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1. Introduccion

La energia Casimir se asocia, popularmente, a la energia que hay entre dos placas neutras
situadas en el vacio, a las que no se les ha aplicado ningtin tipo de potencial; en general a este
efecto se le conoce como efecto Casimir. El efecto Casimir, a pesar de tener su origen en la
Fisica Cuantica de Campos, se manifiesta a nivel macroscépico. Esto ha abierto un campo de
posibilidades principalmente en la micro y nanomecdnica y en nanosistemas electromecanicos.
Este es un efecto provocado por el confinamiento de los campos cuanticos bajo ciertas
condiciones de contorno, que imponen restricciones en los modos de vibracién de los campos
dando lugar a un efecto neto que proviene de las fluctuaciones cuanticas del vacio, la llamada
energia de Casimir. Nos proponemos en este documento hacer un anélisis de los casos del
efecto Casimir mds conocidos. Adoptaremos la geometria plana y esférica, pero desde un
planteamiento general que permita (siempre que sea posible) un estudio profundo de este
fenémeno. El efecto Casimir, a pesar de tener por su naturaleza un caracter universal, es todavia
un gran desconocido. El comportamiento del vacio ante distintas geometrias y/o condiciones de
contorno no es predecible y la apariciéon de divergencias, todavia no estd bien entendida.

El efecto Casimir es una consecuencia directa del punto cero de energia conocido en Mecanica
Cuédntica. El término punto cero de energia aparece con las teorfas de radiacién de Planck! y
coge fuerza durante principios del siglo XX con desarrollos tedricos desarrollados por Einstein y
Stern®. A pesar de que el concepto circulaba desde temprana edad de la fisica cudntica, no se le
dio el valor que merecia hasta a partir de mediados de siglo cuando se empezé a ver que podia,
en realidad, tener consecuencias macroscopicas.

El punto cero de energia se refiere al estado de energia de un sistema cuantico en el que
no hay ningin tipo de excitacion externa, lo que frecuentemente relacionariamos con el vacio
absoluto. Por este motivo, uno esperaria (movidos por una visién cldsica) que en un estado en
el que no hay estados la energia fuera nula. Sin embargo, la Mecdnica Cudntica nos guarda
alguna sorpresa. El Hamiltoniano clasico que describe un oscilador arménico de masa m define
también el oscilador armdnico cudntico con la salvedad de que entonces la posiciéon y momento
de la particula pasan a ser operadores que miden esas propiedades dada la funcién de onda del
sistema. )

=24 1mqu2 (1.1)
2m 2
Como hemos dicho, en Mecanica Cuantica ¢ y p pasan a ser los operadores posiciéon g y momento
p, y ademds no conmutan,

g, p] = in, (1.2)

dando lugar a particularidades propias de un sistema cuantico como es el Principio de
Incertidumbre de Heisenberg, (Ap)(Aq) > 2.
Por conveniencia definimos los operadores a™ y a mediante las relaciones

1
at = ——(p + imwq), 1.3
a= #( — imwq) (1.4)
e p q), .

a los cuales se les conoce como operadores escalera u operadores construcciéon y destruccion
respectivamente. Esto es debido a que cuando operan sobre un estado cuantico, suben o bajan

'En concreto con la segunda teorfa, publicada en la revista alemana Annalen der Physik, se pueden consultar
sus volimenes online en https://onlinelibrary.wiley.com/journal/15213889. Para mds informacién consultar Max
Planck. Uber die Begriindung des Gestzes der schwarzen Strahlung. Ann. d. Phys, 37: 642, 1912.

2Publicaron sus resultados en la misma revista que Planck, para saber més ver referencia Albert Einstein and
Otto Stern. Einige Argumente fiir die Annahme einer molekularen Agitation beim absoluten Nullpunkt. Ann. d.
Phys, 40: 551, 1913.


https://onlinelibrary.wiley.com/journal/15213889

su nivel. Cada estado propio de energia |n) se ve afectado por estos operadores de la forma
aln) = Vln — 1), (1.5)
atn) = vn +1n+1). (1.6)

Podemos expresar el Hamiltoniano (1.1) en términos de los operadores a y a™ segin estdn
definidos en (1.3) y (1.4) mediante

1
H:hw<N+2>,N:a+a. (1.7)
Dado que N|n) = n|n), los niveles de energia del sistema son
1
(n|H|n) :En:hw<2—|—n> , neNU{0}. (1.8)

Como se puede ver en la ecuacién (1.8), el sistema con el nivel mas bajo de energia (ausencia
de particulas o estado fundamental |0)) no implica que el sistema tenga energia nula. De hecho,
el nivel mas bajo de energia es Fy = %‘*’ Esto es lo que se denomina energia de punto cero. No
obstante, este nivel es practicamente imposible de observar, ya que los experimentos se basan en
el scattering ocasionado al pasar de un nivel a otro haciendo que este fenémeno no tenga efecto
neto.

Existen, ademas, indicios fundamentales de su existencia. El Principio de Incertidumbre y la
existencia del punto cero de energia estdan intimamente relacionados como se puede comprobar

recordando que
(Agn)? = (nlg?In) — (nlqln)? (1.9)

y suponiendo la base de estados de energia {|n)} ortonormal.

_ .| h T . + _
(nlaln) = iy 5 (nl(@ — a*)ln) = iy - ((nl @I} — (nl(a*) ) = 0
h h 2 h 1
() =~ 5tnlta = a2l =~ 5l + 0~ aa® — at ) = - (n+ 3 )
Por tanto, llegamos a
h 1
Ag)? = — ). 1.10
@)= (n+3) (1.10)
De forma analoga calculamos lo propio para el operador momento.
9 1
(App)” = hmw | n + 5 (1.11)
De este modo, el producto de incertidumbres nos da la relacion
1
(App)(Agn) = h (" * 2) , (1.12)
que no es mas que el principio de Heisenberg,
1 h
(Apn)(Agn) =h(n+ 5 ) conn e NU{0} = (Ap)(Aq) > 3 (1.13)

Es decir, el Principio de Heisenberg permite y corrobora la existencia del punto cero de energia.

En Fisica Cuédntica de Campos, la existencia del punto cero de energia da lugar a una energia
abrumadora que, tradicionalmente, se ha valorado como no observable y, como consecuencia, se
ha intentado por distintos métodos eliminar del escenario. En concreto, en Teoria Cudntica



de Campos se representan las fluctuaciones cudnticas de los campos electromagnéticos de un
sistema suponiendo un nimero infinito de osciladores arménicos en cada punto, uno por cada
modo. Por tanto, teniendo en cuenta el resultado obtenido con Mecanica Cuantica del nivel cero
de energia de un oscilador arménico cuantico, el punto cero de energia ahora se considera la
suma, de todos los modos,

h
Ey = Q;W‘]’ (1.14)

donde J es el nimero cudntico asociado a cada modo de frecuencia wjy. La suma es
espantosamente divergente. Este comportamiento del vacio es una fuente de problemas, pues
no sabemos cémo tratarlo, pero... jpodria serlo también de oportunidades? A mediados del
siglo XX Hendrik Brugt Gerhard Casimir consigue relacionar este punto cero de energia con
las fuerzas de van der Waals?, abriendo asi todo un abanico de posibilidades. Las fuerzas de
van der Waals y el efecto Casimir son en esencia lo mismo, pero las primeras son referidas a
interacciones entre cuerpos muy cercanos (nm) y el segundo a cuerpos mas alejados (um). Son
los casos limite de un mismo concepto?.

Mucho se ha especulado también acerca de la relacién entre la energia de vacio y la energia
oscura. Un tema plagado de incertidumbres y con mucho recorrido pero fuera del proposito de
este documento.

El resto del trabajo estd estructurado de la siguiente manera: FEn la seccién 2 analizaremos
el caso mas popular del efecto Casimir, la atraccion de dos placas paralelas totalmente neutras
situadas en el vacio sin ningun tipo de potencial aplicado entre ellas. No es exactamente el caso
tratado originalmente por Casimir puesto que él consideré campos electromagnéticos y nosotros
trataremos campos escalares (nos extendemos en esto mas adelante). Comenzamos esta seccién
con el caso mas simple posible, el de una dimensién temporal y una tinica dimensién espacial con
placas puntuales conductoras. Calcularemos la energia de vacio utilizando el método de suma
de modos en la subseccion 2.1 para pasar al caso general con 3 dimensiones espaciales y placas
perfectamente conductoras en 2.2. El apartado 2.3 lo reservamos para introducir potenciales
definidos con la funcién delta de Dirac. Podemos generalizar el tipo de condiciones de contorno
sobre las placas modelando de esta manera el caso general de placas dieléctricas. Estos dos
ultimos apartados nos serviran, ademas, para mostrar como hacer este tipo de célculos siguiendo
el método de las funciones de Green introducido por Schwinger en su teoria de fuentes, [2]. A
través de la funcién de Green calcularemos el tensor energia-momento. Ademds, emplearemos
distintos métodos de regularizacién en cada uno de los casos. Para la seccién se han revisado los
articulos [3] y [4] y el libro [5].

En la seccién 3 analizamos las fluctuaciones cudnticas de campos escalares interaccionando
con una corteza esférica descrita, de nuevo, por un potencial singular tipo delta de Dirac
que, bajo circunstancias que veremos, simula los modos eléctricos transversales del campo
electromagnético. La constante positiva de acoplo sirve para modelar el tipo de condiciones
de contorno sobre la superficie de la esfera. Utilizamos el método de la funciéon de Green que da
lugar, en esta geometria, a soluciones del tipo funciones modificadas de Bessel. El tratamiento de
este caso es no trivial y el uso de las funciones de Bessel es extenso. A partir de ello, calculamos
distintas componentes del tensor energia momento. Esta descripcién del sitema permite que
podamos discutir la aparicion de cierto tipo de divergencias y el origen de estas. Para su desarrollo
se ha consultado el articulo [4] y el libro [6].

2. Placas paralelas
Como hemos dicho en la introduccién, consideraremos campos escalares interaccionando

con distintos tipos de entornos que modifican la geometria del espacio en cierta manera.
Originalmente, el efecto Casimir se estudié tratando fluctuaciones del campo electromagnético.

3Lo explicé en el articulo H.B.G. Casimir, Proc. Kon. Nederl. Akad. Wet., 51: 793, 1948
4Para més infromacién sobre esto ver [1].



Este estd descrito por campos vectoriales, lo que hace que el formalismo se vuelva més
complicado. Puesto que el efecto Casimir lo sufre cualquier tipo de campo, estudiarlo en el
caso de campos escalar hace que los calculos sean mas sencillos y la fisica que describen més
ilustrativa. Es importante mencionar también que existen casos, como el que vamos a estudiar,
en los que los modos eléctrico y magnético del campo electromagnético se desacoplan y, entonces,
se pueden considerar por separado y después sumar ambas contribuciones.

El caso de la placas paralelas fue el primero tratado en el efecto Casimir y uno de los mas
sencillos. Por este motivo, empezaremos nuestro analisis estudiando el punto cero de energia en
el caso mas simplificado de esta geometria e iremos complicando el problema progresivamente.
Esto nos permitird introducir maneras maés sofisticadas de estudiar el efecto Casimir anadiendo
generalidad al problema y permitiéndonos estudiar dicho efecto de forma local.

2.1. Caso unimensional con condiciones de Dirichlet

Para empezar, estudiamos el efecto Casimir en un sistema unidimensional, 1D+1 (una
dimension espacial y otra temporal), el caso mas sencillo. Las placas conductoras se consideran
puntos localizados en x = 0 y = a. Puesto que consideramos conductores perfectos, las placas
son reflectoras perfectas y, sin pérdida de generalidad, podemos definir el campo escalar ¢(t, x)
tnicamente en el espacio entre las placas, es decir, V(¢,2) € R x (0,a), con a > 0. El cardcter
conductor de las placas queda reflejado en la imposicion de las condiciones de Dirichlet,

©(t,0) = p(t,a) = 0. (2.1)

La dindmica del campo escalar ¢(t,z) de masa m puede ser descrita por la ecuacién de
Klein-Gordon, que define la dindmica de una teoria clasica de campos, para después cuantizar
las variables dindmicas y darles la categoria de operadores del mismo modo que se procedi
a hacerlo en Mecdnica Cudntica, [7]. La ecuacién de Klein-Gordon es una ecuacién diferencial
homogénea en derivadas parciales de segundo orden,

i@%p(t, z) Pp(t,r) m3c?
2 o2 0z 2

Utilizamos el método de separacién de variables para su resolucién, cuyos detalles se pueden
ver en el Anexo A. Se obtiene la siguiente solucién para el nivel n de energia,

(t,z) = 0. (2.2)

on(t,x) = sen(kyx) (Anei“’"t + Bpe ™rt), (2.3)

donde A, y B, son constantes a determinar para ciertas condiciones de contorno, k, es una
constante que depende de n € N y w,, es la frecuencia del sistema, cuyo valor depende de k,, del
siguiente modo,

2,4
Wy, = mh; + k2, neN, (2.4)
donde, como se ha demostrado en el anexo,
kn = peN. (2.5)
a

Por conveniencia, expresamos (2.3) como combinacién lineal de los siguientes generadores,
ot (z,t) = A sen(kyz)et ™, neN. (2.6)
La solucién general de ¢(t,x) serd una combinacién lineal de los campos escalares

correspondientes con cada nivel de energia ¢, (z,t). Calculamos las constantes A imponiendo
condiciones de ortonormalizacion sobre los generadores de la siguiente manera,

(pE, 05) = T (¢, 05) = 0. (2.7)

4



El producto escalar asociado a este sistema, que asegura la unitariedad estd definido como

U@—QKMUﬂw—%ﬁn 2o = . (2.8)

Imponemos sobre (2.6) las condiciones de ortonormalizacién (2.7),

' a . . _Ai2 a
(Fes) = i [ ol Ot = g e) = =2 [ sent (ko) () = ()
_ :FATﬂLIQQ(yng Tl e A,il _ c
c 2 awn,

Es decir, el conjunto de generadores o funciones linealmente independientes que resuelven nuestro

sistema es
C .
oF = \ | —sen(kpz)er™t neN. (2.9)
awn,

De manera similar podemos comprobar el resto de propiedades. Tomando ahora n,n’ € N con

n#n'.

