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1. Introducción y objetivos

En la Física de Fluidos, el estudio de los flujos de lámina libre es relevante para la modeliza-
ción de fenómenos, que van desde la evolución de las crecidas en un río [7], hasta el estudio de las
ondas del océano [6]. Queda claro entonces la importancia de tener modelos que reproduzcan con
suficiente precisión los fenómenos naturales para evitar, prevenir y mitigar catástrofes futuras.

En los flujos de lámina libre la fuerza motriz es la gravedad y su estudio, debido a la extensión
espacial frente al grosor de la capa de agua, se suele abordar mediante modelos promediados
en la columna líquida. El modelo por excelencia para la modelización de este tipo de flujos son
las ecuaciones de Shallow Water (SW) o Aguas Poco Profundas, también llamadas ecuaciones
de Saint-Venant. Estas ecuaciones, basadas en leyes de conservación de masa y cantidad de
movimiento, asumen un flujo incompresible en el que la principal aproximación aplicada es una
distribución de presión hidrostática en la vertical.

Sin embargo, hay ocasiones en las que realizar la aproximación hidrostática no es adecuado.
Particularmente si se quiere estudiar fenómenos de carácter ondulatorio, en los que la longi-
tud de onda es comparable o menor que la profundidad de agua. Las distintas aproximaciones
que pueden utilizarse parten de diferentes formas de realizar la integración en la columna de
la ecuación de momento en z (dirección vertical). Cuando los términos de la integral excepto
el hidrostático son directamente considerados irrelevantes es cuando se obtiene la aproximación
de Shallow Water. En cambio, si se consideran estos términos adicionales existen varias formas
de abordar el estudio. Por un lado, están los modelos de tipo Boussinesq, como en [13], que,
además del término hidrostático, mantienen todos los términos de la integral dando lugar a sis-
temas con derivadas de alto orden, de compleja resolución numérica. Por otro lado, los llamados
Dispersive Shallow Water Models, de acuerdo a [8], empaquetan la gran mayoría de los términos
en una variable dando lugar a una ecuación más sencilla pero con una nueva incógnita. En este
trabajo, se utilizarán los modelos del segundo grupo, también llamados Modelos de Presión No
Hidrostática (NHP), al igual que en [16, 3, 5].

Por ello es objetivo de este trabajo, que forma parte del proyecto de investigación PGC2018-
094341-B-I00 del Ministerio de Ciencia e Innovación/FEDER, estudiar modelos más allá de los
modelos de Shallow Water en los que la distribución de presión es la contribución de la presión
hidrostática más un nuevo término de corrección, que será la presión no hidrostática. En todos los
casos es necesario aplicar métodos numéricos para la resolución de las ecuaciones. Se compararán
las predicciones numéricas de los dos tipos de modelos con datos de laboratorio, comprobando
su validez.

Asimismo, dado que estos sistemas resuelven la conservación de la masa y de la cantidad
de movimiento, es habitual monitorizar el error de conservación de la masa como indicio de
calidad del método numérico dado que se trata de una de las ecuaciones a resolver, como ocurre
en [16]. Sin embargo, sin resolver la ecuación de la energía, su conservación debería cumplirse.
Por esta razón, es propósito de este trabajo desarrollar la ecuación de conservación de la energía
de los modelos propuestos en ausencia de fricción y, adicionalmente, analizar lo que ocurre con
esta magnitud al discretizar las ecuaciones. En este Trabajo Fin de Grado se analizará si los
esquemas utilizados conservan o no la energía.
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2. Formulación de flujos promediados de lámina libre

Consideremos el caso de un flujo incompresible 2D en el plano (x, z) y sin fricción, en el
que el vector velocidad se expresa v = (u, w).

Figura 1: Principales variables involucradas.

La fuerza másica que actúa sobre el fluido es la gravedad, fm = −gẑ. Despreciando por
simplicidad del análisis la fricción, el sistema es:

∂u

∂x
+ ∂w

∂z
= 0 (2.1a)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+ 1

ρ

∂p

∂x
= 0 (2.1b)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+ 1

ρ

∂p

∂z
= −g (2.1c)

Para completar el modelo se necesita establecer unas condiciones de contorno en la superficie
libre y en el fondo:

∂hs

∂t
= −u(hs)∂hs

∂x
+ w(hs) (2.2a)

∂zb

∂t
= −u(zb)

∂zb

∂x
+ w(zb) (2.2b)

donde hs y zb denotan la posición de la superficie libre y del fondo respectivamente, como se
indica en la Figura 1 y hs = h + zb .

Es frecuente integrar las ecuaciones en el eje vertical [5] y formular el sistema resultante
explícitamente en la variable h(x), profundidad o calado. En ocasiones se establece la posición de
la superficie libre desde una referencia por debajo del fondo, pero aquí este caso no se considera.
Cuando se resuelve el sistema se obtiene en cada instante entonces el nivel o calado, que es una
variable fundamental en los flujos de lámina libre y la forma más inmediata de caracterizar su
estado en cada instante.

Igualmente es necesario definir velocidades promediadas en la vertical a partir de las ve-
locidades puntuales. Así, si u(x, z) es la velocidad en el eje x, se define la velocidad promedio
vertical como

ū = 1
h

∫ hs

zb

u(x, z) dz (2.3)

La definición es equivalente para la velocidad en la vertical.
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2.1. Aproximación hidrostática (Shallow Water)

Una vez establecida la forma de proceder, se va a mostrar cómo con diferentes modelos
o aproximaciones para el perfil de velocidad horizontal y en la presión se obtienen los diferen-
tes modelos dominantes en la literatura. Partiendo de la ecuación del momento en z, (2.1c) e
integrando en la vertical obtenemos:

p

ρ
= g(hs − z) +

∫ hs

z

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
dz (2.4)

Los modelos de presión hidrostática o modelos de Shallow Water (SW) desprecian los térmi-
nos de aceleración vertical, tanto local como convectiva. Siendo estrictos, los modelos de Shallow
Water hacen referencia a los modelos de lámina libre en los que se integra en la vertical, sin
ninguna hipótesis sobre la ecuación para la presión, pero es común hacer un abuso de lenguaje
y referirse a los modelos hidrostáticos como Shallow Water, como aquí se hará. Por tanto, solo
queda una distribución de presión que es lineal con la profundidad, p = ρg(hs(x, t)−z), es decir,
la del caso hidrostático. Asumiendo también un perfil uniforme para la velocidad horizontal
llegamos al sistema de SW sin fricción

∂h

∂t
+ ∂(hū)

∂x
= 0 (2.5a)

∂(hū)
∂t

+ ∂

∂x

(
hū2 + g

h2

2

)
= −gh

∂zb

∂x
(2.5b)

Este sistema es suficiente para resolver las variables (h, hu). El paso del sistema de Euler al
sistema de Shallow Water se detalla en el Anexo A.1. A partir de ahora se denotará la velocidad
media ū como u para relajar la notación.

2.1.1. Ecuación de la energía para la aproximación hidrostática

La ecuación de la energía del sistema se deduce de las ecuaciones para la masa y el momento.
La ecuación de conservación resultante se puede escribir como

∂

∂t

(
hu2

2 + g
h2

2 + ghzb

)
+ ∂

∂x

u

(
hu2

2 + g
h2

2 + ghzb

) = 0 (2.6)

En el Anexo A.2 se detalla un procedimiento para llegar a la ecuación 2.6 a partir del
sistema 2.5. Definiendo la energía del sistema para el modelo Shallow Water como

ESW = hu2

2 + gh
(h + 2zb)

2 (2.7)

se llega a una expresión para la conservación de la energía del sistema.

∂ESW

∂t
+ ∂

∂x

u

(
ESW + g

h2

2

) = 0 (2.8)
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2.2. Modelos no hidrostáticos

Aunque el modelo de Shallow Water está muy extendido en la Simulación de Flujos de
Lámina Libre, al despreciar todo tipo de aceleración en el eje vertical, no es capaz de capturar
fenómenos que se observan de tipo ondulatorio. Para formular el modelo no hidrostático todos los
términos de aceleración en la vertical se agrupan en una nueva variable, la presión no hidrostática,
pnh.

p

ρ
= g(hs − z) + pnh

ρ
(2.9)

Esta variable pnh se puede entender como una corrección a la presión hidrostática. Retener este
término adicional en la presión nos da un nuevo sistema de ecuaciones integrado en la vertical,
tal que

∂h

∂t
+ ∂(hu)

∂x
= 0 (2.10a)

∂(hu)
∂t

+ ∂

∂x

(
hu2 + gh2

2 + hpnh

)
= (−gh + 2pnh)∂zb

∂x
(2.10b)

∂(hw)
∂t

+ ∂

∂x
(huw) = 2pnh (2.10c)

y asumiendo de ahora en adelante, salvo que se indique lo contrario, que todas las velocidades
son valores promediados ya en la vertical. Además, con el objeto de simplificar la notación la
variable pnh representará ahora p̄nh/ρ.

Se trata de un sistema de tres ecuaciones para las 4 incógnitas asociadas al promedio vertical
(h, u, w, pnh). Por tanto, para obtener la solución es necesario introducir una nueva ecuación.
Según sea esta ecuación distinguimos entre 2 modelos: el NHP-HE, también llamado hiperbólico
elíptico [3]; y el NHP-HR, el hiperbólico relajado [10].

2.2.1. NHP-HE o hiperbólico elíptico

La ecuación adicional que introduce este modelo, que se conoce como Depth Integrated
Incomprensibilty Condition (DIIC) [16, 9], es una reformulación de la ecuación de conservación
de continuidad para flujo incompresible original ∇ · v = 0. Es relevante porque al integrar y
tener una distribución hidrostática se pueden obtener soluciones que no cumplan esta condición
de divergencia libre [5]. Con esta cuarta ecuación se pretende que la conservación de la masa se
cumpla de forma estricta. Para derivar la DIIC, se parte de nuevo de la ecuación 2.1b y se integra
en la vertical, de modo que las velocidades que aparecen en la ecuación 2.11 son puntuales y no
promediadas en la vertical, salvo que se indique con la notación.

