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Resumen
En este trabajo exploramos el uso de las Redes Neuronales Informadas por Física

(PINNs) para resolver ecuaciones diferenciales en sistemas dinámicos. Se abordan aplica-
ciones desde el modelo de Romeo y Julieta hasta las Ecuaciones de Lorenz, destacando
la versatilidad de las PINNs, que combinan principios físicos con técnicas de aprendizaje
automático para modelar fenómenos complejos.

Abstract
In this work, we explore the use of Physics-Informed Neural Networks (PINNs) to solve

differential equations in dynamic systems. Applications range from the Romeo and Juliet
model to the Lorenz Equations, highlighting the versatility of PINNs, which integrate
physical principles with machine learning techniques to model complex phenomena.
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1. Introducción
Hasta hace relativamente poco era impensable contar con un asistente virtual como

Siri o Alexa, traducir idiomas con un dispositivo portátil o incluso que un coche pudiera
conducir por su cuenta. La Inteligencia Artificial (IA) ha irrumpido en nuestras vidas y
ahora convivimos diariamente con sus avances. Tareas que solamente podían ser aborda-
das por la inteligencia humana, como el reconocimiento de texto e imágenes, son ahora
resueltas por la IA con gran éxito.

Una de las principales ramas de la IA es el denominado Aprendizaje automático (AA),
que se enfoca en el desarrollo de algoritmos con los que una máquina puede aprender a
realizar tareas a partir de un conjunto de datos. Se distingue principalmente entre apren-
dizaje supervisado y no supervisado. En el aprendizaje supervisado, la máquina aprende
a partir de un conjunto de datos etiquetados, de manera que es guiada con ejemplos de
cómo debe actuar. Por otro lado, en el aprendizaje no supervisado las máquinas aprenden
patrones sobre conjuntos de datos sin etiquetas, sin recibir ninguna guía.

El Aprendizaje Profundo (AP) es, en particular, una de las ramas del AA [1]. Este
subcampo utiliza Redes Neuronales (RN) profundas, que son “máquinas” computacionales
cuya estructura se compone de múltiples capas de procesamiento. Utilizando aprendizaje
supervisado, éstas son capaces de realizar tareas de gran complejidad. Existen distintos
tipos de redes profundas. Concretamente, las Physics-informed neural networks (PINNs)
son redes que pueden resolver ecuaciones diferenciales de cualquier tipo, combinando
principios físicos con técnicas de AA [2]. Las PINNs se han utilizado en diversas áreas de
la física. Por ejemplo, han resultado útiles en la resolución de ecuaciones de movimiento
que describen sistemas complejos, como la dinámica de fluidos, la evolución de sistemas
mecánicos, etc [3].

Una ventaja clave de las PINNs es su eficiencia computacional. No necesitan mallados
finos ni discretizaciones específicas, por lo que el uso de las PINNs disminuye en gran me-
dida el tiempo de cálculo y los recursos computacionales. Esto es especialmente notable
en sistemas de grandes dimensiones. A pesar de ser un campo relativamente joven, las
PINNs han captado considerable interés debido a su potencial para mejorar o reemplazar
las herramientas tradicionales de cálculo numérico. Estas redes representan una promesa
significativa en aplicaciones donde los métodos clásicos enfrentan limitaciones prácticas,
aunque aún se encuentran en una fase inicial de desarrollo.

Por otro lado, los sistemas dinámicos son un área fundamental de la física y la ma-
temática aplicada. Estos sistemas evolucionan con el tiempo y se describen a partir de
ecuaciones diferenciales ordinarias (EDOs). Clasificamos los sistemas dinámicos en dos
grandes categorías: sistemas no caóticos y sistemas caóticos. Los sistemas no caóticos son
aquellos que presentan un comportamiento predecible, en el sentido de que las trayecto-
rias apenas son sensibles a las condiciones iniciales. Dos ejemplos conocidos de sistemas

1



con esta naturaleza son el oscilador armónico o el problema de dos cuerpos con atrac-
ción gravitatoria. Los sistemas caóticos son aquellos sistemas dinámicos extremadamente
sensibles a las condiciones iniciales. Las ecuaciones de Lorenz, desarrolladas por Edward
Lorenz en 1963 [4] son un ejemplo emblemático de sistema caótico.

En este trabajo emplearemos las PINNs para resolver EDOs que describen sistemas
dinámicos. Comenzaremos abordando los conceptos básicos de las redes neuronales. A
continuación, se expondrán los resultados obtenidos a partir de las simulaciones realizadas.
Finalmente, discutiremos las conclusiones derivadas del trabajo.

2. Objetivos y metodología
El objetivo principal de este trabajo es diseñar RNs capaces de resolver sistemas de

ecuaciones diferenciales. Para lograr este objetivo, se implementarán PINNs y se evaluará
su eficacia en distintos casos.

Comenzaremos con un caso sencillo, la ecuación de movimiento constante. Una vez
verifiquemos que la PINN funciona correctamente, estudiaremos la ecuación del amor de
Romeo y Julieta a modo de ejemplo de sistema no caótico, y posteriormente ampliaremos
el estudio a las ecuaciones de Lorenz, que como ya se ha comentado, se tratan de un
sistema caótico [5].

La implementación de las PINNs se ha llevado a cabo en el lenguaje de programación
Python. En el Anexo A se presenta el código empleado. Python es conocido por su versa-
tilidad y por ser gratuito. Ofrece numerosas bibliotecas que facilitan la implementación
de algoritmos de AP. Las principales bibliotecas empleadas en el trabajo son Tensorflow
y Keras. En cuanto a la primera de ellas, su nombre proviene de la unión de tensor y
flujo, es una librería que permite ejecutar gráficos de flujo de datos de manera eficiente,
lo que la hace especialmente adecuada para el manejo de grandes volúmenes de datos y
la creación de modelos de AP complejos. Keras, por su parte, es una biblioteca que puede
ejecutar sobre Tensorflow. Es una biblioteca de alto nivel para manejarse con multitud de
herramientas propias de las RNs. Keras facilita la implementación de algoritmos de AP
al ofrecer herramientas ya configuradas y módulos que se pueden reutilizar.

Otras bibliotecas adicionales que se utilizan durante el trabajo son Numpy y Matplotlib.
Numpy es una biblioteca fundamental para el cálculo numérico en Python. Dispone de
soporte para tratar con matrices multidimensionales además de una gran variedad de fun-
ciones matemáticas para operar con estos datos. Matplotlib se empleará para visualizar los
datos y resultados de nuestro modelo. Permite crear figuras que facilitan la interpretación
de los resultados.
Además de estas bibliotecas, se han empleado entornos de desarrollo integrados como
Jupyter Notebooks para facilitar la tarea de programación.
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3. Conceptos básicos sobre redes neuronales

3.1. Perceptrón
Nos remontamos a los años 50, cuando un científico llamado Frank Rosenblatt desa-

rrolló el perceptrón [6]. El perceptrón es una idea inspirada en la neurona biológica, una
célula caracterizada por poseer una serie de canales de entrada (inputs), llamados dendri-
tas y un canal de salida (output), llamado axón. Las dendritas de una neurona recogen
información de otra neurona y a través del axón se pasa esta información a las dendritas
de la siguiente neurona. En este ejemplo, es claro que una neurona aislada carece de sen-
tido, éstas adquieren importancia cuando funcionan como una red con distintas capas. Lo
mismo ocurre en las RNs artificiales.

Un perceptrón recibe uno o más inputs binarios y produce un único output bina-
rio. Para calcular este output es necesario introducir el concepto de pesos. Cada input,
x1, ..., xi, tiene asociado un peso, w1, ..., wi, que marca el nivel de importancia de dicha
entrada a la hora de calcular el output.

El output del perceptrón es 0 si la suma de los pesos multiplicados por sus respectivas
entradas es menor o igual que un valor umbral que hemos de establecer y es 1 si es mayor.
Matemáticamente, esto quedaría de la siguiente manera:

output =
 0 si ∑j wjxj ≤ umbral

1 si ∑j wjxj > umbral
(1)

En resumen, el perceptrón podría considerarse una manera de tomar decisiones mi-
diendo o pesando la importancia de ciertas circunstancias.