a
<ﬁm®=54mﬁum~%ﬁmm

A:tAil n’ n ¢
= T45 n(w Tw )/ dx sen(kpx)sen(ky x)
0

C

B FALAL (W + wn) [knesen(knz)cos(kpx) — kncos(knx)sen(knx)]®

pu— 0’

puesto que cuando evaluamos la expresion en x = a y * = 0 nos queda cada sumando del
. . !
numerador multiplicado por cero, sen (%a) = sen (7 a) = 0 para n,n’ € N.
Siguiendo un calculo andlogo se demuestra que (@i, o) =0.
Dado que sabemos que la solucién va a ser una combinacién lineal de las funciones (2.9),

construimos el siguiente campo escalar

[e.e]

gp(t, IE) = Z [@;(ta x)an + 90:'1_(157 x)aﬂ > (2'10)

n=1

donde a,, y a;" son los operadores escalera, dando asi, a las variables dindmicas, la categoria de
operadores que cumplen las relaciones de conmutacién

[an,am =0pw,s |an,an]=la.,a,] =0, (2.11)

ademads de
a,|0) = 0. (2.12)

A continuacién, vamos a calcular la componente (0,0) del tensor energia-momento. Este es
una cantidad tensorial, denotada por T}, que codifica informacién acerca de la conservacién
de la energia y momento de un sistema. Se deriva a partir del teorema de Noether. Tanto la
derivacién como su expresion para campos escalares esté desarrollada en detalle en el Anexo B.
La componente (0,0) del tensor, Tpo, nos da la densidad de energia del sistema,

he

Ton(t, ) = 5 (2 Duplt, o + ae(t. o)) (2,13

En el Anexo C calculamos, a partir de la expresion de los campos segin aparecen en (2.10) y la
expresién de la componente Ty anterior, el valor esperado de la densidad de energia,

e m2ct S cos? (k)
<0|T00(x)|0)—2a;wn— 2k 2= (2.14)



A partir de ahora, y en el resto del documento, vamos a suponer campos escalares no masivos,
ya que la presencia de la masa en el sistema deja al efecto Casimir en un efecto de orden
secundario e importancia menor. Omitimos, por tanto, el término dependiente de la masa m del
campo escalar. La energia se calcula integrando la densidad de energia sobre el espacio entre las
placas,

Eofa) = [ OTin(e)]0)de =5 > (215)
n=1

Esta serie es claramente divergente y su forma nos resulta familiar. Estamos haciendo una suma
infinita de frecuencias dadas por (2.4), cuyo valor en el caso no masivo (m = 0) es proporcional
a n. Esto, en principio, no tiene por qué causar asombro puesto que estamos sumando una
energia del punto cero que sabemos que es infinito. Sin embargo, lo que nos interesa es la
contribucién que las condiciones de contorno ejercen sobre la energia de vacio, buscamos alguna
técnica para poder extraer esta parte supuestamente finita de la energia de vacio. Para ello,
tenemos que regularizar la solucion de alguna forma y poder extraer algin significado fisico de
ella. Afiadamos una funcién de amortiguamiento e~ a nuestra expresién, de tal manera que al
final del cdlculo haremos § — 0 para recuperar la expresién inicial. Lo que se pretende con esta
técnica es extraer aquellos términos divergentes y ver si esto permite aislar alguna contribucién
finita. La marca que debe de tener dicha contribucién es que tiene que estar relacionada con la
geometria causante de la restriccién de los modos de los campos fluctuantes. Partimos por lo
tanto de la expresién regulada

h . —Own,
8) = 52%6 ., 6—0. (2.16)

Sustituyendo el valor de wy,, (2.4), y manipulando ligeramente esta expresiéon nos queda,

B= cTn _ senn O on
Bo(ad) = 52 7 et =g e
n=1 n=1

una serie geométrica que facilmente podemos sumar. Recordando [0<F| < 1 y operando la
derivada, obtenemos

ho 1 hern 2 2
E 5 - T A Ac scm “cecm S cm
O(a’ ) 26567—1 24a <e 2a—6_62a>

Utilizando la férmula de Euler para el seno hiperbdlico, obtenemos una expresion para la energia
en funcién del parametro 6,

h
Eo(a,8) = gseh (5%). (2.17)

Recordamos que teniamos que aplicar el limite & — 0, al final de nuestro calculo. Por lo
tanto, desarrollamos el seno hiperbdlico en una serie de Laurent y consideramos los primeros
términos antes de las potencias positivas de ¢ (que convergen a cero),

1 1
senh™2(z) ~ 373 +o(z?), V3 l|z|<1. (2.18)

Sustituyendo en la expresién de arriba, obtenemos finalmente

Fo(a, ) ~ 1" [(5“)2 - 1} 4+ o(s?) = Lt fem (2.19)

Sa 2a 3 2cmd? 24a

Notar que el primer sumando diverge en § — 0. Sin embargo, si queremos calcular la fuerza
ejercida sobre las placas, debemos derivar con respecto al pardmetro a. Esto hace que el primer
término no dependa de ningin pardmetro relacionado con nuestro sistema, y por lo tanto esa la



divergencia no tendra ningun significado fisico. Por tanto, podriamos renormalizar la expresion
y prescindir del primer término. No obstante, vamos a ver con mas detalle el significado de este
sumando.

Consideramos ahora el sistema sin placas. En este caso, el campo ¢(z,t) se extiende a todo
el espacio (x,t) € R?, y las soluciones de la ecuacién (2.2) son funciones que toman valores

continuos de la frecuencia,
Qolfgt — A:te:ti(szwt)v (220)

con k = \/W ,w = mhzf + 2|\| y A € R. Corresponden a las fluctuaciones libres del campo, en
ausencia de las placas, y por lo tanto no cumplen ningtn tipo de condiciones de contorno en los
puntos donde antes estaban situadas dichas placas conductoras y hacian que k tomara valores
discretos. Al igual que antes, la constante A* la calculamos usando (2.7) y (2.8) extendidas a
todo el espacio continuo.

(b 93) = Z/ Az (P Oa 03 — Do 0035
AFAE o0 - 2wAE AL
= F k*k 6:I:z(w—u.) )t (w+w/)/ dx 6:I:z(k —k)z _ FawApr Ap 271'5(](} _ k/)
c PN c
- Fo(k—F A= [ C
+ ( ) = 4w

Evaluando la expresién (2.15) en ausencia de placas, la energia del vacio en todo el espacio
x €Res
h (e.)
Eotipre(—00,00) = / wLdk, (2.21)
0

™

donde L es la longitud del espacio, L — oco. Es més conveniente, por lo tanto, hablar de energia
por unidad de longitud M Usando esta densidad de energia, podemos analizar la

energia contenida en el espacio que ocupan las placas,

Eoipre(—00, 00) ha [° hac [*°
Eyipre(a) = a=— wdk = — kdk. 2.22
Olzbre( ) i3 o 0 2 0 ( )
A pesar de ser una expresion divergente, y con la esperanza de poder comparar el resultado
con el obtenido en presencia de las placas, regulamos esa expresion usando la misma funcién de

amortiguamiento e~ con § — 0 que utilizamos en el caso de las placas conductoras. Obtenemos
ha [ ha 1 [ ha ha
Eos 5) = ES)e Ok dk = — — te ldt = = —. 2.23
Olibre (CL, ) 270 /0 (C )6 2710 ¢d 0 € 271'062 ( ) 271'662 ( )

Esta contribucion corresponde a las fluctuaciones de vacio del campo en ausencia de las placas.
Inmediatamente se reconoce que el valor coincide con el primer término en (2.19) y que, por lo
tanto, corresponde a una energia que no se puede observar. Es la energia de las fluctuaciones
cuanticas que estarian presentes en ausencia de las placas. Obtenemos entonces la energia neta
del vacio debida a la presencia de las placas como la diferencia entre ambas energias calculadas,

whe

Eglacas — %l’_I}%)[EO(Ch (5) — EOlz‘bre(a7 5)] = —%7

(2.24)
obteniendo de esta manera un valor finito. Obtenemos la densidad de la fuerza, o presién, ejercida
sobre las placas por las fluctuaciones de vacio derivando con respecto al pardmetro a:

oEres e
F=- da  24a? (2.25)

El signo menos indica que la fuerza entre las placas es atractiva. Asimismo, la variable a en el
denominador indica que el valor absoluto de la fuerza aumenta con el acercamiento de las placas.



2.2. Caso general en 3D+1 con condiciones de Dirichlet

En esta seccién extendemos el sistema anterior al caso mas general de 3 dimensiones
espaciales y 1 temporal. Situamos dos placas conductoras idénticas paralelas entre si en el vacio.
Las placas no poseen carga libre y ninguna diferencia de potencial se aplica sobre ellas. Puesto
que la interacciéon ocurre en la direcciéon perpendicular al plano de las placas, suponemos que
las dimensiones de estas son mucho mayores que la separacion que hay entre ellas. La superficie
de las placas se extiende en el plano XY, el eje Z es perpendicular a las placas.

X

A

Y/ Z
4

Figura 1: Placas paralelas en el vacio a una distancia de separacién igual a a.

Estudiamos las fluctuaciones cudnticas de un campo escalar en el vacio. El hecho de estar el
campo confinado entre las placas fuerza un cierto comportamiento en los campos. Estos estan
obligados a satisfacer las condiciones de frontera que introducen las placas, lo cual da lugar a
que la diferencia entre los campos dentro de las placas y fuera, origine una diferencia de presién
entre los modos de dentro y fuera de las placas, dando lugar a una fuerza neta entre ellas que
calcularemos a continuacién. Para empezar, escribimos la densidad del Lagrangiano que define el
sistema. Utilizamos, a partir de aqui y en el resto del trabajo, el sistema de unidades naturales,
h=c=1.

1
L= L0 0,0(x)0,0(0) + K (x)0(x) (2.26)
donde x = (¢, z,y, z), g"” es la métrica de Minkowski, definida por la matriz
-1 0 0 0
0 1 00
g= 0 01 0 (2.27)
0 0 0 1

y K(x) es una fuente que introducimos a mano para reflejar el origen de la interaccién. La
dindmica del campo viene determinada por la ecuacién de Euler-Lagrange,

oL oL
% (55a) ~ 56 =" (228)

que aplicada al Lagrangiano que define nuestro sistema se obtiene

0 (~3970,00) - 379,000 ) - K(x) = 0

2 2
—Ponp(x) — K(x) = 0. (2.29)
Por tanto, llegamos a la siguiente ecuacion de movimiento:
82
(;i %) _ v2(x) = K(x), (2.30)



donde V? es el Laplaciano en 3D y se asumen condiciones de contorno de Dirichlet, propias de
las placas conductoras,

¢(z=0)=0¢(z=a)=0. (2.31)

Introducimos la funcién de Green mediante la ecuacién (2.29) como

d(x) = K(x")G(x,x)dx’, (2.32)
T.E.

donde K(x’) es la fuente del campo en x’ vista antes y la funcién de Green es el propagador,
representa la transferencia de la interaccién de x’ a x. Las siglas T.E. indican que integramos
en todo el espacio. Del mismo modo podemos expresar la fuente en x como

K(x) = . K(x’)6(x — x”)dx’. (2.33)

Sustituyendo ambas expresiones en (2.29), obtenemos la ecuacién correspondiente a la
funcién de Green,
—0°G(x,%x’) = §(x — x"), (2.34)

donde las derivadas operan sobre la variable x, pero debido a la simetria de la funcién de Green
en las dos coordenadas, la misma ecuacién se ha de satisfacer en x’. La solucién deberd de exhibir
la propiedad de posible intercambio entre x y x’.

La geometria del sistema muestra invarianza traslacional en el plano XY, que es el plano de
las placas. Ademds, trabajamos en una frecuencia fija que més adelante generalizaremos. Esto
hace que podamos considerar la transformada de Fourier,

0 d2k L , e’} dw ) ,
N — ik(xL—%x"1) —iw(t—t") /. k 9.
Goex) = [ e | S gt ), (2.35)

donde g¢(z,2’;w, k) es la funcién reducida de Green, que por simplicidad expresaremos como
9(z,2") = g(z,2;w,k). Esta funcién estd dada a una frecuencia w y un momento transversal
k = (kg, ky) fijos. Hemos denotado por x; a las coordenadas transversales a la direcién de la
interaccién del campo, x| = (z,y). Recordando que,

d(x—x) = d(z—2)d(y—y)i(z— 2"t -t)=
) /oo B2k ik (e x) /Oo dﬁe—iw(t—t')é(z — ),

y sustituyéndolo junto con (2.35) en (2.34) llegamos a la siguiente relacién que satisface la
funcién de Green reducida,

<—w2 + k2 — ;;) 9(z,2")=6(z = 2), (2.36)
junto con las condiciones de contorno (2.31) que se traducen ahora en
9(0,2") = g(a, 2') = 0. (2.37)
Por conveniencia, definimos A\? := w? — k2,

(—)\2 - ;;) g(z,7) =6(z = 2). (2.38)

Recordando las ecuaciones resueltas en la anterior seccion y en el anexo B, sabemos que
la solucién es una combinacién lineal de exponenciales complejas; o mas concretamente, de



funciones sinusoidales pues la funcién deberd anularse en dos puntos concretos de z (z = 0 y
z = a). De acuerdo con estas caracteristicas, la inica posible solucién es

(2.39)

oz, ) = g1(z,2") = Asen(\z) O0<z<i<a
’ 92(z,2') = Bsen(A(z —a)) ,0< 2 <z <a,

siendo A y B constantes en la variable z°. La funcién de Green es continua, asi que imponemos
esta propiedad con ¢1(2/,2) = g2(2/,2'). De esta igualdad sacamos una relacién entre las
constantes A y B:

Asen(\z') = Bsen(A\(2' — a)) (2.40)
Por otra parte, si integramos la ecuacién (2.38) en un entorno de 2/, es decir, en z € (2/~, 2'T),

2’7t 92 2t 2t
—/ ﬁg(z,z’)dz - )\2/ g(z,2')dz :/ §(z,2")dz,
Zl7 Z Zl7 Zl7

y teniendo en cuenta que g(z,z’) es continua en z = 2/, llegamos a la siguiente condicién en la
derivada de la funcién de Green reducida:

Ag2(2',7")  Oq1(#,2") B
( 0z 0z +0=1

fijando asi una segunda ecuacién que nos permitird conocer las constantes A y B. Obtenemos
por lo tanto el sistema lineal

Asen(A\z') = Bsen(\(2 — a))

1 (2.41)
Acos(\2') — Beos(A\(2 —a)) = X
Despejando A y B:
1sen(A(z' —a))
A=——— ——-
A sen(Aa) (2.42)
B _ 1sen(\) '
~ Asen()a)
En consecuencia, la solucién de la funcién reducida de Green es
—LsenMz=a)) g0 (), 0<z<z2 <a
(z,2/) =< N snQa) (2) (2.43)
g 1 sen(Az’) /
— sen(na) sen(A(z—a)) ,0<2' <z<a.
Reescribimos la anterior funcién con otra notacién mas compacta,
A A —
g(z’ Z/) — _Sen( Z<) Sen( (Z> CL)) (244)

