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1. Introducción

La enerǵıa Casimir se asocia, popularmente, a la enerǵıa que hay entre dos placas neutras
situadas en el vaćıo, a las que no se les ha aplicado ningún tipo de potencial; en general a este
efecto se le conoce como efecto Casimir. El efecto Casimir, a pesar de tener su origen en la
F́ısica Cuántica de Campos, se manifiesta a nivel macroscópico. Esto ha abierto un campo de
posibilidades principalmente en la micro y nanomecánica y en nanosistemas electromecánicos.
Este es un efecto provocado por el confinamiento de los campos cuánticos bajo ciertas
condiciones de contorno, que imponen restricciones en los modos de vibración de los campos
dando lugar a un efecto neto que proviene de las fluctuaciones cuánticas del vaćıo, la llamada
enerǵıa de Casimir. Nos proponemos en este documento hacer un análisis de los casos del
efecto Casimir más conocidos. Adoptaremos la geometŕıa plana y esférica, pero desde un
planteamiento general que permita (siempre que sea posible) un estudio profundo de este
fenómeno. El efecto Casimir, a pesar de tener por su naturaleza un carácter universal, es todav́ıa
un gran desconocido. El comportamiento del vaćıo ante distintas geometŕıas y/o condiciones de
contorno no es predecible y la aparición de divergencias, todav́ıa no está bien entendida.

El efecto Casimir es una consecuencia directa del punto cero de enerǵıa conocido en Mecánica
Cuántica. El término punto cero de enerǵıa aparece con las teoŕıas de radiación de Planck1 y
coge fuerza durante principios del siglo XX con desarrollos teóricos desarrollados por Einstein y
Stern2. A pesar de que el concepto circulaba desde temprana edad de la f́ısica cuántica, no se le
dio el valor que merećıa hasta a partir de mediados de siglo cuando se empezó a ver que pod́ıa,
en realidad, tener consecuencias macroscópicas.

El punto cero de enerǵıa se refiere al estado de enerǵıa de un sistema cuántico en el que
no hay ningún tipo de excitación externa, lo que frecuentemente relacionaŕıamos con el vaćıo
absoluto. Por este motivo, uno esperaŕıa (movidos por una visión clásica) que en un estado en
el que no hay estados la enerǵıa fuera nula. Sin embargo, la Mecánica Cuántica nos guarda
alguna sorpresa. El Hamiltoniano clásico que describe un oscilador armónico de masa m define
también el oscilador armónico cuántico con la salvedad de que entonces la posición y momento
de la part́ıcula pasan a ser operadores que miden esas propiedades dada la función de onda del
sistema.

H =
p2

2m
+

1

2
mω2q2 (1.1)

Como hemos dicho, en Mecánica Cuántica q y p pasan a ser los operadores posición q y momento
p, y además no conmutan,

[q, p] = iℏ, (1.2)

dando lugar a particularidades propias de un sistema cuántico como es el Principio de
Incertidumbre de Heisenberg, (∆p)(∆q) ≥ ℏ

2 .
Por conveniencia definimos los operadores a+ y a mediante las relaciones

a+ =
1√

2mℏω
(p+ imωq), (1.3)

a =
1√

2mℏω
(p− imωq), (1.4)

a los cuales se les conoce como operadores escalera u operadores construcción y destrucción
respectivamente. Esto es debido a que cuando operan sobre un estado cuántico, suben o bajan

1En concreto con la segunda teoŕıa, publicada en la revista alemana Annalen der Physik, se pueden consultar
sus volúmenes online en https://onlinelibrary.wiley.com/journal/15213889. Para más información consultar Max
Planck. Über die Begründung des Gestzes der schwarzen Strahlung. Ann. d. Phys, 37: 642, 1912.

2Publicaron sus resultados en la misma revista que Planck, para saber más ver referencia Albert Einstein and
Otto Stern. Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt. Ann. d.
Phys, 40: 551, 1913.
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su nivel. Cada estado propio de enerǵıa |n⟩ se ve afectado por estos operadores de la forma

a|n⟩ =
√
n|n− 1⟩, (1.5)

a+|n⟩ =
√
n+ 1|n+ 1⟩. (1.6)

Podemos expresar el Hamiltoniano (1.1) en términos de los operadores a y a+ según están
definidos en (1.3) y (1.4) mediante

H = ℏω
(
N +

1

2

)
, N = a+a. (1.7)

Dado que N |n⟩ = n|n⟩, los niveles de enerǵıa del sistema son

⟨n|H|n⟩ = En = ℏω
(
1

2
+ n

)
, n ∈ N ∪ {0}. (1.8)

Como se puede ver en la ecuación (1.8), el sistema con el nivel más bajo de enerǵıa (ausencia
de part́ıculas o estado fundamental |0⟩) no implica que el sistema tenga enerǵıa nula. De hecho,
el nivel más bajo de enerǵıa es E0 = ℏω

2 . Esto es lo que se denomina enerǵıa de punto cero. No
obstante, este nivel es prácticamente imposible de observar, ya que los experimentos se basan en
el scattering ocasionado al pasar de un nivel a otro haciendo que este fenómeno no tenga efecto
neto.

Existen, además, indicios fundamentales de su existencia. El Principio de Incertidumbre y la
existencia del punto cero de enerǵıa están ı́ntimamente relacionados como se puede comprobar
recordando que

(∆qn)
2 = ⟨n|q2|n⟩ − ⟨n|q|n⟩2 (1.9)

y suponiendo la base de estados de enerǵıa {|n⟩} ortonormal.

⟨n|q|n⟩ = i

√
ℏ

2mω
⟨n|(a− a+)|n⟩ = i

√
ℏ

2mω

(
⟨n|(a)|n⟩ − ⟨n|(a+)|n⟩

)
= 0

⟨n|q2|n⟩ = − ℏ
2mω

⟨n|(a− a+)2|n⟩ = − ℏ
2mω

⟨n|(a2 + a+
2 − aa+ − a+a)|n⟩ = ℏ

mω

(
n+

1

2

)
Por tanto, llegamos a

(∆qn)
2 =

ℏ
mω

(
n+

1

2

)
. (1.10)

De forma análoga calculamos lo propio para el operador momento.

(∆pn)
2 = ℏmω

(
n+

1

2

)
(1.11)

De este modo, el producto de incertidumbres nos da la relación

(∆pn)(∆qn) = ℏ
(
n+

1

2

)
, (1.12)

que no es más que el principio de Heisenberg,

(∆pn)(∆qn) = ℏ
(
n+

1

2

)
con n ∈ N ∪ {0} =⇒ (∆p)(∆q) ≥ ℏ

2
. (1.13)

Es decir, el Principio de Heisenberg permite y corrobora la existencia del punto cero de enerǵıa.
En F́ısica Cuántica de Campos, la existencia del punto cero de enerǵıa da lugar a una enerǵıa

abrumadora que, tradicionalmente, se ha valorado como no observable y, como consecuencia, se
ha intentado por distintos métodos eliminar del escenario. En concreto, en Teoŕıa Cuántica
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de Campos se representan las fluctuaciones cuánticas de los campos electromagnéticos de un
sistema suponiendo un número infinito de osciladores armónicos en cada punto, uno por cada
modo. Por tanto, teniendo en cuenta el resultado obtenido con Mecánica Cuántica del nivel cero
de enerǵıa de un oscilador armónico cuántico, el punto cero de enerǵıa ahora se considera la
suma de todos los modos,

E0 =
ℏ
2

∑
J

ωJ , (1.14)

donde J es el número cuántico asociado a cada modo de frecuencia ωJ . La suma es
espantosamente divergente. Este comportamiento del vaćıo es una fuente de problemas, pues
no sabemos cómo tratarlo, pero... ¿podŕıa serlo también de oportunidades? A mediados del
siglo XX Hendrik Brugt Gerhard Casimir consigue relacionar este punto cero de enerǵıa con
las fuerzas de van der Waals3, abriendo aśı todo un abanico de posibilidades. Las fuerzas de
van der Waals y el efecto Casimir son en esencia lo mismo, pero las primeras son referidas a
interacciones entre cuerpos muy cercanos (nm) y el segundo a cuerpos más alejados (µm). Son
los casos ĺımite de un mismo concepto4.
Mucho se ha especulado también acerca de la relación entre la enerǵıa de vacio y la enerǵıa
oscura. Un tema plagado de incertidumbres y con mucho recorrido pero fuera del propósito de
este documento.

El resto del trabajo está estructurado de la siguiente manera: En la sección 2 analizaremos
el caso más popular del efecto Casimir, la atracción de dos placas paralelas totalmente neutras
situadas en el vaćıo sin ningún tipo de potencial aplicado entre ellas. No es exactamente el caso
tratado originalmente por Casimir puesto que él consideró campos electromagnéticos y nosotros
trataremos campos escalares (nos extendemos en esto más adelante). Comenzamos esta sección
con el caso más simple posible, el de una dimensión temporal y una única dimensión espacial con
placas puntuales conductoras. Calcularemos la enerǵıa de vaćıo utilizando el método de suma
de modos en la subsección 2.1 para pasar al caso general con 3 dimensiones espaciales y placas
perfectamente conductoras en 2.2. El apartado 2.3 lo reservamos para introducir potenciales
definidos con la función delta de Dirac. Podemos generalizar el tipo de condiciones de contorno
sobre las placas modelando de esta manera el caso general de placas dieléctricas. Estos dos
últimos apartados nos servirán, además, para mostrar cómo hacer este tipo de cálculos siguiendo
el método de las funciones de Green introducido por Schwinger en su teoŕıa de fuentes, [2]. A
través de la función de Green calcularemos el tensor enerǵıa-momento. Además, emplearemos
distintos métodos de regularización en cada uno de los casos. Para la sección se han revisado los
art́ıculos [3] y [4] y el libro [5].

En la sección 3 analizamos las fluctuaciones cuánticas de campos escalares interaccionando
con una corteza esférica descrita, de nuevo, por un potencial singular tipo delta de Dirac
que, bajo circunstancias que veremos, simula los modos eléctricos transversales del campo
electromagnético. La constante positiva de acoplo sirve para modelar el tipo de condiciones
de contorno sobre la superficie de la esfera. Utilizamos el método de la función de Green que da
lugar, en esta geometŕıa, a soluciones del tipo funciones modificadas de Bessel. El tratamiento de
este caso es no trivial y el uso de las funciones de Bessel es extenso. A partir de ello, calculamos
distintas componentes del tensor enerǵıa momento. Esta descripción del sitema permite que
podamos discutir la aparición de cierto tipo de divergencias y el origen de estas. Para su desarrollo
se ha consultado el art́ıculo [4] y el libro [6].

2. Placas paralelas

Como hemos dicho en la introducción, consideraremos campos escalares interaccionando
con distintos tipos de entornos que modifican la geometŕıa del espacio en cierta manera.
Originalmente, el efecto Casimir se estudió tratando fluctuaciones del campo electromagnético.

3Lo explicó en el art́ıculo H.B.G. Casimir, Proc. Kon. Nederl. Akad. Wet., 51: 793, 1948
4Para más infromación sobre esto ver [1].
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Este está descrito por campos vectoriales, lo que hace que el formalismo se vuelva más
complicado. Puesto que el efecto Casimir lo sufre cualquier tipo de campo, estudiarlo en el
caso de campos escalar hace que los cálculos sean más sencillos y la f́ısica que describen más
ilustrativa. Es importante mencionar también que existen casos, como el que vamos a estudiar,
en los que los modos eléctrico y magnético del campo electromagnético se desacoplan y, entonces,
se pueden considerar por separado y después sumar ambas contribuciones.

El caso de la placas paralelas fue el primero tratado en el efecto Casimir y uno de los más
sencillos. Por este motivo, empezaremos nuestro análisis estudiando el punto cero de enerǵıa en
el caso más simplificado de esta geometŕıa e iremos complicando el problema progresivamente.
Esto nos permitirá introducir maneras más sofisticadas de estudiar el efecto Casimir añadiendo
generalidad al problema y permitiéndonos estudiar dicho efecto de forma local.

2.1. Caso unimensional con condiciones de Dirichlet

Para empezar, estudiamos el efecto Casimir en un sistema unidimensional, 1D+1 (una
dimensión espacial y otra temporal), el caso más sencillo. Las placas conductoras se consideran
puntos localizados en x = 0 y x = a. Puesto que consideramos conductores perfectos, las placas
son reflectoras perfectas y, sin pérdida de generalidad, podemos definir el campo escalar φ(t, x)
únicamente en el espacio entre las placas, es decir, ∀(t, x) ∈ R × (0, a), con a > 0. El carácter
conductor de las placas queda reflejado en la imposición de las condiciones de Dirichlet,

φ(t, 0) = φ(t, a) = 0. (2.1)

La dinámica del campo escalar φ(t, x) de masa m puede ser descrita por la ecuación de
Klein-Gordon, que define la dinámica de una teoŕıa clásica de campos, para después cuantizar
las variables dinámicas y darles la categoŕıa de operadores del mismo modo que se procedió
a hacerlo en Mecánica Cuántica, [7]. La ecuación de Klein-Gordon es una ecuación diferencial
homogénea en derivadas parciales de segundo orden,

1

c2
∂2φ(t, x)

∂t2
− ∂2φ(t, x)

∂x2
+

m2c2

ℏ2
φ(t, x) = 0. (2.2)

Utilizamos el método de separación de variables para su resolución, cuyos detalles se pueden
ver en el Anexo A. Se obtiene la siguiente solución para el nivel n de enerǵıa,

φn(t, x) = sen(knx)
(
Ane

iωnt +Bne
−iωnt

)
, (2.3)

donde An y Bn son constantes a determinar para ciertas condiciones de contorno, kn es una
constante que depende de n ∈ N y ωn es la frecuencia del sistema, cuyo valor depende de kn del
siguiente modo,

ωn =

√
m2c4

ℏ2
+ c2k2n, n ∈ N, (2.4)

donde, como se ha demostrado en el anexo,

kn =
πn

a
, n ∈ N. (2.5)

Por conveniencia, expresamos (2.3) como combinación lineal de los siguientes generadores,

φ±
n (x, t) = A±

n sen(knx)e
±iωnt, n ∈ N. (2.6)

La solución general de φ(t, x) será una combinación lineal de los campos escalares
correspondientes con cada nivel de enerǵıa φn(x, t). Calculamos las constantes A±

n imponiendo
condiciones de ortonormalización sobre los generadores de la siguiente manera,

(φ±
n , φ

±
n′) = ∓δnn′ (φ±

n , φ
∓
n′) = 0. (2.7)
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El producto escalar asociado a este sistema, que asegura la unitariedad está definido como

(f, g) = i

∫ a

0
dx(f∗∂x0

g − ∂x0
f∗g), x0 ≡ ct. (2.8)

Imponemos sobre (2.6) las condiciones de ortonormalización (2.7),

(φ±
n , φ

±
n ) = i

∫ a

0
dx(φ±∗

n ∂x0
φ±
n − ∂x0

φ±∗
n φ±

n ) =
−A±2

n

c

∫ a

0
dx sen2(knx) ((±ωn)− (∓ωn))

=
∓A±2

n 2ωn

c

a

2
= ∓1 ⇐⇒ A±

n =

√
c

aωn

Es decir, el conjunto de generadores o funciones linealmente independientes que resuelven nuestro
sistema es

φ±
n =

√
c

aωn
sen(knx)e

±iωnt, n ∈ N. (2.9)

De manera similar podemos comprobar el resto de propiedades. Tomando ahora n, n′ ∈ N con
n ̸= n′.

(φ±
n , φ

±
n′) = i

∫ a

0
dx(φ±∗

n ∂x0
φ±
n′ − ∂x0

φ±∗
n φ±

n′)

=
∓A±

nA
±
n′(ωn′ + ωn)

c

∫ a

0
dx sen(knx)sen(kn′x)

=
∓A±

nA
±
n′(ωn′ + ωn)

c

[
kn′sen(knx)cos(kn′x)− kncos(knx)sen(kn′x)

k2n − k2n′

]a
0

= 0,

puesto que cuando evaluamos la expresión en x = a y x = 0 nos queda cada sumando del
numerador multiplicado por cero, sen

(
πn
a a
)
= sen

(
πn′

a a
)
= 0 para n, n′ ∈ N.

Siguiendo un cálculo análogo se demuestra que (φ±
n , φ

∓
n′) = 0.

