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1 Introduccion

Los problemas de optimizacién, generalmente presentados como la minimizacién de una funcién
sujeto a unas ligaduras, son omnipresentes en el mundo actual. El interés en dichos problemas
reside en su variedad de aplicaciones: desde reducir el tiempo de envio de un paquete hasta
minimizar el riesgo en una inversién financiera.

En el dmbito de la fisica, el problema de los muchos cuerpos cuantico (“quantum many-body
problem”) juega un papel central en el estudio del comportamiento de la materia. La obtencién
de la energia del estado fundamental del sistema, que no es sino la minimizacion del valor
esperado del hamiltoniano, no es trivial. La dificultad del problema es que el espacio de Hilbert
crece exponencialmente con el nimero de particulas y, por ende, es inviable resolverlo con
ordenadores clésicos.

Un ordenador cuantico, en cambio, parte con la ventaja de que no necesita construir un espacio
de Hilbert, sino que constituye un espacio de Hilbert en si mismo. Por lo tanto, es de esperar que
un circuito cudntico que presente la suficiente complejidad sea capaz de representar el espacio de
Hilbert en el que estamos interesados de manera mas eficiente. Esto, a su vez, deberia facilitar
la obtencién del estado fundamental.

No obstante, la realidad actual se encuentra muy alejada de dicha situacion. Los ordenadores
cuanticos mas avanzados a los que tenemos acceso se conocen como ordenadores cuanticos de
escala intermedia ruidosa (NISQs)!. Los circuitos cudnticos que son capaces de realizar son muy
limitados y, por tanto, necesitamos algoritmos cuanticos que se adapten a este tipo de tecnologia.

En este contexto, surgen los algoritmos cudnticos variacionales (VQAs), que estdn basados en el
uso de redes neuronales cudnticas (QNNs). Los VQAs presentan una linea de investigaciéon con
gran potencial a corto plazo, pues se basan en usar de forma hibrida la tecnologia cudntica con
la clasica. Gracias al uso de optimizadores clasicos, los VQAs requieren de circuitos cudnticos
menos® complejos que pueden ser implementados en ordenadores NISQs. No obstante, entre
las mayores desventajas de los algoritmos variacionales se encuentran su precision, eficiencia y

entrenabilidad [2].

Cuando los algoritmos variacionales cudnticos se aplican a problemas cldsicos de optimizacién
adoptan el nombre de “quantum approximate optimization algorithm” (QAOA) [3]. Por su
parte, el VQA disenado precisamente para determinar la energia del estado fundamental de un
sistema cudntico se denomina “variational quantum eigensolver” (VQE) [8].

En ultima instancia, los dispositivos cudnticos actuales atin no presentan una mejora frente a
los métodos clasicos. En palabras de John Preskill [11]:

“Will NISQ technology running QAOA or VQE be able to outperform classical algorithms that
find approximate solutions to the same problems? Nobody knows, but we’re going to try it and
see how well we can do.”?

! John Preskill acufi6 el término NISQs en 2018 [11]. La escala intermedia hace referencia a que el nimero de
qubits que son capaces de soportar oscila entre 50 y 100. Los denomina ruidosos porque no tenemos un control
perfecto de los qubits ya que su tiempo de coherencia es muy limitado y las puertas cudnticas implementadas
presentan un error significativo.

2Previo a los algoritmos variacionales, los algoritmos cudnticos para determinar autoestados de un sistema
se basaban en el “quantum phase estimation” (QPE). Para aplicaciones précticas, dicho algoritmo requiere de
un circuito cudntico con un tiempo de coherencia del orden de millones, o incluso miles de millones, de puertas
cudnticas mientras que los NISQs tnicamente son capaces de soportar del orden de cientos de puertas [8].

3;Podré la tecnologia NISQ ejecutando el QAOA o VQE superar a los algoritmos cldsicos que encuentran
soluciones aproximadas a los mismos problemas? Nadie lo sabe, pero vamos a intentarlo y ver qué tan bien
podemos hacerlo.



2 Objetivos y Estructura de la Memoria

El principal objetivo del Trabajo Fin de Grado es demostrar que la red neuronal con una
capa asociada al ansatz de estados generalizados coherentes (GCS) es simulable cldsicamente,
disenando asi un algoritmo quantum-inspired.

A raiz de esto, la segunda finalidad del trabajo es la comparacién del comportamiento de la
red neuronal cudntica con una capa frente a su analogo clédsico en la resolucién del problema de
muchos cuerpos cudntico con interacciones de largo alcance. Asimismo, con el fin de disponer
de un método que no sea emulable clasicamente, vamos a incluir en el estudio la red neuronal
cuantica con dos capas.

La estructura de la memoria se ha llevado a cabo con los objetivos en mente, de forma que se
realiza una introducciéon tedrica de todos los conceptos necesarios para entender los objetivos.
Por tanto, el autor ha procurado realizar un trabajo que sea accesible al lector experimentado
pero que no sea necesariamente experto en la materia.

En primer lugar, la Seccién 3 presenta de forma tedrica los algoritmos cudnticos variacionales y,
en concreto, el VQE. Asi, entenderemos las distintas etapas del algoritmo y las condiciones que
debe verificar el hamiltoniano del sistema para que pueda ser tratado con el VQE.

A continuacién, la Seccién 4 recoge una introducciéon de los sistemas con interacciones de
largo alcance (“modelos long-range”). Asimismo, nos centraremos en el modelo long-range de
Ising cuantico ya que es un sistema idéneo para verificar la precisién tanto de las redes neu-
ronales cuanticas como del algoritmo quantum-inspired, pues se trata de un modelo con una
fenomenologia muy rica.

En tercer lugar, en la Seccién 5, presentamos los estados coherentes generalizados (GCS) que
no son sino el ansatz que vamos a emplear en este trabajo. Ademads, vamos a explicar su
implementacién en un circuito cudntico que pueda ser introducido en el lenguaje de programacioén
Python, a través del paquete gqiskit.

A estas alturas, ya hemos introducido todos los conceptos necesarios para satisfacer los objetivos
principales de la memoria. El resultado mas relevante del trabajo se encuentra en la Seccion 6,
donde demostramos que el circuito cuantico con una capa se puede simular con un ordenador
clasico. Notese que la demostracion viene complementada por el Anexo A, en el que recogemos
parte del desarrollo matematico.

Posteriormente, en la Seccién 7, discutimos la eficacia de los tres métodos. Primero, se realiza
un estudio previo con un sistema trivial para verificar que todos los métodos funcionan correc-
tamente. Finalmente, llevamos a cabo la resolucién del modelo long-range de Ising cudntico y
concluimos escogiendo el método que presenta mejores prestaciones.

En dltimo lugar, la Seccion 8 recapitula el desarrollo realizado en el trabajo e indica una manera
de mejorar la implementacién del algoritmo quantum-inspired presentada en este Trabajo Fin
de Grado.

En definitiva, al finalizar la lectura del documento, el lector adquirird una cierta familiaridad
con los métodos variacionales cuanticos y modelos cudnticos de largo alcance.

Como nota final, destacamos que el cédigo realizado en este trabajo y las prestaciones del
ordenador en el que se han ejecutado todas las optimizaciones se recogen en los Anexos By C,
respectivamente.



3 Algoritmos Cudnticos Variacionales (VQAs)

Los algoritmos cudnticos variacionales (VQAs) son un emergente candidato para obtener supre-
macia cudntica® en un futuro no tan lejano con los dispositivos que se disponen a dia de hoy;
los ordenadores cudnticos de escala intermedia ruidosa (NISQs) [2].

Los VQAs son algoritmos hibridos que se fundamentan en calcular el valor de una funcién
coste (“cost function”) cudnticamente, mediante un circuito cudntico parametrizado, que es
posteriormente optimizado clasicamente. De esta forma, los parametros del circuito cuantico se
actualizan con el resultado de la optimizacion clasica, finalizando asi una iteracién del algoritmo.
Los VQAs se componen, por tanto, de una funcién coste que puede ser expresada, sin pérdida
de generalidad, como:

C(0) = f({rr}, {0k}, U(0)) (1)

donde f es una funcién que depende de un conjunto de observables {Oy} y de estados iniciales
{pr}, asi como de un operador unitario parametrizado U (@), que corresponde al conjunto de
puertas que conforman el circuito cudntico y se denomina ansatz [2]. En la Figura 1 se recoge
el método operativo de un VQA genérico.

Quantum Computer
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Ansatz

Input

Classical Computer
Quantum state
Probability distribution
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H Gate sequence
e 4 Quantum operator

Updated parameters

Optimizer
arg Egnin (o)

Hybrid Loop

Figura 1: Flujo de trabajo de los VQAs [2]

Cabe destacar que las redes neuronales cuanticas corresponden a circuitos cuanticos parametriza-
dos que sean aptos para ser optimizados, es decir, que el espacio de fases de los pardmatetros
sea lo suficientemente suave como para que pueda efectuarse su gradiente. Debido a esto, en la
Figura 1 se muestra la imagen tanto de un circuito cudntico como de una red neuronal. [2]

3.1 Variational Quantum Eigensolver (VQE)

A continuacién, vamos a estudiar en mayor detalle el “variational quantum eigensolver” (VQE),
que no es sino el primer VQA llevado a cabo experimentalmente [8]. El desarrollo del algoritmo
presentado en esta Seccién se ha extraido del curso de IBM sobre algoritmos variacionales [5].

