La Transformacion Wavelet y sus
Aplicaciones en el Procesamiento de
Imagenes

macultad de Ciencias
Universidad Zaragoza

i2s Universidad
10l Zaragoza

1542

César Miravete Zarazaga
Trabajo de fin de grado de Matematicas
Universidad de Zaragoza

Directores del trabajo: Francisco Gaspar y Carmen
Rodrigo
10 de julio de 2024

Abstract

The growing need to handle large amounts of data and the importance of maintaining information
integrity in critical applications have driven the development of advanced signal analysis and processing
techniques. In this context, the Wavelet Transform (WT) offers a robust and efficient solution, providing
powerful tools for compression, noise reduction, and multiresolution data analysis.

Wavelet theory was not consistently developed until the 1980s. Nevertheless, in 1909 Alfred Haar
presented the Haar wavelet, and it wasn’t until 1987 that Belgian mathematician Ingrid Daubechies
presented the first orthogonal compactly supported wavelet (known as Daubechies wavelets). From that
moment, wavelets began to be a powerful computational tool. Subsequently, in 1989, Stéphane Mallat
published what is known as multiresolution analysis (MRA), see [6].

In the first chapter of this work, we will cover all the necessary mathematical concepts to rigorously
define what wavelets and the wavelet transform are. A brief description of the Fourier transform will also
be provided as motivation. The most important concepts include the definition of Hilbert spaces such as
the L? space, as well as its completeness and the decomposition of L? functions into series as follows.
Given {@, },en a basis of L2,

Vf e L*(a,b), f Zf,(pn @, in L*(a,b).

In the second chapter, wavelets will be introduced. Mathematically, a wavelet is a function y € L?(R)
that generates a family of functions through translation and scaling of a mother function:

vir=2"2y(2Ix—k) VjkeZ

This family of functions forms an orthonormal basis of L?(R).
Attention will be given to Haar wavelets and how a function can be decomposed using scaling and
wavelet functions as follows,

N—1
n=Y aBi+ Y, Y diHjx
keZ j=0keZ

where B is the scaling function and H; ; are the wavelet functions. In a similar way, Daubechies wavelets

will be studied,
J L—1

Zak(bLf—)+) ZdjkWL (2t —k),

j=0k=0

where ¢ (t — k) is the scaling function and yy (2/t — k) are the wavelet functions. The WT will also be
studied for its ability to decompose a signal into different frequencies, levels, and resolutions, allowing
for detailed analysis. Unlike the Fourier Transform, which provides global frequency information of
the signal, the WT offers additional details due to its local nature, which is especially useful for non-
stationary and short-duration signals.

Although theoretically continuous signals can exist, in practice, all signals are discrete. Therefore,
the Discrete Wavelet Transform (DWT) is primarily used, which transforms the input signal into a series
of approximation and detail coefficients, providing a multilevel representation that allows for multireso-
lution analysis (MRA).

II1

v Abstract

Finally, the third chapter will look into the applications of the Discrete Wavelet Transform. One
of the most prominent applications of the DWT is image compression. Algorithms like JPEG2000 use
the DWT to decompose the image into frequency sub-bands, addressing some of the issues of previous
algorithms like JPEG, which uses the Discrete Cosine Transform (DCT). By applying thresholds to the
approximation and detail coefficients, a significant reduction in file size is achieved without considerable
loss in visual quality. The DWT enables greater efficiency in compression due to its ability to concentrate
the signal’s information into a few significant coefficients.

Another important application of the DWT is noise reduction (denoising). This process involves
transforming a noisy signal into its wavelet coefficients (approximation and detail) and then, through
techniques such as coefficient thresholding and reconstruction using the Inverse Wavelet Transform,
recovering the original signal noise free.

Thresholding can be hard or soft, depending on the criteria used to nullify or reduce coefficients
below a certain threshold. This method is especially effective for signals with high-frequency noise.

dij, 1f |dj| > A

0, ifldjl<A

sen(dji)(|djx| = A), if|djxl > A
0, if |dju] <A

Hard thresholding: d ik = {

Soft thresholding: d}}k = {

where d . are the wavelet coefficients, A is the threshold and sgn(d;) is the sign of d «.

The ability of the DWT to efficiently represent data and its applications in compression and noise
reduction make it crucial in various fields. Besides those mentioned, the DWT is used in image and video
transmission, time series analysis, anomaly detection, and many other areas. Its flexibility and efficiency
ensure its relevance in modern signal processing.

The future of the WT and DWT looks promising, with potential applications in emerging areas
such as biomedical signal processing, pattern recognition in large datasets, and artificial intelligence.
Continued research in improving algorithms and adapting the WT to new technologies and needs ensures
its place as an indispensable tool in signal analysis and processing.

In summary, the Discrete Wavelet Transform (DWT) has proven to be an essential tool in signal
analysis and processing, providing an efficient and detailed representation of signals. Its applications in
image compression and noise reduction stand out for their effectiveness and efficiency, and its ability to
adapt to non-stationary and short-duration signals makes it invaluable in various fields.

Introduccion

La creciente necesidad de manejar grandes cantidades de datos y la importancia de mantener la
integridad de la informacidén en aplicaciones criticas han impulsado el desarrollo de técnicas avanzadas
de anélisis y procesamiento de sefiales. La transformada wavelet ofrece una solucién robusta y eficiente
para estos desafios, proporcionando herramientas poderosas para la compresion, la eliminacién de ruido
y el andlisis de datos multirresolucion.

El objetivo de este trabajo es mostrar como la transformada wavelet proporciona herramientas para
las aplicaciones anteriormente nombradas, para ello, en el primer capitulo trataremos todos los conceptos
matemdticos necesarios para poder definir de manera rigurosa qué son las wavelets y la transformada wa-
velet. También se describird brevemente la transformada de Fourier como motivacion. Los conceptos mas
importantes son la definicién de espacios de Hilbert tales como el espacio L?, asi como la completitud
del mismo.

En el segundo capitulo se introduciran las wavelets. Matematicamente, una wavelet es una funcién
v € L*(R) que genera una familia de funciones mediante traslacién y escalado de una funcién madre:

Wik =2Py(2x—k), VjkeZ.

Esta familia de funciones forma una base ortonormal de L?(IR). Se prestara especial atencion a las wave-
lets de Haar y a las wavelets de Daubechies.

También se estudiard cémo la transformada wavelet descompone una sefial en diferentes frecuencias,
niveles y resoluciones, permitiendo asi analizar dicha sefial. A diferencia de la transformada de Fourier,
que proporciona informacién de la frecuencia global de la sefial, la transformada wavelet ofrece deta-
lles adicionales por su naturaleza, que son especialmente ttiles para sefiales no estacionarias y de corta
duracion.

A pesar de que teéricamente podemos tener sefiales continuas, en la practica, todas las sefiales son
discretas. Por eso, trataremos principalmente la conocida como transformada wavelet discreta (DWT), la
cual transforma la sefial de entrada en un serie de coeficientes de aproximacidn y detalle, proporcionando
una representacion por niveles que permite un andlisis multirresolucién (MRA).

Por tltimo, en el tercer capitulo, se utilizara lo descrito en los dos capitulos anteriores de manera apli-
cada. Una de las aplicaciones més destacadas de la DWT es la compresion de imdgenes, algoritmos como
JPEG2000 utilizan la DWT para descomponer la imagen en sub-bandas de frecuencia, solucionando as{
algunos de los problemas de algoritmos anteriores como el JPEG que utiliza la transformada discreta del
coseno. Al aplicar umbrales a los coeficientes de aproximacién y detalle, mencionados anteriormente,
se consigue una reduccién considerable del tamafio de los archivos sin una pérdida significativa de la
calidad visual.

Otra de las aplicaciones mas destacadas de la DWT es la técnica del denoising wavelet, que implica
la transformacién de una sefial ruidosa en sus coeficientes wavelet y, posteriormente, a través de diversas
técnicas como la umbralizacidn de los coeficientes y la reconstruccidn utilizando la transformada wavelet
inversa recuperar la imagen libre de ruido.

En conclusién, la capacidad de la DWT para representar datos es crucial en aplicaciones como la
transmisién de imdgenes y videos, el andlisis de series temporales, la deteccién de anomalias y muchas
otras dreas.

Indice general

Abstract
Introduccion

1. Espacios de Hilbert, Espacios L> y Transformada de Fourier
1.1. Espaciosde funciones e
1.2. Transformadade Fourier,

2. Construccion de wavelets
2.1. Waveletde Haar e
2.2. Transformada discreta y transformadardpida
2.3. Andlisis de multirresolucién (MRA)
23.1. Ejemplo e e e
2.4. Wavelets de Daubechies e
2.5. Transformadacontinua

3. Aplicaciones
3.1. Reducciénderuido e
3.2. Compresion de imagenes i e e e e e
3.3, Otras aplicaCiones v v it e e e e e e e e e e

A. Codigo
A.l. Representacidn de series o ..ot e e e e
A.2. Wavelets de Daubechies
A3. Algortimo DWTenunasefial
A.4. Tratamiento de ruido (DWT) o
A.5. Tratamiento deruido (MRA) o
A6, Compresion ot e e e e e e

Bibliografia

VII

111

10
11
12
15
18

19
19
22
23

25
25
27
28
29
31
34

37

Capitulo 1

Espacios de Hilbert, Espacios L’ y
Transformada de Fourier

Para poder abordar aplicaciones de la transformacién wavelet, como el procesamiento de image-
nes, primero es necesario definir mateméaticamente esta transformada asi como la funcién wavelet y los
conceptos matematicos necesarios para su desarrollo.

Nuestro objetivo en este capitulo es presentar los espacios L? y los espacios de Hilbert, donde poste-
riormente definiremos las funciones wavelet. Ademds, se va a introducir la transformada de Fourier con
el objetivo de comparar y motivar la introduccién de otro tipo de transformadas.

1.1. Espacios de funciones

Para el contenido de esta seccién nos basamos en [[1], capitulos 1y 5].

