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Resumen

A la hora de diseñar un modelo de lenguaje de Inteligencia Artificial capaz de proponer
respuestas a una pregunta debe tenerse un feedback indicador en su entrenamiento de cuan
buena ha sido la respuesta. Este feedback puede tener su origen en un modelo de Machine
Learning entre muchos otros. El desarrollo de este trabajo se fundamenta en el diseño de un
algoritmo capaz de predecir la calidad de una respuesta mediante una puntuación. Para ello
se exploran varias técnicas, tanto de extracción de caracteŕısticas como de clasificación de
las mismas, con el objetivo último de converger al modelo con mejor rendimiento.

Esto tiene una aplicación directa con el proyecto de la spin-off Kampal Data Solutions, el
cual engloba una herramienta online generadora de inteligencia colectiva, Kampal Collective
Learning. Esta prevé la implementación de bots, o lo que es lo mismo, modelos de lenguaje
generadores de respuestas. Estos simularán usuarios conectados proponiendo buenas ideas a
considerar por el resto de individuos. El rendimiento de estos simuladores será evaluado con
el modelo desarrollado en este trabajo.

1. Introducción

Definimos inteligencia colectiva, CI, como el tipo de inteligencia que surge cuando un elevado
número de individuos trabaja de manera colaborativa en un mismo esfuerzo intelectual [1]. Uno
de los paradigmas más importante que se presenta al hablar de Inteligencia Colectiva es la
siguiente pregunta: “¿Es más inteligente una comunidad de individuos que el más inteligente
de sus miembros?”. De acuerdo a numerosos estudios sociológicos la respuesta es que śı, pero
siempre y cuando se cree el ambiente propicio para un trabajo colaborativo.

La spin-off de la Universidad de Zaragoza Kampal Data Solutions se encuentra inmersa en el pro-
yecto ”La f́ısica de la Inteligencia Humana Colectiva y la propagación de opiniones en la red” [2],
donde se propone un marco teórico que explica las grandes interacciones entre humanos tratando
de generar inteligencia colectiva, todo ello haciendo uso de la Mecánica Estad́ıstica sobre la red.
En base a dicha teoŕıa y con el propósito de llevar la cooperación entre individuos a un marco
digital, surge el desarrollo de la herramienta online Kampal Collective Learning1. Esta es capaz
de monitorear toda la información acerca de las interacciones en la red de usuarios, teniendo aśı
constancia de cómo las ideas han sido generadas, copiadas, modificadas y propagadas.

Además, trabajar en un contexto digital no altera la posibilidad de que las soluciones cooperativas
sigan siendo mejores a las individuales. Si pensamos en ello, quizás concluyamos que es incluso
beneficioso, pues no solo evitamos los poderes de influencia que algunos individuos puedan tener
debido a su posición social sino que también garantizamos que inicialmente todas las opiniones
dentro del proceso deliberativo tendrán el mismo peso, evitando aśı la creación de peligrosos
sesgos sociales. Esto tiene una gran aplicación en el mundo real si pensamos en entornos tales
como debates poĺıticos en sociedades democráticas modernas, información generada y propagada
en redes sociales, o situaciones en un entorno escolar donde ocurren la mayor parte de los
experimentos realizados en el proyecto.

La implementación de dicha herramienta se realiza sometiendo al grupo de individuos conectados
de manera online a siete fases, estas fases simularán cualquier situación de cooperación entre
humanos de la vida cotidiana.

Además, con el fin de paliar sesgos de la interacción humana son introducidas de manera pro-
gresiva tres dinámicas:

• Dinámica de permutación: la aplicación cambia el lugar de los participantes en la red con
el objetivo de una máxima propagación de ideas. Es aśı como abordamos el problema de

1https://www.kampal.com/collective-learning/
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la no interacción de un individuo con el entorno de sus vecinos (ya sea por afinidad, por
falta de interés...).

• Dinámica de copia: esta dinámica pretende que aquellos usuarios que no han tenido una
respuesta globalmente aceptada reflexionen sobre las soluciones de otros individuos. Para
ello, dado un usuario, la aplicación toma la respuesta de uno de sus vecinos y la sobrescribe
sobre la respuesta de dicho usuario. Este intercambio se realizará teniendo en cuenta la
calidad de la respuesta del vecino mencionado. De esta manera, esta dinámica neutraliza
la tendencia de no prestar atención a las ideas propuestas por otras personas e impulsa la
convergencia de unas pocas soluciones.

• Dinámica de extinción: se eliminan ideas que no han sido ampliamente compartidas, dando
la posibilidad al usuario de copiar soluciones más frecuentes de otros individuos o escribir
una nueva.

Figura 1.1: [2] Posiciones de los usuarios y copias en el transcurso de las 7 fases.

Una descripción más detallada de las fases por las que pasan los usuarios conectados es la
siguiente (véase Figura 1.2 como apoyo):

Fase 0: Lectura de la situación propuesta y entendimiento del problema.

Fase 1: Respuesta individual de cada usuario. No hay posibilidad de visualizar respuestas
vecinas.

Fase 2: Cada usuario puede ver las respuestas escritas en la Fase 1 por sus 4 vecinos más
cercanos.

Fase 3: Cada usuario puede visualizar las respuestas de sus 4 vecinos más cercanos a tiempo
real. Entra en juego la dinámica de permutación.

Fase 4: Además de lo implementado en la fase 4, comienza la dinámica de copia.

Fase 5: Se integra la dinámica de extinción, estando vigente aún lo implementado en la
fase 3 y 4.

Fase 6: Cada usuario visualiza el Top10 de las respuestas y tiene la posibilidad aún de
escribir.

2
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Fase 7: Cada usuario únicamente puede copiar ideas ya existentes en el Top10.

Fase 1 Fase 2 Fase 3 Fase 6

cambio

copia

Fase 4

extinción

Fase 5

Top10

Fase 7

Figura 1.2: Esquema de la evolución de las 7 fases de la herramienta online Kampal Collective Learning.

Es aśı finalmente como se consigue generar inteligencia colectiva en un contexto digital. El
siguiente paso previsto en el desarrollo de esta herramienta es la implementación de bots, que
generen ideas óptimas en relación al problema planteado, simulando aśı individuos conectados
que proponen soluciones interesantes a tener en cuenta por el resto. Todo ello con el mismo
objetivo siempre de generar mayor inteligencia colectiva.

A la hora de trabajar en estos simuladores es necesario utilizar herramientas de Inteligencia
Artificial (IA) en el campo del Procesamiento de Lenguaje Natural (NLP, Natural Language
Processing), en particular Grandes Modelos de Lenguaje (LLM, Large Language Model).

Estos modelos de lenguaje son entrenados y optimizados para la tarea espećıfica mediante apren-
dizaje por refuerzo con retroalimentación humana (RLHF, Reinforcement Learning from Human
Feedback), técnica fundamental para permitir que los modelos produzcan respuestas más útiles,
inofensivas y honestas, tal y como se demuestra en aplicaciones tales como ChatGPT, Gémini...

Todo ello es llevado a cabo en dos etapas, véase Figura 1.3 donde se presenta el ”mapa de ruta”
de este proyecto.

Recompensa

KL-div

PPO

Recompensa

Probabilidades 
logarítmicas

-
+

Probabilidades 
logarítmicas

TFG

EVALUACIÓN:

OPTIMIZACIÓN:
LM (Modelo Lenguaje)

LM (Modelo Lenguaje)

Respuesta

Gradientes de política optimizan el modelo

Modelo activo

Modelo referencia

Naive Bayes, red neuronal…

𝑥 ∈ (1… , 7)

Modelo recompensa

Extracción de características Algoritmo de clasificación+
Bolsa de palabras, BERT… 

Respuesta

Figura 1.3: Flujo de trabajo del proyecto general. [3] Trabajo de fin de grado enfocado en la parte
sombreada y encuadrada. ”Respuesta” hace referencia al conjunto de datos proporcionados por Kampal

Collective Learning.
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El proceso de optimización es el principal y más complejo, y tiene como objetivo el entrenamiento
y ajuste fino del modelo (”Modelo activo” en Figura 1.3).