Para simplificar la forma en la que describimos los perceptrones (1), definimos el suma-
torio como un producto escalar y pasamos el término del umbral al otro lado, definiendo
el sesgo, b, del perceptrón como b ≡ −umbral. Podemos ver el sesgo como la facilidad que
tiene el perceptrón para proporcionar como salida 1. Introducimos ahora el concepto de
neurona artificial a modo de generalización del perceptrón.

Una neurona artificial es una función que recibe un conjunto de números escalares,
valores de input, y los lleva a un número real mediante la composición de transformaciones
lineales con la acción de una función no lineal cualquiera, a diferencia del perceptrón, que
tiene por definición únicamente la función escalón como activación.

Podemos resumir esto en el siguiente esquema

Rn −→ R −→ R

{xn} 7−→ z = ∑n
i=1 wixi − b 7−→ a(z)

donde a es la función no lineal, conocida como función de activación.
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3.2. Funciones de activación
Las funciones de activación son funciones no lineales que reciben el valor de z y lo

transforman en a(z). La elección de la función de activación es crucial a la hora de desa-
rrollar RNs eficientes.

Veamos cuales son las funciones de activación más populares en AP.

3.2.1. La función sigmoide

Esta función toma como entrada cualquier valor y lo transforma en un valor compren-
dido entre 0 y 1. Viene dada por la expresión 2 y se representa en la Figura 1a.

σ(z) = 1
1 + e−z

(2)

La función satura a 1 cuando los valores de entrada son muy altos, y a 0 cuando son muy
bajos.

3.2.2. La función tangente hiperbólica

En este caso, los valores de salida están comprendidos entre -1 y 1. A diferencia que
la función sigmoide, esta función proporciona una salida antisimétrica.

Viene dada por la expresión 3 y se representa en la Figura 1b.

tanh(z) = ez − e−z

ez + e−z
(3)

3.2.3. La función ReLU

Esta función es ampliamente utilizada en redes profundas. Esta función no satura,
lo que mejora la velocidad de convergencia del algoritmo. Toma los valores de entrada
negativos y los transforma en 0. Los valores positivos no se ven modificados por esta
función. Se recomienda el uso de esta función para las capas ocultas de la red.

Viene dada por la expresión 4 y se representa en la Figura 1c.

relu(z) = máx(0, z) (4)
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Figura 1: Representación gráfica de las funciones de activación. (a) Función sigmoide
dada por la Ecuación 2 (b) Función tangente hiperbólica dada por la Ecuación 3 (c)
Función ReLU dada por la Ecuación 4.

3.3. Arquitectura de una red neuronal
Una RN densa está compuesta por capas de neuronas. Una capa es un módulo de

procesamiento de datos, podemos pensar que es una transformación o mapeo de datos en
forma de vectores. A la primera capa, la denominamos capa de entrada y recibe un vector
de datos de entrada, x⃗ ∈ Rn. A las capas intermedias las denominamos capas ocultas y a
la última capa, capa de salida, que devuelve un vector y⃗ ∈ Rk, que serán las predicciones
de la RN. En la Figura 2 se muestra la arquitectura de una RN densa, esto es, todas las
neuronas de una capa están conectadas a todas las neuronas de la anterior. La RN de la
Figura 2 presenta una capa de entrada con n neuronas, dos capas ocultas con m neuronas
cada una y una capa de salida con k neuronas.

Es importante destacar que la información de la RN fluye de izquierda a derecha. Estas
RNs en las que el output de una capa sirve de input para la siguiente capa se denominan
RNs de propagación directa.
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Figura 2: Esquema de una RN densa.

3.4. La función de coste
En el aprendizaje supervisado disponemos de un conjunto de pares de datos de entre-

namiento {x⃗i, y⃗ver(x⃗i)}N
i=1. Por ello, es conveniente introducir una función que nos calcule

el error entre el valor predicho por la RN y el valor verdadero para poder evaluar la eficien-
cia del entrenamiento. De esto se ocupa la función de coste. El objetivo del entrenamiento
es minimizar esta función. Podría describirse como una medida del éxito de la tarea que
tiene la RN de predecir los resultados.

Existen múltiples funciones de coste y en función del problema con el que estemos
trabajando debemos escoger una función de coste u otra y esta tarea es extremadamente
importante. Existen una serie de indicaciones a la hora de escoger esta función para los
problemas más conocidos. Si estamos tratando con un problema de clasificación de dos
clases es conveniente emplear la entropía cruzada binaria. Sin embargo, para un problema
de clasificación de muchas clases conviene usar la entropía cruzada categórica. Para nuestro
problema de regresión, emplearemos el error cuadrático medio (ECM).

C = ECM = 1
N

∑
i

|y⃗ver(x⃗i) − y⃗pred(x⃗i)|2 (5)

donde y⃗ver son los valores verdaderos, y⃗pred los valores predichos por la red y N es el
número de puntos empleado para calcular esta función.

Una métrica común en problemas de regresión es el error absoluto medio, EAM. Es el
promedio del valor absoluto de la diferencia entre las predicciones y los valores verdaderos.
Se empleará en tanto por ciento (EAM %). Viene definido por la siguiente ecuación:

EAM % = 1
N

∑
i

|ypred − yver|
yver

· 100 (6)
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3.5. Entrenamiento

Figura 3: Ilustración del concepto
descenso del gradiente (Fuente: [7]).

Durante el proceso de entrenamiento se mi-
nimiza la función de coste, modificando los pe-
sos y los sesgos. Para minimizar la función de
coste, en cada iteración se calculan los gradien-
tes de los pesos mediante el método de descenso
del gradiente, en el que se actualizan los pa-
rámetros en dirección opuesta al gradiente (ya
que el gradiente apunta hacia la dirección má-
xima y estamos buscando un mínimo). De es-
ta manera se reduce el valor de la función de
coste en cada iteración, hasta que alcance su
mínimo. Para entender cómo opera el funciona-
miento del algoritmo del descenso del gradien-
te, podemos compararlo con el descenso de una
montaña hasta alcanzar el punto más bajo de la montaña. Es equivalente a observar si
la pendiente de la montaña aumenta; si es así, avanzamos en dirección contraria para
descender hacia el valle más cercano. Este algoritmo se ilustra en la Figura 3.

Matemáticamente, la actualización de los pesos y sesgos en cada iteración sigue las
siguientes reglas,

wl
ji → wl

ji − η
∂C

∂wl
ji

(7)

bl
j → bl

j − η
∂C

∂bl
j

, (8)

donde η es la tasa de aprendizaje (learning rate), wl
ji es el peso que conecta la neurona

i-ésima de la capa l − 1 con la neurona j-ésima de la capa l, bl
j es el sesgo de la neurona

j-ésima en la capa l y C es la función de coste, que dependerá del problema que estemos
resolviendo.

Definimos el conjunto de pesos y sesgos de todas las capas en un momento del entre-
namiento particular como:

θ = [W l, bl] (9)

para 0<l<L, donde L es el número total de capas.
En este procedimiento estamos buscando un mínimo global. La tasa de aprendizaje puede
entenderse como el tamaño de los pasos que damos hacia ese mínimo, por tanto con una
tasa muy grande es posible que nos saltemos el mínimo y con una muy pequeña el método
tardará mucho en encontrar ese mínimo.

Corremos el peligro de que el método se quede atascado en un mínimo local. El optimi-
zador es quien se encarga de evitar esto, además de tener otras funciones. Un ejemplo de
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optimizador eficaz es el Descenso de Gradiente Estocástico (DGE). Se basa en el método
de descenso del gradiente pero el término estocástico significa que la actualización de los
parámetros del modelo se realiza utilizando un lote o mini-batch del conjunto de datos.
Se conoce como mini-batch size al tamaño de este lote y es un hiperparámetro más de
nuestra RN que deberemos ajustar. Generalmente, el entrenamiento se divide en épocas
de entrenamiento. Cada iteración sobre los datos de entrenamiento se denomina época.
Una época es el conjunto de N/mini-batch size iteraciones (N es el número total de datos)
que hace la red hasta que todos los datos de entrenamiento han sido utilizados.