Definicion 1.1. Un espacio vectorial sobre un campo [F es un conjunto V de elementos llamados vectores
tal que existe una operacion de adicién, denotada +, definida como

VXV —=V
(u,v) — u+v,

y (V,+) forma un grupo abeliano. El elemento neutro de este grupo se denota como 0. También definimos
una operacion de multiplicacién por escalar

FxV >V
(fv) = fv.

Para f € F y v € V, denotamos el producto escalar como fv. La multiplicacién por escalar satisface las
siguientes propiedades.
Para todo a,b € F y paratodo u,v €V,

(@) a(u+v) = au+av,
(b) (a+b)v=av+bv,
(© a(bv) = (ab)v,

@ 1v=v,

(€) Ov=0.

Denotamos este espacio vectorial como < V,[F >.

1

2 Capitulo 1. Espacios de Hilbert, Espacios L? y Transformada de Fourier

Definicién 1.2. Dados u,v € V, definimos la distancia entre u y v como d(u,v) = |u —v|. Estd definida
sobre el espacio vectorial < V,C >, y cumple lo siguiente:

» d(u,v) >0 para todo u,v € V. Sid(u,v) = 0, entonces u = v.
v d(u,v) =d(vu).

v d(u,v) >d(u,w)+d(w,v).

Dado un espacio vectorial < V,C >

Definicion 1.3. Un espacio vectorial se dice espacio pre-Hilbert si existe una funciéon < -, >:V xV —
C de forma que para u,v,w € V y a € C se tiene

n <yv>eRy<yv>>0. Setiene que < v,y >=0siysolosiv=0.

n < uvtw>S=<u,v>+ <uw>.

w <au,v>=a<u,v>.

= <u,v>=<vu>, donde la barra representa la operacion conjugar compleja.

Definicién 1.4. Dado un espacio pre-Hilbert se dice que una sucesion, {v,},cn es de Cauchy si para
todo € > 0 existe N € N de forma que para todo m,n > N se tiene que d(vy,,v,) < €.

Decimos que la sucesion es convergente si existe v € V de forma que para cualquier € > 0 existe N € N
tal que para todo n > N se tiene que d(v,v,) < €. Decimos entonces que v es el limite de la sucesion.

Definicion 1.5. Un espacio pre-Hilbert decimos que es completo si toda sucesién de Cauchy es conver-
gente. Los espacios pre-Hilbert completos reciben el nombre de espacios de Hilbert.

a
Definicion 1.6. El espacio L?(a,b) es el conjunto de funciones f : (a,b) — R, tales que / F2(x) dx < oo.
b
b
Definicién 1.7. El producto escalar de dos funciones en L?(a,b) es < f,g >= / f(x)g(x) dx.
a

b
fll=V<Ff> = A £2(x) dx.

Definimos una norma asociada de la siguiente manera,

Teorema 1.1. El espacio L*(a,b) es completo.

Demostracion. Sea fy una sucesién de Cauchy en L?(a,b). Consideramos f,, una subsucesion tal que

b
an(x) _fn—&-l(x)H = \//a ‘fn(x) —fn+1(x)|2 dx <27,

Sea entonces

gm(x) = \/ il o) = fort (0) 2,

b b m m b m
[1en P x= [Y1) a0 x= L [T = s dv= 3 1) = s I <1

b b b b
[18P = [tim gn(0 dx = [lim lgn() dx= lim [len(0)P dx<1.
a a Mmoo a Mm—eo m—oo |,

En el desarrollo anterior utilizamos que g, converge monétonamente. Entonces, por definicién de espacio
L?, tenemos que g.. € L*(a,b). Por lo tanto, |g..(x)| < o en casi todo punto de (a,b) y

m—1

fn@) = f1(x) =) (fulx) = fus1 (x)

n=1

TFG - César Miravete Zarazaga 3

converge puntualmente a f. Veamos pues que f es el limite de f, en sentido L?. Para cada x tenemos que

|fm(’ < ‘fl "i‘ Z ’fn fn-H)‘
= A+ Igm(X)I < i)+ [g= ()]

(P < (11 ()| + [8eo (1)) < 4mix{| fi (x)[7, g ()}

Por lo tanto f|,g.. € L2, y por el teorema de convergencia dominada

tim [P de= [tim 0P ax= [700 ax

b b
| 1P de= tim [C£ 0P dx <o,
en consecuencia f € L2
[f () = fn)| < |f)]+ 1A ()] + g ()]
por lo tanto
1f () = fin ()] < 9Omax{| £ (x)[?, 1 f1 (), |geo () P},

de nuevo por el teorema de la convergencia dominada

2 b 2 b 2
im ||/ = fonl| =nyggo/a |f(x) = fin(x)] dx:/a lim |f(x) = fu(x)|" dx =0
O

Ahora que ya hemos visto que el espacio es completo veamos los conceptos de sistemas ortonormales
y bases en L? que seran fundamentales para la introduccién de las wavelets.

0 sin#m

1 sin=m

Ademas, si no existe otro sistema ortonormal que lo contenga se dice que es un sistema ortonormal
maximal o una base .

Definicion 1.8. Sea { @, },c un sistema ortonormal, es decir < @, @, >=

Teorema 1.2. Sea {Q,},cn un sistema ortonormal en el espacio L*(a,b), las siguientes afirmaciones
son equivalentes.

1) {®u}nen es una base.

2) Si existe una funcion f € L*(a,b) tal que < f, @, >= 0 para todo n € N entonces f = 0.

3)Vfel(ab), f=Y, <f,0n> @uenl?.

n=1

4) Vf € L*(a,b),

Z<f,<pn

Demostracion. Para la demostracion empezamos viendo que 1) implica 2).

Supongamos que existe f # 0 tal que < f, ¢, >=0Vn € N. Sea f = ﬁ Si consideramos { @, },en U f,
este sistema es ortonormal y contiene al anterior, por lo tanto tenemos una contradiccion ya que { @, },en
es base.

4 Capitulo 1. Espacios de Hilbert, Espacios L? y Transformada de Fourier

nm
Veamos ahora que 2) implica 3). Dada f € L*(a,b), sea S,, = Z < f, 0 > @, y llamamos g = lim S,,,.
m—yoo

k=1
Basta entonces probar que < f —g, ¢, >=0.Vn e N.
Como
< > sim>n
<Sma(Pn >:{ f’(Pn . R
0 sim<n
entonces,

<f—g ¢, >:<f—n111’3205m,(p,1 >:<f,<Pn>—nlll'g;<Sm,<Pn >=<f,0,>— < f,0,>=0.

n n
Seguimos con 3) implica 4). Sea S, = Z < fo 0 > @ por lo que ||f —S,|1> = ||f|]* — Z < froop >2.
k=1 k=1

n
Por otro lado, tenemos que, ya que S, tiende a f, 351010 ||f —Sa|| =0,y se tiene que || f||> = Z <fro>7.
k=1

Por tltimo, vemos que 4) implica 1). Suponiendo que { ¢, } ey no es base, existe un sistema ortonormal
S que contiene estrictamente a { @, },en. Sea f € S tal que f # @, Vn € N, ||f||* = Z < f, 0, >*=0.
n=1
O

1.2. Transformada de Fourier

El contenido de esta seccidén esta basado en [[1] capitulo 6].
Consideramos el siguiente sistema ortonormal,

e S R B T i e

que es base de L?(—7,). Por el Teorema 1.1, toda funcién f € L?>(—x,) puede escribirse como

f= % + Y (ancos(nx)+ b,sin(nx)),
=1
con

1 T

ap,=— [f(x)cos(nx) dx,
TJ-n
1 T

bu=— [f(x)sin(nx) dx.
TJ)-n

A la funcién escrita de esta manera la llamamos serie de Fourier. Es importante darse cuenta de que
una funcién de esta forma es periddica e infinita. Mds adelante introduciremos las wavelets, las cuales
tienen diferentes propiedades, entre ellas que son localizadas, veremos esto en el siguiente capitulo con
un ejemplo.

Definicién 1.9. (Transformada de Fourier). Sea f € L' (R), la transformada de Fourier de f es
~ 1 *° .
Fflw) = w:—/ t)e ™ dr.
A =700 == [70

Definicién 1.10. (Transformada inversa de Fourier). Dada f(w) la transformada de Fourier de £, defini-
mos la transformacién inversa como,

s _ 7# oo~weiwl W
FF] =)= o [Fow)e™ .

TFG - César Miravete Zarazaga 5

Ejemplo 1. Veamos la utilidad de representar sefiales por series de Fourier. La funcién

f(x) = |x], (1.1)

escrita como serie de Fourier es

gk

(ay cos(nx) + by, sin(nx))

“ Ll

La reprentacion con 5 términos viene dada en la Figura 1.1, dénde se observa una buena aproximacion
debido a que la extensién 27 periddica es continua.

f(x) ~

1

3
I

iz —1)" —1)cos(nx)).

N\:\

. Aproximacion por Fourier (5 términos)

Il
3t = = = Aproximacion de Fourier 1

(%)

Figura 1.1: Aproximacién por Fourier de (1.1).

Ejemplo 2. Veamos un ejemplo de serie de Fourier que motive la introduccién de las wavelets. La
funcién
/2, x€(0,m),
flx)=x0, x=0, (1.2)
—n/2 x€(-m,0),

es constante en dos tramos como vemos en la Figura 1.2 (ver trazado en color azul). Al escribirla como
serie de Fourier tenemos que

n—l ’

= sin((2n—1
;)X)

lo cual para valores pequeiios de n no da una buena aproximacién en torno al 0.

En ambas Figuras 1.1 y 1.2 vemos en azul la funcién y en rojo discontinuo la aproximacion por
serie de Fourier utilizando 5 y 20 términos de cada serie respectivamente. Como se puede observar la
aproximacion es mejor en el Ejemplo 1 ya que la funcién es continua y su extension peridédica también
lo es. En el Ejemplo 2 tenemos el problema en torno al 0 y el conocido como fenomeno de Gibbs (mala
aproximacion en los extremos donde la funcién presenta una discontinuidad).

f(x) / Aproximacion de f(x)

0.5

-0.5

Capitulo 1. Espacios de Hilbert, Espacios L? y Transformada de Fourier

Aproximacion por Fourier (20 términos)

Funcién
|
. | — — — - Aproximacién por Fourier

Figura 1.2: Aproximacién por Fourier de (1.2).