Asen(Aa) ’

donde 2~ = méx{z,2'} y 2« = min{z,2'}. Como hemos dicho anteriormente, la funcién de
Green es el propagador de la interaccién y por lo tanto se corresponde con el valor esperado del
producto ordenado de los campos,

(To(x)0() = Clx, ), (2.45)

donde (T'¢p(x)p(x’)) es el valor esperado del vacio del producto de los campos ordenado
temporalmente. Recordamos que el tensor energia-momento, que hemos deducido en el Anexo
B nos informa acerca de distintas propiedades fisicas del sistema. El valor esperado de la

®Bs decir, en general A = A(2'), B = B(%).
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componente Tyy nos informa de la densidad de energia, que integrada nos proporciona la energia
total del sistema. Esto nos permite analizar propiedades, tanto locales como globales del sistema.
Para un campo escalar, el tensor viene dado por

T,uu - V¢8/.L¢ + guuﬁ- (2'46)
El valor esperado (Tpp) es la densidad de energia del sistema,

(Too) = (p(x)Tooe(x')),

cuya integracién en el espacio nos da la energia de vacio en la regién considerada. Formalmete
lo podemos expresar como

Ey = /0 a<T00>dz. (2.47)
Calculamos (Tyo) de acuerdo con las ecuaciones (2.46) y (2.45).
(To) = 1 |00+ 5 (-0 + 00| Glx.x )
L bl + 800 Gl ) e

Sustituyendo la expresién completa de la funciéon de Green, podemos escribir en términos de la
funciéon de Green reducida

_ L[ Pk ik —x) 49 iy (2, 2 O O /
(Too) = % . (27T)2€ /_OO %6 <W + k% — 92 02 9(z,2)|x—x
B 1 [ dk [®dwl 5 o\ sen(Az)sen(A(z —a))
T2 )y (2m)? /oo 21 A [(w k) sen(Aa) +
Az) cos(A(z — a))
)\2005(
+ sen(Aa)

y separar la densidad reducida de energia (tgp),

00 2 0
(Too) = /_ _ (;Tl; /_ d—w<too>, (2.48)

tal que

= iy L)ttt

Recordando que A\? = w? — k?

1

(too) = —mch [sen(Az) sen(A(z — a)) + cos(Az) cos(A(z — a))]
+2i)\seln()\a)k2 [—sen(Az) sen(A(z — a)) + cos(Az) cos(A(z — a))]
1

~Zixsen(ha) [w2 cos(Aa) — k2 cos(\(2z — a)a)]

Calculamos la energia total entre las placas, integrando esta expresién en la regién indicada,

Ey = /Oa<Too>dz = /Oa dz /Z (Z:;/Z Z—:<too>. (2.49)
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Calculamos primeramente la integral en z

/Oa dz(top) = 2% Oa )\SGI}()\(I) [—k:2 cos(A(2z — a)) + w? cos(Aa)| dz
2
= ZX [k;\ —w?a cotg()\a)] (2.50)

Debido a que el primer sumando no depende de ningin pardmetro del sistema, no contribuye a
la fuerza neta entre las placas y corresponde a una energia del fondo (de manera similar a los que
vimos en el caso unidimensional) por lo tanto lo eliminamos como una constante independiente
del sistema que estamos tratando. Volviendo a la expresién completa (2.49), nos queda una

energia
a [* d*k dw w? cotg(Aa)
Ey=—— _— 2.51
0 2@'/ (2m)2 / 2 A ’ (251)

que es claramente divergente. Para obtener un significado fisico de esta expresién, es necesario
utilizar algin método de regularizacién. En el apartado anterior utilizamos una funcién
exponencial decreciente que hacia el integrando convergente permitiendo obtener un valor para
la suma infinita (o para la integral en su caso) y aislar las posibles divergencias. En esta ocasién
vamos a utilizar una regularizacion dimensional que nos permite extender analiticamente la
integral a un dominio en el que la integral converja y cuyo resultado esté bien definido cuando
volvemos a la dimensién de nuestro problema.

Extendemos analiticamente la funcién a una dimensién general d, evitando asi las
divergencias existentes en dimension 3. Una vez desarrollado el célculo, hacemos el limite del
resultado para d + 1 = 3. En primer lugar, si realizamos una rotacién en frecuencias al eje

complejo, w = ¢ tenemos,
w=1C
{ ) (2.52)

A=iVk2+ (2 =ik

La expresion (2.51) queda

E a /Oo dk / d¢ ¢? cotg ika) / /OO d%k d¢ ¢? coth(/ia)
)= —— _= > e\ 2
_ oo 2T

2i J_o (2m)d 27)d+1 K

Haciendo ahora un cambio de variable a polares en ¢ = k cos @, y d%k d¢ = k% sen®1(0)dr df dyp
(k €[0,00], 8 € [0,7] y ¢ € [0,27)), tenemos

E / / /27r k?sen?"! Odk d dip (k cos 0)? coth(ka)
) = ——

Qﬂ- d+1 K
d+l 00 d-‘rl
- th(ra)dk. 2.53
D) F(% 1) / it coth(ra)dr (2:53)

Expresando el integrando como,

a T %0 pd+l 2
— 1+ ——— ) dx,
2 F(d+ + 1) 0 (27.‘.)(1-1-1 e2ka _ 1

queda explicito que la primera integral diverge, pero se trata de un término independiente de
los pardmetros relevantes en nuestro sistema y se puede descartar. De esta manera, la parte de
la energia que depende de la configuraciéon dada y necesitamos evaluar es

d
T2

a * dk 2k
Ey=—= . 2.54
0 2 T(&L+ 1) /0 (2m) @+ e2ra — | (2.54)

12



Utilizando la igualdad con las funciones Gamma y Zeta de Riemann

[e%) ys—l
/0 dy I(s)C(s) (2.55)

eyflz

y llamando y = 2ka la expresién (2.54) queda

d
T2 1

a 1 /Ood
27(51 +1) o) em ™ fy Ve =T

Eo=—

En nuestro caso d +1 = 3 por lo tanto obtenemos el valor finito

R G
Eo=—g62n2 = "Ta400% (2.56)

donde hemos empleado que ((4) = 7*/90. Esta expresién corresponde al modo TE del campo
electromagnético. Como habiamos discutido, los modos eléctrico y magnético se desacoplan
en esta situacién y se pueden tratar como dos campos escalares independientes. Ademads, las
contribuciones de cada uno de ellos a la energia de vacié son exactamente iguales, lo que implica
que la energia de Casimir del campo electromagnético es exactamente el doble de la calculada
en (2.56). La fuerza entre las placas se obtiene derivando la energia con respecto a la separacién
entre ellas, a.

an 7'1'2
T 9a  480a* (2:57)

Notamos que, de la misma manera que en el caso del sistema unidimensional, la fuerza va
a ser atractiva, es decir, dos placas conductoras en el vacio se van a atraer con una intensidad
inversamente proporcional a la cuarta potencia de la distancia que las separa.

2.3. Caso general con potencial delta de Dirac

A continuacién, extendemos el sistema de la seccién anterior para el caso en que la
placas no son necesariamente conductoras. Examinaremos el caso de campos escalares sin
masa interaccionando con dos potenciales delta situados a una distancia a. La interaccion
viene determinada por las constantes de acoplo A\, X' € [0,4+00), que permiten generalizar
las condiciones de contorno y analizar casos mads generales. Aunque estd fuera del alcance
de este trabajo, considerar representar las placas con las deltas y tomando las constantes de
acoplo asociadas a cada una, permite identificar la naturaleza de las divergencias que ocurren.
Empezamos escribiendo el Lagrangiano asociado a este problema,

52660 - 5200 - e + Ko, (259

1, 1
L= _59“ Oud(x)0yp(x) — 5 2a

donde seguimos utilizando la métrica anterior para asegurar el término cinético definido positivo,
y hemos aniadido un potencial de interaccién formado por dos funciones delta en z =0y z = a.

Lint = —*Eé(z)(ﬁQ(X) - fE(S(z — a)p?(x) (2.59)

La funcién K (x) representa la fuente de interaccién que dard lugar a las ecuaciones que
satisface la funcién de Green. El campo y la fuente satisfacen (2.32) y (2.33). Esta vez procedemos
con el Principio de Minima Accién para calcular la ecuacién de movimiento. Definimos la accién
en términos de la densidad del Lagrangiano como

S = / Lax, (2.60)
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siendo x1 y X9 los puntos inicial y final, puntos que se mantienen fijos y por lo tanto en los que
los campos no sufren variaciones. Por el Principio de Minima Accién se cumple 45 = 0 para
variaciones infinitesimales del campo, por lo tanto,

*2 oL oL
0S = /X1 dx <8¢(x) 0p(x) + 8(8M¢(x))5(8“¢(x))>

= [ (K0 = 20061000 70— o) ) d0t)

1 1
(370000 — 300,00 ) 50,00
Como 0(0,¢(x)) = 0s(dp(x)), en el ultimo sumando aplicamos la derivada del producto y
se reduce a
0*¢(x)

~0r | (~597000 - 509,00 ) 3600 + L5 a0

El primer término es una derivada total y da lugar a un término de superficie que podemos
ignorar puesto que mantenemos los extremos fijos, d¢(x1) = d¢(x2) = 0. Por lo tanto,

0x2

0= /x2 dx [K(x) — 25(z)¢(x) — /:5(2’ —a)p(x) + 0 qﬁ(x)] dp(x).

Lo cual es cierto si el integrando es idénticamente nulo. Asi, llegamos a la ecuacién que satisface

el campo,
/

2p(x
_0%9(x) 4 25(z)¢>(x) + %5(75 —a)p(x) = K(x). (2.61)

0x?

Sustituyendo las ecuaciones (2.32) y (2.33) y teniendo en cuenta la expresién de la funcién

completa de Green, G(x,x’) en (2.35), escribimos la ecuacién en términos de la funcién de Green
reducida,

Lk 26+ Lo - )] gl #) = 8z - ) 2.2
5z Tr o)+ oz —a) | g(z 2) = 6(z —2), )

donde hemos llamado x? = k% — w?. La funcién de Green adquiere distintos valores en las
distintas regiones del espacio que dividen las placas. Resolvemos, por tanto, la ecuaciéon anterior
dividiendo el espacio en tres regiones:

= Regién I: {(z,y,2) € R?|z € (—00,0)}
= Region IL: {(z,y, 2) € R?|z € (0, a)}

= Region I1L: {(z,y,2) € Rz € (a, +00)}

Regién 1 Regién 11 Region 111

Figura 2: Regiones del espacio con placas paralelas.

Estamos interesados en calcular la funcién de Green en la situacién en la que tanto el punto
fuente (x/, por ejemplo) como el punto donde medimos (que seria entonces el punto x) se
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encuentran en la misma regiéon. En el Anexo D.1 estan calculadas, explicitamente, las funciones
de Green en cada regién del espacio con los puntos z y 2’ en todas las situaciones posibles.
Aqui extraemos del anexo aquellas que son de interés para proseguir el calculo de la energia de
Casimir.

» Para la regién I, z, 2’ <0,

| enle) [y A A X
N k(z<—2s) 1— 2ra 7" 1 2.63
91(272) 2,{,6 + 2I€A [2/%1 < 2,{/@) te 2Kka ( + 2HQ>:| ( )

s Para la region 11, 0 < 2,2’ < a,

1 1 NN A , A N
/ - K(z<—25) - |: _k(z2) N 1 NN —k(242) J2ka 1
911(2:2) 2% + oA L € 2ka ( * 2/%) ° ‘" %a < T ora
22\
W COSh H(Z — Z/):| (264)

» Para la region 111, 2, 2’ > a,

1 efn(z+z’f2a) A N\ 2\ A
R (2t BT AN I AN ra (14 2
gr11(z, %) 2" oA [ 2Kka ( 2/@@) 2ra" ( " Q/fa)}
(2.65)

Recuperamos las relaciones (2.45) y (2.46) de la anterior seccién para calcular las
componentes del tensor energia-momento con la funcién de Green. En los anteriores capitulos se
ha calculado la energfa del sistema a partir de la componente (0, 0) del tensor 7},,,. La componente
(0,0) es la densidad de energia del sistema y las demds componentes de la diagonal, en nuestro
caso (1,1), (2,2) y (3,3), representan las presiones ejercidas sobre el sistema en los ejes X,
Y y Z respectivamente. Esta vez, utilizaremos las presiones ejercidas sobre el sistema para
calcular la fuerza ejercida sobre las placas. Por tanto, calculamos la componente (3, 3) del tensor
energia-momento, la cual denotamos 7T,,. Procedemos de la siguiente manera:

1 1
(Tzz> = ; |:8zaz’ - 5 (_8080’ + 8xLax’i + 8zaz’):| G(Xax’)’x’—)x

)

1
5 |
2i J_o (2m)2 27

[ee) 2 ) , 0 ) ,
o0y — 8}& axal + 8282,} / ﬁezk(xL—x 1) / diwe—zw(t—t )g(z’ Z/)|x’—>x

oo (27) Coo 2T
2 2 /
[w — k% + azaz’] g(z, z )’Z’*}Z
—0oQ
Por conveniencia, definimos el tensor energia-momento reducido

(T..) = /OO Cﬂk/oo g—:@m% (2.66)

oo (27)? ) o
que estd evaluado en puntos tal que z = 2/.
1 2 /
(trz) = % [—/i + 8Z8Z/] 9(z,2")] 22 (2.67)
La densidad de fuerza sobre cada placa es la diferencia de presiones entre ambos lados de las

placas,
F = <Tzz>‘ - <Tzz>‘ (268)

Por lo tanto, el tensor energia-momento a ambos lados de la placa situada en a, y evaluado
precisamente en el punto de la discontinuidad z = 2’ = a da como resultado

z=a~ z=at’

K 2

t - = —— |1 2.69

< ZZ>’Z—(Z 21 + (1 + 2§a) (1 + 2;3(1) te‘ia _ 1 ( )
I

<tzz>’z=a+ = _271-7 (2'70)
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cuyos célculos se pueden ver en el Anexo D.2. Asi, ya podemos llegar a la expresiéon de la
densidad de fuerza ejercida sobre cada placa,

1

00 3
_ _ _ Yy
F=ATea)| e — (To2)| e 39270 /0 (A -dy. (2.71)

Esta expresién nos permite calcular la fuerza de vacio entre dos placas con acoplos arbitrarios, se
les suele llamar semitransparentes. Utilizando la libreria scipy.integrate de Python para resolver
numéricamente la integral en (2.71), vemos sus valores, que son finitos, como funcién de los
pardmetros A y X.

| [T

@l |

o B
ik |

Figura 3: Densidad de la fuerza en funcién de los pardmetros A y X' multiplicada por a*.

