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1. Introduccién y objetivos

En la Fisica de Fluidos, el estudio de los flujos de l[dmina libre es relevante para la modeliza-
ci6n de fendmenos, que van desde la evolucién de las crecidas en un rio [7], hasta el estudio de las
ondas del océano [6]. Queda claro entonces la importancia de tener modelos que reproduzcan con

suficiente precisién los fendémenos naturales para evitar, prevenir y mitigar catastrofes futuras.

En los flujos de lamina libre la fuerza motriz es la gravedad y su estudio, debido a la extension
espacial frente al grosor de la capa de agua, se suele abordar mediante modelos promediados
en la columna liquida. El modelo por excelencia para la modelizacion de este tipo de flujos son
las ecuaciones de Shallow Water (SW) o Aguas Poco Profundas, también llamadas ecuaciones
de Saint-Venant. Estas ecuaciones, basadas en leyes de conservacién de masa y cantidad de
movimiento, asumen un flujo incompresible en el que la principal aproximacién aplicada es una

distribucién de presiéon hidrostatica en la vertical.

Sin embargo, hay ocasiones en las que realizar la aproximacion hidrostatica no es adecuado.
Particularmente si se quiere estudiar fenémenos de caracter ondulatorio, en los que la longi-
tud de onda es comparable o menor que la profundidad de agua. Las distintas aproximaciones
que pueden utilizarse parten de diferentes formas de realizar la integracién en la columna de
la ecuaciéon de momento en z (direcciéon vertical). Cuando los términos de la integral excepto
el hidrostatico son directamente considerados irrelevantes es cuando se obtiene la aproximacién
de Shallow Water. En cambio, si se consideran estos términos adicionales existen varias formas
de abordar el estudio. Por un lado, estdan los modelos de tipo Boussinesq, como en [13], que,
ademaés del término hidrostatico, mantienen todos los términos de la integral dando lugar a sis-
temas con derivadas de alto orden, de compleja resolucién numérica. Por otro lado, los llamados
Dispersive Shallow Water Models, de acuerdo a [3], empaquetan la gran mayoria de los términos
en una variable dando lugar a una ecuacién mas sencilla pero con una nueva incégnita. En este
trabajo, se utilizaran los modelos del segundo grupo, también llamados Modelos de Presién No
Hidrostéatica (NHP), al igual que en [16, 3, 5].

Por ello es objetivo de este trabajo, que forma parte del proyecto de investigacién PGC2018-
094341-B-100 del Ministerio de Ciencia e Innovacion/FEDER, estudiar modelos mas alld de los
modelos de Shallow Water en los que la distribucion de presion es la contribucién de la presion
hidrostatica mas un nuevo término de correccién, que serd la presién no hidrostatica. En todos los
casos es necesario aplicar métodos numéricos para la resolucién de las ecuaciones. Se compararan
las predicciones numéricas de los dos tipos de modelos con datos de laboratorio, comprobando

su validez.

Asimismo, dado que estos sistemas resuelven la conservacion de la masa y de la cantidad
de movimiento, es habitual monitorizar el error de conservacién de la masa como indicio de
calidad del método numérico dado que se trata de una de las ecuaciones a resolver, como ocurre
en [16]. Sin embargo, sin resolver la ecuacién de la energia, su conservacion deberfa cumplirse.
Por esta razén, es propésito de este trabajo desarrollar la ecuacién de conservacién de la energia
de los modelos propuestos en ausencia de friccién y, adicionalmente, analizar lo que ocurre con
esta magnitud al discretizar las ecuaciones. En este Trabajo Fin de Grado se analizara si los

esquemas utilizados conservan o no la energia.



2. Formulacién de flujos promediados de lamina libre

Consideremos el caso de un flujo incompresible 2D en el plano (z,z) y sin friccién, en el

que el vector velocidad se expresa v = (u, w).

Figura 1: Principales variables involucradas.

La fuerza masica que actiia sobre el fluido es la gravedad, fi, = —gz. Despreciando por

simplicidad del analisis la friccién, el sistema es:

ou Ow

- — 2.1
ox + 0z 0 (2.1a)
ou @ ou 109p

e i 2.1
8t+u8w+w6z+p8x 0 (2.1b)
ow ow Oow 10p

did i S IE 2.1
ot +u8x+w8z+p82 g (2.1c)

Para completar el modelo se necesita establecer unas condiciones de contorno en la superficie

libre y en el fondo:

Ohy Oh,
Y —u(hsg) e + w(hs) (2.2a)
82;, o (‘)zb

donde hs y z, denotan la posiciéon de la superficie libre y del fondo respectivamente, como se

indica en la Figura 1 y hs =h + 2 .

Es frecuente integrar las ecuaciones en el eje vertical [5] y formular el sistema resultante
explicitamente en la variable h(x), profundidad o calado. En ocasiones se establece la posicién de
la superficie libre desde una referencia por debajo del fondo, pero aqui este caso no se considera.
Cuando se resuelve el sistema se obtiene en cada instante entonces el nivel o calado, que es una
variable fundamental en los flujos de lamina libre y la forma més inmediata de caracterizar su

estado en cada instante.

Igualmente es necesario definir velocidades promediadas en la vertical a partir de las ve-
locidades puntuales. Asi, si u(x, z) es la velocidad en el eje z, se define la velocidad promedio

vertical como L
u= —/ “u(z,2)dz (2.3)
h Jz,

La definicién es equivalente para la velocidad en la vertical.



2.1. Aproximacién hidrostatica (Shallow Water)

Una vez establecida la forma de proceder, se va a mostrar como con diferentes modelos
o aproximaciones para el perfil de velocidad horizontal y en la presion se obtienen los diferen-
tes modelos dominantes en la literatura. Partiendo de la ecuacién del momento en z, (2.1c) e

integrando en la vertical obtenemos:

b (0w ow 0w
p—g(hs—z)—i—/z (8t+uax+w8z>dz (2.4)

Los modelos de presién hidrostética o modelos de Shallow Water (SW) desprecian los térmi-
nos de aceleracién vertical, tanto local como convectiva. Siendo estrictos, los modelos de Shallow
Water hacen referencia a los modelos de lamina libre en los que se integra en la vertical, sin
ninguna hipétesis sobre la ecuacién para la presion, pero es comun hacer un abuso de lenguaje
y referirse a los modelos hidrostaticos como Shallow Water, como aqui se hara. Por tanto, solo
queda una distribucién de presién que es lineal con la profundidad, p = pg(hs(z,t) — z), es decir,
la del caso hidrostatico. Asumiendo también un perfil uniforme para la velocidad horizontal

llegamos al sistema de SW sin friccion

oh  o(hu)
o + o 0 (2.5a)
ohi)y 0 [, o, B\ 0

Este sistema es suficiente para resolver las variables (h, hu). El paso del sistema de Euler al
sistema de Shallow Water se detalla en el Anexo A.1. A partir de ahora se denotara la velocidad

media u como u para relajar la notacién.

2.1.1. Ecuacién de la energia para la aproximacion hidrostatica

La ecuacién de la energia del sistema se deduce de las ecuaciones para la masa y el momento.

La ecuacién de conservacion resultante se puede escribir como

o [ hu? h? 0 hu? h?
ot (2 +g2+ghzb> +% (U <2 +g§ +ghzb>> =0 (2.6)

En el Anexo A.2 se detalla un procedimiento para llegar a la ecuacién 2.6 a partir del

sistema 2.5. Definiendo la energia del sistema para el modelo Shallow Water como

hu? h+2
Boy = M 4 gn P H22)

: 5 (2.7)

se llega a una expresién para la conservacion de la energia del sistema.

OBsw 0 2\




2.2. Modelos no hidrostaticos

Aunque el modelo de Shallow Water estd muy extendido en la Simulacién de Flujos de
Lamina Libre, al despreciar todo tipo de aceleracién en el eje vertical, no es capaz de capturar
fenémenos que se observan de tipo ondulatorio. Para formular el modelo no hidrostatico todos los

términos de aceleracion en la vertical se agrupan en una nueva variable, la presién no hidrostatica,

Pnh-

P g(hy —z)+ ot (2.9)
P p
Esta variable p,,;, se puede entender como una correccién a la presién hidrostatica. Retener este

término adicional en la presiéon nos da un nuevo sistema de ecuaciones integrado en la vertical,

tal que
oh  O(hu)
o " ox 0 (2.10a)
Jd(hu) 2 ; Lh2 B %
ot oz (h“ + 75+ hoan | = (=gh + 2pan) 5 (2.10b)
d(hw) 0 B
ot + g (M) = 2pan (2.10c)

y asumiendo de ahora en adelante, salvo que se indique lo contrario, que todas las velocidades
son valores promediados ya en la vertical. Ademads, con el objeto de simplificar la notacién la

variable p,p representard ahora pyp/p.

Se trata de un sistema de tres ecuaciones para las 4 incégnitas asociadas al promedio vertical
(h,u,w, pyp). Por tanto, para obtener la solucién es necesario introducir una nueva ecuacion.
Segin sea esta ecuacion distinguimos entre 2 modelos: el NHP-HE, también llamado hiperbdlico
eliptico [3]; y el NHP-HR, el hiperbdlico relajado [10].

2.2.1. NHP-HE o hiperbdlico eliptico

La ecuacién adicional que introduce este modelo, que se conoce como Depth Integrated
Incomprensibilty Condition (DIIC) [16, 9], es una reformulacién de la ecuacién de conservacién
de continuidad para flujo incompresible original V - v .= 0. Es relevante porque al integrar y
tener una distribucién hidrostatica se pueden obtener soluciones que no cumplan esta condicién
de divergencia libre [5]. Con esta cuarta ecuacién se pretende que la conservacién de la masa se
cumpla de forma estricta. Para derivar la DIIC, se parte de nuevo de la ecuacion 2.1b y se integra
en la vertical, de modo que las velocidades que aparecen en la ecuaciéon 2.11 son puntuales y no

promediadas en la vertical, salvo que se indique con la notacién.

d(hu) oh 0z 0z
o u(z, hs)% — u(x, hs)% + u(z, zb)% +w(z, hs) —w(z, 2p) (2.11)

La diferencia con el procedimiento anterior estd, por un lado, en los perfiles que se toman

para las velocidades y por otro, en que solo se establece una condicién de contorno, en el fondo,



y no en la superficie libre. Por ello, no se elimina la dependencia con la velocidad en la vertical,
siendo necesario definirla tanto en x como en z, para que la velocidad vertical se siga considerando
una velocidad uniforme tal que

u(zx, z) = u(x), (2.12)

mientras que para la velocidad en el eje z se supone un perfil lineal

w(z, hs) —w(z, zp)

w(zx, z) = w(x, z) + W (z — 2). (2.13)
Sustituyendo ambas expresiones y aplicando la condicién de contorno w(zx, z) = u% = ﬂa—jﬁb,
es decir, que % = 0, se tiene la expresion
_ - ~ 0z
ou 2w —2 (uﬁ>
ox h ( )

Reorganizando y multiplicando la ecuacién por h? llegamos la ecuacion adicional del modelo, en

la que las velocidades son los valores promediados.

