Universidad de Zaragoza

FAacuLTAD DE CIENCIAS

EvOLUCION DE SISTEMAS DINAMICOS
MEDIANTE APRENDIZAJE PROFUNDO

Trabajo Fin de Grado

Autor:
NATALIA ROBRES PORTELLA

Directores:
SERGIO GUTIERREZ RODRIGO
PABLO CALVO BARLES

Julio 2024

Agradecimientos

Me gustaria agradecer a mis directores, Sergio Gutiérrez y Pablo Calvo, por su apoyo

constante y grandes consejos a lo largo de este proyecto.

A mis amigos y a mi familia por ser mi pilar durante estos cuatro anos de carrera.

Os debo gran parte de esto y os agradezco infinitamente haber creido y confiado en mi.

Resumen

En este trabajo exploramos el uso de las Redes Neuronales Informadas por Fisica
(PINNSs) para resolver ecuaciones diferenciales en sistemas dindmicos. Se abordan aplica-
ciones desde el modelo de Romeo y Julieta hasta las Ecuaciones de Lorenz, destacando
la versatilidad de las PINNs, que combinan principios fisicos con técnicas de aprendizaje

automatico para modelar fenémenos complejos.

Abstract

In this work, we explore the use of Physics-Informed Neural Networks (PINNs) to solve
differential equations in dynamic systems. Applications range from the Romeo and Juliet
model to the Lorenz Equations, highlighting the versatility of PINNs, which integrate

physical principles with machine learning techniques to model complex phenomena.

Indice

T Taccidnl

2. Objetivos y metodologial

[3. Conceptos basicos sobre redes neuronales|

[3.1. Perceptrom|. . .

3.2, Funciones de activaciénl.

[3.2.1. La tuncion sigmoide| L.

[3.2.2. La tuncion tangente hiperbolical
B.2.3. Lafuncion RelLU 0. .00 000

[3.6. Overfittingf. . .

[3.6.1. Técnicas de regularizacion|

4. Physics-Informed Neural Networks (PINNs)|

(5. Resultados|

[b.1.1. Extrapolacion de la PINN con funciones lineales|

[5.2. Modelo de Romeo y Julieta]

b.2.1. Problemas asociados al dominio de entrenamientol

6. Conclusiones|
[7. Bibliografial
[Referencias|

[A. Anexo A: Codigo|

11

12
12
14
15
17
19
20
21

24

25

25

26

1. Introduccion

Hasta hace relativamente poco era impensable contar con un asistente virtual como
Siri o Alexa, traducir idiomas con un dispositivo portatil o incluso que un coche pudiera
conducir por su cuenta. La Inteligencia Artificial (IA) ha irrumpido en nuestras vidas y
ahora convivimos diariamente con sus avances. Tareas que solamente podian ser aborda-
das por la inteligencia humana, como el reconocimiento de texto e imagenes, son ahora

resueltas por la TA con gran éxito.

Una de las principales ramas de la TA es el denominado Aprendizaje automdatico (AA),
que se enfoca en el desarrollo de algoritmos con los que una méaquina puede aprender a
realizar tareas a partir de un conjunto de datos. Se distingue principalmente entre apren-
dizaje supervisado y no supervisado. En el aprendizaje supervisado, la maquina aprende
a partir de un conjunto de datos etiquetados, de manera que es guiada con ejemplos de
como debe actuar. Por otro lado, en el aprendizaje no supervisado las maquinas aprenden
patrones sobre conjuntos de datos sin etiquetas, sin recibir ninguna guia.

El Aprendizaje Profundo (AP) es, en particular, una de las ramas del AA [I]. Este
subcampo utiliza Redes Neuronales (RN) profundas, que son “maquinas” computacionales
cuya estructura se compone de multiples capas de procesamiento. Utilizando aprendizaje
supervisado, éstas son capaces de realizar tareas de gran complejidad. Existen distintos
tipos de redes profundas. Concretamente, las Physics-informed neural networks (PINNs)
son redes que pueden resolver ecuaciones diferenciales de cualquier tipo, combinando
principios fisicos con técnicas de AA [2]. Las PINNs se han utilizado en diversas areas de
la fisica. Por ejemplo, han resultado utiles en la resolucién de ecuaciones de movimiento
que describen sistemas complejos, como la dindmica de fluidos, la evolucién de sistemas
mecanicos, etc [3].