Notamos en la Figura 3 que la fuerza se hace muy pequena para valores pequenos de A y X
y aumenta su valor absoluto a medida que aumentan en magnitud los valores de las constantes
de acoplo, hasta llegar a una zona donde se vuelve practicamente constante. Para simplificar la
expresion suponemos A = ). Entonces, trabajamos con la siguiente expresién:

F = /oo v d (2.72)
= 3271'2a4 0 (1_|_}>£\)2€y_1 Y .

Utilizamos de nuevo la libreria scipy.integrate de Python para resolver numéricamente esta
integral. Vemos la misma dependencia que en la Figura 3, pero en una dimensién.

0.000 -
—0.002 1

[N

o —0.0041

—0.006 -

—0.008

0 20 40 60 80 100

A

Figura 4: Densidad de la fuerza en funcién del pardmetro A multiplicada por a?.
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Vamos a corroborar el comportamiento visto en las Figuras 3 y 4 de forma analitica.
Pongamos que A > 1. Con esta condicién tenemos lo siguiente:

F =

1 B : 4)r(4 1 6rt 2

32m2at ev —1 32m2at 32m2a* 90 480a*
Comparando este resultado con el del anterior capitulo (2.57), notamos que obtenemos el mismo
resultado, ya que al hacer A — oo, tenemos placas conductores. Por otro lado, si ahora suponemos
AL 1

1 % \293 1 A2y A\T(2) A2
4 327T2a4/ y2ev Y 327‘(’2(14/ ev Y 32m2at 32m2at (2.74)

Efectivamente, estos limites coinciden con lo visto en las Figuras anteriores 3 y 4. Cuando
las constantes de acoplo se hacen pequenas, obtenemos una fuerza practicamente nula. Si las
constantes de acoplo son muy grandes, tenemos una dependencia constante con los parametros
y negativa.

3. Corteza esférica con potencial delta de Dirac

Hemos visto que el confinamiento de las fluctuaciones del punto cero entre las placas paralelas
dan lugar a fuerzas de atraccién entre ellas. Sin embargo, esto no es una propiedad general de
las fuerzas de vacio. De hecho, una de las incégnitas del efecto Casimir es que, en general,
no hay un método para predecir si la energia de vacio de una cierta geometria, satisfaciendo
ciertas condiciones de contorno, da lugar a fuerzas atractivas o repulsivas. En [8] Kenneth y
Klich demostraron que la energia de vacio entre cuerpos idénticos siempre es de atraccion.
Sin embargo, cuando hablamos de interaccién entre cuerpos distintos o de energias propias de
cuerpos, la historia es muy distinta.

Tras el descubrimiento de la fuerza de atraccién entre las placas, se hipotetiz6 acerca de si la
energia de vacio podria ser la que estabilizara la existencia del electréon, ya que en aquella época
no se sabia cémo compensar la existencia de la fuerza repulsiva de Coulomb. Con la esperanza
de que la energia de vacio de una esfera conductora (con la que se podia modelar el electrén)
diera lugar a la fuerza atractiva necesaria, Tim Boyer, en 1968, hizo un calculo asombroso de la
energia de interaccién de los campos electromagnéticos con una corteza esférica conductora, se
puede leer en [9]. Sin embargo, la sorpresa fue que dicha energia resulté ser de repulsién.

Mostramos en esta seccién como tratar las fluctuaciones de un campo escalar interaccionando
con una corteza esférica. Para darle generalidad, modelamos la esfera mediante la funcién delta
de Dirac con constante de acoplo positiva A, cuyo valor nos permitira recorrer varios escenarios.
En esta seccién ademds, trabajamos con las coordenadas esféricas {r, 8, ¢}, que se corresponden
con las coordenadas cartesianas {x,y, z} con las siguientes relaciones:

x = rsin p cos
y =rsinpsinf (3.1)
Z =TCos g,
donde r € [0,+00), 6 € [0,27) y ¢ € [0, 7]. Notamos que este sistema estd dotado de simetria

rotacional, asi la direccién de mayor interés serd r. Tomando r = (r,0,¢), y x = (r,t), la
densidad del Lagrangiano se expresa

1 1A
L= —igli”auqb(x)ayd)(x) - 555(1" — a)¢2(x) + K(X)gf)(x), (32)
con el término de interaccién \
Lint = —355(7“ —a)p?(x). (3.3)
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Haciendo uso del Principio de Minima Accién igual que procedimos a hacer en la seccién
anterior, o mediante las ecuaciones Euler-Lagrange, llegamos a la ecuacion de movimiento,

2
[ 6(12 + /\6(7" - a)] o(x) = K(x). (3.4)

En consecuencia a esta ecuacién, definimos el campo a partir de la funcién de Green como
hicimos en(2.32). Asi, reescribimos (3.4) en términos de la funcién de Green como

2
[ a@ 5+ )\5(7‘ — a)] G(x,x’) =0(x —x7). (3.5)

La funcién de Green expresada a una frecuencia dada, se escribe como la transformada de
Fourier

2T

con G(r,r’) exhibiendo la geometria esférica en su definicién como

Gt 1) = / 0 i) e . (3.6)

0o l
=D > Y0,V alr,r), (3.7)

=0 m=-I

donde Y;™(0, ¢) son las funciones de los arménicos esféricos y g;(r,’) las funciones reducidas de
Green. Los armoénicos esféricos estan definidos como

Y7 (6.0) = <—1>m\/ G} (38)

con P/"(x) polinomio asociado de Legendre. Estas funciones cumplen la condicién de
ortonormalizacion

27 T
/ de / Y™(0, )Y (0, @) sen 0dO = 6,16y - (3.9)
0 0
Las funciones Y, (0, ) forman una base completa y se pueden relacionar como
00 l 1
DD YY) = 80 - 0)d(p — ¢). (3.10)
=0 m=-1

A continuacién, desarrollamos la ecuacién (3.5) en coordenadas esféricas. Teniendo en cuenta
que podemos escribir la delta de Dirac como

> d , /
S(x—x) =06 —r)5(t—t)=0d(r—r) / 2ﬁe—w<t—t ) (3.11)
oo 2T
y la derivada segunda sobre x como
0? 0? 9

donde V? es el operador Laplaciano en coordenadas esféricas, concluimos que (3.5) queda
reducida a

[—V2 —w?+ 25(7‘ - a)} G(r,r’) =0(r —r’). (3.13)

Usando (3.10) y escribiendo el laplaciano en esféricas, desarrollamos (3.13) para llegar a la
siguiente ecuacién que satisface la funcién reducida de Green,

10 28 l(l+1) A , S(r—1')
[—TQ&J" or + + K2+ (5(7" —a)| gi(r,r") = 7 (3.14)
donde hemos definido k? = —w? por conveniencia. Para resolverla, diferenciamos dos regiones

en el espacio.
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= Region I: {(r,0,¢) € [0,a) x [0,7] x [0,27)}

» Region II: {(r,60,¢) € (a,00) x [0, 7] x [0,27)}

Z

=N
ﬁ?ﬁ\\\%%\ Regién 11

G
GRS

/% 47 ik $§
e

Figura 5: Regiones del espacio con potencial esférico.

La solucién de la parte homogénea de la ecuacién (3.14), dentro o fuera de la esfera es
una combinacién lineal de las funciones esféricas modificadas de Bessel i;(kr) y ki(kr). Para
més informacién sobre ellas, extendemos su uso y propiedades en el Anexo E. Estas funciones
cumplen la relacion del Wronskiano

ii(@)ku(z) — K(@)i(r) = 5. (3.15)

Nos interesa conocer la funcién de Green en aquellas regiones donde tanto el punto fuente, r/,
como el punto donde medimos, r, estdn en la misma zona. Estas estan calculadas detalladamente
en el Anexo G.1 y son,

» Regién I, para r,7’ < a

Neak?(ka)
no__ . o . / 1
gr(r,r") =k (Zl(li’l”<)kl(l€7“>) (k)i (kr )1 n )\fmk‘l(/m)il(/ia)> (3.16)
» Regién II, para r,7’ > a
\kai? (ka)
n_ . _ / l 1
grr(r,r') =k <zl(m”<)kl(m‘>) ki(kr)ki(kr )1 m /\ﬁakl(na)il(/fa)> (3.17)

Con las funciones de Green determinadas, calculamos las componentes del tensor
energia-momento. Empezamos por la componente (1,1), que es la radial, haciendo uso de las
relaciones (2.46) y (2.45). Utilizamos la métrica de Minkowski en coordenadas esféricas,

-10 0 0
0 1 0 0
0 0 0 r%sin?@



La componente radial nos queda

1
Trr = 0.0 — 5 (—80801 + 0,00 + 7“289(99/ + 72 sin? 9890890/)
_ % (arar, 2 e 1)) .

72

La simetria rotacional del sistema nos permite expresar

2w ™
(Tr) = l <8T8r/ — k2 - i —Z 1)> / / senddydf G(r,r’)
2 r o Jo

Haciendo uso de la expresién de la funcién de Green completa (3.9), tenemos

(Trr) = 211.;(21 + 1)/ ;l—: (8@/ _Le W 1)> a(r )

o)
2
— 00 r

r’—r

: (3.19)

r'—r

cuya notacién se puede simplificar si definimos el tensor reducido, (t,,).,

i21+1/ §:<tw>. (3.20)

=0

La presion sobre la superficie de la esfera viene de la discontinuidad de la componente radial
del tensor energia momento, (ty;)|r—q- — (trr)|r=a+, que calculamos a continuacién.
Adviértase que el término de la funcién de Green que corresponde a la parte libre, se cancela
cuando consideramos los modos tanto de dentro como de fuera de la esfera y, como consecuencia,
esos no dan una contribucion a la energia de vacio.
Evaluamos el tensor para la regiéon I,

1 9 ll+1) ,
<t'r"r>’7"<a - Z (8T87" — kK = 7’2 >g](7",7’ )"f”—ﬁ

- 211 [,{3 (ig(/@r)k:g(ﬁr) P ;’;ﬁi’m (m)> - (nQ - W;”) g1(r, r)] :

En la regién 11,

1 5 ll+1)
(tre)lr>a = % <6r8r’ -k = r2 )gll(rv ) |rr

= % [/{“ <i§(m)kz{(m) - k?(/ﬂ”)l n AT&ZZZ%Q(R@)) - (/ﬁ:z + l(l;l)) QH(T)T)] :

Teniendo en cuenta la continuidad de la funcién de Green en la corteza de la esfera, r = a,

Akai?(ka)
1+ Akaki(ka)ij(ka)

K3

ra 2 Rra
(s = (e = 57 (P00 s

1+ Akaky(ka)i;(ka)
KA (ki(ka)i(ka))

T 2ail+ Akak(ka)ij(ka)’ (3:21)

+ ka(Faa)

donde en la dltima igualdad hemos usado el Wronskiano dado en (3.15). La densidad de la fuerza
total sobre la superficie de la esfera es, por lo tanto,

F = (T)lr=a- — (Trr)lr=a+
_ _%Z (20 + 1) [/ ke 2 (ky(ka)iy(ka)) —/Od/{ k2 (ki (ka)iy(ka))

1+ )\/@akl(/ﬁa)u(/{a) o L4+ Akaki(ka)ij(ka)
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donde en la ultima igualdad hemos rotado a frecuencias complejas, w = ix. Mediante el cambio
de variable x = k a llegamos a la expresién,

5 2 (ky(x)ig(z))
Z 20 + 1 / xl + )\:L'k‘l(l‘)il(‘f)'

1=0 0

Utilizando las relaciones (E.19) y (E.20) obtenemos la solucién en términos de las funciones
modificadas de Bessel,

o o 2 (E@L@)
]-":—)\Z(Ql+1)/ dxw< - )
0 0

2mat £ 1+ AK,(2)I,(z)

_ A« *  2(Ky(),(2)) — K, (v)],(v)
~ 2mat ;(2l+1)/0 d 1+ AKy,(2)],(z)

1

I~ 00 d
= —5 ;(2l+1)/0 dx [:cdxln(l—i-)\Ky(:c)Iy(a:))—i- TR (L () —1((3.22)

donde hemos definido v =1 + %

La misma expresién se puede obtener calculando la densidad de energia. A partir de ahi,
integrando a todo el espacio, tenemos la energia total. Existe una sutileza importante que no
se aprecia si tratamos el limite fuerte (material perfectamente conductor, A — o). En el caso
general, si se calcula la energia total como la suma de la densidad de energia interior mas la
exterior, el resultado no es correcto. La razén es porque existe una contribucién a la energia que
proviene de la superficie®. La demostracién de esto tiene relacién con la conservacién del tensor
energia-momento, pues no solo se conservan las componentes del tensor relacionadas con el
volumen sino también las componentes que residen en la superficie de la geometria considerada.
Milton demuestra, por ejemplo en [4], que la energia completa se puede calcular mediante la

férmula
E= / dr(Tpo) = / / QwQQ (r,7), (3.23)
T.E. 2i Jrp

que se reduce a integrar la funciéon de Green y, por lo tanto, aparecen solo términos que van con
el cuadrado de las funciones de Bessel correspondientes, puesto que los términos relacionados
con la parte libre no contribuyen a la energia. La expresion anterior se convierte en

o0

! ® Nrak?(a) wa
E = ——) (21+1 Y i ]
27 l=0( + )/_oo 2z [1 —|—)\/<;akl(/£a)il(ﬁa)/0 2?if (x)da+

N Nkai?(ka) — / P2 )dw] '

1+ Akak(ka)i

Para cuyo calculo empleamos las igualdades, [11],

/0 PiR(y)dy = 5 (2 + 10+ D)) — wi@)i(@) - 2P (@) (3.24)
o x
| PRy == [0+ 10+ DR @) — o)k (@) — 222 ()] (3.25)
El desarrollo de la anterior integral estd detallamo en el Anexo G.2, donde llegamos a
po-1 i(mﬂ)/m v L1 4+ AL (2) K, (2)]da (3.26)
~ 2ma — o dx v v ’ ’

Para més detalle sobre este procedimiento leer [10].
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cuya derivada es precisamente la expresion de la fuerza anterior, salvo un término de contacto
que no es relevante y podemos descartar. En general, no es trivial tratar esta solucién y el
resultado serd divergente. Recordamos que estamos solo calculando el modo TE del campo
electromagnético, y para tener una visién completa deberiamos analizar también el TM. Se
espera cancelaciéon de divergencias entre ellos en algin caso. Nosotros nos centraremos en el
caso de acoplo fuerte A — oo y acoplo débil A — 0, en cuyo caso se podra hacer una expansioén
perturbativa.