O) + 2hw — hu2 (h+22)=0 (2.15)

h ox ox

El nombre NHP hiperbdlico-eliptico proviene de esta cuarta ecuacién adicional, que es una

ecuacién eliptica sin derivada temporal y no una ecuaciéon de transporte.

2.2.2. Ecuacién de la energia para el modelo NHP-HE

Para deducir la ecuacion de la energia en este modelo, al igual que en el caso hidrostatico,
partimos de las ecuaciones de conservacién de la masa y el momento para el modelo NHP. De
nuevo, los detalles de cémo deducir esta ecuacion se detallan en el Anexo A.2. Tras realizar los

calculos y reorganizar términos se llega a

9 2 2 h2 o h(u? 2 h?
(h(“““) g+ ghzb> o (u (Mw) +9% +ghm + hpm))

ot 2 2 2
5 (2.16)
ou  w—uzt
= h el oz
Pri (81: TR )
Definimos de nuevo para este modelo la energia, de acuerdo a [3].
h h+ 2z
Enup-ngp = = +w?) + gh(ib) (2.17)

2 2

Y asi, la ecuacion de conservacién de la energia para el modelo NHP-HE queda

OENHP—HE O h? ou w—u%ﬁ
_— 4+ — E _ —+h =hpyp | — + ——5% 2.1
o + o (U< NHP-HE + 9~ + hpun Pan | 5+ ha (2.18)



Para el modelo NHP-HE se cumple que el término de la derecha de la ecuacién es nulo, de
acuerdo a la ecuacion 2.14, ya que no es mas que una reformulaciéon de la DIIC. Por tanto, la

ecuacién de conservacion de la energia para el modelo NHP-HE es compatible con:

OEngp—gE O h?
GENHP-HE | 9 [ (o Y )] =0 2.19
ot +8x u| Engp HE+g2+ Dnh ( )

2.2.3. NHP-HR o hiperbdlico relajado

El modelo NHP hiperbdlico-relajado [10] se basa en aportar una nueva ecuacién hiper-
bélica que regula la evolucién de la presiéon no hidrostatica. Esta ecuaciéon adicional relaja la
incompresibilidad del sistema.

9(hpnn) N 9] ((hu)(}ilpnh)> e (0(;;) 4 ohw — h“gfr (h+ sz)> =0 (2.20)

ot ox

Aparece un parametro nuevo, 012, relacionado con la compresibilidad y que tenemos que ajustar.
Este parametro representa la velocidad de la propagacion de las ondas en la superficie del fluido

[5] v se define como

10p,
cp = /gy = \[1+ ghh Vo (2.21)

siendo h ~ Hj el nivel o calado de referencia en el problema y « el valor que cuantifica las varia-
ciones de presion no hidrostatica con la altura. En principio no va a existir un valor preferente
para esta «, pero si que se tiene que cumplir que sea mayor que 1. Esto es porque la derivada
que hay en la ecuacién siempre es positiva, al aumentar la presiéon con la columna de agua.
Valores tipicos en la literatura suelen ser o € (1,10) [10]. La ecuacién 2.20 contiene la DIIC,
pero multiplicada por 0120. Esto es asi porque esta ecuaciéon adicional se puede interpretar como
una ecuacién que propaga los errores numéricos a velocidad finita (;127, [10] y a diferencia de la
DIIC que los propaga instantdneamente. De hecho, si se toma ¢, — 0o se recupera la relacién
para el modelo NHP-HE.

2.2.4. Ecuacion de la energia para el modelo NHP-HR

En este caso la deduccion es casi inmediata, notando que para derivar la ecuaciéon 2.16
solo se ha usado el sistema 2.10 y por tanto es comin para los dos modelos no hidrostaticos.
Recordando que el término de la derecha de la ecuacién 2.16 no es mas que la DIIC dividida

por h? y que también la ecuacién 2.20 la contiene se puede reescribir esta tiltima ecuacién de la

ou w—uge) 1 (0(hpw) | O ((huw)(hpan) | _
hpnh(aﬁm)—‘c;pnh(at*ax n )T

1 0 [ hpun 0 hp%h pih oh  O(hu)
2P 8t< > )*w(“ > ) T2 \o T o

P
—_———
=0

forma




Sustituyendo en la ecuacién 2.16 se tiene

o 2 2 h? hn o h 2 2 h? h?
<hu+w+92+ghzb+ ph>+ <U<W+92+ghzb+hpnh+ pnh)) _0

a1 2 2
ot 2 2¢; ox 2 2¢;

Y definiendo la energia de acuerdo a [10]

h 2
Exgp_gr = 5 <u2_|_w2 _|_g(h+2,zb)—|—pc712h> (2.22)
P

Se obtiene la ecuacién de conservacion de la energia para el modelo NHP-HR

OEngp-—gr 0O h?
GENHP-HR 9 [ (g Y )] =0 2.23
9t +o. || Evtp-tir + 97 + hpan (2.23)

Que tiene la misma forma que para el modelo NHP-HE pero se recuerda que la definicién de la

energia no es la misma.

3. Resolucién numérica y validaciéon con datos de laboratorio

Las ecuaciones gobernantes en todos los casos son ecuaciones no lineales en derivadas par-
ciales que requieren resolucién numérica. Para ello, se usa el método de los voltiimenes finitos [15)]
que se basa en discretizar el dominio en una serie de celdas (volimenes) y definir en los centros o
las paredes de las mismas las variables discretas del problema, que seran el valor promedio de la

correspondiente variable continua en esa celda, asi como los flujos numéricos que las actualizan.

La resolucion completa de las ecuaciones discretizadas se especifica en el Anexo A.3, pero se
incluye aqui un breve resumen de coémo se lleva a cabo. Se utiliza un esquema explicito, con una
discretizacién espacial de los flujos y el término fuente de tipo upwind [5]. En el caso del modelo
NHP-HE se subdivide el paso de tiempo en dos etapas. En la etapa intermedia se resuelve el caso
hidrostatico (modelo SW) mediante un Solver de Roe que proporciona variables intermedias [7]

que cumplen una hipétesis hidrostatica:

m—1/2

) %

h =y -2 [z (ge) ™03 (- se)" 2] (3.1a)
m—1/2

(hu)i = (hu)} - [Z (A5e)" "+ (3 -5e) " 21 (3.1b)

7

am )

7

=\ m+1/2
donde ?ZnHﬂ = (dm " ) .

También se actualiza en esta etapa la velocidad vertical.

. n At _
Wit1/2 = Wit12 — Ax [(uéw)j + (Wsw)iﬂ} . (3.1c)

El valor del paso temporal para el Solver de Roe estd limitado por la condicién para el



CFL, nimero adimensional cuyas siglas provienen de Courant—Friedrichs-Lewy. El CFL, que
debe ser menor o igual que 1 para garantizar un esquema numérico estable [15], restringe el paso

de tiempo segin
A
At=CFL i (3.2)

maz|i — ¢, 0, U+ ¢|

donde @ y ¢ se obtienen mediante los promedios de Roe.

Las variables conservadas finales se obtienen con la correccién de la presién hidrostatica.
Las modificaciones en el campo de velocidades se consiguen forzando a que se cumpla la DIIC,

para lo que es necesario un algoritmo iterativo, como es el método de Thomas o método de

las matrices tridiagonales [12]. Por tanto, las variables al finalizar el paso de tiempo quedan
corregidas:
Wit = hj (3.3)
(hu)i™ = (hu)f + Q(Apyn) (3.3b)
(w)?rll/z (w)is1/2 + W(Apnn) (3.3¢)

Es importante notar que la variable w estd desplazada con respecto a las demas. Esto es
porque se definen las variables w y p,p en las paredes y no en el centro de las celdas, para evitar

errores en la correccién de la presién, de acuerdo a [5].

El sistema NHP-HR, en cambio, se resuelve en un tinico paso, también mediante un solver
de Roe generalizado [5], pues se puede expresar como un sistema hiperbélico para las 4 variables.
El paso temporal estard por tanto de nuevo limitado por la condiciéon para el CFL menor o igual

que 1.

urtl —ur - i (A +~~)Z et i (A ‘“), 11ja| TASm(U )it (3.4)

m=1 m=1

donde U = (h, hu, hw, p,p) es el vector de variables conservadas y S, = (0,0, 2p,p, —2612,w) es

el vector de términos fuente no hidrostaticos.

3.1. Validacion de los modelos con datos de laboratorio

La elaboracién de un buen modelo numérico conlleva la comparacién de los resultados que
nos devuelve con datos experimentales. Solo de esta manera podemos saber si los fundamentos
fisicos aplicados son de relevancia en los casos ensayados y si, de esta manera, el modelo consigue
reproducir lo que ocurre en la realidad. Por ello, una vez conocidos los algoritmos numéricos em-
pleados en la resolucién de las ecuaciones se van a simular dos casos, comparando los resultados

numeéricos con datos experimentales tomados en el laboratorio.



3.2. Caso de propagacion sobre un fondo variable

El primer caso que se va a estudiar es el llevado a cabo por Beji et. al [1], por lo que
informalmente nos referiremos a él como caso de Beji. El propésito del mismo es caracterizar
cémo afecta la presencia de obstaculos en el fondo a la propagacién de ondas superficiales y
la consiguiente variacion de la amplitud y la frecuencia de los distintos armoénicos. En este
fenémeno, ademaés de los efectos no lineales, son relevantes los fenémenos de dispersién, por lo
que se espera que los modelos no hidrostaticos, al tener en cuenta estos 1ltimos, a diferencia del

modelo hidrostatico SW, ajusten mejor los datos experimentales [2, 5].