Dado que sabemos que la solución va a ser una combinación lineal de las funciones (2.9),
construimos el siguiente campo escalar

φ(t, x) =

∞∑
n=1

[
φ−
n (t, x)an + φ+

n (t, x)a
+
n

]
, (2.10)

donde an y a+n son los operadores escalera, dando aśı, a las variables dinámicas, la categoŕıa de
operadores que cumplen las relaciones de conmutación

[an, a
+
n′ ] = δn,n′ , [an, an′ ] = [a+n , a

+
n′ ] = 0, (2.11)

además de
an|0⟩ = 0. (2.12)

A continuación, vamos a calcular la componente (0, 0) del tensor enerǵıa-momento. Este es
una cantidad tensorial, denotada por Tµν , que codifica información acerca de la conservación
de la enerǵıa y momento de un sistema. Se deriva a partir del teorema de Noether. Tanto la
derivación como su expresión para campos escalares está desarrollada en detalle en el Anexo B.
La componente (0, 0) del tensor, T00, nos da la densidad de enerǵıa del sistema,

T00(t, x) =
ℏc
2

(
1

c2
[∂tφ(t, x)]

2 + [∂xφ(t, x)]
2

)
. (2.13)

En el Anexo C calculamos, a partir de la expresión de los campos según aparecen en (2.10) y la
expresión de la componente T00 anterior, el valor esperado de la densidad de enerǵıa,

⟨0|T00(x)|0⟩ =
ℏ
2a

∞∑
n=1

ωn − m2c4

2aℏ

∞∑
n=1

cos2(knx)

ωn
. (2.14)
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A partir de ahora, y en el resto del documento, vamos a suponer campos escalares no masivos,
ya que la presencia de la masa en el sistema deja al efecto Casimir en un efecto de orden
secundario e importancia menor. Omitimos, por tanto, el término dependiente de la masa m del
campo escalar. La enerǵıa se calcula integrando la densidad de enerǵıa sobre el espacio entre las
placas,

E0(a) =

∫ a

0
⟨0|T00(x)|0⟩dx =

ℏ
2

∞∑
n=1

ωn. (2.15)

Esta serie es claramente divergente y su forma nos resulta familiar. Estamos haciendo una suma
infinita de frecuencias dadas por (2.4), cuyo valor en el caso no masivo (m = 0) es proporcional
a n. Esto, en principio, no tiene por qué causar asombro puesto que estamos sumando una
enerǵıa del punto cero que sabemos que es infinito. Sin embargo, lo que nos interesa es la
contribución que las condiciones de contorno ejercen sobre la enerǵıa de vaćıo, buscamos alguna
técnica para poder extraer esta parte supuestamente finita de la enerǵıa de vaćıo. Para ello,
tenemos que regularizar la solución de alguna forma y poder extraer algún significado f́ısico de
ella. Añadamos una función de amortiguamiento e−δωn a nuestra expresión, de tal manera que al
final del cálculo haremos δ → 0 para recuperar la expresión inicial. Lo que se pretende con esta
técnica es extraer aquellos términos divergentes y ver si esto permite aislar alguna contribución
finita. La marca que debe de tener dicha contribución es que tiene que estar relacionada con la
geometŕıa causante de la restricción de los modos de los campos fluctuantes. Partimos por lo
tanto de la expresión regulada

E0(a, δ) =
ℏ
2

∞∑
n=1

ωne
−δωn , δ → 0. (2.16)

Sustituyendo el valor de ωn, (2.4), y manipulando ligeramente esta expresión nos queda,

E0(a, δ) =
ℏ
2

∞∑
n=1

cπn

a
e−δ cπn

a = −ℏ
2

∂

∂δ

∞∑
n=1

(e−δ cπ

a )n,

una serie geométrica que fácilmente podemos sumar. Recordando |δ cπ
a | < 1 y operando la

derivada, obtenemos

E0(a, δ) = −ℏ
2

∂

∂δ

1

eδ
cπ

a − 1
=

ℏ
2

cπ

4a

(
2

eδ
cπ

2a − e−δ cπ

2a

)2

Utilizando la fórmula de Euler para el seno hiperbólico, obtenemos una expresión para la enerǵıa
en función del parámetro δ,

E0(a, δ) =
ℏcπ
8a

senh−2
(
δ
cπ

2a

)
. (2.17)

Recordamos que teńıamos que aplicar el ĺımite δ → 0, al final de nuestro cálculo. Por lo
tanto, desarrollamos el seno hiperbólico en una serie de Laurent y consideramos los primeros
términos antes de las potencias positivas de δ (que convergen a cero),

senh−2(x) ≃ 1

x2
− 1

3
+ o(x2), ∀x ∋ |x| < 1. (2.18)

Sustituyendo en la expresión de arriba, obtenemos finalmente

E0(a, δ) ≃
ℏcπ
8a

[(
δ
cπ

2a

)−2
− 1

3

]
+ o(δ2) =

ℏa
2cπδ2

− ℏcπ
24a

. (2.19)

Notar que el primer sumando diverge en δ → 0. Sin embargo, si queremos calcular la fuerza
ejercida sobre las placas, debemos derivar con respecto al parámetro a. Esto hace que el primer
término no dependa de ningún parámetro relacionado con nuestro sistema, y por lo tanto esa la
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divergencia no tendrá ningún significado f́ısico. Por tanto, podŕıamos renormalizar la expresión
y prescindir del primer término. No obstante, vamos a ver con más detalle el significado de este
sumando.

Consideramos ahora el sistema sin placas. En este caso, el campo φ(x, t) se extiende a todo
el espacio (x, t) ∈ R2, y las soluciones de la ecuación (2.2) son funciones que toman valores
continuos de la frecuencia,

φ±
k = A±e±i(kx−ωt), (2.20)

con k =
√

|λ|, ω =
√

m2c4

ℏ2 + c2|λ| y λ ∈ R. Corresponden a las fluctuaciones libres del campo, en

ausencia de las placas, y por lo tanto no cumplen ningún tipo de condiciones de contorno en los
puntos donde antes estaban situadas dichas placas conductoras y haćıan que k tomara valores
discretos. Al igual que antes, la constante A± la calculamos usando (2.7) y (2.8) extendidas a
todo el espacio continuo.

(φ±
k , φ

±
k′) = i

∫ ∞

−∞
dx(φ±∗

k ∂x0
φ±
k′ − ∂x0

φ±∗
k φ±

k′)

= ∓
A±

k A
±
k′

c
e±i(ω−ω′)t

(
ω + ω′) ∫ ∞

−∞
dx e±i(k′−k)x =

∓2ωA±
k A

±
k′

c
2πδ(k − k′)

= ∓δ(k − k′) ⇐⇒ A±
k =

√
c

4πω

Evaluando la expresión (2.15) en ausencia de placas, la enerǵıa del vaćıo en todo el espacio
x ∈ R es

E0libre(−∞,∞) =
ℏ
2π

∫ ∞

0
ωLdk, (2.21)

donde L es la longitud del espacio, L → ∞. Es más conveniente, por lo tanto, hablar de enerǵıa

por unidad de longitud E0libre(−∞,∞)
L . Usando esta densidad de enerǵıa, podemos analizar la

enerǵıa contenida en el espacio que ocupan las placas,

E0libre(a) =
E0libre(−∞,∞)

L
a =

ℏa
2π

∫ ∞

0
ωdk =

ℏac
2π

∫ ∞

0
kdk. (2.22)

A pesar de ser una expresión divergente, y con la esperanza de poder comparar el resultado
con el obtenido en presencia de las placas, regulamos esa expresión usando la misma función de
amortiguamiento e−δω con δ → 0 que utilizamos en el caso de las placas conductoras. Obtenemos

E0libre(a, δ) =
ℏa
2πδ

∫ ∞

0
(ckδ)e−δckdk =

ℏa
2πδ

1

cδ

∫ ∞

0
te−tdt =

ℏa
2πcδ2

Γ(2) =
ℏa

2πcδ2
. (2.23)

Esta contribución corresponde a las fluctuaciones de vaćıo del campo en ausencia de las placas.
Inmediatamente se reconoce que el valor coincide con el primer término en (2.19) y que, por lo
tanto, corresponde a una enerǵıa que no se puede observar. Es la enerǵıa de las fluctuaciones
cuánticas que estaŕıan presentes en ausencia de las placas. Obtenemos entonces la enerǵıa neta
del vaćıo debida a la presencia de las placas como la diferencia entre ambas enerǵıas calculadas,

Eplacas
0 = ĺım

δ→0
[E0(a, δ)− EOlibre(a, δ)] = −πℏc

24a
, (2.24)

obteniendo de esta manera un valor finito. Obtenemos la densidad de la fuerza, o presión, ejercida
sobre las placas por las fluctuaciones de vaćıo derivando con respecto al parámetro a:

F = −∂Eplacas
0

∂a
= − πℏc

24a2
(2.25)

El signo menos indica que la fuerza entre las placas es atractiva. Asimismo, la variable a en el
denominador indica que el valor absoluto de la fuerza aumenta con el acercamiento de las placas.
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2.2. Caso general en 3D+1 con condiciones de Dirichlet

En esta sección extendemos el sistema anterior al caso más general de 3 dimensiones
espaciales y 1 temporal. Situamos dos placas conductoras idénticas paralelas entre śı en el vaćıo.
Las placas no poseen carga libre y ninguna diferencia de potencial se aplica sobre ellas. Puesto
que la interacción ocurre en la dirección perpendicular al plano de las placas, suponemos que
las dimensiones de estas son mucho mayores que la separación que hay entre ellas. La superficie
de las placas se extiende en el plano XY, el eje Z es perpendicular a las placas.

Y

Z

X

a

Figura 1: Placas paralelas en el vaćıo a una distancia de separación igual a a.

Estudiamos las fluctuaciones cuánticas de un campo escalar en el vaćıo. El hecho de estar el
campo confinado entre las placas fuerza un cierto comportamiento en los campos. Estos están
obligados a satisfacer las condiciones de frontera que introducen las placas, lo cual da lugar a
que la diferencia entre los campos dentro de las placas y fuera, origine una diferencia de presión
entre los modos de dentro y fuera de las placas, dando lugar a una fuerza neta entre ellas que
calcularemos a continuación. Para empezar, escribimos la densidad del Lagrangiano que define el
sistema. Utilizamos, a partir de aqúı y en el resto del trabajo, el sistema de unidades naturales,
ℏ = c = 1.

L = −1

2
gµν∂µϕ(x)∂νϕ(x) +K(x)ϕ(x), (2.26)

donde x = (t, x, y, z), gµν es la métrica de Minkowski, definida por la matriz

g =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.27)

y K(x) es una fuente que introducimos a mano para reflejar el origen de la interacción. La
dinámica del campo viene determinada por la ecuación de Euler-Lagrange,

∂µ

(
∂L

∂(∂µϕ)

)
− ∂L

∂ϕ
= 0, (2.28)

que aplicada al Lagrangiano que define nuestro sistema se obtiene

∂σ

(
−1

2
gσν∂νϕ(x)−

1

2
gµσ∂µϕ(x)

)
−K(x) = 0

−∂λ∂λϕ(x)−K(x) = 0. (2.29)

Por tanto, llegamos a la siguiente ecuación de movimiento:

∂2ϕ(x)

∂t2
−∇2ϕ(x) = K(x), (2.30)
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donde ∇2 es el Laplaciano en 3D y se asumen condiciones de contorno de Dirichlet, propias de
las placas conductoras,

ϕ(z = 0) = ϕ(z = a) = 0. (2.31)

Introducimos la función de Green mediante la ecuación (2.29) como

ϕ(x) =

∫
T.E.

K(x’)G(x,x’)dx’, (2.32)

donde K(x’) es la fuente del campo en x’ vista antes y la función de Green es el propagador,
representa la transferencia de la interacción de x’ a x. Las siglas T.E. indican que integramos
en todo el espacio. Del mismo modo podemos expresar la fuente en x como

K(x) =

∫
T.E.

K(x’)δ(x− x’)dx’. (2.33)

Sustituyendo ambas expresiones en (2.29), obtenemos la ecuación correspondiente a la
función de Green,

−∂2G(x,x’) = δ(x− x’), (2.34)

donde las derivadas operan sobre la variable x, pero debido a la simetŕıa de la función de Green
en las dos coordenadas, la misma ecuación se ha de satisfacer en x′. La solución deberá de exhibir
la propiedad de posible intercambio entre x y x′.

La geometŕıa del sistema muestra invarianza traslacional en el plano XY, que es el plano de
las placas. Además, trabajamos en una frecuencia fija que más adelante generalizaremos. Esto
hace que podamos considerar la transformada de Fourier,

G(x,x’) =

∫ ∞

−∞

d2k

(2π)2
eik·(x⊥−x’⊥)

∫ ∞

−∞

dω

2π
e−iω(t−t′)g(z, z′;ω,k), (2.35)

donde g(z, z′;ω,k) es la función reducida de Green, que por simplicidad expresaremos como
g(z, z′) = g(z, z′;ω,k). Esta función está dada a una frecuencia ω y un momento transversal
k = (kx, ky) fijos. Hemos denotado por x⊥ a las coordenadas transversales a la direción de la
interacción del campo, x⊥ = (x, y). Recordando que,

δ(x− x’) = δ(x− x′)δ(y − y′)δ(z − z′)δ(t− t′) =

=

∫ ∞

−∞

d2k

(2π)2
eik·(x⊥−x’⊥)

∫ ∞

−∞

dω

2π
e−iω(t−t′)δ(z − z′),

y sustituyéndolo junto con (2.35) en (2.34) llegamos a la siguiente relación que satisface la
función de Green reducida, (

−ω2 + k2 − ∂2

∂z2

)
g(z, z′) = δ(z − z′), (2.36)

junto con las condiciones de contorno (2.31) que se traducen ahora en

g(0, z′) = g(a, z′) = 0. (2.37)

Por conveniencia, definimos λ2 := ω2 − k2,(
−λ2 − ∂2

∂z2

)
g(z, z′) = δ(z − z′). (2.38)

Recordando las ecuaciones resueltas en la anterior sección y en el anexo B, sabemos que
la solución es una combinación lineal de exponenciales complejas; o más concretamente, de
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funciones sinusoidales pues la función deberá anularse en dos puntos concretos de z (z = 0 y
z = a). De acuerdo con estas caracteŕısticas, la única posible solución es

g(z, z′) =

{
g1(z, z

′) = A sen(λz) , 0 < z < z′ < a

g2(z, z
′) = B sen(λ(z − a)) , 0 < z′ < z < a,

(2.39)

siendo A y B constantes en la variable z5. La función de Green es continua, aśı que imponemos
esta propiedad con g1(z

′, z′) = g2(z
′, z′). De esta igualdad sacamos una relación entre las

constantes A y B:

A sen(λz′) = B sen(λ(z′ − a)) (2.40)

Por otra parte, si integramos la ecuación (2.38) en un entorno de z′, es decir, en z ∈ (z′−, z′+),

−
∫ z′+

z′−

∂2

∂z2
g(z, z′)dz − λ2

∫ z′+

z′−
g(z, z′)dz =

∫ z′+

z′−
δ(z, z′)dz,

y teniendo en cuenta que g(z, z′) es continua en z = z′, llegamos a la siguiente condición en la
derivada de la función de Green reducida:

−
(
∂g2(z

′, z′)

∂z
− ∂g1(z

′, z′)

∂z

)
+ 0 = 1,

fijando aśı una segunda ecuación que nos permitirá conocer las constantes A y B. Obtenemos
por lo tanto el sistema lineal A sen(λz′) = B sen(λ(z′ − a))

A cos(λz′)−B cos(λ(z′ − a)) =
1

λ
.

(2.41)

Despejando A y B: 
A = − 1

λ

sen(λ(z′ − a))

sen(λa)

B = − 1

λ

sen(λz′)

sen(λa)

(2.42)

En consecuencia, la solución de la función reducida de Green es

g(z, z′) =

{
− 1

λ
sen(λ(z′−a))

sen(λa) sen(λz) , 0 < z < z′ < a

− 1
λ
sen(λz′)
sen(λa) sen(λ(z − a)) , 0 < z′ < z < a.

(2.43)

Reescribimos la anterior función con otra notación más compacta,

g(z, z′) = −sen(λz<) sen(λ(z> − a))

λ sen(λa)
, (2.44)

donde z> = máx{z, z′} y z< = mı́n{z, z′}. Como hemos dicho anteriormente, la función de
Green es el propagador de la interacción y por lo tanto se corresponde con el valor esperado del
producto ordenado de los campos,

⟨Tϕ(x)ϕ(x’)⟩ = 1

i
G(x,x’), (2.45)

donde ⟨Tϕ(x)ϕ(x’)⟩ es el valor esperado del vaćıo del producto de los campos ordenado
temporalmente. Recordamos que el tensor enerǵıa-momento, que hemos deducido en el Anexo
B nos informa acerca de distintas propiedades f́ısicas del sistema. El valor esperado de la

5Es decir, en general A ≡ A(z′), B ≡ B(z′).
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componente T00 nos informa de la densidad de enerǵıa, que integrada nos proporciona la enerǵıa
total del sistema. Esto nos permite analizar propiedades, tanto locales como globales del sistema.
Para un campo escalar, el tensor viene dado por

Tµν = ∂νϕ∂µϕ+ gνµL. (2.46)

El valor esperado ⟨T00⟩ es la densidad de enerǵıa del sistema,

⟨T00⟩ = ⟨ϕ(x)T00ϕ(x
′)⟩,

cuya integración en el espacio nos da la enerǵıa de vaćıo en la región considerada. Formalmete
lo podemos expresar como

E0 =

∫ a

0
⟨T00⟩dz. (2.47)

Calculamos ⟨T00⟩ de acuerdo con las ecuaciones (2.46) y (2.45).