Este comienza con un modelo previamente entrenado y un modelo de referencia, donde ambos
generan probabilidades logaŕıtmicas que serán posteriormente comparadas. Tras ello, mediante
una ”recompensa” que mide la calidad de la respuesta generada y el uso de la divergencia de
Kullback-Leibler (KL-div) 2 se evalúa su rendimiento. Finalmente, los gradientes de poĺıtica
optimizan el modelo utilizando el entrenador PPO (Proximal Policy Optimization)3, el cual
considerando tanto la recompensa como la divergencia KL ajusta los parámetros del modelo de
lenguaje activo consiguiendo aśı mejorar su rendimiento [3]. Cabe destacar que este es el caso
para clasificación multiclase, puntuación x ∈ (1, ..., 7), para el caso de clasificación binaria es
intercambiado el entrenador PPO por un entrenador KTO [4].

En definitiva, se pretende que mediante un algoritmo de aprendizaje por refuerzo, que tiene
como objetivo maximizar una recompensa acumulada, se consiga el ajuste fino de un modelo
enfocado a la tarea que nos concierne. Esta recompensa mencionada puede tener su origen en
una función, feedback humano o como es nuestro caso, un modelo de IA, etapa de evaluación en
la Figura 1.3. Este proporcionará una métrica que evaluará la calidad de la respuesta y será la
que llamamos ”recompensa” en el ajuste fino del modelo grande (etapa optimización).

El propósito de este Trabajo Fin de Grado es llevar a cabo dicha etapa de evaluación, en par-
ticular, diseñando un modelo de clasificación que permita estimar la calidad de una respuesta.
Esto conllevará tareas como preprocesamiento de la información y análisis exploratorio de los
datos, estudio de posibles algoritmos y finalmente diseño e implementación del modelo.

2. Estado del arte y fundamentos

En la última década la Inteligencia Artificial se ha convertido en el campo ĺıder de tareas de
procesamiento y generación de información a través de la aparición del aprendizaje automático
(o Machine Learning) basado en redes neuronales. Esto ha tenido aplicaciones tales como pro-
cesamiento de voz, visión artificial, procesamiento del lenguaje natural... pretendiendo en cierta
medida dotar a sistemas computacionales de la capacidad de aprender.

Como bien se ha comentado, el propósito de este trabajo es el desarrollo de un modelo capaz de
evaluar ideas generadas por un LLM. Este modelo debe por tanto saber interpretar lenguaje.

El lenguaje es una facultad del ser humano para expresarse y comunicarse a través del sonido
articulado o de sistemas de signos 4. Podemos distinguir dos tipos de lenguaje, por un lado el
lenguaje natural, lenguaje humano, este está en constante crecimiento sin tener en cuenta las
reglas que lo rigen, es lo que comúnmente llamamos idiomas. Por otro lado, lenguajes formales
que se encuentran enmarcados en disciplinas como la matemática, la lógica o la programación,
los cuales están ceñidos rigurosamente a reglas establecidas. Además, el lenguaje natural se
caracteriza por su flexibilidad, ambigüedad e indeterminación, permitiendo aśı la variedad en la
interpretación dependiendo de la situación, lo cual resulta ventajoso en el momento de efectuar la
comunicación humana. Sin embargo, al momento de enfrentarse al procesamiento computacional
dichas caracteŕısticas se presentan como un problema ya que dificultan la aplicación de procesos
de razonamiento, caracterización y formalización. [5]

Se define Procesamiento del Lenguaje Natural (NLP) como el campo de estudio que busca
2Esta mide la diferencia entre las distribuciones de probabilidad del modelo activo y del modelo de referencia,

básicamente se utiliza como señal de recompensa adicional para garantizar que las respuestas generadas no se
desv́ıen demasiado del modelo de lenguaje de referencia

3Para más información visitar https://openai.com/index/openai-baselines-ppo/
4https://dle.rae.es/lenguaje
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entender cómo funciona el lenguaje, su construcción, la generación de nuevo lenguaje, aśı como
todas las tareas que tienen relación con el tratamiento del mismo [6]. Entre estas tareas se tiene
la generación de nuevo texto, traducciones de un idioma a otro, generar un resumen... o inclusión
el diseño de bots, como es la cuestión que nos concierne.

Es gracias a la llegada del aprendizaje profundo (o Deep Learning) que se han generado avan-
ces significativos en el campo del NLP. Las redes neuronales artificiales son las herramientas
fundamentales en esta disciplina y de las cuales hablaremos a continuación en más detalle.

2.1. El perceptrón y las redes neuronales

Se define Inteligencia Artificial (IA) como la ”ciencia que tiene como objetivo el diseño y cons-
trucción de máquinas capaces de imitar el comportamiento inteligente de las personas”. [7]

𝑊!

∑
𝑊"

𝑊#

𝑊$

𝜎"

𝜎#

𝜎$

𝜎%

𝜙"
Función activación

Suma de 
pesos

Pesos

Entradas

Salidas

Figura 2.1: Esquema básico del perceptrón

Los algoritmos más usados en esta disciplina son
las denominadas Redes Neuronales Artificiales
(RNA), que buscan de cierta manera representar
el funcionamiento biológico de una red de neuro-
nas en el cerebro humano.

Una neurona biológica recibe señales a través de
sus dentritas, procesa estas señales en el soma
y produce una salida a través de su axón [8].
De manera similar lo hace el modelo más básico
de una RNA, el perceptrón, este recibe entradas,
las procesa mediante una combinación lineal de
pesos y produce una salida basada en una función
de activación, véase Figura 2.1.

El modelo matemático de la neurona artificial es,

ϕ1 = f

(
N∑

i=1
Wiσi − b

)
(2.1)

donde f es la función de activación (función no lineal), σi las entradas, Wi los pesos asociados
y b el sesgo o bias.

De manera más detallada, Figura 2.1, los inputs σi llegan con un peso asociado Wi, de esta
manera el perceptrón recibe por cada conexión un potencial Wiσi, que tras procesar la suma de
todos ellos y atravesar la función de activación la neurona devuelve finalmente un único número,
la salida. Las funciones de activación más comunes son la función escalón, ReLU (Rectified Lineal
Unit) y Sigmoide.

Una capa de la red se compone de múltiples perceptrones, de manera que la salida producida
por este es utilizada por los perceptrones de la siguiente capa. La conexión entre las capas se
realiza mediante la matriz de pesos W j

i y el vector de sesgos bj . Para una capa en part́ıcular,
el elemento Wij representa la conexión de la i-ésima neurona de la capa anterior y la j-ésima
neurona de la capa actual. El vector bj contendrá los sesgos asociados a cada neurona en la capa
actual. Al organizar las neuronas en capas sucesivas, se forma una Red Neuronal Artificial de
tipo perceptrón o red neurona feedforward, véase Figura 2.2, esto permite al ordenador procesar
los datos intentando emular el pensamiento humano. 5

5Debe tenerse en cuenta la escala de los modelos actuales comerciales, estos están dotados de un centenar de
capas y más de 12000 neuronas por capa y entrada. Un millón de neuronas por entrada, significa que los modelos
de contexto largo (con más de 10 mil entradas) pueden llegar a tener durante la generación más neuronas activas
que un cerebro humano.