El montaje experimental consta de un obstaculo sumergido seguido de una playa que absorbe
las distintas olas y asegura que nunca lleguen al contorno. Un esquema del mismo es el que se

presenta en la Figura 2.

Se simula para los tres modelos considerados en este trabajo, con una discretizaciéon de
Az = 0,0lm y un CFL de 0,95.

5.0 }1‘ 1. 1.‘1.‘1.‘ 1.
1 2345678
- A = e
% L 5
s
S «
o
6.0 2.0 3.0 Ll.QS 18.75
31.7

Figura 2: Montaje experimental para el caso de Beji

En las Figuras 3 y 4 se presenta la variacién temporal de la perturbacién superficial (1) con
respecto a la superficie de referencia (en reposo), Hy = 0,4m, junto con los datos registrados en
los experimentos. Se observa que el ajuste que proporciona el modelo NHP-HE es el més cercano
a la realidad. En la mayoria de las sondas son indistinguibles los valores experimentales con el
ajuste dado por el modelo NHP-HE, excepto en las 2 tltimas sondas donde la discrepancia es
un poco superior. Por otro lado, el modelo NHP-HR tiende a sobreestimar la amplitud de las
mismas, ademas de generarnos mas ondas de las que realmente tienen lugar. Para las sondas 7

y 8 se acerca mas a la mediciones.

La representacion temporal en las distintas sondas también nos permite ver qué ocurre con
las ondas cuando se propagan por el canal. En las primeras sondas, al disminuir la profundidad
del agua, a causa de la pendiente positiva del escalén, la onda cambia su forma y aumenta
su amplitud. En la zona plana de menor calado se produce una transmisiéon de la energia a
armoénicos superiores. Y, en las tltimas sondas, entrando en la zona de pendiente negativa, las
ondas se descomponen a medida que aumenta el nivel, creado ondas de menor amplitud. Este

ultimo fenémeno parece estar mejor capturado por modelo HR.



SW —— NHP-HE —=— NHP-HR con a=5
Datos Exp. —e— NHP-HR con a=3 NHP-HR con a=7 —«—

Sonda 4

n (cm)

40 42 44 46 48
Time (s)

50

Figura 3: Variacién respecto al nivel en reposo registrada en la Sonda 4 con las simulaciones de los modelos
NHP-HE y SW para el caso de Beji.

SW NHP-HE —=— NHP-HR con a=5 SW o NHP-HE —=— NHP-HR con a=5
Datos Exp. —o— NHP-HR con a=3 NHP-HR con =7 Datos Exp. —e— NHP-HR con a=3 NHP-HR con a=7
Sonda 3

Sonda 4
3

n (cm)
n (cm)

40 2 44 46 48
Time (s)

Time (s)

SW NHP-HE —=— NHP-HR con a=5 SW NHP-HE —=— NHP-HR con a=5
Datos Exp. —e— NHP-HR con a=3 NHP-HR con a=7 . Datos Exp. —e— NHP-HR con a=3 NHP-HR con a=7
Sonda 6 Sonda 7
4

n (cm)
n (cm)

Time (s) Time (s)

Figura 4: Perturbacién respecto al nivel en reposo registrado en las sondas 3,4, 6 y 7 con las simulaciones
de los modelos NHP-HE y SW para el caso de Beji.

Respecto al modelo SW, captura bien el primer arménico del problema. Sin embargo, en
cuanto hay procesos de transmisién de energia entre armonicos, el modelo falla porque no tiene
en cuenta estos fendmenos en su formulacién. Se incluye en el Anexo A.4 un andlisis de como

afecta la discretizacién de la malla para el ajuste de los datos experimentales.
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3.3. Caso de ondas generadas por un pistéon

El caso reproducido por Cea et al.[1], al cual nos referiremos como caso de Cea en este
texto, trata de caracterizar el comportamiento de las ondas superficiales que se generan por

desplazamientos de un piston. El montaje experimental se presenta en la Figura 5.

0.5 0.5 1.0 1.0 0.51

(I |
L I

[ T

¥
0.25

0.4 A 3.01

5.0

Figura 5: Montaje experimental para el caso de Cea

Las ondas se generan mediante un pistén con forma de cufia, cuyo movimiento causa una
perturbacién que se propaga hasta impactar en un obtéaculo al final del canal. Se simula para
distintos valores de nivel inicial Hy asi como distintos desplazamientos méximos y velocidades
del pistén para el modelo NHP-HE y para el modelo SW, comparando como reproducen ambos

las ondas reales que se generan.

NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 Datos Exp —e—

Sonda 1

n (cm)

d A N o N s o ®

t(s)

Figura 6: Variacién respecto al nivel en reposo registrada en la Sonda 1 con las simulaciones de los modelos
NHP-HE y SW con un nivel inicial Hy = 0,25m y con el pistén rapido y para el caso de Cea.

NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 - Datos Exp —e— NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 Datos Exp —e—
Sonda 2 Sonda 3

n (cm)
n (cm)
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NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 -« Datos Exp —e— NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 -« Datos Exp ——
Sonda 4 Sonda 5
12 20

n (cm)
n (cm)

Figura 7: Perturbacion respecto al nivel en reposo registrado en las sondas 2,3,4 y 5 con las simulaciones
de los modelos NHP-HE y SW con un nivel inicial Hy = 0,25m y con el pistén rapido para el
caso de Cea.

Para el modelo NHP-HE, se han utilizado dos discretizaciones para estudiar la influencia
de la malla en los resultados, pero vemos que realmente es practicamente indiferente coger una

malla u otra, ya que hay ondas que se ajustan mejor con una y viceversa.

Lo que si cabe resaltar es que, aunque ningin modelo se ajusta exactamente a los datos
experimentales, el modelo NHP-HE si que consigue reproducir con bastante precisién las ondas
con mayor amplitud y solo pierde precision al reproducir las ondas secundarias que se generan
conforme la onda se propaga. Se comprueba, por tanto, la potencia del modelo NHP-HE para
la simulacién de flujos mas complejos y su idoneidad si se quiere predecir la evolucién de un

tsunami o deslizamiento del terreno.

En cambio, el modelo SW, de nuevo, reproduce correctamente la posicién de las ondas pero
no ajusta bien la forma de las mismas. Se adjunta en el Anexo A.5 el ajuste para otros dos casos

simulados.

4. Casos de estudio para evaluacion del error en la energia

En la seccién anterior se ha comprobado la necesidad de incorporar una distribucién de
presién no hidrostatica si se quiere reproducir correctamente situaciones en las que los fenémenos
de dispersion sean relevantes. El proposito de esta seccién es estudiar mas en profundidad los

tres modelos propuestos y sus limitaciones.

A la hora de discretizar las ecuaciones siempre se comete cierto error numérico. El objetivo
es que las ecuaciones resueltas que establecen la conservacion de la masa y el momento se
verifiquen al pasar al discreto, de modo que se obtengan resultados fisicamente coherentes. Es
habitual disefiar modelos que satisfagan al menos la conservacién discreta de la masa [5]. Tanto
es asi que, por ejemplo, para el modelo NHP-HE la ecuacién extra es otra reformulacion de la
ecuacion de la divergencia original [3]. En el modelo NHP-HR también aparece en un término
la DIIC. A la vista de los resultados estda que es una buena aproximacion al problema forzar la
conservacion de la masa. Sin embargo, hasta ahora no ha habido mucha preocupacién sobre si

los esquemas numéricos propuestos conservan o no la energia dado que su ecuaciéon de transporte
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no se esta resolviendo de forma especifica [3].

Respecto a la forma funcional de la energia, esta contiene tanto los términos debidos a la
energia cinética del fluido, como aquellos de energia de presion y gravitatoria. Para el modelo
NHP-HE la energia de presién que se considera es la hidrostatica (Ecuacién 2.18). Aunque
pueda parecer erréneo no incluir la variable p,; en la expresion de la energia, se recuerda que
esta se ha introducido en el modelo como una correccién a la presién del sistema mediante una
ecuacion eliptica, no hay propagacién de esta magnitud. Por tanto, es natural que aparezca en
los términos de los flujos que modifican las variables de la celda considerada. En cambio, para
el modelo NHP-HR (Ecuacion 2.23) si que se propaga la variable p,; y por ello va aparecer en

la expresion de la energia.

La expresion general para la conservacion de esta misma en cualquiera de los tres casos se

puede escribir como
oOFE 0

2t T on (uF(E)) =S (4.1)

El segundo término a la izquierda es el término de los flujos y el término a la derecha es

el término fuente, que para los casos presentados es nulo pero se anade aqui para generalizar
el desarrollo. Al integrar sobre el dominio completo se obtiene pues que la variacién total de
la energia en un paso de tiempo, At, viene dada por los flujos en los extremos del dominio,
dados por el segundo término a izquierda del igual y por la presencia de un término fuente, a la

derecha.

A continuacién se va a presentar diferentes casos de prueba en los que se comprobard hasta
qué punto los tres modelos conservan o no la energia. Aqui es importante hacer hincapié en que,
para todos los modelos, la ecuacién de la energia no es una ecuaciéon que se imponga a las variables
del sistema, ni se incorpora al modelo como una ecuaciéon que haya que resolver. Tan sélo es una
ecuacién que se evalia, y el hecho de que se cumpla debera derivarse de la correspondencia entre
las ecuaciones en el continuo y las ecuaciones discretizadas. Es una forma de comprobar si los
errores inevitables que se cometen en las aproximaciones y en la discretizaciéon son despreciables
y el modelo es adecuado o se tendria que buscar nuevos acercamientos a dichos problemas. Para
obtener el error en la energia entre un paso temporal y el siguiente, se discretiza la ecuaciéon de
la energia con un esquema explicito centrado en las celdas. La energia en el instante t + At a
partir de la energia en el instante ¢ se obtiene, como se ha dicho, integrando la ecuacién 4.1 en

el dominio y en un paso temporal

L OE F
//8da:dt // (u dmdt+/ / S da dt (4.2)
At At At

y aproximando al discreto queda

NCELLS NCELLS NCELLS
Y EMAz= Y EPAx+ At (uF(E))y — At (uF(E))yopris + AtAz > SP
=0 =0 :
(4.3)
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Y el error en la energia se calcula para un paso de tiempo At

Y EM Az — Y EMAz — At (uF(E))g + At (uF(E)) yoppns — AtAz Y SP
- Y EMAx

€ <100 (4.4)
Todos los errores se presentan en valor absoluto. La formulacién es equivalente para los otros

Casos.