El objetivo del algoritmo es encontrar la energia del estado fundamental de un sistema cuantico.
Consecuentemente, la funcién coste del VQE es:

C(0) = (¥(0)|H]4(0)) (2)

donde H es el hamiltoniano del sistema de interés y [1/(0)) es un estado normalizado que depende
de los parametros a minimizar.

4El término fue acufiado por John Preskill en 2012 [10] y hace alusién a la habilidad que tienen los ordenadores
cuanticos de resolver ciertos problemas computacionales con una mejora en tiempo superpolinomial frente a los
dispositivos clésicos.



El VQE se basa en el principio variacional de la mecénica cuantica, que establece que la aproxi-
macién éptima del estado fundamental de un sistema cuantico es aquella que minimiza el valor
esperado del hamiltoniano:

(V(0)[H[(0)) = Eo 3)

siendo Ey la energia fundamental del sistema.

La demostracion de dicho enunciado se basa en la descomposicion espectral del hamiltoniano
del sistema. Para un estado normalizado cualquiera, se verifica que:

(YIH[D) = (Y] (Z Ek\¢k><¢k|> ) = > Exl{@lew)* > Eo (4)
k k

donde {|¢x) }x es una base ortonormal compuesta por autoestados del hamiltoniano con autovalor
E). Nétese que en la primera igualdad hemos empleado que H = >, Ej|¢)(¢r|. En segundo
lugar, hemos introducido la desigualdad ya que la energia fundamental del sistema es menor o
igual que el resto de energias, es decir, E, > Fy, Vk. Ademas, en la desigualdad se ha tenido en

cuenta que 3=, [(v|¢x)[* = 1.

La ventaja de expresar el teorema variacional en funcién de la energia del sistema es que la
energia fundamental debe verificar que Ey > —o0, es decir, tiene una cota inferior. Ademds, en
general, la energia del sistema no dispone de una cota superior.

Una vez introducido el teorema variacional, vamos a estudiar con mayor profundidad los con-
ceptos de estado de referencia y ansatz.

El estado de referencia es el estado inicial fijo con el que va a trabajar el algoritmo, |p). Es
fundamental destacar que dicho estado no se encuentra parametrizado pues es simplemente el
estado de partida del algoritmo y es constante. Luego, el primer paso del VQE es inicializar
el estado de referencia mediante un operador unitario Ug tal que |p) = Ug|0). Noétese que es
practica comun emplear como estado de referencia el propio estado predeterminado |0), de forma
que en estos casos se obtiene que U = 1.

A partir del estado de referencia, se introduce la forma variacional, Uy (0), tal que [¢(0)) =
Uv(0)|p), donde recordamos que |1(0)) es el estado parametrizado con el que vamos a evaluar
el valor esperado del hamiltoniano del sistema. Ver Ecuacién (2). Por tanto, la forma variacional
define el conjunto de estados parametrizados que el algoritmo va a poder explorar. Debido a esto,
es imprescindible que los estados parametrizados dependan de los parametros de forma continua
y derivable, para poder asi acceder a todos los estados de forma eficiente. Asi, el ansatz se define
como la combinacién entre la parte del circuito cuantico sin parametrizar, correspondiente a Ug,
y la parametrizada, asociada a Uy (0). Ver Ecuacion (5).

Ua(0) =Uy(0)Ur (5)

Cabe destacar que el ansatz empleado puede depender del hamiltoniano en cuestion, de forma
que se denomina problem-specific ansatz, o puede ser completamente independiente del problema,
en cuyo caso se conoce como heuristic ansatz. En nuestro caso, vamos a trabajar con un heuristic
ansatz, con el que vamos a derivar analiticamente (o) y (0207,).

Por otro lado, vamos a discutir las condiciones que debe verificar el hamiltoniano del sistema
para que sea computacionalmente eficiente llevar a cabo su valor esperado. En concreto, vamos
a estudiar cémo giskit® [6] calcula dicho valor esperado, pues la implementacién del VQE en
este trabajo se ha realizado usando dicho SDK.

5 Qiskit es un kit de desarrollo de software (SDK) disefiado por IBM que permite trabajar con ordenadores
cuanticos.



Qiskit dispone de una primitiva® llamada “Estimator” que, dado un estado cuantico, calcula el
valor esperado del observable en cuestion; en nuestro caso, el hamiltoniano del sistema usando
los estados |¢(0)). Para llevar esto a cabo, descompone el valor esperado de la siguiente manera:

H)=> paA (6)
X

donde py = [(¥|\)|?, siendo |)\) autoestados de H con autovalor A, representa la probabilidad
de medir \.

Por consiguiente, es necesario disponer de una base de autoestados para poder evaluar la
Ecuacién (6). Debido a que, en general, no es trivial obtener dicha base, se expresa el hamil-
toniano del sistema como una combinacién de matrices de Pauli, pues conocemos tanto sus
autoestados como sus autovalores. En concreto, una matriz’ 2" x 2" se puede expresar como
una combinacion lineal del producto tensorial de n matrices de Pauli y la identidad:

4™ —1
H= Z Zwkn 1ok Thnog &0 © Oky = Zwkpk (7)
kn—1=0 ko= k=0

donde usamos que (09, 01,02,03) = ([,0%,0Y,0%)y Py =0, , Q- Qop, conk =kp_1---ko €
{0,1,2,3}™. Nétese que, debido a que en cada producto tensorial puede haber una matriz de
Pauli o la identidad, tenemos 4™ términos en la Ecuacién (7).

Por su parte, las matrices de Pauli son hermiticas, luego su producto tensorial también lo es. Por
consiguiente, Pi es diagonalizable unitariamente, es decir, existe una transformacién unitaria
Vi=Ve  ®---®V tal que P, = V,JAka, donde Ay, = Ay, , ®---®Ag es una matriz diagonal
compuesta por los autovalores de Pi. Es fundamental destacar que la virtud de descomponer
el hamiltoniano en matrices de Pauli es que, en la base computacional, la forma de las matrices
Vi, es conocida®. Asi, el valor esperado de P se puede expresar como:

n—1

(B PLlw) = (VI AR Vi)

2n—1 2n—1
wwv,J(Z\M)Ak > 1G] Vel
i=0 Jj=0

2m—_12"—1
= 3" ST @IV 1) ARG (G Vilw) .
i=0 j=0
2n—1
= 3" @IV i) Gl ARl G Vi)
1=0
n—1

= Ve Ak
=0

donde |i) son los autoestados de Ay tales que (i|Ag|j) = 0ijAri, pues Ay es diagonal. Ademds,
se ha empleado la relacién de clausura Z?ia Yiy| =1

Por tanto, el valor esperado del hamiltoniano del sistema, es:
qgn—1  2n—1

(Y| H]p) = Z wy Z| (i Vi) * A 9)

5Las primitivas son los bloques fundamentales a partir de los cuales se pueden realizar algoritmos cudnticos
m4és complejos [6].
"Nétese que la dimensién de cada qubit es 2, luego la dimensién de un sistema con n qubits es 27.

1 1 1 1 1 —
8 . . . . _ _ _ _
Dado un qubit arbitrario, tenemos que: Vo =1, Vi = —\/5 <1 71>, Vo = —ﬂ (1 i ) y Vs =1.



Noétese que, gracias a la descomposicién del hamiltoniano en matrices de Pauli, conocemos todos
los términos de la Ecuacién (9) excepto |(i|Vi|1¥)|?, que no es sino la probabilidad de medir el
estado |7) a partir del estado inicial Vi|¢). Aqui es donde entra el papel del “Estimator”, que
calcula dicha probabilidad. En concreto, lleva a cabo el circuito cuantico Vi|¢), para poder
asi diagonalizar Pj en la base computacional, y lo ejecuta midiendo el estado final un ntmero
suficientemente alto de veces para poder determinar |(i|Vj|1)|?.

No obstante, el nimero de términos en la Ecuacién (9) crece exponencialmente y, consecuente-
mente, no es viable computar (#). Luego, necesitamos exigir al hamiltoniano del sistema que
pueda ser descompuesto de forma escasa en matrices de Pauli (“Sparse Pauli Descomposition”).
Rigurosamente, exigimos que los términos wy distintos de cero crezcan de forma polinémica
con el niimero de qubits, y no de manera exponencial. Asimismo, las probabilidades |(i|Vj|1)|?
también deben escalar de forma polinémica para que sea computacionalmente eficiente realizar
el calculo del valor esperado del hamiltoniano del sistema.

Pol(n) Pol(n)
(Y[H[Y) = W, A (10)
k 0

7=

o

Los hamiltonianos que se pueden descomponer de forma escasa en matrices de Pauli describen
una multitud de sistemas fisicos, como la mayoria de modelos de espin [16], entre los que se
encuentra el modelo de largo alcance que vamos a simular en este trabajo. Ver Seccién 4.