5
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Capa entrada

Capa salida

Entradas

Salidas

Figura 2.2: Esquema de una red neuronal tipo perceptrón. [8]

Las redes neuronales de este tipo siguen siendo fundamentales en el campo de la IA pero presen-
tan limitaciones significativas en el campo del Procesamiento de Lenguaje Natural, especialmen-
te cuando se trata de aplicaciones generativas 6. Los perceptrones son modelos de clasificación
que pueden aprender a distinguir entre clases utilizando una función de activación simple. Sin
embargo, su capacidad para capturar la complejidad y las dependencias temporales inherentes
al lenguaje es extremadamente limitada, es aśı como se impulsó el desarrollo de modelos más
avanzados.

2.2. Redes neuronales recurrentes

Fueron las Redes Neuronales Recurrentes (RNN) que revolucionaron el campo del NLP al intro-
ducir la capacidad de procesar secuencias de datos de manera efectiva. A diferencia de las redes
neuronales de tipo perceptrón, las cuales asumen independencia entre los datos de entrada, las
RNN poseen un estado oculto que tiene en cuenta el estado de tiempo anterior 7.

ℎ(")

𝜙(")

𝜎(")

ℎ($) ℎ(%) ℎ(")ℎ(&) …

El

𝜙($) 𝜙(%) 𝜙(&) 𝜙(")
coche

coche

está pintado…

está

=

Entrada

Estado oculto

Salida

𝜎(%) 𝜎(&) 𝜎(")𝜎($)

Figura 2.3: Esquema de una red neuronal recurrente. Formato reducido a la izquierda y su despliegue a
la derecha. Notar como en el despliegue las entradas para un tiempo t son tanto σt como el estado

oculto anterior ht−1

6Se denominan aplicaciones generativas a modelos que pueden producir contenido nuevo basado en patrones
aprendidos a partir de datos existentes. Estos modelos tienen la capacidad de generar texto, traducir idiomas,
crear diálogos coherentes...

7Se define tiempo en las RNN no como el tiempo cronológico, sino a la posición de la secuencia de datos de
entrada (esto puede ser la posición espećıfica de una secuencia de palabras en un texto, posición de las letras en
una palabra...)
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Una RNN procesa una secuencia de datos paso a paso, manteniendo un estado oculto que se
actualiza en cada paso de tiempo (ht en la Figura 2.3). Podemos representar su funcionamiento
matemáticamente como,

Estado oculto: h(t) = f1(Whh(t−1) + Wσσ(t) + bh) (2.2)

Salida: ϕ(t) = f2(Wϕh(t) + bϕ) (2.3)

donde f1 y f2 son funciones de activación, h(t−1) es el estado oculto en el tiempo t − 1, h(t) en el
tiempo t y x(t) la entrada en el tiempo t, bh y by los sesgos y Wh, Wx y Wy matrices de pesos.

Notar como la salida depende del estado oculto h(t), y esta a su vez del anterior h(t−1). Es
con estas conexiones recurrentes que tienen la capacidad de mantener una ”memoria” sobre los
estados anteriores y una longitud variable. Esto es crucial en el NLP donde la comprensión del
contexto y la secuencia de las palabras es esencial para el diseño de un buen modelo [10].

Aunque las RNN han demostrado ser muy efectivas para el campo del NLP, presentan un proble-
ma significativo de paralelización. La naturaleza secuencial de las RNN requiere que los estados
ocultos se calculen uno tras otro, lo que impide el procesamiento paralelo de las secuencias. Esto
resulta en un entrenamiento más lento y menos eficiente. Además, a medida que la red procesa
más elementos de la cadena, tiene problemas en recordar información pasada, es por esto que
las RNN más sencillas no son capaces de aprender patrones muy extendidos en el tiempo.

Con el fin de mitigar dicho inconveniente, aparece un nuevo tipo de celda de memoria que śı es
capaz de trabajar con secuencias de mayor longitud. Se conoce como celdas de Memoria de Corto
y Largo Plazo (LSTM, por sus siglas en inglés Long-Short Term Memory). Años posteriores,
nace el GRU (Gated Recurrent Unit), arquitectura más eficiente computacionalmente.

Las RNN y sus variantes han demostrado ser excepcionalmente efectivas en una amplia gama
de aplicaciones. Entre ellas la generación de texto, donde son capaces de producir secuencias de
textos coherentes y contextualmente relevantes aprendiendo patrones complejos del lenguaje a
partir de grandes corpus de datos. Sin embargo, estas redes son notorias por su lentitud y alta
complejidad computacional debido a su diseño no paralelizable.

2.3. Redes Transformer

Hasta la aparición de una nueva arquitectura en 2017, los modelos de transducción de secuencias
se basaban en complejas redes neuronales recurrentes o convolucionales. Numerosos esfuerzos
se centraron en ampliar los ĺımites de estos modelos, incluyendo arquitecturas de codificador-
decodificador, trucos de factorización... pero siempre dependiendo de la principal restricción, la
computación secuencial, y con ello la no paralelización de los algoritmos.

Es en 2017 con la publicación del art́ıculo ”Attention Is All You Need” por Vaswani et al. [12],
cuando el campo del NLP se revoluciona ante la novedosa y simple arquitectura Transformer, que
prescinde por completo de las recurrencias y convoluciones. En su lugar, depende completamente
de mecanismos de autoatención que representan dependencias globales entre la entrada y la
salida. Numerosos experimentos afirmaron que estos modelos eran de calidad superior, a la vez
que eran más paralelizables y requeŕıan menos tiempo de entrenamiento [12].

El Transformer fue propuesto como un mecanismo de autoatención siguiendo la arquitectura
general presentada en la Figura 2.4.

7
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Figura 2.4: [12] Esquema de la arquitectura del
modelo Transformer. La zona recuadrada izquierda

representa el codificador y la parte derecha el
decodificador. Capa de atención representada como

Attention layer

Sin entrar mucho en detalle 8 diferenciamos
dos partes principales, el codificador o enco-
der (parte izquierda, Figura 2.4) y el decodi-
ficador o decoder (parte derecha). Ambos se
forman mediante N = 6 capas de atención
(attention layers) apiladas una tras otra. Es-
tas capas contienen principalmente una sub-
capa de autoatención y una subcapa con una
red neuronal de tipo Feed Forward.

Por una parte, el codificador asigna una se-
cuencia de entrada de representaciones de
śımbolos 9 (x1, ..., xn) a una secuencia de re-
presentaciones continuas z = (z1, ..., zn), co-
nocidas como embeddings, son estas últimas
las que nos permitirán capturar relaciones
semánticas entre śımbolos. El codificador lle-
va a cabo esta transformación de manera pa-
ralela, es decir, analiza todos los śımbolos de
entrada a la vez. Es por esta misma razón que
esta parte de la arquitectura presenta incon-
venientes en aplicaciones generativas pero fun-
ciona realmente bien para capturar el signifi-
cado semántico de oraciones.

Por otra parte, dado z, el decodificador genera
una secuencia de salida (y1, ..., ym) de śımbo-
los. Además, en cada paso el decodificador es
auto-regresivo, esto es que produce cada ele-
mento de la secuencia de salida de manera se-
cuencial, donde cada śımbolo generado se uti-
liza como entrada adicional para general el si-
guiente śımbolo, es decir, el modelo ”regresa” y utiliza su propia salida previa para continuar
generando la secuencia. De manera contraria al codificador, esta parte de la arquitectura es
ampliamente utilizada en aplicaciones generativas y no lo es tanto para capturar significados
semánticos.