Capitulo 2

Construccion de wavelets

A diferencia de la transformada de Fourier, que utiliza funciones periédicas para descomponer se-
fales, la transformada wavelet es especialmente Util para analizar funciones no periddicas y transitorias.
En lugar de la periodicidad, las wavelets emplean funciones localizadas tanto en el tiempo como en la
frecuencia, permitiendo una mejor representacion del comportamiento local de las sefiales. Este enfoque
se conoce como transformacién en ventana. Nuestro objetivo es encontrar una base ortonormal alterna-
tiva que supere las limitaciones de Fourier en el andlisis local de las funciones. Después de introducir el
concepto de wavelets y sus propiedades fundamentales, volveremos a examinar el ejemplo presentado
en las Figura 1.1 y 1.2 para ilustrar la mejora en la representacion de sefiales no periddicas.

Definicién 2.1. Llamaremos wavelet a una funcién y € L?(R) si la famila de funciones
vix=2"y(s'x—k) VjkeZ 2.1)

forma una base ortonormal de L?(IR). Entonces dicha famila de funciones se llama base wavelet.

2.1. Wavelet de Haar
Cualquier funcién de L? puede ser aproximada con funciones indicadoras,

I, 27"k <x<27"(k+1),
Xn,k():
0, en otro caso.

Por lo tanto, para toda funcién f € L? existen funciones indicadoras tales que

f”('x) = Z Cn,klmk(x)? nec N7
keZ
de manera que,
lim || f, — f|| = 0.
n—oo

Definimos

=Y anidnks (@nsrez €1 p.
keZ

V= {gn

Entonces, {V,} es una sucesién de subespacios de L* que aproxima L? en sentido que para toda funcién
f € L? hay funciones f, €V, tales que

Iim 1, — £1| =0.

Llamamos a {V,} una aproximacién de L. Es evidente que conforme més grande es la n el espacio V,
tiene una mejor resolucion. También es claro que

Uv.=r% (2.2)

nez

8 Capitulo 2. Construccion de wavelets

V.=0. (2.3)

nez

Para construir la base del espacio V,,, tomamos una base ortonormal de V;. Sea

1, 0<x<l,

B(x) = { 2.4)

0, en otro caso,

que es la funcién caracteristica del intervalo [0, 1). Es claro que el conjunto de funciones {B(x — k) }xez
forma una base ortonormal de Vj. Por lo tanto, una base ortonormal de V,, puede ser construida ampliando
el sistema de V{y. Para una funcién f € [?, se define

fok(x) =2"2f(2"x —k), k€ Z, n€ L. 2.5)

Entonces, el sistema de funciones {B), x }cz, donde B, ; se define como en (2.5) a partir de B en (2.4), es
una base ortonormal para V,.

Apoyandonos en lo anterior, podemos construir una base ortonormal para L?. Sea W, el complemento
ortogonal de V, con respecto a V,,, 1, es decir

W, eV, =V, W, LV,.
Por lo descrito anteriormente en (2.2) y (2.3), se tiene que,

L*=PW,, Wy LWy,n#n'. (2.6)

nez

Como los espacios estan construidos a base de 2"-dilataciones basta con encontar una base ortonormal
para Wy.Para ello, definimos la funcién de Haar, introducida por el matematico aleman Haar (1909), y
dada por
I, 0<x<l
H(x)={ -1, ;<x<l, 2.7)
0, en otro caso.
Podemos usar las funciones correspondientes a la base wavelet definida por {H,, j }xcz, donde H,, x
se define como en (2.5) a partir de H en (2.7) para descomponer cualquier funcién como una serie de

funciones de Haar. Veamos primero que la familia de funciones {H, (x)}, ke, definida como en (2.5)
es una base del espacio L.

Teorema 2.1. Sea Hy(x) = H(x —k),k € Z. Entonces Hy es base ortonormal de Wy. En consecuencia
H, x, definida como en (2.5) a partir de H en (2.7), es base ortonormal del espacio W,,.

Demostracion. Tenemos que probar que Hy forma una base ortonormal de Wy. Es claro que {Hy(x) }xez
es un sistema ortonormal de Wy. Veamos que también es una base. Sea g una funcién de Wy, entonces
g €V y existe una sucesion (c;) € [? de manera que

g=Y cBir=Y (cuBia+cusriBios1).
keZ €7

Como g L Vj, tenemos que ¢y 1 = —cy;. Véase que H; = %(31’21 — By 2141). Entonces,

g=V2Y cxH, (cx)€l’.

1€Z

Por lo tanto tenemos ya que el sistema {Hn,k (x)}mkez forma una base ortonormal de L2.]

TFG - César Miravete Zarazaga 9

Visto lo anterior tenemos que cualquier funcién de L? puede ser expresada como serie de funciones
de Haar de la forma que sigue,

f= Z dk,an,k7

n.k€Z
donde dy,, =< f,Hpx > .
Siguiendo con el desarrollo, debido a que V; = @Wk y que V; se reduce al espacio trivial cuando j

k<j
tiende a menos infinito, tenemos que f puede ser representada como

=Y ciuBix+ Y. Y duiHu

keZ n>jkez
Sin perdida de generalidad, se puede tomar j = 0 y definir la serie de Haar truncada como
N-1
fn=Y aBi+ Y, Y diHj (2.8)
keZ Jj=0keZ

La forma de calcular los coeficientes es lo que veremos en la Seccién 2.4 y es conocido como el algoritmo
de la trasformada rdpida.
Veamos ahora los ejemplos propuestos en el capitulo anterior aproximados con funciones Haar.

Ejemplo 3. La funcién f(x) = |x| aproximada por la base wavelet de Haar usando 20 términos viene
dada por la Figura 2.1.

Aproximacion de Haar

3.5 T T

Funcién Polinomial Original
3+ — — — - Aproximacion de Haar (N=20)]

(%)

Figura 2.1: Aproximacién por Haar de (1.1).

Ejemplo 4. La funcién
/2, x€(0,m),
fx) =10, x=0,
—n/2 x¢€(—m,0),

aproximada por la base wavelet de Haar queda representada en la Figura 2.2

10 Capitulo 2. Construccion de wavelets

Aproximacion de Haar de una Funcién Definida por Tramos

5 1
-1 - 4
0.5 7
X ot |
=
-05 b
e 4
Funcion Original
— — — -Aproximacion de Haar (N=2)
i5¢ - b
_2 1 1 1 1 1 1 1
-4 3 -2 1 0 1 2 3 4

Figura 2.2: Aproximacién por Haar de (1.2).

Como podemos observar, dependiendo de las caracteristicas de cada funcién, serd més conveniente
usar una base de funciones u otra. En general, veremos que para las aplicaciones en imagenes y sefiales,
serd mejor utilizar las wavelets de Haar u otros tipos que manejen adecuadamente los cambios locales de
las funciones.

2.2. Transformada discreta y transformada rapida

Definicion 2.2. Una sefial discreta es una funcion que se define solo en valores discretos de la variable.
Mateméticamente, una sefial discreta x[n| se define como:

x:N—R,

donde n € N es la variable discreta . Una sefial discreta, de longitud N se puede representar como un
vector en el espacio RV:
X = {x[O],x[l],x[Z], R ,X[N— l]}

A nivel de aplicaciones de la transformada wavelet, como la eliminacién de ruido y la compresion, es
necesaria la transformada discreta (DWT por sus siglas en inglés), la cual descompone una sefial discreta
en componentes de diferente frecuencia y resolucién lo cual es ttil para analizar caracteristicas locales
de una senal. Antes de pasar con el algoritmo de la transformada, primero es necesario presentar lo que
Ilamamos filtros.

Definicion 2.3. Un filtro es una sucesion que transforma una sefal de entrada en una sefial de salida
mediante la atenuacién, amplificacion o modificacidn de ciertas componentes de frecuencia de la sefial
original. Los filtros pueden ser utilizados para eliminar el ruido, resaltar ciertas caracteristicas de la
sefial, o separar distintas componentes de la sefial. En términos matemdticos, la operacion de un filtro se
describe mediante la convolucién. Para sefiales discretas, la salida y[n] con entrada x[n] y filtro f[n] de
longitud K se define como:

K—1
yln] = (xx f)[n) = k;)x[k]f[n—k]- 2.9)

TFG - César Miravete Zarazaga 11

Los tipos de filtros que utilizaremos en las siguientes secciones son los siguientes.
Un filtro pasa-bajos (LPF por sus siglas en inglés) permite el paso de frecuencias bajas y atenda las
frecuencias altas. En el contexto de la DWT este filtro extrae las aproximaciones de la sefial,es decir, la
parte suave o de baja frecuencia que contiene la informacién mds global de la sefal.
Un filtro pasa-altos (HPF por sus siglas en inglés) permite el paso de las frecuencias altas y atenda
las frecuencias bajas. Este filtro extrae los detalles de la sefial, capturando las variaciones rapidas o las
componentes de alta frecuencia que contienen informacién sobre los cambios locales en la sefial.
Los filtros no son mds que una succesion de nimeros, distinta para cada wavelet en particular, la cual se
utiliza para hacer una convolucion con la sefial, mds adelante veremos un ejemplo.

2.3. Analisis de multirresolucion (MRA)

Definicién 2.4. Un analisis de multirresolucion (MRA por sus siglas en inglés) de L2 es un anidamiento
de subespacios de L?
ecVaocWwyaevic-

que cumple lo siguiente.
(1) NjezV; =10},
(2) UjezV;=L?,
(3) f(-)eVjsiysolosi f(2:) € Vi1,

(4) existe una funcién (funcién escala) ¢ € V;) de forma que {¢ (x—n) },cz es una base de Vp, y existen
dos constantes A,B > 0 de forma que, para todo (c,) € I?> se cumple la siguiente inecuacién,

2
<BY lcal?.
neN

AY el <

neN

Z Cn(])(x—l’l)

neN

Las propiedades anteriores aseguran que las funciones pueden ser representadas a diferentes niveles
de resolucién. Asi, las funciones pueden ser descompuestas en diferentes resoluciones y luego recombi-
nadas para recuperar la funcion original.