⟨T00⟩ =
1

i

[
∂0∂0′ +

1

2
(−∂0∂0′ + ∂x∂x’)

]
G(x,x’)|x’→x

=
1

2i
[∂0∂0′ + ∂x∂x’]G(x,x’)|x’→x

Sustituyendo la expresión completa de la función de Green, podemos escribir en términos de la
función de Green reducida

⟨T00⟩ =
1

2i

∫ ∞

−∞

d2k

(2π)2
eik(x⊥−x’⊥)

∫ ∞

−∞

dω

2π
e−iω(t−t′)

(
ω2 + k2 − ∂

∂z

∂

∂z′

)
g(z, z′)|x’→x

= − 1

2i

∫ ∞

0

d2k

(2π)2

∫ ∞

−∞

dω

2π

1

λ

[(
ω2 + k2

) sen(λz) sen(λ(z − a))

sen(λa)
+

+λ2 cos(λz) cos(λ(z − a))

sen(λa)

]
y separar la densidad reducida de enerǵıa ⟨t00⟩,

⟨T00⟩ =
∫ ∞

−∞

d2k

(2π)2

∫ ∞

−∞

dω

2π
⟨t00⟩, (2.48)

tal que

⟨t00⟩ = − 1

2iλ

[(
ω2 + k2

) sen(λz) sen(λ(z − a))

sen(λa)
+ λ2 cos(λz) cos(λ(z − a))

sen(λa)

]
.

Recordando que λ2 = ω2 − k2

⟨t00⟩ = − 1

2iλ sen(λa)
ω2 [sen(λz) sen(λ(z − a)) + cos(λz) cos(λ(z − a))]

+
1

2iλ sen(λa)
k2 [− sen(λz) sen(λ(z − a)) + cos(λz) cos(λ(z − a))]

= − 1

2iλ sen(λa)

[
ω2 cos(λa)− k2 cos(λ(2z − a)a)

]
Calculamos la enerǵıa total entre las placas, integrando esta expresión en la región indicada,

E0 =

∫ a

0
⟨T00⟩dz =

∫ a

0
dz

∫ ∞

−∞

d2k

(2π)2

∫ ∞

−∞

dω

2π
⟨t00⟩. (2.49)
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Calculamos primeramente la integral en z∫ a

0
dz⟨t00⟩ =

1

2i

∫ a

0

1

λ sen(λa)

[
−k2 cos(λ(2z − a)) + ω2 cos(λa)

]
dz

=
1

2i

1

λ

[
k2

λ
− ω2a cotg(λa)

]
(2.50)

Debido a que el primer sumando no depende de ningún parámetro del sistema, no contribuye a
la fuerza neta entre las placas y corresponde a una enerǵıa del fondo (de manera similar a los que
vimos en el caso unidimensional) por lo tanto lo eliminamos como una constante independiente
del sistema que estamos tratando. Volviendo a la expresión completa (2.49), nos queda una
enerǵıa

E0 = − a

2i

∫ ∞

−∞

d2k

(2π)2

∫ ∞

−∞

dω

2π

ω2 cotg(λa)

λ
, (2.51)

que es claramente divergente. Para obtener un significado f́ısico de esta expresión, es necesario
utilizar algún método de regularización. En el apartado anterior utilizamos una función
exponencial decreciente que haćıa el integrando convergente permitiendo obtener un valor para
la suma infinita (o para la integral en su caso) y aislar las posibles divergencias. En esta ocasión
vamos a utilizar una regularización dimensional que nos permite extender anaĺıticamente la
integral a un dominio en el que la integral converja y cuyo resultado esté bien definido cuando
volvemos a la dimensión de nuestro problema.

Extendemos anaĺıticamente la función a una dimensión general d, evitando aśı las
divergencias existentes en dimensión 3. Una vez desarrollado el cálculo, hacemos el ĺımite del
resultado para d + 1 = 3. En primer lugar, si realizamos una rotación en frecuencias al eje
complejo, ω = iζ tenemos, {

ω = iζ

λ = i
√

k2 + ζ2 ≡ iκ
. (2.52)

La expresión (2.51) queda

E0 = − a

2i

∫ ∞

−∞

ddk

(2π)d

∫ ∞

−∞

dζ

2π

ζ2 cotg(iκa)

κ
= −a

2

∫ ∞

−∞

∫ ∞

−∞

ddk dζ

(2π)d+1

ζ2 coth(κa)

κ
.

Haciendo ahora un cambio de variable a polares en ζ = κ cos θ, y ddk dζ = κd send−1(θ)dκ dθ dφ
(κ ∈ [0,∞], θ ∈ [0, π] y φ ∈ [0, 2π)), tenemos

E0 = −a

2

∫ ∞

0

∫ π

0

∫ 2π

0

κd send−1 θdκ dθ dφ

(2π)d+1

(κ cos θ)2 coth(κa)

κ

= −a

2

πd+1

Γ(d+1
2 + 1)

∫ ∞

0

κd+1

(2π)d+1
coth(κa)dκ. (2.53)

Expresando el integrando como,

−a

2

π
d

2

Γ(d+1
2 + 1)

∫ ∞

0

κd+1

(2π)d+1

(
1 +

2

e2κa − 1

)
dκ,

queda expĺıcito que la primera integral diverge, pero se trata de un término independiente de
los parámetros relevantes en nuestro sistema y se puede descartar. De esta manera, la parte de
la enerǵıa que depende de la configuración dada y necesitamos evaluar es

E0 = −a

2

π
d

2

Γ(d+1
2 + 1)

∫ ∞

0

dκ

(2π)d+1

2κd+1

e2κa − 1
. (2.54)
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Utilizando la igualdad con las funciones Gamma y Zeta de Riemann∫ ∞

0
dy

ys−1

ey − 1
= Γ(s)ζ(s) (2.55)

y llamando y = 2κa la expresión (2.54) queda

E0 = −a

2

π
d

2

Γ(d+1
2 + 1)

1

(2a)d+2

1

(2π)d+1

∫ ∞

0
dy

yd+1

ey − 1
.

En nuestro caso d+ 1 = 3 por lo tanto obtenemos el valor finito

E0 = −Γ(4)ζ(4)

96a2π2
= − π2

1440a3
, (2.56)

donde hemos empleado que ζ(4) = π4/90. Esta expresión corresponde al modo TE del campo
electromagnético. Como hab́ıamos discutido, los modos eléctrico y magnético se desacoplan
en esta situación y se pueden tratar como dos campos escalares independientes. Además, las
contribuciones de cada uno de ellos a la enerǵıa de vació son exactamente iguales, lo que implica
que la enerǵıa de Casimir del campo electromagnético es exactamente el doble de la calculada
en (2.56). La fuerza entre las placas se obtiene derivando la enerǵıa con respecto a la separación
entre ellas, a.

F = −∂E0

∂a
= − π2

480a4
(2.57)

Notamos que, de la misma manera que en el caso del sistema unidimensional, la fuerza va
a ser atractiva, es decir, dos placas conductoras en el vaćıo se van a atraer con una intensidad
inversamente proporcional a la cuarta potencia de la distancia que las separa.

2.3. Caso general con potencial delta de Dirac

A continuación, extendemos el sistema de la sección anterior para el caso en que la
placas no son necesariamente conductoras. Examinaremos el caso de campos escalares sin
masa interaccionando con dos potenciales delta situados a una distancia a. La interacción
viene determinada por las constantes de acoplo λ, λ′ ∈ [0,+∞), que permiten generalizar
las condiciones de contorno y analizar casos más generales. Aunque está fuera del alcance
de este trabajo, considerar representar las placas con las deltas y tomando las constantes de
acoplo asociadas a cada una, permite identificar la naturaleza de las divergencias que ocurren.
Empezamos escribiendo el Lagrangiano asociado a este problema,

L = −1

2
gµν∂µϕ(x)∂νϕ(x)−

1

2

λ

a
δ(z)ϕ2(x)− 1

2

λ′

a
δ(z − a)ϕ2(x) +K(x)ϕ(x), (2.58)

donde seguimos utilizando la métrica anterior para asegurar el término cinético definido positivo,
y hemos añadido un potencial de interacción formado por dos funciones delta en z = 0 y z = a.

Lint = −1

2

λ

a
δ(z)ϕ2(x)− 1

2

λ′

a
δ(z − a)ϕ2(x) (2.59)

La función K(x) representa la fuente de interacción que dará lugar a las ecuaciones que
satisface la función de Green. El campo y la fuente satisfacen (2.32) y (2.33). Esta vez procedemos
con el Principio de Mı́nima Acción para calcular la ecuación de movimiento. Definimos la acción
en términos de la densidad del Lagrangiano como

S =

∫ x2

x1

Ldx, (2.60)
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siendo x1 y x2 los puntos inicial y final, puntos que se mantienen fijos y por lo tanto en los que
los campos no sufren variaciones. Por el Principio de Mı́nima Acción se cumple δS = 0 para
variaciones infinitesimales del campo, por lo tanto,

δS =

∫ x2

x1

dx

(
∂L

∂ϕ(x)
δϕ(x) +

∂L
∂(∂µϕ(x))

δ(∂µϕ(x))

)
=

∫ x2

x1

dx

[(
K(x)− λ

a
δ(z)ϕ(x)− λ′

a
δ(z − a)ϕ(x)

)
δϕ(x)

+

(
−1

2
gσν∂νϕ(x)−

1

2
gµσ∂µϕ(x)

)
δ(∂σϕ(x))

]
.

Como δ(∂σϕ(x)) = ∂σ(δϕ(x)), en el último sumando aplicamos la derivada del producto y
se reduce a

−∂σ

[(
−1

2
gσν∂νϕ(x)−

1

2
gµσ∂µϕ(x)

)
δϕ(x)

]
+

∂2ϕ(x)

∂x2
δϕ(x).

El primer término es una derivada total y da lugar a un término de superficie que podemos
ignorar puesto que mantenemos los extremos fijos, δϕ(x1) = δϕ(x2) = 0. Por lo tanto,

0 =

∫ x2

x1

dx

[
K(x)− λ

a
δ(z)ϕ(x)− λ′

a
δ(z − a)ϕ(x) +

∂2ϕ(x)

∂x2

]
δϕ(x).

Lo cual es cierto si el integrando es idénticamente nulo. Aśı, llegamos a la ecuación que satisface
el campo,

−∂2ϕ(x)

∂x2
+

λ

a
δ(z)ϕ(x) +

λ′

a
δ(z − a)ϕ(x) = K(x). (2.61)

Sustituyendo las ecuaciones (2.32) y (2.33) y teniendo en cuenta la expresión de la función
completa de Green, G(x,x′) en (2.35), escribimos la ecuación en términos de la función de Green
reducida, [

− ∂2

∂z2
+ κ2 +

λ

a
δ(z) +

λ′

a
δ(z − a)

]
g(z, z′) = δ(z − z′), (2.62)

donde hemos llamado κ2 = k2 − ω2. La función de Green adquiere distintos valores en las
distintas regiones del espacio que dividen las placas. Resolvemos, por tanto, la ecuación anterior
dividiendo el espacio en tres regiones:

Región I: {(x, y, z) ∈ R3|z ∈ (−∞, 0)}

Región II: {(x, y, z) ∈ R3|z ∈ (0, a)}

Región III: {(x, y, z) ∈ R3|z ∈ (a,+∞)}

a

Región I Región II Región III

Figura 2: Regiones del espacio con placas paralelas.

Estamos interesados en calcular la función de Green en la situación en la que tanto el punto
fuente (x′, por ejemplo) como el punto donde medimos (que seŕıa entonces el punto x) se
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encuentran en la misma región. En el Anexo D.1 están calculadas, expĺıcitamente, las funciones
de Green en cada región del espacio con los puntos z y z′ en todas las situaciones posibles.
Aqúı extraemos del anexo aquellas que son de interés para proseguir el cálculo de la enerǵıa de
Casimir.

Para la región I, z, z′ < 0,

gI(z, z
′) =

1

2κ
eκ(z<−z>) +

eκ(z+z′)

2κ∆

[
λ′

2κa

(
1− λ

2κa

)
+ e2κa

λ

2κa

(
1 +

λ′

2κa

)]
(2.63)

Para la región II, 0 < z, z′ < a,

gII(z, z
′) =

1

2κ
eκ(z<−z>) +

1

2κ∆

[
− eκ(z+z′) λ′

2κa

(
1 +

λ

2κa

)
− e−κ(z+z′)e2κa

λ

2κa

(
1 +

λ′

2κa

)
+

2λλ′

(2κa)2
coshκ(z − z′)

]
(2.64)

Para la región III, z, z′ > a,

gIII(z, z
′) =

1

2κ
eκ(z<−z>) +

e−κ(z+z′−2a)

2κ∆

[
− λ

2κa

(
1− λ′

2κa

)
− λ′

2κa
e2κa

(
1 +

λ

2κa

)]
(2.65)

Recuperamos las relaciones (2.45) y (2.46) de la anterior sección para calcular las
componentes del tensor enerǵıa-momento con la función de Green. En los anteriores caṕıtulos se
ha calculado la enerǵıa del sistema a partir de la componente (0, 0) del tensor Tµν . La componente
(0, 0) es la densidad de enerǵıa del sistema y las demás componentes de la diagonal, en nuestro
caso (1, 1), (2, 2) y (3, 3), representan las presiones ejercidas sobre el sistema en los ejes X,
Y y Z respectivamente. Esta vez, utilizaremos las presiones ejercidas sobre el sistema para
calcular la fuerza ejercida sobre las placas. Por tanto, calculamos la componente (3, 3) del tensor
enerǵıa-momento, la cual denotamos Tzz. Procedemos de la siguiente manera:

⟨Tzz⟩ =
1

i

[
∂z∂z′ − 1

2
(−∂0∂0′ + ∂x⊥∂x’⊥ + ∂z∂z′)

]
G(x,x’)|x’→x

=
1

2i
[∂0∂0′ − ∂x⊥∂x’⊥ + ∂z∂z′ ]

∫ ∞

−∞

d2k

(2π)2
eik(x⊥−x’⊥)

∫ ∞

−∞

dω

2π
e−iω(t−t′)g(z, z′)|x’→x

=
1

2i

∫ ∞

−∞

d2k

(2π)2

∫ ∞

−∞

dω

2π

[
ω2 − k2 + ∂z∂z′

]
g(z, z′)|z′→z

Por conveniencia, definimos el tensor enerǵıa-momento reducido

⟨Tzz⟩ =
∫ ∞

−∞

d2k

(2π)2

∫ ∞

−∞

dω

2π
⟨tzz⟩, (2.66)

que está evaluado en puntos tal que z = z′.

⟨tzz⟩ =
1

2i

[
−κ2 + ∂z∂z′

]
g(z, z′)|z′→z (2.67)

La densidad de fuerza sobre cada placa es la diferencia de presiones entre ambos lados de las
placas,

F = ⟨Tzz⟩
∣∣
z=a− − ⟨Tzz⟩

∣∣
z=a+ . (2.68)

Por lo tanto, el tensor enerǵıa-momento a ambos lados de la placa situada en a, y evaluado
precisamente en el punto de la discontinuidad z = z′ = a da como resultado

⟨tzz⟩|z=a− = − κ

2i

[
1 +

2(
1 + 2κa

λ

) (
1 + 2κa

λ′

)
e2κa − 1

]
(2.69)

⟨tzz⟩|z=a+ = − κ

2i
, (2.70)
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cuyos cálculos se pueden ver en el Anexo D.2. Aśı, ya podemos llegar a la expresión de la
densidad de fuerza ejercida sobre cada placa,

F = ⟨Tzz⟩
∣∣
z=a− − ⟨Tzz⟩

∣∣
z=a+ = − 1

32π2a4

∫ ∞

0

y3(
1 + y

λ

) (
1 + y

λ′

)
ey − 1

dy. (2.71)

Esta expresión nos permite calcular la fuerza de vaćıo entre dos placas con acoplos arbitrarios, se
les suele llamar semitransparentes. Utilizando la libreŕıa scipy.integrate de Python para resolver
numéricamente la integral en (2.71), vemos sus valores, que son finitos, como función de los
parámetros λ y λ′.

Figura 3: Densidad de la fuerza en función de los parámetros λ y λ′ multiplicada por a4.

Notamos en la Figura 3 que la fuerza se hace muy pequeña para valores pequeños de λ y λ′

y aumenta su valor absoluto a medida que aumentan en magnitud los valores de las constantes
de acoplo, hasta llegar a una zona donde se vuelve prácticamente constante. Para simplificar la
expresión suponemos λ = λ′. Entonces, trabajamos con la siguiente expresión:

F = − 1

32π2a4

∫ ∞

0

y3(
1 + y

λ

)2
ey − 1

dy (2.72)

Utilizamos de nuevo la libreŕıa scipy.integrate de Python para resolver numéricamente esta
integral. Vemos la misma dependencia que en la Figura 3, pero en una dimensión.

Figura 4: Densidad de la fuerza en función del parámetro λ multiplicada por a4.
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Vamos a corroborar el comportamiento visto en las Figuras 3 y 4 de forma anaĺıtica.
Pongamos que λ ≫ 1. Con esta condición tenemos lo siguiente:

F ≈ − 1

32π2a4

∫ ∞

0

y3

ey − 1
dy

(2.55)
= −ζ(4)Γ(4)

32π2a4
= − 1

32π2a4
6π4

90
= − π2

480a4
(2.73)

Comparando este resultado con el del anterior caṕıtulo (2.57), notamos que obtenemos el mismo
resultado, ya que al hacer λ → ∞, tenemos placas conductores. Por otro lado, si ahora suponemos
λ ≪ 1:

F ≈ − 1

32π2a4

∫ ∞

0

λ2y3

y2ey
dy = − 1

32π2a4

∫ ∞

0

λ2y

ey
dy = −λ2Γ(2)

32π2a4
= − λ2

32π2a4
(2.74)

Efectivamente, estos ĺımites coinciden con lo visto en las Figuras anteriores 3 y 4. Cuando
las constantes de acoplo se hacen pequeñas, obtenemos una fuerza prácticamente nula. Si las
constantes de acoplo son muy grandes, tenemos una dependencia constante con los parámetros
y negativa.