4.1. Problema de Riemann sobre fondo plano

El primer caso de estudio serd una rotura de presa ideal, también conocida como problema
de Riemann. Consiste en una discontinuidad inicial que separa dos regiones de calado constante
y velocidad nula sobre un fondo plano. Esta discontinuidad inicial se modeliza como una funcién
escalén. De la propagacion de esta discontinuidad se producen dos ondas, una onda de choque
que viaja aguas abajo y una onda de rarefaccién que lleva la direcciéon contraria, propagando
la informacién de la presencia de la discontinuidad hacia aguas arriba. Se simula una rotura
de presa con una discontinuidad inicial de 0,2m. Se representan a continuacion la distribucién
espacial de la superficie del fluido para algunos instantes de tiempo calculados con el modelo
SW, y los dos modelos no hidrostaticos, en el caso de NHP-HR con o = 3. Se ha supuesto una
longitud de canal L = 1019m, una discretizacién espacial Az = 0,025m y un paso de tiempo

correspondiente a CFL 0,95. Se ha representado igualmente la presién no hidrostatica calculada

h+zy NHP-HE —— h+zn SWE pnh NHP-HR con a=3 ——
h+z» NHP-HR con a=3 pnh NHP-HE —— IniCon wueevi

t=5.0s
11 1.5

1.0 trerrre e e e e .
w\‘\ : 1.0
N
0 AN |
\ oy |

0.8 e B e e

z(m)
o
G«

Pnh

0.6 -0.5
500 520 540 560 580 600 620 640
x (m)

Figura 8: Distribucién espacial de calado y presion del problema de Riemann sobre fondo plano, con la
condicién inicial

con los modelos NHP. Aunque ambos presentan una evolucién del nivel muy similar, el NHP-
HR genera mas oscilaciones en la presién y es mas dispersivo que el NHP-HE. Respecto a SW,

observamos que propaga ambas ondas correctamente, pero no genera otras ondas secundarias.

Para estudiar cémo varia la energia para los modelos anteriores, escogiendo también distintos
valores de « para el NHP-HR, se representa la evolucién temporal de este escalar, que puede

verse en la Figura 9.

14



ENHP-HE —=—  EnHp-RfOr =5 — Esw
Entp-HR for a=3 Entp-HR for a=7 ENHPHE e enpHRfor a=5 - esw
Rotura de presa con fondo plano ENHP-HR for a=3 ENHP-HR for a=7
4.1442 Rotura de presa con fondo plano
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Figura 9: Evolucién temporal de la energia y del error para el problema de Riemann plano con los distintos
modelos

Para todos los modelos coincide la energia en t = 0, aunque su definicién no sea la misma,
dado que se establece w = 0 y p,, = 0 para las condiciones iniciales y la discrepancia en la
definicién viene por la contribuciéon de las velocidades. En el siguiente instante de tiempo la
energia Exgp_pr presenta un salto brusco, cuando ambos términos w? y pih /012, ya no son
nulos. El cambio es mucho més pronunciado que para la Enxgp_gr por dos motivos. El primero
es que este término pih / 0123 es exclusivo del modelo NHP-HR pero, por otro lado, se observa que
al cambiar el valor de « la variacién de la energia es similar. El segundo motivo lo justifica, ya
que al ser el modelo NHP-HR maés dispersivo, el valor de w? es superior que para el modelo
NHP-HE. Conforme avanza el tiempo, las energias se van estabilizando siendo superior para
el modelo NHP-HR. Se observa también que el modelo que aparentemente mejor conserva la
energia es el NHP-HE.

Se representa igualmente la evaluacién del error, que se ha calculado segtin se ha comentado
en la seccién 3. En la Figura 9 el error refleja lo que velamos en la grafica de la energia. El
modelo NHP-HR presenta mayor variacién en los instantes iniciales, estabilizandose a los pocos
segundos. Los pequenios saltos que se observan para los modelos NHP para tiempos posteriores
pueden deberse a difusién numérica, dado el orden de error con el que se esté tratando. En todo

caso, el error siempre es inferior a 1077,

Ox=0.1 —e—  Ax=0.05 — Bx=0.025 Ax=0.01 — Bx=0.1 ——  Ax=0.05 — Ax=0.025 Ax=0.01
4.1444 1.2e-07

4.1442 | ‘
\ 1.0e-07 |

4.1440
8.0e-08 ‘

4.1438 |

4.1436 6.0e-08

Energy Error

4.1434

Energy/L (kg m/s2)

~. 40e08 /||
41432

2,008 |
4.1430

4.1428 0.0e+00

Figura 10: Anélisis de convergencia para el modelo NHP-HR con o = 5 para el problema de Riemann
plano.

Se quiere ademaés ver que el esquema es consistente, es decir, que el error disminuye conforme

se refina la malla. Se presenta en la Figura 15 la energia por unidad de longitud y el error para

15



el mismo caso de antes, con a = 5, pero con diferentes discretizaciones.

Ax=0.1 — Ax=0.05 —- Ax=0.025 Ox=0.01 — Ax=0.1 — Ox=0.05 — Ax=0.025 Ax=0.01
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Figura 11: Andlisis de la convergencia del error de NHP-HE y SW para el problema de Riemann plano.

Aunque la convergencia en cada modelo es distinta, en todos los casos se obtiene un esquema
numérico convergente. El caso SW es el més sensible a la discretizacién, pues la reduccién del
error global con una malla computacional mas fina es mayor. Por otro lado, el modelo NHP-HR
es el menos variable, parece que para las discretizaciones escogidas ya se ha alcanzado la conver-
gencia y en términos de error es casi indistinto escoger una u otra, tan solo durante los instantes
iniciales. Si atendemos a la energia es cierto que la diferencia entre una y otra discretizacion
es un poco superior pero de nuevo la diferencia es pequefia, asi que seguir refinando mas no

reportara mejores beneficios, pero si aumentara el tiempo de simulacién significativamente.

4.2. Problema de Riemann sobre fondo variable

Se quiere ahora comprobar la influencia del fondo sobre la conservaciéon discreta de la
energia. Es sabida la importancia de la discretizacion de los términos fuente de fondo en modelos
de este tipo, como se indica en [11]. Con este propésito, se va a simular el mismo caso de antes

pero con obstaculo sumergido parecido al de Beji, que se muestra en la Figura 12.

0.8

‘ 12.0 4.0 3.0

Figura 12: Esquema del obstaculo para la propagacién de la onda en un fondo variable

En la evolucion temporal se observa como la presencia del obstaculo modifica la forma de las
ondas, aumentando la amplitud de la misma al disminuir el nivel y posteriormente, generando

mas ondas al repartirse la energia entre los distintos arménicos como ya se vio en el caso de Beji.
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Figura 13: Evolucién temporal del calado y la presiéon en el problema de Riemann sobre fondo variable

Para el andlisis energético se presenta el caso representado en la Figura 22, pero con los

tres valores del parametro « utilizados para el fondo plano.

ENHP-HE —- Enp-Hrfor a=5 — Esw ENHP-HE — ENHP-HRfOr 0=5 — £sw
Enp-HR for =3 — Entp-HR for a=7 — EnHp-HR for a=3 EnHP-HR for a=7
Rotura de presa con escalon Rotura de presa con escalon
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Figura 14: Evoluciéon temporal de la energia y error para el problema de Riemann con fondo variable con
los distintos modelos

Se observa que la presencia del fondo si que afecta a la conservacién de la energia, princi-
palmente para el modelo NHP-HR, distinguiéndose el momento en el que la informacion sobre
el fondo alcanza la onda que se propaga. A diferencia de la Figura 9 donde la energia se ha
estabilizado practicamente, al alcanzarse el obstaculo sumergido se produce una ligera disminu-
cién en la energia para luego aumentar a valores cercanos a los iniciales. Este aumento puede
deberse a que el algoritmo y la discretizacion resuelven de forma méas aproximada los puntos
donde el fondo no es suave, sino que cambia de forma abrupta, generando como consecuencia

ondas artificiales.

Respecto al error en la energia, refleja lo anterior: aumenta cuando la onda interacciona con
el fondo debido a que se genera energia artificialmente. En los modelos de SW y el NHP-HE
estd mejor implementado el algoritmo que trata con el fondo, por lo que no es sorprendente que
estos dos ultimos modelos se comporten de manera similar, pues ambos se resuelven a partir del

mismo esquema, en el que se ha tenido en cuenta el algoritmo seco-mojado de acuerdo a [14].

Respecto a la convergencia, se representa de nuevo la energia y el error para el modelo
NHP-HR con aa =5
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Figura 15: Andlisis de convergencia para el modelo NHP-HR con « = 5 en fondo variable
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Figura 16: Andlisis de convergencia para el modelo NHP-HR con o =5

Las discretizaciones utilizadas son las mismas que para el caso del fondo plano pero, asi
como se dijo que todas resultaban validas y no habia mucha diferencia entre escoger una y otra,
cuando se afiade el obstaculo si que parece que para Az = 0,1m los errores seran bastante
superiores que para los demas pasos espaciales. La grafica del error de la energia en la Figura
15 presenta un pico anormal para esta malla. Si representamos el caso se observan puntos en
los que el cédigo no resuelve bien, que son responsables del crecimiento de la energia conforme
avanza el tiempo.

Para los modelos NHP-HE y SW si comparamos la Figura 11 con la Figura 16 se comprueba
que la tendencia subyacente en el error para los dos modelos es la misma, pero con el efecto
afiadido del fondo.

En general, se puede comentar la influencia del fondo y comprobar que el algoritmo que
trata con él no conserva exactamente la energia, siendo el efecto mas importante cuanto mayor
es la discretizacién. También se puede deducir de esta comparacién que si se toma un Az

suficientemente pequeiio los efectos del obstiaculo se minimizan.