∂(hū)
∂x

− u(x, hs)∂h

∂x
− u(x, hs)∂zb

∂x
+ u(x, zb)

∂zb

∂x
+ w(x, hs) − w(x, zb) (2.11)

La diferencia con el procedimiento anterior está, por un lado, en los perfiles que se toman
para las velocidades y por otro, en que solo se establece una condición de contorno, en el fondo,

4



y no en la superficie libre. Por ello, no se elimina la dependencia con la velocidad en la vertical,
siendo necesario definirla tanto en x como en z, para que la velocidad vertical se siga considerando
una velocidad uniforme tal que

u(x, z) ≡ ū(x), (2.12)

mientras que para la velocidad en el eje z se supone un perfil lineal

w(x, z) = w(x, zb) + w(x, hs) − w(x, zb)
h

(z − zb). (2.13)

Sustituyendo ambas expresiones y aplicando la condición de contorno w(x, zb) = u∂zb
∂x = ū∂zb

∂x ,
es decir, que ∂zb

∂t = 0, se tiene la expresión

∂ū

∂x
+

2w̄ − 2
(
ū∂zb

∂x

)
h

= 0 (2.14)

Reorganizando y multiplicando la ecuación por h2 llegamos la ecuación adicional del modelo, en
la que las velocidades son los valores promediados.

h
∂(hu)

∂x
+ 2hw − hu

∂

∂x
(h + 2zb) = 0 (2.15)

El nombre NHP hiperbólico-elíptico proviene de esta cuarta ecuación adicional, que es una
ecuación elíptica sin derivada temporal y no una ecuación de transporte.

2.2.2. Ecuación de la energía para el modelo NHP-HE

Para deducir la ecuación de la energía en este modelo, al igual que en el caso hidrostático,
partimos de las ecuaciones de conservación de la masa y el momento para el modelo NHP. De
nuevo, los detalles de cómo deducir está ecuación se detallan en el Anexo A.2. Tras realizar los
cálculos y reorganizar términos se llega a

∂

∂t

(
h

(u2 + w2)
2 + g

h2

2 + ghzb

)
+ ∂

∂x

u

(
h(u2 + w2)

2 + g
h2

2 + ghzb + hpnh

)
= hpnh

∂u

∂x
+

w − u∂zb
∂x

h/2

 (2.16)

Definimos de nuevo para este modelo la energía, de acuerdo a [3].

ENHP −HE = h

2 (u2 + w2) + gh
(h + 2zb)

2 (2.17)

Y así, la ecuación de conservación de la energía para el modelo NHP-HE queda

∂ENHP −HE

∂t
+ ∂

∂x

u

(
ENHP −HE + g

h2

2 + hpnh

) = hpnh

∂u

∂x
+

w − u∂zb
∂x

h/2

 (2.18)
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Para el modelo NHP-HE se cumple que el término de la derecha de la ecuación es nulo, de
acuerdo a la ecuación 2.14, ya que no es más que una reformulación de la DIIC. Por tanto, la
ecuación de conservación de la energía para el modelo NHP-HE es compatible con:

∂ENHP −HE

∂t
+ ∂

∂x

u

(
ENHP −HE + g

h2

2 + hpnh

) = 0 (2.19)

2.2.3. NHP-HR o hiperbólico relajado

El modelo NHP hiperbólico-relajado [10] se basa en aportar una nueva ecuación hiper-
bólica que regula la evolución de la presión no hidrostática. Esta ecuación adicional relaja la
incompresibilidad del sistema.

∂(hpnh)
∂t

+ ∂

∂x

(
(hu)(hpnh)

h

)
+ c2

p

(
∂(hu)

∂x
+ 2hw − hu

∂

∂x
(h + 2zb)

)
= 0 (2.20)

Aparece un parámetro nuevo, c2
p relacionado con la compresibilidad y que tenemos que ajustar.

Este parámetro representa la velocidad de la propagación de las ondas en la superficie del fluido
[5] y se define como

cp = α
√

gH0 =
√

1 + 1
g

∂pnh

∂h

√
gH0 (2.21)

siendo h ≈ H0 el nivel o calado de referencia en el problema y α el valor que cuantifica las varia-
ciones de presión no hidrostática con la altura. En principio no va a existir un valor preferente
para esta α, pero sí que se tiene que cumplir que sea mayor que 1. Esto es porque la derivada
que hay en la ecuación siempre es positiva, al aumentar la presión con la columna de agua.
Valores típicos en la literatura suelen ser α ∈ (1, 10) [10]. La ecuación 2.20 contiene la DIIC,
pero multiplicada por c2

p. Esto es así porque esta ecuación adicional se puede interpretar como
una ecuación que propaga los errores numéricos a velocidad finita c2

p, [10] y a diferencia de la
DIIC que los propaga instantáneamente. De hecho, si se toma cp −→ ∞ se recupera la relación
para el modelo NHP-HE.

2.2.4. Ecuación de la energía para el modelo NHP-HR

En este caso la deducción es casi inmediata, notando que para derivar la ecuación 2.16
solo se ha usado el sistema 2.10 y por tanto es común para los dos modelos no hidrostáticos.
Recordando que el término de la derecha de la ecuación 2.16 no es más que la DIIC dividida
por h2 y que también la ecuación 2.20 la contiene se puede reescribir esta última ecuación de la
forma

hpnh

∂u

∂x
+

w − u∂zb
∂x

h/2

 = − 1
c2

p

pnh

∂(hpnh)
∂t

+ ∂

∂x

(
(hu)(hpnh)

h

) =

1
c2

p

pnh

 ∂

∂t

(
hpnh

2

)
+ ∂

∂x

(
u

hp2
nh

2

)
+ p2

nh

2

(
∂h

∂t
+ ∂(hu)

∂x

)
︸ ︷︷ ︸

=0


6



Sustituyendo en la ecuación 2.16 se tiene

∂

∂t

(
h

u2 + w2

2 + g
h2

2 + ghzb + hpnh

2c2
p

)
+ ∂

∂x

u

(
h(u2 + w2)

2 + g
h2

2 + ghzb + hpnh + hp2
nh

2c2
p

) = 0

Y definiendo la energía de acuerdo a [10]

ENHP −HR = h

2

(
u2 + w2 + g(h + 2zb) + p2

nh

c2
p

)
(2.22)

Se obtiene la ecuación de conservación de la energía para el modelo NHP-HR

∂ENHP −HR

∂t
+ ∂

∂x

u

(
ENHP −HR + g

h2

2 + hpnh

) = 0 (2.23)

Que tiene la misma forma que para el modelo NHP-HE pero se recuerda que la definición de la
energía no es la misma.

3. Resolución numérica y validación con datos de laboratorio

Las ecuaciones gobernantes en todos los casos son ecuaciones no lineales en derivadas par-
ciales que requieren resolución numérica. Para ello, se usa el método de los volúmenes finitos [15]
que se basa en discretizar el dominio en una serie de celdas (volúmenes) y definir en los centros o
las paredes de las mismas las variables discretas del problema, que serán el valor promedio de la
correspondiente variable continua en esa celda, así como los flujos numéricos que las actualizan.

La resolución completa de las ecuaciones discretizadas se especifica en el Anexo A.3, pero se
incluye aquí un breve resumen de cómo se lleva a cabo. Se utiliza un esquema explícito, con una
discretización espacial de los flujos y el término fuente de tipo upwind [5]. En el caso del modelo
NHP-HE se subdivide el paso de tiempo en dos etapas. En la etapa intermedia se resuelve el caso
hidrostático (modelo SW) mediante un Solver de Roe que proporciona variables intermedias [5]
que cumplen una hipótesis hidrostática:

h∗
i = hn

i − ∆t

∆x

[∑
m

(
λ̃ + γ̃ẽ1

)m−1/2

i
+
∑
m

(
λ̃ − γ̃ẽ1

)m+1/2

i

]
(3.1a)

(hu)∗
i = (hu)n

i − ∆t

∆x

[∑
m

(
λ̃ + γ̃ẽ2

)m−1/2

i
+
∑
m

(
λ̃ − γ̃ẽ2

)m+1/2

i

]
(3.1b)

donde γ̃
m+1/2
i =

(
α̃m − β̃m

λ̃m

)m+1/2

i
.

También se actualiza en esta etapa la velocidad vertical.

w∗
i+1/2 = wn

i+1/2 − ∆t

∆x

[
(uδw)+

i + (uδw)−
i+1

]
. (3.1c)

El valor del paso temporal para el Solver de Roe está limitado por la condición para el
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CFL, número adimensional cuyas siglas provienen de Courant–Friedrichs–Lewy. El CFL, que
debe ser menor o igual que 1 para garantizar un esquema numérico estable [15], restringe el paso
de tiempo según

∆t = CFL
∆x

max[ũ − c̃, ũ, ũ + c̃] (3.2)

donde ũ y c̃ se obtienen mediante los promedios de Roe.

Las variables conservadas finales se obtienen con la corrección de la presión hidrostática.
Las modificaciones en el campo de velocidades se consiguen forzando a que se cumpla la DIIC,
para lo que es necesario un algoritmo iterativo, como es el método de Thomas o método de
las matrices tridiagonales [12]. Por tanto, las variables al finalizar el paso de tiempo quedan
corregidas:

hn+1
i = h∗

i (3.3a)

(hu)n+1
i = (hu)∗

i + Q(∆pnh) (3.3b)

(w)n+1
i+1/2 = (w)∗

i+1/2 + W (∆pnh) (3.3c)

Es importante notar que la variable w está desplazada con respecto a las demás. Esto es
porque se definen las variables w y pnh en las paredes y no en el centro de las celdas, para evitar
errores en la corrección de la presión, de acuerdo a [5].

El sistema NHP-HR, en cambio, se resuelve en un único paso, también mediante un solver
de Roe generalizado [5], pues se puede expresar como un sistema hiperbólico para las 4 variables.
El paso temporal estará por tanto de nuevo limitado por la condición para el CFL menor o igual
que 1.