3. Corteza esférica con potencial delta de Dirac

Hemos visto que el confinamiento de las fluctuaciones del punto cero entre las placas paralelas
dan lugar a fuerzas de atracción entre ellas. Sin embargo, esto no es una propiedad general de
las fuerzas de vaćıo. De hecho, una de las incógnitas del efecto Casimir es que, en general,
no hay un método para predecir si la enerǵıa de vacio de una cierta geometŕıa, satisfaciendo
ciertas condiciones de contorno, da lugar a fuerzas atractivas o repulsivas. En [8] Kenneth y
Klich demostraron que la enerǵıa de vaćıo entre cuerpos idénticos siempre es de atracción.
Sin embargo, cuando hablamos de interacción entre cuerpos distintos o de enerǵıas propias de
cuerpos, la historia es muy distinta.

Tras el descubrimiento de la fuerza de atracción entre las placas, se hipotetizó acerca de si la
enerǵıa de vaćıo podŕıa ser la que estabilizara la existencia del electrón, ya que en aquella época
no se sab́ıa cómo compensar la existencia de la fuerza repulsiva de Coulomb. Con la esperanza
de que la enerǵıa de vaćıo de una esfera conductora (con la que se pod́ıa modelar el electrón)
diera lugar a la fuerza atractiva necesaria, Tim Boyer, en 1968, hizo un cálculo asombroso de la
enerǵıa de interacción de los campos electromagnéticos con una corteza esférica conductora, se
puede leer en [9]. Sin embargo, la sorpresa fue que dicha enerǵıa resultó ser de repulsión.

Mostramos en esta sección cómo tratar las fluctuaciones de un campo escalar interaccionando
con una corteza esférica. Para darle generalidad, modelamos la esfera mediante la función delta
de Dirac con constante de acoplo positiva λ, cuyo valor nos permitirá recorrer varios escenarios.
En esta sección además, trabajamos con las coordenadas esféricas {r, θ, φ}, que se corresponden
con las coordenadas cartesianas {x, y, z} con las siguientes relaciones:

x = r sinφ cos θ

y = r sinφ sin θ

z = r cosφ,

(3.1)

donde r ∈ [0,+∞), θ ∈ [0, 2π) y φ ∈ [0, π]. Notamos que este sistema está dotado de simetŕıa
rotacional, aśı la dirección de mayor interés será r. Tomando r = (r, θ, φ), y x = (r, t), la
densidad del Lagrangiano se expresa

L = −1

2
gµν∂µϕ(x)∂νϕ(x)−

1

2

λ

a
δ(r − a)ϕ2(x) +K(x)ϕ(x), (3.2)

con el término de interacción

Lint = −1

2

λ

a
δ(r − a)ϕ2(x). (3.3)
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Haciendo uso del Principio de Mı́nima Acción igual que procedimos a hacer en la sección
anterior, o mediante las ecuaciones Euler-Lagrange, llegamos a la ecuación de movimiento,[

− ∂2

∂x2
+

λ

a
δ(r − a)

]
ϕ(x) = K(x). (3.4)

En consecuencia a esta ecuación, definimos el campo a partir de la función de Green como
hicimos en(2.32). Aśı, reescribimos (3.4) en términos de la función de Green como[

− ∂2

∂x2
+

λ

a
δ(r − a)

]
G(x,x’) = δ(x− x’). (3.5)

La función de Green expresada a una frecuencia dada, se escribe como la transformada de
Fourier

G(r, t, r′, t′) =

∫ ∞

−∞

dω

2π
e−iω(t−t′)G(r, r’), (3.6)

con G(r, r’) exhibiendo la geometŕıa esférica en su definición como

G(r, r’) =
∞∑
l=0

l∑
m=−l

Y m
l (θ, φ)Y m∗

l (θ′, φ′)gl(r, r
′), (3.7)

donde Y m
l (θ, φ) son las funciones de los armónicos esféricos y gl(r, r

′) las funciones reducidas de
Green. Los armónicos esféricos están definidos como

Y m
l (θ, φ) = (−1)m

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
eimφPm

l (cos θ), (3.8)

con Pm
l (x) polinomio asociado de Legendre. Estas funciones cumplen la condición de

ortonormalización ∫ 2π

0
dφ

∫ π

0
Y m
l (θ, φ)Y m′∗

l′ (θ, φ) sen θdθ = δl,l′δm,m′ . (3.9)

Las funciones Y m
l (θ, φ) forman una base completa y se pueden relacionar como

∞∑
l=0

l∑
m=−l

Y m
l (θ, φ)Y m∗

l (θ′, φ′) =
1

sin θ
δ(θ − θ′)δ(φ− φ′). (3.10)

A continuación, desarrollamos la ecuación (3.5) en coordenadas esféricas. Teniendo en cuenta
que podemos escribir la delta de Dirac como

δ(x− x’) = δ(r− r’)δ(t− t′) = δ(r− r’)

∫ ∞

−∞

dω

2π
e−iω(t−t′) (3.11)

y la derivada segunda sobre x como

− ∂2

∂x2
=

∂2

∂t2
−∇2. (3.12)

donde ∇2 es el operador Laplaciano en coordenadas esféricas, concluimos que (3.5) queda
reducida a [

−∇2 − ω2 +
λ

a
δ(r − a)

]
G(r, r’) = δ(r− r’). (3.13)

Usando (3.10) y escribiendo el laplaciano en esféricas, desarrollamos (3.13) para llegar a la
siguiente ecuación que satisface la función reducida de Green,[

− 1

r2
∂

∂r
r2

∂

∂r
+

l(l + 1)

r2
+ κ2 +

λ

a
δ(r − a)

]
gl(r, r

′) =
δ(r − r′)

r2
, (3.14)

donde hemos definido κ2 = −ω2 por conveniencia. Para resolverla, diferenciamos dos regiones
en el espacio.
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Región I: {(r, θ, φ) ∈ [0, a)× [0, π]× [0, 2π)}

Región II: {(r, θ, φ) ∈ (a,∞)× [0, π]× [0, 2π)}

X

Y

Z

Región I

Región II

a

Figura 5: Regiones del espacio con potencial esférico.

La solución de la parte homogénea de la ecuación (3.14), dentro o fuera de la esfera es
una combinación lineal de las funciones esféricas modificadas de Bessel il(κr) y kl(κr). Para
más información sobre ellas, extendemos su uso y propiedades en el Anexo E. Estas funciones
cumplen la relación del Wronskiano

i′l(x)kl(x)− k′l(x)il(x) =
1

x2
. (3.15)

Nos interesa conocer la función de Green en aquellas regiones donde tanto el punto fuente, r′,
como el punto donde medimos, r, están en la misma zona. Estas están calculadas detalladamente
en el Anexo G.1 y son,

Región I, para r, r′ < a

gI(r, r
′) = κ

(
il(κr<)kl(κr>)− il(κr)il(κr

′)
λκak2l (κa)

1 + λκakl(κa)il(κa)

)
(3.16)

Región II, para r, r′ > a

gII(r, r
′) = κ

(
il(κr<)kl(κr>)− kl(κr)kl(κr

′)
λκai2l (κa)

1 + λκakl(κa)il(κa)

)
(3.17)

Con las funciones de Green determinadas, calculamos las componentes del tensor
enerǵıa-momento. Empezamos por la componente (1, 1), que es la radial, haciendo uso de las
relaciones (2.46) y (2.45). Utilizamos la métrica de Minkowski en coordenadas esféricas,

g =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (3.18)
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La componente radial nos queda

Trr = ∂r∂r′ −
1

2

(
−∂0∂0′ + ∂r∂r′ + r2∂θ∂θ′ + r2 sin2 θ∂φ∂φ′

)
=

1

2

(
∂r∂r′ − κ2 − l(l + 1)

r2

)
.

La simetŕıa rotacional del sistema nos permite expresar

⟨Trr⟩ =
1

2i

(
∂r∂r′ − κ2 − l(l + 1)

r2

)∫ 2π

0

∫ π

0
sen θ dφ dθ G(r, r’)

∣∣∣
r’→r

.

Haciendo uso de la expresión de la función de Green completa (3.9), tenemos

⟨Trr⟩ =
1

2i

∞∑
l=0

(2l + 1)

∫ ∞

−∞

dω

2π

(
∂r∂r′ − κ2 − l(l + 1)

r2

)
gl(r, r

′)
∣∣∣
r′→r

, (3.19)

cuya notación se puede simplificar si definimos el tensor reducido, ⟨trr⟩.,

⟨Trr⟩ =
∞∑
l=0

(2l + 1)

∫ ∞

−∞

dω

2π
⟨trr⟩. (3.20)

La presión sobre la superficie de la esfera viene de la discontinuidad de la componente radial
del tensor enerǵıa momento, ⟨trr⟩|r=a− − ⟨trr⟩|r=a+ , que calculamos a continuación.
Adviértase que el término de la función de Green que corresponde a la parte libre, se cancela
cuando consideramos los modos tanto de dentro como de fuera de la esfera y, como consecuencia,
esos no dan una contribución a la enerǵıa de vaćıo.
Evaluamos el tensor para la región I,

⟨trr⟩|r<a =
1

2i

(
∂r∂r′ − κ2 − l(l + 1)

r2

)
gI(r, r

′)|r′→r

=
1

2i

[
κ3
(
i′l(κr)k

′
l(κr)− i′2l (κr)

λκak2l (κa)

1 + λκakl(κa)il(κa)

)
−
(
κ2 +

l(l + 1)

r2

)
gI(r, r)

]
.

En la región II,

⟨trr⟩|r>a =
1

2i

(
∂r∂r′ − κ2 − l(l + 1)

r2

)
gII(r, r

′)|r′→r

=
1

2i

[
κ3
(
i′l(κr)k

′
l(κr)− k′2l (κr)

λκai2l (κa)

1 + λκakl(κa)il(κa)

)
−
(
κ2 +

l(l + 1)

r2

)
gII(r, r)

]
.

Teniendo en cuenta la continuidad de la función de Green en la corteza de la esfera, r = a,

⟨trr⟩|r=a− − ⟨trr⟩|r=a+ =
κ3

2i

(
−i′2l (κa)

λκak2l (κa)

1 + λκakl(κa)il(κa)
+ k′2l (κa)

λκai2l (κa)

1 + λκakl(κa)il(κa)

)
= −κ2λ

2ai

(kl(κa)il(κa))
′

1 + λκakl(κa)il(κa)
, (3.21)

donde en la última igualdad hemos usado el Wronskiano dado en (3.15). La densidad de la fuerza
total sobre la superficie de la esfera es, por lo tanto,

F = ⟨Trr⟩|r=a− − ⟨Trr⟩|r=a+

= − λ

4πa

∞∑
l=0

(2l + 1)

[∫ ∞

0
dκ

κ2 (kl(κa)il(κa))
′

1 + λκakl(κa)il(κa)
−
∫ 0

∞
dκ

κ2 (kl(κa)il(κa))
′

1 + λκakl(κa)il(κa)

]
,
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donde en la última igualdad hemos rotado a frecuencias complejas, ω = iκ. Mediante el cambio
de variable x = κ a llegamos a la expresión,

F = − λ

2πa4

∞∑
l=0

(2l + 1)

∫ ∞

0
dx

x2 (kl(x)il(x))
′

1 + λxkl(x)il(x)
.

Utilizando las relaciones (E.19) y (E.20) obtenemos la solución en términos de las funciones
modificadas de Bessel,

F = − λ

2πa4

∞∑
l=0

(2l + 1)

∫ ∞

0
dx

x2
(
Kν(x)Iν(x)

x

)′
1 + λKν(x)Iν(x)

= − λ

2πa4

∞∑
l=0

(2l + 1)

∫ ∞

0
dx

x(Kν(x)Iν(x))
′ −Kν(x)Iν(x)

1 + λKν(x)Iν(x)

= − 1

2πa4

∞∑
l=0

(2l + 1)

∫ ∞

0
dx

[
x
d

dx
ln (1 + λKν(x)Iν(x)) +

1

1 + λKν(x)Iν(x)
− 1

]
,(3.22)

donde hemos definido ν = l + 1
2 .

La misma expresión se puede obtener calculando la densidad de enerǵıa. A partir de ah́ı,
integrando a todo el espacio, tenemos la enerǵıa total. Existe una sutileza importante que no
se aprecia si tratamos el ĺımite fuerte (material perfectamente conductor, λ → ∞). En el caso
general, si se calcula la enerǵıa total como la suma de la densidad de enerǵıa interior más la
exterior, el resultado no es correcto. La razón es porque existe una contribución a la enerǵıa que
proviene de la superficie6. La demostración de esto tiene relación con la conservación del tensor
enerǵıa-momento, pues no solo se conservan las componentes del tensor relacionadas con el
volumen sino también las componentes que residen en la superficie de la geometŕıa considerada.
Milton demuestra, por ejemplo en [4], que la enerǵıa completa se puede calcular mediante la
fórmula

E =

∫
T.E.

dr⟨T00⟩ =
1

2i

∫
T.E.

dr

∫ ∞

−∞

dω

2π
2ω2G(r, r), (3.23)

que se reduce a integrar la función de Green y, por lo tanto, aparecen solo términos que van con
el cuadrado de las funciones de Bessel correspondientes, puesto que los términos relacionados
con la parte libre no contribuyen a la enerǵıa. La expresión anterior se convierte en

E = − 1

2πi

∞∑
l=0

(2l + 1)

∫ ∞

−∞

ω2

κ2
dω

[
λκak2l (κa)

1 + λκakl(κa)il(κa)

∫ κa

0
x2i2l (x)dx+

+
λκai2l (κa)

1 + λκakl(κa)il(κa)

∫ ∞

κa
x2k2l (x)dx

]
.

Para cuyo cálculo empleamos las igualdades, [11],∫ x

0
y2i2l (y)dy =

x

2

[
(x2 + l(l + 1))i2l (x)− xil(x)i

′
l(x)− x2i′2l (x)

]
(3.24)

∫ ∞

x
y2k2l (y)dy = −x

2

[
(x2 + l(l + 1))k2l (x)− xkl(x)k

′
l(x)− x2k′2l (x)

]
(3.25)

El desarrollo de la anterior integral está detallamo en el Anexo G.2, donde llegamos a

E = − 1

2πa

∞∑
l=0

(2l + 1)

∫ ∞

0
x
d

dx
ln [1 + λIν(x)Kν(x)]dx, (3.26)

6Para más detalle sobre este procedimiento leer [10].
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cuya derivada es precisamente la expresión de la fuerza anterior, salvo un término de contacto
que no es relevante y podemos descartar. En general, no es trivial tratar esta solución y el
resultado será divergente. Recordamos que estamos solo calculando el modo TE del campo
electromagnético, y para tener una visión completa debeŕıamos analizar también el TM. Se
espera cancelación de divergencias entre ellos en algún caso. Nosotros nos centraremos en el
caso de acoplo fuerte λ → ∞ y acoplo débil λ → 0, en cuyo caso se podrá hacer una expansión
perturbativa.

Analizamos primeramente el caso λ ≪ 1, expandiendo el término ln [1 + λIν(x)Kν(x)] en
serie potencias de λ utilizando el desarrollo de Taylor de ln(1 + x) 7. El primer término, lineal
en λ, es divergente pero del tipo diagrama de Feymann con forma de tadpole (o renacuajo).
Corresponde a la Figura 6 que da una contribución infinita, pero no tiene ningún tipo de
relevancia f́ısica para el caso que estamos estudiando. Son enerǵıas que no dependen de las
condiciones de contorno marcadas por la esfera.

Figura 6: Tadpole.

Por esto, estudiamos directamente el término de segundo orden en λ que da lugar al término
finito

Eλ2

=
λ2

4πa

∞∑
l=0

(2l + 1)

∫ ∞

0
x
d

dx
(Iν(x)Kν(x))

2dx. (3.27)

Para extraer la contribución finita, realizamos primeramente la suma de la serie en l utilizando
una generalización de la siguiente propiedad encontrada en [11],

∞∑
l=0

(2l + 1)x y kl(x) il(y)Pl(cos θ) =
xy

ρ
e−ρ, (3.28)

con ρ =
√

x2 + y2 − 2xy cos θ. Tras el cálculo detallado que mostramos en el Anexo G.3, podemos
escribir

∞∑
l=0

(2l + 1)K2
ν (x)I

2
ν (x) =

1

2

∫ 4x

0

e−z

z
dz, (3.29)

permitiendo aśı expresar el término de segundo orden como

Eλ2

=
λ2

32πa
. (3.30)

A pesar de la buena noticia de poder extraer un término finito, nos encontramos, en tercer
orden la constante de acoplo con una divergencia logaŕıtmica. El análisis de esta divergencia
se escapa al propósito de este trabajo y no daremos detalles de su naturaleza. Bordag et al. la
estudiaron por primera vez usando métodos de heat kernel (núcleo de calor) en [12]. También
la han analizado en otros art́ıculos como [13], [14] y [15].