El anélisis de multirresolucién (MRA) es una herramienta fundamental en el procesamiento de se-

fiales mediante wavelets. Permite descomponer una sefial en componentes de diferentes resoluciones, lo
que facilita la extraccion de caracteristicas y el andlisis de detalles a distintas escalas. Este proceso de
descomposicién es esencial para aplicaciones en compresion de datos, eliminacién de ruido y andlisis de
frecuencias.
Partiendo de una sefal discreta en el contexto de MRA, se utilizan wavelets ortogonales que permiten
descomponer y reconstruir una sefial sin pérdida de informacion. El proceso de descomposicion se reali-
za aplicando filtros de paso bajo y de paso alto a la sefial original para obtener aproximaciones y detalles.
Este proceso se repite sobre las aproximaciones obtenidas en cada nivel para obtener las aproximaciones
y detalles del siguiente nivel. Veamos como se aplican los filtros, que no son mds que una sefial /[n] para
los LPF y h[n] para los HPF, ambas de longitud K. La sefial x[n] es de longitud N

= Aproximaciones (LPF)

oo

Aifn] =Y x[k]l[n— k], (2.10)
k=—o0

= Detalles (HPF)

Di[n] = i x[k]h[n — k]. (2.11)

k=—o0

12 Capitulo 2. Construccion de wavelets

Ademds de los filtros luego hay que aplicar el submuestreo,es decir, tomar uno de cada dos valores para
ir reduciendo el tamafio en cada nivel. Lo cual es lo mismo que utilizar la siguiente férmula,

oo

yinl =Y x[2n+k]f[K], (2.12)
k=—c

donde y es la sefal de salida y f el filtro correspondiente El resultado de esta primera descomposicién son
las aproximaciones A; y los detalles D;. Las aproximaciones A; se vuelven a descomponer utilizando los
mismos filtros para obtener A, y D,. Este proceso se repite hasta alcanzar el nivel deseado J, obteniendo
A JYy D J-

El proceso inverso se utiliza para reconstruir la sefial original a partir de las componentes de aproxi-
macidn y detalle. Para reconstruir la sefial en el nivel j — 1,

Al _ki (ALKt~ + D[k -kl —) 2.13)

donde A; significa la sefial A; sobremuestreada, explicaremos este término mas adelante en un ejemplo.
Si el indice quedara fuera de la longitud del filtro o la sefial este seria 0. Este proceso se repite hasta
reconstruir la sefial original a partir de A; y todos los D; (donde j =1,2,...,J).

Como es evidente, el MRA no es mds que aplicar el algoritmo de DWT sucesivamente primero sobre la
seflal y posteriormente sobre las aproximaciones de cada nivel hasta llegar al nivel deseado.

2.3.1. Ejemplo

Para entender el algoritmo de la DWT y el MRA, veamos un ejemplo sencillo de una sefial basado
en la wavelet de Haar, puede verse el c6dido en el Apéndice A.3. Consideremos una sefial discreta x[n]
de longitud 8:

x=1{4,6,10,12,14,16,18,20}.

Los filtros utilizados en la transformada de Haar son los siguientes:
1. Filtro Pasa-Bajos (LPF) [:

- { 11 }
vV2'V2)
2. Filtro Pasa-Altos (HPF) /:
1 1
AR
v2' V2
Para cada par de muestras en x|n|, aplicamos los filtros como en (2.12) con sus filtros correspondientes.

Aproximaciones (LPF):

= 1 1 10
A[0] = kzw(x[z-o—kk]l[k]) = x[0]1]0] + x[1]{[1] = 4-5 +6 == Vol 5V/2,

22
=11v2,

oo

A1l =) (x[2-1+KJ1[k]) = x[2)1[0] +x[3]1[1]

1
=—(10+12) =
k=—o0 \ﬁ

S

1 30
1 38

TFG - César Miravete Zarazaga 13

Detalles (HPF):
! 1 |)
D1[O]:I;)(x[ZO—l—k]h[k]):x[O]h[O]—i—x[l]h[l]:4-5—6-5:5:—\@,
1 -2
Di[1] = 3(10—12) % V2,
1 2
D2 = 5(14—16) 7:—\6,
1 -2
01[3]:5(18—20):3:—\6.

A1y Dj son las aproximaciones y detalles de primer nivel o los coeficientes de la transformada wavelet.

Con ellos podemos seguir aplicando el mismo algoritmo para obtener los siguientes niveles, lo que seria

el MRA.

Por lo tanto, aplicamos de nuevo los filtros a las aproximaciones A; obtenidas en el primer paso.
Aproximaciones del Segundo Nivel (LPF):

1 B 1 16V2
; A1[2-0+K]I[k]) = A [0]2[0] + A [1]I[1] = 5V/2- 7+11f BB =16,
1 3412
A1) = —=(15V2+19V2 =34,
[1]= \[(2)= A
Detalles del Segundo Nivel (HPF):
! B 1 —6V2
; (A1[2-0+k]h[k]) = A [0]h[0] +A;[1]A[1] = 52 - \f —11V2- 7 7——6,,
s —4v2
Dy1] = 15f —19v2) = =—4.
Aplicamos nuevamente los filtros a las aproximaciones A».
Aproximaciones del Tercer Nivel (LPF):
AS10] = Y (Aa[2-0+KIK]) = As[011[0] + A[1]1[1] = 16- = +34. 1= — 30 5513
= V2 V2 V2
Detalles del Tercer Nivel (HPF):
D;[0] = i (A2[2 -0+ k|h[k]) = A2[0]A[0] + Az [1]A[1] = 16- L 34 ! 18 = —9V2.
I V2 V2 V2

Hemos descompuesto la sefial original x[n] en sus componentes de aproximacion y detalles a varios
niveles, obteniendo lo siguiente:

= Aproximaciones del Tercer Nivel A;= {251/2},
» Detalles del Tercer Nivel D;= {—91/2},

= Detalles del Segundo Nivel D= {—6,—4},

= Detalles del Primer Nivel D= {—ﬂ, —V2,—/2, —\@}

14 Capitulo 2. Construccion de wavelets

Ahora vamos a utilizar los filtros y el denominado sobremuestreo que explicaremos mds adelante, pa-
ra reconstruir las aproximaciones del nivel anterior. Por lo que empezamos tomando las aproximaciones
y los detalles del nivel tres para obtener las aproximaciones del nivel dos.

Filtro Pasa-Bajos (LPF) [:

1 1
()
Filtro Pasa-Altos (HPF) /:
S ERNRY
V2 V2

El sobremuestreo consiste en insertar tantos ceros como posiciones en los detalles y aproximaciones de
manera intercalada. Veamos el primer paso con detalle. Insertamos un cero en A3 y en D3 resultando en

= (25v2,0) y Dg = (=9v/2,0) . Ahora aplicamos los filtros correspondiente a detalles y aproxima-
ciones de nivel tres y sumamos para obtener las aproximaciones de nivel dos, ver (2.13).

Aproximaciones del Segundo Nivel (LPF):

A= Y (Ag[k] 1[0— k] + D} [k] -h[O—k]) — AL[0]1[0] + D[0]A[0] + Al[— 1)I[1] + DL [—1]A[1] =

k=—o0
1 1 —1
:25[2-\[+(=9V2)- Nl ﬂ ﬂ—zs 9 =16,
Aoft] = Y (A31K] 201~ &+ DIK) - n{1 — K1) = Al[oli[1]+ DY [o][1]+ AL 1)1[0] + DY [1]afo] =
k=—o0
1 1 1
zzsﬁ-ﬁﬂ 9v2)- 7+o ﬂ+0'ﬁ:25+9:34'

La variable del sumatorio k recorre todos los valores pero donde las sefiales no toman valor se toma
por cero, por lo tanto, solo hay dos sumandos, ya que los filtros tienen longitud dos. Reconstruimos las
aproximaciones del primer nivel a partir de las del segundo nivel. Primero hacemos el sobremuestreo y
obtenemos A} = (16,0,34,0) y D} = (—6,0,—4,0).

Aproximaciones del Primer Nivel (LPF):

A= Y (AL0K] 1[0 — K] + DL[k] - [0~ K]) = AL[0]4[0] + D [0}A[0] + AL [~ 1]4[1] + D[~ 1][1] =
k=—o0

1 1 1 -1 10

:16'ﬁ+(6): —=+0 ﬁJFO'ﬁ:ﬁ:Sﬁ’
A1) = Al[1]1[0] + D] [1]A[0] +A T[0j[1] + DL[o]A[1] =
1 1 12
A, [2] = A [2]1[0] + DY [2]A[0] +A£mzm +D[1][1] =
1 1 1 -1 30

:34'\%”_4)'7%‘%“}% oln =15V2,
A[3] —AT[3]1[0] +DT[3}h[0] AR+ Dl[2]A1) =
1 -1 38

f \f+34 f+<_4)'ﬁ:ﬁ_19\6'

Reconstruimos la sefial original a partir de las aproximaciones del primer nivel. Primero hacemos el so-

bremuestreo y obtenemosAI =(5v2,0,11v/2,0,15v/2,0,19+/2,0) yDI =(—/2,0,—/2,0,—/2,0,—+/2,0).