Analizamos primeramente el caso A < 1, expandiendo el término In[1 + A\, (z)K,(z)] en
serie potencias de A utilizando el desarrollo de Taylor de In(1 + z) 7. El primer término, lineal
en A, es divergente pero del tipo diagrama de Feymann con forma de tadpole (o renacuajo).
Corresponde a la Figura 6 que da una contribucién infinita, pero no tiene ningin tipo de
relevancia fisica para el caso que estamos estudiando. Son energias que no dependen de las
condiciones de contorno marcadas por la esfera.

\{

Figura 6: Tadpole.

Por esto, estudiamos directamente el término de segundo orden en A que da lugar al término
finito

. N o > q
AN e 2
EY = T 2 (20 + 1)/0 azdx(l,,(x)K,,(a:)) dx. (3.27)

Para extraer la contribucién finita, realizamos primeramente la suma de la serie en [ utilizando
una generalizacién de la siguiente propiedad encontrada en [11],

o0

S @+ 1wy k() i(y) P(cos) = %e*fc (3.28)
=0

con p = \/ 22 + y2 — 2y cos 0. Tras el célculo detallado que mostramos en el Anexo G.3, podemos
escribir

0 1 4x e~ ?
> @+ DK ()} (x) = 5 / dz, (3.29)
1=0 U
permitiendo asi expresar el término de segundo orden como
2 A2
EN = : 3.30
32ma ( )

A pesar de la buena noticia de poder extraer un término finito, nos encontramos, en tercer
orden la constante de acoplo con una divergencia logaritmica. El andlisis de esta divergencia
se escapa al proposito de este trabajo y no daremos detalles de su naturaleza. Bordag et al. la
estudiaron por primera vez usando métodos de heat kernel (nicleo de calor) en [12]. También
la han analizado en otros articulos como [13], [14] y [15].

A3 - )\3@2
T our

¢(1) (3.31)

In(1 = —1”+1i 1.
n(l+x) Z( ) n,vxa\w|<

n=1
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Esta divergencia no se puede eliminar, lo que nos informa de que no podemos obtener una
contribucién finita para el caso de acoplo débil. Parece que la inclusién del modo TM daria
algunos casos en los que la divergencia se cancelaria considerando el campo electromagnético
completo. Sin embargo si podemos extrapolar al caso de acoplo fuerte reproduciendo el resultado
de Milton en [4] para A > 1:

o0

lim B = ——— S (2 + 1)/00 xdiln (1, (2) K, (2)]da. (3.32)
0

A—00 2ma x
1=0

La derivada de esta expresién da exactamente la presién encontrada en (3.22). Una evaluacién
asintética de esta expresion se puede ver en [15] con el resultado

pTE _ 0,002817

=,
a
para el modo TE. Esta expresién no coincide con la encontrada por Boyer en 1965 pues su calculo
es con el campo electromagnético. Sin embargo, el mismo andlisis mostrado aqui se puede hacer
para el campo escalar cumpliendo la condiciones de modo TM que, anadido al anterior reproduce
exactamente el resultado de Tim Boyer.

4. Conclusiones

Este trabajo esta dedicado a estudiar algunos aspectos del efecto Casimir. En él, hemos
analizado tanto energias de vacio procedentes de la interaccién entre dos cuerpos, como pueden
ser las placas paralelas, como la energia propia de cuerpos aislados como la esfera. Aunque
nos hemos centrado en las fluctuaciones cudnticas producidas por campos escalares, hemos
conseguido dar generalidad al estudio situando estos campos en un fondo caracterizado por
un potencial singular descrito mediante la funcién delta de Dirac. Esto no es una situacion tan
irreal como uno pudiera imaginar a primera vista. De hecho, el limite de acoplo fuerte, con la
constante de acoplo tendiendo a infinito, corresponde a las condiciones de contorno de Dirichlet
propias de los modos TE del campo electromagnético interaccionando con una placa conductora.

Hemos calculado la energia de Casimir utilizando el método de la suma de modos y el de las
funciones de Green. Este iltimo permite realizar un estudio tanto global como local del sistema.
El cémputo de las distintas componentes del tensor energia-momento utilizando las funciones de
Green, nos permite extraer y aislar los términos divergentes que en ocasiones se pueden asociar
a parametros del sistema (como la superficie) y renormalizar. Para més informacién se pueden
consultar [16] y [17].

En general, la energia de interaccién entre dos cuerpos estd bien definida y va a dar algo
finito. Més complicado de interpretar son las energias propias de cuerpos aislados como puede
ser la esfera. En este caso, hemos comprobado cémo, en la situacién general con condiciones
semitransparentes de contorno, en general no podemos extraer un término finito.

Aunque mucho se ha investigado y avanzado en el estudio del efecto Casimir, todavia quedan
grandes incégnitas por resolver. Se desconoce cémo las condiciones de contorno, materiales y/o
geometria del sistema influye sobre las fluctuaciones cuanticas para dar lugar a fuerzas atractivas,
repulsivas o nulas. Hemos comprobado cémo, mientras que las placas paralelas se atraen en el
vacio, la energia de Casimir de una esfera, es de repulsion, como si tendiera a que esta se separara.
Por ser un cédlculo no perturbativo, no hay métodos fijos de regularizaciéon y con cada céalculo,
hay que investigar qué método nos va a ayudar a aislar un término finito y dar sentido a las
divergencias que ocurren. Es extraordinario que, a pesar de los distintos métodos de célculo y de
regularizacién (de los cuales nosotros hemos visto dos y hablado de otro en los anexos), la parte
finita, relevante del sistema en cuestion, es Unica e independiente del sistema de regularizacion
que se utilice.

A pesar de las dificultades que conlleva la parte experimental del efecto Casimir, los
experimentos llevados a cabo concuerdan con los calculos tedricos con una gran precisién. Por
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supuesto, este tipo de experimentos ha ido mejorando su precisién en el tiempo con el desarrollo
de la ciencia en la nano escala (ver [18] y las referencias incluidas), ain teniendo en cuenta las
enormes dificultades que conllevan montar un experimento para medir tan diminutas fuerzas y
con tal precision.

Las limitaciones del estudio que mostramos aqui residen principalmente en la suposicion de
un sistema ideal. Por limitaciones propias del trabajo, nos hemos centrado sélo en los modos
TE del campo electromagnético. Para obtener la fuerza total ejercida sobre el sistema, hay que
sumar las componentes eléctrica y magnética. La obtencién de las magnéticas seria analoga
a lo que hemos hecho en este TFG, pero teniendo en cuenta las condiciones de contorno de
Neumann. Si se consideran potenciales con la funcién delta de Dirac, el modo TM corresponde
a la derivada de la delta. En el caso de céalculos de energias de interaccién entre dos cuerpos
situados en el vacio es més sencillo incorporar otros efectos como rugosidades, fuerzas laterales
y estudios de sistemas donde aparezca tanto la atraccién como la repulsién, pudiendo hablar
incluso de levitacion. Respuestas opticas de los materiales son necesarias para incorporarlas en
los casos en los que se necesite implementar una tecnologia.

Todos nuestros calculos estan hechos suponiendo temperatura 0OK.

o 0
-50
=50 -
Z .00
@, —100 8 -150
s
<200 =
-150 g
250 =
—-200 =300 =
02 0.4 06 08 1.0 50 100 150 200 250 300
a Distance (nm)

(a) (b)

Figura 7: Comparacién resultados para placas conductoras: (a) Datos tedricos de la ecuacién
(2.57). (b) Datos experimentales de [19].

La Figura 7 se muestra con un propédsito ilustrativo solamente puesto que las graficas no
corresponden al mismo sistema fisico. Los datos que aparecen en la grafica de la izquierda son
tedricos y los de la derecha se midieron con un microscopio de fuerza atémica, observando
la fuerza ejercida entre una esfera y un plano; dada la dificultad que aparece al establecer el
paralelismo entre placas de dimensions microscépicas. Métodos de Prozimity Force Aprozimation
PFA, (ver [20]) se utilizan después para aproximar los datos tedricos de las placas paralelas con los
datos experimentales donde, como hemos dicho, es mas comun utilizar interaccién placa-esfera.
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Anexos
A. Resolucion de la ecuacion de Klein-Gordon con condiciones

de contorno Dirichlet

En el capitulo 2.1 se nos presenta la siguiente ecuacién diferencial en derivadas parciales
lineal homogénea de segundo orden,

iaztp(t,x) B 0?p(t, x) n m2c?

2 o2 92 = o(t,z) =0. (A1)

Para resolverla vamos a utilizar el método de separacion de variables. Para ello, definimos
las funciones X : (0,a) - Cy T : R — C de manera que ¢(t,x) = T(t) X (x). Estamos buscando
una solucién no nula de la ecuacién, asi que existen xg € (0,a) y top € R tal que X (zg) # 0y
T'(tp) # 0. Reescribimos (A.1),

1 Tiu(to) m?c? _ Xaz(20)
62 T(to) h? X({L‘())
donde hemos separado la ecuacion diferencial en un término que solo depende de la variable ¢

y otro en funcién de la variable z. Debido a la independencia de estas expresiones diferenciales,
igualamos las dos partes a una constante A\. Remarcar que hemos utilizado la notacién

=\ AER, (A.2)

0?7 () 9?X (x)
Tl = "5p~ o7

Ya que las condiciones de contorno estdn asociadas con la parte espacial de la funcién, vamos a
resolver primero la ecuacién diferencial para X (z),

, Xaz(x) = (A.3)

0?X (z)
Ox?
Diferenciamos tres casos en funcién del valor de A. Sabemos que los campos escalares deben
tener un comportamiento oscilante, asi que nos quedaremos con la solucién sinusoidal. Aln asi,
por completitud, estudiamos todas las posibles soluciones de la ecuacién.

LB 0)

La solucién en este caso es

= \X (). (A.4)

X(z) = AV 4 Be=VIAlZ 4 B eC. (A.5)

Aplicando las condiciones de contorno,

A+B=0
A6
AeV e 4 BemvVINa — g (4.9)

Este sistema nos lleva a la expresién para A
A <e Na _ ¢= I/\\a) =0, (A7)

de la cual concluimos que en este caso X (x) = 0, dado que la igualdad
eVINa _ —va — /I (1 2 \,\|a) —0

solo se puede dar si A =0 o a = 0. Por lo tanto en este caso no tenemos solucién.
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2. [A=0]
FEn este caso la solucién es una recta.
X(zx)=A+ Bz, A BecC (A.8)
Aplicamos las condiciones de contorno,

A=0 (A.9)
A+ Ba=0. '

Como a # 0, obligatoriamente A = B = 0. Por tanto, X (z) = 0.

s [A<0)

Esta vez la solucién es una combinacién lineal de exponenciales imaginarias sobre y/|\|x.
X(z) = Ae'VIP 4 BemWVINT 4 B eC (A.10)
Aplicamos las condiciones de contorno,
A+B=0
Aé' [Ala + Bet Ma _ 0,
lo que impone la siguiente relacién sobre A:
A <ei\/|”a - e_i\/wa) ~0. (A.12)
Evitando la solucién nula, imponemos la expresién

ei\/ma - e—i [Ma _ ei\/ma (1 . e—2i |)\\a) =0, (A.13)

(A.11)

Ala —2i4/|A|a 1 = e2min

donde, como e = 0, obligatoriamente se cumplira e con n € Z.

Esto impone unos valores discretos para .
ViN="" nez (A.14)
a

Llamando +/|A| = k, y aplicando Euler en la solucién general, podemos tomar con toda
generalidad

Xp(x) = Apsen(k,x), n €N, A, € C. (A.15)

A continuacién, analizamos la parte temporal. De acuerdo con la ecuacién (A.2), resolvemos
la ecuacién

1 Ttt m202
S =+ A\ A.16
2T() 2t (A.16)
Teniendo en cuenta que debemos tener A < 0 para que ¢(t,z) # 0 V(¢,x) € R x (0,a) por lo
visto en la resolucién de X (), asignamos directamente A\ = —k2. Asi, reescribimos la ecuacién
(A.16),
0T (t) m2ct
o = <h2 + c%,%) T(t) = —w2T(t), (A.17)
donde hemos definido w? := m;f + c?k2. Entonces, la solucién de la ecuacién serd,
T, (t) = Cpe™t 4+ Dype~ ™t C,, D, € C. (A.18)
Por tanto, la soluciéon genérica es
on(t, ) = sen(k,z) (Anei“’”t + Bne_w"t) , (A.19)

con A, y B, constantes redefinidas que se determinan por condiciones de contorno o condiciones
iniciales.
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B. Teorema de Noether y tensor energia-momento

El Teorema de Noether dice que las simetrias caracterizadoras de un sistema se pueden
relacionar con leyes de conservacion. En el caso de la simetria de la dindmica del sistema bajo
cambio de coordenadas, el término conservado es lo que llamamos tensor energia-momento,
expresion que utilizamos a lo largo del trabajo por corresponderse sus componentes diagonales
con las densidades de energia y presiones. En este anexo vamos a calcular dicha expresion.

Dado un campo escalar ¢(x) en el espacio R* con x = (¢, x,y, ), suponemos una variacién
infinitesimal en este,

P(x) = d(x) + 0d(x). (B.1)
Por el Principio de Minima Accién, suponemos que la accién queda invariante ante cambios
infinitesimales del campo. Definiendo la accién como
X2

S = L(x)dx, (B.2)

X1

donde x; y X3 son los extremos de un camino cualquiera en R*. Ante un cambio como el de la
ecuacién (B.1), la densidad lagrangiana sufrird un cambio,

L(x) — L(x) + IL(x). (B.3)

Para que 05 = 0, es suficiente con que 0£(x) = 0,J"(x) sea una derivada completa, de tal
modo que al integrar contribuya tUnicamente con los valores de los extremos que se consideran
fijos. Calculamos la variacién del Lagrangiado dado (B.1),

oL oL
SL(x) = mM(mea(w(x))
e oL ) oL .
R 6“<8<au¢<x>>>5¢( )”“(a(am(x))‘”“ )>
oL
- 8“<a<au¢<x>>5¢(")>

donde hemos eliminado los dos primeros términos por la relacién Euler-Lagrange. Por lo tanto
salvo por una constante, se debe cumplir la igualdad,

O JH(x) = 0y <6(8j¢£(x))5¢(x)> , (B.4)

lo reescribimos sabiendo que esa constante, que llamaremos j* ha de ser una cantidad conservada,
tal que

oL

= 8(6qu(x))5¢(x) - \7“7 (B5)

7"(%)
cuya derivada es cero, d,j"(x) = 0.