Una ventaja clave de las PINNs es su eficiencia computacional. No necesitan mallados
finos ni discretizaciones especificas, por lo que el uso de las PINNs disminuye en gran me-
dida el tiempo de célculo y los recursos computacionales. Esto es especialmente notable
en sistemas de grandes dimensiones. A pesar de ser un campo relativamente joven, las
PINNSs han captado considerable interés debido a su potencial para mejorar o reemplazar
las herramientas tradicionales de calculo numérico. Estas redes representan una promesa
significativa en aplicaciones donde los métodos clasicos enfrentan limitaciones practicas,

aunque aun se encuentran en una fase inicial de desarrollo.

Por otro lado, los sistemas dindmicos son un area fundamental de la fisica y la ma-
tematica aplicada. Estos sistemas evolucionan con el tiempo y se describen a partir de
ecuaciones diferenciales ordinarias (EDOs). Clasificamos los sistemas dindmicos en dos
grandes categorias: sistemas no cadticos y sistemas cadticos. Los sistemas no cadticos son
aquellos que presentan un comportamiento predecible, en el sentido de que las trayecto-

rias apenas son sensibles a las condiciones iniciales. Dos ejemplos conocidos de sistemas

con esta naturaleza son el oscilador armoénico o el problema de dos cuerpos con atrac-
cién gravitatoria. Los sistemas cadticos son aquellos sistemas dindmicos extremadamente
sensibles a las condiciones iniciales. Las ecuaciones de Lorenz, desarrolladas por Edward

Lorenz en 1963 [4] son un ejemplo emblemédtico de sistema cadtico.

En este trabajo emplearemos las PINNs para resolver EDOs que describen sistemas
dindmicos. Comenzaremos abordando los conceptos basicos de las redes neuronales. A
continuacion, se expondran los resultados obtenidos a partir de las simulaciones realizadas.

Finalmente, discutiremos las conclusiones derivadas del trabajo.

2. Objetivos y metodologia

El objetivo principal de este trabajo es disenar RNs capaces de resolver sistemas de
ecuaciones diferenciales. Para lograr este objetivo, se implementaran PINNs y se evaluaré
su eficacia en distintos casos.

Comenzaremos con un caso sencillo, la ecuacién de movimiento constante. Una vez
verifiquemos que la PINN funciona correctamente, estudiaremos la ecuacién del amor de
Romeo y Julieta a modo de ejemplo de sistema no caodtico, y posteriormente ampliaremos
el estudio a las ecuaciones de Lorenz, que como ya se ha comentado, se tratan de un

sistema cadtico [5].

La implementacién de las PINNs se ha llevado a cabo en el lenguaje de programacion
Python. En el Anexo [A]se presenta el c6digo empleado. Python es conocido por su versa-
tilidad y por ser gratuito. Ofrece numerosas bibliotecas que facilitan la implementacién
de algoritmos de AP. Las principales bibliotecas empleadas en el trabajo son Tensorflow
y Keras. En cuanto a la primera de ellas, su nombre proviene de la uniéon de tensor y
flujo, es una libreria que permite ejecutar graficos de flujo de datos de manera eficiente,
lo que la hace especialmente adecuada para el manejo de grandes volimenes de datos y
la creacién de modelos de AP complejos. Keras, por su parte, es una biblioteca que puede
ejecutar sobre Tensorflow. Es una biblioteca de alto nivel para manejarse con multitud de
herramientas propias de las RNs. Keras facilita la implementacion de algoritmos de AP
al ofrecer herramientas ya configuradas y modulos que se pueden reutilizar.

Otras bibliotecas adicionales que se utilizan durante el trabajo son Numpy y Matplotlib.
Numpy es una biblioteca fundamental para el calculo numérico en Python. Dispone de
soporte para tratar con matrices multidimensionales ademés de una gran variedad de fun-
ciones matematicas para operar con estos datos. Matplotlib se empleara para visualizar los
datos y resultados de nuestro modelo. Permite crear figuras que facilitan la interpretacion
de los resultados.

Ademas de estas bibliotecas, se han empleado entornos de desarrollo integrados como
Jupyter Notebooks para facilitar la tarea de programacion.