En ultimo lugar, es fundamental destacar que la eleccién del optimizador clasico juega un papel
central en el éxito del VQE. En general, los optimizadores se pueden dividir en dos categorias:
“Gradient-Based” y “Gradient-Free”. Los primeros emplean el gradiente de la funcién de coste
para evaluar la direccion donde se minimiza la funcién, mientras que los segundos minimizan
la funcién de coste a través de otros métodos que no hacen uso de sus derivadas. La mayor
diferencia entre los métodos es que los optimizadores “Gradient-Based” suelen ser mas eficientes
encontrando minimos locales de la funcién objetivo, y los “Gradient-Free” son més robustos
obteniendo el minimo global de la funcién, a cambio de ser mas costosos computacionalmente.
Ademsds, es practica comun inicializar (“bootstrap”) la optimizacién con los pardmetros resul-
tantes de la optimizacién previa, consiguiendo asi un menor tiempo de convergencia.
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Figura 2: Esquema completo del VQE [5]



4 Modelos Long-Range (LRH)

En este trabajo vamos a afrontar el problema de muchos cuerpos cuédntico (“quantum many-
body problem”), ya que vamos a simular el modelo long-range de Ising cudntico. Por tanto, es
necesario introducir los sistemas de largo alcance. Las ideas que se van a tratar en esta seccién
estan recogidas en [13; 14].

4.1 Introduccion de los Modelos Long-Range

En general, los modelos long-range cudnticos en una red con dimensiéon d y N sitios, vienen
descritos por la siguiente familia de Hamiltonianos:

N
Hirm =~ Y Ji;CCj (11)
i,j=1
donde C; es un operador actuando sobre el sitio 4, y las constantes de acoplos J;; se definen
como:

T
Jij = J = (12)
N
siendo .J una constante que indica la intensidad de las interacciones, mientras que N es el factor
de normalizacién y J;; son los coeficientes que decaen acorde a 1/r®. Ver Ecuacién (13).

~ b cont=j
Jij(rij) = 13
() {ﬁ_ﬂa o (13)
Noétese que b es un parametro que desplaza el espectro de J. A lo largo de este trabajo, las
simulaciones se han llevado a cabocon b =1y d = 1.

Finalmente, cabe destacar que la normalizacién viene dada por:

A 1
N=> Jj=1+) — (14)

Es fundamental notar que empleamos condiciones de contorno periédicas (PBC), de forma que
la normalizacién (14) es independiente del sitio i.

En definitiva, los modelos long-range se caracterizan por describir interacciones entre dos cuerpos
que, a largas distancias, siguen una ley de 1/r®. Nétese que este tipo de modelos describen una
gran variedad de sistemas, como la interaccién de Coulomb o Van-der Waals.

La clasificacién de los sistemas de largo alcance gira en torno la constante de decaimiento, a.
Ver Figura 3.

Si a < d, entonces se dice que el modelo es de largo alcance fuerte (“strong long-range”),
ya que las interacciones decaen de manera suficientemente lenta tal que la suma (11) escala
superlinealmente con el tamano del sistema N y, por tanto, el sistema pierde la extensividad.
No obstante, introducimos la normalizacién, denominada factor de renormalizacion de Kac, para
recuperar dicha extensividad y tener asi un limite termodindmico bien definido.

En el caso a > d, el modelo es extensivo y se distinguen dos regiones diferentes. Si a > ay, el
sistema presenta los mismos exponentes criticos que el caso o — oo, que corresponde al sistema
con interacciones solo a primeros vecinos. En esta regién, el modelo se denomina de corto
alcance (“short-range”). En el caso restante, cuando o, > a > d, los exponentes criticos son
distintos, lo que significa que el sistema presenta interacciones de largo alcance pero manteniendo
la extensividad del modelo. Esta regién se conoce como el régimen de largo alcance débil (“weak
long-range”). Noétese que el valor de a.,. depende de cada modelo en particular.
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Figura 3: Diagrama de las regiones de los modelos long-range en funcién del valor de a [14].

4.2 Modelo Long-Range de Ising Cuantico

El hamiltoniano que vamos a simular es:

N N N
H= Z Jijafaj—h;rzgg”—i—ezgf (15)
i=1 i=1

,j=1

donde las constantes de acoplo J;; se definen en (12), tratdndose asi de un modelo long-range.
Destacamos que los términos asociados a las interacciones entre los distintos sitios provocan que
los espines se orienten en las dos orientaciones posibles a lo largo de un eje, denominado eje facil.
En nuestro caso, el eje facil se corresponde al eje Z. Por otro lado, el termino h, estd asociado
a un campo magnético uniforme y transversal, de forma que estamos tratando con el modelo
de Ising cuantico’. Finalmente, disponemos de un pequeno campo magnético longitudinal, e,
con el fin de romper la degeneracion entre los estados asociados a todos los espines up o down.
Noétese que en las simulaciones realizadas en este trabajo, hemos fijado h, = 1 tal que el resto

de magnitudes de energia las expresamos en unidades de h,. Por ejemplo, vamos a trabajar con
€/hy = 0.001.

Tal y como hemos comentado en la Seccién 4, el comportamiento del sistema (15) varfa signi-
ficativamente en funcién del valor de a. En concreto, el sistema presenta interacciones de largo
alcance cuando « < 1, pues se encuentra en el régimen de largo alcance fuerte. Por su parte,
en este sistema se verifica que o, = 3. Por tanto, el sistema es de largo alcance débil cuando
1 < a < 3, de forma que recupera la aditividad manteniendo interacciones de largo alcance.
Finalmente, la regién de corto alcance del sistema tiene lugar cuando o > 3, donde tiene un
comportamiento similar al modelo de primeros vecinos.

Por otro lado, el sistema (15) presenta cambios significativos en funcién de J. El sistema es
ferromagnético si J < 0, mientras que es antiferromagnético cuando J > 0. Ademads, notamos
que en el caso J = 0, el sistema es trivial pues se reduce a un modelo de Ising cldsico!” en el
eje X. Ademas, existe un punto critico J.(«), en el que el sistema sufre una transicién de fase
cudntica (QPT) de segundo orden, desde un estado ordenado a una fase paramagnética.

En ultimo lugar, es fundamental destacar que el modelo (15) verifica las condiciones necesarias
para ser tratado con el VQE. El hamiltoniano estd expresado en funcién de matrices de Pauli y,
ademads, su descomposicién es escasa (“Sparse Pauli Descomposition”).

Por tanto, gracias a la complejidad del modelo, el hamiltoniano long-range de Ising cuantico
(15) es un sistema idéneo para estudiar el comportamiento de redes neuronales cudnticas.

9La introduccién del campo magnético transversal provoca que el hamiltoniano no sea diagonal.
10Nétese que la contribucién del campo longitudinal € es despreciable.



5 Estados Coherentes Generalizados (GCS)

En esta seccién se introduce el ansatz de estados atémicos coherentes generalizados (GCS), junto
a su implementacion en qiskit.

5.1 Introduccién del ansatz GCS

En primer lugar, presentamos el ansatz de estados atémicos coherentes (CS) [15], |¢p(ax)), que
corresponde a realizar una rotacién general en cada qubit de forma individual:

p(ex)) = U(e)]0) (16)

donde la matriz de rotacion estd parametrizada de la siguiente manera:
i~ al i
U=exp | -3 > mi(h-3)) | =[] e <—27j (7 '(%')) (17)
j=1 J=1

en la que definimos la rotacién asociada al qubit j proporcionando el eje de giro'! n; y la
intensidad de la rotacién 7;. Nétese que los operadores que actian en distintos qubits conmutan,
pues no actian en el mismo espacio vectorial, luego la rotacién U factoriza como un producto
de rotaciones locales. Ver Ecuacién (17).

Por tanto, el niimero total de pardmetros de este ansatz es 3N, ya que para cada qubit
disponemos de tres pardmetros: {7;,6;,¢;}. Es decir, el nimero de pardmetros escala de forma
polinémica, y no exponencial, con el tamanio del sistema. Asimismo, el nimero de puertas nece-
sarias para implementar dicho ansatz en un circuito cuantico también crece polinémicamente
con el niimero de qubits del sistema. En concreto, la implementaciéon de los estados variacionales
en un circuito es inmediata ya que simplemente es necesario una puerta en cada qubit que realice
una rotacién genérica en la esfera de Bloch, es decir, se requiere de N puertas en total.

No obstante, la estructura del ansatz de estados atémicos coherentes (CS) es muy sencilla y no
introduce ningin entrelazamiento entre los qubits, pues estos rotan por separado. Por tanto, no
es capaz de describir correctamente el hamiltoniano (15) que tiene acoplos todos con todos.

En este contexto, surge el ansatz de estados atémicos coherentes generalizados (GCS) [15], |¢),
que no es sino una generalizacién del ansatz de estados atémicos coherentes (CS):

[Y(a, M, 8)) =UB)V(M) |p(ax)) = UB)V(M)U()]0) , (18)
cs

donde la matriz de correlacion es:

VY = exp (—; Z Mnm%’i@%) (19)

n<m

siendo M una matriz simétrica real con la diagonal principal nula. Luego, el ntimero de
pardmetros que introduce esta matriz es N(N — 1)/2.

En definitiva, el ansatz de estados coherentes generalizados (GCS) estd compuesto por una
rotacion local inicial, seguido por una matriz de entrelazamiento y una rotacion local final.
Notese que la tltima rotacion asegura que la eleccion de la direccion Z de las matrices de Pauli
en la matriz de correlacién no presenta una direccion especial (preferente) en la esfera de Bloch.
Ademsds, es fundamental destacar que a y B son el conjunto de pardmetros asociados a la
primera y segunda rotacién local respectivamente y, por tanto, no presentan ninguna relacion.