Un+1
i = Un

i − ∆t

∆x

 4∑
m=1

(
λ̃+γ̃ẽ

)m

i−1/2
+

4∑
m=1

(
λ̃−γ̃ẽ

)m

i+1/2

+ ∆tSnh(U)n+1
i (3.4)

donde U = (h, hu, hw, pnh) es el vector de variables conservadas y Snh = (0, 0, 2pnh, −2c2
pw) es

el vector de términos fuente no hidrostáticos.

3.1. Validación de los modelos con datos de laboratorio

La elaboración de un buen modelo numérico conlleva la comparación de los resultados que
nos devuelve con datos experimentales. Solo de esta manera podemos saber si los fundamentos
físicos aplicados son de relevancia en los casos ensayados y si, de esta manera, el modelo consigue
reproducir lo que ocurre en la realidad. Por ello, una vez conocidos los algoritmos numéricos em-
pleados en la resolución de las ecuaciones se van a simular dos casos, comparando los resultados
numéricos con datos experimentales tomados en el laboratorio.
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3.2. Caso de propagación sobre un fondo variable

El primer caso que se va a estudiar es el llevado a cabo por Beji et. al [1], por lo que
informalmente nos referiremos a él como caso de Beji. El propósito del mismo es caracterizar
cómo afecta la presencia de obstáculos en el fondo a la propagación de ondas superficiales y
la consiguiente variación de la amplitud y la frecuencia de los distintos armónicos. En este
fenómeno, además de los efectos no lineales, son relevantes los fenómenos de dispersión, por lo
que se espera que los modelos no hidrostáticos, al tener en cuenta estos últimos, a diferencia del
modelo hidrostático SW, ajusten mejor los datos experimentales [2, 5].

El montaje experimental consta de un obstáculo sumergido seguido de una playa que absorbe
las distintas olas y asegura que nunca lleguen al contorno. Un esquema del mismo es el que se
presenta en la Figura 2.

Se simula para los tres modelos considerados en este trabajo, con una discretización de
∆x = 0,01m y un CFL de 0,95.

Figura 2: Montaje experimental para el caso de Beji

En las Figuras 3 y 4 se presenta la variación temporal de la perturbación superficial (η) con
respecto a la superficie de referencia (en reposo), H0 = 0,4m, junto con los datos registrados en
los experimentos. Se observa que el ajuste que proporciona el modelo NHP-HE es el más cercano
a la realidad. En la mayoría de las sondas son indistinguibles los valores experimentales con el
ajuste dado por el modelo NHP-HE, excepto en las 2 últimas sondas donde la discrepancia es
un poco superior. Por otro lado, el modelo NHP-HR tiende a sobreestimar la amplitud de las
mismas, además de generarnos más ondas de las que realmente tienen lugar. Para las sondas 7
y 8 se acerca más a la mediciones.

La representación temporal en las distintas sondas también nos permite ver qué ocurre con
las ondas cuando se propagan por el canal. En las primeras sondas, al disminuir la profundidad
del agua, a causa de la pendiente positiva del escalón, la onda cambia su forma y aumenta
su amplitud. En la zona plana de menor calado se produce una transmisión de la energía a
armónicos superiores. Y, en las últimas sondas, entrando en la zona de pendiente negativa, las
ondas se descomponen a medida que aumenta el nivel, creado ondas de menor amplitud. Este
último fenómeno parece estar mejor capturado por modelo HR.

9



Figura 3: Variación respecto al nivel en reposo registrada en la Sonda 4 con las simulaciones de los modelos
NHP-HE y SW para el caso de Beji.

Figura 4: Perturbación respecto al nivel en reposo registrado en las sondas 3,4, 6 y 7 con las simulaciones
de los modelos NHP-HE y SW para el caso de Beji.

Respecto al modelo SW, captura bien el primer armónico del problema. Sin embargo, en
cuanto hay procesos de transmisión de energía entre armónicos, el modelo falla porque no tiene
en cuenta estos fenómenos en su formulación. Se incluye en el Anexo A.4 un análisis de cómo
afecta la discretización de la malla para el ajuste de los datos experimentales.
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3.3. Caso de ondas generadas por un pistón

El caso reproducido por Cea et al.[4], al cual nos referiremos como caso de Cea en este
texto, trata de caracterizar el comportamiento de las ondas superficiales que se generan por
desplazamientos de un pistón. El montaje experimental se presenta en la Figura 5.

Figura 5: Montaje experimental para el caso de Cea

Las ondas se generan mediante un pistón con forma de cuña, cuyo movimiento causa una
perturbación que se propaga hasta impactar en un obtáculo al final del canal. Se simula para
distintos valores de nivel inicial H0 así como distintos desplazamientos máximos y velocidades
del pistón para el modelo NHP-HE y para el modelo SW, comparando cómo reproducen ambos
las ondas reales que se generan.

Figura 6: Variación respecto al nivel en reposo registrada en la Sonda 1 con las simulaciones de los modelos
NHP-HE y SW con un nivel inicial H0 = 0,25m y con el pistón rápido y para el caso de Cea.
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Figura 7: Perturbación respecto al nivel en reposo registrado en las sondas 2,3,4 y 5 con las simulaciones
de los modelos NHP-HE y SW con un nivel inicial H0 = 0,25m y con el pistón rápido para el
caso de Cea.

Para el modelo NHP-HE, se han utilizado dos discretizaciones para estudiar la influencia
de la malla en los resultados, pero vemos que realmente es prácticamente indiferente coger una
malla u otra, ya que hay ondas que se ajustan mejor con una y viceversa.

Lo que sí cabe resaltar es que, aunque ningún modelo se ajusta exactamente a los datos
experimentales, el modelo NHP-HE sí que consigue reproducir con bastante precisión las ondas
con mayor amplitud y solo pierde precisión al reproducir las ondas secundarias que se generan
conforme la onda se propaga. Se comprueba, por tanto, la potencia del modelo NHP-HE para
la simulación de flujos más complejos y su idoneidad si se quiere predecir la evolución de un
tsunami o deslizamiento del terreno.

En cambio, el modelo SW, de nuevo, reproduce correctamente la posición de las ondas pero
no ajusta bien la forma de las mismas. Se adjunta en el Anexo A.5 el ajuste para otros dos casos
simulados.

4. Casos de estudio para evaluación del error en la energía

En la sección anterior se ha comprobado la necesidad de incorporar una distribución de
presión no hidrostática si se quiere reproducir correctamente situaciones en las que los fenómenos
de dispersión sean relevantes. El propósito de esta sección es estudiar más en profundidad los
tres modelos propuestos y sus limitaciones.

A la hora de discretizar las ecuaciones siempre se comete cierto error numérico. El objetivo
es que las ecuaciones resueltas que establecen la conservación de la masa y el momento se
verifiquen al pasar al discreto, de modo que se obtengan resultados físicamente coherentes. Es
habitual diseñar modelos que satisfagan al menos la conservación discreta de la masa [5]. Tanto
es así que, por ejemplo, para el modelo NHP-HE la ecuación extra es otra reformulación de la
ecuación de la divergencia original [3]. En el modelo NHP-HR también aparece en un término
la DIIC. A la vista de los resultados está que es una buena aproximación al problema forzar la
conservación de la masa. Sin embargo, hasta ahora no ha habido mucha preocupación sobre si
los esquemas numéricos propuestos conservan o no la energía dado que su ecuación de transporte
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no se está resolviendo de forma específica [3].

Respecto a la forma funcional de la energía, esta contiene tanto los términos debidos a la
energía cinética del fluido, como aquellos de energía de presión y gravitatoria. Para el modelo
NHP-HE la energía de presión que se considera es la hidrostática (Ecuación 2.18). Aunque
pueda parecer erróneo no incluir la variable pnh en la expresión de la energía, se recuerda que
esta se ha introducido en el modelo como una corrección a la presión del sistema mediante una
ecuación elíptica, no hay propagación de esta magnitud. Por tanto, es natural que aparezca en
los términos de los flujos que modifican las variables de la celda considerada. En cambio, para
el modelo NHP-HR (Ecuación 2.23) sí que se propaga la variable pnh y por ello va aparecer en
la expresión de la energía.

La expresión general para la conservación de esta misma en cualquiera de los tres casos se
puede escribir como

∂E

∂t
+ ∂

∂x

(
uF (E)

)
= S (4.1)

El segundo término a la izquierda es el término de los flujos y el término a la derecha es
el término fuente, que para los casos presentados es nulo pero se añade aquí para generalizar
el desarrollo. Al integrar sobre el dominio completo se obtiene pues que la variación total de
la energía en un paso de tiempo, ∆t, viene dada por los flujos en los extremos del dominio,
dados por el segundo término a izquierda del igual y por la presencia de un término fuente, a la
derecha.

A continuación se va a presentar diferentes casos de prueba en los que se comprobará hasta
qué punto los tres modelos conservan o no la energía. Aquí es importante hacer hincapié en que,
para todos los modelos, la ecuación de la energía no es una ecuación que se imponga a las variables
del sistema, ni se incorpora al modelo como una ecuación que haya que resolver. Tan sólo es una
ecuación que se evalúa, y el hecho de que se cumpla deberá derivarse de la correspondencia entre
las ecuaciones en el continuo y las ecuaciones discretizadas. Es una forma de comprobar si los
errores inevitables que se cometen en las aproximaciones y en la discretización son despreciables
y el modelo es adecuado o se tendría que buscar nuevos acercamientos a dichos problemas. Para
obtener el error en la energía entre un paso temporal y el siguiente, se discretiza la ecuación de
la energía con un esquema explícito centrado en las celdas. La energía en el instante t + ∆t a
partir de la energía en el instante t se obtiene, como se ha dicho, integrando la ecuación 4.1 en
el dominio y en un paso temporal∫

∆t

∫ L

0

∂E

∂t
dx dt = −

∫
∆t

∫ L

0

(uF (E))
∂x

dx dt +
∫

∆t

∫ L

0
S dx dt (4.2)

y aproximando al discreto queda

NCELLS∑
i=0

En+1
i ∆x =

NCELLS∑
i=0

En
i ∆x + ∆t

(
uF (E)

)n
0 − ∆t

(
uF (E)

)n
NCELLS + ∆t∆x

NCELLS∑
i=0

Sn
i

(4.3)
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Y el error en la energía se calcula para un paso de tiempo ∆t

ϵ =
∑

En+1
i ∆x −

∑
En

i ∆x − ∆t
(
uF (E)

)n
0 + ∆t

(
uF (E)

)n
NCELLS − ∆t∆x

∑
Sn

i∑
En

i ∆x
· 100 (4.4)

Todos los errores se presentan en valor absoluto. La formulación es equivalente para los otros
casos.