El mecanismo de autoatención es la clave de esta arquitectura y permite que cada token 10

de la secuencia de entrada se relacione con todos los demás tokens de la misma secuencia,
proporcionando una forma efectiva de capturar dependencias a largo plazo y contextos globales.
Para ello, se proponen tres elementos esenciales: Query (Consulta), Key (Clave) y Value (Valor),
donde la consulta y la clave son transformaciones del valor:

|Ki⟩ = OK |Vi⟩ |Qi⟩ = OQ |Vi⟩ (2.4)

donde |Ki⟩, |Qi⟩ y |Vi⟩ son la clave, consulta y valor respectivamente y OK, OQ son matrices de
transformación.

8No es de gran interés prestar atención en la estructura general y compleja de esta arquitectura para el
entendimiento de este trabajo, pues el modelo de lenguaje utilizado para la representación numérica del lenguaje
es solo una parte de este, explicado en más detalle más adelante

9Se denomina ”śımbolos” en el contexto del NLP a las unidades discretas de datos que el modelo maneja, estos
pueden ser palabras completas, tokens, caracteres...

10Un token es una unidad de texto que ha sido segmentada a partir de una secuencia mayor
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El vector de salida proporcionado por el mecanismo de autoatención es,

|V ′
i ⟩ =

L∑
j=1

softmax
(⟨Kj |Qi⟩√

dk

)
|Vj⟩ (2.5)

donde |V ′
i ⟩ es el valor de salida correspondiente a un token, |Vj⟩ el valor correspondiente al

j-ésimo token de entrada y L el número de tokens o también denominado longitud de contexto.

Sustituyendo ambos elementos de la Ecuación 2.4 en Ecuación 2.5 y tomando M = OT
KOQ :

|V ′
i ⟩ =

L∑
j=1

softmax
(

⟨Vj | OT
KOQ |Vi⟩√
dk

)
|Vj⟩ =

L∑
j=1

softmax
(⟨Vj | M |Vi⟩√

dk

)
|Vj⟩ (2.6)

De manera más detallada, ⟨Kj |Qi⟩ es el producto escalar de los embeddings generados por
el codificador, este producto escalar es realizado en un espacio vectorial de dimensión dk y
mide la similitud entre vectores, podŕıamos decir que genera unas ”puntuaciones de atención”
que indican cuanta atención debe prestar el decodificador a cada token de entrada. Además, los
valores resultantes del producto escalar son escalados mediante 1√

dk
, esto es relevante para valores

de dk grandes [12]. Finalmente, la función softmax convierte los ”puntuaciones de atención” en
”pesos de atención”, probabilidades que suman 1 para cada entrada.

Numerosas variantes del Transformer han ido surgiendo a lo largo del tiempo, entre ellas, BERT
(Bidirectional Encoder Representations from Transformers), modelo desarrollado por investiga-
dores de Google en 2018. Este tuvo una gran importancia en el campo del NLP gracias a su
capacidad para comprender el contexto bidireccional de las palabras en una secuencia de texto.

El aprendizaje bidireccional se fundamenta en la comprensión del lenguaje no solo de izquierda
a derecha, sino también en el otro sentido, ayudando a tener una visión global de las sentencias
que recibe.

El modelo utilizado para la representación numérica del lenguaje en este trabajo es un modelo
DistilBERT, esto es básicamente una variante del modelo BERT con una capa de pooling, véase
Figura 2.5 para una representación esquemática del mismo. Esta arquitectura aún conservando
aproximadamente el 97 % del rendimiento de BERT reduce su tamaño y aumenta su velocidad de
procesamiento. Este modelo es particularmente útil para tareas como la búsqueda semántica, la
agrupación y la comparación de similitudes semánticas entre textos, tarea crucial en el desarrollo
de este trabajo. Es por esta razón que utiliza únicamente la parte de codificación del modelo
general Transformer, zona encuadrada con ĺınea de puntos y sombreada en la Figura 2.4.

Dicha arquitectura procesará la secuencia de datos mediante los mecanismos de autoatención,
generando aśı un vector de dimensión 768 para cada token de entrada. Después de procesar
la secuencia, el modelo aplica una capa de pooling de la cual se obtiene un vector semántico
de dimensión 512. Es este vector el que recibirá el correspondiente clasificador para evaluar la
calidad de la respuesta.
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Figura 2.5: Esquema de la arquitectura Transformer seguida por el modelo de lenguaje utilizado en este
trabajo. Notar que la zona encuadrada y sombreada representa la parte de codifiación o encoder

presentada en la Figura 2.4.

3. Enfoque de la solución y herramientas utilizadas

La ĺınea de trabajo seguida en este proyecto fue la búsqueda en todo momento del mejor modelo
capaz de predecir una métrica de evaluación de un conjunto de respuestas. Como se ha comentado
anteriormente, los ordenadores no comprenden el lenguaje natural, es por ello que existe un
paso previo al modelo de clasificación, donde debemos transformar nuestras entradas (textos)
en un formato legible para la computadora, esta etapa es la que denominaremos ”Extracción de
caracteŕısticas”, véase Figura 1.3. En ella abordaremos la representación numérica del lenguaje
de distintas formas.

La siguiente etapa, ”Algoritmo de clasificación” en Figura 1.3, consiste en introducir las carac-
teŕısticas extráıdas en un clasificador, este será entrenado con un conjunto de entrenamiento
para la tarea que nos interesa y posteriormente su rendimiento será evaluado con un conjunto
de test.

Las diferentes combinaciones planteadas fueron:

1. Extracción de caracteŕısticas mediante la técnica Bag of Words (Bolsa de palabras) y
clasificación mediante el algoritmo Naive Bayes. Estas herramientas serán planteadas para
dos corpus de datos.

10
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1.1 Datos de prueba limpios

1.2 Datos de Kampal Collective Learning

2. Extracción de caracteŕısticas mediante Bolsa de palabras y clasificación mediante red neu-
ronal de tipo perceptrón multicapa. Datos de Kampal Collective Learning.

3. Extracción de caracteŕısticas mediante un modelo BERT, (Arquitectura Transformer)
y clasificación mediante red neuronal de tipo perceptrón multicapa. Datos de Kampal
Collective Learning.

Todo ello teniendo en cuenta dos maneras de categorizar las respuestas: clasificación binaria
C = 0, 1 y clasificación multiclase de 7 categoŕıas C = 1, ..., 7.

Tanto la técnica de bolsa de palabras como el clasificador Naive Bayes son relativamente muy
simples, en cambio, la extracción de caracteŕısticas mediante una arquitectura Transformer y
una red neuronal como clasificador son técnicas más sofisticadas. De esta manera, observaremos
la manera en la que la calidad de los resultados evoluciona a medida que introducimos mejores
herramientas.

3.1. Análisis de los datos

El primer paso de este trabajo fue conseguir un gran corpus de datos etiquetados, es aśı como
los posteriores modelos aprenderán los patrones necesarios para unas buenas predicciones.

Los datos en crudo fueron proporcionados por Kampal Collective Learning, estos consist́ıan en
un corpus de 72628 textos sin etiquetar, respuestas de individuos que hab́ıan sido conectados
a dicha aplicación y que tras el planteamiento de una pregunta o situación y el transcurso de
las 7 fases, sus respuestas hab́ıan quedado registradas con una serie de parámetros útiles. Estos
parámetros junto con un óptimo procesamiento de los datos podrán proporcionarnos información
acerca de la evolución de la respuesta y su calidad. Es con esta información que se establecerá
un criterio para el etiquetado de las respuestas.

Algunos de los muchos parámetros proporcionados e interesantes para el etiquetado de los datos
fueron:

Question id: Identificador de la pregunta.

