 0,4598775021184915
l[3]≈−0,1350110200103908
l[4]≈−0,0854412738820267
l[5]≈ 0,0352262918857095

Db4

l[0]≈ 0,2303778133088964
l[1]≈ 0,7148465705529154
l[2]≈ 0,6308807679298587
l[3]≈−0,0279837694168599
l[4]≈−0,1870348117188811
l[5]≈ 0,0308413818359869
l[6]≈ 0,0328830116666778
l[7]≈−0,0105974017850690

Cuadro 2.1: Valores de los coeficientes del filtro lk para las wavelets de Daubechies de orden 1 a 4.

Figura 2.3: Wavelets de Daubechies de órdenes 1 a 4.

18 Capítulo 2. Construcción de wavelets

En resumen, las wavelets de Daubechies se construyen utilizando una serie de coeficientes de filtro
que cumplen ciertas propiedades de ortogonalidad y compacidad.

2.5. Transformada continua

Definición 2.5. La transformada wavelet continua de una función f (t) se define como

W f (j,k) = ⟨ f ,ψ j,k⟩=
∫

∞

−∞

f (t)ψ j,k(t)dt,

donde ψ j,k es una wavelet definida como en (2.1).

A veces se utilizan parámetros de reescala para que la función tenga media cero, por lo que la trans-
formada queda definida por

W f (s,u) =
1√
s

∫
∞

−∞

f (t)ψ
(

t −u
s

)
dt.

Los parámetros también sirven para ajustar la anchura. Si s es mayor que 1, se realiza un análisis de baja
frecuencia, y si está entre 0 y 1, se realiza un análisis de alta frecuencia. El parámetro u permite localizar
temporalmente desplazando la wavelet a lo largo del tiempo.

Para que una función ψ(t) sea considerada una wavelet madre, debe cumplir la condición de ad-
misibilidad, que se expresa en términos de su transformada de Fourier ψ̂(ω):

Cψ =
∫

∞

−∞

|ψ̂(ω)|2

|ω|
dω < ∞.

Esta condición asegura que la energía de la wavelet madre esté bien distribuida en la frecuencia,
permitiendo que la transformada wavelet continua sea invertible y la señal original pueda ser recuperada.
La wavelet madre ψ(t) es la función base a partir de la cual se generan todas las demás wavelets en la
familia , como en (2.1), mediante escalamiento y traslación:

ψs,u(t) =
1√
s
ψ

(
t −u

s

)
,

donde s es el parámetro de escala y u es el parámetro de traslación.

Capítulo 3

Aplicaciones

En este capítulo, utilizaremos algunos de los métodos descritos en los capítulos anteriores para el
tratamiento de imágenes. En particular, vamos a tratar la reducción de ruido y la compresión de imágenes.
Los códigos que han sido programados en MATLAB para la realización de los experimentos de este
capítulo pueden encontrarse en los apéndices.

3.1. Reducción de ruido

Para el contenido de esta sección utilizaremos algunos métodos descritos en [3]. Se utilizaran también
funciones de la librería de MATLAB Wavelet Toolbox.

Empecemos describiendo qué es el ruido en una señal para poder entender como trabajan los siguien-
tes métodos. Para la lectura de una imagen en MATLAB se asocian a cada pixel tres valores uno para
cada componente de color de la escala RGB, estos valores estan comprendidos entre 0 y 255. Por lo tanto
si la imagen tiene m píxeles de alto y n píxeles de ancho, ahora tenemos la información en una matriz
de tamaño m× n× 3. La transformamos a escala de grises, si es necesario, para obtener una matriz de
tamaño m×n. Por último se dividen todos los valores entre 255 para obtener la matriz con valores de 0
a 1. El ruido lo añadimos sumando a la imagen (ahora una matriz) otra matriz aleatoria siguiendo una
distribución normal (0,1) multiplicada por un factor ruido, en nuestro caso 30/255. Se toma un factor de
ruido de casi el 12%, este podría ser otro siempre y cuando no sea ni excesivamente grande, lo que haría
imposible el tratamiendo de ruido, ni muy pequeño ya que entonces apenas afectaría a la imagen.

