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Autor:

Lucas Tristán Artigas

Directores:

David Zueco Láinez
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Gracias a mi familia, por ser la columna vertebral que sostiene mi vida.
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4.2 Modelo Long-Range de Ising Cuántico . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Estados Coherentes Generalizados (GCS) 9
5.1 Introducción del ansatz GCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Implementación del ansatz GCS en un circuito cuántico . . . . . . . . . . . . . . 10
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1 Introducción

Los problemas de optimización, generalmente presentados como la minimización de una función
sujeto a unas ligaduras, son omnipresentes en el mundo actual. El interés en dichos problemas
reside en su variedad de aplicaciones: desde reducir el tiempo de env́ıo de un paquete hasta
minimizar el riesgo en una inversión financiera.

En el ámbito de la f́ısica, el problema de los muchos cuerpos cuántico (“quantum many-body
problem”) juega un papel central en el estudio del comportamiento de la materia. La obtención
de la enerǵıa del estado fundamental del sistema, que no es sino la minimización del valor
esperado del hamiltoniano, no es trivial. La dificultad del problema es que el espacio de Hilbert
crece exponencialmente con el número de part́ıculas y, por ende, es inviable resolverlo con
ordenadores clásicos.

Un ordenador cuántico, en cambio, parte con la ventaja de que no necesita construir un espacio
de Hilbert, sino que constituye un espacio de Hilbert en śı mismo. Por lo tanto, es de esperar que
un circuito cuántico que presente la suficiente complejidad sea capaz de representar el espacio de
Hilbert en el que estamos interesados de manera más eficiente. Esto, a su vez, debeŕıa facilitar
la obtención del estado fundamental.

No obstante, la realidad actual se encuentra muy alejada de dicha situación. Los ordenadores
cuánticos más avanzados a los que tenemos acceso se conocen como ordenadores cuánticos de
escala intermedia ruidosa (NISQs)1. Los circuitos cuánticos que son capaces de realizar son muy
limitados y, por tanto, necesitamos algoritmos cuánticos que se adapten a este tipo de tecnoloǵıa.

En este contexto, surgen los algoritmos cuánticos variacionales (VQAs), que están basados en el
uso de redes neuronales cuánticas (QNNs). Los VQAs presentan una ĺınea de investigación con
gran potencial a corto plazo, pues se basan en usar de forma h́ıbrida la tecnoloǵıa cuántica con
la clásica. Gracias al uso de optimizadores clásicos, los VQAs requieren de circuitos cuánticos
menos2 complejos que pueden ser implementados en ordenadores NISQs. No obstante, entre
las mayores desventajas de los algoritmos variacionales se encuentran su precisión, eficiencia y
entrenabilidad [2].

Cuando los algoritmos variacionales cuánticos se aplican a problemas clásicos de optimización
adoptan el nombre de “quantum approximate optimization algorithm” (QAOA) [3]. Por su
parte, el VQA diseñado precisamente para determinar la enerǵıa del estado fundamental de un
sistema cuántico se denomina “variational quantum eigensolver” (VQE) [8].

En última instancia, los dispositivos cuánticos actuales aún no presentan una mejora frente a
los métodos clásicos. En palabras de John Preskill [11]:

“Will NISQ technology running QAOA or VQE be able to outperform classical algorithms that
find approximate solutions to the same problems? Nobody knows, but we’re going to try it and
see how well we can do.”3

1John Preskill acuñó el término NISQs en 2018 [11]. La escala intermedia hace referencia a que el número de
qubits que son capaces de soportar oscila entre 50 y 100. Los denomina ruidosos porque no tenemos un control
perfecto de los qubits ya que su tiempo de coherencia es muy limitado y las puertas cuánticas implementadas
presentan un error significativo.

2Previo a los algoritmos variacionales, los algoritmos cuánticos para determinar autoestados de un sistema
se basaban en el “quantum phase estimation” (QPE). Para aplicaciones prácticas, dicho algoritmo requiere de
un circuito cuántico con un tiempo de coherencia del orden de millones, o incluso miles de millones, de puertas
cuánticas mientras que los NISQs únicamente son capaces de soportar del orden de cientos de puertas [8].

3¿Podrá la tecnoloǵıa NISQ ejecutando el QAOA o VQE superar a los algoritmos clásicos que encuentran
soluciones aproximadas a los mismos problemas? Nadie lo sabe, pero vamos a intentarlo y ver qué tan bien
podemos hacerlo.
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2 Objetivos y Estructura de la Memoria

El principal objetivo del Trabajo Fin de Grado es demostrar que la red neuronal con una
capa asociada al ansatz de estados generalizados coherentes (GCS) es simulable clásicamente,
diseñando aśı un algoritmo quantum-inspired.

A ráız de esto, la segunda finalidad del trabajo es la comparación del comportamiento de la
red neuronal cuántica con una capa frente a su análogo clásico en la resolución del problema de
muchos cuerpos cuántico con interacciones de largo alcance. Asimismo, con el fin de disponer
de un método que no sea emulable clásicamente, vamos a incluir en el estudio la red neuronal
cuántica con dos capas.

La estructura de la memoria se ha llevado a cabo con los objetivos en mente, de forma que se
realiza una introducción teórica de todos los conceptos necesarios para entender los objetivos.
Por tanto, el autor ha procurado realizar un trabajo que sea accesible al lector experimentado
pero que no sea necesariamente experto en la materia.

En primer lugar, la Sección 3 presenta de forma teórica los algoritmos cuánticos variacionales y,
en concreto, el VQE. Aśı, entenderemos las distintas etapas del algoritmo y las condiciones que
debe verificar el hamiltoniano del sistema para que pueda ser tratado con el VQE.

A continuación, la Sección 4 recoge una introducción de los sistemas con interacciones de
largo alcance (“modelos long-range”). Asimismo, nos centraremos en el modelo long-range de
Ising cuántico ya que es un sistema idóneo para verificar la precisión tanto de las redes neu-
ronales cuánticas como del algoritmo quantum-inspired, pues se trata de un modelo con una
fenomenoloǵıa muy rica.

En tercer lugar, en la Sección 5, presentamos los estados coherentes generalizados (GCS) que
no son sino el ansatz que vamos a emplear en este trabajo. Además, vamos a explicar su
implementación en un circuito cuántico que pueda ser introducido en el lenguaje de programación
Python, a través del paquete qiskit.

A estas alturas, ya hemos introducido todos los conceptos necesarios para satisfacer los objetivos
principales de la memoria. El resultado más relevante del trabajo se encuentra en la Sección 6,
donde demostramos que el circuito cuántico con una capa se puede simular con un ordenador
clásico. Nótese que la demostración viene complementada por el Anexo A, en el que recogemos
parte del desarrollo matemático.

Posteriormente, en la Sección 7, discutimos la eficacia de los tres métodos. Primero, se realiza
un estudio previo con un sistema trivial para verificar que todos los métodos funcionan correc-
tamente. Finalmente, llevamos a cabo la resolución del modelo long-range de Ising cuántico y
concluimos escogiendo el método que presenta mejores prestaciones.

En último lugar, la Sección 8 recapitula el desarrollo realizado en el trabajo e indica una manera
de mejorar la implementación del algoritmo quantum-inspired presentada en este Trabajo Fin
de Grado.

En definitiva, al finalizar la lectura del documento, el lector adquirirá una cierta familiaridad
con los métodos variacionales cuánticos y modelos cuánticos de largo alcance.

Como nota final, destacamos que el código realizado en este trabajo y las prestaciones del
ordenador en el que se han ejecutado todas las optimizaciones se recogen en los Anexos B y C,
respectivamente.
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3 Algoritmos Cuánticos Variacionales (VQAs)

Los algoritmos cuánticos variacionales (VQAs) son un emergente candidato para obtener supre-
maćıa cuántica4 en un futuro no tan lejano con los dispositivos que se disponen a d́ıa de hoy;
los ordenadores cuánticos de escala intermedia ruidosa (NISQs) [2].

Los VQAs son algoritmos h́ıbridos que se fundamentan en calcular el valor de una función
coste (“cost function”) cuánticamente, mediante un circuito cuántico parametrizado, que es
posteriormente optimizado clásicamente. De esta forma, los parámetros del circuito cuántico se
actualizan con el resultado de la optimización clásica, finalizando aśı una iteración del algoritmo.
Los VQAs se componen, por tanto, de una función coste que puede ser expresada, sin pérdida
de generalidad, como:

C(θ) = f({ρk}, {Ok}, U(θ)) (1)

donde f es una función que depende de un conjunto de observables {Ok} y de estados iniciales
{ρk}, aśı como de un operador unitario parametrizado U(θ), que corresponde al conjunto de
puertas que conforman el circuito cuántico y se denomina ansatz [2]. En la Figura 1 se recoge
el método operativo de un VQA genérico.

Figura 1: Flujo de trabajo de los VQAs [2]

Cabe destacar que las redes neuronales cuánticas corresponden a circuitos cuánticos parametriza-
dos que sean aptos para ser optimizados, es decir, que el espacio de fases de los parámatetros
sea lo suficientemente suave cómo para que pueda efectuarse su gradiente. Debido a esto, en la
Figura 1 se muestra la imagen tanto de un circuito cuántico como de una red neuronal. [2]

3.1 Variational Quantum Eigensolver (VQE)

A continuación, vamos a estudiar en mayor detalle el “variational quantum eigensolver” (VQE),
que no es sino el primer VQA llevado a cabo experimentalmente [8]. El desarrollo del algoritmo
presentado en esta Sección se ha extráıdo del curso de IBM sobre algoritmos variacionales [5].

El objetivo del algoritmo es encontrar la enerǵıa del estado fundamental de un sistema cuántico.
Consecuentemente, la función coste del VQE es:

C(θ) ≡ ⟨ψ(θ)|H|ψ(θ)⟩ (2)

donde H es el hamiltoniano del sistema de interés y |ψ(θ)⟩ es un estado normalizado que depende
de los parámetros a minimizar.

4El término fue acuñado por John Preskill en 2012 [10] y hace alusión a la habilidad que tienen los ordenadores
cuánticos de resolver ciertos problemas computacionales con una mejora en tiempo superpolinomial frente a los
dispositivos clásicos.