4.3. Propagaciéon de un soliton sobre fondo plano

El solitén es una onda que se propaga sin modificar su forma, debido a que los efectos

dispersivos compensan los no lineales. Se trata de un problema clasico con una solucién de

referencia establecida en literatura [5].
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Figura 17: Evolucién temporal de un solitén sobre un fondo plano con la condicién inicial

La longitud del canal es L = 819 m, la discretizacién de Az = 0,025 m y el CFL de nuevo
0,95. Al ser en el soliton importantes los efectos dispersivos para mantener la forma de la onda
y al no considerarse estos en el modelo de SW, este modelo no propaga la onda correctamente,
ya que sélo reproduce los efectos no lineales generando una acumulacién de la masa en el frente
de onda. Mientras, los modelos NHP, entre los cuales no se observa casi diferencia, si conservan
la forma del solitéon, al compensar la no linealidad con su comportamiento dispersivo. Si la
discretizacién no es suficiente, la onda puede ir perdiendo amplitud al propagarse, por eso es
necesario un minimo nimero de celdas para que este efecto no sea relevante. Se distingue también
una onda de pequena amplitud que se propaga aguas arribas, fenémeno que se ha reportado ya

en otras ocasiones [5].
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Figura 18: Evolucion temporal de la energia y su error para un soliton con fondo plano con los distintos
modelos

Con un analisis rapido, se podria decir que para este caso de test la energia se conserva peor,
ya que los 6rdenes de magnitud del error son superiores. Sin embargo, si se estudia la grafica del
error, lo que se ve es que realmente el aumento de este error es sélo para el modelo NHP-HR.
Ademsds de tener un error superior en 3 6rdenes de magnitud expone un comportamiento mas
erratico y necesita de un mayor tiempo de estabilizacién. Los modelos SW y NHP-HE presentan
un orden de error parecido a la rotura de presa, y aunque el error no evoluciona suavemente en
el tiempo, al igual que antes este comportamiento a un orden de magnitud como el que se trata
puede explicarse por la difusién numérica. Respecto a la energia, las oscilaciones iniciales son

superiores para un mayor valor de « al ser este modelo méas dispersivo y generar mas ondas.
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Se analiza ahora cada modelo por separado, estudiando la convergencia de los mismos al

refinar la malla computacional.

Ox=0.1 —e—  Ax=0.05 — Ox=0.025 Ax=0.01 — Ax=0.1 ——  Ax=0.05 — Ax=0.025 Ax=0.01
3.1454

Convergenia para NHP-HE

1.2e-08
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3.1453
8.0e-09

6.0e-09

Energy/L (kg m/s2)

Energy Error

3.1452 4.0e-09

2.0e-09

3.1451 0.0e+00 -~
0 0

Figura 19: Andlisis de la convergencia para el modelo NHP-HE con un solitén en fondo plano

En la Figura 19 se distingue cémo el modelo NHP-HE pierde energia, pero esta pérdida
consigue disminuirse mucho con el refinamiento de la malla, llegando practicamente a una con-
servacién de la misma. Ademds, la pérdida de energia es lineal, salvo en el primer instante en
el que al fijar nulas las condiciones iniciales para p,; y w es necesario un pequeifio reajuste. El
error presenta ciertos saltos que ya se han visto en otros casos, pero méas alld de ello son muy

pequefios y para una malla de Az = 0,01m estd acotado por 1077.

Ax=0.1 — Ax=0.05 — Ax=0.025 Ax=0.01 — Ax=0.1 — Ax=0.05 — Ax=0.025 Ax=0.01
3.1454 7.0e-08

6.0e-08 /\

3.1453

5.0e-08 /
= 3.1452 / \\
£ S 4.0e / \
B £ 40e08 { \
< 31451 > / \
z 8 [ .
S T 3.0e-08 / Va\ \
i} w 3 .
& 3.1450 /N
2.0e-08 / \ \\ [
\ |
. f \|
3.1449 Rt | %
i e 1.0e-08 \ .

. 7 -
! X/ .
~ Trr™—y - . . +
3.1448 0.0e+00 N A AVAY S S e
0 5 10 15 20 2 30 35 40 0 5 10 15 20 25 30
t(s) t(s)

Figura 20: Analisis de la convergencia para el modelo NHP-HE con un solitén en fondo plano

En el caso de SW la conservacién es peor y, ademas, el refinar la malla no consigue una
mejora distinguible. No es sorprendente este resultado si se considera lo que ya se ha visto sobre

el modelo de SW y la propagacién del solitén.

Por dltimo, las oscilaciones que se producen para el modelo NHP-HR no se consiguen
eliminar al refinar la malla. De hecho, el efecto es el contrario, se producen maés picos aunque
en el computo general la energia que se pierde en la propagacién es menor y el error también es

inferior.
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Figura 21: Andlisis de la convergencia para el modelo NHP-HR con o = 3 con un solitén en fondo plano

4.4. Propagaciéon de un soliton sobre fondo variable

Se introduce de nuevo el obstaculo de la Figura 12 en el fondo.

h+2o NHP-HE —— h+2p SWE P NHP-HR con a=3 ——— h+25 NHP-HE —— h+20 SWE P NHP-HR con a=3 ——
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11 11
10 L 10 L5
If
\
0.9 | 10 0.9 ﬂ\y 10
| A
- - I\ - — —— VAN
o 08 ~ 0s . = %8 ~—— i 05 .
£ & £ &
N 07 N 07
0.0 MW\\”W 0.0
06 06
0s -05 os 05
0.4 -10 0.4 -10
300 350 400 450 500 300 350 400 450 500
x(m) x(m)

Figura 22: Evolucién temporal del solitén sobre fondo variable

Cuando el solitén alcanza el obstaculo, que comienza en la posicién L = 380m, la forma de
este varfa. Conforme aumenta z;, la amplitud de la onda crece, siendo el modelo NHP-HR es
el que antes aumenta la altura del solitén. Una vez ha pasado la zona de menor calado (mayor
altura del obstéculo), se produce un fenémeno de dispersién, repartiéndose la energia entre los
armonicos y la amplitud de la onda disminuye, ademas de generarse ondas secundarias que se

propagan en las dos direcciones.

ENHP-HE —=—  Ennp-tirfor a=5 — Esw
Envpe for a=3 —— Ennp e for 0=7 ENHP-HE —= ENHp-HRfOr 0=5 — esw
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Figura 23: Evolucién temporal de la energia y su error para un solitén con fondo variable
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De nuevo, lo que ocurre es que las oscilaciones iniciales en la energia del modelo NHP-HR
nos impiden distinguir cémo evoluciona para los otros modelos, ya que la variacién de la energia
de estos ultimos es mucho mas pequefia. Podemos observar en torno al segundo 10 una pequena
oscilacion en la energia del modelo NHP-HR que se debe a la interaccién del solitéon con el
fondo variable. Un detalle interesante en la grafica del error de la energia es que para el modelo
NHP-HE se distingue perfectamente el instante en el que se alcanza el obstaculo. De hecho si
comparamos la curva con la Figura 18 se distingue una misma tendencia y magnitud, salvo el
tiempo de interaccion del solitén con el fondo variable, que ocurre entre los ¢ = 5 y los t = 20

segundos.
Se comparan los resultados de cada modelo usando distintas discretizaciones.
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Figura 24: Analisis de la convergencia para el modelo NHP-HE con un solitén con fondo variable
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Figura 25: Anédlisis de la convergencia para el modelo SW con un solitén con fondo variable

Las tendencias para SW y NHP-HE son las mismas que se tenian para un solitéon con fondo
plano, siendo esta tendencia interrumpida por la presencia del obstaculo, que genera variaciones
en la energia y en el error, haciendo que la cota maxima de error sea superior. Una vez superado
el obstaculo los errores vuelven a disminuir. De nuevo la convergencia de la malla es adecuada y
tiene mas relevancia utilizar una malla méas fina en el caso no hidrostatico que en el hidrostatico.
Para el modelo HR se tiene, otra vez, que para una mayor discretizacién las oscilaciones iniciales

de la energia son de mayor magnitud y tardan mas tiempo en desaparecer.

22



Ax=0.1 ——  Ax=0.05 — Ax=0.025 Ox=0.01 — Bx=0.025 Ax=0.01 —

Mx=0.1 ——  Ax=0.05 —

3.1365 1.0e-04

a0 | .
I\ 1.0e-05 1
ERECCHE \

3.1350 || 1.0e-06

I
3.1345 1.0e-07

31340 f||1|

Energy Error

31335 || 1.0e-08

Energy/L (kg m/s2)

|
3.1330 I 1.0e-09

3.1325
1.0e-10

3.1320

3.1315 1.0e-11

Figura 26: Andlisis de la convergencia para el modelo NHP-HR con un solitén con fondo variable

4.5. Discretizacion del término fuente para el modelo NHP-HE

Siguiendo con el andlisis en la energia, se recuerda la expresién de la conservacién para el

modelo NHP-HE

_ 9%
Ou  w—up,

OENHP-HE +
Ox h/2

0 h?
ot + 92 | U (ENHP—HE +g9—+ hpnh) = hpph (4.5)

2

Durante todo el texto, se ha insistido en que el término de la derecha, que es el término fuente
para la energia del modelo NHP-HE, es nulo. Este término tiene que ser 0 porque asi se impone

en la DIIC al resolver las ecuaciones (2.14).

En esta seccion se quiere comprobar si la hipétesis es valida cuando se discretiza. Para ello,
se presentan los valores maximos promedio de dicho término para los 4 casos estudiados en esta
seccion y para las distintas discretizaciones. Las siglas en la tabla PR, FP, SO y OB son para
denotar respectivamente Problema de Riemann, Fondo Plano, Solitén y Obstaculo. Todos los

valores tienen unidades de kgm/s3.

Az 0.1 0.05 0.025 0.01
PR,FP | 7,5-10710 | 5,1-10710 | 23.10710 | 7,610~ 1!
PR,OB | 1,7-107° | 51-10719 | 2.3-10710 | 7.6-10"1
SO,FP | 2,2-107* | 3,8-107"2 | 51-1073 | 5810714
SO,0B | 56-107? | 3,0-107% | 1,2-107Y | 2,0-1071

Tabla 1: Cota superior para el valor del término 2.14 dividido por la longitud del canal para los casos
estudiados en esta seccion

Vemos como una mayor discretizacién hace que la cota superior disminuya en todos los
casos de estudio. El mayor error en el término fuente para la rotura de presa se produce a
consecuencia de la discontinuidad inicial, excepto para el caso de Az = 0,1m en el que este valor
ocurre durante la interaccién de la onda con el fondo. De hecho, se puede comprobar que es asi
porque los valores maximos coinciden excepto para Az = 0,1m. En cambio, para la propagacion

del solitén es en los instantes en los que la onda alcanza el obstaculo donde es mayor este término.
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5. Conclusiones

Tras el analisis llevado a cabo, se puede comprobar la idoneidad de los modelos no hi-
drostaticos para reproducir con precision distintos procesos donde sea relevante los fenémenos
ondulatorios superficiales. Casos complejos como los estudiados de Beji et al. [I] y L.Cea et al.