Imagen Ruidosa = Imagen+
30
255

·N(0,1). (3.1)

A partir de lo descrito, los métodos para tratar el ruido siguen el mismo proceso:

1. Descomposición: Elegimos la wavelet a utilizar para la descomposición y el nivel de descomposi-
ción en el sentido de MRA para aplicar el algoritmo de DWT a la imagen ruidosa. Dicho algoritmo,
de manera similar a lo detallado en el Ejemplo 2.3.1, devuelve como resultado una matriz de co-
eficientes de aproximación y tres con coeficientes de detalles, horizonales, verticales y diagonales,
respectivamente.

2. Umbralización: Esta es la parte fundamental del proceso, donde tratamos los coeficientes propor-
cionados en el paso anterior para reducir el ruido. En general, lo que haremos es buscar un umbral,
es decir un número, para eliminar en las matrices de los detalles los coeficientes que sean inferiores
a dicho umbral. Existen diferentes métodos de umbralización así como muchas formas de calcular
el umbral, lo que nos llevaría a realizar un estudio estadístico sobre los coeficientes, lo cual queda
fuera del alcance de este trabajo.

3. Recomposición: Una vez hemos aplicado la umbralización tenemos los coeficientes wavelet ac-
tualizados y utilizando los mismos parámetros que para la descomposición y el algoritmo inverso
de DWT obtenemos la imagen procesada.

19

20 Capítulo 3. Aplicaciones

Uno de los métodos para la eleción del umbral es el conocico como Universal Threshold (ver [3] Sección
3.5). El umbral se calcula de la siguiente forma,

λ = σ
√

2log(n),

donde σ la calculamos como la mediana de todos los datos a los que les aplicamos el umbral y n es la
longitud de la señal, en este caso la resolución de la imagen (tamaño de la matriz que estamos utilizando).

Para ver un ejemplo a color utilizamos el código en Apéndice A.4, donde estamos usando el algo-
ritmo de la DWT de la librería de MATLAB Wavelet Toolbox para la descomposición wavelet en dos
dimensiones. Así, obtenemos una matriz con los coeficientes de aproximación y tres con los coeficien-
tes de detalles, horizontales, verticales y diagonales, respectivamente. Sobre las matrices de los detalles
aplicamos la umbralización, y después con las matrices actualizadas reconstruímos la imagen, ver Figu-
ra 3.1. La wavelet utilizada en el proceso de descomposición y reconstrucción ha sido en este caso la
wavelet de Daubechies de orden 2 , es decir, Db2.

Figura 3.1: Filtrado en DWT, ver apéndice A.4.

Veamos ahora otro ejemplo utilizando el análisis de multirresolución, viendo las imágenes a varios
niveles de resolución, y aplicando el mismo proceso de la umbralización universal en el último nivel de
los detalles. Para este caso, será necesario utilizar imágenes en blanco y negro ya que la función utilizada
en el código, ver Apéndice A.5, no trabaja con matrices de tres dimensiones como en el caso anterior.
Para este ejemplo, utilizaremos un factor de ruido de 30/255, el mismo que antes, la descomposición se

TFG - César Miravete Zarazaga 21

hará hasta nivel cinco y la wavelet que usaremos en el proceso será la de Haar, es decir, Db1.
Veamos primero la imagen en varios niveles de resolución, ver Figura 3.2.

Figura 3.2: Imagen en diferentes niveles de resolución.

A pesar de que puede parecer que el ruido se va eliminando en las sucesivas aproximaciones, si
viesemos las imágenes en grande se observaría que la pérdida de calidad en cada nivel es significativa,
lo cual podemos evidenciar a partir de los niveles cuatro y cinco. Por lo tanto, veamos ahora la imagen
una vez hemos filtrado los detalles de niveles uno y dos, ver Figura 3.3.

22 Capítulo 3. Aplicaciones

Figura 3.3: Filtrado con umbralización universal de detalles en niveles uno y dos.

3.2. Compresión de imágenes

La compresión de imágenes es un área fundamental de la tecnología en la que buscamos reducir el
tamaño de los archivos sin comprometer la resolución de los mismos, o al menos comprometiendo la
resolución en la menor medida posible.