3. Conceptos basicos sobre redes neuronales

3.1. Perceptron

Nos remontamos a los anos 50, cuando un cientifico llamado Frank Rosenblatt desa-
rroll6 el perceptrén [6]. El perceptrén es una idea inspirada en la neurona biolégica, una
célula caracterizada por poseer una serie de canales de entrada (inputs), llamados dendri-
tas y un canal de salida (output), llamado axén. Las dendritas de una neurona recogen
informacion de otra neurona y a través del axén se pasa esta informaciéon a las dendritas
de la siguiente neurona. En este ejemplo, es claro que una neurona aislada carece de sen-
tido, éstas adquieren importancia cuando funcionan como una red con distintas capas. Lo
mismo ocurre en las RNs artificiales.

Un perceptrén recibe uno o mas inputs binarios y produce un tunico output bina-
rio. Para calcular este output es necesario introducir el concepto de pesos. Cada input,
x1, ..., T;, tiene asociado un peso, wy, ..., w;, que marca el nivel de importancia de dicha
entrada a la hora de calcular el output.

El output del perceptron es 0 si la suma de los pesos multiplicados por sus respectivas
entradas es menor o igual que un valor umbral que hemos de establecer y es 1 si es mayor.
Mateméaticamente, esto quedaria de la siguiente manera:

0 sidwix; <umbral
output = 25 W) <

(1)

1 si X2 wixy > umbral

En resumen, el perceptron podria considerarse una manera de tomar decisiones mi-
diendo o pesando la importancia de ciertas circunstancias.

Para simplificar la forma en la que describimos los perceptrones , definimos el suma-
torio como un producto escalar y pasamos el término del umbral al otro lado, definiendo
el sesgo, b, del perceptron como b = —umbral. Podemos ver el sesgo como la facilidad que
tiene el perceptréon para proporcionar como salida 1. Introducimos ahora el concepto de
neurona artificial a modo de generalizacion del perceptron.

Una neurona artificial es una funcién que recibe un conjunto de ntmeros escalares,
valores de input, y los lleva a un niimero real mediante la composicion de transformaciones
lineales con la acciéon de una funcién no lineal cualquiera, a diferencia del perceptrén, que
tiene por definicién tnicamente la funciéon escalén como activacion.

Podemos resumir esto en el siguiente esquema

R — R — R

{zo} — 2= wai—b — a(2)

donde a es la funcién no lineal, conocida como funcién de activacion.

3.2. Funciones de activacion

Las funciones de activacion son funciones no lineales que reciben el valor de z y lo
transforman en a(z). La eleccién de la funcién de activacion es crucial a la hora de desa-
rrollar RNs eficientes.

Veamos cuales son las funciones de activacion més populares en AP.

3.2.1. La funcién sigmoide

Esta funcién toma como entrada cualquier valor y lo transforma en un valor compren-

dido entre 0 y 1. Viene dada por la expresion [2] y se representa en la Figura [lal

B 1
C 14e?

a(2) (2)

La funcién satura a 1 cuando los valores de entrada son muy altos, y a 0 cuando son muy

bajos.

3.2.2. La funcién tangente hiperbdlica

En este caso, los valores de salida estan comprendidos entre -1 y 1. A diferencia que
la funcion sigmoide, esta funciéon proporciona una salida antisimétrica.
Viene dada por la expresion [3]y se representa en la Figura
e —e’*

tanh(z) = e (3)

3.2.3. La funciéon ReLU

Esta funcion es ampliamente utilizada en redes profundas. Esta funciéon no satura,
lo que mejora la velocidad de convergencia del algoritmo. Toma los valores de entrada
negativos y los transforma en 0. Los valores positivos no se ven modificados por esta
funcién. Se recomienda el uso de esta funcion para las capas ocultas de la red.

Viene dada por la expresion [4] y se representa en la Figura [1d

relu(z) = méax(0, z) (4)

1.00 1.0
0.75 0.5
0.50 0.0
0.25 -0.5
0.00 _1.0
—4 -2 0 2 4 -4 -2 0 2 4
z Z
(a) (b)
10
8
6
4
2
0
-10 -5 0 5 10

Figura 1: Representacién grafica de las funciones de activacién. (a) Funcién sigmoide
dada por la Ecuacion [2[(b) Funcién tangente hiperbdlica dada por la Ecuacién (3] (c)
Funcién ReLLU dada por la Ecuacién .