3



El VQE se basa en el principio variacional de la mecánica cuántica, que establece que la aproxi-
mación óptima del estado fundamental de un sistema cuántico es aquella que minimiza el valor
esperado del hamiltoniano:

⟨ψ(θ)|H|ψ(θ)⟩ ≥ E0 (3)

siendo E0 la enerǵıa fundamental del sistema.

La demostración de dicho enunciado se basa en la descomposición espectral del hamiltoniano
del sistema. Para un estado normalizado cualquiera, se verifica que:

⟨ψ|H|ψ⟩ = ⟨ψ|

(∑
k

Ek|ϕk⟩⟨ϕk|

)
|ψ⟩ =

∑
k

Ek|⟨ψ|ϕk⟩|2 ≥ E0 (4)

donde {|ϕk⟩}k es una base ortonormal compuesta por autoestados del hamiltoniano con autovalor
Ek. Nótese que en la primera igualdad hemos empleado que H =

∑
k Ek|ϕk⟩⟨ϕk|. En segundo

lugar, hemos introducido la desigualdad ya que la enerǵıa fundamental del sistema es menor o
igual que el resto de enerǵıas, es decir, Ek ≥ E0, ∀k. Además, en la desigualdad se ha tenido en
cuenta que

∑
k |⟨ψ|ϕk⟩|2 = 1.

La ventaja de expresar el teorema variacional en función de la enerǵıa del sistema es que la
enerǵıa fundamental debe verificar que E0 > −∞, es decir, tiene una cota inferior. Además, en
general, la enerǵıa del sistema no dispone de una cota superior.

Una vez introducido el teorema variacional, vamos a estudiar con mayor profundidad los con-
ceptos de estado de referencia y ansatz.

El estado de referencia es el estado inicial fijo con el que va a trabajar el algoritmo, |ρ⟩. Es
fundamental destacar que dicho estado no se encuentra parametrizado pues es simplemente el
estado de partida del algoritmo y es constante. Luego, el primer paso del VQE es inicializar
el estado de referencia mediante un operador unitario UR tal que |ρ⟩ = UR|0⟩. Nótese que es
práctica común emplear como estado de referencia el propio estado predeterminado |0⟩, de forma
que en estos casos se obtiene que UR = I.

A partir del estado de referencia, se introduce la forma variacional, UV (θ), tal que |ψ(θ)⟩ =
UV (θ)|ρ⟩, donde recordamos que |ψ(θ)⟩ es el estado parametrizado con el que vamos a evaluar
el valor esperado del hamiltoniano del sistema. Ver Ecuación (2). Por tanto, la forma variacional
define el conjunto de estados parametrizados que el algoritmo va a poder explorar. Debido a esto,
es imprescindible que los estados parametrizados dependan de los parámetros de forma continua
y derivable, para poder aśı acceder a todos los estados de forma eficiente. Aśı, el ansatz se define
como la combinación entre la parte del circuito cuántico sin parametrizar, correspondiente a UR,
y la parametrizada, asociada a UV (θ). Ver Ecuación (5).

UA(θ) ≡ UV (θ)UR (5)

Cabe destacar que el ansatz empleado puede depender del hamiltoniano en cuestión, de forma
que se denomina problem-specific ansatz, o puede ser completamente independiente del problema,
en cuyo caso se conoce como heuristic ansatz. En nuestro caso, vamos a trabajar con un heuristic
ansatz, con el que vamos a derivar anaĺıticamente ⟨σαn⟩ y ⟨σznσzm⟩.

Por otro lado, vamos a discutir las condiciones que debe verificar el hamiltoniano del sistema
para que sea computacionalmente eficiente llevar a cabo su valor esperado. En concreto, vamos
a estudiar cómo qiskit5 [6] calcula dicho valor esperado, pues la implementación del VQE en
este trabajo se ha realizado usando dicho SDK.

5Qiskit es un kit de desarrollo de software (SDK) diseñado por IBM que permite trabajar con ordenadores
cuánticos.
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Qiskit dispone de una primitiva6 llamada “Estimator” que, dado un estado cuántico, calcula el
valor esperado del observable en cuestión; en nuestro caso, el hamiltoniano del sistema usando
los estados |ϕ(θ)⟩. Para llevar esto a cabo, descompone el valor esperado de la siguiente manera:

⟨H⟩ =
∑
λ

pλλ (6)

donde pλ = |⟨ψ|λ⟩|2, siendo |λ⟩ autoestados de H con autovalor λ, representa la probabilidad
de medir λ.

Por consiguiente, es necesario disponer de una base de autoestados para poder evaluar la
Ecuación (6). Debido a que, en general, no es trivial obtener dicha base, se expresa el hamil-
toniano del sistema como una combinación de matrices de Pauli, pues conocemos tanto sus
autoestados como sus autovalores. En concreto, una matriz7 2n × 2n se puede expresar como
una combinación lineal del producto tensorial de n matrices de Pauli y la identidad:

H =
3∑

kn−1=0

· · ·
3∑

k0=0

wkn−1···k0σkn−1 ⊗ · · · ⊗ σk0 ≡
4n−1∑
k=0

wkPk (7)

donde usamos que (σ0, σ1, σ2, σ3) ≡ (I, σx, σy, σz) y Pk ≡ σkn−1 ⊗· · ·⊗σk0 con k ≡ kn−1 · · · k0 ∈
{0, 1, 2, 3}n. Nótese que, debido a que en cada producto tensorial puede haber una matriz de
Pauli o la identidad, tenemos 4n términos en la Ecuación (7).

Por su parte, las matrices de Pauli son hermı́ticas, luego su producto tensorial también lo es. Por
consiguiente, Pk es diagonalizable unitariamente, es decir, existe una transformación unitaria
Vk ≡ Vkn−1 ⊗· · ·⊗V0 tal que Pk = V †

k ΛkVk, donde Λk ≡ Λkn−1 ⊗· · ·⊗Λ0 es una matriz diagonal
compuesta por los autovalores de Pk. Es fundamental destacar que la virtud de descomponer
el hamiltoniano en matrices de Pauli es que, en la base computacional, la forma de las matrices
Vk es conocida8. Aśı, el valor esperado de Pk se puede expresar como:

⟨ψ|Pk|ψ⟩ = ⟨ψ|V †
k ΛkVk|ψ⟩

= ⟨ψ|V †
k

(
2n−1∑
i=0

|i⟩⟨i|

)
Λk

2n−1∑
j=0

|j⟩⟨j|

Vk|ψ⟩

=

2n−1∑
i=0

2n−1∑
j=0

⟨ψ|V †
k |i⟩⟨i|Λk|j⟩⟨j|Vk|ψ⟩

=
2n−1∑
i=0

⟨ψ|V †
k |i⟩⟨i|Λk|i⟩⟨i|Vk|ψ⟩

=
2n−1∑
i=0

|⟨i|Vk|ψ⟩|2λki

(8)

donde |i⟩ son los autoestados de Λk tales que ⟨i|Λk|j⟩ = δijλki, pues Λk es diagonal. Además,

se ha empleado la relación de clausura
∑2n−1

i=0 |i⟩⟨i| = I.

Por tanto, el valor esperado del hamiltoniano del sistema es:

⟨ψ|H|ψ⟩ =
4n−1∑
k=0

wk

2n−1∑
i=0

|⟨i|Vk|ψ⟩|2λki (9)

6Las primitivas son los bloques fundamentales a partir de los cuales se pueden realizar algoritmos cuánticos
más complejos [6].

7Nótese que la dimensión de cada qubit es 2, luego la dimensión de un sistema con n qubits es 2n.

8Dado un qubit arbitrario, tenemos que: V0 = I, V1 =
1√
2

(
1 1
1 −1

)
, V2 =

1√
2

(
1 −i
1 i

)
y V3 = I.
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Nótese que, gracias a la descomposición del hamiltoniano en matrices de Pauli, conocemos todos
los términos de la Ecuación (9) excepto |⟨i|Vk|ψ⟩|2, que no es sino la probabilidad de medir el
estado |i⟩ a partir del estado inicial Vk|ψ⟩. Aqúı es donde entra el papel del “Estimator”, que
calcula dicha probabilidad. En concreto, lleva a cabo el circuito cuántico Vk|ψ⟩, para poder
aśı diagonalizar Pk en la base computacional, y lo ejecuta midiendo el estado final un número
suficientemente alto de veces para poder determinar |⟨i|Vk|ψ⟩|2.

No obstante, el número de términos en la Ecuación (9) crece exponencialmente y, consecuente-
mente, no es viable computar ⟨H⟩. Luego, necesitamos exigir al hamiltoniano del sistema que
pueda ser descompuesto de forma escasa en matrices de Pauli (“Sparse Pauli Descomposition”).
Rigurosamente, exigimos que los términos wk distintos de cero crezcan de forma polinómica
con el número de qubits, y no de manera exponencial. Asimismo, las probabilidades |⟨i|Vk|ψ⟩|2
también deben escalar de forma polinómica para que sea computacionalmente eficiente realizar
el cálculo del valor esperado del hamiltoniano del sistema.

⟨ψ|H|ψ⟩ =
Pol(n)∑
k=0

wk

Pol(n)∑
i=0

|⟨i|Vk|ψ⟩|2λki (10)

Los hamiltonianos que se pueden descomponer de forma escasa en matrices de Pauli describen
una multitud de sistemas f́ısicos, como la mayoŕıa de modelos de esṕın [16], entre los que se
encuentra el modelo de largo alcance que vamos a simular en este trabajo. Ver Sección 4.

En último lugar, es fundamental destacar que la elección del optimizador clásico juega un papel
central en el éxito del VQE. En general, los optimizadores se pueden dividir en dos categoŕıas:
“Gradient-Based” y “Gradient-Free”. Los primeros emplean el gradiente de la función de coste
para evaluar la dirección donde se minimiza la función, mientras que los segundos minimizan
la función de coste a través de otros métodos que no hacen uso de sus derivadas. La mayor
diferencia entre los métodos es que los optimizadores “Gradient-Based” suelen ser más eficientes
encontrando mı́nimos locales de la función objetivo, y los “Gradient-Free” son más robustos
obteniendo el mı́nimo global de la función, a cambio de ser más costosos computacionalmente.
Además, es práctica común inicializar (“bootstrap”) la optimización con los parámetros resul-
tantes de la optimización previa, consiguiendo aśı un menor tiempo de convergencia.