Uno de los métodos de compresión de imágenes más conocido y utilizado es el JPEG, que utiliza
para la compresión la transformada discreta del coseno (DCT por sus siglas en inglés). De manera similar
a la DWT la DCT transforma la imagen en coeficientes que representan la información en térmnios de
frecuencias. A menudo, los detalles más finos de la imagen pueden ser eliminados reduciendo así el
tamaño de la imagen sin comprometer excesivamente la resolución. Uno de los principales problemas de
esta transformada es que trabaja con bloques de tamaño fijo, generalmente de 8x8 píxeles, lo que puede
dar lugar a que en la imagen se perciban las fronteras de los bloques.

Con el objetivo de superar algunas de las limitaciones del modelo JPEG, se desarrolló el modelo
JPEG2000 el cual en lugar de utlizar la DCT para la compresión utiliza la DWT. Gracias al análisis
multirresolución el modelo JPEG2000 permite descomponer la imagen en varios niveles de resolución,
lo cual sirve para reducir los detalles más finos sin comprometer las componentes de baja frecuencia,
lo más relevante para la imagen. Además, permite una primera versión de baja resolución y, conforme
se obtienen más datos, esta puede ir siendo actualizada. También permite solucionar el problema de los
bloques, si se trabaja con la wavelet adecuada, ya que a diferencia de la DCT trabaja con la imagen en
su totalidad y no en bloques de píxeles.

Para ilustar la compresión bajo el algoritmo de la DWT se ha utilizado el código en el Apéndice A.6.
Se ha utilizado una descomposición MRA en cinco niveles utilizando la wavelet Db6. A pesar de que
existen métodos para elegir el umbral necesario para realizar una compresión, en este caso se ha tomado
como umbral 0,09, de manera que este puede ser aumentado, si se desea más compresión a razón de
una perdida de calidad en la imagen, o disminuido si se prefiere mejor resolución y más tamaño. Con el
objetivo de tener una medida de compresión, se ha utilizado el cociente entre el número de bytes de la
imagen original y el número de bytes de la imagen comprimida, resultando en este caso un valor para el
cociente de 1,2194, es decir, una reducción del tamaño de casi el 18% (ver Figura 3.4).

TFG - César Miravete Zarazaga 23

Figura 3.4: Compresión de una imagen.

3.3. Otras aplicaciones

Además de lo descrito anteriormente, existen otras muchas aplicaciones. También, haciendo ligeras
modificaciones, todo lo anterior podría ser aplicado tanto a señales de audio como a archivos en tres
dimensiones. Otra aplicación de la transformada wavelet discreta es, por ejemplo, la fusión de dos imá-
genes utilizando métodos similares a los decritos en [3] para combinar las matrices de aproximación y
detalles con el fin de luego utilizar las matrices combinadas en la reconstrucción.

En resumen, la transformada wavelet discreta es una herramienta poderosa en el análisis y proce-
samiento de señales, permitiendo una representación multirresolución que es crucial en sus diversas
aplicaciones. La capacidad de la DWT para descomponer señales en coeficientes y aplicar umbrales a
los mismos permite tanto reducir de manera significativa el tamaño de los archivos como la recuperación
de señales libres de ruido. Es decir, la DWT juega un papel fundamental en la transmisión de imágenes
y videos, y la detección de anomalías, entre otras áreas, demostrando su relevancia en el procesamiento
moderno de señales.

24 Capítulo 3. Aplicaciones

Apéndice A

Código

A.1. Representación de series

%% FIGURA 1.1
% número de términos de la serie de Fourier
N = 5;

% intervalo de x
x = linspace(-pi, pi, 1000);

fx = abs(x);

a0 = pi / 2;

% Inicializar la aproximación de la serie de Fourier
f_approx = a0 * ones(size(x)) ;

% coeficientes an y construir la serie de Fourier
for n = 1:N

an = (2 / (pi * n^2)) * ((-1)^n -1);
f_approx = f_approx + an * cos(n * x);

end

% función original y su aproximación de Fourier
figure;
plot(x, fx, ’b’, ’LineWidth’, 1.5);
hold on;
plot(x, f_approx, ’r--’, ’LineWidth’, 1.5);
legend(’|x|’, ’Aproximación de Fourier’);
title(’Aproximación por Fourier (5 términos)’);
xlabel(’x’);
ylabel(’f(x)’);
grid on;