3.3. Arquitectura de una red neuronal

Una RN densa esta compuesta por capas de neuronas. Una capa es un médulo de
procesamiento de datos, podemos pensar que es una transformacion o mapeo de datos en
forma de vectores. A la primera capa, la denominamos capa de entrada y recibe un vector
de datos de entrada, ¥ € R™. A las capas intermedias las denominamos capas ocultas y a
la tltima capa, capa de salida, que devuelve un vector i € R, que seran las predicciones
de la RN. En la Figura [2| se muestra la arquitectura de una RN densa, esto es, todas las
neuronas de una capa estan conectadas a todas las neuronas de la anterior. La RN de la
Figura [2| presenta una capa de entrada con n neuronas, dos capas ocultas con m neuronas
cada una y una capa de salida con k neuronas.

Es importante destacar que la informacion de la RN fluye de izquierda a derecha. Estas
RNs en las que el output de una capa sirve de input para la siguiente capa se denominan
RNs de propagaciéon directa.

Capa de salida

Capa de entrada

e
Capas ocultas

Figura 2: Esquema de una RN densa.

3.4. La funcion de coste

En el aprendizaje supervisado disponemos de un conjunto de pares de datos de entre-
namiento {Z;, ¥per (Z;) }L,. Por ello, es conveniente introducir una funcién que nos calcule
el error entre el valor predicho por la RN y el valor verdadero para poder evaluar la eficien-
cia del entrenamiento. De esto se ocupa la funcién de coste. El objetivo del entrenamiento
es minimizar esta funciéon. Podria describirse como una medida del éxito de la tarea que

tiene la RN de predecir los resultados.

Existen multiples funciones de coste y en funcién del problema con el que estemos
trabajando debemos escoger una funcion de coste u otra y esta tarea es extremadamente
importante. Existen una serie de indicaciones a la hora de escoger esta funciéon para los
problemas mas conocidos. Si estamos tratando con un problema de clasificacién de dos
clases es conveniente emplear la entropia cruzada binaria. Sin embargo, para un problema
de clasificacién de muchas clases conviene usar la entropia cruzada categoérica. Para nuestro
problema de regresién, emplearemos el error cuadratico medio (ECM).

1 I R o
C = EOM = N Z |yver(xi) - ypred(xi)|2 (5)

donde e, son los valores verdaderos, ¥preq 10s valores predichos por la red y N es el
nimero de puntos empleado para calcular esta funcién.

Una métrica comin en problemas de regresion es el error absoluto medio, EAM. Es el
promedio del valor absoluto de la diferencia entre las predicciones y los valores verdaderos.
Se empleard en tanto por ciento (EAM %). Viene definido por la siguiente ecuacion:

1 red — Yver
EAM%:NZM-IOO (6)

i Yver

3.5. Entrenamiento

Durante el proceso de entrenamiento se mi-
nimiza la funcién de coste, modificando los pe-

sos y los sesgos. Para minimizar la funcién de

coste, en cada iteracion se calculan los gradien-
tes de los pesos mediante el método de descenso

& "”llﬂlln,
y }ix\\‘\\%\"zo, ,‘Illllllm

0 I il
QO 00 I
\\%\‘:x‘\ i, " el "‘,; lm"

del gradiente, en el que se actualizan los pa-
rametros en direccién opuesta al gradiente (ya
que el gradiente apunta hacia la direccién ma-
xima y estamos buscando un minimo). De es-
ta manera se reduce el valor de la funcién de
coste en cada iteracion, hasta que alcance su

.. , . Figura 3: Ilustracion del concepto
minimo. Para entender como opera el funciona-

miento del algoritmo del descenso del gradien- descenso del gradiente (Fuente: [7]).
te, podemos compararlo con el descenso de una
montana hasta alcanzar el punto mas bajo de la montana. Es equivalente a observar si
la pendiente de la montana aumenta; si es asi, avanzamos en direccion contraria para

descender hacia el valle méds cercano. Este algoritmo se ilustra en la Figura [3

Matematicamente, la actualizacion de los pesos y sesgos en cada iteracion sigue las
siguientes reglas,

oC
l 1
3 = 7
Wy — Wy nawéi ()
oC

donde 7 es la tasa de aprendizaje (learning rate), w,

es el peso que conecta la neurona
1-ésima de la capa [— 1 con la neurona j-ésima de la capa [, bé- es el sesgo de la neurona
j-ésima en la capa [y C' es la funcion de coste, que dependera del problema que estemos
resolviendo.