4.1. Problema de Riemann sobre fondo plano

El primer caso de estudio será una rotura de presa ideal, también conocida como problema
de Riemann. Consiste en una discontinuidad inicial que separa dos regiones de calado constante
y velocidad nula sobre un fondo plano. Esta discontinuidad inicial se modeliza como una función
escalón. De la propagación de esta discontinuidad se producen dos ondas, una onda de choque
que viaja aguas abajo y una onda de rarefacción que lleva la dirección contraria, propagando
la información de la presencia de la discontinuidad hacia aguas arriba. Se simula una rotura
de presa con una discontinuidad inicial de 0, 2m. Se representan a continuación la distribución
espacial de la superficie del fluido para algunos instantes de tiempo calculados con el modelo
SW, y los dos modelos no hidrostáticos, en el caso de NHP-HR con α = 3. Se ha supuesto una
longitud de canal L = 1019m, una discretización espacial ∆x = 0,025m y un paso de tiempo
correspondiente a CFL 0,95. Se ha representado igualmente la presión no hidrostática calculada

Figura 8: Distribución espacial de calado y presión del problema de Riemann sobre fondo plano, con la
condición inicial

con los modelos NHP. Aunque ambos presentan una evolución del nivel muy similar, el NHP-
HR genera más oscilaciones en la presión y es más dispersivo que el NHP-HE. Respecto a SW,
observamos que propaga ambas ondas correctamente, pero no genera otras ondas secundarias.

Para estudiar cómo varía la energía para los modelos anteriores, escogiendo también distintos
valores de α para el NHP-HR, se representa la evolución temporal de este escalar, que puede
verse en la Figura 9.
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Figura 9: Evolución temporal de la energía y del error para el problema de Riemann plano con los distintos
modelos

Para todos los modelos coincide la energía en t = 0, aunque su definición no sea la misma,
dado que se establece w = 0 y pnh = 0 para las condiciones iniciales y la discrepancia en la
definición viene por la contribución de las velocidades. En el siguiente instante de tiempo la
energía ENHP −HR presenta un salto brusco, cuando ambos términos w2 y p2

nh/c2
p ya no son

nulos. El cambio es mucho más pronunciado que para la ENHP −HR por dos motivos. El primero
es que este término p2

nh/c2
p es exclusivo del modelo NHP-HR pero, por otro lado, se observa que

al cambiar el valor de α la variación de la energía es similar. El segundo motivo lo justifica, ya
que al ser el modelo NHP-HR más dispersivo, el valor de w2 es superior que para el modelo
NHP-HE. Conforme avanza el tiempo, las energías se van estabilizando siendo superior para
el modelo NHP-HR. Se observa también que el modelo que aparentemente mejor conserva la
energía es el NHP-HE.

Se representa igualmente la evaluación del error, que se ha calculado según se ha comentado
en la sección 3. En la Figura 9 el error refleja lo que veíamos en la gráfica de la energía. El
modelo NHP-HR presenta mayor variación en los instantes iniciales, estabilizándose a los pocos
segundos. Los pequeños saltos que se observan para los modelos NHP para tiempos posteriores
pueden deberse a difusión numérica, dado el orden de error con el que se está tratando. En todo
caso, el error siempre es inferior a 10−7.

Figura 10: Análisis de convergencia para el modelo NHP-HR con α = 5 para el problema de Riemann
plano.

Se quiere además ver que el esquema es consistente, es decir, que el error disminuye conforme
se refina la malla. Se presenta en la Figura 15 la energía por unidad de longitud y el error para
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el mismo caso de antes, con α = 5, pero con diferentes discretizaciones.

Figura 11: Análisis de la convergencia del error de NHP-HE y SW para el problema de Riemann plano.

Aunque la convergencia en cada modelo es distinta, en todos los casos se obtiene un esquema
numérico convergente. El caso SW es el más sensible a la discretización, pues la reducción del
error global con una malla computacional más fina es mayor. Por otro lado, el modelo NHP-HR
es el menos variable, parece que para las discretizaciones escogidas ya se ha alcanzado la conver-
gencia y en términos de error es casi indistinto escoger una u otra, tan solo durante los instantes
iniciales. Si atendemos a la energía es cierto que la diferencia entre una y otra discretización
es un poco superior pero de nuevo la diferencia es pequeña, así que seguir refinando más no
reportará mejores beneficios, pero sí aumentará el tiempo de simulación significativamente.

4.2. Problema de Riemann sobre fondo variable

Se quiere ahora comprobar la influencia del fondo sobre la conservación discreta de la
energía. Es sabida la importancia de la discretizacion de los términos fuente de fondo en modelos
de este tipo, como se indica en [14]. Con este propósito, se va a simular el mismo caso de antes
pero con obstáculo sumergido parecido al de Beji, que se muestra en la Figura 12.

Figura 12: Esquema del obstáculo para la propagación de la onda en un fondo variable

En la evolución temporal se observa cómo la presencia del obstáculo modifica la forma de las
ondas, aumentando la amplitud de la misma al disminuir el nivel y posteriormente, generando
más ondas al repartirse la energía entre los distintos armónicos como ya se vio en el caso de Beji.
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Figura 13: Evolución temporal del calado y la presión en el problema de Riemann sobre fondo variable

Para el análisis energético se presenta el caso representado en la Figura 22, pero con los
tres valores del parámetro α utilizados para el fondo plano.

Figura 14: Evolución temporal de la energía y error para el problema de Riemann con fondo variable con
los distintos modelos

Se observa que la presencia del fondo sí que afecta a la conservación de la energía, princi-
palmente para el modelo NHP-HR, distinguiéndose el momento en el que la información sobre
el fondo alcanza la onda que se propaga. A diferencia de la Figura 9 donde la energía se ha
estabilizado prácticamente, al alcanzarse el obstáculo sumergido se produce una ligera disminu-
ción en la energía para luego aumentar a valores cercanos a los iniciales. Este aumento puede
deberse a que el algoritmo y la discretización resuelven de forma más aproximada los puntos
donde el fondo no es suave, sino que cambia de forma abrupta, generando como consecuencia
ondas artificiales.

Respecto al error en la energía, refleja lo anterior: aumenta cuando la onda interacciona con
el fondo debido a que se genera energía artificialmente. En los modelos de SW y el NHP-HE
está mejor implementado el algoritmo que trata con el fondo, por lo que no es sorprendente que
estos dos últimos modelos se comporten de manera similar, pues ambos se resuelven a partir del
mismo esquema, en el que se ha tenido en cuenta el algoritmo seco-mojado de acuerdo a [14].

Respecto a la convergencia, se representa de nuevo la energía y el error para el modelo
NHP-HR con α = 5
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Figura 15: Análisis de convergencia para el modelo NHP-HR con α = 5 en fondo variable

Figura 16: Análisis de convergencia para el modelo NHP-HR con α = 5

Las discretizaciones utilizadas son las mismas que para el caso del fondo plano pero, así
como se dijo que todas resultaban válidas y no había mucha diferencia entre escoger una y otra,
cuando se añade el obstáculo sí que parece que para ∆x = 0,1m los errores serán bastante
superiores que para los demás pasos espaciales. La gráfica del error de la energía en la Figura
15 presenta un pico anormal para esta malla. Si representamos el caso se observan puntos en
los que el código no resuelve bien, que son responsables del crecimiento de la energía conforme
avanza el tiempo.

Para los modelos NHP-HE y SW si comparamos la Figura 11 con la Figura 16 se comprueba
que la tendencia subyacente en el error para los dos modelos es la misma, pero con el efecto
añadido del fondo.

En general, se puede comentar la influencia del fondo y comprobar que el algoritmo que
trata con él no conserva exactamente la energía, siendo el efecto más importante cuanto mayor
es la discretización. También se puede deducir de esta comparación que si se toma un ∆x

suficientemente pequeño los efectos del obstáculo se minimizan.

4.3. Propagación de un solitón sobre fondo plano

El solitón es una onda que se propaga sin modificar su forma, debido a que los efectos
dispersivos compensan los no lineales. Se trata de un problema clásico con una solución de
referencia establecida en literatura [5].
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Figura 17: Evolución temporal de un solitón sobre un fondo plano con la condición inicial

La longitud del canal es L = 819 m, la discretización de ∆x = 0,025 m y el CFL de nuevo
0,95. Al ser en el solitón importantes los efectos dispersivos para mantener la forma de la onda
y al no considerarse estos en el modelo de SW, este modelo no propaga la onda correctamente,
ya que sólo reproduce los efectos no lineales generando una acumulación de la masa en el frente
de onda. Mientras, los modelos NHP, entre los cuales no se observa casi diferencia, sí conservan
la forma del solitón, al compensar la no linealidad con su comportamiento dispersivo. Si la
discretización no es suficiente, la onda puede ir perdiendo amplitud al propagarse, por eso es
necesario un mínimo número de celdas para que este efecto no sea relevante. Se distingue también
una onda de pequeña amplitud que se propaga aguas arribas, fenómeno que se ha reportado ya
en otras ocasiones [5].