%% FIGURA 1.2
% Número de términos en la serie de Fourier
N = 20;

% funciones para cada parte del dominio
f_neg = @(x) -pi/2 .* (x < 0 & x > -pi);
f_zero = @(x) 0 .* (x == 0);
f_pos = @(x) pi/2 .* (x > 0 & x < pi);

25

26 Capítulo A. Código

x_neg = linspace(-pi+0.01, -0.01, 500); % Intervalo para la parte negativa
x_zero = 0; % Punto x = 0
x_pos = linspace(0.01, pi-0.01, 500); % Intervalo para la parte positiva

% Intervalo X
x = linspace(-pi, pi, 1000);

a0 = (1 / (2 * pi)) * integral(@(x) f_neg(x) + f_zero(x) + f_pos(x), -pi, pi);
sum_fourier = a0 * ones(size(x)) / 2;

% coeficientes an y bn, y sumar términos de Fourier
for n = 1:N

an = (1 / pi) * integral(@(x) (f_neg(x) + f_zero(x) + f_pos(x)) .* cos(n * x),
-pi, pi);

bn = (1 / pi) * integral(@(x) (f_neg(x) + f_zero(x) + f_pos(x)) .* sin(n * x),
-pi, pi);

sum_fourier = sum_fourier + an * cos(n * x) + bn * sin(n * x);
end

% función original y la aproximación por Fourier
figure;
plot(x_neg, f_neg(x_neg), ’b’); % Parte negativa en rojo
hold on;
plot(0,0, ’bo’, ’MarkerFaceColor’,’b’, ’MarkerSize’, 2); % Punto en x = 0 en verde
plot(x_pos, f_pos(x_pos), ’b’); % Parte positiva en azul
plot(x, sum_fourier, ’r’, LineStyle=’--’);
hold off;
title(’Aproximación por Fourier (20 términos)’);
xlabel(’x’);
ylabel(’f(x) / Aproximación de f(x)’);
legend(’Función’, ’’, ’’, ’Aproximación por Fourier’);
grid on;

%% Figura 2.1
% Parámetros
L = pi; % Intervalo [-L, L]
N = 20; % Número de términos en la serie de Haar
x = linspace(-L, L, 1024); % Puntos en los que se evalúa la aproximación,

% 1024 para que funcione el log2 con resultado
%entero

f = @(x) abs(x);

% Muestras de la función
num_points = length(x);
f_samples = f(x);

% Transformada de Haar completa
[coeffs, lengths] = wavedec(f_samples, log2(num_points), ’haar’);

% Seleccionar los primeros N términos
coeffs_truncated = zeros(size(coeffs));
coeffs_truncated(1:N) = coeffs(1:N);

% Reconstrucción con la serie de Haar truncada
f_approx = waverec(coeffs_truncated, lengths, ’haar’);

% función original y su aproximación

TFG - César Miravete Zarazaga 27

figure;
plot(x, f_samples, ’b-’, ’DisplayName’, ’Función Polinomial Original’);
hold on;
plot(x, f_approx, ’r--’, ’DisplayName’, [’Aproximación de Haar (N=’, num2str(N),

’)’]);
legend;
title(’Aproximación de Haar ’);
xlabel(’x’);
ylabel(’f(x)’);
grid on;
%% FiGura 2.2
% Parámetros
L = pi; % Intervalo [-L, L]
N = 2; % Número de términos en la serie de Haar
x = linspace(-L, L, 1024); % Puntos en los que se evalúa la aproximación

% Definición de la función por tramos
f = @(x) (x > 0) .* (pi / 2) + (x < 0) .* (-pi / 2)+ (x == 0) .* 0;

num_points = length(x);
f_samples = f(x);

% Transformada de Haar completa
[coeffs, lengths] = wavedec(f_samples, log2(num_points), ’haar’);

% Seleccionar los primeros N términos
coeffs_truncated = zeros(size(coeffs));
coeffs_truncated(1:N) = coeffs(1:N);