Definimos el conjunto de pesos y sesgos de todas las capas en un momento del entre-

namiento particular como:

0 = [le bl] (9)

para 0<l<L, donde L es el nimero total de capas.

En este procedimiento estamos buscando un minimo global. La tasa de aprendizaje puede
entenderse como el tamano de los pasos que damos hacia ese minimo, por tanto con una
tasa muy grande es posible que nos saltemos el minimo y con una muy pequeiia el método

tardaréd mucho en encontrar ese minimo.

Corremos el peligro de que el método se quede atascado en un minimo local. El optimi-
zador es quien se encarga de evitar esto, ademas de tener otras funciones. Un ejemplo de

7

optimizador eficaz es el Descenso de Gradiente Estocastico (DGE). Se basa en el método
de descenso del gradiente pero el término estocastico significa que la actualizacién de los
parametros del modelo se realiza utilizando un lote o mini-batch del conjunto de datos.
Se conoce como mini-batch size al tamafnio de este lote y es un hiperparametro mas de
nuestra RN que deberemos ajustar. Generalmente, el entrenamiento se divide en épocas
de entrenamiento. Cada iteracion sobre los datos de entrenamiento se denomina época.
Una época es el conjunto de N/mini-batch size iteraciones (N es el nimero total de datos)
que hace la red hasta que todos los datos de entrenamiento han sido utilizados.

De analisis matematico sabemos que una cadena de funciones puede derivarse em-
pleando la regla de la cadena. Pues bien, aplicar la regla de la cadena para computar
los gradientes de la red es lo que se conoce como el algoritmo de Backpropagation. Este
algoritmo toma el valor final de la funciéon de coste y realiza las derivadas desde la salida
hasta la entrada de la RN, aplicando la regla de la cadena para calcular la contribucién de
cada parametro en la funciéon de coste. En resumen, es el descenso de gradiente empleando
una técnica para calcular los gradientes automaticamente. Una vez que tiene estos gra-
dientes, realiza un paso regular de descenso de gradiente y se repite de nuevo el proceso
hasta que la red converja a la soluciéon. El calculo automéatico de los gradientes se conoce
como Diferenciacion Automatica (DA). Existen distintas técnicas de DA. La que usa el
algoritmo de Backpropagation se conoce como DA en modo reverso y es la solucién que
utiliza Tensorflow para calcular los gradientes de manera eficiente [g].

El DGE utiliza el siguiente algoritmo

1. Tomar aleatoriamente un lote de muestras de entrenamiento Z; (valores de entrada)

y los correspondientes valores esperados que la red deberia predecir 3y, (7;) -

2. Ejecutar la red sobre los datos #; del lote, procesandolos a través de sus capas y

produciendo las correspondientes salidas, yprea(Z;)-

3. Calcular la pérdida de la red en el lote Z;. Esto es, una medida de la discrepancia

entre los valores verdaderos y los predichos por la red.

4. Calcular el gradiente de la pérdida con respecto a los parametros de la red mediante
el algoritmo de Backpropagation.

5. Mover los pardametros ligeramente en direccion opuesta al gradiente, reduciendo de
esta manera el coste en el lote.

6. Seleccionar otro lote del conjunto de datos de entrenamiento y repetir el proceso.
Cuando todos los datos hayan sido utilizados en lotes, diremos que se ha completado

una época de entrenamiento.

Existen otros tipos de optimizadores con la tasa de aprendizaje adaptativa. Concretamen-

te, el empleado en el trabajo se denomina Adam [9].

La Figura 4| resume el proceso de entrenamiento de una RN.

Input

Capa
Pesos —— [(transformacion
datos)

l

Capa
Pesos —— |(transformacion
datos)

Predicciones de la Valores verdaderos Y
redY’
Actualizacion de N\ /

los pesos Funcion coste

Optimizador | <—— (Puntuacioén de coste

Figura 4: Esquema del funcionamiento de una RN.