De análisis matemático sabemos que una cadena de funciones puede derivarse em-
pleando la regla de la cadena. Pues bien, aplicar la regla de la cadena para computar
los gradientes de la red es lo que se conoce como el algoritmo de Backpropagation. Este
algoritmo toma el valor final de la función de coste y realiza las derivadas desde la salida
hasta la entrada de la RN, aplicando la regla de la cadena para calcular la contribución de
cada parámetro en la función de coste. En resumen, es el descenso de gradiente empleando
una técnica para calcular los gradientes automáticamente. Una vez que tiene estos gra-
dientes, realiza un paso regular de descenso de gradiente y se repite de nuevo el proceso
hasta que la red converja a la solución. El cálculo automático de los gradientes se conoce
como Diferenciación Automática (DA). Existen distintas técnicas de DA. La que usa el
algoritmo de Backpropagation se conoce como DA en modo reverso y es la solución que
utiliza Tensorflow para calcular los gradientes de manera eficiente [8].

El DGE utiliza el siguiente algoritmo

1. Tomar aleatoriamente un lote de muestras de entrenamiento x⃗i (valores de entrada)
y los correspondientes valores esperados que la red debería predecir y⃗ver(x⃗i) .

2. Ejecutar la red sobre los datos x⃗i del lote, procesándolos a través de sus capas y
produciendo las correspondientes salidas, y⃗pred(x⃗i).

3. Calcular la pérdida de la red en el lote x⃗i. Esto es, una medida de la discrepancia
entre los valores verdaderos y los predichos por la red.

4. Calcular el gradiente de la pérdida con respecto a los parámetros de la red mediante
el algoritmo de Backpropagation.

5. Mover los parámetros ligeramente en dirección opuesta al gradiente, reduciendo de
esta manera el coste en el lote.

6. Seleccionar otro lote del conjunto de datos de entrenamiento y repetir el proceso.
Cuando todos los datos hayan sido utilizados en lotes, diremos que se ha completado
una época de entrenamiento.

Existen otros tipos de optimizadores con la tasa de aprendizaje adaptativa. Concretamen-
te, el empleado en el trabajo se denomina Adam [9].
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La Figura 4 resume el proceso de entrenamiento de una RN.

Input

Pesos
Capa 

(transformación 
datos)

Predicciones de la 
red Y’

Valores verdaderos Y

Función coste 

Puntuación de costeOptimizador

Actualización de 
los pesos

Pesos
Capa 

(transformación 
datos)..

Figura 4: Esquema del funcionamiento de una RN.

3.6. Overfitting
El principal objetivo a la hora de entrenar una RN es que el modelo se ajuste a los

datos de entrenamiento lo mejor posible y que, además, sea capaz de hacer predicciones
correctas sobre datos que no han sido utilizados durante el entrenamiento. Esto se conoce
como capacidad de generalización.

Para cuantificar cómo generaliza la red, se utilizan los llamados datos de validación.
Son un subconjunto de los datos que se utilizan para evaluar el modelo después de cada
época, es decir, se utilizan durante el entrenamiento para monitorizar el rendimiento del
modelo. Estos datos no son utilizados para calcular los gradientes, no se utilizan para
ajustar los pesos de la red, al contrario que los datos de entrenamiento. La importancia
de utilizar sólo una parte de la base de datos para el entrenamiento y dejar otra parte de
la misma para el proceso de validación se explica a continuación.

Al inicio del entrenamiento, optimización y generalización están estrechamente relacio-
nadas: una reducción en la función de coste en los datos de entrenamiento, suele traducirse
en una reducción similar en los datos de validación. Se dice entonces que el modelo está
subentrenado, (underfit), lo que significa que existe un margen de mejora y el modelo
necesita seguir aprendiendo. Sin embargo, después de un determinado número de iteracio-
nes, la generalización deja de mejorar y las métricas de validación se estabilizan mientras
que las métricas de entrenamiento continúan disminuyendo. Este fenómeno es uno de los
principales problemas en las RNs, denominado sobreajuste (overfitting). Éste tiene lugar
cuando la red se ajusta demasiado bien a los datos de entrenamiento, tanto que no será
capaz de predecir buenos resultados para nuevos datos de entrenamiento, es decir, pierde
la capacidad de generalización.
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Una forma de evitar que el modelo aprenda patrones irrelevantes en los datos de en-
trenamiento es aumentar la cantidad de datos de entrenamiento disponibles. Sin embargo,
esto no siempre es posible. Es posible prevenir y reducir el sobreajuste utilizando técnicas
de regularización.

3.6.1. Técnicas de regularización

Una de las estrategias más simples para evitar el sobreajuste es reducir el tamaño
de la RN. Determinar el número adecuado de capas y neuronas no tiene una respuesta
definitiva. Lo que se suele hacer es empezar con una estructura sencilla, con pocas capas
y parámetros e ir ajustándola según sea necesario durante el entrenamiento.

A medida que aumenta el número de parámetros, la RN adquiere mayor capacidad de
representación de funciones. Esto se traduce en una mayor precisión en el ajuste y, por
tanto, una función de coste baja. Sin embargo, si el número de parámetros es demasiado
grande, esta misma capacidad también la hace más susceptible al sobreajuste, entrando en
un régimen donde la diferencia entre la función de coste en los datos de entrenamiento y
los de validación puede ser significativa. Teniendo esto en cuenta, es conveniente elegir un
número de parámetros que sea suficientemente grande como para representar la función
subyacente a los datos de entrenamiento, pero no lo suficiente como para permitir el
sobreajuste.

Otra manera alternativa de mitigar el sobreajuste es utilizar técnicas de regulariza-
ción de pesos. Estos métodos imponen restricciones a los valores de los pesos de la red,
promoviendo que sean pequeños y distribuidos de manera más uniforme. Uno de los re-
gularizadores más conocidos es el dropout. Esta técnica, propuesta por Geoffrey Hinton,
consiste en apagar aleatoriamente un número de neuronas durante el entrenamiento de
cada iteración [10].

Hinton describe la inspiración detrás del dropout al compararlo con la rotación alea-
toria de cajeros en un banco, donde la rotación aleatoria evita posibles conspiraciones.
Análogamente, el dropout introduce ruido en las salidas de las capas. Esto ayuda a evitar
que la red memorice patrones insignificativos, lo que promueve una generalización más
robusta al romper los patrones que podrían no ser relevantes para los datos de prueba.

En resumen, reducir el tamaño de la red y aplicar técnicas de regularización como el
dropout son estrategias efectivas para evitar el sobreajuste.
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4. Physics-Informed Neural Networks (PINNs)
En 2018, Raissi, Perdikaris y Karniadakis introdujeron el concepto de PINN [2]. Las

PINNs podrían definirse como RNs que incluyen en la función de coste la ecuación dife-
rencial y las condiciones iniciales o de contorno. Esto hace que las PINNs sean útiles a la
hora de resolver una gran variedad de ecuaciones diferenciales, tanto ordinarias (EDOs)
como ecuaciones en derivadas parciales (EDPs).

Una EDP es una relación de la forma

Z(x⃗, y(x⃗), ∂y

∂x1
, ...,

∂y

∂xn

,
∂2y

∂x1∂x1
, ...,

∂2y

∂x1∂xn

, ...) = 0 (10)

donde x⃗ = (x1, ..., xn) es un vector de n dimensiones definido en una región Ω ∈ Rn.
Para describir completamente el proceso físico hace falta plantear el estado inicial del
proceso (condiciones iniciales para problemas de evolución) y el régimen en la frontera
∂Ω de la región Ω donde tiene lugar el proceso (las condiciones de contorno).

En EDPs que modelan procesos dinámicos (en los que el tiempo es una de las variables
independientes) hay que especificar una o más condiciones iniciales.

y(x⃗) es solución de la Ecuación 10 y satisface las condiciones de frontera, dadas por la
Ecuación 11.

F (x⃗, y(x⃗)) = 0 x⃗ ∈ ∂Ω (11)

Para una EDP, la capa de entrada se corresponde con x⃗ (n neuronas de entrada) y la
salida de la red representa la solución y(x⃗) (1 neurona de salida). Cabe destacar que esta
explicación se puede generalizar a ecuaciones diferenciales con solución vectorial, es decir,
con varias neuronas en la salida, y⃗(x⃗).

Sea NCI un conjunto de puntos, denotados como ΓCI tales que ΓCI ∈ ∂Ω y sea NEDO

otro conjunto de puntos, denotados como ΓEDO tales que ΓEDO ∈ int(Ω), donde int(Ω)
denota el interior de Ω.