Por otra parte, imponemos ahora que la posible variaciéon del campo es debida a un cambio
de coordenadas,

xt — ot —a¥, (B.6)

las variaciones infinitesimales de ¢(x) y £(x) se pueden escribir mediante un desarrollo de Taylor
quedandonos con el primer orde,

¢(x) = o(x) + "9 P(x) (B.7)
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L(x) = L(x)+ a"0,L(x) (B.8)

Comparando todas las transformaciones escritas, podemos ver la siguiente correspondencia,
dp(x) = a"0u0(x), (B.9)
que implica un cambio en la densidad lagrangiana,
dL(x) = a0, L(x) (B.10)
Aplicando el teorema de Noether en la forma de la ecuacion (B.4),

d,(a"L) = 0, (8((‘9%@)) a” al,qb(x)) (B.11)

Definimos el tensor energia-momento como el interior de la derivada, es decir, como la cantidad
que se conserva.

wo_ oL <) — S L (x
TS = 5iaapay o) ~ L) (B.12)

Para el caso de la seccién 2.1, teniendo en cuenta que la densidad del Lagrangiano es

£t) = 50066, 2)) + o (0u0(t, ) (B.13)

la componente (0,0) del tensor (B.12) que necesitamos es,

oL
Too(t,xz) = 3

he |1
D@ty o) RL(t x) = o | 500(t,2))" + (Dr(t,2))° (B.14)
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C. Calculo de la densidad de energia con placas en 1D+1

En este anexo calculamos la densidad de energia (Tyo) del caso unidimensional con placas
conductoras en x = a y x = 0 presentado en la seccién 2.1. Partiendo de la expresion de la
densidad de energia

5 (2 Pote. o + et o). )

utilizamos la expresién (2.10) del campo escalar (¢, z) para calcular (Tpp).

Too(t, ) =

(o) = (OTaa(t.2)0) = 200 ( Drp(t, ) +[axso<t,x>]2> 0)
2
+

h 1 |
oL [zwn (61 (7.0t — (0,00
n=1

Z ky cot (knz) (@) (z,t)a + ¢, (, t)an)] |0)

n=1

Desarrollamos cada término por separado teniendo en cuenta cada productos posible de los
operadores escalera. Empezamos con la derivada con respecto del tiempo.

2
oo
[Z wn (orf (@, t)at — o, (z, t)an)] = Z wpwn (oo at al, + o, onanan —

— P o Ontly = P Py Uy ) (C2)
Teniendo en cuenta las relaciones (2.11) y (2.12), vemos que el valor esperado de cada término
en el estado energético |0) es:

(Ola}ay:|0) = (0ln,n’) = 0 (C.3)

{ )=0 (C.4)
(Olana;|0) = (0lan|n’) = nn (C.5)
(0} an|0) = (Olana;, — I6,.[0) = 0 (C.6)

Usando las expresiones de los generadores (2.9) y las anteriores relaciones, podemos escribir

[Z wy (of (z,t)at — ¢, (z,t)ay ] Ew (C.7)
n=1

Para el caso de la derivada con respecto al espacio, el calculo es analogo. Por tanto, el valor
esperado de la componente (0,0) del tensor energia-momento queda como

he > _
(Too) = = [ 5 anwn o+ >k cot® (knw) o) son]
n=1
he kn o
= 5 n n o kn
5 lcaZw sen?(kpx) + — ;wn cos”( x)]
i 2. cos?(knx)
a ?z:: B 2ah Wn (C8)

n=1
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D. Calculos seccién 2.3

D.1. Funcion reducida de Green

En la seccion 2.3 obtenemos la siguiente ecuacién para funcién reducida de Green,

_ P 26+ Ko )] g, ) = 0 — ) 0.1
822 K a z 0 VA a gZ,Z = VA zZ ). .

A lo largo del apéndice vamos a abordar la resolucién de esta. Para empezar, fijamos 2z’ en
la regién Iy calculamos la g(z, 2’) en funcién de la regién en la que se encuentre z. Designamos
los distintos tramos de la funcién de la siguiente manera:

g1(z,2") ,z2<0
gr<0(2,2) =< gri(2,7) ,0<z<a (D.2)
grrr(z,2') L,z >a

Comenzamos calculando g;(z,2’), es decir, tenemos z,2’ < 0. Esto nos deja la siguiente
ecuacion a resolver

82
[_f)z? + /12] gr<0(z,2) =6(z —2), (D.3)

cuya solucién de es una combinacién lineal de exponenciales reales. Por tanto, la dependencia
de g(z,2’) con z es exponencial. Ademds, como la funcién de Green es simétrica, la dependencia
también es exponencial con z’. No obstante, eliminamos los términos que divergen: e para
z =00y e "% para z = —oo. En consecuencia, la solucién es

, g (2,2") = Ape®5=%) 4 Brenlz+2) 5 < o
g1(z,2') = , , o ,
g>(2,2") = Crefet2) 4 Drer(=2+2) 55 o,
Como g¢(z,2’) es continua, se debe cumplir g<(z,2") = g>(z, 2’).
A+ B[Bzﬁz/ = 0162'%/ +Dr=A;=D;; Br=Cy
En consecuencia, escribimos:
91(2,2') = Ape"3<=%) 4 BrerEts), (D.4)

con z« = min{z,2'} y 2> = méx{z, 2'}. Para calcular las constantes, integramos la ecuacién
(D.3) en un entorno de 2/, es decir, en z € (27, 2'"). Los calculos son analogos al anterior
capitulo:

! ! 1
- (g>Z(Z/a Z/) - 9<Z(Z/Z/)) =l==k (AI - Ble2m + A+ Ble%z ) =1=A;= o

Asi, escribimos la funcién reducida de Green para z,z’ < 0 como

1 ’
g1(z,2') = %e”(k*“) + BretEt=), (D.5)

Andlogamente, calculamos gr7(z,2") y gr11(z,2’). Como en estas situaciones z’ no se
encuentra en la misma regién que z, no distinguimos dos casos diferentes como en gy(z,2’)
porque siempre tenemos 2’ < z.

gr1(z,2') = Ape"+#) 4 Brper(=#+#) (D.6)
g111(z,2') = Appre” ) (D.7)
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Recopilando lo anterior, tenemos la ecuacién

%en(2<—z>) + Blem(z+z/) 2 < 0
gr<o(z,2') = Aret¥) 4 Bre®(=3+2) 0 <z <a (D.8)
Appre(==+2) 2> a,

que es continua. Determinamos las constantes de las funciones g;(z,2'), gr1(2,2") vy g111(2,2")
usando las relaciones de continuidad g7(0, 2’) = g77(0,2") v gr11(a, 2') = gr11(a, 2').

1
91(0,2") = g11(0,2") = o + By = A+ By

—Ra

grr(a,2") = grrr(a, 2') = Apre™ + Bre ™™ = Apqre

Cuando z =0 0 z = a, se cumple 2’ < z, asi que la ecuacién que rige el sistema es

0? A N
2602 + aé(z—@] 4ol 2) = 0. (D.9)

Integramos esta ecuacién tanto en z € (07,0") como en z € (a™, a™). Empezamos integrando
en el entorno de z = 0.

+

A 0
0 = —[9112(0,2") — g1(0, 2) —i—a/ gx<0(z,2)6(2 — 0)dz
0-
A
= ke < AII+BII—+BI> a9z<002>
1 1
= —Air+ B — — + By +Br) =0
2K 2
A 1 A
= —AH+BH+BI<1+> (1—>
Ka 2K Ka

Ahora integramos en el entorno de z = a.

at

)\/
0 = —(9rr1:(a,2") — gr12(a, ) + a/ gz <0(z,2)6(z — a)dz

, N
= ke [Arre™" + Apre™ — Brre "] + Egz/<0(a’ z')
/

A
= (A][[Gﬂm + Apre™® — B[Ief"m) + EA[[Ief"w =0

N
= —Brre "+ Arre™® + Aqpr <1 + ) e M =0
Rra

Recopilamos las relaciones que obtenidas del punto z = 0.

1
— +Br=Ai+ By
2K

D.10)

A 1 A (

— A+ B+ By <1+> = — <l—>
Ka 2K Ka

Despejando By en la primera ecuacién y sustituyéndola en la segunda, llegamos al siguiente
sistema lineal,
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1

BI:AII—FBII—ﬂ
A\ \ 1 (D.11)
Arr— + Brg (2 + ) ==
Ka Ka K
Recopilamos ahora las relaciones obtenidas en z = a.
Arre®™® + Brr = Aqpg
VY D.12
— By + Are®™ + Appg (1 + m) =0 ( )

Sustituyendo en la segunda ecuacién Ajrr por la primera ecuacion, llegamos a:

Aqrr = Apre®™™ + Byg
N N D.13

Apre? (2 + ) = (D-15)
ra

Tomando las dos tltimas ecuaciones de (D.11) y (D.13), unicamente dependientes de Asr y
Bir, despejamos Arr v Biy.

Ay = - (D.14)
= "9.A 2ka '
1 N
Bir = 2ra (1 D.15
= 9.A°¢ ( + 2/@@) ’ ( )
donde hemos definido A como
AN N A
A=— Zra (] 1+ . D.16
(2Ka)? te < + 2/@@) < + 2/{@) ( )
Usando las primeras ecuaciones de (D.11) y (D.13), despejamos By y Ajyy.
1 N A A N
B =—— 11— — 2ra 21 D.17
! 2KA [Q/fa < 2/%) T 2ka ( * 2/@'@)] ( )
62na
A = — D.18
HE=90A ( )
Finalmente, obtenemos la funcién g,/ <o(z, 2’) completamente determinada.
1 k(z<—2s REEED TN (A 2ka A Py
ﬂen(zl ‘ )+62I€A /[2[{0, (1 25a)+€ Ha2mz (1+2Ra)] ;2 <0
Kk(z+z ’ Kk(—z+2z"4+2a ’

gzr<0(2,2) = —Cgx g + Cgr (14 ) ,0<z<a (D.19)

- s

La funcién de Green es simétrica con respecto a z y 2/, asi que con los cdlculos que hemos
desarrollado también sabemos lo que ocurre cuando 2’ >ay z < 0o cuando 0 < 2/ < ay z < 0.
Queda ver tres casos: cuando 0 < 2/,z < a, cuando a < 2,z y cuando a < 2’ y 0 < z < a (o
a<zy0<2z <a). Vamos a utilizar el método anterior. Fijamos esta vez 2’ en la regién III.

en(—z/+z+2a)

fI(zazl): TN ,2<0
gz’>a(2, Z,) = f[[(z, Z/) = A[[6K(Z_Zl) + B[[e”(—z—z/) ,0<z<a (D-20)
frrr(z,2") 2> a

Notar que f1(z,2") = grr1(2’, 2) por lo comentado en el anterior parrafo. Empezamos con la
obtencién de frr7(z,2"), andlogo al cdlculo de g;(z, 2/).
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N —= A k(z—2') 1 B K(—z—2") /
Fut(z ) = f<(z,2") 111€ ,+ 111€ - 2 < Z/ (D.21)
fo(z,2") = Crpre™ =) 4 Dypper=*=%) [z > 2
La ecuacién que rige el comportamiento de frr7(z,2") es de nuevo
82 2 / !
—@—i—lﬁ 9r>a(z,2) =0(z—2"). (D.22)
Por continuidad, imponemos f<(z,2) = fx(z, 2).
Aqrr + Brre % = Cryp + Dypre™% = A = Crir, B = Dt
Expresando entonces fr77(2,2’) como
frir(z,2') = Appre™F<=%) 4 Brpe~E+=), (D.23)

con z. = min{z,2'} y 2> = max{z, 2'}. Por otra parte, integramos (D.22) en un entorno de
2z =2/, es decir, con z € (2/7,2'").

9k o 1
—(fs2(7,2) = f<.(F2)) =1=> & (AIH — Brire ™ + A + Brye” ) =1= A= o
Escribiendo asi finalmente
/ 1 K(z<—2>) —k(z+2")
fH[(z,z) = ﬂe <7*>) 4+ Bjrre . (D.24)
Queda determinar Bjrr, Arr y Bjyr. Para ello, imponemos continuidad e integramos la

ecuacion (2.62) en entornos de z = 0y z = a. Haciendo esto llegamos a las relaciones expresadas
en el siguiente sistema lineal(podemos prescindir de una de ellas),

eQﬁa
A Bip=——
1+ Dy A
2Kka
e A
2k Ka
2Kka (D25)
Brrr + 5 = Byt + Apre*se
)\/ 2Kka )\/
By <1+> +A]]62KG—BU: ¢ <1—> .
Ka 2K Ka
Despejamos las constantes.
2Ka
e A
A= 1+ — D.26
= 9kA < + 2/{@) ( )
2Kka
e A
B =— — D.27
= 2k 2Ka ( )
2Ka / /
e A A A A
Brg=——|—-——(1- — a4 D.28
= 9kA [ 2ka ( 2ma> %a’ ( * 2/@@)] ( )
Terminando asi la determinacién de la funcién reducida de Green para 2z’ > a.
N(fz'+z+2a)
< 2kA / ,2 <0
Gosalz ) = 4 X =420 L (1 4 A} _ omn(etr—20) 1A O<z<a
1 - —r(z+2'—20) A N N2 A
g€ ) e s (U= 5) — g™ (L4 9ng)] 2> a(D |
.29
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Por tltimo, fijamos 2z’ en la regién II. Utilizando los calculos hechos anteriormente, la funcién
reducida de Green serd

rk(z'+2) N rk(—z'+2+42a) N
/ h[(z72,) = 2kA 2ka + € 2kA (1 + 2f~:a) ;2 <0
Jo<z<a(2,2') = < hrr(z,2') 0<z<a (D.30)
’ 2Ka ’ 2ra
hrr(z, 2) = ez _Z)SK—A(1+%) — e nlz +Z);$7A$ ,Z > a.