Figura 2: Esquema completo del VQE [5]
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4 Modelos Long-Range (LRH)

En este trabajo vamos a afrontar el problema de muchos cuerpos cuántico (“quantum many-
body problem”), ya que vamos a simular el modelo long-range de Ising cuántico. Por tanto, es
necesario introducir los sistemas de largo alcance. Las ideas que se van a tratar en esta sección
están recogidas en [13; 14].

4.1 Introducción de los Modelos Long-Range

En general, los modelos long-range cuánticos en una red con dimensión d y N sitios, vienen
descritos por la siguiente familia de Hamiltonianos:

HLRH = −
N∑

i,j=1

JijCiCj (11)

donde Ci es un operador actuando sobre el sitio i, y las constantes de acoplos Jij se definen
como:

Jij = J
J̃ij

Ñ
(12)

siendo J una constante que indica la intensidad de las interacciones, mientras que Ñ es el factor
de normalización y J̃ij son los coeficientes que decaen acorde a 1/rα. Ver Ecuación (13).

J̃ij(rij) =

{
b con i = j

|i− j|−α con i ̸= j
(13)

Nótese que b es un parámetro que desplaza el espectro de J . A lo largo de este trabajo, las
simulaciones se han llevado a cabo con b = 1 y d = 1.

Finalmente, cabe destacar que la normalización viene dada por:

Ñ =
N∑
j=1

J̃ij = 1 +
N∑
j=1

1

jα
(14)

Es fundamental notar que empleamos condiciones de contorno periódicas (PBC), de forma que
la normalización (14) es independiente del sitio i.

En definitiva, los modelos long-range se caracterizan por describir interacciones entre dos cuerpos
que, a largas distancias, siguen una ley de 1/rα. Nótese que este tipo de modelos describen una
gran variedad de sistemas, como la interacción de Coulomb o Van-der Waals.

La clasificación de los sistemas de largo alcance gira en torno la constante de decaimiento, α.
Ver Figura 3.

Si α < d, entonces se dice que el modelo es de largo alcance fuerte (“strong long-range”),
ya que las interacciones decaen de manera suficientemente lenta tal que la suma (11) escala
superlinealmente con el tamaño del sistema N y, por tanto, el sistema pierde la extensividad.
No obstante, introducimos la normalización, denominada factor de renormalización de Kac, para
recuperar dicha extensividad y tener aśı un ĺımite termodinámico bien definido.

En el caso α > d, el modelo es extensivo y se distinguen dos regiones diferentes. Si α > α∗, el
sistema presenta los mismos exponentes cŕıticos que el caso α→ ∞, que corresponde al sistema
con interacciones solo a primeros vecinos. En esta región, el modelo se denomina de corto
alcance (“short-range”). En el caso restante, cuando α∗ > α > d, los exponentes cŕıticos son
distintos, lo que significa que el sistema presenta interacciones de largo alcance pero manteniendo
la extensividad del modelo. Esta región se conoce como el régimen de largo alcance débil (“weak
long-range”). Nótese que el valor de α∗ depende de cada modelo en particular.
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α

Largo
alcance fuerte

Largo
alcance débil

Corto
alcance

No aditividad Aditividad

Todos con todos

homogéneo

Primeros vecinos

∞0 d α∗

Figura 3: Diagrama de las regiones de los modelos long-range en función del valor de α [14].

4.2 Modelo Long-Range de Ising Cuántico

El hamiltoniano que vamos a simular es:

H =

N∑
i,j=1

Jijσ
z
i σ

z
j − hx

N∑
i=1

σxi + ϵ
N∑
i=1

σzi (15)

donde las constantes de acoplo Jij se definen en (12), tratándose aśı de un modelo long-range.
Destacamos que los términos asociados a las interacciones entre los distintos sitios provocan que
los espines se orienten en las dos orientaciones posibles a lo largo de un eje, denominado eje fácil.
En nuestro caso, el eje fácil se corresponde al eje Z. Por otro lado, el termino hx está asociado
a un campo magnético uniforme y transversal, de forma que estamos tratando con el modelo
de Ising cuántico9. Finalmente, disponemos de un pequeño campo magnético longitudinal, ϵ,
con el fin de romper la degeneración entre los estados asociados a todos los espines up o down.
Nótese que en las simulaciones realizadas en este trabajo, hemos fijado hx = 1 tal que el resto
de magnitudes de enerǵıa las expresamos en unidades de hx. Por ejemplo, vamos a trabajar con
ϵ/hx = 0.001.

Tal y como hemos comentado en la Sección 4, el comportamiento del sistema (15) vaŕıa signi-
ficativamente en función del valor de α. En concreto, el sistema presenta interacciones de largo
alcance cuando α < 1, pues se encuentra en el régimen de largo alcance fuerte. Por su parte,
en este sistema se verifica que α∗ = 3. Por tanto, el sistema es de largo alcance débil cuando
1 < α < 3, de forma que recupera la aditividad manteniendo interacciones de largo alcance.
Finalmente, la región de corto alcance del sistema tiene lugar cuando α > 3, donde tiene un
comportamiento similar al modelo de primeros vecinos.

Por otro lado, el sistema (15) presenta cambios significativos en función de J . El sistema es
ferromagnético si J < 0, mientras que es antiferromagnético cuando J > 0. Además, notamos
que en el caso J = 0, el sistema es trivial pues se reduce a un modelo de Ising clásico10 en el
eje X. Además, existe un punto cŕıtico Jc(α), en el que el sistema sufre una transición de fase
cuántica (QPT) de segundo orden, desde un estado ordenado a una fase paramagnética.

En último lugar, es fundamental destacar que el modelo (15) verifica las condiciones necesarias
para ser tratado con el VQE. El hamiltoniano está expresado en función de matrices de Pauli y,
además, su descomposición es escasa (“Sparse Pauli Descomposition”).

Por tanto, gracias a la complejidad del modelo, el hamiltoniano long-range de Ising cuántico
(15) es un sistema idóneo para estudiar el comportamiento de redes neuronales cuánticas.

9La introducción del campo magnético transversal provoca que el hamiltoniano no sea diagonal.
10Nótese que la contribución del campo longitudinal ϵ es despreciable.
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5 Estados Coherentes Generalizados (GCS)

En esta sección se introduce el ansatz de estados atómicos coherentes generalizados (GCS), junto
a su implementación en qiskit.

5.1 Introducción del ansatz GCS

En primer lugar, presentamos el ansatz de estados atómicos coherentes (CS) [15], |ϕ(α)⟩, que
corresponde a realizar una rotación general en cada qubit de forma individual:

|ϕ(α)⟩ ≡ U(α)|0⟩ (16)

donde la matriz de rotación está parametrizada de la siguiente manera:

U ≡ exp

− i

2

N∑
j=1

τj (n̂j · σ⃗j)

 =
N∏
j=1

exp

(
− i

2
τj (n̂j · σ⃗j)

)
(17)

en la que definimos la rotación asociada al qubit j proporcionando el eje de giro11 n̂j y la
intensidad de la rotación τj . Nótese que los operadores que actúan en distintos qubits conmutan,
pues no actúan en el mismo espacio vectorial, luego la rotación U factoriza como un producto
de rotaciones locales. Ver Ecuación (17).

Por tanto, el número total de parámetros de este ansatz es 3N , ya que para cada qubit
disponemos de tres parámetros: {τj , θj , φj}. Es decir, el número de parámetros escala de forma
polinómica, y no exponencial, con el tamaño del sistema. Aśımismo, el número de puertas nece-
sarias para implementar dicho ansatz en un circuito cuántico también crece polinómicamente
con el número de qubits del sistema. En concreto, la implementación de los estados variacionales
en un circuito es inmediata ya que simplemente es necesario una puerta en cada qubit que realice
una rotación genérica en la esfera de Bloch, es decir, se requiere de N puertas en total.

No obstante, la estructura del ansatz de estados atómicos coherentes (CS) es muy sencilla y no
introduce ningún entrelazamiento entre los qubits, pues estos rotan por separado. Por tanto, no
es capaz de describir correctamente el hamiltoniano (15) que tiene acoplos todos con todos.

En este contexto, surge el ansatz de estados atómicos coherentes generalizados (GCS) [15], |ψ⟩,
que no es sino una generalización del ansatz de estados atómicos coherentes (CS):

|ψ(α,M ,β)⟩ ≡ U(β)V(M) |ϕ(α)⟩︸ ︷︷ ︸
CS

= U(β)V(M)U(α)|0⟩ , (18)

donde la matriz de correlación es:

V ≡ exp

(
− i

4

∑
n<m

Mnmσ
z
nσ

z
m

)
(19)

siendo M una matriz simétrica real con la diagonal principal nula. Luego, el número de
parámetros que introduce esta matriz es N(N − 1)/2.

En definitiva, el ansatz de estados coherentes generalizados (GCS) está compuesto por una
rotación local inicial, seguido por una matriz de entrelazamiento y una rotación local final.
Nótese que la última rotación asegura que la elección de la dirección Z de las matrices de Pauli
en la matriz de correlación no presenta una dirección especial (preferente) en la esfera de Bloch.
Además, es fundamental destacar que α y β son el conjunto de parámetros asociados a la
primera y segunda rotación local respectivamente y, por tanto, no presentan ninguna relación.

11Expresado en coordenadas polares: n̂j = (sin(θj) cos(φj), sin(θj) sin(φj), cos(θj)).
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La virtud del ansatz de estados coherentes generalizados (GCS) es que mantiene las ventajas de
los estados atómicos coherentes (CS), ya que el número total de parámetros12 escala de forma
polinómica con el tamaño del sistema y su implementación en un circuito cuántico es eficiente.
Además, introduce correlaciones en el sistema gracias a la matriz de entrelazamiento, necesarias
para el problema que tratamos de abordar.

5.2 Implementación del ansatz GCS en un circuito cuántico

En primer lugar, expresamos la matriz de rotación U de forma matricial con el fin de expresarla
en función de puertas cuánticas. Consideremos ahora la acción de la rotación en un qubit
arbitrario j, pudiendo prescindir aśı del sub́ındice j para aligerar la notación. Notando que (n̂σ⃗)
es una matriz involutiva, es decir que (n̂σ⃗) = I, podemos descomponer la rotación local en un
seno y coseno.