"Expresado en coordenadas polares: f; = (sin(;) cos(y;), sin(6;) sin(p;), cos(6;)).



La virtud del ansatz de estados coherentes generalizados (GCS) es que mantiene las ventajas de
los estados atémicos coherentes (CS), ya que el niimero total de pardmetros'? escala de forma
polinémica con el tamano del sistema y su implementacién en un circuito cudntico es eficiente.
Ademds, introduce correlaciones en el sistema gracias a la matriz de entrelazamiento, necesarias
para el problema que tratamos de abordar.

5.2 Implementacion del ansatz GCS en un circuito cuantico

En primer lugar, expresamos la matriz de rotacién U de forma matricial con el fin de expresarla
en funcién de puertas cuanticas. Consideremos ahora la accion de la rotaciéon en un qubit
arbitrario j, pudiendo prescindir asi del subindice j para aligerar la notacién. Notando que (n5)
es una matriz involutiva, es decir que (nd) = I, podemos descomponer la rotacién local en un
Seno y coseno.

U =exp (—;T (- E)) = —i(nd) sin (%) + cos (%) I (20)

Por tanto, usando la base computacional y expresando 7 en coordenadas polares, se obtiene que:

cos (%) — ¢sin (%) cos (0) —isin (%) sin (0) e~ >

. 21
—isin () sin (6) e? cos (%) +isin (%) cos (6) 2D

U(r,0,p) = (

Tal y como hemos mencionado en la Seccion 3, vamos a usar qiskit para llevar a cabo el circuito
cudntico. Por ende, cabe desatacar que la puerta nativa correspondiente a una rotaciéon genérica
en la esfera de Bloch que ofrece giskit no tiene la misma forma matricial que (21), pues en la
documentacién de giskit [6] se describe la rotacién usando los 3 angulos de Euler!'®. Por tanto,
es necesario definir una puerta personalizada que se comporte como la matriz U.

ool = (cos(3) —isin(5)cos(f)  —isin(F)sin(0)e " ”
vUEhe) B ( —z'2sin (%) Sinz(g) e’ cos (%) +2i sin (Z) cos (9)) (22)

En segundo lugar, vamos a expresar la matriz de correlacion, V, en funcién de puertas cuanticas.
Comenzamos notando que el término exp(—ido;o7,) es equivalente a la accién de las puertas
CNOT-R,-CNOT [16].

qn : Sz Lz
_ e—z&anam (23)

dm -

a
>
a
>

Rz (29)

Vamos a demostrar el resultado calculando la forma matricial del circuito cuantico, y verificando
que coincide con exp(—idoZoZ,). Nétese que al disponer de dos qubits, la base computacional
no es sino los productos tensoriales: {]|00),]01),|10),|11)}. Recordamos que, en esta base, las
puertas Rz y CNOT son:

1 000 e 0 0 0
0100 0 € 0 0
CNOT= |, o o 1| I®R2)=| o 0 S5 | (24)
0010 0 0 0 €9
12E] niimero total de pardmetros del ansatz GCS es: 6N + W

l%maw:(mﬂﬂ ﬂmgww)

sin (%)ew cos (%) !0+
14Sin entrar en detalles, destacamos que las rotaciones en un qubit y la puerta CNOT pueden ser implementadas
experimentalmente a través de qubits superconductores con interacciones de resonancia cruzada.
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2
donde R.()\) = (e 02 0A>
e'2

Finalmente, realizando explicitamente el producto CNOT-R,-CNOT recuperamos la expresién
matricial de exp(—idoZoZ,).

e 0 0 0
0 e 0 0 —idoZo?
CNOT - R.(20) - CNOT = 0 0 &5 o | =€ (25)
0 0 0 e

Una vez estudiada la correspondencia entre exp(—ido’o?,) y las puertas CNOT-R,-CNOT, la
implementacién de la matriz de correlacion, V), es inmediata. Concretamente, hay que colocar
dicho conjunto de puertas para todos los pares de qubits en el circuito, tal y como se recoge en
la Figura 4.

U (810, 811, B2)) |-
U (813], 841, BI5)) |-
U

>

a1 U (a[3], a[4], a[5]) - Ry (M[0]/2) |4

<
[\
i
<
Q
=
Q
=
Q
3
Py

> Ry (M[1)/2) [-b--{ Rz (M[2]/2) |45+ (5[6]. A7), 518 |-

Figura 4: Implementacién del ansatz GCS con 3 qubits (1 layer)

En la Figura 4 se recoge un circuito cudntico con 3 qubits correspondiente al ansatz de estados
atémicos coherentes generalizados (GCS). Con el fin de poder visualizar las distintas partes del
circuito, hemos separado mediante barreras las puertas correspondientes a cada matriz de (18).

Los circuitos cuanticos parametrizados, es decir las redes neuronales cudnticas, se caracterizan
por estar compuestas de capas (“layers”) formadas por puertas unitarias que son repetidas a lo
largo del circuito. En la Figura 4 se recoge un unico bloque de puertas, luego estamos ante la
red neuronal correspondiente a una layer. Anadir capas al circuito cudntico aumenta el niimero
de parametros, lo que se traduce en mayor complejidad y expresividad. Sin embargo, puede
suponer un detrimento en la entrenabilidad.

Finalmente, tal y como se ha comentado en la Seccién 3, destacamos que estamos trabajando con
un heuristic ansatz. Por tanto, el ansatz GCS es apropiado para resolver cualquier hamiltoniano
que pueda ser implementado en un VQE, incluso aquellos que presenten interacciones todos con
todos.
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6 Calculo analitico de (H)

En esta seccion recogemos el resultado méas importante del trabajo: el circuito cuantico asociado
a una layer del ansatz GCS puede ser simulable clasicamente. La demostracién del resultado
consiste en calcular analiticamente el valor esperado del hamiltoniano recogido en (15) usando
el estado GCS definido en (18). Gracias a que el hamiltoniano es una combinacién lineal de

matrices de Pauli, el valor esperado de este se reduce a calcular (o) y (oZ07Z,).

6.1 Calculo de (02)

n

En primer lugar, recogemos la forma que tiene (o) en la Ecuacién (26).

(on) = (@(@)VU' (B)osU (B)V]é(ex) (26)

Vamos a realizar los célculos por partes. Primero, nos centramos en la primera rotacion local,
o
cuyo resultado sabemos que es: L[Taf{l/l =) s )\nﬂ ag. Ver Anexo A. Luego, obtenemos que:

(on) = M@ ela)VIoVis(a) (27)
B:x7y7z
Por tanto, necesitamos calcular VTUQV. Nétese que el caso B = z es trivial, pues o7 y V

conmutan y, por ende, Vg2V = o2. No obstante, para calcular el resto de casos es necesario
introducir los operadores escalera asociados a la matrices de Pauli, o7 y o, .

ot =10nttl= (g )
7w =il = (7 1)

+
n

De forma que se verifica que 0% = (o;F +0,,) y o = —i(o,} —0,,).

Por consiguiente, al introducir los operadores escalera, hemos conseguido que Viop?V se reduzca
a VoV, Vamos a realizar el célculo de Vo V:

1 1
VierV = exp i Z Mpjos05 | (|0)n(1]n) exp ~2 Z Mpjo,03

p<j p<j
) )
=exp | 4 > Mopop | (10)n(1]n) exp 1 > Mo} (29)
pFEN pFEN

S+

1
= exp 22#:an0; o
p#N

donde en la segunda igualdad hemos empleado que |0),, es un autoestado de ¢;, con autovalor
+1 y, consecuentemente, se verifica que exp(07;,07)[0), = exp(0;)[0),. Asimismo, el estado |1),,
es autoestado de o}, con autovalor -1 y cumple que exp(o;,05)|1)n = exp(—a;)|1)n.

Noétese que es andlogo el desarrollo para obtener VTU,; V.

_ i _
Vig V= exp ) Z Mppoy | 0, - (30)
p#n
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Por tanto, con la introduccién de los operadores escalera, el valor esperado de o} resulta en la
Ecuacién (31).

<O',2j> = <¢(a)‘ + )\gx(ﬁ) |:€% Zp?fn M”PU§U+ + 67% Zp;én MnPU;zZ)O-;i|
iy ]
+ A (B)orlo(a))

«

El siguiente paso para calcular (o) es hallar (¢(a)|c%|d(ax)).

Bleloslofe)) = 0 A (@)(0lal0) = Xp*(a) (32)

B=z,y,z

A continuacién, notando que las matrices de Pauli son involutivas, vamos a descomponer las
exponenciales en senos y cosenos para poder asi realizar el valor esperado con respecto al estado

[9(a)):
))\ZZ( )+Cos< ) An “AW( ))

) (s

o eom (2] (25250

>< aem—
)

<mz + N >>

(o) =+ A5(8) [+ <z sin (

p#EN

T (- (%5

n

+A9(B8) |+ (z sin (

p

+11 <—zsm (

#n
+ A (BN (@)

RIS

=
S

*
3

3

+_O‘ +i0Y __Ufl—iaﬂ

9 YT T

Vamos a simplificar la Ecuacion (33) introduciendo el niimero complejo z:

z=] <—isin (MQ””> A2 (o) + cos (%’"’)) (34)

p#n

donde hemos empleado que o}

que 1o es sino <qb(a)|eié Lpn Mo | ().