TFG - César Miravete Zarazaga

Seiial Original Reconstruida (LPF):

oo

(0] = ¥, (Al[K- 10—k +D][k]- 0 —K) = A][0}110] + DL[0]hf0] +A][~1]4[1] + D] [~1][1]

k=—o0

1 1 1 ~1
=5V2- 4+ (—V2) —= 40— 40 —==5-1=4,
7 (=v2) — 7 5

x[2] = A} [2)1[0] + D5 [2]h[0] + A][1][1] + D] [1]A[1] =
1 1 1
:11ﬁ'\ﬁ+(_ﬁ)'j+o'ﬁ
ﬂﬂzﬂﬁmm+Mme+Mnmu+MDwm
1

x[4] :Aﬁ4]1[0] +DI[4}h[0] +AT[3]1[1] +D{[3]A[1]
1 1 —1
zlsﬂ-ﬁﬂ—ﬁ) 7+0 7+0 5o
x[5) = A][5]1[0] + D] [5]h[0] -+ A] [4]2[1] + D] [4][1]
1 1 1 —1
zo.ﬁjuo-ﬁﬂs\fz.ﬁﬂ—fz).\ﬁ:15+1=16,
x[6] = A][6)1[0] + D} [6][0] + A} [S]¢[1] + D}[5]A[1]
1 1 1 —1
:19‘@'\%”_‘6)'\%” 7+ 5—19 1=18,
wn:&wmm+dwwm+4mmu+mwmm

1
\[f+19\f\f (f)ﬁ—19+1:20.

= Seiial Original Reconstruida:

=15—1=14,

x={4,6,10,12,14,16,18,20}.

En el siguiente capitulo veremos como podemos aplicar lo anterior en el tratamiento de imdgenes.

2.4. Wavelets de Daubechies

Para lo descrito en esta seccién se utiliza [[1], capitulo 8 seccién 2 y [2] capitulo 10]

15

Las wavelets de Daubechies se construyen a partir de una secuencia de coeficientes, conocidos co-
mo coeficientes de filtro, que satisfacen ciertas propiedades. El proceso involucra la construccién de la

funcion de escala ¢(7) y la funcién wavelet y(r).
La funcién de escala ¢ (¢) de orden L, satisface la siguiente relacion de escala,

2L—1

ou(t) = V2 Y 1[kgc(2r k),
k=0

donde /; son los coeficientes de escala y L es el orden de Daubechies. Estos coeficientes deben cumplir
ciertas condiciones para garantizar la ortogonalidad y compacidad de la wavelet. Son los que usamos

como filtros cuando aplicamos la DWT o MRA.
Los coeficientes de escala [[k] deben satisfacer las siguientes condiciones de ortogonalidad,

16 Capitulo 2. Construccion de wavelets

Lf 1K1k +2m] = Sy
k=0

donde 8,0 es el delta de Kronecker, que es 1 si m =0y O en caso contrario. Esto asegura que las
funciones @ (t — k) sean ortogonales entre si.

La funcién wavelet y(¢) se define en términos de la funcién de escala @ () y los coeficientes hk],
que estan relacionados con [, como sigue,

hk] = (—1)*I[2L—1—K]. (2.14)

La funcién wavelet y() se expresa como,

V(1) = V3 ¥ hlkJou (21— k)
k=0

Esta funcion es la conocida como wavelet de Daubechies de orden L > 2.

Para ilustrar con un ejemplo concreto, consideremos la wavelet de Daubechies de orden L = 2, de-
notemosla a partir de ahora por Db2, que tiene 4 coeficientes de filtro .
Los coeficientes /[k] para Db2 son,

1+V3 3+V3 3-V3 1-V3
110] =4)= VR 112] =7 —

Los coeficientes &[k] se calculan como se ha descrito en (2.14), es decir,

1-3 3-V3
A T
1+V3
S

En la préctica, la transformada wavelet se realiza de manera discreta. La sefial f(z) se descompone
en una serie de coeficientes de detalle y aproximacion usando las funciones de escala y wavelet.
La sefial f(¢) puede ser representada como,

_3+V3

h[0] = 113] W)= 1] = =

h[1] = —1[2] =

h[3] = —1[0] =

L1 J L1
f@O)=Y ape(t—k)+) Y diayr (2t k),

k=0 j=0k=0
donde a; son los coeficientes de aproximacion y d; son los coeficientes de detalle en diferentes niveles
de resolucion j. Como puede observarse, es una generalizacion de la ecuacion en (2.8) ya que la wavelet
de Haar es la de Daubechies de grado 1.

Para la aplicacién como en el Ejemplo 2.3.1 se usard el mismo método de DWT aplicando ahora los

nuevos filtros [y h.

= Descomposicion: La sefial se descompone aplicando los filtros de escala y wavelet en diferentes
niveles. Esto produce una serie de coeficientes que representan la sefial en distintas resoluciones.

= Reconstruccion: La sefial original se puede reconstruir a partir de estos coeficientes utilizando la
transformada inversa de wavelet, que implica aplicar los filtros inversos correspondientes.

Para la descomposicidn y reconstruccion de la sefial utilizamos el algoritmo de la DWT aplicando
los filtros correspondientes a la wavelet que estemos utilizando en cada caso, para este caso DbL. A
continuacién, vemos algunos de los coeficientes para diferentes 6érdenes de Daubechies, ver Cuadro 2.1.

A continuacién, en la Figura 2.3 vemos las representaciones de las funciones escala y wavelet de
Daubechies de 6rdenes 1 a 4, calculadas en MATLAB, ver Apéndice A.2. Cabe resaltar, como ya se ha
mencionado anteriormente, que para orden 1 la wavelet de Daubechies es la wavelet de Haar.

TFG - César Miravete Zarazaga

Orden Coeficientes del Filtro /i
0] = 4=
Db1(Haar) 1[1] 2
e
_ 1+/3
1[0] = @
_ 343
Db2 1= M
_1-\3
Bl= 35
1[0] =~ 0,3326705529500826
I[1] =~ 0,8068915093110928
Db3 1[2] = 0,4598775021184915
[[3] ~ —0,1350110200103908
1[4] = —0,0854412738820267
1[5] =~ 0,0352262918857095
1[0] ~ 0,2303778133088964
I[1] = 0,7148465705529154
[[2] ~ 0,6308807679298587
Db 1[3] = —0,0279837694168599
I[4] = —0,1870348117188811
1[5] =~ 0,0308413818359869
1[6] =~ 0,0328830116666778
1[7] = —0,0105974017850690

Cuadro 2.1: Valores de los coeficientes del filtro /; para las wavelets de Daubechies de orden 1 a 4.

Escala - Db1 Escala - Db2 Escala - Db3 Escala - Db4
12 14 14 12
1.2 1.2 1
1
1 1 08
0.8 0.8 0.8
086
o o o o
2 2 06 2 06 2
g £ £ o
]] 04 2 0.4 2
02
0.4 02 0.2
0 e 0 0
02
0.2 0.2 0.2
0 -0.4 -0.4 0.4
0 05 1 0 1 2 3 0 2 4 6 0 2 4 6 8
Tiempo Tiempo Tiempo Tiempo
15 Wavelet - Db1 » Wavelet - Db2 » Wavelet - Db3 15 Wavelet - Db4
1.5 1.5
1
1
1 1
0.5
k=] =] o o 05
2 2 0.5 2 0.5 2
a 0 a a a
£ E E £
< < 0 < 0 < g
-0.5
0.5 0.5
-0.5
- 1 1
1.5 15 15 -1
0 0.5 1 0 1 2 3 0 2 4 6 0 2 4 6 8
Tiempo Tiempo Tiempo Tiempo

Figura 2.3: Wavelets de Daubechies de 6rdenes 1 a 4.

18 Capitulo 2. Construccion de wavelets

En resumen, las wavelets de Daubechies se construyen utilizando una serie de coeficientes de filtro
que cumplen ciertas propiedades de ortogonalidad y compacidad.

2.5. Transformada continua

Definicion 2.5. La transformada wavelet continua de una funcién f(¢) se define como

WIGH) = (o) = [Sviadr,

donde y; i es una wavelet definida como en (2.1).

A veces se utilizan pardmetros de reescala para que la funcion tenga media cero, por lo que la trans-
formada queda definida por

Wit == [ifmw(’;”) .

Los parametros también sirven para ajustar la anchura. Si s es mayor que 1, se realiza un andlisis de baja
frecuencia, y si estd entre O y 1, se realiza un andlisis de alta frecuencia. El pardmetro u permite localizar
temporalmente desplazando la wavelet a lo largo del tiempo.

Para que una funcién y(t) sea considerada una wavelet madre, debe cumplir la condicién de ad-
misibilidad, que se expresa en términos de su transformada de Fourier {/(®):

o 7 2

Esta condicién asegura que la energia de la wavelet madre esté bien distribuida en la frecuencia,
permitiendo que la transformada wavelet continua sea invertible y la sefial original pueda ser recuperada.
La wavelet madre y(¢) es la funcién base a partir de la cual se generan todas las demds wavelets en la
familia , como en (2.1), mediante escalamiento y traslacién:

Yoult) = \}5"’ (t”) ,

donde s es el pardmetro de escala y u es el pardmetro de traslacidn.

Capitulo 3

Aplicaciones

En este capitulo, utilizaremos algunos de los métodos descritos en los capitulos anteriores para el
tratamiento de im4genes. En particular, vamos a tratar la reduccion de ruido y la compresién de imédgenes.
Los cddigos que han sido programados en MATLAB para la realizacioén de los experimentos de este
capitulo pueden encontrarse en los apéndices.

3.1. Reduccion de ruido

Para el contenido de esta seccidn utilizaremos algunos métodos descritos en [3]. Se utilizaran también
funciones de la libreria de MATLAB Wavelet Toolbox.

Empecemos describiendo qué es el ruido en una sefial para poder entender como trabajan los siguien-
tes métodos. Para la lectura de una imagen en MATLAB se asocian a cada pixel tres valores uno para
cada componente de color de la escala RGB, estos valores estan comprendidos entre 0 y 255. Por lo tanto
si la imagen tiene m pixeles de alto y n pixeles de ancho, ahora tenemos la informacién en una matriz
de tamafio m x n x 3. La transformamos a escala de grises, si es necesario, para obtener una matriz de
tamafio m X n. Por dltimo se dividen todos los valores entre 255 para obtener la matriz con valores de 0
a 1. El ruido lo afiadimos sumando a la imagen (ahora una matriz) otra matriz aleatoria siguiendo una
distribucion normal (0,1) multiplicada por un factor ruido, en nuestro caso 30/255. Se toma un factor de
ruido de casi el 12 %, este podria ser otro siempre y cuando no sea ni excesivamente grande, lo que harfa
imposible el tratamiendo de ruido, ni muy pequefio ya que entonces apenas afectaria a la imagen.