Como hemos mencionado, la función de coste incluirá dos términos, uno debido a la
EDP (CEDO) y otro debido a las condiciones frontera (CCI). Definimos pues la función
de coste como la suma pesada de dos términos:

CP INN = wEDO · CEDO + wCI · CCI (12)

donde las funciones de coste son funciones del conjunto de puntos escogido y de los
pesos y sesgos de las capas ocultas, es decir, C = C(θ, Γ), CEDO = CEDO(θ, ΓEDO), CCI =
CCI(θ, ΓCI), Γ = ΓEDO + ΓCI y θ se define como en la Ecuación 9. En lo que sigue, se
omiten las dependencias por facilitar notación.

Los hiperparámetros wEDO y wCI que aparecen en la Ecuación 12 se deben ajustar para
optimizar el funcionamiento de la red. En nuestro trabajo, se tomará wEDO = wCI = 1.

Definimos las funciones de coste como sigue:

CEDO = 1
NEDO

∑
x⃗∈ΓEDO

∣∣∣∣∣Z
(

x⃗, ypred(x⃗), ∂ypred

∂x1
, ...,

∂ypred

∂xn

,
∂2ypred

∂x1∂x1
, ...,

∂2ypred

∂x1∂xn

, ...

)∣∣∣∣∣
2

(13)
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y
CCI = 1

NCI

∑
x⃗∈ΓCI

|F (ypred, x⃗)|2 (14)

La función de coste se minimizará de la misma manera que se ha explicado anteriormente.
Un valor de la función de coste de la ecuación diferencial (CEDO) cercano a 0 indicará
que las predicciones de la red satisfacen la EDP en el conjunto de puntos que hayamos
escogido, ΓEDO. Análogamente, un valor de la función de coste de las condiciones frontera
CCI cercano a 0 indicará que se satisfacen las condiciones de frontera por las predicciones
de la red en los puntos del conjunto ΓCI .

Estas funciones siguen siendo una medida del éxito de la tarea que tiene la red de
predecir los resultados pero cada una en “lugares” distintos.

5. Resultados
En esta sección, se mostrarán los resultados obtenidos para distintas EDOs. Comen-

zaremos mostrando un caso sencillo y posteriormente, ilustraremos dos ejemplos de ecua-
ciones dinámicas.

A lo largo del trabajo, se denotará al tiempo como x, en lugar de t, la forma habitual,
por coherencia con la notación utilizada en el trabajo para RNs.

5.1. Ecuación de movimiento constante
Para comprobar el funcionamiento correcto de la PINN, es conveniente entrenarla con

un caso sencillo. El sistema de EDOs que tratamos de resolver es el siguiente:

dy1

dx
= v1 con y1(0) = 0

dy2

dx
= v2 con y2(0) = 0

dy3

dx
= v3 con y3(0) = 0

(15)

donde v1, v2 y v3 son constantes. Se ha tomado v1 = 2, v2 = 3 y v3 = 5.
La configuración de la red con la que trabajaremos es la presentada en la Tabla 1.

12



Hiperparámetro Valor
nº de datos de entrenamiento 50

mini-batch size 5
Función de activación elu
nº neuronas por capa 1,50,50,50,3

Optimizador Adam
Tasa de aprendizaje 0.001

Tabla 1: Hiperparámetros para resolver el sistema de ecuaciones15.

En este caso, la capa de entrada tiene 1 neurona, las 3 capas densas ocultas tienen 50
neuronas cada una y la capa de salida tiene 3 neuronas.

En la Figura 5a se presenta la solución analítica y la solución predicha por la red. En la
Figura 5b se muestra la función de coste total, es decir, la suma de la función de coste de
la EDO (CEDO) y la función de coste de las condiciones iniciales (CCI). La convergencia de
las pérdidas es un buen método para indicar que el entrenamiento de la red ha finalizado.
En el caso de no converger, se deberían aumentar las épocas de entrenamiento. En este
caso, el entrenamiento se ha realizado con 100 épocas.
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Figura 5: (a) Comparación entre la solución analítica (líneas continuas) y los resultados
predichos por la PINN (líneas discontinuas). (b) Evolución de la función coste con el
número de épocas (escala logarítmica). La función de coste se corresponde con la suma
de la contribución de la EDO y las condiciones iniciales (ver ecuación 12).

Se aprecia claramente cómo la solución analítica coincide con la predicha por la red,
con un EAM % del 0.32 %. El tiempo de ejecución ha sido de 3.12 segundos.

Hemos comprobado que nuestra red entrena bien para los hiperparámetros mostrados
en la Tabla 1 pero, ¿a qué se debe la elección de estos parámetros? Pues bien, la elección
de estos parámetros ha sido realizada a base de prueba y error. No existe ninguna fórmula
matemática que nos devuelva la receta para que la PINN funcione de manera óptima.
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Podríamos pensar que si aumentamos el número de puntos de entrenamiento la PINN
presentaría un comportamiento mejor. Fijando el doble de puntos de entrenamiento (nº
de puntos de entrenamiento = 100 ) y realizando la misma simulación, obtenemos prác-
ticamente el mismo error, 0.39 % y un tiempo de ejecución mayor, 4.56 segundos. Sin
embargo, si disminuimos el número de puntos de entrenamiento a la mitad (nº puntos de
entrenamiento = 25 ), obtenemos un tiempo de ejecución menor, 2.72 segundos pero un
error del 1.79 %.

Concluimos que debe existir un valor óptimo para este parámetro y que tener más
puntos de entrenamiento no implica un mejor funcionamiento de la PINN.

5.1.1. Extrapolación de la PINN con funciones lineales

En este apartado, queremos comprobar si la PINN es capaz de extrapolar o predecir el
comportamiento de las ecuaciones en un dominio mayor. Entrenando la red en el intervalo
x ∈ (0, 4) y representando el dominio temporal para x ∈ (−9, 9) obtenemos la Figura 6a.
Se observa cómo la red es capaz de predecir con bastante exactitud en el intervalo x ∈ (4, 9)
y cómo devuelve la solución nula para x ∈ (−9, 0). Esto no debería sorprendernos ya que
la red no tiene información sobre el comportamiento de la función para intervalos de x
negativos. Si entrenamos la red en el intervalo x ∈ (−4, 4) y realizamos la extrapolación
a x ∈ (−9, 9) obtenemos la Figura 6b, que muestra un comportamiento simétrico.
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Figura 6: (a) Comparación entre la solución analítica (líneas continuas) y los resultados
predichos por la PINN (líneas discontinuas) entrenando en el rango de x ∈ (0, 4) y ex-
trapolando al rango de x ∈ (−9, 9). (b) Comparación entre la solución analítica (líneas
continuas) y los resultados predichos por la PINN (líneas discontinuas) entrenando en el
rango de x ∈ (−4, 4) y extrapolando al rango de x ∈ (−9, 9)..

En la Figura 6a el error es del 41.7 % (con respecto al exacto) y en la Figura 6b
obtenemos un EAM % del 0.19 % .
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5.2. Modelo de Romeo y Julieta
El modelo de Romeo y Julieta es un sistema de ecuaciones diferenciales que simbo-

liza de manera matemática la dinámica emocional entre dos individuos. A continuación,
trataremos de encontrar una solución para el sistema de EDOs de Romeo y Julieta, que
viene dado por el siguiente sistema de ecuaciones.

dR

dx
= −m · J con R(0) = 1

dJ

dx
= n · R con J(0) = 0

(16)

donde R(x) representa el amor (u odio si es negativo) de Romeo por Julieta a tiempo x y
J(x) representa el amor (u odio si es negativo) de Julieta por Romeo a tiempo x.

Los parámetros m y n son constantes arbitrarias. Para nuestro estudio tomaremos
m=3 y n=5.

Si nos fijamos en las ecuaciones, es un sistema de amor-odio. Cuanto más quiere Ju-
lieta a Romeo, más decrece el amor de Romeo. Cuanto más quiere Romeo a Julieta, más
le quiere Julieta. Por tanto, la solución es cíclica: una elipse en el plano R-J. Esto causará
una serie de problemas que trataremos de solucionar posteriormente.