En tltimo lugar, sustituyendo (34) en (33) y sacando factores comunes, se obtiene la expresién
simplificada de (o%).

(o) =¥ (B)ALZ () + A (B)AY (av)] (Z JQF : >
+ AV (BT (o) — XoF(B)ANY ()] i <Z ; z ) (35)

A (B)AT (o)

Noétese que la expresiéon derivada es coherente pues es real.
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6.2 Calculo de (0Z07,)
Anélogamente al caso anterior, comencemos escribiendo la forma que tiene (0707,).
(Tr0m) = (¢(e) VU (B)ororUB)VI6(a)) (36)

A continuacion, teniendo en cuenta que los operadores U y V son unitarios, podemos escribir el
valor esperado como:

(Tros) = (@(e)] (VU B)oiu@v) (VulB)oiu(B)V) 16(a) (37)
Asi, podemos seguir el mismo procedimiento que en la Seccién 6.1 y obtener que:
(0205) = (6(@)| (N (B) |2 Zoin Mot ¢ 5 pan Meo |

N (B)i [ T Mori gt — s T Mo o] 4 X (B0 ) ¢
- 39

[ i z _i z
(N2 (8) [ Trm Va7t 4 =8 i Mg

(B [e Toem Mot — oA T Vit ] 4 22(8)02, ) ()

m

de manera que en (o707,) vamos a tener dos tipos de productos.

En primer lugar, los términos asociados a A*Y(3) con 7 € {z,y}, que tienen la siguiente forma:
e“% Zp#n Mrpor O‘:iel/% Zl;ﬁm Miof 07V71 = o‘%’a%ezﬁén,m(wM"TJrVM’"T)gi (39)

donde w,v € {+,—}.

Vamos a demostrar la Ecuacién (39) desarrollando el caso concreto en el que w = + y v = +,
pues de esta forma podemos mostrar explicitamente como se simplifican los términos. Nétese
que, en este caso, estudiar un caso concreto no presenta una pérdida de generalidad pues para
el resto de casos el desarrollo es analogo.

Primero, recordando que operadores que actian sobre distintos qubits conmutan y que [0%, 0%] =
0, podemos reorganizar los términos tal y como se indica en la Ecuacién (40).

e2 Lpzn Mnvh 5t 05 Diem MmO ot — (a:e%anai) (e%Mnmen a,t) e2rn,m(MnrtMmr)oz (40

Finalmente, usando la definicién de los operadores escalera, ver Ecuacién (28), podemos simpli-

ficar las exponenciales que se encuentran en los paréntesis, llegando asi a la expresiéon deseada.

—iM iM ZT (Mn‘r+MmT)0'Z . + + ZT (Mn‘r“l’Mm‘r)U‘,z—

(10)n(Ln) g2 ez ([0) i (L] m) e 7nm 1= Oy Opes A (41)

=1

Por otro lado, el segundo tipo de términos que se encuentran en la Ecuacién (38) son los asociados

a A**(3). Dichos términos son triviales de tratar, pues tunicamente hay que desarrollar las
exponenciales en senos y cosenos, tal y cémo se indica en la Ecuacién (42).

i z M M i z
oZes Zaizm Mmioi ot (COS ( ;'m> 0% +isin (;"m>> et Zrgman Mnr T (42)
Donde hemos empleado que las matrices de Pauli son involutivas.

Recapitulando, ya tenemos la forma de los productos que aparecen en la Ecuacién (38). Es
fundamental destacar que las Ecuaciones (39) y (42) no son sino la base en la que se sustenta
la derivacién de (oZ0Z,). Esto es debido a que, a partir de dichas ecuaciones, podemos llevar a
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cabo un procedimiento andlogo al recogido en la Seccién 6.1 e introducir los siguientes ntimeros
complejos:

(s = Hﬁénm (cos (7M"T§Mmf) + ¢ sin (7M"T+M’"T) 2 (a

)
)

0= Tl (cos (Mimgne) 1 isin (Maeghoe) X2 "
p = (cos (Mg) Xz (@) + sin (452)) - TL, 1, (cos (24) + isin (22) X (a)

mT

2

t = (cos (Mpn) A% () +isin (M) - T] ) +isin (Mpr) A2 (a))

T#n m (COS (

con el fin de simplificar (o707, ). Nétese que los nimeros complejos s y v estan asociados a los
términos con \*7(3), mientras que p y t corresponden a los términos con A**(3).

Con la introduccién de los niimeros complejos recogidos en la Ecuacién (43) y sacando factores

comunes, se obtiene la expresién simplificada de (o7Z07,).
(vi07) = [4-C+ B D] (S+§> +i[B-C— 4D (Slg)
+[B-G+F ] (””) +ilF-G- B H] (”;“)
+ :I N (@) 4 - A}!f(a)] <p;p> +i[[ N (o) — T - AgZ(a)} (1?;9 (44)
KX (@) + LA () <“2rt> il ()~ LA )] <t:>
+ BN BN (@ (@)
Siendo:
A= NF ()N (@) = A (@) A («) G = NF(B)AT(B) + A\ (B)AH (B)
B = \F ()i (@) + A0 () A () H =N (B)A(B) — AP (B)AH (B)
C=NFBINZ(B) = N (BN (B)  T=XNF(B)A(B) (45)
D= XNFB)MA (B) + A (B)NE(B) T =X (B)NE(B)
E = N (o) A% () + NP ()M (@) K = Z(B)N22(B)
F = 7o)\ (@) = ApF(a) A (e) L= NF(B)An (B)

Nétese que la expresion obtenida'® es coherente pues es real e invariante bajo el intercambio de

los indices n y m.

En definitiva, hemos sido capaces de calcular el valor esperado del hamiltoniano (15) usando el
ansatz GCS (18). Por tanto, podemos introducir la expresion del valor esperado en un ordenador
cldsico y encontrar su minimo como si se tratase de un problema de optimizacién de una funcién
multivariable. En otras palabras, es viable simular con un ordenador clésico el circuito cuantico
del ansatz GCS correspondiente a una layer. Los algoritmos que se fundamentan en el formalismo
matematico de la mecanica cudntica pero estdn disenado para ser ejecutados en dispositivos
clésicos se denominan algoritmos quantum-inspired (QI) [4].

Como nota final, destacamos que a partir de (¢%) y (070Z,), podemos calcular cldsicamente

el valor esperado de cualquier hamiltoniano que pueda descomponerse en matrices de Pauli, y
presente términos de interaccién de la forma o207,. En este trabajo nos vamos a restringir al
estudio del modelo long-range de Ising cuantico, pero el procedimiento realizado en esta seccién
es mucho mas general. Esto es una consecuencia inmediata de trabajar con un heurisitic ansatz.

15E] resultado es inmediato de verificar a partir de la expresién explicita.
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7 Resultados

Vamos a encontrar el estado fundamental del modelo long-range de Ising cudntico (15) usando el
ansatz GCS (18) a través de dos métodos distintos: el “variational quantum eigensolver” (VQE)
y el algoritmo quantum-inspired disenado en la Seccién 6. Debido a que el circuito cudntico de
una layer del VQE es simulable clasicamente, también vamos a trabajar con la red neuronal
correspondiente a dos layers, para poder disponer asi de un método completamente cuantico
que no pueda ser emulado en un dispositivo clésico.

El objetivo de la seccién es comparar el rendimiento entre el circuito cudntico con una layer del
VQE y el algoritmo quantum-inspired. Ademds, discutiremos si anadir una capa més al VQE
presenta una mejora sustancial frente a una Unica layer o al algoritmo quantum-inspired.

Por otro lado, recordamos que una parte central del VQE es la eleccién del optimizador clasico.
Ver Seccién 3. Los optimizadores que vamos a usar en este trabajo son: SLSQP [7] y COBYLA
[9]. El primero es un optimizador “Gradient-Based” mientras que el segundo es “Gradient-
Free”, de forma que el segundo objetivo de la seccién es estudiar la diferencia en rendimiento
entre ambos tipos de optimizador. Ademés, dichos optimizadores permiten introducir cotas a
las variables. En nuestro caso, el dominio de los angulos asociados a las rotaciones locales es:

T € [0, 7]
0 € [0, 7] (46)
v € [0,2n]

Mientras que los angulos correspondientes a la matriz de correlacién estan definidos en el rango:

M € [0, 27] (47)

La seccién se divide en dos partes. Primero, realizamos un estudio previo en el que comprobamos
que las redes neuronales cudnticas y el algoritmo quantum-inspired funcionan correctamente con
un modelo trivial. En segundo lugar, resolvemos el hamiltoniano long-range de Ising cuantico
(15). Todas las simulaciones se han realizado para cadenas compuestas por N = 8 qubits.

7.1 Estudio Previo

Con el fin de verificar que las redes neuronales cuanticas y el algoritmo quantum-inspired se
comportan de forma deseada, vamos a resolver el modelo de Ising (15) en el caso de J = 0.
Dicho sistema es trivial pues es el modelo de Ising clasico en el eje X. Ver Seccién 4. Por tanto,
es inmediato ver que la energia del estado fundamental es:

Ey~—N=-8 (48)

donde la energia no es exactamente —N debido a la pequena perturbacién introducida por el
campo magnético longitudinal, e.