Figura 18: Evolución temporal de la energía y su error para un solitón con fondo plano con los distintos
modelos

Con un análisis rápido, se podría decir que para este caso de test la energía se conserva peor,
ya que los órdenes de magnitud del error son superiores. Sin embargo, si se estudia la gráfica del
error, lo que se ve es que realmente el aumento de este error es sólo para el modelo NHP-HR.
Además de tener un error superior en 3 órdenes de magnitud expone un comportamiento más
errático y necesita de un mayor tiempo de estabilización. Los modelos SW y NHP-HE presentan
un orden de error parecido a la rotura de presa, y aunque el error no evoluciona suavemente en
el tiempo, al igual que antes este comportamiento a un orden de magnitud como el que se trata
puede explicarse por la difusión numérica. Respecto a la energía, las oscilaciones iniciales son
superiores para un mayor valor de α al ser este modelo más dispersivo y generar más ondas.
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Se analiza ahora cada modelo por separado, estudiando la convergencia de los mismos al
refinar la malla computacional.

Figura 19: Análisis de la convergencia para el modelo NHP-HE con un solitón en fondo plano

En la Figura 19 se distingue cómo el modelo NHP-HE pierde energía, pero esta pérdida
consigue disminuirse mucho con el refinamiento de la malla, llegando prácticamente a una con-
servación de la misma. Además, la pérdida de energía es lineal, salvo en el primer instante en
el que al fijar nulas las condiciones iniciales para pnh y w es necesario un pequeño reajuste. El
error presenta ciertos saltos que ya se han visto en otros casos, pero más allá de ello son muy
pequeños y para una malla de ∆x = 0,01m está acotado por 10−9.

Figura 20: Análisis de la convergencia para el modelo NHP-HE con un solitón en fondo plano

En el caso de SW la conservación es peor y, además, el refinar la malla no consigue una
mejora distinguible. No es sorprendente este resultado si se considera lo que ya se ha visto sobre
el modelo de SW y la propagación del solitón.

Por último, las oscilaciones que se producen para el modelo NHP-HR no se consiguen
eliminar al refinar la malla. De hecho, el efecto es el contrario, se producen más picos aunque
en el computo general la energía que se pierde en la propagación es menor y el error también es
inferior.
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Figura 21: Análisis de la convergencia para el modelo NHP-HR con α = 3 con un solitón en fondo plano

4.4. Propagación de un solitón sobre fondo variable

Se introduce de nuevo el obstáculo de la Figura 12 en el fondo.

Figura 22: Evolución temporal del solitón sobre fondo variable

Cuando el solitón alcanza el obstáculo, que comienza en la posición L = 380m, la forma de
este varía. Conforme aumenta zb, la amplitud de la onda crece, siendo el modelo NHP-HR es
el que antes aumenta la altura del solitón. Una vez ha pasado la zona de menor calado (mayor
altura del obstáculo), se produce un fenómeno de dispersión, repartiéndose la energía entre los
armónicos y la amplitud de la onda disminuye, además de generarse ondas secundarias que se
propagan en las dos direcciones.

Figura 23: Evolución temporal de la energía y su error para un solitón con fondo variable
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De nuevo, lo que ocurre es que las oscilaciones iniciales en la energía del modelo NHP-HR
nos impiden distinguir cómo evoluciona para los otros modelos, ya que la variación de la energía
de estos últimos es mucho más pequeña. Podemos observar en torno al segundo 10 una pequeña
oscilación en la energía del modelo NHP-HR que se debe a la interacción del solitón con el
fondo variable. Un detalle interesante en la gráfica del error de la energía es que para el modelo
NHP-HE se distingue perfectamente el instante en el que se alcanza el obstáculo. De hecho si
comparamos la curva con la Figura 18 se distingue una misma tendencia y magnitud, salvo el
tiempo de interacción del solitón con el fondo variable, que ocurre entre los t = 5 y los t = 20
segundos.

Se comparan los resultados de cada modelo usando distintas discretizaciones.

Figura 24: Análisis de la convergencia para el modelo NHP-HE con un solitón con fondo variable

Figura 25: Análisis de la convergencia para el modelo SW con un solitón con fondo variable

Las tendencias para SW y NHP-HE son las mismas que se tenían para un solitón con fondo
plano, siendo esta tendencia interrumpida por la presencia del obstáculo, que genera variaciones
en la energía y en el error, haciendo que la cota máxima de error sea superior. Una vez superado
el obstáculo los errores vuelven a disminuir. De nuevo la convergencia de la malla es adecuada y
tiene más relevancia utilizar una malla más fina en el caso no hidrostático que en el hidrostático.
Para el modelo HR se tiene, otra vez, que para una mayor discretización las oscilaciones iniciales
de la energía son de mayor magnitud y tardan más tiempo en desaparecer.
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Figura 26: Análisis de la convergencia para el modelo NHP-HR con un solitón con fondo variable

4.5. Discretización del término fuente para el modelo NHP-HE

Siguiendo con el análisis en la energía, se recuerda la expresión de la conservación para el
modelo NHP-HE

∂ENHP −HE

∂t
+ ∂

∂x

u

(
ENHP −HE + g

h2

2 + hpnh

) = hpnh

∂u

∂x
+

w − u∂zb
∂x

h/2

 (4.5)

Durante todo el texto, se ha insistido en que el término de la derecha, que es el término fuente
para la energía del modelo NHP-HE, es nulo. Este término tiene que ser 0 porque así se impone
en la DIIC al resolver las ecuaciones (2.14).

En esta sección se quiere comprobar si la hipótesis es válida cuando se discretiza. Para ello,
se presentan los valores máximos promedio de dicho término para los 4 casos estudiados en esta
sección y para las distintas discretizaciones. Las siglas en la tabla PR, FP, SO y OB son para
denotar respectivamente Problema de Riemann, Fondo Plano, Solitón y Obstáculo. Todos los
valores tienen unidades de kgm/s3.

∆x 0.1 0.05 0.025 0.01
PR, FP 7,5 · 10−10 5,1 · 10−10 2,3 · 10−10 7,6 · 10−11

PR, OB 1,7 · 10−9 5,1 · 10−10 2,3 · 10−10 7,6 · 10−11

SO, FP 2,2 · 10−11 3,8 · 10−12 5,1 · 10−13 5,8 · 10−14

SO, OB 5,6 · 10−9 3,0 · 10−9 1,2 · 10−9 2,0 · 10−10

Tabla 1: Cota superior para el valor del término 2.14 dividido por la longitud del canal para los casos
estudiados en esta sección

Vemos como una mayor discretización hace que la cota superior disminuya en todos los
casos de estudio. El mayor error en el término fuente para la rotura de presa se produce a
consecuencia de la discontinuidad inicial, excepto para el caso de ∆x = 0,1m en el que este valor
ocurre durante la interacción de la onda con el fondo. De hecho, se puede comprobar que es así
porque los valores máximos coinciden excepto para ∆x = 0,1m. En cambio, para la propagación
del solitón es en los instantes en los que la onda alcanza el obstáculo donde es mayor este término.
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5. Conclusiones

Tras el análisis llevado a cabo, se puede comprobar la idoneidad de los modelos no hi-
drostáticos para reproducir con precisión distintos procesos donde sea relevante los fenómenos
ondulatorios superficiales. Casos complejos como los estudiados de Beji et al. [1] y L.Cea et al.
[4] se modelan adecuadamente con una hipótesis no hidrostática.

En cambio, los modelos de Shallow Water proporcionan una visión general de la evolución de
las perturbaciones al reproducir los primeros armónicos, pero fallan en el detalle. Dependiendo
de la situación que se quiera reproducir, es necesario plantearse qué es más relevante, si una
mayor precisión con los modelos no hidrostáticos o un sistema computacionalmente más simple,
con un modelo hidrostático.

En relación a la conservación de la energía, se comprueba que, a pesar de que los esquemas
numéricos utilizados no fuercen esta conservación, sí que se obtiene en la mayoría de los casos un
error que es del orden de 10−8 o inferior. Es adecuado, por tanto, decir que la energía se conserva
de forma razonable. Por otro lado, se ha visto también que la presencia de un fondo variable
sí que afecta a dicha conservación, empeorándola, aunque estos efectos pueden minimizarse
usando una malla computacional suficientemente fina. Queda para trabajos futuros el estudio
de posibles modificaciones que disminuyan el error que se produce en la energía debido al fondo.
Algunos trabajos recientes siguen esa línea de investigación, la de buscar esquemas numéricos
que respeten la conservación de la energía, aunque lo hacen basándose en hipótesis hidrostáticas
[14]. Por ello, sería interesante la extensión de esas ideas a modelos no hidrostáticos.

Respecto a los dos modelos no hidrostáticos estudiados, parece que el hiperbólico elíptico
presenta mejores prestaciones, tanto en el ajuste de los datos experimentales como en la con-
servación de la energía. El modelo hiperbólico relajado es también adecuado, pero se ha visto
que excesivamente dispersivo y tiende a generar más ondas de las que realmente tienen lugar.
Además, tarda más en estabilizarse y sus errores pueden ser órdenes de magnitud superiores.

En cuanto al modelo hidrostático, dentro de su rango de aplicabilidad, es también un esque-
ma que conserva la energía bastante bien y presenta errores acotados por un orden de magnitud
muy pequeño. Por último, se ha visto que el término fuente de la DIIC es para casi todos los
casos prácticos prácticamente nulo cuando está discretizado, por lo que hacer esta aproximación
no supondrá diferencias observables en los resultados.
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A. Anexos

A.1. Integración del sistema de Euler en la vertical

En esta sección se va a ejemplificar como se realiza la transformación del sistema de Euler
al sistema de ecuaciones integradas en la vertical. El sistema de Euler se puede reescribir de la
siguiente manera

∂u

∂x
+ ∂w

∂z
= 0 (A.1a)

∂u

∂t
+ ∂u2

∂x
+ ∂(wu)

∂z
+ 1

ρ

∂p

∂x
= 0 (A.1b)

∂w

∂t
+ ∂(wu)

∂x
+ ∂w2

∂z
+ 1

ρ

∂p

∂z
= −g (A.1c)

ya que nos será más conveniente para realizar la integración. Para completar el sistema hacen
falta las condiciones de contorno, que se vuelven a escribir aquí para esclarecer los cálculos.