En la Tabla 2 se muestran los hiperparámetros que emplearemos en nuestra PINN
para resolver el sistema de ecuaciones 16. Una ventaja de las PINNs es que, con relativa
facilidad, es posible resolver multitud de ecuaciones diferenciales, tan sólo modificando
unas líneas de código. En este ejemplo, sólo se han modificado las líneas de código donde
se define la función de coste asociada a la EDO. Los hiperparámetros utilizados son
prácticamente los mismos que en la Tabla 1 salvo el número de puntos de entrenamiento
que se ha aumentado en un factor 10 y en este caso, el número de neuronas de entrada
sigue siendo 1 pero ahora el número de neuronas de salida es 2.

Hiperparámetro Valor
nº de puntos de entrenamiento 500

mini-batch size 64
Función de activación elu
nº neuronas por capa 1,50,50,50,2

Optimizador Adam
Tasa de aprendizaje 0.001

Tabla 2: Hiperparámetros para resolver el sistema de ecuaciones 16.

En la Figura 7a se presenta la predicción de la red y la solución analítica para las dos
componentes en un intervalo temporal x ∈ (0, 2).
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En la Figura 7b se representa la solución analítica y la predicha por la red en el plano
R-J, que como hemos dicho anteriormente, es una elipse. El entrenamiento se ha realizado
con 1000 épocas.
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Figura 7: (a) Comparación entre la solución analítica (líneas continuas) y los resultados
predichos por la PINN (líneas discontinuas) por componentes. (b) Comparación entre
la solución analítica (líneas continuas) y los resultados predichos por la PINN (líneas
discontinuas) en el plano R-J.

En este caso obtenemos un EAM % del 0.77 % que es considerablemente bajo.

Representamos en la Figura 8 la función coste total para comprobar la convergencia
del método. Se trata de la suma de la función de coste de la ecuación diferencial y la
función de coste de las condiciones iniciales. En este caso, el método ha requerido 1000
épocas para converger, mientras que en el caso de la ecuación de movimiento constante,
la convergencia se logró en solo 100 épocas.
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Figura 8: Evolución de la función coste con el número de épocas (escala logarítmica) para
el sistema de ecuaciones 16, en el rango x ∈ (0, 2). La función de coste se corresponde con
la suma de la contribución de la EDO y las condiciones iniciales (ver ecuación 12).
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5.2.1. Problemas asociados al dominio de entrenamiento

Las PINNs pueden presentar problemas cuando el dominio de entrenamiento crece.
Este hecho lo podemos observar en la Figura 9, donde se ha aumentado el dominio tem-
poral a x tales que 0 < x < 4. También se ha aumentado el número de épocas a 3000 para
asegurar la convergencia del cálculo. En la Figura 9a Se observa que la solución predicha
por la PINN sigue la tendencia oscilatoria pero decae a 0 y no coincide con la solución
analítica a pesar de que el método haya convergido.

Una forma de mitigar el problema es eligiendo las funciones de activación adecuadas.
En la Figura 9a se ha empleado la función de activación elu y en la Figura 9b se ha
empleado la función de activación tanh, manteniendo el resto de hiperparámetros iguales.
En este caso, cambiar de la función de activación elu a la tanh corrige el problema en el
intervalo elegido, como se ve en la Figura 9. La función tanh está acotada mientras que la
elu no lo está. Por tanto, para el caso de las constantes de movimiento la función elu era
adecuada, sin embargo, para funciones oscilantes, que están acotadas, conviene utilizar
una función de activación que no tienda a infinito.
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Figura 9: (a) Comparación entre la solución analítica (líneas continuas) y los resultados
predichos por la PINN (líneas discontinuas) empleando la función de activación elu, en
el rango x ∈ (0, 4) (b) Comparación entre la solución analítica (líneas continuas) y los
resultados predichos por la PINN (líneas discontinuas) empleando la función de activación
tanh, en el rango x ∈ (0, 4).

Una vez comprobado que la red entrena adecuadamente, podemos realizar una serie
de cambios. Parece que para valores de x pequeños o cercanos a las condiciones iniciales,
la predicción de la red muestra un comportamiento que coincide con la solución analítica.
Sin embargo, cuando el rango de valores de x aumenta todavía más, el problema vuelve a
aparecer como se ve en la Figura 10 incluso si se aumentan las épocas de entrenamiento.
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Figura 10: (a) Comparación entre la solución analítica (líneas continuas) y los resultados
predichos por la PINN (líneas discontinuas) por componentes. (b) Comparación entre
la solución analítica (líneas continuas) y los resultados predichos por la PINN (líneas
discontinuas) en el plano R-J.

Observamos que, a pesar de que la PINN muestra un comportamiento oscilatorio, con
el paso del tiempo la solución decae a 0. La hipótesis es que la PINN encuentra una
solución a las ecuaciones pero para distintas condiciones iniciales en cada punto. Esto
es típico con funciones oscilantes. La razón por la que la PINN obtiene esta solución
a pesar de que la función de coste de la EDO es muy baja es la siguiente: localmente
(en los puntos de entrenamiento), la red cumple bastante bien la EDO ya que, aunque
tiene menos amplitud, la solución sigue oscilando. Esta amplitud va decayendo hasta que
alcanza la solución y=0, la solución trivial, que también cumple la EDO, haciendo que
la función de coste de la EDO siga siendo muy baja. Representamos en la Figura 11 la
función de coste de la EDO y la función de coste de las condiciones iniciales, que dada la
tendencia y los valores obtenidos producen la falta impresión de que la predicción de la
PINN es correcta.
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Figura 11: (a) Evolución de la función coste de la EDO con el número de épocas (escala
logarítmica) (ver ecuación 13). (b) Evolución de la función coste de las CI con el número
de épocas (escala logarítmica) (ver ecuación 14)
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Podemos entonces concluir que la red entrena bien para intervalos pequeños de x,
cercanos a la condición inicial. Cuando aumentamos el intervalo, la solución decae a 0. La
función nula es solución de la EDO y aunque no cumpla las condiciones iniciales, la red
es la única solución que encuentra.

5.2.2. Entrenamiento por subintervalos

Con el objetivo de mejorar el entrenamiento de la PINN para intervalos mayores y
lejanos a las condiciones iniciales proponemos en este trabajo un algoritmo iterativo que
consiste en dividir el dominio temporal en n subintervalos. Entonces, se implementa un
bucle en el que entrenamos la red en el primer subintervalo y fijamos el último punto
de entrenamiento como si fuera una condición de contorno. Estas nuevas condiciones de
contorno son dinámicas y se generan con las predicciones de la PINN entrenada con los
intervalos anteriores. Por tanto, las condiciones de contorno dinámicas (CCD) son pares
de datos (x,y⃗) que se añaden a la función de coste de las condiciones iniciales (CCI).

Posteriormente, entrenamos la red en el primer y segundo intervalo con la primera
CCD fija, es decir, obligamos a la predicción de la red a pasar por ese punto. Y así
sucesivamente hasta, en la última iteración, la red se entrena en todos los puntos del
dominio, que es la unión de todos los subintervalos, forzándola a pasar por todas las
CCD. Es decir, estamos realizando un entrenamiento acumulativo y forzando a la PINN
a pasar por unos puntos que se asumen son solución de la EDO.
Introducimos pues un nuevo parámetro, el número de subintervalos, n sub. El código
empleado se presenta en el Anexo A. Fijando 10 subintervalos y entrenando la red con los
mismos parámetros que en la Tabla 2 y 5000 épocas, obtenemos la Figura 12. Se muestran
las CCD generadas durante el entrenamiento de la PINN mediante símbolos.
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Figura 12: Comparación entre la solución analítica (líneas continuas) y los resultados
predichos por la PINN (líneas discontinuas) junto a las CCD (círculos verdes) generadas
en el entrenamiento. El entrenamiento se ha realizado en el rango x ∈ (0, 10) utilizando
10 subintervalos y 5000 épocas.
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Realizando este procedimiento de entrenar por subintervalos, conseguimos reducir el
EAM % al 5.99 %. Cabe destacar también que para que la predicción de la red pase por
todas las CCD, se ha de aumentar el número de épocas como se ha comentado anterior-
mente, con el consiguiente aumento del tiempo de ejecución un factor 10.