A lo largo de las simulaciones, vamos a denotar como “L=1" y “L=2" a la red neuronal con
una y dos layers, respectivamente. Ademas, la linea naranja denominada “Ansatz Clasico” estd
asociada al algoritmo quantum-inspired. Finalmente, las lineas azules corresponden a la energia
fundamental y del primer excitado del sistema, que son calculadas empleando diagonalizacién
exacta'® (ED) [12].

En la Figura 5 recogemos la convergencia!” de la energia'® del sistema, junto a su error relativo,
frente al niimero de iteraciones realizadas por el optimizador COBYLA tanto para la red neuronal

16Nétese que el célculo de la energias mediante ED es posible porque el niimero de qubits es limitado.
"Los tres métodos parten de una energia inicial aleatoria.
18Recordamos que expresamos la energia en unidades de h,. Ver Seccién 4.
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con una y dos layers, como para el algoritmo quantum-inspired. Notamos que el error relativo
se encuentra en escala logaritmica y lo definimos como:

Esim - EED

Error Relativo =
Erp

(49)

donde Fg;,, corresponde a la energia obtenida mediante el método numérico correspondiente y
Egp es el estado fundamental obtenido por diagonalizacién exacta.

9 COBYLA ‘ 10! ‘ COBYLA
J=0
109
2
£107!
3
ot
21072
A
107
; P ; —4 ; ;
0 200 400 600 800 1000 10 0 200 400 600 800 1000
Iteraciones Iteraciones
— L=1 — L=2 Ansatz Clasico ---  Estado Fundamental ---  Primer Excitado

Figura 5: Convergencia de la energia y error relativo del sistema frente al niimero de iteraciones
del optimizador COBYLA.

En primer lugar, vemos que los tres métodos convergen al estado fundamental del sistema, con
lo que podemos concluir que estan correctamente implementados.

El algoritmo clasico es el primero en converger al estado fundamental, con un error relativo del
orden de 10~%. Dicho método es el méas preciso de los tres, pues presenta un error que es un
orden de magnitud menor que la red neuronal con una layer, y es incluso dos érdenes menor
que el circuito cudntico con dos layers.

La red neuronal con dos layers converge antes que con una unica layer pero, una vez encuentra
el minimo global, no es capaz de reducir el error relativo. De esta forma, el circuito cuantico
con una layer presenta un mejor rendimiento que con dos layers.

Por otro lado, hemos repetido la simulacién diez veces con el fin de obtener el tiempo de ejecucion
promedio junto a su desviacién estandar de los tres métodos. Ver Tabla 1.

Tal y como era de esperar, la red neuronal con una layer presenta un menor tiempo de ejecucion
que con dos layers, ya que el nimero de pardmetros aumenta al introducir capas en el circuito
cudantico.

El tiempo de ejecucion asociado al algoritmo quantum-inspired destaca por ser del orden de seis
veces mayor que el de la red neuronal con una layer. Esto es mayoritariamente debido a la
rudimentaria implementacién del algoritmo clasico en el trabajo, que se ha llevado a cabo con la
libreria Scipy [17] de Python. Concretamente, hemos minimizado la energia del sistema con la
funcién minimize. Por tanto, es vital notar que el tiempo de ejecucién de este algoritmo puede
disminuir considerablemente si se implementa de una manera mas eficiente. Ver Seccion 8.

Por su parte, es interesante verificar numéricamente que la expresion de la energia derivada en la
Seccién 6 es correcta. Para llevar esto a cabo, hemos introducido los valores de los parametros

17



L=1 (s) L=2 (s) Ansatz Clésico (s)

COBYLA 22,2+1,8 39,2425 12243
SLSQP 21+5 141 + 13 81+ 18

Tabla 1: Tiempo de ejecucién, promediado a lo largo de 10 simulaciones, de la red neuronal
cuantica con una y dos layers, y del algoritmo quantum-inspired usando los optimizadores clasicos
COBYLA y SLSQP.

de la red neuronal con una layer en el algoritmo clasico, de forma que la energia calculada
clasicamente debe coincidir con la del circuito cuantico.

AE = |EClésico - EVQA(L:1)| (50)

Concretamente, hemos calculado la diferencia de energia para el valor de los parametros en cada
una de las iteraciones de la Figura 5 y se muestra en la Figura 6.
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Figura 6: Classical vs 1 Layer

La diferencia de energia, representada en escala logaritmica, no toma un valor constante sino
que fluctiia entre valores con érdenes de magnitud entre 10~ y 10716, Dicho comportamiento
es debido a la precisién de la variable float de Python, de forma que podemos asegurar'® que los
valores calculados clasicamente coinciden con los proporcionados por la red neuronal. Noétese
que en el procedimiento para obtener la Figura 6 no hemos usado ningtin optimizador, pues
simplemente evaluamos la energia clasicamente usando los pardmetros que usaba la red neuronal
con una layer en la Figura 5.

Una vez estudiado el comportamiento de los tres métodos numéricos con el optimizador clasico
COBYLA, vamos a repetir el mismo estudio pero usando el optimizador clasico SLSQP. En
concreto, resolvemos el modelo de Ising clasico en el eje X, y recogemos la convergencia de la
energia, junto a su error relativo, en funcién del nimero de iteraciones. Ver Figura 7.

197 a diferencia de energia de los puntos que sobrepasan el limite inferior de la gréfica es, exactamente, AE = 0.0.
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Figura 7: Convergencia de la energia y error relativo del sistema frente al nimero de iteraciones
del optimizador SLSQP.

El error relativo obtenido con el optimizador SLSQP es, en el caso de la red neuronal con una
y dos layers, hasta cuatro 6rdenes de magnitud menor que el error obtenido con COBYLA.
Asimismo, el algoritmo quantum-inspired también presenta una mejoria notable al usar el op-
timizador SLSQP, pues su error disminuye tres érdenes de magnitud comparado con el error
usando COBYLA.

El comportamiento de los tres métodos es similar usando ambos optimizadores: el algoritmo
clésico es el primero en converger, y la red neuronal con dos layers encuentra el minimo antes
que con una layer pero no es capaz de reducir tanto el error relativo. De esta forma, la red
neuronal con una capa y el algoritmo clésico presentan la mejor precisiéon, disponiendo de un
error relativo del orden de 107, mientras que el circuito cudntico con dos layers presenta un
error relativo del 1079, No obstante, a diferencia que en el caso con COBYLA, las iteraciones
llevadas a cabo por los tres métodos no son las mismas. Concretamente, el algoritmo clasico
solo requiere 22 iteraciones para finalizar la optimizacién, mientras que la red neuronal con una
y dos layers necesita 1625 y 4755 iteraciones, respectivamente.

El tiempo de ejecucién de los métodos numéricos usando el optimizador SLSQP no sigue la
misma tendencia que en el caso de COBYLA, pues la red neuronal con dos layers es el método
mas costoso. Concretamente, el circuito cuantico con dos capas es, aproximadamente, siete veces
més lento que con una sola capa. Ademas, el tiempo de ejecucién del algoritmo clésico es, del
orden de, cuatro veces mayor que el de la red neuronal con una layer. Ver Tabla 1.

Al comparar los tiempos de ejecucién entre los distintos optimizadores, vemos que la red neuronal
con una layer presenta un tiempo similar en ambos casos. En cambio, el tiempo de ejecucion
de la red neuronal con dos layers se ve triplicado al usar el optimizador SLSQP, mientras
que el algoritmo cldsico sufre una reduccién el tiempo de ejecucién del 33 % al emplear dicho
optimizador.

Asimismo, destacamos que la incertidumbre de los tiempos correspondientes al optimizador
SLSQP son més elevados que los asociados a COBYLA. El algoritmo quantum-inspired sufre el
mayor aumento en incertidumbre, que es hasta seis veces mayor.

En definitiva, los tres métodos presentados son capaces de resolver el modelo de Ising clasico, de
forma que podemos abarcar problemas mas complejos. Ademas, destacamos que el método mas
favorable es la red neuronal cuantica con una layer con el optimizador SLSQP, ya que obtiene
el minimo error relativo y presenta el tiempo de ejecucién mas reducido.
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7.2 Resolucién del modelo long-range de Ising cuantico

Esta seccién constituye la parte mas relevante del trabajo: la obtencion del estado fundamental
del modelo long-range de Ising cuantico (15) usando la red neuronal cudntica y el algoritmo
quantum-inspired.

Tal y como hemos comentado en la Seccién 4, el sistema (15) no es trivial y su comportamiento
depende fuertemente del valor de a. Por tanto, vamos a resolver el modelo para distintos valores
de a, con el fin de poder estudiar el sistema en sus tres distintas regiones: modelo de corto alcance
(v > 3), de largo alcance débil (3 > a > 1) y de largo alcance fuerte (v < 1). En concreto,
vamos a considerar los siguientes valores de a: 0.5, 1.0, 2.5 y 6.0.

A continuacién, vamos a exponer el método seguido para llevar a cabo la resolucién del sistema.
En primer lugar, fijamos el valor de a del modelo. Segundo, resolvemos el caso en el que
J =0, ya que sabemos que los tres métodos son capaces de encontrar el estado fundamental, y
guardamos el valor de los parametros optimizados. Posteriormente, aumentamos el valor de J y,
partiendo de los parametros optimizados, iniciamos la resolucién del modelo. Una vez finalizado,
aumentamos J y repetimos el procedimiento sucesivamente. Nétese que la metodologia empleada
no es sino el bootstrapping. Ver Seccién 3. En nuestro caso, vamos a simular el modelo desde
J/hy = —4 hasta J/h, = 10, en incrementos? de A.J/h, = 0.01.