U = exp

(
− i

2
τ (n̂ · σ⃗)

)
= −i(n̂σ⃗) sin

(τ
2

)
+ cos

(τ
2

)
I (20)

Por tanto, usando la base computacional y expresando n̂ en coordenadas polares, se obtiene que:

U(τ, θ, φ) =

(
cos
(
τ
2

)
− i sin

(
τ
2

)
cos (θ) −i sin

(
τ
2

)
sin (θ) e−iφ

−i sin
(
τ
2

)
sin (θ) eiφ cos

(
τ
2

)
+ i sin

(
τ
2

)
cos (θ)

)
(21)

Tal y como hemos mencionado en la Sección 3, vamos a usar qiskit para llevar a cabo el circuito
cuántico. Por ende, cabe desatacar que la puerta nativa correspondiente a una rotación genérica
en la esfera de Bloch que ofrece qiskit no tiene la misma forma matricial que (21), pues en la
documentación de qiskit [6] se describe la rotación usando los 3 ángulos de Euler13. Por tanto,
es necesario definir una puerta personalizada que se comporte como la matriz U .

q : U (τ, θ, φ) ≡
(
cos
(
τ
2

)
− i sin

(
τ
2

)
cos (θ) −i sin

(
τ
2

)
sin (θ) e−iφ

−i sin
(
τ
2

)
sin (θ) eiφ cos

(
τ
2

)
+ i sin

(
τ
2

)
cos (θ)

)
(22)

En segundo lugar, vamos a expresar la matriz de correlación, V, en función de puertas cuánticas.
Comenzamos notando que el término exp(−iδσznσzm) es equivalente a la acción de las puertas
CNOT-Rz-CNOT14 [16].

qn : • •
qm : RZ (2δ)

= e−iδσz
nσ

z
m (23)

Vamos a demostrar el resultado calculando la forma matricial del circuito cuántico, y verificando
que coincide con exp(−iδσznσzm). Nótese que al disponer de dos qubits, la base computacional
no es sino los productos tensoriales: {|00⟩, |01⟩, |10⟩, |11⟩}. Recordamos que, en esta base, las
puertas Rz y CNOT son:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 I ⊗Rz(2δ) =


e−iδ 0 0 0
0 eiδ 0 0
0 0 e−iδ 0
0 0 0 eiδ

 (24)

12El número total de parámetros del ansatz GCS es: 6N + N(N−1)
2

.

13U(τ, θ, φ) =

(
cos

(
τ
2

)
− sin

(
τ
2

)
eiφ

sin
(
τ
2

)
eiθ cos

(
τ
2

)
ei(θ+φ)

)
14Sin entrar en detalles, destacamos que las rotaciones en un qubit y la puerta CNOT pueden ser implementadas

experimentalmente a través de qubits superconductores con interacciones de resonancia cruzada.

10



donde Rz(λ) =

(
e−iλ

2 0

0 ei
λ
2

)
.

Finalmente, realizando expĺıcitamente el producto CNOT-Rz-CNOT recuperamos la expresión
matricial de exp(−iδσznσzm).

CNOT ·Rz(2δ) · CNOT =


e−iδ 0 0 0
0 eiδ 0 0
0 0 eiδ 0
0 0 0 e−iδ

 = e−iδσz
nσ

z
m (25)

Una vez estudiada la correspondencia entre exp(−iδσznσzm) y las puertas CNOT-Rz-CNOT, la
implementación de la matriz de correlación, V, es inmediata. Concretamente, hay que colocar
dicho conjunto de puertas para todos los pares de qubits en el circuito, tal y como se recoge en
la Figura 4.

q0 : U (α[0], α[1], α[2]) • • • • U (β[0], β[1], β[2])

q1 : U (α[3], α[4], α[5]) RZ (M[0]/2) • • U (β[3], β[4], β[5])

q2 : U (α[6], α[7], α[8]) RZ (M[1]/2) RZ (M[2]/2) U (β[6], β[7], β[8])

Figura 4: Implementación del ansatz GCS con 3 qubits (1 layer)

En la Figura 4 se recoge un circuito cuántico con 3 qubits correspondiente al ansatz de estados
atómicos coherentes generalizados (GCS). Con el fin de poder visualizar las distintas partes del
circuito, hemos separado mediante barreras las puertas correspondientes a cada matriz de (18).

Los circuitos cuánticos parametrizados, es decir las redes neuronales cuánticas, se caracterizan
por estar compuestas de capas (“layers”) formadas por puertas unitarias que son repetidas a lo
largo del circuito. En la Figura 4 se recoge un único bloque de puertas, luego estamos ante la
red neuronal correspondiente a una layer. Añadir capas al circuito cuántico aumenta el número
de parámetros, lo que se traduce en mayor complejidad y expresividad. Sin embargo, puede
suponer un detrimento en la entrenabilidad.

Finalmente, tal y como se ha comentado en la Sección 3, destacamos que estamos trabajando con
un heuristic ansatz. Por tanto, el ansatz GCS es apropiado para resolver cualquier hamiltoniano
que pueda ser implementado en un VQE, incluso aquellos que presenten interacciones todos con
todos.
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6 Cálculo anaĺıtico de ⟨H⟩

En esta sección recogemos el resultado más importante del trabajo: el circuito cuántico asociado
a una layer del ansatz GCS puede ser simulable clásicamente. La demostración del resultado
consiste en calcular anaĺıticamente el valor esperado del hamiltoniano recogido en (15) usando
el estado GCS definido en (18). Gracias a que el hamiltoniano es una combinación lineal de
matrices de Pauli, el valor esperado de este se reduce a calcular ⟨σαn⟩ y ⟨σznσzm⟩.

6.1 Cálculo de ⟨σα
n⟩

En primer lugar, recogemos la forma que tiene ⟨σαn⟩ en la Ecuación (26).

⟨σαn⟩ = ⟨ϕ(α)|V†U†(β)σαnU(β)V|ϕ(α)⟩ (26)

Vamos a realizar los cálculos por partes. Primero, nos centramos en la primera rotación local,
cuyo resultado sabemos que es: U†σαnU =

∑
β λ

αβ
n σβn . Ver Anexo A. Luego, obtenemos que:

⟨σαn⟩ =
∑

β=x,y,z

λαβn (β)⟨ϕ(α)|V†σβnV|ϕ(α)⟩ (27)

Por tanto, necesitamos calcular V†σβnV. Nótese que el caso β = z es trivial, pues σzn y V
conmutan y, por ende, V†σznV = σzn. No obstante, para calcular el resto de casos es necesario
introducir los operadores escalera asociados a la matrices de Pauli, σ+n y σ−n .

σ+n = |0⟩n⟨1|n =

(
0 1
0 0

)
σ−n = |1⟩n⟨0|n =

(
0 0
1 0

) (28)

De forma que se verifica que σxn = (σ+n + σ−n ) y σ
y
n = −i(σ+n − σ−n ).

Por consiguiente, al introducir los operadores escalera, hemos conseguido que V†σx,yn V se reduzca
a V†σ±n V. Vamos a realizar el cálculo de V†σ+n V:

V†σ+n V = exp

 i

4

∑
p<j

Mpjσ
z
pσ

z
j

 (|0⟩n⟨1|n) exp

− i

4

∑
p<j

Mpjσ
z
pσ

z
j


= exp

 i

4

∑
p ̸=n

Mnpσ
z
p

 (|0⟩n⟨1|n) exp

 i

4

∑
p ̸=n

Mnpσ
z
p


= exp

 i

2

∑
p ̸=n

Mnpσ
z
p

σ+n

(29)

donde en la segunda igualdad hemos empleado que |0⟩n es un autoestado de σzn con autovalor
+1 y, consecuentemente, se verifica que exp(σznσ

z
p)|0⟩n = exp(σzp)|0⟩n. Aśımismo, el estado |1⟩n

es autoestado de σzn con autovalor -1 y cumple que exp(σznσ
z
p)|1⟩n = exp(−σzp)|1⟩n.

Nótese que es análogo el desarrollo para obtener V†σ−n V.

V†σ−n V = exp

− i

2

∑
p ̸=n

Mnpσ
z
p

σ−n . (30)
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Por tanto, con la introducción de los operadores escalera, el valor esperado de σαn resulta en la
Ecuación (31).

⟨σαn⟩ = ⟨ϕ(α)|+ λαxn (β)
[
e

i
2

∑
p̸=n Mnpσz

pσ+n + e−
i
2

∑
p̸=n Mnpσz

pσ−n

]
− λαyn (β)i

[
e

i
2

∑
p̸=n Mnpσz

pσ+n − e−
i
2

∑
p̸=n Mnpσz

pσ−n

]
+ λαzn (β)σzn|ϕ(α)⟩

(31)

El siguiente paso para calcular ⟨σαn⟩ es hallar ⟨ϕ(α)|σαn |ϕ(α)⟩.

⟨ϕ(α)|σαn |ϕ(α)⟩ =
∑

β=x,y,z

λαβn (α)⟨0|σβn |0⟩ = λαzn (α) (32)

A continuación, notando que las matrices de Pauli son involutivas, vamos a descomponer las
exponenciales en senos y cosenos para poder aśı realizar el valor esperado con respecto al estado
|ϕ(α)⟩:

⟨σαn⟩ =+ λαxn (β)

+∏
p ̸=n

(
i sin

(
Mnp

2

)
λzzp (α) + cos

(
Mnp

2

))(
λxzn (α) + iλyzn (α)

2

)

+
∏
p ̸=n

(
−i sin

(
Mnp

2

)
λzzp (α) + cos

(
Mnp

2

))(
λxzn (α)− iλyzn (α)

2

)
+ λαyn (β)

+∏
p ̸=n

(
i sin

(
Mnp

2

)
λzzp (α) + cos

(
Mnp

2

))(
−iλxzn (α) + λyzn (α)

2

)

+
∏
p ̸=n

(
−i sin

(
Mnp

2

)
λzzp (α) + cos

(
Mnp

2

))(
iλxzn (α) + λyzn (α)

2

)
+ λαzn (β)λzzn (α)

(33)

donde hemos empleado que σ+n =
σxn + iσyn

2
y σ−n =

σxn − iσyn
2

.