Al estar entrenando por subintervalos, conviene conocer las pérdidas de cada subin-
tervalo. En la Figura 13a se muestra la función de coste de la ecuación diferencial para
cada subintervalo y en la Figura 13b se muestra la función de coste de las condiciones
iniciales para cada subintervalo. Cabe destacar que en el subintervalo 2 se incluye también
el 1, en el subinervalo 3 se incluyen el 1 y el 2 y así sucesivamente. Como hemos dicho, el
entrenamiento es acumulativo, y en el último subintervalo se entrena la red en todos los
puntos del dominio.

Se observa en la Figura 13 que la función coste decrece mucho en el primer subintervalo,
y en cada iteración este decrecimiento es menor. Esto podría ser por lo descrito en el
párrafo anterior. En cada iteración, la PINN es entrenada en un dominio mayor, y por
tanto la función de coste es mayor.
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Figura 13: (a) Evolución de la función coste de la EDO con el número de épocas (escala
logarítmica) por subintervalo (ver ecuación 13). (b) Evolución de la función coste de las
CI con el número de épocas (escala logarítmica) por subintervalo (ver ecuación 14)

5.2.3. Extrapolación con funciones oscilantes

A continuación, entrenaremos la red en el intervalo x ∈ (0, 2) y representamos la
extrapolación de la predicción de la red en la Figura 14 al igual que se ha hecho en el
apartado 5.1.1. Para el caso de las constantes de movimiento, la red era capaz de predecir
el comportamiento de la función en un entorno del intervalo de entrenamiento. Notamos
de la Figura 14 que en este caso, la red no es capaz de hacerlo. Esto se debe a que estamos
trabajando con una función oscilante que tiene patrones más complejos que las funciones
lineales. Los datos de entrenamiento no cubren suficientes periodos de oscilación y la red
no es capaz de aprender estos patrones de oscilación.
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Figura 14: (a) Comparación entre la solución analítica (líneas continuas) y los resultados
predichos por la PINN (líneas discontinuas) entrenando en el rango de x ∈ (0, 2) y extra-
polando al rango de x ∈ (−1, 3) empleando la función de activación elu. (b) Comparación
entre la solución analítica (líneas continuas) y los resultados predichos por la PINN (líneas
discontinuas) entrenando en el rango de x ∈ (0, 4) y extrapolando al rango de x ∈ (−1, 3)
empleando la función de activación tanh.

5.3. Ecuaciones de Lorenz
El sistema de Lorenz es el comienzo de la rama de las matemáticas y la física aplicada

conocida como teoría del caos. Poincaré había afirmado que pequeñas variaciones en las
condiciones iniciales de ciertos sistemas pueden suponer grandes cambios en la evolución
a lo largo del tiempo del sistema [11]. Un claro ejemplo de este tipo de comportamientos
se da en la evolución del tiempo atmosférico.

En 1963, Edward Lorenz estudiando la convección atmosférica, se encontró con un sis-
tema de ecuaciones diferenciales en tres dimensiones que mostraban este comportamiento
caótico. Para ciertos valores en los parámetros del sistema, las trayectorias tendían a
formar una figura que hoy es conocida como atractor de Lorenz. Un atractor es una re-
gión del espacio de fases hacia la cual convergen las trayectorias posibles de un sistema.
Además, corroboró la afirmación de Poincaré, ya que dicho sistema era extremadamente
sensible a las condiciones iniciales. La contribución de Lorenz no se reduce únicamente a
descubrir el comportamiento caótico de las ecuaciones, sino que reconoció un cierto orden
en el caos. En su investigación mostró cómo un sistema determinista podía generar un
comportamiento caótico.
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Las ecuaciones de Lorenz vienen dadas por las ecuaciones siguientes.

dy1

dx
= a · (y2 − y1) con y1(0) = 1

dy2

dx
= y1 · (b − y3) − y2 con y2(0) = 1

dy3

dx
= y1y2 − cy2 con y3(0) = 1

(17)

donde a es el número de Prandtl y b es el número de Rayleigh. Los tres parámetros
a, b y c son estrictamente positivos. Normalmente se toma a=10, c=8/3 y b variable. El
sistema de Lorenz muestra un comportamiento caótico para b=28.

En la Figura 15 se muestra la solución al sistema de ecuaciones de Lorenz para los
parámetros mencionados calculada mediante el método numérico de Runge-Kutta. Se ha
calculado para x ∈ (0, 40)
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Figura 15: Representación gráfica del Atractor de Lorenz

A continuación, se describe el proceso que permite resolver la ecuación de Lorenz
mediante el uso de la PINN construida. Los hiperparámetros de nuestra red vienen dados
esencialmente por los de la Tabla 2. Lo único que varía es el número de neuronas de la capa
de salida, que en este caso son 3. Nuevamente, destacamos la ventaja de la versatilidad
de las PINN.
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Realizaremos el entrenamiento de la PINN por subintervalos como se ha explicado en
el apartado 5.2.2. Fijamos un dominio temporal x tales que 0<x<1.3. En este punto, el
comportamiento de atractor ya ha comenzado y es de esperar que la PINN necesite muchas
CCD para lograr imitar el comportamiento del atractor. Se ha realizado la simulación con
20 subintervalos y 10000 épocas para que el método converja y la PINN pase por todas
las CCD generadas durante el entrenamiento de la PINN.

En la Figura 16 se muestra la solución predicha por la PINN y la obtenida mediante
el método numérico Runge-Kutta para las tres componentes del sistema.

El tiempo de ejecución ha sido de 45 minutos. Reducir los tiempos de simulación
constituye un desafío crucial para las PINNs, al igual que lo es en el resto de métodos
computacionales. En los ejemplos descritos en este trabajo, el algoritmo de Runge-Kutta
generalmente es más rápido, dado que las EDOs involucradas no son computacionalmente
exigentes. No obstante, esta investigación en PINNs y el método de las CCD pueden
ser relevantes en sistemas de ecuaciones parciales, donde los métodos clásicos suelen ser
notablemente más lentos.
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Figura 16: Comparación entre la solución obtenida mediante el método Runge-Kutta
(líneas continuas) y los resultados predichos por la PINN (líneas discontinuas) junto a las
CCD (círculos verdes) generadas en el entrenamiento. El entrenamiento se ha realizado
en el rango x ∈ (0, 1,3) utilizando 20 subintervalos y 10000 épocas.

En la Figura 17 se muestra la predicción de la PINN junto a la solución calculada
mediante el método numérico de Runge-Kutta en tres dimensiones.
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Figura 17: Comparación entre la solución obtenida mediante el método Runge-Kutta
(líneas continuas) y los resultados predichos por la PINN (líneas discontinuas) en 3D

6. Conclusiones
En este trabajo se ha estudiado la evolución de sistemas dinámicos mediante el uso de

RNs, que resultan muy útiles en la resolución de EDOs, fundamentales en la física.

Las PINNs presentan grandes ventajas en comparación con los métodos numéricos
tradicionales como se ha visto en este trabajo. Por ejemplo, destacamos su versatilidad.
En el transcurso de este trabajo se ha desarrollado una PINN capaz de abordar tanto
ecuaciones lineales como oscilantes en dominios pequeños y cercanos a las condiciones
iniciales. Además, se ha implementado el método de las CCD para que la misma PINN
fuera capaz de resolver las ecuaciones en un dominio temporal mayor.

El método propuesto ha demostrado ser efectivo, especialmente en la resolución del
sistema de ecuaciones de Lorenz. Sin embargo, se reconoce la necesidad de optimizar
el tiempo de ejecución. Esta optimización constituye un área de desarrollo para futuras
investigaciones.

En el trabajo también se ha visto la capacidad de extrapolación de las PINNs para
sistemas de ecuaciones lineales. Sin embargo, no son capaces de predecir buenos resultados
fuera del rango de entrenamiento para funciones oscilantes.

En conclusión, las PINNs pueden ser una herramienta poderosa en la resolución de
EDOs en física gracias a su capacidad de generalización, flexibilidad y a su eficiencia
computacional. Facilitan la resolución de sistemas complejos y es un campo que permite
innovar y desarrollar el campo de la física aplicada y experimental.
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A. Anexo A: Código

Listing 1: Código en Python para resolver el sistema de ecuaciones de Romeo y Julieta
entrenando la red por subintervalos.