Frecuency: Frecuencia de aparición, número total de veces que una idea aparece entre los
usuarios (Recordamos que las respuestas se repiten debido a la dinámica de copia entre
individuos o de manera espontánea).

Frequency now: Número de veces que una solución aparece en el sistema en cada momento.

First seen: Fecha y hora que se registró por primera vez la respuesta en el sistema.

Last seen: Fecha y hora en la que deja de aparecer la respuesta en el sistema (esto puede
ser por la dinámica de extinción, dinámica de copia...).

Last seen fase: Número de fase en la que deja de aparecer la respuesta en el sistema.

Time difference in seconds: Tiempo de ”vida” de una respuesta. Realmente esto es
last seen − first seen.

Tras un análisis exploratorio de los datos, se llega a la conclusión de que los parámetros de
Frecuency, Frequency now y Last seen fase seŕıan las mejores opciones para categorizar nues-
tro conjunto. Pues si una respuesta ha llegado a una fase alta (Last seen fase alta) significa
que ha sido aceptada globalmente y las dinámicas de la red no han decidido eliminarla. Además,
es un buen criterio pensar que una respuesta con una alta frecuencia total (Frecuency) es una
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buena respuesta, pues este parámetro es indicativo de las veces que los usuarios han decidido
copiarla.

Si además combinamos el parámetro Frequency now y Last seen fase podremos afirmar que
las respuestas llegadas a la fase 7 y con una Frequency now > 0 son buenas soluciones. Esto
es aśı porque si además de haber conseguido llegar a la fase 7 (recordar que en esta fase los
usuarios votan en un Top10), la frecuencia de uso en ese momento es distinta de 0 significará
que ha sido al menos votada más de una vez como la mejor solución de entre las 10 mejores.

En cuanto al parámetro Time difference in seconds se concluye que no es buen indicativo
acerca de la calidad de una respuesta, pues una buena solución puede haber nacido en la fase 6
por aprendizaje de vecinos, tener un bajo Time difference in seconds y seguir siendo buena
respuesta.

3.2. Extracción de caracteŕısticas

Si deseamos obtener caracteŕısticas numéricas de un conjunto de textos, podŕıamos pensar en
algo tan simple como la cantidad de palabras, el número de conectores... o algo más complejo
que tenga en cuenta el significado semántico de las palabras y el contexto, esto es la arquitectura
Transformer explicada anteriormente.

La primera técnica que se llevó a cabo fue lo que comúnmente se denomina Bag of Words (Bolsa
de Palabras en su traducción), y consiste en explorar todas las palabras del conjunto de entrena-
miento, para posteriormente unificar un diccionario de todas ellas. De esta manera, toda palabra
perteneciente a un texto estará también en dicho diccionario o ”bolsa de palabras”. Sin embargo,
hay palabras como preposiciones, conjunciones, articulos... que se consideran irrelevantes para
el análisis del texto. Es por esta razón que se descartan del diccionario los siguientes casos:

Stopwords, conjunto de palabras sin significado del contenido del texto. Ejemplo: el, la,
los, como, para, con...

Palabras que contienen ”http”, ”@” 0 ”#”.

Palabras de menos de 3 letras.

La segunda variante y más sofisticada fue el modelo ”sentence-transformers/distiluse-base-multilingual-
cased-v1” 11, se trata de un modelo Transformer de la familia ”Sentence Transformers” y su
arquitectura esta basada en una variante del modelo de lenguaje DistilBERT [17], este está op-
timizado para mapear oraciones y párrafos a vectores de 512 dimensiones. Su arquitectura de
forma más detallada fue la presentada en la Subsección 2.3.

3.3. Algoritmos de clasificación

Como modelos de clasificación entrenados mediante aprendizaje por refuerzo se tomaron en
primera instancia el clasificador Naive Bayes y posteriormente una red neuronal de 3 capas.

Los métodos Naive Bayes son un conjunto de algoritmos de aprendizaje supervisado basados
en la aplicación del teorema de Bayes con el supuesto “ingenuo” de independencia condicional
entre cada par de caracteŕısticas dado el valor de la etiqueta del item [13].

El teorema de Bayes enuncia que dada una partición del suceso B, B1, ..., Bn, la probabilidad
condicionada de Bk dado el suceso A cumple [16]:

11Cabe destacar que otra opción con la que se pod́ıa haber trabajado es el modelo de lenguaje ”MarIA”, para
más información consultar [18].
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P (Bk|A) = P (A|Bk)P (Bk)∑n
i=1 P (A|Bi)P (Bi)

(3.1)

Si extrapolamos a nuestro caso:

P (Ck|text) = P (text|Ck)P (Ck)∑n
i=1 P (text|Ci)P (Ci)

= P (text|Bk)P (Ck)
P (text) (3.2)

donde Ck con k = 1, ..., N representa las N clases en las que serán categorizadas las respuestas.
En nuestro caso, N = 2 para clasificación binaria y N = 7 para clasificación en 7 categoŕıas.
Notar que ”text” hace referencia a una respuesta y realmente text = (x1, ....xn) es un vector de
dimensión n que representa numéricamente las caracteŕısticas de dicha respuesta.

Usando el supuesto de independencia condicional entre caracteŕısticas:

P (wordi|text, word1, ..., wordn) = P (wordi|text) (3.3)

podemos afirmar que para todo i:

P (text|Bk) =
n∏

i=1
P (wordi|text) (3.4)

Esto significa que la aparición de una palabra en una respuesta no tiene correlación con la
aparición de cualquier otra.

Sustituyendo Ecuación 3.4 en Ecuación 3.2 obtenemos finalmente,

P (Bk|text) = P (Bk)∏n
i=1 P (wordi|text)
P (text) (3.5)

Dada una única respuesta, P (text) es constante y podemos escribir,

P (Bk|text) ∝ P (Bk)
n∏

i=1
P (wordi|text) (3.6)

de esta manera podemos definir finalmente el criterio de clasificación como:

B̂ = arg máx
B

P (Bk)
n∏

i=1
P (wordi|text) (3.7)

eligiendo aśı la clase cuya probabilidad condicionada es máxima para un mismo texto.

Los clasificadores Naive Bayes poseen suposiciones aparentemente demasiado simplificadas, pero
a pesar de ello han funcionado bastante bien en muchas situaciones del mundo real, como la
clasificación de documentos y el filtrado de spam [13], posteriormente veremos cómo de óptimo
es en nuestra tarea.

El segundo algoritmo de clasificación seleccionado fue una red neuronal de tipo perceptrón de 3
capas, diseñada e implementada acorde a la tarea que se requeŕıa. Su diseño fue prácticamente
el mismo en todos los casos salvo ligeras diferencias entre clasificación binaria y multiclase.

Los distintos elementos que conformaron la red neuronal fueron:
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Tres capas lineales de dimensiones variables en función del vector de caracteŕısticas de
entrada.

Función de activación ReLU (Rectified Linear Unit) aplicada después de las dos primeras
capas y función de activación softmax después de la última capa, esta era crucial en el
diseño de la red, pues convierte las salidas en probabilidades, asignando a cada clase una
probabilidad entre 0 y 1.

Función pérdida de entroṕıa cruzada binaria (Binary Cross Entropy Loss) para el caso de
clasificación binaria y función de entroṕıa cruzada generalizada (Cross Entropy Loss) para
el caso de multiclase. Esta función medirá la discrepancia entre las prediciones del modelo
y las etiquetas reales.

Optimizador SGD o Descenso de Gradiente Estocástico (Stochastic Gradient Descent).
Este algoritmo será el que ajuste los parámetros del modelo en la dirección opuesta al
gradiente de la función de pérdida. Todo ello con un learning rate (tasa de aprendizaje) que
variará en cada caso, este hiperparámetro controlará el tamaño del paso de actualización.