[1] se modelan adecuadamente con una hipdtesis no hidrostatica.

En cambio, los modelos de Shallow Water proporcionan una visién general de la evolucién de
las perturbaciones al reproducir los primeros armoénicos, pero fallan en el detalle. Dependiendo
de la situaciéon que se quiera reproducir, es necesario plantearse qué es mas relevante, si una
mayor precisién con los modelos no hidrostaticos o un sistema computacionalmente mas simple,

con un modelo hidrostatico.

En relacion a la conservacién de la energia, se comprueba que, a pesar de que los esquemas
numéricos utilizados no fuercen esta conservacién, si que se obtiene en la mayoria de los casos un
error que es del orden de 108 o inferior. Es adecuado, por tanto, decir que la energfa se conserva
de forma razonable. Por otro lado, se ha visto también que la presencia de un fondo variable
si que afecta a dicha conservacion, empeorandola, aunque estos efectos pueden minimizarse
usando una malla computacional suficientemente fina. Queda para trabajos futuros el estudio
de posibles modificaciones que disminuyan el error que se produce en la energia debido al fondo.
Algunos trabajos recientes siguen esa linea de investigacion, la de buscar esquemas numéricos
que respeten la conservacion de la energia, aunque lo hacen basadndose en hipétesis hidrostaticas

[14]. Por ello, seria interesante la extension de esas ideas a modelos no hidrostaticos.

Respecto a los dos modelos no hidrostaticos estudiados, parece que el hiperbdlico eliptico
presenta mejores prestaciones, tanto en el ajuste de los datos experimentales como en la con-
servacién de la energia. El modelo hiperbélico relajado es también adecuado, pero se ha visto
que excesivamente dispersivo y tiende a generar mas ondas de las que realmente tienen lugar.

Ademas, tarda més en estabilizarse y sus errores pueden ser érdenes de magnitud superiores.

En cuanto al modelo hidrostéatico, dentro de su rango de aplicabilidad, es también un esque-
ma que conserva la energia bastante bien y presenta errores acotados por un orden de magnitud
muy pequeno. Por tltimo, se ha visto que el término fuente de la DIIC es para casi todos los
casos practicos practicamente nulo cuando estd discretizado, por lo que hacer esta aproximacién

no supondra diferencias observables en los resultados.
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A. Anexos

A.1. Integracion del sistema de Euler en la vertical

En esta seccién se va a ejemplificar como se realiza la transformacién del sistema de Euler
al sistema de ecuaciones integradas en la vertical. El sistema de Euler se puede reescribir de la

siguiente manera

ou Ow
% + % =0 (A.la)
ot Ox 0z p O0x
ow O(wu) Ow? 19p

+ e

ot Ox 0z | pdz

0 (A.1b)

—g (A.lc)

ya que nos serda mas conveniente para realizar la integracién. Para completar el sistema hacen

falta las condiciones de contorno, que se vuelven a escribir aqui para esclarecer los calculos.

Ohs Ohs

e —u(hsg) o + w(hs) (A.2a)
85;1, = —U(Zb)%zb + w(z) (A.2Db)

Dado que estamos considerando un sistema sin friccién, no es necesario establecer condicio-

nes de contorno dindmicas.

La principal herramienta para realizar esta integracién es la regla de Leibniz o derivacion
bajo signo integral.

) x a(x b(z) T
% </a(x) f(z,1) dz) = f(m,b(x))dl;;) _ f(x’a(x))dd(x) + /a(x) aféx’t)dz (A.3)

Comenzamos por la ecuacién de divergencia libre (Ecuacién A.la), integrando en z y apli-
cando A.3.
hs 9 hs 9
0= Zaz+ [ Ldr=

Zp 8113 Zp 32

o [hs Ohs 0z
= /Zb u(zx, z)dz — u(z, hs)% + u(x, zb)% + w(z, hs) —w(x, 2p)

Se aplican las condiciones de contorno A.2 y la definicién de velocidad media (Ecuacién 2.3) y

se obtiene asi la ecuacién de conservacién de la masa en funcién de h.

O(hi)  Ohs 9z O(hu) b

— = — =0
gr ot ot ox ot
Para la ecuacion del momento en x se procede de igual manera
hs 8 hs 8 2 hs a hs 1 8
Sl idz+/ (wu) dz+/ “P g =0 (A.4)
2, Ot 2 O0x 2 z 2 P OT
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Desarrollando los 3 primeros términos

hs hs
@dz— 8/ udz—u(x,hs)%—l—u(x zb)a b

5 Ot ot ot ot
hs au 8 hS 2 28h5 282:17
L o dz = /zb u”dz — u(z, hs) . + u(x, zp) g

hs 9(wu

[ o i, hoyute ) — e, e, )
2 xr

Se suman las tres contribuciones y se aplican las condiciones de contorno A.2 multiplicando

la condicién de contorno para la superficie por u(x, hs) y para el fondo por u(zx, zp). Todos los

términos que no estén en las integrales se simplifican y la ecuacién A.4 queda

0 10p
— — ——dz= A.
8t/ udz + / u? dz —I—/ ) or dz=0 (A.5)

Para poder seguir desarrollando la ecuacién es necesario establecer tanto un perfil para la
velocidad como para la presién. En este caso se va a asumir un perfil uniforme para la velocidad,

es decir,

u(z, z) = u(x) + 0(u(z, 2)?) (A.6)

Respecto a la presién, se toma la distribucién no hidrostatica definida para el modelo NHP para

que el desarrollo sea méas general.

o(h — oy Pab .
= g(hs )+p (A7)

DI

En concreto, desarrollando la integral de la presién

hs 0 Dnh
v hg Pnh _
/Zb _ <g( 2) + p)dz

9 0z 3/ P Puh ahs—i—@( b)azb

hs
ax/ 9lhs —2)dztg(hs =)+ 50 | 7 de == Rl )T o

d (1 4 Ozy  1O(hpun) | Pnn 0%
—~ (= 20, - gimh 770
696( h>+h8$+p ox p Ot

En este ultimo paso se ha usado que h(x) = hgs — 2p , la definicién de presién hidrosté-
tica promedio, que se define de manera equivalente a la velocidad promedio y por ultimo que

Pnh (T, hs) es nula. Por tanto, la ecuacion integrada en el eje x queda

d(hu) 0 (hﬁ) 2 | 5 Pnh Dnh 02p
—_— 4+ — —gh h = h 27 A8
o ox ( h " o2 (4.8)
nh (T,hs)+pnn (2,2
Notar que para p(z, 2,) se ha hecho la aproximacién p,, = 2 it )2p n(@:20)
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Finalmente, para el momento en z se tiene

hs hs 9 hs hs hs
8wd —|—/ 8wd+/ 1@dz—— gdz
2b 2b 2p
Para los términos de las velocidades
hs Qw o [hs Ohg Zp
—dz= — d hs)——
L ot T ot /z,, wdz —w(w, hs) 5+ wle, )5
hs hs
/Zb 0(8u;u) dz = &fx/zb uwdz — u(z, hs)w(x, hy) u(z, zp)w(z, zb)%
hs 2
s 3(;1; dz = w(z, hs)? — w(z, z)>
ha 1 dp 1 Dnh
——dz=—(plx,hs) —p(x,2)) = gh — 2—
|tz = e pla ) = gh— 2

hs
/ gdz = gh

2b

Como en las otras ocasiones se aplican las condiciones de contorno, esta vez multiplicando
la condicién para la superficie por w(z, hs) y para el fondo por w(z, z,) y se suman todos los

términos llegando a la ecuacion buscada

amw+a<“@“@)_fm (A9)
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A.2. Deduccion de la ecuacién de la energia

En esta seccion se va a deducir a partir de las ecuaciones gobernantes para cada modelo

propuesto, la ecuacién de la energia asociada.

A.2.1. Modelo hidrostatico o de Shallow Water

Se recuerda que el sistema de ecuaciones para el caso de una distribucién de presién hidros-

tatica es el siguiente

oh  d(hu)
a + ax == 0 (A.lOa)
dha) 8 ( o K2\ 9z

A partir de ahora aunque se trabajen con velocidades medias se simbolizard con u en vez
de u para relajar la notacion. Para llegar a la ecuacién de la energia partimos de la ecuacién
A.10b y la multiplicamos por la velocidad u. Vamos a desarrollar cada uno de los términos por
separado.

Para el primer término se tiene

o o T TV Ty

2

d(hu)  ,0h ou  ,0h 0 <u2>

ot ot\ 2 t ot\ 2 o
De nuevo
ot _ 0 (mf\ o () o ((mR) o
2 Ox _8xu2 u@x 2 8xu2 ox
Y asi ) )
d(hu) 0 [hu 0 hu 90U

u =5 (u(hu2)> — hu®— (A.12)

y para el tercero
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Desarrollamos el segundo término a la derecha
wou_ o () o (#
20r Jor\ 2 9z \ 2

Ahora usamos la ecuacién de conservacién de la masa (Ecuacién A.10a) multiplicada escalar-
Oh O(hu) 0 (h? 9 [ hu 0 (h?
"ot T o —6t<2 Tar\ 2 ) TYan\2) T
h? Ou 0 <h2>
95 .= "95, | 5

2 2 2
U% (g};> = a% <U(gh2)) +g% (2) (A.13)

0 (hu) 0 0
ugh—— = 5-(ughz) — gz —5 = = 5-(ughz) + 5 (ghz) (A.14)

mente por h.

Y por tanto

Donde en el taltimo paso se ha usado de nuevo la ecuaciéon de conservacién de la masa y que

el fondo no cambia con el tiempo, es decir, % = 0. Finalmente, sumamos todos los términos

(Ecuaciones A.11, A.12, A.13 y A.14), cancelamos términos.

0 u? 0 hu? 0 9 0 h2 o [ h? 0 0
5 <h2> ~ 32 <u2> —1—% (u(hu ))—I—% (u(gz)> —|—g§ <2> +%(ughzb)+a(ghzb) =0

Agrupamos las derivadas puntuales y las convectivas

0 [ hu? h? 0 hu? h?
& (2 +g2+ghz> +% (U(2 +g2+ghzb)> =0 (A15)

Se ha visto pues un procedimiento para llegar a la ecuacién deseada para la energia en el caso

hidrostatico.