% Reconstrucción con la serie de Haar truncada
f_approx = waverec(coeffs_truncated, lengths, ’haar’);

% función original y su aproximación
figure;
plot(x, f_samples, ’b-’, ’DisplayName’, ’Función Original’);
hold on;
plot(x, f_approx, ’r--’, ’DisplayName’, [’Aproximación de Haar (N=’, num2str(N),

’)’]);
legend;
title(’Aproximación de Haar de una Función Definida por Tramos’);
xlabel(’x’);
ylabel(’f(x)’);
grid on;

A.2. Wavelets de Daubechies

%% Figura 2.3
% Definir el rango de órdenes de Daubechies
orders = 1:4;

figure;

for idx = 1:numel(orders)
order = orders(idx);
% Obtener la wavelet y la función de escala

28 Capítulo A. Código

[phi, psi, xval] = wavefun([’db’, num2str(order)], 10);

% subgráficos para la función de escala y la wavelet
subplot(2, numel(orders), idx);
plot(xval, phi, ’r’, ’LineWidth’, 1.5);
title([’Escala - Db’, num2str(order)]);
xlabel(’Tiempo’);
ylabel(’Amplitud’);
grid on;

subplot(2, numel(orders), idx + numel(orders));
plot(xval, psi, ’b’, ’LineWidth’, 1.5);
title([’Wavelet - Db’, num2str(order)]);
xlabel(’Tiempo’);
ylabel(’Amplitud’);
grid on;

end

% tamaño de la figura
set(gcf, ’Position’, [100, 100, 1200, 800]);

A.3. Algortimo DWT en una señal

x = [4 6 10 12 14 16 18 20]; %señal

[cA1, cD1] = HaarWaveletTransform(x); %descomposición nivel 1
[cA2, cD2] = HaarWaveletTransform(cA1);%descomposición nivel 2
[cA3, cD3] = HaarWaveletTransform(cA2);%descomposición nivel 3

disp(’Detalles de nivel 1:’);
disp(cD1);
disp(’Detalles de nivel 2:’);
disp(cD2);
disp(’Detalles de nivel 3:’);
disp(cD3);
disp(’Aproximaciones de nivel 3:’);
disp(cA3);

A2_rec=HaarInverseTransform(cA3,cD3); %recostrución nivel 2
A1_rec=HaarInverseTransform(A2_rec,cD2); %recostrución nivel 1
x_rec=HaarInverseTransform(A1_rec,cD1); %recostrución de la señal

disp(’Señal recostruida:’);
disp(x_rec);

%%
% Función para la transformada Haar
function [cA, cD] = HaarWaveletTransform(x)

N = length(x);
if N == 1

cA = x;
cD = [];

else
cA = zeros(1, N/2);

TFG - César Miravete Zarazaga 29

cD = zeros(1, N/2);
for i = 1:N/2

cA(i) = (x(2*i-1) + x(2*i)) / sqrt(2);
cD(i) = (x(2*i-1) - x(2*i)) / sqrt(2);

end
end

end

% Función para la anti-transformada Haar
function x_reconstructed = HaarInverseTransform(cA, cD)

N = length(cA) + length(cD);
x_reconstructed = zeros(1, N);

for i = 1:length(cA)
x_reconstructed(2*i-1) = (cA(i) + cD(i)) / sqrt(2);
x_reconstructed(2*i) = (cA(i) - cD(i)) / sqrt(2);

end
end

A.4. Tratamiento de ruido (DWT)

% Cargar la imagen
I = imread(’prueba2.jpg’);
%I = rgb2gray(I); % Convertir a escala de grises si es necesario
I = im2double(I); % Convertir a formato double

% Descomposición utilizando la DWT
waveletName = ’db2’; % Wavelet a utilizar

[CA, CH, CV, CD] = dwt2(I, waveletName); %desscomposicion dwt

% Añadimos ruido a los detalles con un factor de ruido
noise_factor= 30/255;
I_noisy=I+noise_factor*randn(size(I));

[CA, CH_noisy, CV_noisy, CD_noisy] = dwt2(I_noisy, waveletName);