En la Figura 8 recogemos la energia del sistema para los distintos valores de « junto a su
error relativo en funcién de J/h, calculada por la red neuronal y algoritmo cldsico usando el
optimizador COBYLA. Adema4s, las lineas verdes corresponden a los valores criticos, J.(«)/h,,
donde tiene lugar la transicion de fase cuantica de segundo orden. Notese que dichos valores
criticos se han obtenido mediante redes neuronales cldsicas [13].

En primer lugar, vemos que la energia del sistema sigue la tendencia indicada por el estado
fundamental obtenido con diagonalizacién exacta, de forma que los tres métodos son capaces de
resolver el modelo (15).
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Figura 8: Resolucién del estado fundamental del modelo (15), realizado por la red neuronal y
algoritmo quantum-inspired, para distintos valores de « usando el optimizador COBYLA.

20E] nimero de optimizaciones en el proceso es 141.
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A continuacién, vamos a llevar a cabo un analisis del comportamiento de los tres métodos mas
riguroso. En concreto, centramos nuestra atencion al error relativo, que estd expresado en escala
logaritmica. Para todos los valores de «, el error sigue un comportamiento similar: es minimo
cuando J/h, = 0 y aumenta para los valores pequenios de J/h, hasta que comienza a disminuir
cuando el valor del valor absoluto de J/h, es elevado. La tendencia del error relativo que siguen
los tres métodos coincide con la presentada por redes neuronales clasicas, como la maquina de
Boltzmann restringida (RBM) [13]. La explicacién de este comportamiento no es trivial.

Alternativamente, puede servir de ayuda para comprender el comportamiento del error relativo
ver el problema desde un punto de vista meramente matematico. Esencialmente, el problema en
cuestion que estamos resolviendo es diagonalizar una matriz. Cuando J/h, es cercano a cero, los
términos no diagonales asociados a of son mucho mayores que los diagonales correspondientes
a la interaccion o; o7, tal que la matriz a diagonalizar se puede aproximar a la asociada al
modelo de Ising clésico en el eje X. Sin embargo, cuando J/h, es cercano a la unidad, los
términos diagonales y no diagonales son comparables entre si, de forma que la diagonalizacion
del hamiltoniano aumenta en complejidad, explicando asi el aumento en error. En ultimo lugar, si
el valor absoluto de J/h, es elevado, la matriz del hamiltoniano estd gobernada por los términos
diagonales de manera que los términos no diagonales son despreciables y la diagonalizacién de
la matriz es menos compleja.

Como podemos ver, en los casos donde solo hay tranisicién de fase en el régimen ferromagnético
(J < 0), el maximo en el error relativo coincide justamente con el valor critico. Nétese que el
orden del error presentado se encuentra entre 107! y 1072, No obstante, en los casos restantes,
los valores criticos tienen lugar en puntos donde el error no es maximo. Concretamente, el error
en estos casos estd comprendido entre 1073 y 10~%. Por tanto, concluimos que los tres métodos
son capaces de resolver el modelo incluso cuando sufre la transicién de fase de segundo orden.

Por su parte, vamos a estudiar por separado el error relativo de cada una de las graficas reunidas
en la Figura 8. En el caso a = 0.5, el algoritmo clasico presenta el error relativo mas elevado,
llegando a ser del orden de 107!, debido a que el método se encuentra en el minimo local
asociado al primer excitado, en vez de describir el estado fundamental. Ademds, vemos que
el comportamiento entre el algoritmo clasico y la red neuronal con dos layers es similar para
valores de J/h, negativos, mientras que el circuito cuantico con una y dos layers presentan el
mismo comportamiento cuando J/h, toma valores positivos.

En la segunda gréfica, correspondiente a a = 1.0, podemos apreciar que el comportamiento
de los tres métodos es similares cuando J/h, > 0. En cambio, en la rama J/h, < 0, la
red neuronal con una layer es el método que presenta un menor error relativo, del orden de
hasta 10~°, mientras que el algoritmo cldsico y la red neuronal con dos layers tienen el mismo
comportamiento, llegando hasta un error relativo del orden de 1073.

En la siguiente grafica, asociada a o = 2.5, la red neuronal con una capa presenta el error relativo
més bajo en ambas ramas, llegando a ser del orden de 107°. Asimismo, el error relativo del
algoritmo clasico es el mismo que el de la red cuantica de dos layers para los valores positivos de
J/hy, que es del orden de 10~%, mientras en la rama de valores negativos de .J/h, se obtiene que
el circuito cudntico con dos capas presenta un menor error que el algoritmo gquantum-inspired,
siendo del orden 10~* y 1073 respectivamente.

En dltimo lugar, en la grafica correspondiente a o = 6.0, la red neuronal con una y dos layers
tiene un comportamiento andlogo a lo largo de todos los valores de J/h,, tal que presentan un
error de 107* y 107° en la rama negativa y positiva respectivamente. En cambio, el algoritmo
cldsico muestra el mismo comportamiento que la red neuronal entre las lineas verdes, pero en el
extremo de las rama positiva y negativa tiene un error que es un orden de magnitud mayor que
el circuito cuantico.
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L=1 (-10>s)  L=2 (-103s) Ansatz Clésico (-10% s)

COBYLA  7,7+1,6 1544 37+8
SLSQP 2,940,4 4244 18,94 2,3

Tabla 2: Tiempo de ejecucién, promediado a lo largo de todas las simulaciones, de la red neuronal
cuantica con una y dos layers, y del algoritmo quantum-inspired usando los optimizadores clasicos
COBYLA y SLSQP.

Por otro lado, hemos promediado el tiempo de ejecucién, para cada uno de los métodos, de las
cuatro optimizaciones llevadas a cabo en la Figura 8. Ver Tabla 2. Tal y como era de esperar en
el caso de COBYLA, el algoritmo clasico es el mas lento mientras que la red neuronal con una
layer es el més rapido. Concretamente, el circuito cudntico con una capa es, aproximadamente,
siete veces mas rapido que el algoritmo quantum-inspired, mientras que la red neuronal con dos
layers es el doble de lenta que con una sola capa. Analogamente a la Seccién 7.1, insistimos
en que el tiempo de ejecucién del método clasico puede verse drasticamente reducido con una
mejor implementaciéon. Ver Seccién 8.

Una vez finalizado el estudio de los tres métodos con el optimizador COBYLA, procedemos a
repetir las mismas optimizaciones usando el optimizador SLSQP. Ver Figura 9.
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Figura 9: Resoluciéon del estado fundamental del modelo (15), realizado por la red neuronal y
algoritmo quantum-inspired, para distintos valores de o usando el optimizador SLSQP.

Como podemos observar, el error relativo sigue la misma tendencia que en el caso con COBYLA.
No obstante, la mayor diferencia entre ambos optimizadores es que, al trabajar con SLSQP, los
tres métodos son capaces de encontrar el estado fundamental del punto J/h, = 0 con mayor
precisién, que en los casos mas favorables presentan un error del orden de 1078,

Asimismo, para los dos primeros valores de «, destacamos que el error alrededor del punto critico
oscila entre 1072 y 1072, En el caso a = 2.5, el error es de 10~ en el régimen antiferromagnético
(J > 0), mientras que en el ferromagnético (J < 0) oscila entre 10~ y 10~*. Finalmente, cuando
a = 6.0, los tres métodos presentan el mismo error que es del orden de 10™* y 107° en el regimen
antiferromagnético y ferromagnético, respectivamente.
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A continuacién, vamos a analizar cada una de las gréficas recogidas en la Figura 9. En primer
lugar, correspondiente al caso a = 0.5, vemos que la red neuronal con una layer presenta el menor
error relativo, que es del orden de 1075, en la rama de valores negativos de .J/h,. Mientras que
para los valores positivos, es el circuito cuantico con dos capas el método con un menor error,
cuyo orden es de 1072,

En el caso a = 1.0, la red neuronal con una capa vuelve a ser el método mas preciso para
los valores negativos de J/h;, ya que su error es del orden de 1076, Ademds, destaca que el
algoritmo clésico presenta un comportamiento similar, con un error del 107°, pero el circuito
cuantico con dos capas presenta un error que es mucho més elevado, siendo del orden de 1072
Por otro lado, para los valores positivos de J/h;, los tres métodos acaban convergiendo hasta
tener un error relativo que es del orden de 1074,

Cuando a = 2.5, notamos que la red neuronal con una y dos layers tienen un comportamiento
completamente analogo en el caso .J/h, < 0, alcanzando asi un error entre 1075 y 1075, Mientras
que para J/h, > 0, los tres métodos comparten un comportamiento similar, obteniendo asi un
error de 1075,

Finalmente, en las gréaficas asociadas a a = 6.0, vemos que los tres métodos siguen la misma
tendencia, obteniendo un error hasta del orden de 107?, en la rama de valores negativos de .J/h,.
Asimismo, para los valores positivos, los tres métodos son similares aunque la red neuronal con
dos capas es capaz de converger con un error relativo menor, que se encuentra entre 1075 y 1076,

Por tanto, debido a que los tres métodos se comportan de forma bastante pareja a lo largo de
los cuatro valores de «, no es inmediato deducir cudl es el mejor de los tres. No obstante, al
estudiar los tiempos de ejecucién recogidos en la Tabla 2, vemos que la red neuronal con una
layer es mucho maés rapido que el resto de métodos. Concretamente, el tiempo de ejecucion
es catorce veces menor que el del circuito cudntico con dos capas y hasta seis veces méas corto
que el del algoritmo cldsico. Luego, concluimos que la red neuronal con una capa es el método
mas apropiado para resolver este problema, pues presenta errores relativos similares al resto de
métodos pero su tiempo de ejecucién es mucho menor.