30
Imagen Ruidosa = Imagen + 255 -N(0,1). (3.1)

A partir de lo descrito, los métodos para tratar el ruido siguen el mismo proceso:

1. Descomposicion: Elegimos la wavelet a utilizar para la descomposicion y el nivel de descomposi-
cién en el sentido de MRA para aplicar el algoritmo de DWT a la imagen ruidosa. Dicho algoritmo,
de manera similar a lo detallado en el Ejemplo 2.3.1, devuelve como resultado una matriz de co-
eficientes de aproximacion y tres con coeficientes de detalles, horizonales, verticales y diagonales,
respectivamente.

2. Umbralizacion: Esta es la parte fundamental del proceso, donde tratamos los coeficientes propor-
cionados en el paso anterior para reducir el ruido. En general, lo que haremos es buscar un umbral,
es decir un nimero, para eliminar en las matrices de los detalles los coeficientes que sean inferiores
a dicho umbral. Existen diferentes métodos de umbralizacién asi como muchas formas de calcular
el umbral, lo que nos llevaria a realizar un estudio estadistico sobre los coeficientes, lo cual queda
fuera del alcance de este trabajo.

3. Recomposicion: Una vez hemos aplicado la umbralizacion tenemos los coeficientes wavelet ac-
tualizados y utilizando los mismos pardmetros que para la descomposicion y el algoritmo inverso
de DWT obtenemos la imagen procesada.

19

20 Capitulo 3. Aplicaciones

Uno de los métodos para la elecién del umbral es el conocico como Universal Threshold (ver [3] Seccién
3.5). El umbral se calcula de la siguiente forma,

A =0+/2log(n),

donde o la calculamos como la mediana de todos los datos a los que les aplicamos el umbral y n es la
longitud de la sefial, en este caso la resolucion de la imagen (tamaiio de la matriz que estamos utilizando).

Para ver un ejemplo a color utilizamos el cédigo en Apéndice A.4, donde estamos usando el algo-
ritmo de la DWT de la libreria de MATLAB Wavelet Toolbox para la descomposicién wavelet en dos
dimensiones. Asi, obtenemos una matriz con los coeficientes de aproximacion y tres con los coeficien-
tes de detalles, horizontales, verticales y diagonales, respectivamente. Sobre las matrices de los detalles
aplicamos la umbralizacién, y después con las matrices actualizadas reconstruimos la imagen, ver Figu-
ra 3.1. La wavelet utilizada en el proceso de descomposicién y reconstruccion ha sido en este caso la
wavelet de Daubechies de orden 2 , es decir, Db2.

Imagen con Ruido Imagen filtrada

Imagen Original

Figura 3.1: Filtrado en DWT, ver apéndice A.4.

Veamos ahora otro ejemplo utilizando el andlisis de multirresolucion, viendo las imdgenes a varios
niveles de resolucidn, y aplicando el mismo proceso de la umbralizacién universal en el dltimo nivel de
los detalles. Para este caso, serd necesario utilizar imdgenes en blanco y negro ya que la funcién utilizada
en el cddigo, ver Apéndice A.5, no trabaja con matrices de tres dimensiones como en el caso anterior.
Para este ejemplo, utilizaremos un factor de ruido de 30/255, el mismo que antes, la descomposicién se

TFG - César Miravete Zarazaga 21

har4 hasta nivel cinco y la wavelet que usaremos en el proceso serd la de Haar, es decir, Dbl.
Veamos primero la imagen en varios niveles de resolucion, ver Figura 3.2.

Imagen Ruidosa Aproximacion Nivel 1
;. {nﬁ-'l;.,-

Figura 3.2: Imagen en diferentes niveles de resolucion.

A pesar de que puede parecer que el ruido se va eliminando en las sucesivas aproximaciones, si
viesemos las imagenes en grande se observaria que la pérdida de calidad en cada nivel es significativa,
lo cual podemos evidenciar a partir de los niveles cuatro y cinco. Por lo tanto, veamos ahora la imagen
una vez hemos filtrado los detalles de niveles uno y dos, ver Figura 3.3.

22 Capitulo 3. Aplicaciones

Imagen con ruido artificial Imagen filtrada

Figura 3.3: Filtrado con umbralizacién universal de detalles en niveles uno y dos.

3.2. Compresion de imagenes

La compresién de imdgenes es un drea fundamental de la tecnologia en la que buscamos reducir el
tamafio de los archivos sin comprometer la resolucién de los mismos, o al menos comprometiendo la
resolucion en la menor medida posible.

Uno de los métodos de compresién de imagenes mds conocido y utilizado es el JPEG, que utiliza
para la compresion la transformada discreta del coseno (DCT por sus siglas en inglés). De manera similar
a la DWT la DCT transforma la imagen en coeficientes que representan la informacién en térmnios de
frecuencias. A menudo, los detalles mds finos de la imagen pueden ser eliminados reduciendo asi el
tamafio de la imagen sin comprometer excesivamente la resolucién. Uno de los principales problemas de
esta transformada es que trabaja con bloques de tamaiio fijo, generalmente de 8x8 pixeles, lo que puede
dar lugar a que en la imagen se perciban las fronteras de los bloques.

Con el objetivo de superar algunas de las limitaciones del modelo JPEG, se desarroll el modelo
JPEG2000 el cual en lugar de utlizar la DCT para la compresién utiliza la DWT. Gracias al andlisis
multirresolucién el modelo JPEG2000 permite descomponer la imagen en varios niveles de resolucion,
lo cual sirve para reducir los detalles mds finos sin comprometer las componentes de baja frecuencia,
lo mds relevante para la imagen. Ademds, permite una primera versiéon de baja resolucién y, conforme
se obtienen mas datos, esta puede ir siendo actualizada. También permite solucionar el problema de los
bloques, si se trabaja con la wavelet adecuada, ya que a diferencia de la DCT trabaja con la imagen en
su totalidad y no en bloques de pixeles.

Para ilustar la compresion bajo el algoritmo de la DWT se ha utilizado el cédigo en el Apéndice A.6.
Se ha utilizado una descomposicién MRA en cinco niveles utilizando la wavelet Db6. A pesar de que
existen métodos para elegir el umbral necesario para realizar una compresion, en este caso se ha tomado
como umbral 0,09, de manera que este puede ser aumentado, si se desea mds compresién a razoén de
una perdida de calidad en la imagen, o disminuido si se prefiere mejor resolucién y mds tamafio. Con el
objetivo de tener una medida de compresion, se ha utilizado el cociente entre el nimero de bytes de la
imagen original y el nimero de bytes de la imagen comprimida, resultando en este caso un valor para el
cociente de 1,2194, es decir, una reduccidn del tamafio de casi el 18 % (ver Figura 3.4).

TFG - César Miravete Zarazaga 23

Imagen Original Imagen Comprimida

Figura 3.4: Compresién de una imagen.

3.3. Otras aplicaciones

Ademas de lo descrito anteriormente, existen otras muchas aplicaciones. También, haciendo ligeras
modificaciones, todo lo anterior podria ser aplicado tanto a sefales de audio como a archivos en tres
dimensiones. Otra aplicacion de la transformada wavelet discreta es, por ejemplo, la fusion de dos ima-
genes utilizando métodos similares a los decritos en [3] para combinar las matrices de aproximacién y
detalles con el fin de luego utilizar las matrices combinadas en la reconstruccion.

En resumen, la transformada wavelet discreta es una herramienta poderosa en el andlisis y proce-
samiento de sefiales, permitiendo una representacién multirresolucién que es crucial en sus diversas
aplicaciones. La capacidad de la DWT para descomponer sefiales en coeficientes y aplicar umbrales a
los mismos permite tanto reducir de manera significativa el tamafio de los archivos como la recuperacién
de sefales libres de ruido. Es decir, la DWT juega un papel fundamental en la transmisién de im4genes
y videos, y la deteccién de anomalias, entre otras dreas, demostrando su relevancia en el procesamiento
moderno de sefales.

24

Capitulo 3. Aplicaciones

Apéndice A

Codigo

A.1. Representacion de series

%% FIGURA 1.1
% numero de términos de la serie de Fourier
N = 5;

% intervalo de x
x = linspace(-pi, pi, 1000);

fx = abs(x);

a0

pi / 2;

% Inicializar la aproximacidén de la serie de Fourier
f_approx = a0 * ones(size(x)) ;

% coeficientes an y construir la serie de Fourier
for n = 1:N

an = (2 / (pi * n~2)) * ((-1)"n -1);

f_approx = f_approx + an * cos(n * x);
end

% funcidén original y su aproximacién de Fourier
figure;

plot(x, fx, ’b’, ’LineWidth’, 1.5);

hold on;

plot(x, f_approx, ’r--’, ’LineWidth’, 1.5);
legend(’ |x|’, ’Aproximacidén de Fourier’);
title(’Aproximacién por Fourier (5 términos)’);
xlabel(’x’);

ylabel (£(x)’);

grid on;

%% FIGURA 1.2
% Numero de términos en la serie de Fourier
N = 20;

% funciones para cada parte del dominio
f_neg = @(x) -pi/2 .* (x < 0 & x > -pi);
f_zero = @(x) 0 .x (x == 0);

f_pos = @(x) pi/2 .* (x > 0 & x < pi);

25

26 Capitulo A. Cédigo

x_neg = linspace(-pi+0.01, -0.01, 500); 7% Intervalo para la parte negativa
x_zero = 0; % Punto x = 0
x_pos = linspace(0.01, pi-0.01, 500); % Intervalo para la parte positiva