Vamos a simplificar la Ecuacion (33) introduciendo el número complejo z:

z ≡
∏
p ̸=n

(
−i sin

(
Mnp

2

)
λzzp (α) + cos

(
Mnp

2

))
(34)

que no es sino ⟨ϕ(α)|e−
i
2

∑
p ̸=n Mnpσz

p |ϕ(α)⟩.

En último lugar, sustituyendo (34) en (33) y sacando factores comunes, se obtiene la expresión
simplificada de ⟨σαn⟩.

⟨σαn⟩ = [λαxn (β)λxzn (α) + λαyn (β)λyzn (α)]

(
z + z̄

2

)
+ [λαyn (β)λxzn (α)− λαxn (β)λyzn (α)] i

(
z − z̄

2

)
+λαzn (β)λzzn (α)

(35)

Nótese que la expresión derivada es coherente pues es real.
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6.2 Cálculo de ⟨σz
nσ

z
m⟩

Análogamente al caso anterior, comencemos escribiendo la forma que tiene ⟨σznσzm⟩.

⟨σznσzm⟩ = ⟨ϕ(α)|V†U†(β)σznσ
z
mU(β)V|ϕ(α)⟩ (36)

A continuación, teniendo en cuenta que los operadores U y V son unitarios, podemos escribir el
valor esperado como:

⟨σznσzm⟩ = ⟨ϕ(α)|
(
V†U†(β)σznU(β)V

)(
V†U†(β)σzmU(β)V

)
|ϕ(α)⟩ (37)

Aśı, podemos seguir el mismo procedimiento que en la Sección 6.1 y obtener que:

⟨σznσzm⟩ = ⟨ϕ(α)|
(
λzxn (β)

[
e

i
2

∑
p ̸=n Mnpσz

pσ+n + e−
i
2

∑
p̸=n Mnpσz

pσ−n

]
−λzyn (β)i

[
e

i
2

∑
p ̸=n Mnpσz

pσ+n − e−
i
2

∑
p̸=n Mnpσz

pσ−n

]
+ λzzn (β)σzn

)
×

×
(
λzxm (β)

[
e

i
2

∑
l ̸=m Mmlσ

z
l σ+m + e−

i
2

∑
l̸=m Mmlσ

z
l σ−m

]
−λzym (β)i

[
e

i
2

∑
l ̸=m Mmlσ

z
l σ+m − e−

i
2

∑
l̸=m Mmlσ

z
l σ−m

]
+ λzzm (β)σzm

)
|ϕ(α)⟩

(38)

de manera que en ⟨σznσzm⟩ vamos a tener dos tipos de productos.

En primer lugar, los términos asociados a λzγ(β) con γ ∈ {x, y}, que tienen la siguiente forma:

eω
i
2

∑
p̸=n Mnpσz

pσωne
ν i
2

∑
l ̸=m Mmlσ

z
l σνm = σωnσ

ν
me

∑
τ ̸=n,m(ωMnτ+νMmτ )σz

τ (39)

donde ω, ν ∈ {+,−}.

Vamos a demostrar la Ecuación (39) desarrollando el caso concreto en el que ω = + y ν = +,
pues de esta forma podemos mostrar expĺıcitamente cómo se simplifican los términos. Nótese
que, en este caso, estudiar un caso concreto no presenta una pérdida de generalidad pues para
el resto de casos el desarrollo es análogo.

Primero, recordando que operadores que actúan sobre distintos qubits conmutan y que [σz, σz] =
0, podemos reorganizar los términos tal y como se indica en la Ecuación (40).

e
i
2

∑
p̸=n Mnpσz

pσ+n e
i
2

∑
l ̸=m Mmlσ

z
l σ+m =

(
σ+n e

i
2
Mmnσz

n

)(
e

i
2
Mnmσz

mσ+m

)
e
∑

τ ̸=n,m(Mnτ+Mmτ )σz
τ (40)

Finalmente, usando la definición de los operadores escalera, ver Ecuación (28), podemos simpli-
ficar las exponenciales que se encuentran en los paréntesis, llegando aśı a la expresión deseada.

(|0⟩n⟨1|n) e−
i
2
Mmne

i
2
Mnm︸ ︷︷ ︸

=1

(|0⟩m⟨1|m) e
∑

τ ̸=n,m(Mnτ+Mmτ )σz
τ = σ+n σ

+
me

∑
τ ̸=n,m(Mnτ+Mmτ )σz

τ
(41)

Por otro lado, el segundo tipo de términos que se encuentran en la Ecuación (38) son los asociados
a λzz(β). Dichos términos son triviales de tratar, pues únicamente hay que desarrollar las
exponenciales en senos y cosenos, tal y cómo se indica en la Ecuación (42).

σzne
i
2

∑
l ̸=m Mmlσ

z
l σ+m =

(
cos

(
Mmn

2

)
σzn + i sin

(
Mmn

2

))
e

i
2

∑
τ ̸=n,m Mmτσz

τσ+m (42)

Donde hemos empleado que las matrices de Pauli son involutivas.

Recapitulando, ya tenemos la forma de los productos que aparecen en la Ecuación (38). Es
fundamental destacar que las Ecuaciones (39) y (42) no son sino la base en la que se sustenta
la derivación de ⟨σznσzm⟩. Esto es debido a que, a partir de dichas ecuaciones, podemos llevar a
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cabo un procedimiento análogo al recogido en la Sección 6.1 e introducir los siguientes números
complejos:

s ≡
∏

τ ̸=n,m

(
cos
(
Mnτ+Mmτ

2

)
+ i sin

(
Mnτ+Mmτ

2

)
λzzτ (α)

)
v ≡

∏
τ ̸=n,m

(
cos
(
Mnτ−Mmτ

2

)
+ i sin

(
Mnτ−Mmτ

2

)
λzzτ (α)

)
p ≡

(
cos
(
Mnm
2

)
λzzm (α) + i sin

(
Mnm
2

))
·
∏

τ ̸=n,m

(
cos
(
Mnτ
2

)
+ i sin

(
Mnτ
2

)
λzzτ (α)

)
t ≡

(
cos
(
Mmn
2

)
λzzn (α) + i sin

(
Mmn
2

))
·
∏

τ ̸=n,m

(
cos
(
Mmτ
2

)
+ i sin

(
Mmτ
2

)
λzzτ (α)

)
(43)

con el fin de simplificar ⟨σznσzm⟩. Nótese que los números complejos s y v están asociados a los
términos con λzγ(β), mientras que p y t corresponden a los términos con λzz(β).

Con la introducción de los números complejos recogidos en la Ecuación (43) y sacando factores
comunes, se obtiene la expresión simplificada de ⟨σznσzm⟩.

⟨σznσzm⟩ =
[
A · C +B ·D

](s+ s̄

4

)
+ i
[
B · C −A ·D

](s− s̄

4

)
+
[
E ·G+ F ·H

](v + v̄

4

)
+ i
[
F ·G− E ·H

](v − v̄

4

)
+
[
I · λxzn (α) + J · λyzn (α)

](p+ p̄

2

)
+ i
[
I · λyzn (α)− J · λxzn (α)

](p− p̄

2

)
+
[
K · λxzm (α) + L · λyzm (α)

]( t+ t̄

2

)
+ i
[
K · λyzm (α)− L · λxzm (α)

]( t− t̄

2

)
+
[
λzzn (β)λzzm (β)λzzn (α)λzzm (α)

]
(44)

Siendo: 

A ≡ λxzn (α)λxzm (α)− λyzn (α)λyzm (α) G ≡ λzxn (β)λzxm (β) + λzyn (β)λzym (β)

B ≡ λxzn (α)λyzm (α) + λyzn (α)λxzm (α) H ≡ λzyn (β)λzxm (β)− λzxn (β)λzym (β)

C ≡ λzxn (β)λzxm (β)− λzyn (β)λzym (β) I ≡ λzxn (β)λzzm (β)

D ≡ λzxn (β)λzym (β) + λzyn (β)λzxm (β) J ≡ λzyn (β)λzzm (β)

E ≡ λxzn (α)λxzm (α) + λyzn (α)λyzm (α) K ≡ λzzn (β)λzxm (β)

F ≡ λyzn (α)λxzm (α)− λxzn (α)λyzm (α) L ≡ λzzn (β)λzym (β)

(45)

Nótese que la expresión obtenida15 es coherente pues es real e invariante bajo el intercambio de
los ı́ndices n y m.

En definitiva, hemos sido capaces de calcular el valor esperado del hamiltoniano (15) usando el
ansatz GCS (18). Por tanto, podemos introducir la expresión del valor esperado en un ordenador
clásico y encontrar su mı́nimo como si se tratase de un problema de optimización de una función
multivariable. En otras palabras, es viable simular con un ordenador clásico el circuito cuántico
del ansatz GCS correspondiente a una layer. Los algoritmos que se fundamentan en el formalismo
matemático de la mecánica cuántica pero están diseñado para ser ejecutados en dispositivos
clásicos se denominan algoritmos quantum-inspired (QI) [4].

Como nota final, destacamos que a partir de ⟨σαn⟩ y ⟨σznσzm⟩, podemos calcular clásicamente
el valor esperado de cualquier hamiltoniano que pueda descomponerse en matrices de Pauli, y
presente términos de interacción de la forma σznσ

z
m. En este trabajo nos vamos a restringir al

estudio del modelo long-range de Ising cuántico, pero el procedimiento realizado en esta sección
es mucho más general. Esto es una consecuencia inmediata de trabajar con un heurisitic ansatz.

15El resultado es inmediato de verificar a partir de la expresión expĺıcita.
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7 Resultados

Vamos a encontrar el estado fundamental del modelo long-range de Ising cuántico (15) usando el
ansatz GCS (18) a través de dos métodos distintos: el “variational quantum eigensolver” (VQE)
y el algoritmo quantum-inspired diseñado en la Sección 6. Debido a que el circuito cuántico de
una layer del VQE es simulable clásicamente, también vamos a trabajar con la red neuronal
correspondiente a dos layers, para poder disponer aśı de un método completamente cuántico
que no pueda ser emulado en un dispositivo clásico.