La red neuronal será entrenada mediante un proceso iterativo, a través del cual ajustará los
parámetros de la propia red (pesos y sesgos). A grandes rasgos, el algoritmo coge datos de
entrenamiento, los pasa a través de la red neuronal (con los valores que en aquel momento
tengan sus parámetros), compara el resultado obtenido con el esperado y calcula la función de
pérdida. La función de pérdida guiará al optimizador para calcular un nuevo valor de cada uno
de los parámetros. Todo ello con la finalidad siempre de reducir la función de pérdida en cada
iteración y obtener aśı un modelo que genere mejores predicciones.

Más en detalle, las funciones de pérdida mencionadas, siguen las siguientes ecuaciones [14] [15]:

Entroṕıa cruzada binaria: l(x, y) = −w · (y · log(x) + (1 − y) · log(1 − x)) (3.8)

Entroṕıa cruzada generalizada: l(x, y) = −w · log

(
exp(xy)∑C

c=1 exp(xc)

)
(3.9)

donde x representa la entra, y la salida y C el número de clases.

3.4. Métricas de rendimiento

Las métricas de rendimiento se emplean para cuantificar cómo de bueno o de malo es un modelo
en cuanto a la calidad de sus predicciones. Entre ellas, encontramos la matriz de confusión, esta
es una matriz de dimensión C × C donde los elementos de la diagonal se corresponden con los
aciertos, y los de fuera de ella con los errores.

Particularizando al problema de clasificación binaria, las dimensiones de la matriz son 2x2 y
tiene la forma presentada en Tabla 3.1.

Modelo
Negativa Positiva

Real
Negativa TN FP
Positiva FN TP

Tabla 3.1: Esquema de una matriz de confusión.
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Cada elemento de la matriz representa un resultado:

True Positive (TP): Un dato que se toma como verdadero tanto por el humano como por
el modelo.

True Negative (TN): Un dato que se toma como falso tanto por el humano como por el
modelo

False Positive (FP): Un dato que para nosotros es falso pero el modelo considera que es
verdadero.

False Negative (FN): Un dato que para nosotros es verdadero pero que el modelo considera
que es falso.

A partir de la matriz de confusión se puede extraer mucha información. De entre los muchos
indicadores existentes, se consideran en este trabajo TPR (True Positive Rate o sensibilidad) y
TNR (True Negative Rate o especifidad). Estos serán los que se incorporarán en los resultados
como métrica de calidad del modelo, columna ”Rendimiento” a partir de ahora.

TNR = TN

N
= TN

TN + FP
(3.10)

FNR = FN

P
= FN

TP + FN
(3.11)

Más en detalle se define sensibilidad como la proporción de verdaderos positivos correctamente
identificados por el modelo y especificidad como la proporción de verdaderos negativos correcta-
mente identificados. En otras palabras, ambas miden la capacidad de identificar correctamente
la clase correspondiente.

Notar que lo que en la matriz de confusión comúnmente se denomina ”Negativa” y ”Positiva”
será para nosotros ”Respuesta mala” y ”Respuesta buena” respectivamente.

Para nuestro caso, todas las métricas de rendimiento fueron obtenidas sobre el 10 % del conjunto
total de los datos (conjunto de test). El 90 % restante seŕıa reservado para el entrenamiento
(conjunto de entrenamiento).

El conjunto de test estará conformado por una muestra aleatoria de N respuestas del conjunto
original, de esta manera mantendremos las propiedades iniciales del origen de los datos. Cabe
destacar que ese conjunto en ningún caso será utilizado para el entrenamiento de los modelos.

3.5. Extracción de caracteŕısticas mediante Bolsa de palabras. Clasificador
Naive Bayes

Procederemos a estudiar la primera de las combinaciones citadas de extracción de caracteŕısticas
y algoritmo de clasificación. Estas técnicas serán inicialmente probadas en un corpus de datos
de prueba limpio y correctamente etiquetado, posteriormente aplicaremos dichas herramientas
a los datos de Kampal Collective Learning.

3.5.1. Corpus de datos limpio

Este conjunto de datos o dataset constaba de 12498 reseñas en inglés recogidas por un super-
mercado acerca de sus productos, servicios o instalaciones, etiquetadas en función de si eran
opiniones positivas o negativas.
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Cuando hablamos de un conjunto de datos o dataset limpio, estamos queriendo decir que los
registros son textos bien escritos, con sentido y coherencia, sin emoticonos, sin caracteres que
carezcan de sentido... y con un correcto y fiable etiquetado, a todos los efectos ”datos de labo-
ratorio” 12.

Tras un filtrado de palabras con criterios similares 13 a los comentados en la Subsección 3.2
puede observarse una representación visual de la bolsa de palabras en la Figura 3.1.

(a) Reseñas totales (b) Reseñas negativas (c) Reseñas positivas

Figura 3.1: Nube de palabras del conjunto total de datos tras el filtrado de las mismas, el tamaño de
cada palabra es proporcional a la frecuencia de aparición en el conjunto de datos. Representación

escogida para 3 conjuntos de reseñas.

En la Figura 3.1 podemos observar varios aspectos interesantes:

En el conjunto de reseñas totales obtenemos palabras tales como smoothie, texture (tex-
tura), green (ecológico), powder (polvo, referente a las especias y productos en polvo),
vanilla (vainilla), flavor (sabor)... Esto sugiere que la mayoŕıa de las reseñas son acerca de
productos de comida.

En el conjunto de reseñas negativas encontramos términos como price (precio), good
(bueno), order (pedido), store (tienda), post (referente a post office, oficina postal). Es-
to puede indicar que las opiniones negativas pueden estar relacionadas con el precio, los
pedidos, la oficina postal, aspectos de la tienda...

En el conjunto de reseñas positivas observamos palabras como back (referente a come back,
volver), finding (encontrar), eat (comer), meat (carne), chicken (pollo)... Dando a entender
que las reseñas positivas se enfocan en productos de comida, más concretamente productos
de carne.

Tras el breve análisis de los datos podemos proceder a comentar el entrenamiento y rendimiento
del modelo. Uno de los factores importantes en el buen entrenamiento es el equilibrado de sus
datos, es por ello que en este apartado han sido propuestos los resultados para tres opciones
de equilibrado del conjunto de entrenamiento: desequilibrio positivo (más reseñas positivas que
negativas), equilibrio y desequilibrio negativo.

12Debe tenerse en cuenta que la realidad del trabajo con datos masivos y el análisis de los mismos no es esta.
13Mismos criterios pero dejando las palabras con menos de 3 caracteres.
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Modelo
Negativa Positiva Rendimiento

Real
Negativa 171 224 43,3 %
Positiva 104 2000 95,1 %

Tabla 3.2: Matriz de confusión. Datos de entrenamiento originales, desequilibrio positivo: 8384 reseñas
positivas y 1615 reseñas negativas.

Modelo
Negativa Positiva Rendimiento

Real
Negativa 295 100 74,4 %
Positiva 229 1875 89,1 %

Tabla 3.3: Matriz de confusión. Datos de entrenamiento equilibrados: 1615 reseñas positivas y 1615
negativas.

Modelo
Negativa Positiva Rendimiento

Real
Negativa 375 20 94,9 %
Positiva 1004 1100 52,3 %

Tabla 3.4: Matriz de confusión. Datos de entrenamiento con desequilibrio negativo: 1615 reseñas
positivas y 500 reseñas negativas.