Eλ3 ≈ λ3 a2

24π
ζ(1) (3.31)

7

ln(1 + x) =

∞∑
n=1

(−1)n+1 x
n

n
, ∀x ∋ |x| < 1.
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Esta divergencia no se puede eliminar, lo que nos informa de que no podemos obtener una
contribución finita para el caso de acoplo débil. Parece que la inclusión del modo TM daŕıa
algunos casos en los que la divergencia se cancelaŕıa considerando el campo electromagnético
completo. Sin embargo śı podemos extrapolar al caso de acoplo fuerte reproduciendo el resultado
de Milton en [4] para λ ≫ 1:

ĺım
λ→∞

E = − 1

2πa

∞∑
l=0

(2l + 1)

∫ ∞

0
x
d

dx
ln [Iν(x)Kν(x)]dx. (3.32)

La derivada de esta expresión da exactamente la presión encontrada en (3.22). Una evaluación
asintótica de esta expresión se puede ver en [15] con el resultado

PTE =
0, 002817

a2
,

para el modo TE. Esta expresión no coincide con la encontrada por Boyer en 1965 pues su cálculo
es con el campo electromagnético. Sin embargo, el mismo análisis mostrado aqúı se puede hacer
para el campo escalar cumpliendo la condiciones de modo TM que, añadido al anterior reproduce
exactamente el resultado de Tim Boyer.

4. Conclusiones

Este trabajo está dedicado a estudiar algunos aspectos del efecto Casimir. En él, hemos
analizado tanto enerǵıas de vaćıo procedentes de la interacción entre dos cuerpos, como pueden
ser las placas paralelas, como la enerǵıa propia de cuerpos aislados como la esfera. Aunque
nos hemos centrado en las fluctuaciones cuánticas producidas por campos escalares, hemos
conseguido dar generalidad al estudio situando estos campos en un fondo caracterizado por
un potencial singular descrito mediante la función delta de Dirac. Esto no es una situación tan
irreal como uno pudiera imaginar a primera vista. De hecho, el ĺımite de acoplo fuerte, con la
constante de acoplo tendiendo a infinito, corresponde a las condiciones de contorno de Dirichlet
propias de los modos TE del campo electromagnético interaccionando con una placa conductora.

Hemos calculado la enerǵıa de Casimir utilizando el método de la suma de modos y el de las
funciones de Green. Este último permite realizar un estudio tanto global como local del sistema.
El cómputo de las distintas componentes del tensor enerǵıa-momento utilizando las funciones de
Green, nos permite extraer y aislar los términos divergentes que en ocasiones se pueden asociar
a parámetros del sistema (como la superficie) y renormalizar. Para más información se pueden
consultar [16] y [17].

En general, la enerǵıa de interacción entre dos cuerpos está bien definida y va a dar algo
finito. Más complicado de interpretar son las enerǵıas propias de cuerpos aislados como puede
ser la esfera. En este caso, hemos comprobado cómo, en la situación general con condiciones
semitransparentes de contorno, en general no podemos extraer un término finito.

Aunque mucho se ha investigado y avanzado en el estudio del efecto Casimir, todav́ıa quedan
grandes incógnitas por resolver. Se desconoce cómo las condiciones de contorno, materiales y/o
geometŕıa del sistema influye sobre las fluctuaciones cuánticas para dar lugar a fuerzas atractivas,
repulsivas o nulas. Hemos comprobado cómo, mientras que las placas paralelas se atraen en el
vaćıo, la enerǵıa de Casimir de una esfera, es de repulsión, como si tendiera a que esta se separara.
Por ser un cálculo no perturbativo, no hay métodos fijos de regularización y con cada cálculo,
hay que investigar qué método nos va a ayudar a aislar un término finito y dar sentido a las
divergencias que ocurren. Es extraordinario que, a pesar de los distintos métodos de cálculo y de
regularización (de los cuales nosotros hemos visto dos y hablado de otro en los anexos), la parte
finita, relevante del sistema en cuestión, es única e independiente del sistema de regularización
que se utilice.

A pesar de las dificultades que conlleva la parte experimental del efecto Casimir, los
experimentos llevados a cabo concuerdan con los cálculos teóricos con una gran precisión. Por
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supuesto, este tipo de experimentos ha ido mejorando su precisión en el tiempo con el desarrollo
de la ciencia en la nano escala (ver [18] y las referencias incluidas), aún teniendo en cuenta las
enormes dificultades que conllevan montar un experimento para medir tan diminutas fuerzas y
con tal precisión.

Las limitaciones del estudio que mostramos aqúı residen principalmente en la suposición de
un sistema ideal. Por limitaciones propias del trabajo, nos hemos centrado sólo en los modos
TE del campo electromagnético. Para obtener la fuerza total ejercida sobre el sistema, hay que
sumar las componentes eléctrica y magnética. La obtención de las magnéticas seŕıa análoga
a lo que hemos hecho en este TFG, pero teniendo en cuenta las condiciones de contorno de
Neumann. Si se consideran potenciales con la función delta de Dirac, el modo TM corresponde
a la derivada de la delta. En el caso de cálculos de enerǵıas de interacción entre dos cuerpos
situados en el vaćıo es más sencillo incorporar otros efectos como rugosidades, fuerzas laterales
y estudios de sistemas donde aparezca tanto la atracción como la repulsión, pudiendo hablar
incluso de levitación. Respuestas ópticas de los materiales son necesarias para incorporarlas en
los casos en los que se necesite implementar una tecnoloǵıa.
Todos nuestros cálculos están hechos suponiendo temperatura 0K.

(a) (b)

Figura 7: Comparación resultados para placas conductoras: (a) Datos teóricos de la ecuación
(2.57). (b) Datos experimentales de [19].

La Figura 7 se muestra con un propósito ilustrativo solamente puesto que las gráficas no
corresponden al mismo sistema f́ısico. Los datos que aparecen en la gráfica de la izquierda son
teóricos y los de la derecha se midieron con un microscopio de fuerza atómica, observando
la fuerza ejercida entre una esfera y un plano; dada la dificultad que aparece al establecer el
paralelismo entre placas de dimensions microscópicas. Métodos de Proximity Force Aproximation
PFA, (ver [20]) se utilizan después para aproximar los datos teóricos de las placas paralelas con los
datos experimentales donde, como hemos dicho, es más común utilizar interacción placa-esfera.
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517 (2015), págs. 41-65. doi: 10.5862/proc.516.4. url: https://doi.org/10.5862/
proc.516.4.

[2] J. Schwinger. Particles, Sources, and Fields. Perseus books, 1998.

[3] M. Bordag, U. Mohideen y V. M. Mostepanenko. New developments in the Casimir effect.
2001. doi: 10.1016/S0370-1573(01)00015-1.

[4] Kimball A. Milton. ((The Casimir effect: Recent controversies and progress)). En: Journal of
Physics A: Mathematical and General 37 (38 2004). issn: 03054470. doi: 10.1088/0305-
4470/37/38/R01.

24

https://doi.org/10.5862/proc.516.4
https://doi.org/10.5862/proc.516.4
https://doi.org/10.5862/proc.516.4
https://doi.org/10.1016/S0370-1573(01)00015-1
https://doi.org/10.1088/0305-4470/37/38/R01
https://doi.org/10.1088/0305-4470/37/38/R01


[5] K.A. Milton. The Casimir Effect: Physical Manifestations of Zero-Point Energy. World
Scientific Publishing Co Pte Ltd, 2001.

[6] B. G. Korenev. Bessel Functions and Their Applications. Taylor & Francis, 2002.

[7] C. Itzykson y J.-B. Zuber. Quantum Field Theory. New York: McGraw-Hill, 1980.

[8] Oded Kenneth e Israel Klich. ((Opposites attract: A theorem about the Casimir force)).
En: Physical Review Letters 97 (16 2006). issn: 00319007. doi: 10.1103/PhysRevLett.
97.160401.

[9] Timothy H. Boyer. ((Quantum electromagnetic zero-point energy of a conducting spherical
shell and the casimir model for a charged particle)). En: Physical Review 174 (5 1968).
issn: 0031899X. doi: 10.1103/PhysRev.174.1764.

[10] S. A. Fulling. ((Systematics of the relationship between vacuum energy calculations and
heat-kernel coefficients)). En: Journal of Physics A: Mathematical and General 36 (24
2003). issn: 03054470. doi: 10.1088/0305-4470/36/24/320.

[11] Israel Klich. ((Casimir energy of a conducting sphere and of a dilute dielectric ball)).
En: Physical Review D - Particles, Fields, Gravitation and Cosmology 61 (2 2000). issn:
15502368. doi: 10.1103/PhysRevD.61.025004.

[12] M. Bordag, K. Kirsten y D. Vassilevich. ((Ground state energy for a penetrable sphere and
for a dielectric ball)). En: Physical Review D - Particles, Fields, Gravitation and Cosmology
59 (8 1999). issn: 15502368. doi: 10.1103/PhysRevD.59.085011.

[13] N. Graham et al. ((Casimir energies in light of quantum field theory)). En: Physics Letters,
Section B: Nuclear, Elementary Particle and High-Energy Physics 572 (3-4 2003). issn:
03702693. doi: 10.1016/j.physletb.2003.03.003.

[14] H. Weigel. ((Proceedings of the 6th Workshop on QFEXT)). En: Proceedings of the 6th
Workshop on QFEXT. Princeton, N.J.: RintonPress, 2004.

[15] Kimball A. Milton. ((Local and Global Casimir Energies: Divergences, Renormalization,
and the Coupling to Gravity)). En: Lect. Notes Phys. 834 (2011), págs. 39-95. doi: 10.
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Anexos

A. Resolución de la ecuación de Klein-Gordon con condiciones
de contorno Dirichlet

En el caṕıtulo 2.1 se nos presenta la siguiente ecuación diferencial en derivadas parciales
lineal homogénea de segundo orden,

1

c2
∂2φ(t, x)

∂t2
− ∂2φ(t, x)

∂x2
+

m2c2

ℏ2
φ(t, x) = 0. (A.1)

Para resolverla vamos a utilizar el método de separación de variables. Para ello, definimos
las funciones X : (0, a) → C y T : R → C de manera que φ(t, x) = T (t)X(x). Estamos buscando
una solución no nula de la ecuación, aśı que existen x0 ∈ (0, a) y t0 ∈ R tal que X(x0) ̸= 0 y
T (t0) ̸= 0. Reescribimos (A.1),

1

c2
Ttt(t0)

T (t0)
+

m2c2

ℏ2
=

Xxx(x0)

X(x0)
= λ, λ ∈ R, (A.2)

donde hemos separado la ecuación diferencial en un término que solo depende de la variable t
y otro en función de la variable x. Debido a la independencia de estas expresiones diferenciales,
igualamos las dos partes a una constante λ. Remarcar que hemos utilizado la notación

Ttt(t) =
∂2T (t)

∂t2
, Xxx(x) =

∂2X(x)

∂x2
. (A.3)

Ya que las condiciones de contorno están asociadas con la parte espacial de la función, vamos a
resolver primero la ecuación diferencial para X(x),

∂2X(x)

∂x2
= λX(x). (A.4)

Diferenciamos tres casos en función del valor de λ. Sabemos que los campos escalares deben
tener un comportamiento oscilante, aśı que nos quedaremos con la solución sinusoidal. Aún aśı,
por completitud, estudiamos todas las posibles soluciones de la ecuación.

1. λ > 0

La solución en este caso es

X(x) = Ae
√

|λ|x +Be−
√

|λ|x, A,B ∈ C. (A.5)

Aplicando las condiciones de contorno,{
A+B = 0

Ae
√

|λ|a +Be−
√

|λ|a = 0.
(A.6)

Este sistema nos lleva a la expresión para A

A
(
e
√

|λ|a − e−
√

|λ|a
)
= 0, (A.7)

de la cual concluimos que en este caso X(x) = 0, dado que la igualdad

e
√

|λ|a − e−
√

|λ|a = e
√

|λ|a
(
1− e−2

√
|λ|a
)
= 0

solo se puede dar si λ = 0 o a = 0. Por lo tanto en este caso no tenemos solución.
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2. λ = 0

En este caso la solución es una recta.

X(x) = A+Bx, A,B ∈ C (A.8)

Aplicamos las condiciones de contorno,{
A = 0

A+B a = 0.
(A.9)

Como a ̸= 0, obligatoriamente A = B = 0. Por tanto, X(x) = 0.

3. λ < 0

Esta vez la solución es una combinación lineal de exponenciales imaginarias sobre
√

|λ|x.

X(x) = Aei
√

|λ|x +Be−i
√

|λ|x, A,B ∈ C (A.10)

Aplicamos las condiciones de contorno,{
A+B = 0

Aei
√

|λ|a +Be−i
√

|λ|a = 0,
(A.11)

lo que impone la siguiente relación sobre A:

A
(
ei
√

|λ|a − e−i
√

|λ|a
)
= 0. (A.12)

Evitando la solución nula, imponemos la expresión

ei
√

|λ|a − e−i
√

|λ|a = ei
√

|λ|a
(
1− e−2i

√
|λ|a
)
= 0, (A.13)

donde, como ei
√

|λ|a ̸= 0, obligatoriamente se cumplirá e−2i
√

|λ|a = 1 = e2πin con n ∈ Z.
Esto impone unos valores discretos para λ.√

|λ| = πn

a
, n ∈ Z (A.14)

Llamando
√

|λ| ≡ kn y aplicando Euler en la solución general, podemos tomar con toda
generalidad

Xn(x) = An sen(knx), n ∈ N, An ∈ C. (A.15)

A continuación, analizamos la parte temporal. De acuerdo con la ecuación (A.2), resolvemos
la ecuación

1

c2
Ttt

T (t)
= −m2c2

ℏ2
+ λ. (A.16)

Teniendo en cuenta que debemos tener λ < 0 para que φ(t, x) ̸= 0 ∀(t, x) ∈ R× (0, a) por lo
visto en la resolución de X(x), asignamos directamente λ = −k2n. Aśı, reescribimos la ecuación
(A.16),

∂2T (t)

∂t2
= −

(
m2c4

ℏ2
+ c2k2n

)
T (t) = −ω2

nT (t), (A.17)

donde hemos definido ω2
n := m2c4

ℏ2 + c2k2n. Entonces, la solución de la ecuación será

Tn(t) = Cne
iωnt +Dne

−iωnt, Cn, Dn ∈ C. (A.18)

Por tanto, la solución genérica es

φn(t, x) = sen(knx)
(
Ane

iωnt +Bne
−iωnt

)
, (A.19)

con An y Bn constantes redefinidas que se determinan por condiciones de contorno o condiciones
iniciales.
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B. Teorema de Noether y tensor enerǵıa-momento

El Teorema de Noether dice que las simetŕıas caracterizadoras de un sistema se pueden
relacionar con leyes de conservación. En el caso de la simetŕıa de la dinámica del sistema bajo
cambio de coordenadas, el término conservado es lo que llamamos tensor enerǵıa-momento,
expresión que utilizamos a lo largo del trabajo por corresponderse sus componentes diagonales
con las densidades de enerǵıa y presiones. En este anexo vamos a calcular dicha expresión.

Dado un campo escalar ϕ(x) en el espacio R4 con x = (t, x, y, z), suponemos una variación
infinitesimal en este,

ϕ(x) → ϕ(x) + δϕ(x). (B.1)

Por el Principio de Mı́nima Acción, suponemos que la acción queda invariante ante cambios
infinitesimales del campo. Definiendo la acción como

S =

∫ x2

x1

L(x)dx, (B.2)

donde x1 y x2 son los extremos de un camino cualquiera en R4. Ante un cambio como el de la
ecuación (B.1), la densidad lagrangiana sufrirá un cambio,

L(x) → L(x) + δL(x). (B.3)

Para que δS = 0, es suficiente con que δL(x) = ∂µJ µ(x) sea una derivada completa, de tal
modo que al integrar contribuya únicamente con los valores de los extremos que se consideran
fijos. Calculamos la variación del Lagrangiado dado (B.1),

δL(x) =
∂L

∂ϕ(x)
δϕ(x) +

∂L
∂(∂µϕ(x))

δ(∂µϕ(x))

=
∂L

∂ϕ(x)
δϕ(x)− ∂µ

(
∂L

∂(∂µϕ(x))

)
δϕ(x) + ∂µ

(
∂L

∂(∂µϕ(x))
δϕ(x)

)
= ∂µ

(
∂L

∂(∂µϕ(x))
δϕ(x)

)
donde hemos eliminado los dos primeros términos por la relación Euler-Lagrange. Por lo tanto
salvo por una constante, se debe cumplir la igualdad,

∂µJ µ(x) = ∂µ

(
∂L

∂(∂µϕ(x))
δϕ(x)

)
, (B.4)

lo reescribimos sabiendo que esa constante, que llamaremos jµ ha de ser una cantidad conservada,
tal que

jµ(x) =
∂L

∂(∂µϕ(x))
δϕ(x)− J µ, (B.5)

cuya derivada es cero, ∂µj
µ(x) = 0.

Por otra parte, imponemos ahora que la posible variación del campo es debida a un cambio
de coordenadas,

xµ → xµ − aµ, (B.6)

las variaciones infinitesimales de ϕ(x) y L(x) se pueden escribir mediante un desarrollo de Taylor
quedándonos con el primer orde,

ϕ(x) → ϕ(x) + aµ∂µϕ(x) (B.7)
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L(x) → L(x) + aµ∂µL(x) (B.8)

Comparando todas las transformaciones escritas, podemos ver la siguiente correspondencia,

δϕ(x) = aµ∂µϕ(x), (B.9)

que implica un cambio en la densidad lagrangiana,

δL(x) = aµ∂µL(x) (B.10)

Aplicando el teorema de Noether en la forma de la ecuacion (B.4),

∂µ(a
µL) = ∂µ

( ∂L
∂(∂µϕ(x))

aν ∂νϕ(x)
)

(B.11)

Definimos el tensor enerǵıa-momento como el interior de la derivada, es decir, como la cantidad
que se conserva.