∂hs

∂t
= −u(hs)∂hs

∂x
+ w(hs) (A.2a)

∂zb

∂t
= −u(zb)

∂zb

∂x
+ w(zb) (A.2b)

Dado que estamos considerando un sistema sin fricción, no es necesario establecer condicio-
nes de contorno dinámicas.

La principal herramienta para realizar esta integración es la regla de Leibniz o derivación
bajo signo integral.

d

dx

(∫ b(x)

a(x)
f(x, t) dz

)
= f(x, b(x))db(x)

dx
− f(x, a(x))da(x)

dx
+
∫ b(x)

a(x)

∂f(x, t)
∂x

dz (A.3)

Comenzamos por la ecuación de divergencia libre (Ecuación A.1a), integrando en z y apli-
cando A.3.

0 =
∫ hs

zb

∂u

∂x
dz +

∫ hs

zb

∂w

∂z
dz =

= ∂

∂x

∫ hs

zb

u(x, z) dz − u(x, hs)∂hs

∂x
+ u(x, zb)

∂zb

∂x
+ w(x, hs) − w(x, zb)

Se aplican las condiciones de contorno A.2 y la definición de velocidad media (Ecuación 2.3) y
se obtiene así la ecuación de conservación de la masa en función de h.

∂ (hū)
∂x

+ ∂hs

∂t
− ∂zb

∂t
= ∂ (hū)

∂x
+ ∂h

∂t
= 0

Para la ecuación del momento en x se procede de igual manera

∫ hs

zb

∂u

∂t
dz +

∫ hs

zb

∂u2

∂x
dz +

∫ hs

zb

∂(wu)
∂z

dz +
∫ hs

zb

1
ρ

∂p

∂x
dz = 0 (A.4)
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Desarrollando los 3 primeros términos
∫ hs

zb

∂u

∂t
dz = ∂

∂t

∫ hs

zb

u dz − u(x, hs)∂hs

∂t
+ u(x, zb)

∂zb

∂t

∫ hs

zb

∂u2

∂x
dz = ∂

∂x

∫ hs

zb

u2 dz − u(x, hs)2 ∂hs

∂x
+ u(x, zb)2 ∂zb

∂x∫ hs

zb

∂(wu)
∂x

dz = w(x, hs)u(x, hs) − w(x, zb)u(x, zb)

Se suman las tres contribuciones y se aplican las condiciones de contorno A.2 multiplicando
la condición de contorno para la superficie por u(x, hs) y para el fondo por u(x, zb). Todos los
términos que no estén en las integrales se simplifican y la ecuación A.4 queda

∂

∂t

∫ hs

zb

u dz + ∂

∂x

∫ hs

zb

u2 dz +
∫ hs

zb

1
ρ

∂p

∂x
dz = 0 (A.5)

Para poder seguir desarrollando la ecuación es necesario establecer tanto un perfil para la
velocidad como para la presión. En este caso se va a asumir un perfil uniforme para la velocidad,
es decir,

u(x, z) = ū(x) + 0(u(x, z)2) (A.6)

Respecto a la presión, se toma la distribución no hidrostática definida para el modelo NHP para
que el desarrollo sea más general.

p

ρ
= g(hs − z) + pnh

ρ
(A.7)

En concreto, desarrollando la integral de la presión

∫ hs

zb

∂

∂x

(
g(hs − z) + pnh

ρ

)
dz =

∂

∂x

∫ hs

zb

g(hs − z) dz + g(hs − zb)
∂zb

∂x
+ ∂

∂x

∫ hs

zb

pnh

ρ
dz − pnh

ρ
(x, hs)∂hs

∂t
+ pnh

ρ
(x, zb)

∂zb

∂t
=

∂

∂x

(1
2gh2

)
+ gh

∂zb

∂x
+ 1

ρ

∂(hp̄nh)
∂x

+ 2 p̄nh

ρ

∂zb

∂t

En este último paso se ha usado que h(x) = hs − zb , la definición de presión hidrostá-
tica promedio, que se define de manera equivalente a la velocidad promedio y por último que
pnh(x, hs) es nula. Por tanto, la ecuación integrada en el eje x queda

∂(hū)
∂t

+ ∂

∂x

(
(hū)2

h
+ 1

2gh2 + h
p̄nh

ρ

)
= −(gh + 2 p̄nh

ρ
)∂zb

∂t
(A.8)

Notar que para p(x, zb) se ha hecho la aproximación p̄nh = pnh(x,hs)+pnh(x,zb)
2 .
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Finalmente, para el momento en z se tiene

∫ hs

zb

∂w

∂t
dz +

∫ hs

zb

∂(wu)
∂x

dz +
∫ hs

zb

∂w2

∂z
dz +

∫ hs

zb

1
ρ

∂p

∂z
dz = −

∫ hs

zb

g dz

Para los términos de las velocidades∫ hs

zb

∂w

∂t
dz = ∂

∂t

∫ hs

zb

w dz − w(x, hs)∂hs

∂t
+ w(x, zb)

∂zb

∂t

∫ hs

zb

∂(wu)
∂x

dz = ∂

∂x

∫ hs

zb

uw dz − u(x, hs)w(x, hs)∂hs

∂x
+ u(x, zb)w(x, zb)

∂zb

∂x∫ hs

zb

∂w2

∂z
dz = w(x, hs)2 − w(x, zb)2

∫ hs

zb

1
ρ

∂p

∂z
dz = 1

ρ

(
p(x, hs) − p(x, zb)

)
= gh − 2 p̄nh

ρ∫ hs

zb

g dz = gh

Como en las otras ocasiones se aplican las condiciones de contorno, esta vez multiplicando
la condición para la superficie por w(x, hs) y para el fondo por w(x, zb) y se suman todos los
términos llegando a la ecuación buscada

∂

∂t
(hw̄) + ∂

∂x

(
(hū)(hw̄)

h

)
= 2 p̄nh

ρ
(A.9)
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A.2. Deducción de la ecuación de la energía

En esta sección se va a deducir a partir de las ecuaciones gobernantes para cada modelo
propuesto, la ecuación de la energía asociada.

A.2.1. Modelo hidrostático o de Shallow Water

Se recuerda que el sistema de ecuaciones para el caso de una distribución de presión hidros-
tática es el siguiente

∂h

∂t
+ ∂(hū)

∂x
= 0 (A.10a)

∂(hū)
∂t

+ ∂

∂x

(
hū2 + g

h2

2

)
= −gh

∂zb

∂x
(A.10b)

A partir de ahora aunque se trabajen con velocidades medias se simbolizará con u en vez
de ū para relajar la notación. Para llegar a la ecuación de la energía partimos de la ecuación
A.10b y la multiplicamos por la velocidad u. Vamos a desarrollar cada uno de los términos por
separado.
Para el primer término se tiene

u
∂(hu)

∂t
= u2 ∂h

∂t
+ hu

∂u

∂t
= u2 ∂h

∂t
+ h

∂

∂t

(
u2

2

)

donde, desarrollando el último término

∂

∂t

(
hu2

2

)
= h

∂

∂t

(
u2

2

)
+ u2

2
∂h

∂t

u
∂(hu)

∂t
= ∂

∂t

(
hu2

2

)
+ u2

2
∂h

∂t
= ∂

∂t

(
hu2

2

)
− u2

2
∂(hu)

∂x

De nuevo
u2

2
∂(hu)

∂x
= ∂

∂x

(
u

hu2

2

)
− hu

∂

∂x

(
u2

2

)
= ∂

∂x

(
u

hu2

2

)
− hu2 ∂u

∂x

Y así
u

∂(hu)
∂t

= ∂

∂t

(
hu2

2

)
− ∂

∂x

(
u

hu2

2

)
+ hu2 ∂u

∂x
(A.11)

Para el segundo término de la ecuación

u
∂(hu2)

∂x
= ∂

∂x

(
u(hu2)

)
− hu2 ∂u

∂x
(A.12)

y para el tercero

u
∂

∂x

(
g

h2

2

)
= ∂

∂x

(
u(g h2

2 )
)

− g
h2

2
∂u

∂x
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Desarrollamos el segundo término a la derecha

g
h2

2
∂u

∂x
= g

∂

∂x

(
h2u

2

)
− gu

∂

∂x

(
h2

2

)

Ahora usamos la ecuación de conservación de la masa (Ecuación A.10a) multiplicada escalar-
mente por h.

h
∂h

∂t
+ h

∂(hu)
∂x

= ∂

∂t

(
h2

2

)
+ ∂

∂x

(
h2u

2

)
− u

∂

∂x

(
h2

2

)
= 0

Y por tanto

g
h2

2
∂u

∂x
= −g

∂

∂t

(
h2

2

)

u
∂

∂x

(
g

h2

2

)
= ∂

∂x

(
u(g h2

2 )
)

+ g
∂

∂t

(
h2

2

)
(A.13)

Respecto al término a la derecha de la ecuación 2.5b

ugh
∂zb

∂x
= ∂

∂x
(ughzb) − gzb

∂(hu)
∂x

= ∂

∂x
(ughzb) + ∂

∂t
(ghzb) (A.14)

Donde en el último paso se ha usado de nuevo la ecuación de conservación de la masa y que
el fondo no cambia con el tiempo, es decir, ∂zb

∂t = 0. Finalmente, sumamos todos los términos
(Ecuaciones A.11, A.12, A.13 y A.14), cancelamos términos.

∂

∂t

(
h

u2

2

)
− ∂

∂x

(
u

hu2

2

)
+ ∂

∂x

(
u(hu2)

)
+ ∂

∂x

(
u(g h2

2 )
)

+g
∂

∂t

(
h2

2

)
+ ∂

∂x
(ughzb)+ ∂

∂t
(ghzb) = 0

Agrupamos las derivadas puntuales y las convectivas

∂

∂t

(
hu2

2 + g
h2

2 + ghz

)
+ ∂

∂x

(
u(hu2

2 + g
h2

2 + ghzb)
)

= 0 (A.15)

Se ha visto pues un procedimiento para llegar a la ecuación deseada para la energía en el caso
hidrostático.