A.2.2. Modelo no hidrostatico hiperbdélico eliptico o NHP-HE

Para llegar a la ecuacién de la energia de este modelo se parte del sistema no hidrostatico

integrado en la vertical, que se ha deducido en el Anexo A.1.

oh  O(hu)
o " ox 0 (A.16a)
(hu) = O ; }L? B 02

ot oz (h“ g5+ hpan | = (=gh + 2pan) 5 (A.16b)
d(hw) 0 B

ot + g () = 2pan (A.16c)

Como el sistema tiene una parte comin con el sistema hidrostatico, se pueden ahorrar
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calculos utilizando los resultados ya alcanzados. Vimos que multiplicando la ecuacién A.10b por
la velocidad en la horizontal llegdbamos a la ecuacién A.15. Multiplicamos pues los términos no
hidrostaticos' de la ecuacién A.16b por w.

O(hpnn) 0 ou
U O hpnh = O (Uhpnh) - hpnh O

Oz
a Ty

UQpnh O hpnh h/2

Por tanto, la ecuacién 2.10b multiplicada por u queda

o [ u?  n? & [ hu? b2 ou  ud:
— [ h— 4+ g— — 4+ g— z Al
g <h +g2 +ghzb>+ax< ( 5 ~|—g2 +ghzb+hpnh)> hpnh( + e (A.17)

Por otro lado, tomamos la ecuacién A.16¢ y la multiplicamos por la velocidad vertical, w. Para

el primer término de la ecuaciéon observamos que

ot 8t+2 hﬁ E+2

8(hw2) 28h ow w2 Oh d(hw?) d(hw)
w
ot ot

O(hw)

Despejando el término w=5;~ queda

8(hw)_w72@+g hw?
ot 20t ot\ 2

Para el segundo término

9 2\ _  o0hu ow _ ,0(hu) 0 9
5 (huw ) =w' + 2hu uwo— = Wi +2 8x(huw ) — wax(huw)

Despejamos wa% (huw).

0 w? d(hu) 0 2
wa—x(huw) =3 o + 7 (hu
Y por tanto,
d(hw) 0 w? (Oh  O(hu) 9 [ hw? 5‘ w? B
WG T g ) = ) = 5 (815 o) o e ) o (Mg ) e =0

'Es decir, los términos adicionales que contienen la p,; y que no estaban en la ecuacién A.10b
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Asi, sumando las ecuaciones A.17 y A.18 llegamos la ecuacién

o 2 2 h2 o h 2 2 h2
— (hu w +92+ghzb> +% (u <(u+w)+g+ghzb+hpnh>)

ot 2 2 2
5 (A.19)
ou  w—uszt
—}h i ox
Prk (Om e )
Si definimos la energia de acuerdo a [10] se llega a la expresién deseada.
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A.3. Resolucion numérica de las ecuaciones

En esta seccién se detalla en mayor profundidad el esquema numérico que se ha utilizado
para la resolucién de las ecuaciones gobernantes. El procedimiento que se sigue para realizar
dicha discretizacion es el de los volimenes finitos[15]. Este método consiste en la discretizacién
del espacio mediante un conjunto de celdas que forman la malla computacional. En el centro o
en el lado de cada celda se define el valor discreto de la variable como el promedio de la variable
continua en esa celda. En el caso particular de 1D esto se traduce en un dominio formado por

segmentos de longitud Az como se muestra en la Figura 27.

Az
=0 A — r=1L

' s cee Ti1 Z; Ti+1 cee Tn '

Ti—1/2 Tit1/2

Figura 27: Dominio discreto para el método de los voltimenes finitos

Las variables promedio en los centros de las celdas tienen la expresién

1
= _— [ Uz t" A2
U’ x/m (z,t") dz (A.20)

Este método funciona especialmente bien para resolver sistemas de ecuaciones hiperbélicos, que

se pueden expresar de la forma

8;;' +V-FU)=S8 (A.21)
siendo U el vector de las variables conservadas, F el vector de los flujos fisicos y S el vector que
contiene los términos fuente. Con el método de los volimenes finitos presentado y aplicando que

estamos en el caso de 1D el vector de variables conservadas en el instante ¢ + At se obtiene como

1 1
At At Az Jag

Az \Jat
(A.22)
donde es necesario aproximar las integrales de los flujos y los términos fuente. Se define con
esta ecuacién el flujo numérico, que es la integral del flujo a lo largo de la pared en un paso de

tiempo.
. 1

Fi+1/2 = At A

Igualmente se puede realizar la aproximacién para el flujo en la otra pared de la celda, asi como

F(U(;41/9,) dt (A.23)

la aproximacion del término fuente, y por tanto la expresién A.22 queda

Ut v - 1

* * At -
Ap \Cit1/2 T i—1/2) + +=Si (A.24)

Az

Los flujos se suelen resolver utilizando las variables a izquierda y derecha de la pared en
el tiempo t, es decir, con un esquema explicito. Resolviendo estos flujos se dice que se resuelve

el Problema de Riemann. Respecto a los términos fuente, estos pueden discretizarse de dos
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maneras, centrados en la celda, o como parte de los flujos numéricos, en las paredes.

Una forma de resolver el problema de Riemann consiste en utilizar el solver de Roe, cuyo
principio se basa en la linealizacién del problema de Riemann a partir de la matriz Jacobiana

que define el sistema.

Para entender mejor el procedimiento se va a explicar como se aplican estos métodos a las
ecuaciones de los modelos presentados en este trabajo. En concreto, el modelo de SW y NHP se
resuelven mediante un mismo esquema numeérico, con un paso de tiempo At subdividido en dos

pasos si se considera la distribucién de presién no hidrostética[5].

La resolucion de las ecuaciones NHP-HR es independiente y también se utiliza para ello un
Solver de Roe.

A.3.1. Resolucion del modelo SW y NHP-HE

El sistema de ecuaciones NHP-HE 2.10 se puede reescribir

ou  OF(U)

d(hw) = O(huw)
ot + O = 2pnh (A26)
J(hu) 0 B

h o + 2hw — hu%(h +22,) =0 (A.27)

donde

h hu 0
U= , F(U)= 5 1 9]0 Sp(U)= 0. | >
hu hu® + 5gh —gh'gt

0
S,n(U) = . . ,
r(U) (_ <haggh +pnhd(h;j b)))

Las dos primeras ecuaciones se escriben conjuntamente con la forma funcional de un sistema

hiperbdlico. Para resolver el modelo hidrostatico basta resolver este sistema siendo S,,;(U) = 0.
En el caso del modelo NHP-HE, como ya se ha comentado, resolver este sistema lleva a un estado

intermedio para las variables conservadas en el paso temporal U™,

El solver de Roe aplicado a este sistema hiperbdlico con el término fuente hidrostatico nulo

queda )
ou - U
o TG =

siendo J la matriz Jacobiana de las variables conservadas. U es el vector linealizado en las

Sy(U) (A.28)

paredes de las celdas, a partir de los valores definidos en el centro de las mismas. Los promedios
en las variables en las paredes para el computo de los flujos se obtienen a partir de la matriz

Jacobiana localmente linealizada.
6F = J5U
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que en este caso adopta la forma

Los valores promedios de las variables en las paredes son

= hi +hiy1 R wir1y/ hiv1 + wivhi
hiy1/2 = —  Gnp=y gh  iy1y0 = NRER

Una vez se tiene los promedios de Roe la actualizacién de las variables conservadas del sistema

se realiza mediante un esquema explicito upwind:

U -ur
At Az

siendo

la matriz linealizada de los valores propios, P la matriz de sus vectores propios asociados y A y

B los vectores que se definen como

~1 21
A-(%)-puo vy B= ("] -p A

La actualizaciéon de las dos variables conservadas, que cumplen una hipdétesis hidrostatica, es

pues la dada por las ecuaciones 77

hf=hl— % [Z (A+ ﬁél)i +3 (A~ &él)’.’”m] (A.30a)

m m

m—1/2

“ n At N m—1/2 < \m+1/2
(hu)i = (h)? = lz ()\ eQ)i +3 ()\ - yeQ)i ] (A.30Db)
m+1/2 _ (o M mtl/2 . . :
donde %; =& S . m recorre el nimero de valores propios del sistema, 2 en

este caso. El paso de tiempo es un paso de tiempo dindmico, estando restringido por la condicién
del CFL, que como se ha comentado es necesario que sea menor o igual que 1 para tener un

esquema numérico estable.
A
At =CFL i (A.31)

max[t — ¢, @, + ¢

La notacién con asterisco en A.30 hace referencia al paso de tiempo intermedio que se estd

considerando.

Si solo estuviésemos resolviendo el sistema hidrostatico, el paso de tiempo estaria completo
y se volveria a calcular los promedios de Roe con las nuevas variables actualizadas. En cambio,
si se esta resolviendo el modelo no hidrostatico hay que completar el paso de tiempo con una

correccion de los términos hidrostaticos forzando a que se cumpla la DIIC, que se ha visto que es
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exclusiva de este modelo. Este método se conoce como Pressure Correction Method [11]. Como
la DIIC es una ecuacion eliptica es necesario un procedimiento iterativo para realizarlo, que en

este caso se lleva a cabo mediante el algoritmo de Thomas [12].
Antes de realizar la correccién se calcula la evolucién de la velocidad w.

* n At —
Wiv1/2 = Wit1/2 = A, [(uéw)j + (U‘SU’)HJ : (A.32)

Un detalle importante en este punto es que las variables w y p,, estdn definidas en las
paredes de las celdas y no en los centros. El motivo de este desplazamiento es evitar posibles

problemas numéricos que surjan de la correccién de los campos de velocidades.[]

La correcciéon que se introduce a las variables es

Rt = hy (A.33a)
()it = (hu); + Q(Apun) (A.33b)
(w)?—:_ll/Q = (w)iy 172 + W(Apnn) (A.33c)

donde los términos Q(Apnn) vy W(Apy,p) son las expresiones discretas de los términos no hidros-

taticos antes no considerados.

n+1 _ ntl n+1 n+1
na1 Prhit1/2 ~ Prnic1/2 e (B 22)00 — (b +22);"
Qpun) = —At |yt VR IR oA Bl (asy)
W (pnn) = At2p)tS (A.35)

Notar que ambas ecuaciones se evalian en los centros de las celdas, por lo que al estar
definida la presién en las paredes, se aproxima su valor en el centro de las celdas mediante el
promedio de sus valores en la pared. Las expresiones para el calado y los caudales unidad de las

celdas se sustituyen en la ecuaciéon DIIC discretizada.

n+1
hiy1/2(hu)ip1 — (hu); hiv1 + 22y 41 — hy — 225 "
/ s + 2hip10Wit172 — (h)iy1/2 Ar =0

llegando al sistema buscado que es una ecuacién para la presiéon no hidrostatica.
n+1 . antl . At o )
Ai+1/2pnh,z'—1/2 + Bit1/2 " Pppivijo T Cit1/2 Ponits2 = Divi/2
Los coeficientes tienen las siguientes expresiones, siendo ¢; 12 = hiy1 + 22i+1 — hi — 22;.