Tµ
ν =

∂L
∂(∂µϕ(x))

∂νϕ(x)− δµνL(x) (B.12)

Para el caso de la sección 2.1, teniendo en cuenta que la densidad del Lagrangiano es

L(t, x) = − ℏ
2c

(∂tϕ(t, x))
2 +

ℏc
2
(∂xϕ(t, x))

2, (B.13)

la componente (0, 0) del tensor (B.12) que necesitamos es,

T00(t, x) =
∂L

∂(∂tϕ(t, x))
∂tϕ(t, x)− δ00L(t, x) =

ℏc
2

[
1

c2
∂tϕ(t, x))

2 + (∂xϕ(t, x))
2

]
(B.14)
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C. Cálculo de la densidad de enerǵıa con placas en 1D+1

En este anexo calculamos la densidad de enerǵıa ⟨T00⟩ del caso unidimensional con placas
conductoras en x = a y x = 0 presentado en la sección 2.1. Partiendo de la expresión de la
densidad de enerǵıa

T00(t, x) =
ℏc
2

(
1

c2
[∂tφ(t, x)]

2 + [∂xφ(t, x)]
2

)
, (C.1)

utilizamos la expresión (2.10) del campo escalar φ(t, x) para calcular ⟨T00⟩.

⟨T00⟩ = ⟨0|T00(t, x)|0⟩ =
ℏc
2
⟨0|
(

1

c2
[∂tφ(t, x)]

2 + [∂xφ(t, x)]
2

)
|0⟩

= ⟨0|ℏc
2

− 1

c2

[ ∞∑
n=1

ωn

(
φ+
n (x, t)a

+
n − φ−

n (x, t)an
)]2

+

+

[ ∞∑
n=1

kn cot (knx)
(
φ+
n (x, t)a

+
n + φ−

n (x, t)an
)]2 |0⟩

Desarrollamos cada término por separado teniendo en cuenta cada productos posible de los
operadores escalera. Empezamos con la derivada con respecto del tiempo.

[ ∞∑
n=1

ωn

(
φ+
n (x, t)a

+
n − φ−

n (x, t)an
)]2

=
∑
n,n′

ωnωn′
(
φ+
nφ

+
n′a+n a

+
n′ + φ−

nφ
−
n′anan′−

−φ−
nφ

+
n′ana

+
n′ − φ+

nφ
−
n′a+n an′

)
(C.2)

Teniendo en cuenta las relaciones (2.11) y (2.12), vemos que el valor esperado de cada término
en el estado energético |0⟩ es:

⟨0|a+n a+n′ |0⟩ = ⟨0|n, n′⟩ = 0 (C.3)

⟨0|anan′ |0⟩ = 0 (C.4)

⟨0|ana+n′ |0⟩ = ⟨0|an|n′⟩ = δn,n′ (C.5)

⟨0|a+n an′ |0⟩ = ⟨0|ana+n′ − Iδn,n′ |0⟩ = 0 (C.6)

Usando las expresiones de los generadores (2.9) y las anteriores relaciones, podemos escribir[ ∞∑
n=1

ωn

(
φ+
n (x, t)a

+
n − φ−

n (x, t)an
)]2

=

∞∑
n=1

ω2
n (C.7)

Para el caso de la derivada con respecto al espacio, el cálculo es análogo. Por tanto, el valor
esperado de la componente (0, 0) del tensor enerǵıa-momento queda como

⟨T00⟩ =
ℏc
2

[
1

c2

∞∑
n=1

ω2
nφ

+
nφ

−
n +

∞∑
n=1

k2n cot
2(knx)φ

+
nφ

−
n

]

=
ℏc
2

[
1

ca

∞∑
n=1

ωn sen
2(knx) +

c

a

∞∑
n=1

k2n
ωn

cos2(knx)

]

=
ℏ
2a

∞∑
n=1

ωn − m2c4

2aℏ

∞∑
n=1

cos2(knx)

ωn
. (C.8)
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D. Cálculos sección 2.3

D.1. Función reducida de Green

En la sección 2.3 obtenemos la siguiente ecuación para función reducida de Green,[
− ∂2

∂z2
+ κ2 +

λ

a
δ(z) +

λ′

a
δ(z − a)

]
g(z, z′) = δ(z − z′). (D.1)

A lo largo del apéndice vamos a abordar la resolución de esta. Para empezar, fijamos z′ en
la región I y calculamos la g(z, z′) en función de la región en la que se encuentre z. Designamos
los distintos tramos de la función de la siguiente manera:

gz′<0(z, z
′) =


gI(z, z

′) , z < 0

gII(z, z
′) , 0 < z < a

gIII(z, z
′) , z > a

(D.2)

Comenzamos calculando gI(z, z
′), es decir, tenemos z, z′ < 0. Esto nos deja la siguiente

ecuación a resolver [
− ∂2

∂z2
+ κ2

]
gz′<0(z, z

′) = δ(z − z′), (D.3)

cuya solución de es una combinación lineal de exponenciales reales. Por tanto, la dependencia
de g(z, z′) con z es exponencial. Además, como la función de Green es simétrica, la dependencia
también es exponencial con z′. No obstante, eliminamos los términos que divergen: eκz para
z = ∞ y e−κz para z = −∞. En consecuencia, la solución es

gI(z, z
′) =

{
g<(z, z

′) = AIe
κ(z−z′) +BIe

κ(z+z′) , z < z′

g>(z, z
′) = CIe

κ(z+z′) +DIe
κ(−z+z′) , z > z′.

Como g(z, z′) es continua, se debe cumplir g<(z, z
′) = g>(z, z

′).

AI +BIe
2κz′

= CIe
2κz′

+DI ⇒ AI = DI ; BI = CI

En consecuencia, escribimos:

gI(z, z
′) = AIe

κ(z<−z>) +BIe
κ(z+z′), (D.4)

con z< = mı́n{z, z′} y z> = máx{z, z′}. Para calcular las constantes, integramos la ecuación
(D.3) en un entorno de z′, es decir, en z ∈ (z′−, z′+). Los cálculos son análogos al anterior
caṕıtulo:

−
(
g>z(z

′, z′)− g<z(z
′z′)
)
= 1 ⇒ κ

(
AI −BIe

2κz′
+AI +BIe

2κz′
)
= 1 ⇒ AI =

1

2κ

Aśı, escribimos la función reducida de Green para z, z′ < 0 como

gI(z, z
′) =

1

2κ
eκ(z<−z>) +BIe

κ(z+z′). (D.5)

Análogamente, calculamos gII(z, z
′) y gIII(z, z

′). Como en estas situaciones z′ no se
encuentra en la misma región que z, no distinguimos dos casos diferentes como en gI(z, z

′)
porque siempre tenemos z′ < z.

gII(z, z
′) = AIIe

κ(z+z′) +BIIe
κ(−z+z′) (D.6)

gIII(z, z
′) = AIIIe

κ(−z+z′) (D.7)
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Recopilando lo anterior, tenemos la ecuación

gz′<0(z, z
′) =


1
2κe

κ(z<−z>) +BIe
κ(z+z′) , z < 0

AIIe
κ(z+z′) +BIIe

κ(−z+z′) , 0 < z < a

AIIIe
κ(−z+z′) , z > a,

(D.8)

que es continua. Determinamos las constantes de las funciones gI(z, z
′), gII(z, z

′) y gIII(z, z
′)

usando las relaciones de continuidad gI(0, z
′) = gII(0, z

′) y gIII(a, z
′) = gIII(a, z

′).

gI(0, z
′) = gII(0, z

′) ⇒ 1

2κ
+BI = AII +BII

gII(a, z
′) = gIII(a, z

′) ⇒ AIIe
κa +BIIe

−κa = AIIIe
−κa

Cuando z = 0 o z = a, se cumple z′ < z, aśı que la ecuación que rige el sistema es[
− ∂2

∂z2
+ κ2 +

λ

a
δ(z) +

λ′

a
δ(z − a)

]
gz′<0(z, z

′) = 0. (D.9)

Integramos esta ecuación tanto en z ∈ (0−, 0+) como en z ∈ (a−, a+). Empezamos integrando
en el entorno de z = 0.

0 = −
[
gIIz(0, z

′)− gIz(0, z
′)
]
+

λ

a

∫ 0+

0−
gz′<0(z, z

′)δ(z − 0)dz

= κeκz
′
(
−AII +BII −

1

2κ
+BI

)
+

λ

a
gz′<0(0, z

′)

⇒ κ

(
−AII +BII −

1

2κ
+BI

)
+

λ

a

(
1

2κ
+BI

)
= 0

⇒ −AII +BII +BI

(
1 +

λ

κa

)
=

1

2κ

(
1− λ

κa

)
Ahora integramos en el entorno de z = a.

0 = −
(
gIIIz(a, z

′)− gIIz(a, z
′)
)
+

λ′

a

∫ a+

a−
gz′<0(z, z

′)δ(z − a)dz

= κeκz
′ [
AIIIe

−κa +AIIe
κa −BIIe

−κa
]
+

λ′

a
gz′<0(a, z

′)

⇒
(
AIIIe

−κa +AIIe
κa −BIIe

−κa
)
+

λ′

a
AIIIe

−κa = 0

⇒ −BIIe
−κa +AIIe

κa +AIII

(
1 +

λ′

κa

)
e−κa = 0

Recopilamos las relaciones que obtenidas del punto z = 0.
1

2κ
+BI = AII +BII

−AII +BII +BI

(
1 +

λ

κa

)
=

1

2κ

(
1− λ

κa

) (D.10)

Despejando BI en la primera ecuación y sustituyéndola en la segunda, llegamos al siguiente
sistema lineal,
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
BI = AII +BII −

1

2κ

AII
λ

κa
+BII

(
2 +

λ

κa

)
=

1

κ
.

(D.11)

Recopilamos ahora las relaciones obtenidas en z = a.
AIIe

2κa +BII = AIII

−BII +AIIe
2κa +AIII

(
1 +

λ′

κa

)
= 0

(D.12)

Sustituyendo en la segunda ecuación AIII por la primera ecuación, llegamos a:
AIII = AIIe

2κa +BII

AIIe
2κa

(
2 +

λ′

κa

)
= −BII

λ′

κa

(D.13)

Tomando las dos últimas ecuaciones de (D.11) y (D.13), únicamente dependientes de AII y
BII , despejamos AII y BII .

AII = − 1

2κ∆

λ′

2κa
(D.14)

BII =
1

2κ∆
e2κa

(
1 +

λ′

2κa

)
, (D.15)

donde hemos definido ∆ como

∆ = − λλ′

(2κa)2
+ e2κa

(
1 +

λ′

2κa

)(
1 +

λ

2κa

)
. (D.16)

Usando las primeras ecuaciones de (D.11) y (D.13), despejamos BI y AIII .

BI = − 1

2κ∆

[
λ′

2κa

(
1− λ

2κa

)
+ e2κa

λ

2κa

(
1 +

λ′

2κa

)]
(D.17)

AIII =
e2κa

2κ∆
(D.18)

Finalmente, obtenemos la función gz′<0(z, z
′) completamente determinada.

gz′<0(z, z
′) =


1
2κe

κ(z<−z>) + eκ(z+z′)

2κ∆

[
λ′

2κa

(
1− λ

2κa

)
+ e2κa λ

2κa

(
1 + λ′

2κa

)]
, z < 0

− eκ(z+z′)

2κ∆
λ′

2κa + eκ(−z+z′+2a)

2κ∆

(
1 + λ′

2κa

)
, 0 < z < a

eκ(−z+z′+2a)

2κ∆ , z > a

(D.19)

La función de Green es simétrica con respecto a z y z′, aśı que con los cálculos que hemos
desarrollado también sabemos lo que ocurre cuando z′ > a y z < 0 o cuando 0 < z′ < a y z < 0.
Queda ver tres casos: cuando 0 < z′, z < a, cuando a < z′, z y cuando a < z′ y 0 < z < a (o
a < z y 0 < z′ < a ). Vamos a utilizar el método anterior. Fijamos esta vez z′ en la región III.

gz′>a(z, z
′) =


fI(z, z

′) = eκ(−z′+z+2a)

2κ∆ , z < 0

fII(z, z
′) = AIIe

κ(z−z′) +BIIe
κ(−z−z′) , 0 < z < a

fIII(z, z
′) , z > a

(D.20)

Notar que fI(z, z
′) = gIII(z

′, z) por lo comentado en el anterior párrafo. Empezamos con la
obtención de fIII(z, z

′), análogo al cálculo de gI(z, z
′).

33



fIII(z, z
′) =

{
f<(z, z

′) = AIIIe
κ(z−z′) +BIIIe

κ(−z−z′) , z < z′

f>(z, z
′) = CIIIe

κ(−z+z′) +DIIIe
κ(−z−z′) , z > z′

(D.21)

La ecuación que rige el comportamiento de fIII(z, z
′) es de nuevo[

− ∂2

∂z2
+ κ2

]
gz′>a(z, z

′) = δ(z − z′). (D.22)

Por continuidad, imponemos f<(z, z) = f>(z, z).

AIII +BIIIe
−2κz = CIII +DIIIe

−2κz ⇒ AIII = CIII , BIII = DIII

Expresando entonces fIII(z, z
′) como

fIII(z, z
′) = AIIIe

κ(z<−z>) +BIIIe
−κ(z+z′), (D.23)

con z< = mı́n{z, z′} y z> = máx{z, z′}. Por otra parte, integramos (D.22) en un entorno de
z = z′, es decir, con z ∈ (z′−, z′+).

−
(
f>z(z

′, z′)− f<z(z
′z′)
)
= 1 ⇒ κ

(
AIII −BIIIe

−2κz′
+AIII +BIIIe

−2κz′
)
= 1 ⇒ AIII =

1

2κ

Escribiendo aśı finalmente

fIII(z, z
′) =

1

2κ
eκ(z<−z>) +BIIIe

−κ(z+z′). (D.24)

Queda determinar BIII , AII y BII . Para ello, imponemos continuidad e integramos la
ecuación (2.62) en entornos de z = 0 y z = a. Haciendo esto llegamos a las relaciones expresadas
en el siguiente sistema lineal(podemos prescindir de una de ellas),

AII +BII =
e2κa

2κ∆

AII −BII =
e2κa

2κ∆

(
1 +

λ

κa

)
BIII +

e2κa

2κ
= BII +AIIe

2κa

BIII

(
1 +

λ′

κa

)
+AIIe

2κa −BII =
e2κa

2κ

(
1− λ′

κa

)
.

(D.25)

Despejamos las constantes.

AII =
e2κa

2κ∆

(
1 +

λ

2κa

)
(D.26)

BII = − e2κa

2κ∆

λ

2κa
(D.27)

BIII =
e2κa

2κ∆

[
− λ

2κa

(
1− λ′

2κa

)
− λ′

2κa
e2κa

(
1 +

λ

2κa

)]
(D.28)

Terminando aśı la determinación de la función reducida de Green para z′ > a.

gz′>a(z, z
′) =


eκ(−z′+z+2a)

2κ∆ , z < 0

eκ(z−z′+2a) 1
2κ∆

(
1 + λ

κa

)
− e−κ(z+z′−2a) 1

2κ∆
λ
κa , 0 < z < a

1
2κe

κ(z<−z>) + e−κ(z+z′−2a)

2κ∆

[
− λ

2κa

(
1− λ′

2κa

)
− λ′

2κae
2κa
(
1 + λ

2κa

)]
, z > a

(D.29)
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Por último, fijamos z′ en la región II. Utilizando los cálculos hechos anteriormente, la función
reducida de Green será

g0<z′<a(z, z
′) =


hI(z, z

′) = − eκ(z′+z)

2κ∆
λ′

2κa + eκ(−z′+z+2a)

2κ∆

(
1 + λ′

2κa

)
, z < 0

hII(z, z
′) , 0 < z < a

hIII(z, z
′) = eκ(z

′−z) e2κa

2κ∆

(
1 + λ

κa

)
− e−κ(z′+z) e2κa

2κ∆
λ
κa , z > a.

(D.30)

Notar que hI(z, z
′) = gII(z, z

′) y hIII = fII(z
′z). Para determinar hII(z, z

′), procedemos
como antes: definimos h < (z, z′) y h > (z, z′) para z < z′ y z > z′ respectivamente.

hII(z, z
′) =

{
h<(z, z

′) = AIIe
κ(z+z′) +BIIe

κ(z−z′) + CIIe
κ(−z+z′) +DIIe

−κ(z+z′) , z < z′

h>(z, z
′) = A′

IIe
κ(z+z′) +B′

IIe
κ(z−z′) + C ′

IIe
κ(−z+z′) +D′

IIe
−κ(z+z′) , z > z′

(D.31)
Por continuidad, h<(z

′, z′) = h>(z
′z′). Con esta relación e integrando la ecuación (2.62) en

un entorno de z = z′, obtenemos

hII(z, z
′) =


h<(z, z

′) = AIIe
κ(z+z′) +

(
B′

II +
1

2κ

)
eκ(z−z′) + CIIe

κ(−z+z′) +DIIe
−κ(z+z′)

h>(z, z
′) = AIIe

κ(z+z′) +B′
IIe

κ(z−z′) +

(
CII +

1

2κ

)
eκ(−z+z′) +DIIe

−κ(z+z′),

(D.32)
ecuaciones que podemos reescribir en una sola como

hII(z, z
′) = AIIe

κ(z+z′) +B′
IIe

κ(z−z′) + CIIe
κ(−z+z′) +DIIe

−κ(z+z′) +
1

2κ
eκ(z<−z>). (D.33)

Por continuidad de g0<z′<a(z, z
′) e integrando (2.62) en un entorno de z = 0, obtenemos un

nuevo sistema lineal para las constantes AII , B
′
II , CII y DII .

e2κa

2κ∆

(
1 +

λ′

2κa

)
= B′

II +DII +
1

2κ

− 1

2κ∆

λ′

2κa
= AII + CII

CII −AII =
λ′

2κa

1

2κ∆

(
1 +

λ

κa

)
BII −DII =

e2κa

2κ∆

(
1 +

λ′

2κa

)(
1 +

λ

κa

)
− 1

2κ

(D.34)

Despejamos la constantes.