3.6. Overfitting

El principal objetivo a la hora de entrenar una RN es que el modelo se ajuste a los
datos de entrenamiento lo mejor posible y que, ademas, sea capaz de hacer predicciones
correctas sobre datos que no han sido utilizados durante el entrenamiento. Esto se conoce
como capacidad de generalizacion.

Para cuantificar como generaliza la red, se utilizan los llamados datos de validacién.
Son un subconjunto de los datos que se utilizan para evaluar el modelo después de cada
época, es decir, se utilizan durante el entrenamiento para monitorizar el rendimiento del
modelo. Estos datos no son utilizados para calcular los gradientes, no se utilizan para
ajustar los pesos de la red, al contrario que los datos de entrenamiento. La importancia
de utilizar s6lo una parte de la base de datos para el entrenamiento y dejar otra parte de
la misma para el proceso de validacién se explica a continuacion.

Al inicio del entrenamiento, optimizacién y generalizacién estan estrechamente relacio-
nadas: una reduccion en la funcién de coste en los datos de entrenamiento, suele traducirse
en una reduccion similar en los datos de validacion. Se dice entonces que el modelo estéd
subentrenado, (underfit), lo que significa que existe un margen de mejora y el modelo
necesita seguir aprendiendo. Sin embargo, después de un determinado niimero de iteracio-
nes, la generalizacién deja de mejorar y las métricas de validacion se estabilizan mientras
que las métricas de entrenamiento continiian disminuyendo. Este fenémeno es uno de los
principales problemas en las RNs, denominado sobreajuste (overfitting). Este tiene lugar
cuando la red se ajusta demasiado bien a los datos de entrenamiento, tanto que no seréa
capaz de predecir buenos resultados para nuevos datos de entrenamiento, es decir, pierde
la capacidad de generalizacion.

Una forma de evitar que el modelo aprenda patrones irrelevantes en los datos de en-
trenamiento es aumentar la cantidad de datos de entrenamiento disponibles. Sin embargo,
esto no siempre es posible. Es posible prevenir y reducir el sobreajuste utilizando técnicas

de regularizacion.

3.6.1. Técnicas de regularizacion

Una de las estrategias mas simples para evitar el sobreajuste es reducir el tamano
de la RN. Determinar el nimero adecuado de capas y neuronas no tiene una respuesta
definitiva. Lo que se suele hacer es empezar con una estructura sencilla, con pocas capas
y parametros e ir ajustandola segtin sea necesario durante el entrenamiento.

A medida que aumenta el nimero de parametros, la RN adquiere mayor capacidad de
representacion de funciones. Esto se traduce en una mayor precision en el ajuste y, por
tanto, una funcién de coste baja. Sin embargo, si el nimero de parametros es demasiado
grande, esta misma capacidad también la hace mas susceptible al sobreajuste, entrando en
un régimen donde la diferencia entre la funciéon de coste en los datos de entrenamiento y
los de validacion puede ser significativa. Teniendo esto en cuenta, es conveniente elegir un
numero de parametros que sea suficientemente grande como para representar la funcion
subyacente a los datos de entrenamiento, pero no lo suficiente como para permitir el
sobreajuste.

Otra manera alternativa de mitigar el sobreajuste es utilizar técnicas de regulariza-
cién de pesos. Estos métodos imponen restricciones a los valores de los pesos de la red,
promoviendo que sean pequenos y distribuidos de manera més uniforme. Uno de los re-
gularizadores mas conocidos es el dropout. Esta técnica, propuesta por Geoffrey Hinton,
consiste en apagar aleatoriamente un nimero de neuronas durante el entrenamiento de
cada iteracién [10].

Hinton describe la inspiracion detras del dropout al compararlo con la rotacién alea-
toria de cajeros en un banco, donde la rotacion aleatoria evita posibles conspiraciones.
Analogamente, el dropout introduce ruido en las salidas de las capas. Esto ayuda a evitar
que la red memorice patrones insignificativos, lo que promueve una generalizacién mas
robusta al romper los patrones que podrian no ser relevantes para los datos de prueba.

En resumen, reducir el tamatio de la red y aplicar técnicas de regularizacion como el

dropout son estrategias efectivas para evitar el sobreajuste.