El objetivo de la sección es comparar el rendimiento entre el circuito cuántico con una layer del
VQE y el algoritmo quantum-inspired. Además, discutiremos si añadir una capa más al VQE
presenta una mejora sustancial frente a una única layer o al algoritmo quantum-inspired.

Por otro lado, recordamos que una parte central del VQE es la elección del optimizador clásico.
Ver Sección 3. Los optimizadores que vamos a usar en este trabajo son: SLSQP [7] y COBYLA
[9]. El primero es un optimizador “Gradient-Based” mientras que el segundo es “Gradient-
Free”, de forma que el segundo objetivo de la sección es estudiar la diferencia en rendimiento
entre ambos tipos de optimizador. Además, dichos optimizadores permiten introducir cotas a
las variables. En nuestro caso, el dominio de los ángulos asociados a las rotaciones locales es:

τ ∈ [0, π]

θ ∈ [0, π]

φ ∈ [0, 2π]

(46)

Mientras que los ángulos correspondientes a la matriz de correlación están definidos en el rango:

M ∈ [0, 2π] (47)

La sección se divide en dos partes. Primero, realizamos un estudio previo en el que comprobamos
que las redes neuronales cuánticas y el algoritmo quantum-inspired funcionan correctamente con
un modelo trivial. En segundo lugar, resolvemos el hamiltoniano long-range de Ising cuántico
(15). Todas las simulaciones se han realizado para cadenas compuestas por N = 8 qubits.

7.1 Estudio Previo

Con el fin de verificar que las redes neuronales cuánticas y el algoritmo quantum-inspired se
comportan de forma deseada, vamos a resolver el modelo de Ising (15) en el caso de J = 0.
Dicho sistema es trivial pues es el modelo de Ising clásico en el eje X. Ver Sección 4. Por tanto,
es inmediato ver que la enerǵıa del estado fundamental es:

E0 ≃ −N = −8 (48)

donde la enerǵıa no es exactamente −N debido a la pequeña perturbación introducida por el
campo magnético longitudinal, ϵ.

A lo largo de las simulaciones, vamos a denotar como “L=1” y “L=2” a la red neuronal con
una y dos layers, respectivamente. Además, la ĺınea naranja denominada “Ansatz Clásico” está
asociada al algoritmo quantum-inspired. Finalmente, las ĺıneas azules corresponden a la enerǵıa
fundamental y del primer excitado del sistema, que son calculadas empleando diagonalización
exacta16 (ED) [12].

En la Figura 5 recogemos la convergencia17 de la enerǵıa18 del sistema, junto a su error relativo,
frente al número de iteraciones realizadas por el optimizador COBYLA tanto para la red neuronal

16Nótese que el cálculo de la enerǵıas mediante ED es posible porque el número de qubits es limitado.
17Los tres métodos parten de una enerǵıa inicial aleatoria.
18Recordamos que expresamos la enerǵıa en unidades de hx. Ver Sección 4.
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con una y dos layers, como para el algoritmo quantum-inspired. Notamos que el error relativo
se encuentra en escala logaŕıtmica y lo definimos como:

Error Relativo =
Esim − EED

EED
(49)

donde Esim corresponde a la enerǵıa obtenida mediante el método numérico correspondiente y
EED es el estado fundamental obtenido por diagonalización exacta.

Figura 5: Convergencia de la enerǵıa y error relativo del sistema frente al número de iteraciones
del optimizador COBYLA.

En primer lugar, vemos que los tres métodos convergen al estado fundamental del sistema, con
lo que podemos concluir que están correctamente implementados.

El algoritmo clásico es el primero en converger al estado fundamental, con un error relativo del
orden de 10−4. Dicho método es el más preciso de los tres, pues presenta un error que es un
orden de magnitud menor que la red neuronal con una layer, y es incluso dos órdenes menor
que el circuito cuántico con dos layers.

La red neuronal con dos layers converge antes que con una única layer pero, una vez encuentra
el mı́nimo global, no es capaz de reducir el error relativo. De esta forma, el circuito cuántico
con una layer presenta un mejor rendimiento que con dos layers.

Por otro lado, hemos repetido la simulación diez veces con el fin de obtener el tiempo de ejecución
promedio junto a su desviación estándar de los tres métodos. Ver Tabla 1.

Tal y como era de esperar, la red neuronal con una layer presenta un menor tiempo de ejecución
que con dos layers, ya que el número de parámetros aumenta al introducir capas en el circuito
cuántico.

El tiempo de ejecución asociado al algoritmo quantum-inspired destaca por ser del orden de seis
veces mayor que el de la red neuronal con una layer. Esto es mayoritariamente debido a la
rudimentaria implementación del algoritmo clásico en el trabajo, que se ha llevado a cabo con la
libreŕıa Scipy [17] de Python. Concretamente, hemos minimizado la enerǵıa del sistema con la
función minimize. Por tanto, es vital notar que el tiempo de ejecución de este algoritmo puede
disminuir considerablemente si se implementa de una manera más eficiente. Ver Sección 8.

Por su parte, es interesante verificar numéricamente que la expresión de la enerǵıa derivada en la
Sección 6 es correcta. Para llevar esto a cabo, hemos introducido los valores de los parámetros
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L=1 (s) L=2 (s) Ansatz Clásico (s)

COBYLA 22, 2± 1, 8 39, 2± 2, 5 122± 3
SLSQP 21± 5 141± 13 81± 18

Tabla 1: Tiempo de ejecución, promediado a lo largo de 10 simulaciones, de la red neuronal
cuántica con una y dos layers, y del algoritmo quantum-inspired usando los optimizadores clásicos
COBYLA y SLSQP.

de la red neuronal con una layer en el algoritmo clásico, de forma que la enerǵıa calculada
clásicamente debe coincidir con la del circuito cuántico.

∆E = |EClásico − EVQA(L=1)| (50)

Concretamente, hemos calculado la diferencia de enerǵıa para el valor de los parámetros en cada
una de las iteraciones de la Figura 5 y se muestra en la Figura 6.

Figura 6: Classical vs 1 Layer

La diferencia de enerǵıa, representada en escala logaŕıtmica, no toma un valor constante sino
que fluctúa entre valores con órdenes de magnitud entre 10−14 y 10−16. Dicho comportamiento
es debido a la precisión de la variable float de Python, de forma que podemos asegurar19 que los
valores calculados clásicamente coinciden con los proporcionados por la red neuronal. Nótese
que en el procedimiento para obtener la Figura 6 no hemos usado ningún optimizador, pues
simplemente evaluamos la enerǵıa clásicamente usando los parámetros que usaba la red neuronal
con una layer en la Figura 5.

Una vez estudiado el comportamiento de los tres métodos numéricos con el optimizador clásico
COBYLA, vamos a repetir el mismo estudio pero usando el optimizador clásico SLSQP. En
concreto, resolvemos el modelo de Ising clásico en el eje X, y recogemos la convergencia de la
enerǵıa, junto a su error relativo, en función del número de iteraciones. Ver Figura 7.

19La diferencia de enerǵıa de los puntos que sobrepasan el ĺımite inferior de la gráfica es, exactamente, ∆E = 0.0.
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Figura 7: Convergencia de la enerǵıa y error relativo del sistema frente al número de iteraciones
del optimizador SLSQP.

El error relativo obtenido con el optimizador SLSQP es, en el caso de la red neuronal con una
y dos layers, hasta cuatro órdenes de magnitud menor que el error obtenido con COBYLA.
Aśımismo, el algoritmo quantum-inspired también presenta una mejoŕıa notable al usar el op-
timizador SLSQP, pues su error disminuye tres órdenes de magnitud comparado con el error
usando COBYLA.

El comportamiento de los tres métodos es similar usando ambos optimizadores: el algoritmo
clásico es el primero en converger, y la red neuronal con dos layers encuentra el mı́nimo antes
que con una layer pero no es capaz de reducir tanto el error relativo. De esta forma, la red
neuronal con una capa y el algoritmo clásico presentan la mejor precisión, disponiendo de un
error relativo del orden de 10−7, mientras que el circuito cuántico con dos layers presenta un
error relativo del 10−6. No obstante, a diferencia que en el caso con COBYLA, las iteraciones
llevadas a cabo por los tres métodos no son las mismas. Concretamente, el algoritmo clásico
solo requiere 22 iteraciones para finalizar la optimización, mientras que la red neuronal con una
y dos layers necesita 1625 y 4755 iteraciones, respectivamente.

El tiempo de ejecución de los métodos numéricos usando el optimizador SLSQP no sigue la
misma tendencia que en el caso de COBYLA, pues la red neuronal con dos layers es el método
más costoso. Concretamente, el circuito cuántico con dos capas es, aproximadamente, siete veces
más lento que con una sola capa. Además, el tiempo de ejecución del algoritmo clásico es, del
orden de, cuatro veces mayor que el de la red neuronal con una layer. Ver Tabla 1.

Al comparar los tiempos de ejecución entre los distintos optimizadores, vemos que la red neuronal
con una layer presenta un tiempo similar en ambos casos. En cambio, el tiempo de ejecución
de la red neuronal con dos layers se ve triplicado al usar el optimizador SLSQP, mientras
que el algoritmo clásico sufre una reducción el tiempo de ejecución del 33 % al emplear dicho
optimizador.

Asimismo, destacamos que la incertidumbre de los tiempos correspondientes al optimizador
SLSQP son más elevados que los asociados a COBYLA. El algoritmo quantum-inspired sufre el
mayor aumento en incertidumbre, que es hasta seis veces mayor.

En definitiva, los tres métodos presentados son capaces de resolver el modelo de Ising clásico, de
forma que podemos abarcar problemas más complejos. Además, destacamos que el método más
favorable es la red neuronal cuántica con una layer con el optimizador SLSQP, ya que obtiene
el mı́nimo error relativo y presenta el tiempo de ejecución más reducido.
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7.2 Resolución del modelo long-range de Ising cuántico

Esta sección constituye la parte más relevante del trabajo: la obtención del estado fundamental
del modelo long-range de Ising cuántico (15) usando la red neuronal cuántica y el algoritmo
quantum-inspired.