Observamos de qué manera el equilibrado de los datos es influyente en el rendimiento del modelo,
siendo el mejor de ellos el entrenado con datos equilibrados. Esto es aśı porque si una clase está
mucho más poblada que la otra, los modelos tienden a clasificar mejor la primera de ellas para
aśı maximizar el número de aciertos. Esto nos sugiere que en los próximos desarrollos deberemos
trabajar con datos equilibrados.

3.5.2. Datos de Kampal Collective Learning

El dataset proporcionado por Kampal Collective Learning constaba de 69825 respuestas, las
cuales deb́ıan ser etiquetadas tanto desde el punto de vista binario (C ∈ 0, 1) como desde el
punto de vista multiclase (C ∈ 1, ..., 7). En este primer apartado presentaremos de nuevo 3
opciones de equilibrado para el conjunto de entrenamiento.

De manera análoga al caso planteado anteriormente puede observarse una representación visual
de los términos más frecuentes de la bolsa de palabras, Figura 3.1.
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(a) Respuestas totales. (b) Respuestas malas. (c) Respuestas buenas.

Figura 3.2: Nube de palabras del conjunto de entrenamiento tras el filtrado de las mismas, el tamaño de
cada palabra es proporcional a la frecuencia de aparición en el conjunto de datos. Representación

escogida para 3 conjuntos.

A diferencia del conjunto de reseñas de un supermercado, para este caso es mucho más dif́ıcil
identificar diferencias de palabras importantes entre las respuestas buenas y malas. Es lógico si
recordamos que los datos recogidos por Kampal Collective Learning son respuestas preguntas
con temas muy distintos. Esto tendrá relevancia cuando el modelo tenga que aprender a clasificar
la bondad de las respuestas.

Para el caso de clasificación binaria, los conjuntos propuestos para el etiquetado (recordamos
que partimos de datos no etiquetados) y equilibrado de los mismos es:

Datos originales (desequilibrio negativo): las respuestas son etiquetadas como respuestas
buenas aquellas llegadas a la fase 7 y con una Frequency now> 0. De esta manera se
obtiene 61171 respuestas malas y 1671 buenas.

Datos seleccionados equilibrados: son etiquetadas como buenas respuestas aquellas llega-
das a la fase 6 y 7, y como malas aquellas llegadas a las fases 1,2,3. Esto se reduce a
15512 respuestas buenas y 19274 respuestas malas. Finalmente, el equilibrio se consigue
realizando una selección de 15512 respuestas de entre las 19274 consideradas como malas14.

Datos seleccionados con desequilibrio negativo: Tomando el mismo criterio de etiquetado
que en el punto anterior, se consigue un desequilibrio negativo realizando una selección
6000 respuestas de entre las 19274 consideradas como malas.

Para el caso de clasificación multiclase se utilizó el parámetro last seen fase como etiqueta de
bondad de la respuesta, pues se considera un buen indicativo la fase a la que una respuesta ha
llegado en el sistema.

Los resultados para los 3 conjuntos de entrenamiento son presentados en la Tabla 3.5, Tabla 3.6
y Tabla 3.7.

14Tener en cuenta que hay casos de equilibrado más potentes como las técnicas de Triplet loss o Contrastive loss
donde se ha demostrado que los modelos funcionan mucho mejor. Las tareas que abordan estas herramientas son
tareas de comparación y por esa misma razón no fueron incluidas en este trabajo, para más información visitar
[19]
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Modelo
Negativa Positiva Rendimiento

Real
Negativa 6646 175 97,4 %
Positiva 155 7 4,3 %

Tabla 3.5: Matriz de confusión. Datos de entrenamiento con desequilibrio negativo, 61171 respuestas
malas y 1671 respuestas buenas.

Modelo
Negativa Positiva Rendimiento

Real
Negativa 1691 453 78,9 %
Positiva 1021 726 40,9 %

Tabla 3.6: Matriz de confusión. Datos de entrenamiento equilibrados, 15512 respuestas buenas y 15512
malas.

Modelo
Negativa Positiva Rendimiento

Real
Negativa 901 1243 42,0 %
Positiva 472 1225 16,2 %

Tabla 3.7: Matriz de confusión. Datos de entrenamiento con desequilibrio positivo, 15512 respuestas
buenas y 6000 malas.

Podemos observar en los resultados como en el caso de un entrenamiento con desequilibrio
negativo, Tabla 3.5, el modelo ha aprendido que toda respuesta es mayoritariamente negativa
independientemente de sus caracteŕısticas. De manera análoga ocurre para el entrenamiento
con desequilibrio positivo, Tabla 3.7, aunque esta vez de manera no tan acentuada, pues la
proporción de desequilibrio no es tan grande.

En cuanto al caso equilibrado, Tabla 3.6, podŕıamos decir que se trata del mejor entre los tres
entrenamientos propuestos, pues obtiene el mejor balance de rendimiento para ambas clases.
Sin embargo, atendiendo a la matriz de confusión podŕıamos sugerir que el clasificador funciona
mejor con las respuestas malas que buenas por alguna razón intŕınseca del mismo 15, es por
ello que se decide llevar a cabo un entrenamiento con un ligero desequilibrio positivo (15512
respuestas buenas y 9000 malas) obteniendo un rendimiento del 66,6 % y del 52,6 % para el caso
de malas y buenas respuestas respectivamente. Con ello podemos afirmar que el equilibrado de
los datos en el conjunto de entrenamiento es conveniente pero no necesariamente un equilibrado
exacto es siempre la mejor opción, esto dependerá de las técnicas utilizadas en cada caso. Por
simplicidad, a partir de ahora los resultados serán obtenidos para un equilibrado exacto 16.

Para el caso de clasificación multiclase, el modelo es entrenado con 4000 registros de las 7 clases,
de esta manera se espera que sea capaz de predecir cuan buena es una respuesta dando una
puntuación del 1 al 7.

15Esto podŕıa ser porque quizás las respuestas malas tengan más cosas en común que las buenas y la probabilidad
condicionada funcione mejor sobre ellas.

16Cabe destacar que las pruebas realizadas apuntaban a que un equilibrio exacto era la mejor opción para el
resto de técnicas
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Figura 3.3: Matriz de confusión. Datos de entrenamiento equilibrados, 4000 registros por clase.

Atendiendo a la Figura 3.3 observamos que según nuestro modelo, la gran mayoŕıa de las respues-
tas pertenecen a la fase 5. Es un resultado curioso si recordamos que este hab́ıa sido entrenado
con datos equilibrados. Sin embargo, para el resto de fases observamos buenas predicciones
(números altos en la diagonal). La interpretación de esto es que el modelo ha conseguido un
conjunto de ”caracteŕısticas útiles” que le hacen predecir bien la fase de una respuesta, pero
en el momento que debe analizar un texto sin esas ”caracteŕısticas útiles” entonces traslada la
respuesta al valor más seguro, en este caso es la fase 5. Que haya tomado como valor más seguro
la fase 5 puede sugerir que las respuestas de esta fase tengan más cosas en común con el resto
(recordamos que el clasificador está basado en probabilidades condicionadas).

Finalmente, podemos concluir que las técnicas de extracción de caracteŕısticas y clasificación
utilizadas en este apartado pueden llegar a funcionar bien para clasificación binaria pero no para
el caso de multiclase. Esto es porque el enfoque binario puede ser más directo y menos susceptible
a ciertos tipos de ruido en los datos. Con el fin de mitigar los errores en la clasificación multiclase
se introduce una red neuronal de tipo perceptrón en lugar del clasificador Naive Bayes.

3.6. Extracción de caracteŕısticas con Bolsa de palabras. Red neuronal como
clasificador.

Tras la extracción de caracteŕısticas análoga al apartado anterior y un entrenamiento con datos
equilibrados, se obtuvieron los resultados presentados en la Tabla 3.8 y Figura 3.4.