10

4. Physics-Informed Neural Networks (PINNs)

En 2018, Raissi, Perdikaris y Karniadakis introdujeron el concepto de PINN [2]. Las
PINNs podrian definirse como RNs que incluyen en la funciéon de coste la ecuacion dife-
rencial y las condiciones iniciales o de contorno. Esto hace que las PINNs sean ttiles a la
hora de resolver una gran variedad de ecuaciones diferenciales, tanto ordinarias (EDOs)
como ecuaciones en derivadas parciales (EDPs).

Una EDP es una relaciéon de la forma

y dy 0%y %y
"0, Oz, 0102, 01102,

Z(Z,y(7) =0 (10)

donde 7 = (x1,...,x,) es un vector de n dimensiones definido en una regién {2 € R™.
Para describir completamente el proceso fisico hace falta plantear el estado inicial del
proceso (condiciones iniciales para problemas de evolucién) y el régimen en la frontera
00 de la region © donde tiene lugar el proceso (las condiciones de contorno).

En EDPs que modelan procesos dindmicos (en los que el tiempo es una de las variables
independientes) hay que especificar una o més condiciones iniciales.

y(Z) es solucién de la Ecuacién |10y satisface las condiciones de frontera, dadas por la
Ecuacién [111

F(Z,y(@) =0 ¥e€ 0N (11)

Para una EDP, la capa de entrada se corresponde con & (n neuronas de entrada) y la
salida de la red representa la solucién y(Z) (1 neurona de salida). Cabe destacar que esta
explicacion se puede generalizar a ecuaciones diferenciales con solucién vectorial, es decir,
con varias neuronas en la salida, 7(Z).

Sea N¢y un conjunto de puntos, denotados como I'c; tales que I'c; € 092 y sea Ngpo
otro conjunto de puntos, denotados como I'gpo tales que I'ppo € int(€2), donde int(2)
denota el interior de (2.

Como hemos mencionado, la funcién de coste incluirda dos términos, uno debido a la
EDP (Cgpo) y otro debido a las condiciones frontera (Ccy). Definimos pues la funcion

de coste como la suma pesada de dos términos:

Cpiny = wgpo - Cepo +wer - Cor (12)

donde las funciones de coste son funciones del conjunto de puntos escogido y de los
pesos y sesgos de las capas ocultas, es decir, C' = C(0,1"), Cepo = Cepo(0,T'epo), Cor =
Cor(0,T¢r), I' = Tgpo + T'or v 0 se define como en la Ecuacién |§] En lo que sigue, se
omiten las dependencias por facilitar notacién.

Los hiperpardmetros wgpo y wer que aparecen en la Ecuacion[I2]se deben ajustar para
optimizar el funcionamiento de la red. En nuestro trabajo, se tomarda wgpo = wer = 1.

Definimos las funciones de coste como sigue:

2

(13)

N — ay red ay red 52y red azy red
Z (xa ypTed(l‘% L £ L .

dxy = Oz, Ox0xy’ 7 Oxy 0z,

11

1 -
Cor= 5 ¥ 1Flypeas (14)

Cl gerg;

La funcién de coste se minimizara de la misma manera que se ha explicado anteriormente.
Un valor de la funciéon de coste de la ecuacion diferencial (Cgpo) cercano a 0 indicara
que las predicciones de la red satisfacen la EDP en el conjunto de puntos que hayamos
escogido, I'gpo. Anadlogamente, un valor de la funcién de coste de las condiciones frontera
Ccr cercano a 0 indicard que se satisfacen las condiciones de frontera por las predicciones
de la red en los puntos del conjunto I'¢;.

Estas funciones siguen siendo una medida del éxito de la tarea que tiene la red de
predecir los resultados pero cada una en “lugares” distintos.

5. Resultados

En esta seccidon, se mostraran los resultados obtenidos para distintas EDOs. Comen-
zaremos mostrando un caso sencillo y posteriormente, ilustraremos dos ejemplos de ecua-
ciones dindmicas.

A lo largo del trabajo, se denotara al tiempo como x, en lugar de t, la forma habitual,
por coherencia con la notacion utilizada en el trabajo para RNs.