1
2 # In [1]:# THE PINN CLASS
3
4 import tensorflow as tf
5 from tensorflow.keras.layers import Input , Dense
6 from tensorflow.keras.optimizers import Adam
7 import numpy as np
8 import matplotlib.pyplot as plt
9 import keras

10 import time
11
12 start_time = time.time()
13
14 m = tf.constant (3.0, dtype=tf.float32)
15 n = tf.constant (5.0, dtype=tf.float32)
16
17 # defino la PINN
18
19 class ODE_1st(tf.keras.Model):
20
21 def __init__(self , x0, y0_exact , *args , ** kwargs):
22 super ().__init__ (*args , ** kwargs)
23 self.loss_tracker = keras.metrics.Mean(name="loss")
24 self.loss_ode_tracker = keras.metrics.Mean(name="loss_ode")
25 self.loss_boundary_tracker = keras.metrics.Mean(name="

loss_boundary")
26 self.x0 = x0
27 self.y0_exact = y0_exact
28
29
30 def train_step(self , data):
31 # Training points and the analytical (exact) solution at

this points
32 x, y_exact = data # entiendo q el y_exact ahora es un

vector de 3 comps
33
34 # Calculate the gradients and update weights and bias
35 with tf.GradientTape () as tape:
36 # Calculate the gradients dy/dx # h a b r que hacer esto

para las 3 comps del vector
37 with tf.GradientTape () as tape2:
38 tape2.watch(self.x0)
39 tape2.watch(x)
40 y0_NN = self(self.x0, training=True)
41 y_NN = self(x, training=True) # la y_NN tiene 2

comps
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42 print("forma␣y_NN", y_NN.shape)
43 print("forma␣de␣x", x.shape)
44
45 dy_dx_NN = tape2.batch_jacobian(y_NN , x)
46
47 print("Shape␣of␣dy_dx_NN:", dy_dx_NN.shape)
48 print("Shape␣of␣y_NN:", y_NN.shape)
49 print("Shape␣of␣x:", x.shape)
50 print(dy_dx_NN[:, 0, 0]. shape)
51 print(y_NN[:, 1]. shape)
52 print(y_NN[:, 0]. shape)
53
54 loss_ode = self.compiled_loss(dy_dx_NN[:, 0, 0], -m*(

y_NN[:, 1])) \
55 + self.compiled_loss(dy_dx_NN[:, 1, 0], (n*y_NN[:,

0]))
56
57 y0_NN = tf.reshape(y0_NN , shape=self.y0_exact.shape)
58
59 loss_boundary = self.compiled_loss(y0_NN , self.y0_exact

)
60
61 loss = tf.cast(loss_ode , dtype=’float32 ’) + \
62 tf.cast(loss_boundary , dtype=’float32 ’)
63
64 gradients = tape.gradient(loss , self.trainable_weights)
65 self.optimizer.apply_gradients(zip(gradients , self.

trainable_weights))
66 self.compiled_metrics.update_state(y_exact , y_NN)
67 self.loss_tracker.update_state(loss)
68 self.loss_ode_tracker.update_state(loss_ode)
69 self.loss_boundary_tracker.update_state(loss_boundary)
70 return {m.name: m.result () for m in self.metrics}
71
72
73 # In [2]: #INIT PARAMETERS
74 x0 = tf.constant ([[0.0]] , dtype=tf.float32)
75 x0 = tf.convert_to_tensor ([[0.0]] , dtype=tf.float32)
76 y0_exact = np.array ([[1.0 , 0.0]])
77 print(y0_exact.shape)
78
79 # ejecuto la PINN
80 n_train = 500
81 xmin = 0
82 xmax = 10.0
83
84 # Definition of the function domain
85 x_train = np.linspace(xmin , xmax , n_train)
86 x_train = np.reshape(x_train , (n_train , 1))
87 print(x_train.shape) # (ntrain ,1)
88
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89 # The real solution y(x) for training evaluation
90 y_train = np.zeros((n_train , 2)) #2 neuronas de salida
91 print(y_train.shape)
92
93 # In [3]:# NEURAL NETWORK MODEL
94 # Input and output neurons (from the data)
95 input_neurons = 1
96 output_neurons = 2
97
98 epochs = 5000
99

100 minib_size = 64
101
102 # Definition of the the model
103 activation = ’tanh’
104 input_layer = Input(shape =( input_neurons ,))
105 x = Dense (50, activation=activation)(input_layer)
106 x = Dense (50, activation=activation)(x)
107 x = Dense (50, activation=activation)(x)
108 output_layer = Dense(output_neurons , activation=None)(x)
109 print(x0.shape) # (1 ,1)
110 print(y0_exact.shape) # (1 ,2)
111 print(input_layer.shape) # (None ,1)
112 print(output_layer.shape) # (None ,2)
113
114
115 # Definition of the metrics , optimizer and loss
116 loss = tf.keras.losses.MeanSquaredError ()
117 metrics = tf.keras.metrics.MeanSquaredError ()
118 optimizer = Adam(learning_rate =0.001)
119
120 # In [4]:# ITERATIVE ALGORITHM
121 # Iterar sobre los subintervalos
122 n_subintervalos = 10
123
124 x0_list = []
125 print(x0_list)
126 y0_exact_list = [y0_exact]
127 print(y0_exact_list)
128
129 losses_ode = []
130 losses_boundary = []
131 losses = []
132 MSEs = []
133 predicciones = []
134
135 for i in range(n_subintervalos):
136 xmin_sub = i * (xmax - xmin)/n_subintervalos
137 xmax_sub = (i + 1) * (xmax - xmin)/n_subintervalos
138 x_train_sub = np.linspace(xmin , xmax_sub , int(
139 n_train/n_subintervalos) * (i + 1))
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140 x_train_sub = np.reshape(
141 x_train_sub , (int(n_train/n_subintervalos) * (i + 1), 1))
142 y_train_sub = np.zeros ((len(x_train_sub), 2))
143 # Crear y_train para este subintervalo si es necesario
144 print("Dimensiones␣de␣x_train_sub␣para␣el␣subintervalo",
145 i, ":", x_train_sub.shape)
146 print("Dimensiones␣de␣y_train_sub␣para␣el␣subintervalo",
147 i, ":", y_train_sub.shape)
148
149 # Set weights from previous model
150 if(i > 0):
151 model.set_weights(w)
152
153 x0_list.append(xmin_sub)
154 x0_array = np.array(x0_list)
155 print(x0_array.shape)
156 x0_array = np.reshape(x0_array , (i+1, 1))
157 print(x0_array.shape)
158 print(x0_array[i])
159
160 if(i > 0):
161 y0_exact_i = model.predict(np.reshape(x0_array[i], (1, 1)))
162 y0_exact_list.append(y0_exact_i)
163 y0_exact_array = np.array(y0_exact_list)
164 else:
165 y0_exact_array = y0_exact
166 print("y0_exact_array␣=␣", y0_exact_array)
167
168 x0_tensor = tf.constant(x0_array)
169 y0_exact_tensor = tf.constant(y0_exact_array)
170 print(x_train_sub.shape)
171 print(np.min(x_train_sub))
172 print(np.max(x_train_sub))
173
174 print("SHAPE␣X0_ARRAY␣=␣", np.shape(x0_array),
175 "␣;␣SHAPE␣Y0_EXACT␣=", np.shape(y0_exact))
176 model = ODE_1st(x0=x0_tensor , y0_exact=y0_exact_tensor ,
177 inputs=input_layer , outputs=output_layer)
178 model.compile(loss=loss ,
179 optimizer=optimizer ,
180 metrics =[ metrics ])
181 history = model.fit(x_train_sub , y_train_sub ,
182 batch_size=minib_size , epochs=epochs ,

verbose=True)
183 losses.append(history.history[’loss’])
184 losses_ode.append(history.history[’loss_ode ’])
185 losses_boundary.append(history.history[’loss_boundary ’])
186 MSEs.append(history.history[’mean_squared_error ’])
187
188 w = model.get_weights ()
189
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190 # In [5]: Metrics : total loss and MSE
191 # Grafica las p r d i d a s por subintervalo
192 # loss total
193 plt.figure(figsize =(8, 5))
194 for i, loss_sub in enumerate(losses):
195 plt.plot(loss_sub , label=f’Subintervalo␣{i+1}’)
196
197 plt.xlabel(’ pocas ’,fontsize =12)
198 plt.ylabel(’Coste’,fontsize =12)
199 plt.yscale("log")
200 plt.title(’ F u n c i n ␣coste␣durante␣el␣entrenamiento␣por␣subintervalo