% Intervalo X
x = linspace(-pi, pi, 1000);

a0 = (1 / (2 * pi)) * integral(@(x) f_neg(x) + f_zero(x) + f_pos(x), -pi, pi);
sum_fourier = a0 * ones(size(x)) / 2;

% coeficientes an y bn, y sumar términos de Fourier

for n = 1:N
an = (1 / pi) * integral(@(x) (f_neg(x) + f_zero(x) + f_pos(x)) .* cos(n * x),
-pi, pi);
bn = (1 / pi) * integral(@(x) (f_neg(x) + f_zero(x) + f_pos(x)) .* sin(n * %),
-pi, pi);
sum_fourier = sum_fourier + an * cos(n * x) + bn * sin(n * x);
end

% funcion original y la aproximacién por Fourier

figure;

plot(x_neg, f_neg(x_neg), ’b’); Y’ Parte negativa en rojo

hold on;

plot (0,0, ’bo’, ’MarkerFaceColor’,’b’, ’MarkerSize’, 2); % Punto en x = 0 en verde
plot(x_pos, f_pos(x_pos), ’b’); % Parte positiva en azul

plot(x, sum_fourier, ’r’, LineStyle=’--’);

hold off;

title(’Aproximacién por Fourier (20 términos)’);
xlabel(’x?);

ylabel(’f(x) / Aproximacidén de f(x)’);

legend (’Funcién’, ’’, ’’, ’Aproximacidén por Fourier’);
grid on;

%% Figura 2.1
% Parametros
L = pi; 7% Intervalo [-L, L]

N = 20; % Namero de términos en la serie de Haar
x = linspace(-L, L, 1024); 7 Puntos en los que se evalia la aproximacidn,
% 1024 para que funcione el log2 con resultado
%entero
f = @(x) abs(x);

% Muestras de la funcién
num_points = length(x);
f_samples = f(x);

% Transformada de Haar completa
[coeffs, lengths] = wavedec(f_samples, log2(num_points), ’haar’);

% Seleccionar los primeros N términos
coeffs_truncated = zeros(size(coeffs));

coeffs_truncated(1:N) = coeffs(1:N);

% Reconstruccidén con la serie de Haar truncada
f_approx = waverec(coeffs_truncated, lengths, ’haar’);

% funcién original y su aproximacidn

TFG - César Miravete Zarazaga

figure;

plot(x, f_samples, ’b-’, ’DisplayName’, ’Funcidén Polinomial Original’);

hold on;

plot(x, f_approx, ’r--’, ’DisplayName’, [’Aproximacidén de Haar (N=’, num2str(N),
1)

legend;

title(’Aproximacién de Haar ’);

xlabel(’x?);

ylabel (£(x)’);

grid on;

%% FiGura 2.2

% Parametros

L = pi; % Intervalo [-L, L]

N = 2; 7 Namero de términos en la serie de Haar

b4 linspace(-L, L, 1024); 7 Puntos en los que se evalia la aproximacidn

% Definicidén de la funcidn por tramos
f=0(x) (x>0) . (pi / 2) + (x < 0) .*x (-pi / 2)+ (x == 0) .* 0;

num_points = length(x);
f_samples = f(x);

% Transformada de Haar completa
[coeffs, lengths] = wavedec(f_samples, log2(num_points), ’haar’);

% Seleccionar los primeros N términos
coeffs_truncated = zeros(size(coeffs));
coeffs_truncated(1:N) = coeffs(1:N);

% Reconstruccidn con la serie de Haar truncada
f_approx = waverec (coeffs_truncated, lengths, ‘haar?);

% funcidn original y su aproximacidn

figure;

plot(x, f_samples, ’b-’, ’DisplayName’, ’Funcidén Original’);

hold on;

plot(x, f_approx, ’r--’, ’DisplayName’, [’Aproximacidén de Haar (N=’, num2str(N),
DRIDH

legend;

title(’Aproximacidén de Haar de una Funcidn Definida por Tramos’);

xlabel(’x?);

ylabel (°£(x)’);

grid on;

27

A.2. Wavelets de Daubechies

%% Figura 2.3
% Definir el rango de 6rdenes de Daubechies
orders = 1:4;

figure;
for idx = 1:numel(orders)

order = orders(idx);
% Obtener la wavelet y la funcidén de escala

28

[phi, psi, xval] = wavefun([’db’, num2str(order)], 10);

% subgraficos para la funcidén de escala y la wavelet
subplot (2, numel(orders), idx);

plot(xval, phi, ’r’, ’LineWidth’, 1.5);
title([’Escala - Db’, num2str(order)]);
xlabel(’Tiempo’);

ylabel (’Amplitud’);

grid on;

subplot (2, numel(orders), idx + numel(orders));
plot(xval, psi, ’b’, ’LineWidth’, 1.5);
title([’Wavelet - Db’, num2str(order)]);
xlabel(’Tiempo’);
ylabel(’Amplitud’);
grid on;

end

% tamafio de la figura
set(gcf, ’Position’, [100, 100, 1200, 800]1);

Capitulo A. Cédigo

A.3. Algortimo DWT en una senal

x =[4 6 10 12 14 16 18 20]; Ysefal

[cAl, cD1] HaarWaveletTransform(x); ’descomposicidén nivel 1
[cA2, cD2] = HaarWaveletTransform(cAl);%descomposicién nivel 2
[cA3, cD3] HaarWaveletTransform(cA2) ; /descomposicidén nivel 3

disp(’Detalles de nivel 1:7);
disp(cD1);

disp(’Detalles de nivel 2:7);
disp(cD2);

disp(’Detalles de nivel 3:’);
disp(cD3);

disp(’Aproximaciones de nivel 3:7);
disp(cA3);

A2_rec=HaarInverseTransform(cA3,cD3); Jrecostrucidén nivel 2
Al_rec=HaarInverseTransform(A2_rec,cD2); Y%recostrucién nivel 1

x_rec=HaarInverseTransform(Al_rec,cD1); Y%recostruciéon de la seflal

disp(’Sefial recostruida:’);
disp(x_rec);

hh
% Funcién para la transformada Haar
function [cA, cD] = HaarWaveletTransform(x)

N = length(x);

if N ==
cA = x;
cD = [1;
else
cA = zeros(1, N/2);

TFG - César Miravete Zarazaga

cD = zeros(1, N/2);
for i = 1:N/2
cA(i) = (x(2%i-1) + x(2%1)) / sqrt(2);
cD(i) = (x(2%i-1) - x(2%i)) / sqrt(2);
end
end
end

% Funcidén para la anti-transformada Haar

function x_reconstructed = HaarInverseTransform(cA, cD)
N = length(cA) + length(cD);
x_reconstructed = zeros(1l, N);

for i = 1:length(cA)
x_reconstructed(2*xi-1)
x_reconstructed(2*xi) =
end
end

= (cA(i) + cD(i)) / sqrt(2);
(cA(i) - cD(1)) / sqrt(2);

29

A.4. Tratamiento de ruido (DWT)

% Cargar la imagen
I = imread(’prueba2.jpg’);
%I = rgb2gray(I); % Convertir a escala de grises si es necesario
I = im2double(I); % Convertir a formato double

% Descomposicidén utilizando la DWT
waveletName = ’db2’; % Wavelet a utilizar

[CA, CH, CV, CD] = dut2(I, waveletName); Jdesscomposicion dwt
% Afiadimos ruido a los detalles con un factor de ruido
noise_factor= 30/255;

I_noisy=I+noise_factor*randn(size(I));

[CA, CH_noisy, CV_noisy, CD_noisy] = dwt2(I_noisy, waveletName);

hh

sigma_H = median(median(abs(CH_noisy))) / 0.6745; 7 universal Threshold

sigma_V = median(median(abs(CV_noisy))) / 0.6745; Y%
sigma_D = median(median(abs(CD_noisy))) / 0.6745; %

%Aplicamos el umbral universal

n = size(I, 1)*size(I,2)*3;

umbral H = sigma H * sqrt(2 * log(n))
umbral_V = sigma_V * sqrt(2 * log(n))
umbral D = sigma_D * sqrt(2 * log(n))

CH_filt = umbralizar(CH_noisy,umbral_H);
CV_filt = umbralizar(CV_noisy,umbral_V);
CD_filt = umbralizar(CD_noisy,umbral_D);

30 Capitulo A. Cédigo

% Reconstruccién de la imagen utilizando la IDWT
I_filt = idwt2(CA, CH_filt, CV_filt, CD_filt, waveletName);

figure;
imshow(I);
title(’Imagen Original’);

figure;
imshow(I_filt);
title(’Imagen filtrada’);

figure;

imshow(I_noisy);

title(’Imagen con Ruido’);

%%

figure;

subplot (1, 2, 1);

imshow(I_noisy);

title(’Imagen Con ruido afiadido’);
subplot (1, 2, 2);

imshow(I_filt);

title(’Imagen Filtrada con umbral ’);

% Comparamos la original con la de después del filtrado
figure;

subplot (2, 2, 1);
imshow(I);
title(’Imagen Original’);

subplot(2, 2, 2);
imshow(I_noisy);
title(’Imagen con Ruido’);

subplot(2, 2, 3);
imshow(I_filt);
title(’Imagen Filtrada’);

%visualizar todo junto

hil = subplot(2, 2, 1);
h2 = subplot(2, 2, 2);
h3 = subplot(2, 2, 3);

annotation(’arrow’, [0.43 0.61], [0.8 0.8], ’LineWidth’, 2);

annotation(’arrow’, [0.75 0.45], [0.55 0.3], ’LineWidth’, 2);

annotation(’textbox’, [0.42 0.77 0.2 0.1], ’String’, ’Afiadir Ruido’, ’EdgeColor’,
’none’, ’FontSize’, 12, ’HorizontalAlignment’, ’center’);

annotation(’textbox’, [0.6 0.3 0.2 0.1], ’String’, ’Filtrar Ruido’, ’EdgeColor’,
’none’, ’FontSize’, 12, ’HorizontalAlignment’, ’center’);

hh

I = imread(’prueba4.jpg’);

rgb2gray(I); % Convertir a escala de grises si es necesario
im2double(I); % Convertir a formato double