%%

sigma_H = median(median(abs(CH_noisy))) / 0.6745; % universal Threshold
sigma_V = median(median(abs(CV_noisy))) / 0.6745; %
sigma_D = median(median(abs(CD_noisy))) / 0.6745; %

%Aplicamos el umbral universal

n = size(I, 1)*size(I,2)*3;
umbral_H = sigma_H * sqrt(2 * log(n))
umbral_V = sigma_V * sqrt(2 * log(n))
umbral_D = sigma_D * sqrt(2 * log(n))

CH_filt = umbralizar(CH_noisy,umbral_H);
CV_filt = umbralizar(CV_noisy,umbral_V);
CD_filt = umbralizar(CD_noisy,umbral_D);

30 Capítulo A. Código

% Reconstrucción de la imagen utilizando la IDWT
I_filt = idwt2(CA, CH_filt, CV_filt, CD_filt, waveletName);

figure;
imshow(I);
title(’Imágen Original’);

figure;
imshow(I_filt);
title(’Imagen filtrada’);

figure;
imshow(I_noisy);
title(’Imagen con Ruido’);
%%
figure;
subplot(1, 2, 1);
imshow(I_noisy);
title(’Imagen Con ruido añadido’);
subplot(1, 2, 2);
imshow(I_filt);
title(’Imagen Filtrada con umbral ’);

% Comparamos la original con la de después del filtrado
figure;

subplot(2, 2, 1);
imshow(I);
title(’Imagen Original’);

subplot(2, 2, 2);
imshow(I_noisy);
title(’Imagen con Ruido’);

subplot(2, 2, 3);
imshow(I_filt);
title(’Imagen Filtrada’);

%visualizar todo junto

h1 = subplot(2, 2, 1);
h2 = subplot(2, 2, 2);
h3 = subplot(2, 2, 3);
annotation(’arrow’, [0.43 0.61], [0.8 0.8], ’LineWidth’, 2);
annotation(’arrow’, [0.75 0.45], [0.55 0.3], ’LineWidth’, 2);
annotation(’textbox’, [0.42 0.77 0.2 0.1], ’String’, ’Añadir Ruido’, ’EdgeColor’,

’none’, ’FontSize’, 12, ’HorizontalAlignment’, ’center’);
annotation(’textbox’, [0.6 0.3 0.2 0.1], ’String’, ’Filtrar Ruido’, ’EdgeColor’,

’none’, ’FontSize’, 12, ’HorizontalAlignment’, ’center’);

%%
I = imread(’prueba4.jpg’);
I = rgb2gray(I); % Convertir a escala de grises si es necesario
I = im2double(I); % Convertir a formato double
I;

B= binarizar(I,0.6);

TFG - César Miravete Zarazaga 31

figure;
subplot(1, 2, 1);
imshow(I);
title(’Imagen Original’);
subplot(1, 2, 2);
imshow(B);
title(’Imagen Filtrada’);
%%
figure;
imshow(I_filt)
figure;
imshow(I_noisy)
%%

function B = umbralizar(A, umbral)

% Crear una copia de A para B
B = A;

% Aplicar la umbralización
B(A < umbral) = 0;

end

A.5. Tratamiento de ruido (MRA)

% Leer y convertir la imagen a escala de grises
I = imread(’prueba2.jpg’);
I = rgb2gray(I); % Convertir a escala de grises si es una imagen en color
I = im2double(I);
%Añadir ruido

noise_factor= 16/255;
I_noisy=I+noise_factor*randn(size(I));

% Descomposición wavelet de la imagen con ruido
waveletName = ’db2’; % Wavelet a utilizar

level = 6; % Nivel de descomposición

[C, S] = wavedec2(I_noisy, level, waveletName);

%% Extraer y visualizar los coeficientes de aproximación en diferentes niveles(MRA)

% Extraer las aproximaciones en diferentes niveles
A1 = appcoef2(C, S, waveletName, 1);
A3 = appcoef2(C, S, waveletName, 3);
A5 = appcoef2(C, S, waveletName, 5);

figure;

subplot(2, 2, 1);
imshow(I_noisy,[]);
title(’Imagen Ruidosa’);

subplot(2, 2, 2);
imshow(A1,[]);