Tal y como hemos comentado en la Sección 4, el sistema (15) no es trivial y su comportamiento
depende fuertemente del valor de α. Por tanto, vamos a resolver el modelo para distintos valores
de α, con el fin de poder estudiar el sistema en sus tres distintas regiones: modelo de corto alcance
(α > 3), de largo alcance débil (3 > α > 1) y de largo alcance fuerte (α < 1). En concreto,
vamos a considerar los siguientes valores de α: 0.5, 1.0, 2.5 y 6.0.

A continuación, vamos a exponer el método seguido para llevar a cabo la resolución del sistema.
En primer lugar, fijamos el valor de α del modelo. Segundo, resolvemos el caso en el que
J = 0, ya que sabemos que los tres métodos son capaces de encontrar el estado fundamental, y
guardamos el valor de los parámetros optimizados. Posteriormente, aumentamos el valor de J y,
partiendo de los parámetros optimizados, iniciamos la resolución del modelo. Una vez finalizado,
aumentamos J y repetimos el procedimiento sucesivamente. Nótese que la metodoloǵıa empleada
no es sino el bootstrapping. Ver Sección 3. En nuestro caso, vamos a simular el modelo desde
J/hx = −4 hasta J/hx = 10, en incrementos20 de ∆J/hx = 0.01.

En la Figura 8 recogemos la enerǵıa del sistema para los distintos valores de α junto a su
error relativo en función de J/hx calculada por la red neuronal y algoritmo clásico usando el
optimizador COBYLA. Además, las ĺıneas verdes corresponden a los valores cŕıticos, Jc(α)/hx,
donde tiene lugar la transición de fase cuántica de segundo orden. Nótese que dichos valores
cŕıticos se han obtenido mediante redes neuronales clásicas [13].

En primer lugar, vemos que la enerǵıa del sistema sigue la tendencia indicada por el estado
fundamental obtenido con diagonalización exacta, de forma que los tres métodos son capaces de
resolver el modelo (15).

Figura 8: Resolución del estado fundamental del modelo (15), realizado por la red neuronal y
algoritmo quantum-inspired, para distintos valores de α usando el optimizador COBYLA.

20El número de optimizaciones en el proceso es 141.
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A continuación, vamos a llevar a cabo un análisis del comportamiento de los tres métodos más
riguroso. En concreto, centramos nuestra atención al error relativo, que está expresado en escala
logaŕıtmica. Para todos los valores de α, el error sigue un comportamiento similar: es mı́nimo
cuando J/hx = 0 y aumenta para los valores pequeños de J/hx hasta que comienza a disminuir
cuando el valor del valor absoluto de J/hx es elevado. La tendencia del error relativo que siguen
los tres métodos coincide con la presentada por redes neuronales clásicas, como la máquina de
Boltzmann restringida (RBM) [13]. La explicación de este comportamiento no es trivial.

Alternativamente, puede servir de ayuda para comprender el comportamiento del error relativo
ver el problema desde un punto de vista meramente matemático. Esencialmente, el problema en
cuestión que estamos resolviendo es diagonalizar una matriz. Cuando J/hx es cercano a cero, los
términos no diagonales asociados a σxi son mucho mayores que los diagonales correspondientes
a la interacción σznσ

z
m tal que la matriz a diagonalizar se puede aproximar a la asociada al

modelo de Ising clásico en el eje X. Sin embargo, cuando J/hx es cercano a la unidad, los
términos diagonales y no diagonales son comparables entre śı, de forma que la diagonalización
del hamiltoniano aumenta en complejidad, explicando aśı el aumento en error. En último lugar, si
el valor absoluto de J/hx es elevado, la matriz del hamiltoniano está gobernada por los términos
diagonales de manera que los términos no diagonales son despreciables y la diagonalización de
la matriz es menos compleja.

Como podemos ver, en los casos donde solo hay tranisición de fase en el régimen ferromagnético
(J < 0), el máximo en el error relativo coincide justamente con el valor cŕıtico. Nótese que el
orden del error presentado se encuentra entre 10−1 y 10−2. No obstante, en los casos restantes,
los valores cŕıticos tienen lugar en puntos donde el error no es máximo. Concretamente, el error
en estos casos está comprendido entre 10−3 y 10−4. Por tanto, concluimos que los tres métodos
son capaces de resolver el modelo incluso cuando sufre la transición de fase de segundo orden.

Por su parte, vamos a estudiar por separado el error relativo de cada una de las gráficas reunidas
en la Figura 8. En el caso α = 0.5, el algoritmo clásico presenta el error relativo más elevado,
llegando a ser del orden de 10−1, debido a que el método se encuentra en el mı́nimo local
asociado al primer excitado, en vez de describir el estado fundamental. Además, vemos que
el comportamiento entre el algoritmo clásico y la red neuronal con dos layers es similar para
valores de J/hx negativos, mientras que el circuito cuántico con una y dos layers presentan el
mismo comportamiento cuando J/hx toma valores positivos.

En la segunda gráfica, correspondiente a α = 1.0, podemos apreciar que el comportamiento
de los tres métodos es similares cuando J/hx > 0. En cambio, en la rama J/hx < 0, la
red neuronal con una layer es el método que presenta un menor error relativo, del orden de
hasta 10−5, mientras que el algoritmo clásico y la red neuronal con dos layers tienen el mismo
comportamiento, llegando hasta un error relativo del orden de 10−3.

En la siguiente gráfica, asociada a α = 2.5, la red neuronal con una capa presenta el error relativo
más bajo en ambas ramas, llegando a ser del orden de 10−5. Asimismo, el error relativo del
algoritmo clásico es el mismo que el de la red cuántica de dos layers para los valores positivos de
J/hx, que es del orden de 10−4, mientras en la rama de valores negativos de J/hx se obtiene que
el circuito cuántico con dos capas presenta un menor error que el algoritmo quantum-inspired,
siendo del orden 10−4 y 10−3 respectivamente.

En último lugar, en la gráfica correspondiente a α = 6.0, la red neuronal con una y dos layers
tiene un comportamiento análogo a lo largo de todos los valores de J/hx, tal que presentan un
error de 10−4 y 10−5 en la rama negativa y positiva respectivamente. En cambio, el algoritmo
clásico muestra el mismo comportamiento que la red neuronal entre las ĺıneas verdes, pero en el
extremo de las rama positiva y negativa tiene un error que es un orden de magnitud mayor que
el circuito cuántico.
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L=1 (·103 s) L=2 (·103 s) Ansatz Clásico (·103 s)

COBYLA 7, 7± 1, 6 15± 4 37± 8
SLSQP 2, 9± 0, 4 42± 4 18, 9± 2, 3

Tabla 2: Tiempo de ejecución, promediado a lo largo de todas las simulaciones, de la red neuronal
cuántica con una y dos layers, y del algoritmo quantum-inspired usando los optimizadores clásicos
COBYLA y SLSQP.

Por otro lado, hemos promediado el tiempo de ejecución, para cada uno de los métodos, de las
cuatro optimizaciones llevadas a cabo en la Figura 8. Ver Tabla 2. Tal y como era de esperar en
el caso de COBYLA, el algoritmo clásico es el más lento mientras que la red neuronal con una
layer es el más rápido. Concretamente, el circuito cuántico con una capa es, aproximadamente,
siete veces más rápido que el algoritmo quantum-inspired, mientras que la red neuronal con dos
layers es el doble de lenta que con una sola capa. Análogamente a la Sección 7.1, insistimos
en que el tiempo de ejecución del método clásico puede verse drásticamente reducido con una
mejor implementación. Ver Sección 8.

Una vez finalizado el estudio de los tres métodos con el optimizador COBYLA, procedemos a
repetir las mismas optimizaciones usando el optimizador SLSQP. Ver Figura 9.

Figura 9: Resolución del estado fundamental del modelo (15), realizado por la red neuronal y
algoritmo quantum-inspired, para distintos valores de α usando el optimizador SLSQP.

Como podemos observar, el error relativo sigue la misma tendencia que en el caso con COBYLA.
No obstante, la mayor diferencia entre ambos optimizadores es que, al trabajar con SLSQP, los
tres métodos son capaces de encontrar el estado fundamental del punto J/hx = 0 con mayor
precisión, que en los casos más favorables presentan un error del orden de 10−8.

Asimismo, para los dos primeros valores de α, destacamos que el error alrededor del punto cŕıtico
oscila entre 10−3 y 10−2. En el caso α = 2.5, el error es de 10−4 en el régimen antiferromagnético
(J > 0), mientras que en el ferromagnético (J < 0) oscila entre 10−3 y 10−4. Finalmente, cuando
α = 6.0, los tres métodos presentan el mismo error que es del orden de 10−4 y 10−5 en el regimen
antiferromagnético y ferromagnético, respectivamente.

22



A continuación, vamos a analizar cada una de las gráficas recogidas en la Figura 9. En primer
lugar, correspondiente al caso α = 0.5, vemos que la red neuronal con una layer presenta el menor
error relativo, que es del orden de 10−5, en la rama de valores negativos de J/hx. Mientras que
para los valores positivos, es el circuito cuántico con dos capas el método con un menor error,
cuyo orden es de 10−2.

En el caso α = 1.0, la red neuronal con una capa vuelve a ser el método más preciso para
los valores negativos de J/hx, ya que su error es del orden de 10−6. Además, destaca que el
algoritmo clásico presenta un comportamiento similar, con un error del 10−5, pero el circuito
cuántico con dos capas presenta un error que es mucho más elevado, siendo del orden de 10−2.
Por otro lado, para los valores positivos de J/hx, los tres métodos acaban convergiendo hasta
tener un error relativo que es del orden de 10−4.

Cuando α = 2.5, notamos que la red neuronal con una y dos layers tienen un comportamiento
completamente análogo en el caso J/hx < 0, alcanzando aśı un error entre 10−5 y 10−6. Mientras
que para J/hx > 0, los tres métodos comparten un comportamiento similar, obteniendo aśı un
error de 10−5.

Finalmente, en las gráficas asociadas a α = 6.0, vemos que los tres métodos siguen la misma
tendencia, obteniendo un error hasta del orden de 10−5, en la rama de valores negativos de J/hx.
Asimismo, para los valores positivos, los tres métodos son similares aunque la red neuronal con
dos capas es capaz de converger con un error relativo menor, que se encuentra entre 10−5 y 10−6.