I
I
I;

B= binarizar(I,0.6);

TFG - César Miravete Zarazaga

figure;

subplot (1, 2, 1);
imshow(I);

title(’Imagen Original’);
subplot (1, 2, 2);
imshow(B) ;

title(’Imagen Filtrada’);
Dot

figure;

imshow (I_filt)

figure;

imshow(I_noisy)

%%
function B = umbralizar(A, umbral)

% Crear una copia de A para B
B =A;

% Aplicar la umbralizacidn
B(A < umbral) = 0;
end

A.5. Tratamiento de ruido (MRA)

% Leer y convertir la imagen a escala de grises
I = imread(’prueba2.jpg’);
I = rgb2gray(I); ’ Convertir a escala de grises si es una imagen en color
I = im2double(I);
%Afladir ruido

noise_factor= 16/255;
I_noisy=I+noise_factor*randn(size(I));

% Descomposicién wavelet de la imagen con ruido
waveletName = ’db2’; J, Wavelet a utilizar

level = 6; Y Nivel de descomposicidn
[C, S] = wavedec2(I_noisy, level, waveletName) ;
%% Extraer y visualizar los coeficientes de aproximacidén en diferentes niveles(MRA)

% Extraer las aproximaciones en diferentes niveles
Al = appcoef2(C, S, waveletName, 1);

A3 = appcoef2(C, S, waveletName, 3);
A5 = appcoef2(C, S, waveletName, 5);
figure;

subplot(2, 2, 1);
imshow(I_noisy, [1);
title(’Imagen Ruidosa’);

subplot (2, 2, 2);
imshow (A1, [1);

32 Capitulo A. Cédigo

title(’Aproximacién Nivel 17);

subplot(2, 2, 3);
imshow (A3, [1);
title(’Aproximacién Nivel 37);

subplot (2, 2, 4);
imshow (A5, [1);
title(’Aproximacién Nivel 57);

%% Tratamiento del ruido método de universal Threshold

% Tomar los coeficientes de detalle de nivel uno
[H, V, D] = detcoef2(’all’, C, S,1); % Detalles de nivel uno

sigma_H = median(abs(H(:))) / 0.6745;
sigma_V = median(abs(V(:))) / 0.6745;
sigma_D = median(abs(D(:))) / 0.6745;

% Aplicar el umbral universal

n = size(I, 1)*size(I,2);

umbral_H = sigma_H * sqrt(2 * log(n))
umbral _V = sigma_V * sqrt(2 * log(n))
umbral D = sigma_D * sqrt(2 * log(n))

H_filt= umbralizar (H,umbral_H);
V_filt= umbralizar (V,umbral_V);
D_filt= umbralizar (D,umbral_D);

% Actualizar C y filtrar otros niveles si es necesario

C_filt=replaceSubvector (C,H,H_filt); Yse filtran los detalles de nivel uno
C_filt=replaceSubvector(C_filt,V,V_£filt);
C_filt=replaceSubvector(C_filt,D,D_filt);

%% Repetir a otro nivel

nivelfiltrado = 2; % si se desea filtrar los detalles a otro nivel ejecutar este
% trozo de cddigo cambiando el nivel a filtar deseado

[H, V, D] = detcoef2(’all’, C, S, nivelfiltrado);
sigma_H = median(abs(H(:))) / 0.6745;
sigma_V = median(abs(V(:))) / 0.6745;
sigma_D = median(abs(D(:))) / 0.6745;

% Aplicar el umbral universal

n = size(I, 1)*size(I,2);

umbral_H = sigma_H * sqrt(2 * log(n))
umbral_V = sigma_V * sqrt(2 * log(n))
umbral_D = sigma_D * sqrt(2 * log(n))

Il

H_filt= umbralizar (H,umbral_H);
V_filt= umbralizar(V,umbral_V);
D_filt= umbralizar (D,umbral_D);

%Actualizar C y repetir si se desea filtar otro nivel

C_filt=replaceSubvector(C_filt,H,H_filt);

TFG - César Miravete Zarazaga 33

C_filt=replaceSubvector(C_filt,V,V_£filt);
C_filt=replaceSubvector (C_filt,D,D_filt);

b

I_filt = waverec2(C_filt,S,waveletName); ’recostruccidon despues del filtrado

figure;

subplot (1, 2, 1);
imshow(I_noisy);
title(’Imagen Original’);

subplot (1, 2, 2);

imshow(I_filt);

title(’Imagen filtrada’);

figure;

imshow (I_filt)

Do

figure;

imshow(I_noisy);

title(’Imagen con ruido artificial’);

figure;

imshow(I_filt);

title(’Imagen filtrada’);

Do

function B = umbralizar(A, umbral)
% Crear una copia de A para B
B = A;

% Aplicar la umbralizacidén
B(A < umbral) = 0;
end

function updatedVector = replaceSubvector(vector, subvectorToFind, subvectorToReplace)
% Convertir los vectores a filas
vector = vector(:)’;
subvectorToFind = subvectorToFind(:)’;
subvectorToReplace = subvectorToReplace(:)’;

% Longitudes de los vectores

lenVector = length(vector);

lenSubvectorToFind = length(subvectorToFind) ;
lenSubvectorToReplace = length(subvectorToReplace);

% Inicializar el vector actualizado con el original
updatedVector = vector;

% Iterar sobre el vector principal para encontrar el subvector
i=1;
while i <= lenVector - lenSubvectorToFind + 1
% Extraer el subvector actual del vector principal
currentSubvector = vector(i:i + lenSubvectorToFind - 1);

% Comparar el subvector actual con el subvector a encontrar
if isequal(currentSubvector, subvectorToFind)
% Reemplazar el subvector encontrado por el subvector de reemplazo
updatedVector = [updatedVector(1:i-1), subvectorToReplace, updatedVector (i
+ lenSubvectorToFind:end)];

34 Capitulo A. Cédigo

% Actualizar el tamafio del vector
lenVector = length(updatedVector);

% Saltar adelante por el tamafio del subvector de reemplazo
i = i + lenSubvectorToReplace;
else

A.6. Compresion

% Leer una imagen y convertirla a escala de grises
img = imread(’pruebal.jpg’);
%img_gray = im2double(rgb2gray(img)); % si fuera nesesario se pasa a blanco
%y negro
img=im2double (img) ;

% Mostrar la imagen original
figure;

imshow (img) ;

title(’Imagen Original’);

% Nivel de descomposicioén
level = 5;
waveletName = ’db6’; Y Wavelet a utilizar

% Descomposicién de la imagen utilizando la DWT
[c, s] = wavedec2(img, level, waveletName);

% Calcular el umbral de compresidn
% threshold = wthrmngr(’dw2dcompGBL’, ’rem_n0’,c,s);

threshold=0.09 7, Se elije el umbral segun lo que se desee o se calcula con lo
descrito arriba
% Aplicar el umbral para comprimir

c_compressed = wthresh(c, ’h’, threshold);

% Reconstruccidén de la imagen comprimida
img_compressed = waverec2(c_compressed, s, waveletName) ;

% Mostrar la imagen comprimida

figure;

imshow (img_compressed, [1) ;

title(’Imagen Comprimida’);

%se guardan las imagenes para calcular la tasa de compresidn.
imwrite((img_compressed), ’compressed_image.jpg’);

imwrite((img), ’ProgramaPrueba2.jpg’);

originalFileInfo = dir(’ProgramaPrueba2.jpg’);

TFG - César Miravete Zarazaga

compressedFileInfo = dir(’compressed_image.jpg’);

originalFileSize

compressedFileSize

originalFileInfo.bytes;
= compressedFileInfo.bytes;

% Calcular la tasa de compresidn

compressionRatio

originalFileSize / compressedFileSize

35

36

Capitulo A. Cédigo

Bibliografia

[1]

(2]

[3]

[4]

[5]

[6]

D.HONG, J.WANG Y R.GARDEN. , Real analysis with an introduction to wavelets and applications.
Elsevier, 2004.

PEREYRA, MARIA CRISTINA; WARD, LESLEY A. Harmonic analysis: from Fourier to wave-
lets. American Mathematical Soc., 2012.

ALGORITMOS PARA REDUCCION DE RUIDO EN SENALES. http://catarina.udlap.mx/u_dl_
a/tales/documentos/lem/hernandez_d_m/capitulo3.pdf.

SCHELKENS, PETER, ATHANASSIOS SKODRAS, AND TOURADJ EBRAHIMI, The JPEG 2000 sui-
te., John Wiley & Sons, 2009.

GARCIA RAMOS, ROMAN. Compresion de imdgenes fijas en MATLAB a través de DCT y WA-
VELET. Tesis de Maestria. Departamento de Ingenieria Electrénica. Universidad de las Américas,
Puebla. Enero 2003.

MALLAT, STEPHANE. Multiresolution approximations and wavelet orthonormal bases of L*(R).
Transactions of the American mathematical society, 1989, vol. 315, no 1, p. 69-87.

37

http://catarina.udlap.mx/u_dl_a/tales/documentos/lem/hernandez_d_m/capitulo3.pdf
http://catarina.udlap.mx/u_dl_a/tales/documentos/lem/hernandez_d_m/capitulo3.pdf

	Abstract
	Introducción
	Espacios de Hilbert, Espacios L2 y Transformada de Fourier
	Espacios de funciones
	Transformada de Fourier

	Construcción de wavelets
	Wavelet de Haar
	Transformada discreta y transformada rápida
	Análisis de multirresolución (MRA)
	Ejemplo

	Wavelets de Daubechies
	Transformada continua

	Aplicaciones
	Reducción de ruido
	Compresión de imágenes
	Otras aplicaciones

	Código
	Representación de series
	Wavelets de Daubechies
	Algortimo DWT en una señal
	Tratamiento de ruido (DWT)
	Tratamiento de ruido (MRA)
	Compresión

	Bibliografía