AII = − 1

2κ∆

λ′

2κa

(
1 +

λ

2κa

)
(D.35)

B′
II =

e2κa

2κ∆

(
1 +

λ′

2κa

)(
1 +

λ

2κa

)
− 1

2κ
=

1

2κ∆

λλ′

(2κa)2
(D.36)

CII =
1

2κ∆

λλ′

(2κa)2
(D.37)

DII = − e2κa

2κ∆

λ

2κa

(
1 +

λ′

2κa

)
(D.38)
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Desarrollando el coseno hiperbólico con la fórmula de Euler, la expresión de la función
reducida de Green cuando 0 < z, z′ < a queda

hII(z, z
′) =

1

2κ
eκ(z<−z>) +

1

2κ∆

[
−eκ(z+z′) λ′

2κa

(
1 +

λ

2κa

)
−

−e−κ(z+z′)e2κa
λ

2κa

(
1 +

λ′

2κa

)
+

2λλ′

(2κa)2
coshκ(z − z′)

]
. (D.39)

Obteniendo finalmente:

g0<z′<a(z, z
′) =



− eκ(z′+z)

2κ∆
λ′

2κa + eκ(−z′+z+2a)

2κ∆

(
1 + λ′

2κa

)
, z < 0

1

2κ
eκ(z<−z>) +

1

2κ∆

[
−eκ(z+z′) λ′

2κa

(
1 +

λ

2κa

)
−

−e−κ(z+z′)e2κa
λ

2κa

(
1 +

λ′

2κa

)
+

2λλ′

(2κa)2
coshκ(z − z′)

] , 0 < z < a

eκ(z
′−z) e2κa

2κ∆

(
1 + λ

κa

)
− e−κ(z′+z) e2κa

2κ∆
λ
κa , z > a

(D.40)
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D.2. Componente (3, 3) del tensor enerǵıa-momento y densidad de la fuerza

En la sección 2.3 nos proponemos calcular la componente ⟨Tzz⟩ del tensor enerǵıa-momento.
Tenemos la expresión del tensor reducido,

⟨tzz⟩ =
1

2i

[
−κ2 + ∂z∂z′

]
g(z, z′)|z′→z, (D.41)

el cual cumple

⟨Tzz⟩ =
∫ ∞

−∞

d2k

(2π)2

∫ ∞

−∞

dω

2π
⟨tzz⟩. (D.42)

Utilizando la función reducida de Green calculada en al anterior anexo, calculamos al
componente (3, 3) del tensor reducido enerǵıa-momento para cada región.

⟨tzz⟩|0<z<a =
1

2i

[
−κ2 + ∂z∂z′

]
hII(z, z

′)|z′→z

= −κ2

2i
hII(z, z) +

κ2

2i

(
− 1

2κ
eκ(z<−z>) +

[
−eκ(z+z′) 1

2κ∆

λ′

2κa

(
1 +

λ

2κa

)
−

−e−κ(z+z′)e2κa
λ

2κa

(
1 +

λ′

2κa

)
− 2λλ′

(2κa)2
coshκ(z − z′)

]) ∣∣∣∣
z′→z

= −κ2

2i
hII(z, z) +

κ2

2i

(
− 1

2κ
+

1

2κ∆

[
−e2κz

λ′

2κa

(
1 +

λ

2κa

)
−

−e−2κze2κa
λ

2κa

(
1 +

λ′

2κa

)
− 2λλ′

(2κa)2

])
= −κ2

i

(
1

2κ
+

1

2κ∆

2λλ′

(2κa)2

)
= − κ

2i

[
1 +

2(
1 + 2κa

λ

) (
1 + 2κa

λ′

)
e2κa − 1

]
(D.43)

⟨tzz⟩|z>a =
1

2i

[
−κ2 + ∂z∂z′

]
fIII(z, z

′)|z′→z

= −κ2

2i
fIII(z, z) +

κ2

2i

{
− 1

2κ
+

e−κ(2z+−2a)

2κ∆

[
− λ

2κa

(
1− λ′

2κa

)
− λ′

2κa
e2κa

×
(
1 +

λ

2κa

)]}
= − κ

2i
(D.44)

Para calcular la densidad de fuerza ejercida en la superficie z = a, calculamos la diferencia
entre la presión ejercida desde las diferentes regiones que delimita la placa.

F = ⟨Tzz⟩
∣∣
z=a− − ⟨Tzz⟩

∣∣
z=a+

=

∫ ∞

−∞

d2k

(2π)2

∫ ∞

−∞

dω

2π

(
− κ

2i

[
1 +

2(
1 + 2κa

λ

) (
1 + 2κa

λ′

)
e2κa − 1

]
+

κ

2i

)

= − 1

(2π)3i

∫ ∞

−∞
d2k

∫ ∞

−∞
dω

κ(
1 + 2κa

λ

) (
1 + 2κa

λ′

)
e2κa − 1

Extendiendo la función a una dimensión general d y rotando en frecuencias al eje complejo
como
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{
ω = iζ

κ =
√

k2 + ζ2
, (D.45)

la expresión anterior queda

F = − 1

(2π)3

∫ ∞

−∞
d2k

∫ ∞

−∞
dζ

κ(
1 + 2κa

λ

) (
1 + 2κa

λ′

)
e2κa − 1

= − 1

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

κ(
1 + 2κa

λ

) (
1 + 2κa

λ′

)
e2κa − 1

κ2 sen θ dκ dθ dφ

= − 1

2π2

∫ ∞

0

κ3(
1 + 2κa

λ

) (
1 + 2κa

λ′

)
e2κa − 1

dκ
y=2κa
= − 1

32π2a4

∫ ∞

0

y3(
1 + y

λ

) (
1 + y

λ′

)
ey − 1

dy.

La densidad de fuerza ejercida sobre cada placa es:

F = − 1

32π2a4

∫ ∞

0

y3(
1 + y

λ

) (
1 + y

λ′

)
ey − 1

dy (D.46)
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E. Funciones de Bessel

En la sección 3 trabajamos con funciones de Bessel. En este anexo se va a ofrecer una breve
caracterización de estas.8 La ecuación de Bessel de orden ν es

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0, (E.1)

con ν ∈ R \ {0}. Reescribimos la ecuación,

y′′(x) +
1

x
y′(x) +

(x2 − ν2)

x2
y(x) = 0, (E.2)

identificando los coeficientes

p(x) =
1

x
(E.3)

q(x) =
x2 − ν2

x2
. (E.4)

Estas funciones tienen un polo en x = 0 simple y de orden dos respectivamente debido a que

ĺım
x→0

xp(x) = 1 (E.5)

ĺım
x→0

x2q(x) = −ν2. (E.6)

El punto x = 0 es un punto singular-regular porque p(x) y q(x) tienen polos en x = 0, pero
son polinomios. Por el Teorema de Fuchs podemos proponer la solución polinómica

y(x) = xα
∞∑
n=0

anx
n, (E.7)

con α, an ∈ C ∀n ∈ N ∪ {0}. Usando esta solución en (E.2), llegamos a la siguiente relación:

∞∑
n=0

([
(n+ α)(n+ α− 1) + (n+ α)− ν2

]
an + an−2

)
xn+α = 0 (E.8)

Calculamos los valores de los coeficientes an y la variable α igualando el factor que multiplica
cada xn a 0.

1. n = 0 ⇒ α = ±ν

2. n = 1 ⇒ a1 = 0

3. n ≥ 2 ⇒ an = an−2

ν2−(n+α)2

De estas condiciones que hemos sacado, es claro que los coeficientes con n impar serán 0, es
decir, a2k+1 = 0 ∀k ∈ N∪ {0}. Por otro lado, como tenemos 2 valores de α, tendremos dos tipos
de soluciones.

1. α1 = ν:

Por la relación de recurrencia, tendremos a2k = (−1)k

22k
a0

k!(1+ν)(2+ν)...(k+ν) ∀k ∈ N. Dado que

ν ∈ R \ {0}, podemos reesecribirlo con funciones Gamma,

a2k =
(−1)k

22kk!

Γ(ν + 1)

Γ(k + ν + 1)
a0, ∀k ∈ N. (E.9)

8Para más información sobre las funciones de Bessel se recomienda consultar [6].
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Dado que a0 es arbitrario, elegimos a0 = 1
2νΓ(ν+1) . A esta solución se la llama función de

Bessel de primera especie de orden ν:

Jν(x) =

∞∑
k=0

(−1)k
(x
2

)2k+ν 1

k!Γ(k + ν + 1)
(E.10)

2. α2 = −ν:
En esta caso, la función de recurrencia an = an−2

ν2−(n+α2)2
= −an−2

n(n−2ν) estará bien definida si

α1 − α2 = 2ν /∈ N. Aśı que para obtener esta solución vamos a estudiar dos casos.

a) α1 − α2 = 2ν /∈ N:
Este caso lo resolvemos de forma análoga al anterior. A la solución la llamamos función
de Bessel de primera especie de orden −ν:

J−ν(x) =

∞∑
k=0

(−1)k
(x
2

)2k−ν 1

k!Γ(k − ν + 1)
(E.11)

Es inmediato comprobar que (E.11) y (E.10) son linealmente independientes debido
a las potencias de x que tiene cada solución.

b) α1 − α2 = 2ν ∈ N:
Ahora an = −an−2

n(n−2ν) tiene un polo en n = 2ν. De aqúı volvemos a tener dos situaciones:

1) 2ν impar:
Como ya teńıamos a2k+1 = 0 ∀k ∈ Z, tenemos a2ν = 0, aśı que no nos influirá el
polo en n = 2ν y la segunda solución seguirá siendo J−ν(x).

2) 2ν par:
Entonces tenemos ν ∈ N ∪ {0}, aśı que tenemos la propiedad

J−ν(x) = (−1)νJν(x), (E.12)

dejando inhabilitada J−ν(x) como segunda solución porque no es linealmente
independiente de Jν(x). Construimos una solución linealmente independiente de
Jν(x) a la que llamamos función de Bessel de segunda especie:

Yν(x) =
cos (πν)Jν(x)− J−ν(x)

sen (πν)
(E.13)

Sin embargo, esta función para ν ∈ Z está indeterminada, aśı que para este caso
la segunda solución será el ĺımite de la función de Bessel de segunda especie:

Yν(x) = ĺım
α→ν∈Z

cos (πα)Jα(x)− J−α(x)

sen (πα)

L’Hôpital
= ĺım

α→ν∈Z

−π sen (πα)Jα(x) + cos (πα)∂αJα(x)− ∂νJ−α(x)

π cos (πα)

=
1

π

(
∂Jν(x)

∂ν
− (−1)ν

∂J−ν(x)

∂ν

)
(E.14)

En la siguiente imagen podemos observar el carácter oscilatorio de las funciones de Bessel.
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Figura 8: Gráfica funciones de Bessel de [21].

Dada la simetŕıa de nuestro problema en la sección 3, utilizamos las funciones esféricas de
Bessel jl(x) e yl(x), que son las soluciones de la ecuación de Helmholtz expresada en coordenadas
esféricas

x2y′′(x) + 2xy′(x) + (x2 − l(l + 1))y(x) = 0, l ∈ N, (E.15)

las cuales se pueden relacionar con las funciones de Bessel vistas.

jl(x) =

√
π

2x
Jl+ 1

2
(x) (E.16)

yl(x) =

√
2

πx
Yl+ 1

2
(x) (E.17)

Las funciones de Bessel que utilizamos a lo largo de la sección son las funciones esféricas
modificadas de Bessel il(x) y kl(x), que son solución de la ecuación de Helmholtz en coordenadas
esféricas con argumento imaginario,

x2y′′(x) + 2xy′(x)− (x2 + l(l + 1))y(x) = 0, l ∈ N, (E.18)

que no es más que (3.14) evaluada dentro y fuera de la esfera con el cambio de variable x = κr.
Las funciones esféricas modificadas de Bessel las podemos expresar en términos de las

funciones de Bessel modificadas Il+ 1

2
(x) y Kl+ 1

2
(x).

il(x) =

√
π

2x
Il+ 1

2
(x) (E.19)

kl(x) =

√
2

πx
Kl+ 1

2
(x) (E.20)

Estas son soluciones linealmente independientes de la ecuación modificada de Bessel

x2y′′(x) + xy′(x)− (x2 + ν2)y(x) = 0, ν = l +
1

2
. (E.21)

Siguiendo un desarrollo análogo al hecho con la ecuación de Bessel normal, expresamos las
soluciones Iν(x) y Kν(x) como
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Iν(x) =

∞∑
k=0

(x
2

)2k+ν 1

k!Γ(k + ν + 1)
(E.22)

y

Kν(x) =
π

2

Iν(x)− I−ν(x)

sen (πν)
. (E.23)

En la siguiente imagen podemos observar el carácter exponencial de las funciones modificadas
de Bessel en comparación con las oscilaciones de Jν(x) y Yν(x).

Figura 9: Gráfica funciones modificadas de Bessel de [21].

Por último, definimos el Wronskiano de dos funciones diferenciales f y g como

W [f, g] = fg′ − f ′g. (E.24)

El Wronskiano de las funciones de Bessel cumple las siguientes relaciones a destacar:

W [Jν(x), Yν(x)] =
2

πx
(E.25)

W [Iν(x),Kν(x)] = −1

x
(E.26)

En consecuencia, las funciones esféricas modificadas de Bessel cumplen

W [il(x), kl(x)] = − 1

x2
. (E.27)
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F. Funciones armónicas para potencial esférico

En la sección 3 también empiezan a aparecer las funciones de los armónicos esféricos, vamos
a ver de dónde vienen. Se nos presenta la ecuación (3.14), que se puede relacionar con la ecuación
de Helmholtz, (

∇2 + k2
)
ϕ(r, θ, φ) = 0, (F.1)

donde k es una constante y ϕ(r, θ, φ) un campo escalar. Para resolverla, utilizamos el método de
separación de variables. Definimos R : (0,∞) → R, Θ : (0, π) → R y Φ : (0, 2π) → R de manera
que ϕ(r, θ, φ) = R(r)Θ(θ) Φ(φ). Si escribimos ∇2 en coordenadas esféricas con las anteriores
funciones, tenemos la siguiente ecuación,

Θ(θ)Φ(φ)

r2
∂

∂r

(
r2

∂R(r)

∂r

)
+
R(r)Φ(φ)

r2 sen θ

∂

∂θ

(
sen θ

∂Θ(θ)

∂θ

)
+
R(r)Θ(θ)

r2 sen2 θ

∂2Φ(φ)

∂φ2
= −k2R(r)Θ(θ)Φ(φ).

(F.2)

Multiplicando por r2 sen2 θ
R(r)Θ(θ)Φ(φ) , tenemos

sen2 θ

R(r)

∂

∂r

(
r2

∂R(r)

∂r

)
+

sen θ

Θ(θ)

∂

∂θ

(
sen θ

∂Θ(θ)

∂θ

)
+ k2r2 sen2 θ = − 1

Φ(φ)

∂2Φ(φ)

∂φ2
. (F.3)

Como los términos a la izquierda de la igualdad no dependen de φ y el que está a la derecha
de la igualdad solo depende esta misma variable, podemos igualar ambos lados de la igualdad a
una constante. Dado que buscamos soluciones no nulas, ∃(r0, θ0, φ0) ∈ (0,∞)× (0, π)× (0, 2π) ∋
R(r0),Θ(θ0),Φ(φ0) ̸= 0.

sen2 θ0
R(r0)

∂

∂r

(
r20

∂R(r0)

∂r

)
+

sen θ0
Θ(θ0)

∂

∂θ

(
sen θ0

∂Θ(θ0)

∂θ

)
+ k2r20 sen

2 θ0 = − 1

Φ(φ0)

∂2Φ(φ0)

∂φ2
= −M,

con M constante. Para resolver esto, empezamos por la parte dependendiente de φ.

∂2Φ(φ)

∂φ2
= MΦ(φ) (F.4)

Dependiendo del valor de M , hay dos posibles soluciones.

1. M = 0: Φ(φ) = A+Bφ

2. M ̸= 0: Φ(φ) = Ae
√
Mφ +Be−

√
Mφ

Dado que φ ∈ (0, 2π), Φ(φ) debe ser 2π-periódica. Imponiendo entonces Φ(φ) = Φ(φ+ 2π)
y Φ′(φ) = Φ′(φ+ 2π) las soluciones se puede reescribir.