Por tanto, debido a que los tres métodos se comportan de forma bastante pareja a lo largo de
los cuatro valores de α, no es inmediato deducir cuál es el mejor de los tres. No obstante, al
estudiar los tiempos de ejecución recogidos en la Tabla 2, vemos que la red neuronal con una
layer es mucho más rápido que el resto de métodos. Concretamente, el tiempo de ejecución
es catorce veces menor que el del circuito cuántico con dos capas y hasta seis veces más corto
que el del algoritmo clásico. Luego, concluimos que la red neuronal con una capa es el método
más apropiado para resolver este problema, pues presenta errores relativos similares al resto de
métodos pero su tiempo de ejecución es mucho menor.

Al comparar los tiempos de ejecución entre los optimizadores COBYLA y SLSQP, notamos que
se sigue la misma tendencia que en la Sección 7.1: la red neuronal con una layer es el método
más rápido en ambos casos, mientras que el método más lento es el algoritmo clásico y la red
neuronal con dos capas usando COBYLA y SLSQP, respectivamente. El tiempo de ejecución
del circuito cuántico con dos layers se ve triplicado al emplear SLSQP, de forma que concluimos
que el optimizador “Gradient-Based” es más sensible al número de parámetros a optimizar. En
cambio, el algoritmo quantum-inspired tiene un tiempo de ejecución dos veces mayor al usar
COBYLA, y su incertidumbre también aumenta hasta cuatro veces. Esto puede deberse a que
dicho optimizador, al ser ’Gradient-Free’, sea más sensible a la implementación llevada a cabo
del algoritmo. Finalmente, cabe destacar que la red neuronal con una capa es entre dos y tres
veces más rápida con SLSQP, pues los optimizadores que emplean el gradiente para actualizar
los parámetros suelen ser más eficientes computacionalmente. Ver Sección 3.

En definitiva, los tres métodos presentados en el trabajo son capaces de resolver el modelo long-
range de Ising cuántico (15). Recordamos que esto es debido a que el ansatz GCS es capaz de
introducir interacciones todos con todos, a través de la matriz de correlación V. El método que
presenta mejores prestaciones para resolver dicho sistema es la red neuronal cuántica con una
layer empleando el optimizador SLSQP, ya que presenta el menor error relativo y tiempo de
ejecución. Además, destacamos que añadir una capa a la red neuronal no es rentable, ya que
no presenta una mejora notable en el error relativo que justifique su aumento considerable en
el tiempo de ejecución. En último lugar, el algoritmo quantum-inspired, con la implementación
actual, tampoco es una mejor alternativa que la red neuronal cuántica.
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8 Conclusión

Los objetivos de la memoria se han llevado a cabo satisfactoriamente.

En la primera mitad del trabajo, hemos introducido todos los conceptos necesarios para la
comprensión del documento. Primero, presentamos el “variational quantum eigensolver” (VQE),
entendiendo aśı las distintas partes que componen el algoritmo. En segundo lugar, se introduce
el sistema a simular: modelo long-range de Ising cuántico. El modelo destaca por presentar una
fenomenoloǵıa muy rica. Finalmente, presentamos el ansatz de estados coherentes generalizados
(GCS), que vamos a usar para las redes neuronales cuánticas. La mayor virtud que presentan
dichos estados variacionales es que presentan acoplos todos con todos, manteniendo ser eficientes
computacionalmente ya que el número de parámetros escala polinómicamente con el tamaño del
sistema.

En la segunda mitad, hemos diseñado un algoritmo clásico que simula la red neuronal con
una capa usando el ansatz GCS. El algoritmo quantum-inspired presenta una alternativa a la
red neuronal cuántica que puede ser implementada en un dispositivo clásico. Es fundamental
destacar que dicho algoritmo es aplicable a cualquier hamiltoniano que pueda ser expresado en
matrices de Pauli y presente términos de interacción σznσ

z
m, aunque en este trabajo vamos a

particularizar el estudio a sistemas con interacciones de largo alcance.

Posteriormente, se ha discutido el comportamiento de la red neuronal cuántica, con una y dos
capas, y del algoritmo quantum-inspired resolviendo el modelo long-range de Ising cuántico. Los
tres métodos han sido capaces de resolver el sistema satisfactoriamente, siendo la red neuronal
cuántica con una layer usando el optimizador clásico SLSQP la mejor alternativa pues presenta
los errores relativos y tiempo de convergencia más reducidos. Cabe destacar que los tres métodos
describen el estado fundamental del sistema tanto en el régimen ferromagnético como en el
antiferromagnético, tanto con interacciones de largo y corto alcance, e incluso cuando el sistema
sufre una transición de fase cuántica de segundo orden.

A estas alturas, es fundamental destacar que la discusión realizada en la Sección 7 se ha llevado
a cabo para un número de qubits fijo, N = 8. El número de qubits es bastante escueto, de forma
que lo presentado en el trabajo es un punto de partida (“benchmark”) para futuros trabajos.
En concreto, la mejor opción para aumentar sustancialmente el número de qubits es realizar una
implementación21 más eficiente del algoritmo quantum-inspired.

Con la ayuda del Dr. Jesús Carrete Montaña, investigador en el Instituto de Nanociencia y
Materiales de Aragón (INMA), se ha comenzado a realizar una implementación del algoritmo
quantum-inspired basada en Google JAX [1].

JAX es una libreŕıa que está optimizada para aprovechar las Unidades de Procesamiento Gráfico
(GPU) y las Unidades de Procesamiento Tensorial (TPU), permitiendo realizar tareas computa-
cionales de manera más eficiente. Por tanto, JAX presenta una ventaja significativa frente a la
biblioteca SciPy, que está diseñada para operar en la Unidad Central de Procesamiento (CPU).

21Recordamos que, en este trabajo, la enerǵıa calculada con el algoritmo clásico es minimizada con la función
minimize de la libreŕıa SciPy.
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A Cálculo de λ

Vamos a demostrar que una rotación local sobre una matriz de Pauli, en un qubit arbitrario k,
resulta en una combinación lineal de matrices de Pauli:

U†σαkU =
∑

β=x,y,z

λαβk σβk (51)

donde α ∈ {x, y, z}.

Gracias a que consideramos un qubit arbitrario k, podemos prescindir del sub́ındice k para
aligerar la notación. Asimismo, usando que (n̂σ⃗)2 = I, podemos descomponer la rotación local
en un seno y coseno.

U = exp

(
− i

2
τ (n̂ · σ⃗)

)
= −i(n̂σ⃗) sin

(τ
2

)
+ cos

(τ
2

)
I (52)

A continuación, con el fin de realizar los cálculos expĺıcitamente, vamos a calcular la acción de
la rotación local sobre σz.

U†σzU =
(
i(n̂σ⃗) sin

(τ
2

)
+ cos

(τ
2

)
I
)
σz
(
−i(n̂σ⃗) sin

(τ
2

)
+ cos

(τ
2

)
I
)

(53)

Teniendo en cuenta que las matrices de Pauli son involutivas y que el producto de dos matrices
de Pauli es otra matriz de Pauli, es inmediato obtener que:

U†σzU = +σx
[
sin2

(τ
2

)
(2nxnz) + sin

(τ
2

)
cos
(τ
2

)
(−2ny)

]
︸ ︷︷ ︸

λzx

+ σy
[
sin2

(τ
2

)
(2nynz) + sin

(τ
2

)
cos
(τ
2

)
(2nx)

]
︸ ︷︷ ︸

λzy

+ σz
[
sin2

(τ
2

)
(−n2x − n2y + n2z) + cos2

(τ
2

)]
︸ ︷︷ ︸

λzz

(54)

donde destacamos que los términos asociados a la identidad se anulan.

Finalmente, introduciendo que n̂ = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) en la Ecuación (54), se
puede obtener expĺıcitamente los coeficientes λ.

λzx = 2 sin
(
τ
2

)
sin(θ)

(
sin
(
τ
2

)
cos(θ) cos(φ)− cos

(
τ
2

)
sin(φ)

)
λzy = 2 sin

(
τ
2

)
sin(θ)

(
sin
(
τ
2

)
cos(θ) sin(φ) + cos

(
τ
2

)
cos(φ)

)
λzz = sin2

(
τ
2

) (
2 cos2(θ)− 1

)
+ cos2

(
τ
2

) (55)

Análogamente, podemos calcular los coeficientes λ asociados a la matriz de Pauli X.
λxx = sin2

(
τ
2

) (
2 sin2(θ) cos2(φ)− 1

)
+ cos2

(
τ
2

)
λxy = 2 sin

(
τ
2

) (
sin
(
τ
2

)
sin2(θ) sin(φ) cos(φ)− cos

(
τ
2

)
cos(θ)

)
λxz = 2 sin

(
τ
2

)
sin(θ)

(
sin
(
τ
2

)
cos(θ) cos(φ) + cos

(
τ
2

)
sin(φ)

) (56)

En último lugar, repetimos el cálculo con la matriz de Pauli Y , obteniendo aśı los coeficientes λ
correspondientes.

λyx = 2 sin
(
τ
2

) (
sin
(
τ
2

)
sin2(θ) sin(φ) cos(φ) + cos

(
τ
2

)
cos(θ)

)
λyy = sin2

(
τ
2

) (
2 sin2(θ) sin2(φ)− 1

)
+ cos2

(
τ
2

)
λyz = 2 sin

(
τ
2

)
sin(θ)

(
sin
(
τ
2

)
cos(θ) sin(φ)− cos

(
τ
2

)
cos(φ)

) (57)
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B Código

El código desarrollado para llevar a cabo este Trabajo Fin de Grado está recopilado aqúı.
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C Especificaciones del dispositivo

Las caracteŕısticas del ordenador en el que se han llevado a cabo todas las simulaciones son:

• Modelo: Asus VivoBook S14 S433 (11th Gen).

• Procesador: 11th Gen Intel(R) Core(TM) i7-1165G7 a 2.80GHz.

• Memoria RAM: 16,0 GB (15,7 GB usable).

• Tipo de sistema: Sistema operativo de 64 bits, procesador basado en x64.
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