A.2.2. Modelo no hidrostático hiperbólico elíptico o NHP-HE

Para llegar a la ecuación de la energía de este modelo se parte del sistema no hidrostático
integrado en la vertical, que se ha deducido en el Anexo A.1.

∂h

∂t
+ ∂(hu)

∂x
= 0 (A.16a)

∂(hu)
∂t

+ ∂

∂x

(
hu2 + g

h2

2 + hpnh

)
= (−gh + 2pnh)∂zb

∂x
(A.16b)

∂(hw)
∂t

+ ∂

∂x
(huw) = 2pnh (A.16c)

Como el sistema tiene una parte común con el sistema hidrostático, se pueden ahorrar

30



cálculos utilizando los resultados ya alcanzados. Vimos que multiplicando la ecuación A.10b por
la velocidad en la horizontal llegábamos a la ecuación A.15. Multiplicamos pues los términos no
hidrostáticos1 de la ecuación A.16b por u.

u
∂(hpnh)

∂x
hpnh = ∂

∂x
(uhpnh) − hpnh

∂u

∂x

u2pnh
∂zb

∂x
= hpnh

u∂zb
∂x

h/2

Por tanto, la ecuación 2.10b multiplicada por u queda

∂

∂t

(
h

u2

2 + g
h2

2 + ghzb

)
+ ∂

∂x

(
u(hu2

2 + g
h2

2 + ghzb + hpnh)
)

= hpnh

∂u

∂x
+

u∂zb
∂x

h/2

 (A.17)

Por otro lado, tomamos la ecuación A.16c y la multiplicamos por la velocidad vertical, w. Para
el primer término de la ecuación observamos que

∂(hw2)
∂t

= w2 ∂h

∂t
+ 2wh

∂w

∂t
= w2 ∂h

∂t
+ 2

(
∂(hw2)

∂t
− w

∂(hw)
∂t

)

Despejando el término w ∂(hw)
∂t queda

w
∂(hw)

∂t
= w2

2
∂h

∂t
+ ∂

∂t

(
hw2

2

)

Para el segundo término

∂

∂x

(
huw2

)
= w2 ∂hu

∂x
+ 2huw

∂w

∂x
= w2 ∂(hu)

∂x
+ 2

(
∂

∂x
(huw2) − w

∂

∂x
(huw)

)

Despejamos w ∂
∂x(huw).

w
∂

∂x
(huw) = w2

2
∂(hu)

∂x
+ ∂

∂x

(
hu

w2

2

)

Y por tanto,

w(∂(hw)
∂t

+ ∂

∂x
(huw) − 2pnh) = w2

2

(
∂h

∂t
+ ∂(hu)

∂x

)
︸ ︷︷ ︸

=0

+ ∂

∂t

(
hw2

2

)
+ ∂

∂x

(
hu

w2

2

)
− w2pnh = 0

(A.18)

1Es decir, los términos adicionales que contienen la pnh y que no estaban en la ecuación A.10b
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Así, sumando las ecuaciones A.17 y A.18 llegamos la ecuación

∂

∂t

(
h

u2 + w2

2 + g
h2

2 + ghzb

)
+ ∂

∂x

u

(
h(u2 + w2)

2 + g
h2

2 + ghzb + hpnh

)
= hpnh

∂u

∂x
+

w − u∂zb
∂x

h/2

 (A.19)

Si definimos la energía de acuerdo a [10] se llega a la expresión deseada.
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A.3. Resolución numérica de las ecuaciones

En esta sección se detalla en mayor profundidad el esquema numérico que se ha utilizado
para la resolución de las ecuaciones gobernantes. El procedimiento que se sigue para realizar
dicha discretización es el de los volúmenes finitos[15]. Este método consiste en la discretización
del espacio mediante un conjunto de celdas que forman la malla computacional. En el centro o
en el lado de cada celda se define el valor discreto de la variable como el promedio de la variable
continua en esa celda. En el caso particular de 1D esto se traduce en un dominio formado por
segmentos de longitud ∆x como se muestra en la Figura 27.

x

x1 · · · xi−1 xi xi+1 · · · xn

xi−1/2 xi+1/2

x = 0 x = L
∆x

Figura 27: Dominio discreto para el método de los volúmenes finitos

Las variables promedio en los centros de las celdas tienen la expresión

Un
i = 1

∆x

∫
∆x

U(x, tn) dx (A.20)

Este método funciona especialmente bien para resolver sistemas de ecuaciones hiperbólicos, que
se pueden expresar de la forma

∂U
∂t

+ ∇ · F(U) = S (A.21)

siendo U el vector de las variables conservadas, F el vector de los flujos físicos y S el vector que
contiene los términos fuente. Con el método de los volúmenes finitos presentado y aplicando que
estamos en el caso de 1D el vector de variables conservadas en el instante t+∆t se obtiene como

Un+1
i = Un

i − 1
∆x

(∫
∆t

F(U(xi+1/2, t) dt −
∫

∆t
F(U(xi−1/2, t) dt

)
+
∫

∆t

1
∆x

∫
∆x

S(U, x) dx dt

(A.22)
donde es necesario aproximar las integrales de los flujos y los términos fuente. Se define con
esta ecuación el flujo numérico, que es la integral del flujo a lo largo de la pared en un paso de
tiempo.

F∗
i+1/2 = 1

∆t

∫
∆t

F(U(xi+1/2, t) dt (A.23)

Igualmente se puede realizar la aproximación para el flujo en la otra pared de la celda, así como
la aproximación del término fuente, y por tanto la expresión A.22 queda

Un+1
i = Un

i − ∆t

∆x

(
F∗

i+1/2 − F∗
i−1/2

)
+ ∆t

∆x
S̄i (A.24)

Los flujos se suelen resolver utilizando las variables a izquierda y derecha de la pared en
el tiempo t, es decir, con un esquema explícito. Resolviendo estos flujos se dice que se resuelve
el Problema de Riemann. Respecto a los términos fuente, estos pueden discretizarse de dos
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maneras, centrados en la celda, o como parte de los flujos numéricos, en las paredes.

Una forma de resolver el problema de Riemann consiste en utilizar el solver de Roe, cuyo
principio se basa en la linealización del problema de Riemann a partir de la matriz Jacobiana
que define el sistema.

Para entender mejor el procedimiento se va a explicar cómo se aplican estos métodos a las
ecuaciones de los modelos presentados en este trabajo. En concreto, el modelo de SW y NHP se
resuelven mediante un mismo esquema numérico, con un paso de tiempo ∆t subdividido en dos
pasos si se considera la distribución de presión no hidrostática[5].

La resolución de las ecuaciones NHP-HR es independiente y también se utiliza para ello un
Solver de Roe.

A.3.1. Resolución del modelo SW y NHP-HE

El sistema de ecuaciones NHP-HE 2.10 se puede reescribir

∂U
∂t

+ ∂F(U)
∂x

= Sb(U) + Snh(U) (A.25)

∂(hw)
∂t

+ ∂(huw)
∂x

= 2pnh (A.26)

h
∂(hu)

∂x
+ 2hw − hu

∂

∂x
(h + 2zb) = 0 (A.27)

donde

U =

 h

hu

 , F(U) =

 hu

hu2 + 1
2gh2

 , Sb(U) =

 0
−gh∂zb

∂x

 ,

Snh(U) =

 0
−
(
h∂pnh

∂x + pnh
∂(h+2zb)

∂x

) ,

Las dos primeras ecuaciones se escriben conjuntamente con la forma funcional de un sistema
hiperbólico. Para resolver el modelo hidrostático basta resolver este sistema siendo Snh(U) = 0.
En el caso del modelo NHP-HE, como ya se ha comentado, resolver este sistema lleva a un estado
intermedio para las variables conservadas en el paso temporal Un∗.

El solver de Roe aplicado a este sistema hiperbólico con el término fuente hidrostático nulo
queda

∂U
∂t

+ J(Ũ)∂Ũ

∂x
= Sb(Ũ) (A.28)

siendo J la matriz Jacobiana de las variables conservadas. Ũ es el vector linealizado en las
paredes de las celdas, a partir de los valores definidos en el centro de las mismas. Los promedios
en las variables en las paredes para el computo de los flujos se obtienen a partir de la matriz
Jacobiana localmente linealizada.

δF = J̃δU
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que en este caso adopta la forma

J̃ =

 1 0
gh̃ − ũ2 2ũ


Los valores promedios de las variables en las paredes son

h̃i+1/2 = hi + hi+1
2 c̃i+1/2 =

√
gh̃ ũi+1/2 = ui+1

√
hi+1 + ui

√
hi√

hi+1 +
√

hi

Una vez se tiene los promedios de Roe la actualización de las variables conservadas del sistema
se realiza mediante un esquema explícito upwind:

Un∗
i − Un

i

∆t
+

[
P̃Λ̃+

(
Ã − Λ̃−1B̃

)]n

i−1/2
+
[
P̃Λ̃−

(
Ã − Λ̃−1B̃

)]n

i+1/2
∆x

= 0 (A.29)

siendo

Λ̃ =

ũ + c̃ 0
0 ũ − c̃


la matriz linealizada de los valores propios, P̃ la matriz de sus vectores propios asociados y Ã y
B̃ los vectores que se definen como

Ã =

α̃1

α̃2

 = P̃−1δŨ y B̃ =

β̃1

β̃2

 = P̃−1H̃.

La actualización de las dos variables conservadas, que cumplen una hipótesis hidrostática, es
pues la dada por las ecuaciones ??

h∗
i = hn

i − ∆t

∆x

[∑
m

(
λ̃ + γ̃ẽ1

)m−1/2

i
+
∑
m

(
λ̃ − γ̃ẽ1

)m+1/2

i

]
(A.30a)

(hu)∗
i = (hu)n

i − ∆t

∆x

[∑
m

(
λ̃ + γ̃ẽ2

)m−1/2

i
+
∑
m

(
λ̃ − γ̃ẽ2

)m+1/2

i

]
(A.30b)

donde γ̃
m+1/2
i =

(
α̃m − β̃m

λ̃m

)m+1/2

i
. m recorre el número de valores propios del sistema, 2 en

este caso. El paso de tiempo es un paso de tiempo dinámico, estando restringido por la condición
del CFL, que como se ha comentado es necesario que sea menor o igual que 1 para tener un
esquema numérico estable.