’,fontsize =15)
201 plt.legend(loc="upper␣right",fontsize =10)
202 plt.savefig(’lossrjpartestocho.pdf’,dpi =500)
203 plt.show()
204
205 for i, mse_sub in enumerate(MSEs):
206 plt.plot(mse_sub , label=f’Subintervalo␣{i+1}’)
207 plt.xlabel(’ pocas ’)
208 plt.ylabel(’MSE’)
209 plt.yscale("log")
210 plt.title(’MSE␣durante␣el␣entrenamiento␣por␣subintervalo ’)
211 # plt. savefig (’ msesub_xmax =0,1 _nsub =4 _epochs =2000 ’)
212 plt.legend(loc="upper␣right")
213 plt.show()
214
215 # In [6]: Metrics : ODE losses
216 # loss_ode
217 plt.figure(figsize =(8, 5))
218 for i, loss_ode_sub in enumerate(losses_ode):
219 # SGR: loss_ode_sub instead of losses_ode
220 plt.plot(loss_ode_sub , label=f’Subintervalo␣{i+1}’)
221 plt.xlabel(’ pocas ’,fontsize =12)
222 plt.ylabel(’Coste’,fontsize =12)
223 plt.yscale("log")
224 plt.title(’ F u n c i n ␣coste␣ODE␣durante␣el␣entrenamiento␣por␣

subintervalo ’,fontsize =15)
225 plt.legend(loc="upper␣right", fontsize =11)
226 plt.savefig(’loss_ode_subintervalo.pdf’,dpi =500)
227 plt.show()
228
229 # In [7]: Metrics : Boundary condition losses
230 # loss_boundary
231 plt.figure(figsize =(8, 5))
232 for i, loss_boundary_sub in enumerate(losses_boundary):
233 # SGR: loss_boundary_sub instead of lossess_boundary
234 plt.plot(loss_boundary_sub , label=f’Subintervalo␣{i+1}’)
235 plt.xlabel(’ pocas ’,fontsize =12)
236 plt.ylabel(’Coste’,fontsize =12)
237 plt.yscale("log")
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238 plt.title(’ F u n c i n ␣coste␣C.I␣durante␣el␣entrenamiento␣por␣
subintervalo ’,fontsize =15)

239 plt.legend(loc="lower␣left", fontsize =11)
240 plt.savefig(’loss_CI_subintervalo.pdf’,dpi =500)
241 plt.show()
242
243 # summarize history for loss and metris (todo)
244 plt.rcParams[’figure.dpi’] = 150
245 plt.plot(history.history[’loss’], color=’magenta ’,
246 label=’ F u n c i n ␣coste␣($L_D␣+␣L_B$)’)
247 plt.yscale("log")
248 plt.xlabel(’ pocas ’)
249 plt.legend(loc=’upper␣right’)
250 #plt. savefig (’ losstotalrjpartes ’)
251 plt.show()
252
253 # In [8]: Check PINN predictions
254
255 raiz15 = tf.sqrt (15.0)
256 print("raiz15", raiz15)
257 raiz15_3 = raiz15 /3
258 print(raiz15_3)
259 n = 500
260
261 x = np.linspace(0, 10, n)
262 print(x.shape)
263 print(x)
264
265 y_exact = np.zeros((n, 2))
266 print(y_exact.shape)
267 y_exact[:, 0] = tf.cos(raiz15*x)
268 y_exact[:, 1] = raiz15_3*tf.sin(raiz15*x)
269 print(x.shape)
270 y_NN = model.predict(x)
271 print(y_NN.shape)
272
273 print(x0_array.shape)
274
275 print(y0_exact_array.shape)
276
277 print(x.shape , y_exact.shape)
278 print(np.squeeze(x0_array).shape , np.squeeze(y0_exact_array)[:, 0].

shape)
279 print(x0_array)
280 print(y0_exact_array)
281
282 # Plot the results
283
284 # LAS DOS COMPS
285 plt.scatter(np.squeeze(x0_array), np.squeeze(
286 y0_exact_array)[:, 0], label=’CCD’,color="limegreen")
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287 plt.scatter(np.squeeze(x0_array), np.squeeze(
288 y0_exact_array)[:, 1], color="limegreen")
289 plt.plot(x, y_exact [:,0], color="royalblue",linestyle=’solid ’,
290 linewidth =2.5, label="$y(x)$␣ a n a l t i c a ")
291 plt.plot(x, y_exact [:,1], color="royalblue",linestyle=’solid ’,
292 linewidth =2.5)
293 plt.plot(x, y_NN[:,0], color="deeppink",linestyle=’dashed ’,
294 linewidth =2.5, label="$y(x)$␣PINN")
295 plt.plot(x, y_NN[:,1], color="deeppink",linestyle=’dashed ’,
296 linewidth =2.5)
297 # plt. legend ()
298 # plt.title (" RJPARTES ")
299 plt.legend(loc=’lower␣left’,fontsize =11)
300 plt.title(" S o l u c i n ␣ a n a l t i c a ␣vs␣PINN",fontsize =15)
301 plt.xlabel("x",fontsize =15)
302 plt.ylabel("y",fontsize =15, rotation =0)
303 plt.savefig(’rjpartes2comps_x =10 _5000_10sub.pdf’, dpi =500)
304 plt.show()
305
306
307
308 # ESPIRAL
309 plt.plot(y_exact [:,0] , y_exact [:,1],color="royalblue",linestyle=’

solid ’,
310 linewidth =2.5, label="$y(x)$␣ a n a l t i c a ")
311 plt.plot(y_NN [:,0] , y_NN[:,1], color="deeppink",linestyle=’dashed ’,
312 linewidth =2.5, label="$y(x)$␣PINN")
313 plt.legend ()
314 plt.xlabel("R(t)")
315 plt.ylabel("J(t)",rotation =0)
316 plt.title(’ S o l u c i n ␣real␣vs␣PINN’)
317 #plt. savefig (’ RJ_xmax =0,1 _nsub =4 _epochs =2000 ’)
318 plt.savefig(’rjparteselipse.pdf’,dpi =400)
319 plt.show()
320
321
322 # Fin del c r o n m e t r o
323 end_time = time.time()
324
325 # Tiempo de e j e c u c i n
326 execution_time = end_time - start_time
327 print(f"Tiempo␣de␣ e j e c u c i n :␣{execution_time}␣segundos")
328
329
330
331 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(16, 6))
332
333 # Plot ODE loss
334 for i, loss_ode_sub in enumerate(losses_ode):
335 ax1.plot(loss_ode_sub , label=f’Subintervalo␣{i+1}’)
336
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337 ax1.set_xlabel(’ pocas ’, fontsize =20)
338 ax1.set_ylabel(’Coste␣EDO’, fontsize =20)
339 ax1.set_yscale("log")
340 #ax1. set_title (’ F u n c i n coste ODE durante el entrenamiento por

subintervalo ’, fontsize =15)
341 ax1.legend(loc="upper␣right", fontsize =13)
342
343 # Plot CI loss
344 for i, loss_boundary_sub in enumerate(losses_boundary):
345 ax2.plot(loss_boundary_sub , label=f’Subintervalo␣{i+1}’)
346
347 ax2.set_xlabel(’ pocas ’, fontsize =20)
348 ax2.set_ylabel(’Coste␣CI’, fontsize =20)
349 ax2.set_yscale("log")
350 #ax2. set_title (’ F u n c i n coste C.I durante el entrenamiento por

subintervalo ’, fontsize =15)
351 ax2.legend(loc="lower␣left", fontsize =13)
352
353
354 # Agregar etiquetas (a) y (b) arriba de las subfiguras
355 fig.text (0.05 , 0.97, ’(a)’, fontsize =20, verticalalignment=’top’,

horizontalalignment=’left’)
356 fig.text (0.55 , 0.97, ’(b)’, fontsize =20, verticalalignment=’top’,

horizontalalignment=’left’)
357
358 # Ajustar el layout para dejar espacio en la parte superior
359 plt.subplots_adjust(top =0.85)
360 plt.tight_layout(rect=[0, 0, 1, 0.95])
361 plt.savefig(’loss_ode_CI_panel.pdf’, dpi =500)
362 plt.show()
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