Notar que hy(z,2") = g11(2,2") y hrrr = fr1(2'2). Para determinar hy(z,2), procedemos
como antes: definimos h < (z,2') y h > (z,2') para z < 2’ y z > 2/ respectivamente.

he(z,2") = Apret=t2) 4 Brrerz=2) 4 Opper(=2+2) 4 Dpe=wz+2) o < o
h>(Z,Z/> _ A/Hen(erz’) + B}Ien(zfz’) + C}Ieli(*zki’z/) 4 D}Ie*ff(erZ') Lz > 2
(D.31)
Por continuidad, h< (2, 2") = h~(2'2"). Con esta relacién e integrando la ecuacién (2.62) en
un entorno de z = 2/, obtenemos

h[[(z, Z/) = {

’ ]. !’ !’ !
h<(z, Zl) = Alleﬁ(z—u '+ <B/H * 2> e 4 CU@K(_Z—’_Z )+ Due_ﬁ(z—kz )
K

h]](z, Z/) = 1
h>(Z,Z/) _ Allen(erz’) +B}Iem(zfz/) + <CII + 2> elﬁ(*Z‘l’Z/) _|_D1167n(z+z’)7
K
(D.32)

ecuaciones que podemos reescribir en una sola como
/ Kk(z+2") 1 k(z—2") K(—z+2") —k(z+2") 1 K(z<—2s)
hH(z,z) = Ajre —i—BHe + Crre + Djre —|—ﬂ€ <RI (D.33)

Por continuidad de go<,<q(2,2’) € integrando (2.62) en un entorno de z = 0, obtenemos un
nuevo sistema lineal para las constantes Ay, By, Crr 'y Dir.

( 625(1 )\/ , 1
25A(1+2/{}CL>_BII+DII+2K,
1 N
— s xs - =An+Cn
2kA 2Ka
’ (D.34)
Crr— Arr — A1 1+ A
I ™ 9ka 2kA Ka
e2ra N A 1
By — D= 1 1+ — | — =
i = 9kA ( * 2/-€a> ( * ma) 2K
Despejamos la constantes.
1 N A
Aip=———- 1+ — D.
" 2kA 2Kka < * 2f<;a> (D-35)
2ra N A 1 1 AN
B, = (1 1+— ) ——=— D.
T 9kA ( * 2fw> < * 2&@) 2k 2KA (2ka)? (D-36)
I
=— D.
Crr 2kA (2ka)? (D-37)
€2/-@& by N
D =— — (1 D.
1 2kA 2Kka < * 2/w> (D-38)
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Desarrollando el coseno hiperbdlico con la féormula de Euler, la expresién de la funcién
reducida de Green cuando 0 < z,2’ < a queda

1 1 N N A
h N erlramzs) T | s(ete) A [ A
12 2) 2% + 2KA { ° 2ka + 2ka
, A N 22\
_ —k(z+2") 2ka 1 h _ N D.
e ey — < + 2/<aa> + Ora)? coshk(z — 2 )] (D.39)

Obteniendo finalmente:

( wk(z'+2) N Kk(—z'+242a) N
—< 2kA 2ka < 2kA (1 + 2/«1) , 2 < 0
ien(z<fz>) + 1 _GR(ZJFZ/)L 1+ L _
, 2K 2kA 2Ka 2Kka
gO<z’<a(ZaZ) = A \ 2N 0<z<a
—eHat2 )62“‘1% (1 + 2/{@) + (2ra)? cosh k(z — z/)}
("G R (L4 %) — e "I ER % z>a

(D.40)
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D.2. Componente (3,3) del tensor energia-momento y densidad de la fuerza

En la seccién 2.3 nos proponemos calcular la componente (7,,) del tensor energia-momento.
Tenemos la expresiéon del tensor reducido,

<tzz> = _52 + azaz/] 9(2‘, Z,)|z/—>27 (D41)

5 |

00 2 W
(T,.) :/ (;lﬁ]; / ;lw (tsz). (D.42)

Utilizando la funcién reducida de Green calculada en al anterior anexo, calculamos al
componente (3,3) del tensor reducido energia-momento para cada regién.

el cual cumple

1
Z [—/432 + azaz’} h]](Z, Z/)|z’—>z
2 2

1 no 1N A
— _7]7] Mo 2 k(r<c—zs) _oR(zt2) & 1 ) =
1(z2) + 21 ( 2% + [ ° 2kA 2Kka + 2Kka

/ A N 22N
—/@(z-l—z ) 2ka_ "\ 1 h )
2ka ( * 2/<ca> (2ka)? coshi(z — 2 )] )

2
= bz +
A

<tzz> ’O<z<a

2=z

K2 1 1 oy N A

2(2+2/<A[ “ S <”zm> B
A 2N

( 25@) (2Ka)? })

e
N i \2c  2KA (2ka)?

21

_ —QKZ 2f€a

K 2
= —— |1 D.43
% + (1 + 2/10,) (1 4 2/1(1) eQna _ 1] ( )
1 2 /
<tzz>|z>a = 271 [_’i + azaz’] fIII(ZaZ) ’
H,2 KJ2 1 e—m(2z+—2a) Y % A\
- _r o - - -2 (1= o 2Kka
2i S (z,2) + 2i 2% T 2rA 2ka < 2/«1) 2ra"

X

(1 + 22a> ] } = —2% (D.44)

Para calcular la densidad de fuerza ejercida en la superficie z = a, calculamos la diferencia
entre la presién ejercida desde las diferentes regiones que delimita la placa.

zZ=a~

F o= <TZZ>| _<TZZ>‘27G+
2

_/°° dzk‘/ dw /<a1+ +ﬁ
B (27r o\ 2 (14 259) (1+ 252) e2r0 — 1| 24

i
— 2 K
N 27’(‘ 3’L / dk / dw 1+ QKTG) (1 + 2Ha) e2ra _ 1

Extendiendo la funcién a una dimensién general d y rotando en frecuencias al eje complejo
como
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{w i i« , (D.45)

la expresion anterior queda

_ 2.
o= 27r / &'k / dcl—i—%a)(l—l—%“)e%“—l

21
_ K ,
= 27r / // 1+2m 1+ )egm_lfc sen 0 dk df dy
3

= 2 | : y
22 (1+2%)(1+2m)e2m_1 32n%at Jo (1+4) (1+L)ev—1 7

La densidad de fuerza ejercida sobre cada placa es:

1 00 y3
}—:_32772614/0 (1+1%) (1+%)ey—1dy

(D.46)
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E. Funciones de Bessel

En la seccién 3 trabajamos con funciones de Bessel. En este anexo se va a ofrecer una breve
caracterizacién de estas.® La ecuacién de Bessel de orden v es

2%y (z) + zy/(z) + (2* — 1*)y(z) = 0, (E.1)

con v € R\ {0}. Reescribimos la ecuacidn,

1 22— 12
V(@) + L)+ Ty = (8.2
identificando los coeficientes
(2) =+ (E:3)
p(z) = . .
x2 — 12
q(z) = Tz (E.4)

Estas funciones tienen un polo en x = 0 simple y de orden dos respectivamente debido a que

1’“] — 1 E.
1,“1 - — . E.

El punto « = 0 es un punto singular-regular porque p(x) y ¢(z) tienen polos en x = 0, pero
son polinomios. Por el Teorema de Fuchs podemos proponer la solucién polinémica

[e.e]
y(:E) =z E apx"”, (E7)
n=0
con a, a, € CV¥n € NU{0}. Usando esta solucién en (E.2), llegamos a la siguiente relacién:

([(n+a)n+a—1)+(n+a)- Vﬂ ap + n—2) " =0 (E.8)

n=0

Calculamos los valores de los coeficientes a,, y la variable a igualando el factor que multiplica
cada z™ a 0.

l. n=0=a==v
2. n=1=a;=0

_ An—2
3. n>2=a,= (nta)?
De estas condiciones que hemos sacado, es claro que los coeficientes con n impar seran 0, es
decir, agx+1 = 0 Vk € NU{0}. Por otro lado, como tenemos 2 valores de «, tendremos dos tipos
de soluciones.

1. a1 = v:

Por la relacién de recurrencia, tendremos agp, = (gik)k i (1—‘,—1/)(23?V)--- ) Vk € N. Dado que

v € R\ {0}, podemos reesecribirlo con funciones Gamma,

(-1DF T(v+1)
A2k = ok
22kEN T'(k+ v+ 1)

ao, Vk € N. (E.9)

8Para més informacién sobre las funciones de Bessel se recomienda consultar [6].
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Dado que ag es arbitrario, elegimos ag = A esta solucién se la llama funcién de

1
2T(v+1)
Bessel de primera especie de orden v:

© N\ 2k+v 1
o) = 31 (3) o (E10)

2. ag = —vu:
.« . _ Ap—2 . —Qn—2
En esta caso, la funcién de recurrencia a, = P (ntan)? = n(ne2v)
a1 — ag = 2v ¢ N. Asi que para obtener esta solucién vamos a estudiar dos casos.

estard bien definida si

a) o —ap =20 ¢ N:
Este caso lo resolvemos de forma andloga al anterior. A la solucién la llamamos funcién
de Bessel de primera especie de orden —v:

[e.9]

Tl =3 5)" T (E11)

k=0

Es inmediato comprobar que (E.11) y (E.10) son linealmente independientes debido
a las potencias de x que tiene cada solucién.

b) a1 —ag=2vreN:

Ahora a,, = nz;jg;j)

tiene un polo en n = 2v. De aqui volvemos a tener dos situaciones:

1) 2v impar:
Como ya tenfamos agg+1 = 0 Vk € Z, tenemos ag, = 0, asi que no nos influira el
polo en n = 2v y la segunda solucién seguird siendo J_,(z).

2) 2v par:
Entonces tenemos v € NU {0}, asi que tenemos la propiedad

T-v(@) = (=1)"Tu(2), (E.12)

dejando inhabilitada J_,(z) como segunda solucién porque no es linealmente
independiente de J,(z). Construimos una solucién linealmente independiente de
Jy(x) a la que llamamos funcién de Bessel de segunda especie:

cos (mv)Jy,(x) — J_,(x)

V(o) = sen (7v)

(E.13)

Sin embargo, esta funcién para v € Z estd indeterminada, asi que para este caso
la segunda solucién serd el limite de la funcién de Bessel de segunda especie:

cos () Jo(z) — J_qo(x)

V(@) - alg%z sen (Ta)
L'Hopital . - —7sen (ra) Jo () + cos (ma)Oq o () — Oy J—o ()
N a—VEZ mcos (Ta)
B 1 (0J,(x) L 0J_,(x)
= = ( 2 (1) (E.14)

En la siguiente imagen podemos observar el caracter oscilatorio de las funciones de Bessel.
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J()

NTAVA NSO
TN

Figura 8: Gréfica funciones de Bessel de [21].

Dada la simetria de nuestro problema en la seccién 3, utilizamos las funciones esféricas de
Bessel ji(z) e yi(z), que son las soluciones de la ecuacién de Helmholtz expresada en coordenadas
esféricas

22y (z) + 2xy/ (z) + (z® — 1(1 + 1))y(z) =0, € N, (E.15)

las cuales se pueden relacionar con las funciones de Bessel vistas.

Ji(z) = \/ZJH;(:E) (E.16)
y(z) = \/ZYH;@:) (E.17)

Las funciones de Bessel que utilizamos a lo largo de la seccion son las funciones esféricas
modificadas de Bessel i;(x) y k;(z), que son solucién de la ecuacién de Helmholtz en coordenadas
esféricas con argumento imaginario,

22y (z) + 2xy/ (z) — (2® +1(1 + 1))y(z) =0, l € N, (E.18)

que no es mas que (3.14) evaluada dentro y fuera de la esfera con el cambio de variable x = rxr.
Las funciones esféricas modificadas de Bessel las podemos expresar en términos de las
funciones de Bessel modificadas I, 1(x) y K; 1 (x).
2 2

mx)—\f I (@) (5.19)
\/7 Ky ( (E.20)

Estas son soluciones linealmente independientes de la ecuacién modificada de Bessel

22y () + 2y (z) — (2® +vA)y(z) =0, v =1+ % (E.21)

Siguiendo un desarrollo analogo al hecho con la ecuacién de Bessel normal, expresamos las
soluciones I,(z) y K,(z) como
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O N 2k+v 1
1,,@):2(5) T T (E.22)

K, (2) = gw (E.23)

En la siguiente imagen podemos observar el cardcter exponencial de las funciones modificadas
de Bessel en comparacién con las oscilaciones de Jy,(z) y Y, ().

3 I

| . — gy
0 1 ) 3

Figura 9: Gréfica funciones modificadas de Bessel de [21].

Por 1ultimo, definimos el Wronskiano de dos funciones diferenciales f y g como

Wif,gl=fd —f'g. (E.24)
El Wronskiano de las funciones de Bessel cumple las siguientes relaciones a destacar:
2
Wi(J,(x),Y, = E.25
[Tl Vi) = — (E.25)
1
W, (z), K,(x)] = - (E.26)

En consecuencia, las funciones esféricas modificadas de Bessel cumplen

Wiir(a), kn(a)] = -

— (E.27)
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F. Funciones armodnicas para potencial esférico

En la seccién 3 también empiezan a aparecer las funciones de los armonicos esféricos, vamos

a ver de dénde vienen. Se nos presenta la ecuacién (3.14), que se puede relacionar con la ecuacién
de Helmholtz,

(V2 +k2) ¢(r,0,¢) =0, (F.1)

donde k es una constante y ¢(r, 6, ¢) un campo escalar. Para resolverla, utilizamos el método de
separacion de variables. Definimos R : (0,00) = R, © : (0,7) = Ry ®: (0,27) - R de manera
que é(r,0,0) = R(r)O(0) ®(p). Si escribimos V? en coordenadas esféricas con las anteriores
funciones, tenemos la siguiente ecuacién,

O0)2(p) & ( 20R(r)\  R(r)2(p) 0 90(0)\  R(r)O(0) P°®(p)
2 or\'  or + r2senf 00 senf 00 + r2sen2f Op? FR(r)6(6)2(p)-
(F.2)
Multiplicando por %, tenemos
sen?0 0 ([ ,OR(r) senf 0 00(0) 9.9 9 1 0%®(yp)
= 2 A - . F.
R(r) or (7“ o ) + o(0) 96 (sen@ 90 ) + k*r®sen” 6 5() 09 (F.3)

Como los términos a la izquierda de la igualdad no dependen de ¢ y el que esta a la derecha
de la igualdad solo depende esta misma variable, podemos igualar ambos lados de la igualdad a
una constante. Dado que buscamos soluciones no nulas, 3(rg, 6y, po) € (0,00) x (0,7) x (0,27) >
R(ro),0(60), ®(p0) # 0.

sen?6y 0 [ ,OR(ro) senfy 0 00 () 99 o 1 0?®(po)
T or (8700 S o (st g™ ) +#orbsent b0 =~ s S5 ’
con M constante. Para resolver esto, empezamos por la parte dependendiente de ¢.
02 (e)
—— =M F.4
oot () (F.4)

Dependiendo del valor de M, hay dos posibles soluciones.
1. M=0:®(p)=A+ By
2. M #0: O(p) = AeVMe 4 Be=VMe

Dado que ¢ € (0,27), ®(p) debe ser 2m-periédica. Imponiendo entonces ®(p) = (¢ + 2)
y ®'(p) = ®'(p + 27) las soluciones se puede reescribir.