Al comparar los tiempos de ejecucién entre los optimizadores COBYLA y SLSQP, notamos que
se sigue la misma tendencia que en la Seccién 7.1: la red neuronal con una layer es el método
mas rapido en ambos casos, mientras que el método més lento es el algoritmo clasico y la red
neuronal con dos capas usando COBYLA y SLSQP, respectivamente. El tiempo de ejecucién
del circuito cuantico con dos layers se ve triplicado al emplear SLSQP, de forma que concluimos
que el optimizador “Gradient-Based” es mas sensible al nimero de parametros a optimizar. En
cambio, el algoritmo gquantum-inspired tiene un tiempo de ejecucién dos veces mayor al usar
COBYLA, y su incertidumbre también aumenta hasta cuatro veces. Esto puede deberse a que
dicho optimizador, al ser ’Gradient-Free’, sea méas sensible a la implementacion llevada a cabo
del algoritmo. Finalmente, cabe destacar que la red neuronal con una capa es entre dos y tres
veces mas rapida con SLSQP, pues los optimizadores que emplean el gradiente para actualizar
los parametros suelen ser més eficientes computacionalmente. Ver Seccién 3.

En definitiva, los tres métodos presentados en el trabajo son capaces de resolver el modelo long-
range de Ising cudntico (15). Recordamos que esto es debido a que el ansatz GCS es capaz de
introducir interacciones todos con todos, a través de la matriz de correlacion V. El método que
presenta mejores prestaciones para resolver dicho sistema es la red neuronal cuantica con una
layer empleando el optimizador SLSQP, ya que presenta el menor error relativo y tiempo de
gjecucién. Ademds, destacamos que anadir una capa a la red neuronal no es rentable, ya que
no presenta una mejora notable en el error relativo que justifique su aumento considerable en
el tiempo de ejecucién. En dltimo lugar, el algoritmo quantum-inspired, con la implementacién
actual, tampoco es una mejor alternativa que la red neuronal cuantica.
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8 Conclusion

Los objetivos de la memoria se han llevado a cabo satisfactoriamente.

En la primera mitad del trabajo, hemos introducido todos los conceptos necesarios para la
comprension del documento. Primero, presentamos el “variational quantum eigensolver” (VQE),
entendiendo asi las distintas partes que componen el algoritmo. En segundo lugar, se introduce
el sistema a simular: modelo long-range de Ising cuéntico. El modelo destaca por presentar una
fenomenologia muy rica. Finalmente, presentamos el ansatz de estados coherentes generalizados
(GCS), que vamos a usar para las redes neuronales cudnticas. La mayor virtud que presentan
dichos estados variacionales es que presentan acoplos todos con todos, manteniendo ser eficientes
computacionalmente ya que el nimero de pardmetros escala polinémicamente con el tamano del
sistema.

En la segunda mitad, hemos disenado un algoritmo clasico que simula la red neuronal con
una capa usando el ansatz GCS. El algoritmo quantum-inspired presenta una alternativa a la
red neuronal cudntica que puede ser implementada en un dispositivo cldsico. Es fundamental
destacar que dicho algoritmo es aplicable a cualquier hamiltoniano que pueda ser expresado en
matrices de Pauli y presente términos de interaccién oZo7,, aunque en este trabajo vamos a
particularizar el estudio a sistemas con interacciones de largo alcance.

Posteriormente, se ha discutido el comportamiento de la red neuronal cudntica, con una y dos
capas, y del algoritmo quantum-inspired resolviendo el modelo long-range de Ising cudntico. Los
tres métodos han sido capaces de resolver el sistema satisfactoriamente, siendo la red neuronal
cuantica con una layer usando el optimizador clasico SLSQP la mejor alternativa pues presenta
los errores relativos y tiempo de convergencia mas reducidos. Cabe destacar que los tres métodos
describen el estado fundamental del sistema tanto en el régimen ferromagnético como en el
antiferromagnético, tanto con interacciones de largo y corto alcance, e incluso cuando el sistema
sufre una transicién de fase cudntica de segundo orden.

A estas alturas, es fundamental destacar que la discusién realizada en la Seccién 7 se ha llevado
a cabo para un nimero de qubits fijo, N = 8. El ntimero de qubits es bastante escueto, de forma
que lo presentado en el trabajo es un punto de partida (“benchmark”) para futuros trabajos.
En concreto, la mejor opcién para aumentar sustancialmente el niimero de qubits es realizar una
implementacién®! més eficiente del algoritmo quantum-inspired.

Con la ayuda del Dr. Jestis Carrete Montana, investigador en el Instituto de Nanociencia y
Materiales de Aragén (INMA), se ha comenzado a realizar una implementacién del algoritmo
quantum-inspired basada en Google JAX [1].

JAX es una libreria que estd optimizada para aprovechar las Unidades de Procesamiento Grafico
(GPU) y las Unidades de Procesamiento Tensorial (TPU), permitiendo realizar tareas computa-
cionales de manera mas eficiente. Por tanto, JAX presenta una ventaja significativa frente a la
biblioteca SciPy, que estd disenada para operar en la Unidad Central de Procesamiento (CPU).

21Recordamos que, en este trabajo, la energia calculada con el algoritmo cldsico es minimizada con la funcién
minimize de la libreria SciPy.
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A Calculo de )\

Vamos a demostrar que una rotacién local sobre una matriz de Pauli, en un qubit arbitrario k,
resulta en una combinacién lineal de matrices de Pauli:

fopt = > AP0 (51)
ﬂ:x7y7z
donde « € {z,y, z}.

Gracias a que consideramos un qubit arbitrario k, podemos prescindir del subindice k& para
aligerar la notacién. Asimismo, usando que (71&)? = I, podemos descomponer la rotacién local
€N Un seno y coseno.

T

U = exp (—;T (- 6)) = —i(nd) sin (5) + cos (%) 1 (52)

A continuacién, con el fin de realizar los célculos explicitamente, vamos a calcular la accién de
la rotacion local sobre 7.

Uo*td = (i(ﬁ&) sin (%) + cos (%) I) ot (—i(ﬁ&) sin (g) + cos (%) I) (53)

Teniendo en cuenta que las matrices de Pauli son involutivas y que el producto de dos matrices
de Pauli es otra matriz de Pauli, es inmediato obtener que:

Utoil = +0° :sin2 (g) (2nyn,) + sin (g) cos (%) (—27@)}
e

+ oY :sin2 (g) (2nyn;) + sin <%> cos (%) (an)}
Y

+ o” :sim2 (g) (— n2 - n +n ) + cos? (;)}

)\ZZ

(54)

donde destacamos que los términos asociados a la identidad se anulan.

Finalmente, introduciendo que n = (sin(#) cos(y), sin(f) sin(¢), cos(#)) en la Ecuacién (54), se
puede obtener explicitamente los coeficientes A.

A = 2sin (%) sin() (sin () cos(8) cos(¢) — cos (%) sin(¢p))
A = 2sin (%) sin(6) (sin (%) cos(8) sin(y) + cos (%) cos(p)) (55)
A% =sin? (%) (2cos?(0) — 1) + cos? (%)

Andlogamente, podemos calcular los coeficientes A\ asociados a la matriz de Pauli X.
A = sin? (Z) (2sin?(0) cos®(p) — 1) + cos? (%)
A% = 2sin () (sin () sin(6) sin(y) cos(p) — cos (F) cos(8)) (56)
A% = 2sin (%) sin(8) (sin () cos(8) cos(¢) + cos (%) sin(¢p))

En ultimo lugar, repetimos el calculo con la matriz de Pauli Y, obteniendo asi los coeficientes A
correspondientes.

AVT = 2sin (%) (sin (2) n?(0) sin(y) cos(p) + cos () cos(9))
AV = sin? (Z) (2sin?(6) sin ( ) ) + cos (2) (57)
AVZ = 2sin (Z) sin(6) (sin (Z) cos() sin(p) — cos (F) cos(p))



B Caddigo

El c6digo desarrollado para llevar a cabo este Trabajo Fin de Grado esta recopilado aqui.
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https://github.com/lucastristan/TFG_Lucas_Tristan

C Especificaciones del dispositivo

Las caracteristicas del ordenador en el que se han llevado a cabo todas las simulaciones son:
e Modelo: Asus VivoBook S14 S433 (11th Gen).
e Procesador: 11th Gen Intel(R) Core(TM) i7-1165G7 a 2.80GHz.
e Memoria RAM: 16,0 GB (15,7 GB usable).

e Tipo de sistema: Sistema operativo de 64 bits, procesador basado en x64.
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