32 Capítulo A. Código

title(’Aproximación Nivel 1’);

subplot(2, 2, 3);
imshow(A3,[]);
title(’Aproximación Nivel 3’);

subplot(2, 2, 4);
imshow(A5,[]);
title(’Aproximación Nivel 5’);

%% Tratamiento del ruido método de universal Threshold

% Tomar los coeficientes de detalle de nivel uno
[H, V, D] = detcoef2(’all’, C, S,1); % Detalles de nivel uno

sigma_H = median(abs(H(:))) / 0.6745;
sigma_V = median(abs(V(:))) / 0.6745;
sigma_D = median(abs(D(:))) / 0.6745;

% Aplicar el umbral universal
n = size(I, 1)*size(I,2);
umbral_H = sigma_H * sqrt(2 * log(n))
umbral_V = sigma_V * sqrt(2 * log(n))
umbral_D = sigma_D * sqrt(2 * log(n))

H_filt= umbralizar(H,umbral_H);
V_filt= umbralizar(V,umbral_V);
D_filt= umbralizar(D,umbral_D);

% Actualizar C y filtrar otros niveles si es necesario

C_filt=replaceSubvector(C,H,H_filt); %se filtran los detalles de nivel uno
C_filt=replaceSubvector(C_filt,V,V_filt);
C_filt=replaceSubvector(C_filt,D,D_filt);

%% Repetir a otro nivel

nivelfiltrado = 2; % si se desea filtrar los detalles a otro nivel ejecutar este
% trozo de código cambiando el nivel a filtar deseado

[H, V, D] = detcoef2(’all’, C, S, nivelfiltrado);
sigma_H = median(abs(H(:))) / 0.6745;
sigma_V = median(abs(V(:))) / 0.6745;
sigma_D = median(abs(D(:))) / 0.6745;

% Aplicar el umbral universal
n = size(I, 1)*size(I,2);
umbral_H = sigma_H * sqrt(2 * log(n))
umbral_V = sigma_V * sqrt(2 * log(n))
umbral_D = sigma_D * sqrt(2 * log(n))

H_filt= umbralizar(H,umbral_H);
V_filt= umbralizar(V,umbral_V);
D_filt= umbralizar(D,umbral_D);

%Actualizar C y repetir si se desea filtar otro nivel

C_filt=replaceSubvector(C_filt,H,H_filt);

TFG - César Miravete Zarazaga 33

C_filt=replaceSubvector(C_filt,V,V_filt);
C_filt=replaceSubvector(C_filt,D,D_filt);

%%
I_filt = waverec2(C_filt,S,waveletName); %recostrucción despues del filtrado

figure;
subplot(1, 2, 1);
imshow(I_noisy);
title(’Imagen Original’);

subplot(1, 2, 2);
imshow(I_filt);
title(’Imagen filtrada’);
figure;
imshow(I_filt)
%%
figure;
imshow(I_noisy);
title(’Imagen con ruido artificial’);
figure;
imshow(I_filt);
title(’Imagen filtrada’);
%%
function B = umbralizar(A, umbral)

% Crear una copia de A para B
B = A;

% Aplicar la umbralización
B(A < umbral) = 0;

end

function updatedVector = replaceSubvector(vector, subvectorToFind, subvectorToReplace)
% Convertir los vectores a filas
vector = vector(:)’;
subvectorToFind = subvectorToFind(:)’;
subvectorToReplace = subvectorToReplace(:)’;

% Longitudes de los vectores
lenVector = length(vector);
lenSubvectorToFind = length(subvectorToFind);
lenSubvectorToReplace = length(subvectorToReplace);

% Inicializar el vector actualizado con el original
updatedVector = vector;

% Iterar sobre el vector principal para encontrar el subvector
i = 1;
while i <= lenVector - lenSubvectorToFind + 1

% Extraer el subvector actual del vector principal
currentSubvector = vector(i:i + lenSubvectorToFind - 1);

% Comparar el subvector actual con el subvector a encontrar
if isequal(currentSubvector, subvectorToFind)

% Reemplazar el subvector encontrado por el subvector de reemplazo
updatedVector = [updatedVector(1:i-1), subvectorToReplace, updatedVector(i