1. M =0: &9(p) = Ao
2. M #0: Dp,(p) = Appe™® con m € Z\ {0} 3 im = VM <= M = -m?
Asi que la solucién general de ®(yp) es:

()= > Ame™?, Ay eC (F.5)

m=—00

Lo podemos expresar también como

D(p) = Z B, senmp + Cy, cos my, By, Cy, € C. (F.6)

m=0
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Ahora, resolvemos la parte independiente de ¢ de (F.3). Para ello, haciendo uso de la
constante M, reescribimos la ecuacién.

10 (L0RM)Y . as 1B 90(0)\ M
R(r) or <T or >+’” = 0@ sen006 "0 ) T sena (F.7)

La parte de la izquierda de la igualdad solo depende de r y la derecha de 6, asi que procedemos
de manera andloga al anterior caso. Como las soluciones son no nulas, 3(6, ¢o) € (0,7)x(0,27) >
O(6p), P(po) # 0, asi que podemos escribir

9 [ L S 0 — =
R(ro) or <’"0 or ) TET0 T T8 senty 00 " 06 sen?fy @
con Q constante. Por un lado, resolvemos la parte dependiente de 7.
il k°r* = R F.8
R(r) or (T or e (F-8)
Haciendo el cambio de variable R(r) = r~/2y(r), la ecuacién queda
1
)+ () + |G = (@4 )] wr) =0, (F.9)
la cual se convierte en la ecuacién de Bessel al aplicar z = kr
_ N
2 @)+ /@) + o = (@4 7 )| wta) 0. (F.10)
Si redefinimos la constante @) como @ = I(l + 1),
_ N
2y (x) + xy/ () + |2? — (l + 2> y(x) =0, (F.11)

y entonces tenemos que la solucién general de R(r) serd una combinacién lineal de las
funciones de Bessel vistas en el Anexo E.
Por ultimo, resolvemos la parte dependiente de 6,

1 0 00(0) M B
sen 0 90 <sen9 o0 ) T on2 96(9) = —QO(0), (F.12)

realizando el cambio de variable z = cosf y ©(0) = y(z),

0

— (1 — 2%y =0. F.1
(1= W (@) + Qula) + 1 y(a) =0 (F.13)
Aplicando Q = (I + 1) y M = —m? y desarrollando la derivada obtenemos la ecuacién
asociada de Legendre,
m2
(1- xZ)y//(x) — 2y (z) + (l(l +1)— 1 2) , (F.14)
-z
dando asi una solucién como
00)= Y >  FnP"(cosb), FycC. (F.15)

|=—00 M=—00

Finalmente, la soluciéon general queda
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o(r0,0) = YD ALR[(r)e™ P (cosb)

l=—oc0om=—00

= 3 Y ALRPOY0.0), An€C, (F.16)

l=—00 m=—00

donde Y;™ (0, ¢) son los arménicos esféricos, que vienen dados por la expresion

Y0, 0) = (—1)m\/ (26; (i)f ‘m||;?|)!eim9"le(cos ). (F.17)

Con este desarrollo podemos ver porqué en las soluciones del campo escalar para un potencial
esférico aparecen las funciones Y, (6, ¢). Estas vienen de la parte angular de la ecuacién definida
por ©(6) 2() -
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G. Calculos seccion 3

G.1. Funcion reducida de Green

Buscamos la funcién reducida de Green que cumple la ecuacién

5(7“—7"’)‘

A
2 - - N _
+ + k" + aé(r a)| gi(r,r") 3

10 5,0 I(l+1)
——=—r‘— G.1
[ 2or or r2 (G-1)

Para empezar su resolucién, fijamos 7’ en la regién I y calculamos la funcién reducida de
Green en funcién de la localizacién de r. Dado que i;(x) diverge cuando = — oo y kj(x) cuando

x — 0, procediendo analogamente al capitulo anterior obtenemos

gr(r,r") ,r<a
r'<a = G.2
o< {91[(7“7 ") = Arrky(kr)i(kr’) 1 > a. (G2)

Para el célculo de g7(r,7’) diferenciamos dos casos.

/ g<(r,7") = Apij(kr)ig (k') + Brig(kr)k(sr') - r <7’
gr(r,r') = , ) ) , ) , , (G.3)
g>(r,7") = Crij(kr)iy(kr") + Drky(kr)ig(cr’) 7 >7r
Por continuidad, imponemos g (r', ") = g~ (r',1'),
AIIE(/@'?"') + Brij(kr" ki (k1) = C[IB(HT/) + Drky(kr')iy(kr'") = A = Cy, By = Dy
Llegando asi a
gr(r,r") = Ariy(kr)iy(kr') + Briy(kr<)ky(krs), (G4)

donde r« = min{r,r'} y r~ = max{r,r’}. Para determinar una de las constantes, multiplicamos

por r2 e integramos la ecuacién (3.14) en un entorno de 7/, es decir, en r € (r'=,7'1).

1 = / S(r —r")dr
't / r't
— —/ 0 <T28gl(a7;,r )) —|—/ [1(L+ 1) + r*k?] gi(r,7)dr

r— /—

" Agi(r,r")
= —/ 0 (7“287:) +0=7r"[gp(r'"",7") — g1, (""", 7")]

’—

= wr’ [Apij (k)i (kr") + Brij (k') ky (k") — Apiy(sr )iy (k") — Brig(sr')K)(kr")]

3.15) kr'? By

_ /2 -/ / / . / / / (_ _ _
= wr"”By [ij(kr) ki (k) — iy (k") k) (k)] = I'5m= . Br ==&

Dando la siguiente funcién reducida de Green:

) o, ,
e = {Anz(m*)zl(/ir ) + ki(kr<)ki(krs) ,r<a @5)

Arrki(kr)i(kr') 7> a

Para determinar las constantes, imponemos por continuidad g;(a, ') = grr(a,r’).

ki(ka)(Arr — k)

Ariy(ka)iy(kr") + wiy(kr ki (ka) = Aprky(ka)iy(kr') = A = i2(na)

Seguidamente, multiplicamos la ecuacién (3.14) por r2 y la integramos en un entorno de a,
enr € (a”,a").
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or

at o (T‘ 7,/) at
0 = _/ 8<r29l ’ >+/ [L(L+ 1) + r*k?] gi(r,r)dr +

at

—l-:\/ 7“25(7“ —a)g(r,")dr

_ A
= @ fnlar) = ganla) + 2atar')]

= a2 [Ii (Ariy(ka)iy(kr') + rig(kr') k] (ka) — Aprky(ra)i(kr')) + zAnkl(fia)il(mr')}

— azil(m’/) |:I{', <k‘l(l€a)(AII - K/) @;(/Qa) —+ [Qk;é(/{,a) — AI[]{JZ(HCL)> + 2A[[]€l(l‘&(l):|

i1(ra)
= a%iy(rr’) [AH {Fc <W — k{(m)) + 21@(/@(1)} +

1
a?iy(ka)

K
1+ Akaki(ka)ij(ka)

(3.15)

=" a%i (k) [AH {

+ zkl(m)}

—— — A=
ka?i)(ka) } "

Despejamos Aj.

_ ki(ka) K L e2ak?(ka)
Ar=7 <1 + Akaky(ka)ij(ka) B Ii) 1+ Akak; (l/‘ia)il(/’fa) (G5

Finalmente, obtenemos que la funcién reducida de Green para r’ < a es

. . . Aak?
; L (u(nr<)k:l(/<;r>) - zl(nr)zl(nr’)Wm) ,r<a @)
r'<a — X . .
kl(KT)Zl(HT/) 1+Akak; F/‘ia)il(ﬁia) > a
De manera andloga, calculamos g,/~q.
N o N
o = fr(ryr )/ = ky(kr )zl(ﬁr)m ,r<a (G.8)
frr(r,r") T > a

Notar que, por simetria de las funciones de Green, fr(r,r") = grr(r’,r). Para calcular fr7(r,r’)
volvemos a ver que tenemos dos casos cuando r, 7’ > a.

f<(r,r")y = Ariy(kr)ky(kr") + Brky(kr)ky(kr’)  r <1/

f>(7“; ’r’) = kal(/ﬁr)il(/ﬂ?w) + lel(/‘ﬁr)k'l(lﬁrl) > W (GQ)

frr(rr') = {

Por continuidad, imponemos fx (r',r") = f<(r', ).

Ariy(kr)ky(kr") + Brky (k' (kr') = Crky (k7" )iy (kr") + Drky(kr' )k (kr') = Ar = Cr, By = Dy
(G.10)
Reescribimos entonces fr7(r, ') como

fri(r, vy = Ariy(kr <)k (krs) + Brky(kr)k (k7). (G.11)

2

Multiplicamos por ¢ e integramos en un entorno de r = 7’ la ecuacién (G.1).
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r't

" dgi(r,7") "
1 = / §(r —r)dr = —/ 0 (7“29187:> +/ [1(1+1)+ 7“2,%2] gi(r,r")dr

1= 1— ’—

- _ /T 0 (rQagl(r’T,)) +0=r"[fire(r'0") = fre (')

- or
= wr’? [Apij (k") k(") + Brkj (k') ky (k') — Apiy(sr') k) (kr") — Brhky(sr')k)(kr")]
. , 3.15) . k2 A
= wr?A; i (k" (k") — iy (") Ky (k1)) = AI??W? = — A==k
Asi que tenemos
gan = L RV TR e (G.12)
wiy(kr<)ki(krs) + Brk(sr)k(sr') 7 > a,

funcién continua, propiedad que da la siguiente relacion,

N K . / /
ky(kr')i(ka) 5 Meaky(na)ii () = riy(ka)k;(kr") + Brki(ka)k;(kr")
2 .9
=B - Ak“ai} (ka) (G.13)

1+ Akaky(ka)i(ka)”

Finalmente, la ecuacién reducida de Green con 7’ en la region II queda determinada por la
siguiente funcién:
AW K
kl(IiT’ )Zl(:‘ﬂﬁ’)m T <a

e (i o) = ke er ) et ) o>

(G.14)

gr'>a =
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G.2. Energia total del sistema

En la seccién 3 comenzamos el cdlculo de la energia total del sistema con la siguiente
expresion:

1§ )\/iakQ(/m) Ka
= - (21 1 p
2mi ; + / e |:1 + A/{akl(lﬁla)il(/{a) /0 ﬂf 1’1 ( ) T+

Akai?(ka) 22
+ 1+ Akaki(ka)ij(ka) / ki )dx] (G.15)

Simplificamos con el tensor reducido (¢oo),

o0

1 [e. o]
E=g Z;(% +1) /_OO dw(too), (G.16)
el cual queda de la siguiente manera usando (3.24) y (3.25):
Aeak?(ka) ra Akai7 (ka)
t = L d l ki (z)dw
{too) 1+ Akaky(ka)i)(ka) /0 iy (x)de + 1+ Akaky(ka)i)(ka) / 1)
B Aka (ka)?

= T ahina)i(ra) 2 (if (ka) ki (ka)k](ka) — ki (ka)i(ka)i](ka)+
+ ka (i(ka)ki(ka) + ki(ka)ij(ka)) (i(ka)k](ka) — ki(ka)ij(ka)))

(3.15) B ARG KRG (kl(/ia)il(’%a) + (kl(,‘ga)il(lﬁa»/)

1 + Akaky(ka)ij(ka) 2 Ka
ka d

= - d(ma) In [1 + Akak;(rka)i;(ka)]

Asi, la energia total el sistema da:

[e.e]

1 ° d
1 l:0(2l +1) /_oo dw,wd(ma) In [1 4+ Akak;(ka)i;(ka)]

|w|=ik 1
=T N
o - 0( l )/ drka

o)

=
I

(da) In[1 4+ Akak;(ka)i;(ka)]

Tr=Ka

= _% > @+1) /OOO d:px% In 1 + Ak (2)i(2)]

o0

_ 71m S @i+1 /°° dxx% In[1 + MK, (2) 1, (2)] (G.17)

=0

49



G.3. Término EV
Partimos de la expresion
A&

EY = 2

4ma
=0

(21 +1) /0 h x%(ly(a:)Ky(x))de. (G.18)

Del articulo [11], utilizamos la siguiente propiedad para la serie en [,

z 20+ 1)z yky(x)i(y) P(cos ) = %e_p, (G.19)
1=0

con p = /22 + 42 — 2y cos . Podemos escribir entonces también:

[e.9]

S (2 + 1)a2ky(a)iy(a) P(cos 8) =

=0

x

P 2(1—cos 9), (GQO)
2(1 — cos @)

Si hacemos el producto de dos sumatorios como el anterior,

N G rle— %% —cos )
(Z@l+1>w2kz<w>z'z<xm<cos9>) <Z<2l’+1>x2kz/<w>z’p<xm,<cos9>> e,
=0

= 2(1 — cos®)
(G.21)
Integramos la anterior ecuacién en cos # haciendo uso de la siguiente propiedad:
! 2
/_1 d(cos 0)Py(cos8) Py (cos ) = oy ST (G.22)

Procedemos con el calculo.

1 o0 [e'e)
/ 1 (Z(m + 1) a?ky(x)iy(x) Py(cos 9)) <Z(2z’ + 1) a?ky (x)iy (ac)Pl/(cost9)>
- =0 I'=0

(G.22) . 2 > )
= > @2+ 1)2954k:l2(a:)zl2(x)2 Feie > 2020 + 1atki (2)if (x)
=0 =0
! a? 2z+/2(1 )
— — 4T —COS 9
/ 2(1 — cos @) ‘ d(cos9)

dr —=z
=2x+/2(1—cos 0) e
= z? —dz
0 z

Recopilando lo anterior, tenemos la igualdad

i(gz FOR @) = /0 " e:dz, (G.23)
=0

permitiendo asi escribir el término de segundo orden como

4x e~ % —Ax
EN = d —3 xe : dx
87TCL dm 8ma T

—4a:
- -4 de =
87ra ) v 32m

(G.24)
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