Aig12 = <¢;l - 2hi> (Big1/2 — 2hit1/2)

Biy12 = 16A2% + i1 /0(i + dig1 + 2hip1 — 1 — 2hipy)
+2hi112(dij2 — Pir1/2 + 4hig1/2)
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Ciy12 = <¢i2+1 - 2hi+1> (Big1/2 — 2hit1/2)

Az? (hu)iy1 — (hu); Dit1/2
D12 = AL [hiﬂ/z +Aa: - (hu)i—i-l/QTx/

+ 2R 41 /0Wir1/2

Para resolverla se utiliza el método de Thomas o método para las matrices tridiagonales|!2],
completandose asi el paso temporal completo y actualizando las variables conservadas con los

nuevos valores calculados.

A.3.2. Resolucién del modelo NHP-HR

El modelo NHP-HR se puede escribir como un sistema hiperbélico de 4 ecuaciones de la

forma
oU  OF(U) ou 0z
B(U =S Son(U) + Se(U A.
o T T ()3m b(U )ax"‘nh( ) +S¢(U) (A.36)
donde
h h Gu
h w 1 Lan2
U — o] F(U) = hqu+129 + 4p 7
hw Guw 7 Qulw
hpnh ap Fqulp + au
0 0
(gh+2pnh) 8Zb 0
Sy, (U) = ., Sn U) = )
b(U) o M G smo=
2012,71 —2012010
0 0 00
0
B(U) = 0 00
0 0 0 0
F2qu 0 0 0

Aplicamos el solver de Roe mediante la linealizacion de las variables en las paredes de las celdas.

ou KﬁaU

o HK(0) 5 = 8,(0) + 8,(0) + 8,(0) (A.37)

Y la expresion final para la actualizacién de las variables en el tiempo t + At es

urtl —ur - 24: (A*W)l et f: (A ) e + AtS,, (U (A.38)

m=1 m=1
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A.4. Analisis de la discretizacion de la malla para el caso de Beji

En la seccién 3 se ha visto que el modelo que mejor ajustaba los datos experimentales para

el caso de Beji et al. [1] era el modelo NHP-HE. Se quiere estudiar también la influencia de la
malla escogida y cual es la eleccién més adecuada.

Datos Exp. —e— Ax=0.005 —=— Ax=0.01 Ax=0.025 Ax=0.1 —+—
Sonda 1
1.5
1 |
0.5 - ]
B
A
—
0. ]
-0.5
-1 ’ I v I
40 42 44 46 48 50
Time (s)

Figura 28: Variacion del nivel en la sonda 1 para el caso de Beji con distintas mallas para el modelo
NHP-HE

Datos Exp. —e— Ax=0.005 —=— Ax=0.01 Ax=0.025 Ax=0.1 ——
Sonda 2

n (cm)

50

Time (s)

Figura 29: Variacion del nivel en la sonda 2 para el caso de Beji con distintas mallas para el modelo
NHP-HE
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Datos Exp. —e—

Ax=0.005 —=— Ax=0.01 Ax=0.025 Ax=0.1 —~—
Sonda 3
2 T
PA /P
15 I ]
¥ | & d
T 1 "
v ! %
1

| :‘ ) \\ / X
AU AU ANA
05 4 '

n (cm)

A
A
-0.5 R X
sﬁ\
. I Y i X
- \N { \
/ L
e/
-1.5 I
40 42

50
Time (s)

Figura 30: Variacion del nivel en la sonda 3 para el caso de Beji con distintas mallas para el modelo
NHP-HE

Datos Exp. —e— Ax=0.005 —=— Ax=0.01 Ax=0.025 Ax=0.1 —~—

Sonda 4

n (cm)

Time (s)

Figura 31: Variacion del nivel en la sonda 4 para el caso de Beji con distintas mallas para el modelo
NHP-HE

39



Datos Exp. —e— Ax=0.005 —=— Ax=0.01 Ax=0.025 Ax=0.1 —v—
Sonda 5

n (cm)

10 ed
1.5 | 1 I |
40 42 44 46 48 50
Time (s)

Figura 32: Variacién del nivel en la sonda 5 para el caso de Beji con distintas mallas para el modelo

NHP-HE
Datos Exp. —e— Ax=0.005 —=— Ax=0.01 Ax=0.025 Ax=0.1 —v—
Sonda 6
3
2.5 - ]

15 -

n (cm)

0 i \ I X J 4 | i
R /f ! / ‘ [ d- [ |
-0.5 : J | ! l‘ | " }A \ |
1 7 v ‘ " f ¥
¥ v v ‘
-1'540 p p” % pm 50
Time (s)

Figura 33: Variacion del nivel en la sonda 6 para el caso de Beji con distintas mallas para el modelo
NHP-HE
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Datos Exp. —e—

2.5

1.5

0.5

n (cm)

05 ‘ ;{\ L

-1.5

40

42

Ax=0.005 —=—

44

Ax=0.01
Sonda 7

Time (s)

Ax=0.025

48

Ax=0.1 —~—

50

Figura 34: Variacién del nivel en la sonda 7 para el caso de Beji con distintas mallas para el modelo

NHP-HE

Datos Exp. —e—

Ax=0.005 —=—

Ax=0.01
Sonda 8

Ax=0.025

Ax=0.1 —~—

n (cm)

42

44

Time (s)

46

48

50

Figura 35: Variacion del nivel en la sonda 8 para el caso de Beji con distintas mallas para el modelo

NHP-HE

En la sonda 1 hay una concordancia total entre experimento y simulacién porque se establece

este caso como condicién de contorno para simular este problema. Se observa que cuanto mayor es

la discretizacién, mejor es el ajuste de los datos. De hecho, son necesarios valores muy pequenos

de Ax para tener un ajuste adecuado. Esto también es debido al tamano de las ondas que

se generan, pues tienen una amplitud y anchura del orden de los centimetros, por lo que es

necesario una discretizacién un orden de magnitud menor para poder discretizarlas sin que el

error asociado a ello sea relevante. Ademas de ajustar los datos con mayor precision buscar

la mejor discretizacion permite seleccionar esta misma para luego evaluar la energia con esta

mismo Ax.
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A.5. Caso de ondas generadas por un pistén

Se incluyen en este anexo las gréficas del caso de Cea et al. [1] que por elongacién no se
han podido afadir al cuerpo principal de este trabajo pero que son igualmente interesantes. El
caso que se ha simulado en la seccién 3 es para un nivel Hy = 0,25m y un pistén rapido, que
se corresponde con una velocidad de 0,58m/s y una amplitud de desplazamiento de 0,29m, tal
como se describe en [1]. Para el mismo pistén pero con un menor nivel en reposo Hy = 0,20m
de nuevo se tienen resultados adecuados.

NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 Datos Exp —o—
Sonda 1

14

n (cm)

t(s)

Figura 36: Variacion respecto al nivel en reposo registrado por la Sonda 1, junto con los modelos NHP-HE

y SW

NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 Datos Exp —o—
Sonda 2
12

10

n (cm)
N

t(s)

Figura 37: Variacién respecto al nivel en reposo registrado por la Sonda 2, junto con los modelos NHP-HE
v SW
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NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01

Sonda 3

Datos Exp —e—

12

n (cm)

14
t(s)

Figura 38: Variacion respecto al nivel en reposo registrado por la Sonda 3, junto con los modelos NHP-HE
y SW

NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01

Sonda 4

Datos Exp —e—

12

n (cm)

14

t(s)

Figura 39: Variacion respecto al nivel en reposo registrado por la Sonda 4, junto con los modelos NHP-HE
y SW
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NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01

Sonda 5

Datos Exp —e—

25

n (cm)

t(s)

Figura 40: Variacion respecto al nivel en reposo registrado por la Sonda 5, junto con los modelos NHP-HE
y SW

También se incluyen los ajustes para el caso en el que el pistén se mueve con la frecuencia
lenta, a una velocidad de 0,29m/s y con una amplitud de 0, 58m.

NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 Datos Exp —e—

Sonda 1
14

n (cm)

t(s)

Figura 41: Variacion respecto al nivel en reposo registrado por la Sonda 1, junto con los modelos NHP-HE
y SW
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NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 — . — Datos Exp ——
Sonda 2

n (cm)

N W N~ U1 O N 0

—

N SR o

0 2 4 6 8 10 12 14
t(s)

Figura 42: Variacién respecto al nivel en reposo registrado por la Sonda 2, junto con los modelos NHP-HE
y SW

NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 — . — Datos Exp ——
Sonda 3

n (cm)

14

t(s)

Figura 43: Variacion respecto al nivel en reposo registrado por la Sonda 3, junto con los modelos NHP-HE
y SW
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NHP Ax=0.01 NHP Ax=0.02 SW Ax=0.01 — Datos Exp —e—

Sonda 4
8
7
6
5
~ 4
£
)
- 3
2
1
0
-1
0 2 4 6 8 10 12 14

t(s)

Figura 44: Variacién respecto al nivel en reposo registrado por la Sonda 4, junto con los modelos NHP-HE
y SW

En ambos casos, los datos experimentales se reproducen con mayor precisién de nuevo con
el modelo NHP-HE, y de nuevo no hay preferencia por una malla computacional mas fina para

las dos escogidas en este modelo.

Por otro lado, para el modelo de SW se observa que en las sondas 3, 4 y 5 reproduce unas
regiones planas, donde las ondas alcanzan su méximo que no se observaban para el pistén rapido.
Estas zonas indican ain mas si cabe que el modelo de SW no realiza un ajuste correcto de la

situacién a modelar.
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