+ lenSubvectorToFind:end)];

34 Capítulo A. Código

% Actualizar el tamaño del vector
lenVector = length(updatedVector);

% Saltar adelante por el tamaño del subvector de reemplazo
i = i + lenSubvectorToReplace;

else
i = i + 1;

end
end

end

A.6. Compresión

% Leer una imagen y convertirla a escala de grises
img = imread(’prueba2.jpg’);
%img_gray = im2double(rgb2gray(img)); % si fuera nesesario se pasa a blanco
%y negro
img=im2double(img);

% Mostrar la imagen original
figure;
imshow(img);
title(’Imagen Original’);

% Nivel de descomposición
level = 5;
waveletName = ’db6’; % Wavelet a utilizar

% Descomposición de la imagen utilizando la DWT
[c, s] = wavedec2(img, level, waveletName);

% Calcular el umbral de compresión
% threshold = wthrmngr(’dw2dcompGBL’,’rem_n0’,c,s);

threshold=0.09 % Se elije el umbral segun lo que se desee o se calcula con lo
descrito arriba

% Aplicar el umbral para comprimir
c_compressed = wthresh(c, ’h’, threshold);

% Reconstrucción de la imagen comprimida
img_compressed = waverec2(c_compressed, s, waveletName);

% Mostrar la imagen comprimida
figure;
imshow(img_compressed,[]);
title(’Imagen Comprimida’);

%se guardan las imagenes para calcular la tasa de compresión.

imwrite((img_compressed), ’compressed_image.jpg’);
imwrite((img), ’ProgramaPrueba2.jpg’);

originalFileInfo = dir(’ProgramaPrueba2.jpg’);

TFG - César Miravete Zarazaga 35

compressedFileInfo = dir(’compressed_image.jpg’);

originalFileSize = originalFileInfo.bytes;
compressedFileSize = compressedFileInfo.bytes;

% Calcular la tasa de compresión
compressionRatio = originalFileSize / compressedFileSize

36 Capítulo A. Código

Bibliografía

[1] D.HONG, J.WANG Y R.GARDEN. , Real analysis with an introduction to wavelets and applications.
Elsevier, 2004.

[2] PEREYRA, MARÍA CRISTINA; WARD, LESLEY A. Harmonic analysis: from Fourier to wave-
lets. American Mathematical Soc., 2012.

[3] ALGORITMOS PARA REDUCCIÓN DE RUIDO EN SEÑALES. http://catarina.udlap.mx/u_dl_
a/tales/documentos/lem/hernandez_d_m/capitulo3.pdf.

[4] SCHELKENS, PETER, ATHANASSIOS SKODRAS, AND TOURADJ EBRAHIMI, The JPEG 2000 sui-
te., John Wiley & Sons, 2009.

[5] GARCÍA RAMOS, ROMÁN. Compresión de imágenes fijas en MATLAB a través de DCT y WA-
VELET. Tesis de Maestría. Departamento de Ingeniería Electrónica. Universidad de las Américas,
Puebla. Enero 2003.

[6] MALLAT, STEPHANE. Multiresolution approximations and wavelet orthonormal bases of L2(R).
Transactions of the American mathematical society, 1989, vol. 315, no 1, p. 69-87.

37

http://catarina.udlap.mx/u_dl_a/tales/documentos/lem/hernandez_d_m/capitulo3.pdf
http://catarina.udlap.mx/u_dl_a/tales/documentos/lem/hernandez_d_m/capitulo3.pdf

	Abstract
	Introducción
	Espacios de Hilbert, Espacios L2 y Transformada de Fourier
	Espacios de funciones
	Transformada de Fourier

	Construcción de wavelets
	Wavelet de Haar
	Transformada discreta y transformada rápida
	Análisis de multirresolución (MRA)
	Ejemplo

	Wavelets de Daubechies
	Transformada continua

	Aplicaciones
	Reducción de ruido
	Compresión de imágenes
	Otras aplicaciones

	Código
	Representación de series
	Wavelets de Daubechies
	Algortimo DWT en una señal
	Tratamiento de ruido (DWT)
	Tratamiento de ruido (MRA)
	Compresión

	Bibliografía