∆t = CFL
∆x

max[ũ − c̃, ũ, ũ + c̃] (A.31)

La notación con asterisco en A.30 hace referencia al paso de tiempo intermedio que se está
considerando.

Si sólo estuviésemos resolviendo el sistema hidrostático, el paso de tiempo estaría completo
y se volvería a calcular los promedios de Roe con las nuevas variables actualizadas. En cambio,
si se esta resolviendo el modelo no hidrostático hay que completar el paso de tiempo con una
corrección de los términos hidrostáticos forzando a que se cumpla la DIIC, que se ha visto que es
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exclusiva de este modelo. Este método se conoce como Pressure Correction Method [11]. Como
la DIIC es una ecuación elíptica es necesario un procedimiento iterativo para realizarlo, que en
este caso se lleva a cabo mediante el algoritmo de Thomas [12].

Antes de realizar la corrección se calcula la evolución de la velocidad w.

w∗
i+1/2 = wn

i+1/2 − ∆t

∆x

[
(uδw)+

i + (uδw)−
i+1

]
. (A.32)

Un detalle importante en este punto es que las variables w y pnh están definidas en las
paredes de las celdas y no en los centros. El motivo de este desplazamiento es evitar posibles
problemas numéricos que surjan de la corrección de los campos de velocidades.[5]

La corrección que se introduce a las variables es

hn+1
i = h∗

i (A.33a)

(hu)n+1
i = (hu)∗

i + Q(∆pnh) (A.33b)

(w)n+1
i+1/2 = (w)∗

i+1/2 + W (∆pnh) (A.33c)

donde los términos Q(∆pnh) y W (∆pnh) son las expresiones discretas de los términos no hidros-
táticos antes no considerados.

Q(pnh) = −∆t

hn+1
i

pn+1
nh,i+1/2 − pn+1

nh,i−1/2
∆x

+ pn+1
nh,i

(h + 2zb)n+1
i+1 − (h + 2zb)n+1

i−1
2∆x

 (A.34)

W (pnh) = ∆t2pn+1
nh,i (A.35)

Notar que ambas ecuaciones se evalúan en los centros de las celdas, por lo que al estar
definida la presión en las paredes, se aproxima su valor en el centro de las celdas mediante el
promedio de sus valores en la pared. Las expresiones para el calado y los caudales unidad de las
celdas se sustituyen en la ecuación DIIC discretizada.

[
hi+1/2(hu)i+1 − (hu)i

∆x
+ 2hi+1/2wi+1/2 − (hu)i+1/2

hi+1 + 2zb,i+1 − hi − 2zb,i

∆x

]n+1

= 0

llegando al sistema buscado que es una ecuación para la presión no hidrostática.

Ai+1/2pn+1
nh,i−1/2 + Bi+1/2 · pn+1

nh,i+1/2 + Ci+1/2 · pn+1
nh,i+3/2 = Di+1/2

Los coeficientes tienen las siguientes expresiones, siendo ϕi+1/2 = hi+1 + 2zi+1 − hi − 2zi.

Ai+1/2 =
(

ϕi

2 − 2hi

)
(ϕi+1/2 − 2hi+1/2)

Bi+1/2 = 16∆x2 + ϕi+1/2(ϕi + ϕi+1 + 2hi+1 − 1 − 2hi+1)

+ 2hi+1/2(ϕi/2 − ϕi+1/2 + 4hi+1/2)
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Ci+1/2 =
(

ϕi+1
2 − 2hi+1

)
(ϕi+1/2 − 2hi+1/2)

Di+1/2 = ∆x2

∆t

[
hi+1/2

(hu)i+1 − (hu)i

∆x
− (hu)i+1/2

ϕi+1/2
∆x

+ 2hi+1/2wi+1/2

]
Para resolverla se utiliza el método de Thomas o método para las matrices tridiagonales[12],
completándose así el paso temporal completo y actualizando las variables conservadas con los
nuevos valores calculados.

A.3.2. Resolución del modelo NHP-HR

El modelo NHP-HR se puede escribir como un sistema hiperbólico de 4 ecuaciones de la
forma

∂U
∂t

+ ∂F(U)
∂x

+ B(U)∂U
∂x

= Sb(U)∂zb

∂x
+ Snh(U) + Sf (U) (A.36)

donde

U =


h

hu

hw

hpnh

 =


h

qu

qw

qp

 , F(U) =


qu

1
hq2

u + 1
2gh2 + qp

1
hquqw

1
hquqp + c2

pqu

 ,

Sb(U) =


0

−(gh + 2pnh)
0

2c2
pu


∂zb

∂x
, Snh(U) =


0
0

2pnh

−2c2
pw

 ,

B(U) =


0 0 0 0
0 0 0 0
0 0 0 0

− 1
hc2

pqu 0 0 0

 .

Aplicamos el solver de Roe mediante la linealización de las variables en las paredes de las celdas.

∂U
∂t

+ K(Ũ)∂Ũ

∂x
= Sb(Ũ) + Snh(Ũ) + Sb(Ũ) (A.37)

Y la expresión final para la actualización de las variables en el tiempo t + ∆t es

Un+1
i = Un

i − ∆t

∆x

 4∑
m=1

(
λ̃+γ̃ẽ

)m

i−1/2
+

4∑
m=1

(
λ̃−γ̃ẽ

)m

i+1/2

+ ∆tSnh(U)n+1
i (A.38)
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A.4. Análisis de la discretización de la malla para el caso de Beji

En la sección 3 se ha visto que el modelo que mejor ajustaba los datos experimentales para
el caso de Beji et al. [1] era el modelo NHP-HE. Se quiere estudiar también la influencia de la
malla escogida y cual es la elección más adecuada.

Figura 28: Variación del nivel en la sonda 1 para el caso de Beji con distintas mallas para el modelo
NHP-HE

Figura 29: Variación del nivel en la sonda 2 para el caso de Beji con distintas mallas para el modelo
NHP-HE
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Figura 30: Variación del nivel en la sonda 3 para el caso de Beji con distintas mallas para el modelo
NHP-HE

Figura 31: Variación del nivel en la sonda 4 para el caso de Beji con distintas mallas para el modelo
NHP-HE

39



Figura 32: Variación del nivel en la sonda 5 para el caso de Beji con distintas mallas para el modelo
NHP-HE

Figura 33: Variación del nivel en la sonda 6 para el caso de Beji con distintas mallas para el modelo
NHP-HE
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Figura 34: Variación del nivel en la sonda 7 para el caso de Beji con distintas mallas para el modelo
NHP-HE

Figura 35: Variación del nivel en la sonda 8 para el caso de Beji con distintas mallas para el modelo
NHP-HE

En la sonda 1 hay una concordancia total entre experimento y simulación porque se establece
este caso como condición de contorno para simular este problema. Se observa que cuanto mayor es
la discretización, mejor es el ajuste de los datos. De hecho, son necesarios valores muy pequeños
de ∆x para tener un ajuste adecuado. Esto también es debido al tamaño de las ondas que
se generan, pues tienen una amplitud y anchura del orden de los centímetros, por lo que es
necesario una discretización un orden de magnitud menor para poder discretizarlas sin que el
error asociado a ello sea relevante. Además de ajustar los datos con mayor precisión buscar
la mejor discretización permite seleccionar esta misma para luego evaluar la energía con esta
mismo ∆x.
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A.5. Caso de ondas generadas por un pistón

Se incluyen en este anexo las gráficas del caso de Cea et al. [4] que por elongación no se
han podido añadir al cuerpo principal de este trabajo pero que son igualmente interesantes. El
caso que se ha simulado en la sección 3 es para un nivel H0 = 0,25m y un pistón rápido, que
se corresponde con una velocidad de 0,58m/s y una amplitud de desplazamiento de 0,29m, tal
como se describe en [4]. Para el mismo pistón pero con un menor nivel en reposo H0 = 0,20m
de nuevo se tienen resultados adecuados.

Figura 36: Variación respecto al nivel en reposo registrado por la Sonda 1, junto con los modelos NHP-HE
y SW

Figura 37: Variación respecto al nivel en reposo registrado por la Sonda 2, junto con los modelos NHP-HE
y SW
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Figura 38: Variación respecto al nivel en reposo registrado por la Sonda 3, junto con los modelos NHP-HE
y SW

Figura 39: Variación respecto al nivel en reposo registrado por la Sonda 4, junto con los modelos NHP-HE
y SW
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Figura 40: Variación respecto al nivel en reposo registrado por la Sonda 5, junto con los modelos NHP-HE
y SW

También se incluyen los ajustes para el caso en el que el pistón se mueve con la frecuencia
lenta, a una velocidad de 0, 29m/s y con una amplitud de 0, 58m.

Figura 41: Variación respecto al nivel en reposo registrado por la Sonda 1, junto con los modelos NHP-HE
y SW
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Figura 42: Variación respecto al nivel en reposo registrado por la Sonda 2, junto con los modelos NHP-HE
y SW

Figura 43: Variación respecto al nivel en reposo registrado por la Sonda 3, junto con los modelos NHP-HE
y SW
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Figura 44: Variación respecto al nivel en reposo registrado por la Sonda 4, junto con los modelos NHP-HE
y SW

En ambos casos, los datos experimentales se reproducen con mayor precisión de nuevo con
el modelo NHP-HE, y de nuevo no hay preferencia por una malla computacional más fina para
las dos escogidas en este modelo.

Por otro lado, para el modelo de SW se observa que en las sondas 3, 4 y 5 reproduce unas
regiones planas, donde las ondas alcanzan su máximo que no se observaban para el pistón rápido.
Estas zonas indican aún más si cabe que el modelo de SW no realiza un ajuste correcto de la
situación a modelar.
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