1. M = 0: Φ0(φ) = A0

2. M ̸= 0: Φm(φ) = Ameimφ con m ∈ Z \ {0} ∋ im =
√
M ⇐⇒ M = −m2

Aśı que la solución general de Φ(φ) es:

Φ(φ) =

∞∑
m=−∞

Ameimφ, Am ∈ C (F.5)

Lo podemos expresar también como

Φ(φ) =

∞∑
m=0

Bm senmφ+ Cm cosmφ, Bm, Cm ∈ C. (F.6)
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Ahora, resolvemos la parte independiente de φ de (F.3). Para ello, haciendo uso de la
constante M , reescribimos la ecuación.

1

R(r)

∂

∂r

(
r2

∂R(r)

∂r

)
+ k2r2 = − 1

Θ(θ) sen θ

∂

∂θ

(
sen θ

∂Θ(θ)

∂θ

)
− M

sen2 θ
(F.7)

La parte de la izquierda de la igualdad solo depende de r y la derecha de θ, aśı que procedemos
de manera análoga al anterior caso. Como las soluciones son no nulas, ∃(θ0, φ0) ∈ (0, π)×(0, 2π) ∋
Θ(θ0),Φ(φ0) ̸= 0, aśı que podemos escribir

1

R(r0)

∂

∂r

(
r20

∂R(r0)

∂r

)
+ k2r20 = − 1

Θ(θ0) sen θ0

∂

∂θ

(
sen θ0

∂Θ(θ0)

∂θ

)
− M

sen2 θ0
= Q,

con Q constante. Por un lado, resolvemos la parte dependiente de r.

1

R(r)

∂

∂r

(
r2

∂R(r)

∂r

)
+ k2r2 = R (F.8)

Haciendo el cambio de variable R(r) = r−1/2y(r), la ecuación queda

r2y′′(r) + ry′(r) +

[
(kr)2 −

(
Q+

1

4

)]
y(r) = 0, (F.9)

la cual se convierte en la ecuación de Bessel al aplicar x = κr

x2y′′(x) + xy′(x) +

[
x2 −

(
Q+

1

4

)]
y(x) = 0. (F.10)

Si redefinimos la constante Q como Q = l(l + 1),

x2y′′(x) + xy′(x) +

[
x2 −

(
l +

1

2

)2
]
y(x) = 0, (F.11)

y entonces tenemos que la solución general de R(r) será una combinación lineal de las
funciones de Bessel vistas en el Anexo E.

Por último, resolvemos la parte dependiente de θ,

1

sen θ

∂

∂θ

(
sen θ

∂Θ(θ)

∂θ

)
+

M

sen2 θ
Θ(θ) = −QΘ(θ), (F.12)

realizando el cambio de variable x = cos θ y Θ(θ) = y(x),

∂

∂x

(
(1− x2)y′(x)

)
+Qy(x) +

M

1− x2
y(x) = 0. (F.13)

Aplicando Q = l(l + 1) y M = −m2 y desarrollando la derivada obtenemos la ecuación
asociada de Legendre,

(1− x2)y′′(x)− 2xy′(x) +

(
l(l + 1)− m2

1− x2

)
, (F.14)

dando aśı una solución como

Θ(θ) =

∞∑
l=−∞

∞∑
m=−∞

FmPm
l (cos θ), Fm ∈ C. (F.15)

Finalmente, la solución general queda
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ϕ(r, θ, φ) =

∞∑
l=−∞

∞∑
m=−∞

Al
mRm

l (r)eimφPm
l (cos θ)

=

∞∑
l=−∞

∞∑
m=−∞

Al
mRm

l (r)Y m
l (θ, φ), Am ∈ C, (F.16)

donde Y m
l (θ, φ) son los armónicos esféricos, que vienen dados por la expresión

Y m
l (θ, φ) = (−1)m

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
eimφPm

l (cos θ). (F.17)

Con este desarrollo podemos ver porqué en las soluciones del campo escalar para un potencial
esférico aparecen las funciones Y m

l (θ, φ). Estas vienen de la parte angular de la ecuación definida
por Θ(θ) Φ(φ) .
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G. Cálculos sección 3

G.1. Función reducida de Green

Buscamos la función reducida de Green que cumple la ecuación[
− 1

r2
∂

∂r
r2

∂

∂r
+

l(l + 1)

r2
+ κ2 +

λ

a
δ(r − a)

]
gl(r, r

′) =
δ(r − r′)

r2
. (G.1)

Para empezar su resolución, fijamos r′ en la región I y calculamos la función reducida de
Green en función de la localización de r. Dado que il(x) diverge cuando x → ∞ y kl(x) cuando
x → 0, procediendo análogamente al caṕıtulo anterior obtenemos

gr′<a =

{
gI(r, r

′) , r < a

gII(r, r
′) = AIIkl(κr)il(κr

′) , r > a.
(G.2)

Para el cálculo de gI(r, r
′) diferenciamos dos casos.

gI(r, r
′) =

{
g<(r, r

′) = AIil(κr)il(κr
′) +BIil(κr)kl(κr

′) , r < r′

g>(r, r
′) = CIil(κr)il(κr

′) +DIkl(κr)il(κr
′) , r > r′

(G.3)

Por continuidad, imponemos g<(r
′, r′) = g>(r

′, r′),

AII
2
ν (κr

′) +BIil(κr
′)kl(κr

′) = CII
2
ν (κr

′) +DIkl(κr
′)il(κr

′) ⇒ AI = CI , BI = DI

Llegando aśı a
gI(r, r

′) = AIil(κr)il(κr
′) +BIil(κr<)kl(κr>), (G.4)

donde r< = mı́n{r, r′} y r> = máx{r, r′}. Para determinar una de las constantes, multiplicamos
por r2 e integramos la ecuación (3.14) en un entorno de r′, es decir, en r ∈ (r′−, r′+).

1 =

∫ r′+

r′−
δ(r − r′)dr

= −
∫ r′+

r′−
∂

(
r2

∂gl(r, r
′)

∂r

)
+

∫ r′+

r′−

[
l(l + 1) + r2κ2

]
gl(r, r

′)dr

= −
∫ r′+

r′−
∂

(
r2

∂gl(r, r
′)

∂r

)
+ 0 = r′2

[
gIr(r

′−, r′)− gIr(r
′+, r′)

]
= κr′2

[
AIi

′
l(κr

′)il(κr
′) +BIi

′
l(κr

′)kl(κr
′)−AIi

′
l(κr

′)il(κr
′)−BIil(κr

′)k′l(κr
′)
]

= κr′2BI

[
i′l(κr

′)kl(κr
′)− il(κr

′)k′l(κr
′)
] (3.15)

= BI
κr′2

κ2r′2
=

BI

κ
⇐⇒ BI = κ

Dando la siguiente función reducida de Green:

gr′<a =

{
AIil(κr)il(κr

′) + κil(κr<)kl(κr>) , r < a

AIIkl(κr)il(κr
′) , r > a

(G.5)

Para determinar las constantes, imponemos por continuidad gI(a, r
′) = gII(a, r

′).

AIil(κa)il(κr
′) + κil(κr

′)kl(κa) = AIIkl(κa)il(κr
′) ⇐⇒ AI =

kl(κa)(AII − κ)

il(κa)

Seguidamente, multiplicamos la ecuación (3.14) por r2 y la integramos en un entorno de a,
en r ∈ (a−, a+).
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0 = −
∫ a+

a−
∂

(
r2

∂gl(r, r
′)

∂r

)
+

∫ a+

a−

[
l(l + 1) + r2κ2

]
gl(r, r

′)dr +

+
λ

a

∫ a+

a−
r2δ(r − a)gl(r, r

′)dr

= a2
[
gIr(a

−, r′)− gIIr(a
+, r′) +

λ

a
gl(a, r

′)

]
= a2

[
κ
(
AIi

′
l(κa)il(κr

′) + κil(κr
′)k′l(κa)−AIIk

′
l(κa)il(κr

′)
)
+

λ

a
AIIkl(κa)il(κr

′)

]
= a2il(κr

′)

[
κ

(
kl(κa)(AII − κ)

il(κa)
i′l(κa) + κk′l(κa)−AIIk

′
l(κa)

)
+

λ

a
AIIkl(κa)

]
= a2il(κr

′)

[
AII

{
κ

(
kl(κa)i

′
l(κa)

il(κa)
− k′l(κa)

)
+

λ

a
kl(κa)

}
+

+κ2
{
k′l(κa)−

kl(κa)i
′
l(κa)

il(κa)

}]
(3.15)
= a2il(κr

′)

[
AII

{
1

κa2il(κa)
+

λ

a
kl(κa)

}
− 1

a2il(κa)

]
⇐⇒ AII =

κ

1 + λκakl(κa)il(κa)

Despejamos AI .

AI =
kl(κa)

il(κa)

(
κ

1 + λκakl(κa)il(κa)
− κ

)
= −

λκ2ak2l (κa)

1 + λκakl(κa)il(κa)
(G.6)

Finalmente, obtenemos que la función reducida de Green para r′ < a es

gr′<a =

κ
(
il(κr<)kl(κr>)− il(κr)il(κr

′) λκak2
l (κa)

1+λκakl(κa)il(κa)

)
, r < a

kl(κr)il(κr
′) κ

1+λκakl(κa)il(κa)
, r > a

. (G.7)

De manera análoga, calculamos gr′>a.

gr′>a =

{
fI(r, r

′) = kl(κr
′)il(κr)

κ
1+λκakl(κa)il(κa)

, r < a

fII(r, r
′) , r > a

(G.8)

Notar que, por simetŕıa de las funciones de Green, fI(r, r
′) = gII(r

′, r). Para calcular fII(r, r
′)

volvemos a ver que tenemos dos casos cuando r, r′ > a.

fII(r, r
′) =

{
f<(r, r

′) = AIil(κr)kl(κr
′) +BIkl(κr)kl(κr

′) , r < r′

f>(r, r
′) = CIkl(κr)il(κr

′) +DIkl(κr)kl(κr
′) , r > r′

(G.9)

Por continuidad, imponemos f>(r
′, r′) = f<(r

′, r′).

AIil(κr)kl(κr
′) +BIkl(κr

′)kl(κr
′) = CIkl(κr

′)il(κr
′) +DIkl(κr

′)kl(κr
′) ⇒ AI = CI , BI = DI

(G.10)

Reescribimos entonces fII(r, r
′) como

fII(r, r
′) = AIil(κr<)kl(κr>) +BIkl(κr)kl(κr

′). (G.11)

Multiplicamos por r2 e integramos en un entorno de r = r′ la ecuación (G.1).
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1 =

∫ r′+

r′−
δ(r − r′)dr = −

∫ r′+

r′−
∂

(
r2

∂gl(r, r
′)

∂r

)
+

∫ r′+

r′−

[
l(l + 1) + r2κ2

]
gl(r, r

′)dr

= −
∫ r′+

r′−
∂

(
r2

∂gl(r, r
′)

∂r

)
+ 0 = r′2

[
fIIr(r

′−, r′)− fIIr(r
′+, r′)

]
= κr′2

[
AIi

′
l(κr

′)kl(κr
′) +BIk

′
l(κr

′)kl(κr
′)−AIil(κr

′)k′l(κr
′)−BIkl(κr

′)k′l(κr
′)
]

= κr′2AI

[
i′l(κr

′)kl(κr
′)− il(κr

′)k′l(κr
′)
] (3.15)

= AI
κr′2

κ2r′2
=

AI

κ
⇐⇒ AI = κ

Aśı que tenemos

gr′>a =

{
kl(κr

′)il(κr)
κ

1+λκakl(κa)il(κa)
, r < a

κil(κr<)kl(κr>) +BIkl(κr)kl(κr
′) , r > a,

(G.12)

función continua, propiedad que da la siguiente relación,

kl(κr
′)il(κa)

κ

1 + λκakl(κa)il(κa)
= κil(κa)kl(κr

′) +BIkl(κa)kl(κr
′)

⇒ BI = −
λκ2ai2l (κa)

1 + λκakl(κa)il(κa)
. (G.13)

Finalmente, la ecuación reducida de Green con r′ en la región II queda determinada por la
siguiente función:

gr′>a =

kl(κr
′)il(κr)

κ
1+λκakl(κa)il(κa)

, r < a

κ
(
il(κr<)kl(κr>)− kl(κr)kl(κr

′) λκai2l (κa)
1+λκakl(κa)il(κa)

)
, r > a

(G.14)

48



G.2. Enerǵıa total del sistema

En la sección 3 comenzamos el cálculo de la enerǵıa total del sistema con la siguiente
expresión:

E =
1

2πi

∞∑
l=0

(2l + 1)

∫ ∞

−∞
dω

[
λκak2l (κa)

1 + λκakl(κa)il(κa)

∫ κa

0
x2i2l (x)dx+

+
λκai2l (κa)

1 + λκakl(κa)il(κa)

∫ ∞

κa
x2k2l (x)dx

]
(G.15)

Simplificamos con el tensor reducido ⟨t00⟩,

E =
1

2πi

∞∑
l=0

(2l + 1)

∫ ∞

−∞
dω⟨t00⟩, (G.16)

el cual queda de la siguiente manera usando (3.24) y (3.25):

⟨t00⟩ =
λκak2l (κa)

1 + λκakl(κa)il(κa)

∫ κa

0
x2i2l (x)dx+

λκai2l (κa)

1 + λκakl(κa)il(κa)

∫ ∞

κa
x2k2l (x)dx

=
λκa

1 + λκakl(κa)il(κa)

(κa)2

2

(
i2l (κa)kl(κa)k

′
l(κa)− k2l (κa)il(κa)i

′
l(κa)+

+ κa
(
il(κa)k

′
l(κa) + kl(κa)i

′
l(κa)

) (
il(κa)k

′
l(κa)− kl(κa)i

′
l(κa)

))
(3.15)
= − λκa

1 + λκakl(κa)il(κa)

κa

2

(
kl(κa)il(κa)

κa
+ (kl(κa)il(κa))

′
)

= −κa

2

d

d(κa)
ln [1 + λκakl(κa)il(κa)]

Aśı, la enerǵıa total el sistema da:

E = − 1

4πi

∞∑
l=0

(2l + 1)

∫ ∞

−∞
dωκa

d

d(κa)
ln [1 + λκakl(κa)il(κa)]

|ω|=iκ
= − 1

2π

∞∑
l=0

(2l + 1)

∫ ∞

−∞
dκκa

d

d(κa)
ln [1 + λκakl(κa)il(κa)]

x=κa
= − 1

2πa

∞∑
l=0

(2l + 1)

∫ ∞

0
dxx

d

dx
ln [1 + λxkl(x)il(x)]

= − 1

2πa

∞∑
l=0

(2l + 1)

∫ ∞

0
dxx

d

dx
ln [1 + λKν(x)Iν(x)] (G.17)
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G.3. Término Eλ2

Partimos de la expresión

Eλ2

=
λ2

4πa

∞∑
l=0

(2l + 1)

∫ ∞

0
x
d

dx
(Iν(x)Kν(x))

2dx. (G.18)

Del art́ıculo [11], utilizamos la siguiente propiedad para la serie en l,

∞∑
l=0

(2l + 1)x y kl(x) il(y)Pl(cos θ) =
xy

ρ
e−ρ, (G.19)

con ρ =
√

x2 + y2 − 2xy cos θ. Podemos escribir entonces también:

∞∑
l=0

(2l + 1)x2kl(x)il(x)Pl(cos θ) =
x√

2(1− cos θ)
e−x

√
2(1−cos θ), (G.20)

Si hacemos el producto de dos sumatorios como el anterior,

( ∞∑
l=0

(2l + 1)x2kl(x)il(x)Pl(cos θ)

)( ∞∑
l′=0

(2l′ + 1)x2kl′(x)il′(x)Pl′(cos θ)

)
=

x2e−2x
√

2(1−cos θ)

2(1− cos θ)
.

(G.21)
Integramos la anterior ecuación en cos θ haciendo uso de la siguiente propiedad:∫ 1

−1
d(cos θ)Pl(cos θ)Pl′(cos θ) = δll′

2

2l + 1
(G.22)

Procedemos con el cálculo.

∫ 1

−1

( ∞∑
l=0

(2l + 1)x2kl(x)il(x)Pl(cos θ)

)( ∞∑
l′=0

(2l′ + 1)x2kl′(x)il′(x)Pl′(cos θ)

)
(G.22)
=

∞∑
l=0

(2l + 1)2x4k2l (x)i
2
l (x)

2

2l + 1
=

∞∑
l=0

2(2l + 1)x4k2l (x)i
2
l (x)

=

∫ 1

−1

x2

2(1− cos θ)
e−2x

√
2(1−cos θ)d(cos θ)

z=2x
√

2(1−cos θ)
= x2

∫ 4x

0

e−z

z
dz

Recopilando lo anterior, tenemos la igualdad

∞∑
l=0

(2l + 1)K2
ν (x)I

2
ν (x) =

1

2

∫ 4x

0

e−z

z
dz, (G.23)

permitiendo aśı escribir el término de segundo orden como

Eλ2

=
λ2

8πa

∫ ∞

0
x
d

dx

∫ 4x

0

e−z

z
dz = 3

λ2

8πa

∫ ∞

0
x
e−4x

x
dx

= − λ2

8πa

∫ ∞

0
e−4xdx =

λ2

32πa
. (G.24)
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