Modelo
Negativa Positiva Rendimiento

Real
Negativa 1005 1126 47,2 %
Positiva 526 1201 69,5 %

Tabla 3.8: Matriz de confusión. Datos de entrenamiento equilibrados, 9000 respuestas buenas y 9000
respuestas malas.
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Figura 3.4: Matriz de confusión. Datos de entrenamiento equilibrados, 4000 registros por clase.

Observamos como para el caso binario se obtiene un rendimiento parecido al caso anterior,
esto revela que cambiar el clasificador no establece mejoras significativas. En cambio es curioso
observar la manera en la que el clasificador Naive Bayes consegúıa predecir mejor las respuestas
malas y en el caso de la red neuronal lo hace más fácilmente con las buenas.

En el caso de clasificación multiclase obtenemos mejoras muy sutiles. Lo más notorio es que el
modelo ha aprendido a categorizar la gran mayoŕıa de las veces en la fase 4, independientemente
de sus caracteŕısticas. Sin embargo podemos ver como la fase 1 la ha predicho bastante bien.

Además, cuando diseñamos la red para problemas de clasificación, la red no ”sabe” que la clase
1 es cercana a la 2 y lejana a la 7, no se trata de un problema de regresión, para la red son
clases independientes. Sin embargo, vemos que en las fases iniciales ha conseguido aprender esta
relación, de manera que si no categoriza bien en una fase, la clasifica en una cercana a ella.

Con el fin de obtener mejoras en el caso de clasificación multiclase, se introduce a continuación
una técnica más sofisticada de extracción de caracteŕısticas, una variante del modelo de lenguaje
BERT (Subsección 2.3), el cual proporcionará vectores semánticos mucho más útiles para la red
neuronal. Tanto esta técnica como la red neuronal como clasificacor conformarán los resultados
finales del trabajo.

4. Modelo final, análisis y resultados obtenidos

Esta vez entraremos más en detalle acerca del progreso del entrenamiento, presentando aśı la
evolución de la función de pérdida para cada época, tanto en el caso de clasificación binaria,
Figura 4.1, como en el caso de clasificación multiclase, Figura 4.2.
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Overfitting

Grokking

Overfitting

Figura 4.1: Función de pérdida para el conjunto de entrenamiento y conjunto de test. Clasificación
binaria. Entrenamiento con datos equilibrados. Tasa de aprendizaje de 0,1.

Para el entrenamiento de clasificación binaria, véase Figura 4.1 observamos varios fenómenos:

De 0 a 1000 épocas obtenemos lo esperado, el modelo entrena como es debido (descenso del
conjunto de entrenamiento) y mejorando su rendimiento (descenso del conjunto de test)

De 1000 a 2000 épocas la función de pérdida del conjunto de entrenamiento disminuye
mientras que la del conjunto de test comienza a estabilizarse e incluso aumenta ligeramente.
Esto indica que el modelo está empezando a aprender patrones espećıficos del conjunto de
entrenamiento que no generaliza bien al conjunto de test. Este fenómeno es denominado
overfitting o sobreajuste.

En torno a las 2000 épocas observamos que a pesar de estar el modelo en condiciones
de sobreajuste, tiene una cáıda brusca. Esto sugiere que el modelo ha capturado algún
patrón generalizable que le hace mejorar su rendimiento. Este fenómeno es denominado
como grokking.

En torno a las 2500 épocas comienza de nuevo el fenómeno de sobreajuste, cada vez más
notorio con el paso de las épocas.

Una vez visualizada la evolución del entrenamiento se decide optar por diseñar el modelo con
un total de 2000 épocas, dejando aparecer el fenómeno de grokking y descartando el segundo
sobreajuste. Los resultados finales se presentan en la Tabla 4.1, donde observamos una pequeña
mejora con los resultados presentados en secciones anteriores.

Modelo
Negativa Positiva Rendimiento

Real
Negativa 1379 775 64,0 %
Positiva 659 1070 61,9 %

Tabla 4.1: Matriz de confusión. Datos de entrenamiento equilibrados, 15512 respuestas buenas y 15512
malas. Entrenamiento hasta 2000 épocas.
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La evolución de la función de pérdida para el el caso de clasificación multiclase se presenta en
la Figura 4.2.

Overfitting

Figura 4.2: Función de pérdida para el conjunto de entrenamiento y conjunto de test. Clasificación
multiclase. Entrenamiento con datos equilibrados. Tasa de aprendizaje de 0,9.

Observamos de nuevo en el entrenamiento del modelo la manera en la que este aprende adecua-
damente hasta las 2000 épocas, a partir de entonces se produce el fenómeno de sobreajuste. Es
por esta misma razón que el modelo final fue diseñado hasta las 2000 épocas.
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Figura 4.3: Matriz de confusión. Datos de entrenamiento equilibrados, 4000 registros por clase.
Entrenamiento hasta 2000 épocas.

Atendiendo a la matriz de confusión, Figura 4.3, observamos la notable mejora en la calidad de
nuestro modelo, donde ha conseguido categorizar las respuestas en la diagonal o por lo menos,
cerca de ella.
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5. Conclusiones

En este trabajo de fin de grado se ha explorado el desarrollo de diferentes técnicas de inteligencia
artificial y machine learning para la evaluación de respuestas generadas por grandes modelos de
lenguajes en el campo del NLP, teniendo una aplicación directa en uno de los proyectos llevados
a cabo por Kampal Data Solutions, una herramienta online generadora de inteligencia colectiva
(Kampal Collective Learning).

A lo largo del desarrollo del proyecto, se han abordado diversas metodoloǵıas y algoritmos con el
objetivo de optimizar la capacidad de predicción y clasificación de las respuestas en función de
su calidad. Establecer la conexión entre el lenguaje humano y el lenguaje de una computadora
ha sido uno de los retos de este trabajo, aśı como la comprensión del aprendizaje de los modelos
en función de su diseño.

Los resultados obtenidos han podido desvelar la manera en la que las predicciones evolucionan
con la implementación de técnicas más avanzadas. Para la clasificación binaria ya pod́ıamos
recoger buenos resultados con las sencillas herramientas Bolsa de palabras y clasificador Nai-
ve Bayes. Además, la red neuronal como clasificador los mejoraba pero no significativamente.
Sin embargo, en el caso de categorizar en varias clases no es hasta la implementación de la
arquitectura Transformer que se obtuvieron resultados óptimos. Esta ha podido ofrecer una
representación más rica y contextual del lenguaje, dotándole al clasificador (red neuronal) de
información mucho más útil tanto para el entrenamiento como para las prediccione futuras.

Este trabajo ha proporcionado una base sólida para el desarrollo de una herramienta online
generadora de inteligencia colectiva, dotándola de dos modelos de evaluación de respuestas para
el entrenamiento e implementación de bots. Estos bots serán capaces de generar ideas interesantes
a tener en cuenta por los usuarios conectados. Todo ello con el objetivo siempre de generar una
mayor inteligencia colectiva.

Esta herramienta puede tener grandes aplicaciones si pensamos en cualquier ámbito de la vida
cotidiana donde varios individuos deban trabajar de manera colaborativa. Entornos escolares,
universitarios, debates poĺıticos... son algunas de las opciones donde puede implementarse esta
aplicación de manera beneficiosa. Gracias al contexto digital y sus dinámicas en la red se consigue
mitigar peligrosos sesgos sociales, jerarqúıas de poder, aislamiento de individuos... situaciones
que no favorecen a la convergencia de la respuesta cooperativa más inteligente.
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