5.1. Ecuacion de movimiento constante

Para comprobar el funcionamiento correcto de la PINN, es conveniente entrenarla con

un caso sencillo. El sistema de EDOs que tratamos de resolver es el siguiente:

d

% =wv; con y(0)=0

d

% =wvy con y(0) =0 (15)
d

% =wv3 con y3(0) =0

donde v, v5 y v3 son constantes. Se ha tomado v; = 2,v9 =3 y v3 = 5.
La configuracién de la red con la que trabajaremos es la presentada en la Tabla [I]

12

Hiperparametro Valor
n? de datos de entrenamiento 50
mini-batch size)
Funcion de activacion elu
n® neuronas por capa 1,50,50,50,3
Optimizador Adam
Tasa de aprendizaje 0.001

Tabla 1: Hiperparametros para resolver el sistema de ecuacione

En este caso, la capa de entrada tiene 1 neurona, las 3 capas densas ocultas tienen 50
neuronas cada una y la capa de salida tiene 3 neuronas.

En la Figura [Bh se presenta la solucién analitica y la solucién predicha por la red. En la
Figura [5b se muestra la funcién de coste total, es decir, la suma de la funcién de coste de
la EDO (Cgpo) y la funcién de coste de las condiciones iniciales (C¢y). La convergencia de
las pérdidas es un buen método para indicar que el entrenamiento de la red ha finalizado.
En el caso de no converger, se deberian aumentar las épocas de entrenamiento. En este

caso, el entrenamiento se ha realizado con 100 épocas.

(@) (b)

10t 4

—— y(x) analitica
1759 ——= y(x) PINN

100 4

S e Y ; % o % % %
X Epocas
Figura 5: (a) Comparacién entre la solucién analitica (lineas continuas) y los resultados
predichos por la PINN (lineas discontinuas). (b) Evolucién de la funcién coste con el
nimero de épocas (escala logaritmica). La funcién de coste se corresponde con la suma
de la contribucién de la EDO y las condiciones iniciales (ver ecuacién .

Se aprecia claramente cémo la solucion analitica coincide con la predicha por la red,
con un EAM % del 0.32 %. El tiempo de ejecucién ha sido de 3.12 segundos.

Hemos comprobado que nuestra red entrena bien para los hiperparametros mostrados
en la Tabla (1| pero, ja qué se debe la eleccién de estos parametros? Pues bien, la eleccion
de estos parametros ha sido realizada a base de prueba y error. No existe ninguna férmula
matematica que nos devuelva la receta para que la PINN funcione de manera 6ptima.

13

Podriamos pensar que si aumentamos el nimero de puntos de entrenamiento la PINN
presentarfa un comportamiento mejor. Fijando el doble de puntos de entrenamiento (n?
de puntos de entrenamiento = 100) y realizando la misma simulacién, obtenemos prac-
ticamente el mismo error, 0.39% y un tiempo de ejecucién mayor, 4.56 segundos. Sin
embargo, si disminuimos el nimero de puntos de entrenamiento a la mitad (n? puntos de
entrenamiento = 25), obtenemos un tiempo de ejecucién menor, 2.72 segundos pero un
error del 1.79 %.

Concluimos que debe existir un valor éptimo para este pardmetro y que tener mas

puntos de entrenamiento no implica un mejor funcionamiento de la PINN.

5.1.1. Extrapolacion de la PINN con funciones lineales

En este apartado, queremos comprobar si la PINN es capaz de extrapolar o predecir el
comportamiento de las ecuaciones en un dominio mayor. Entrenando la red en el intervalo
z € (0,4) y representando el dominio temporal para z € (—9,9) obtenemos la Figura [6h.
Se observa coémo la red es capaz de predecir con bastante exactitud en el intervalo x € (4,9)
y como devuelve la solucién nula para z € (—9,0). Esto no deberia sorprendernos ya que
la red no tiene informacion sobre el comportamiento de la funciéon para intervalos de x
negativos. Si entrenamos la red en el intervalo € (—4,4) y realizamos la extrapolacion
ax € (—9,9) obtenemos la Figura [6b, que muestra un comportamiento simétrico.

(@) (b)

0] — Yy(x) analitica ‘ 0] — Yy(x) analitica
=== y(x) PINN

204

—204

—40 -40+

Figura 6: (a) Comparacién entre la soluciéon analitica (lineas continuas) y los resultados
predichos por la PINN (lineas discontinuas) entrenando en el rango de z € (0,4) y ex-
trapolando al rango de = € (—9,9). (b) Comparacién entre la soluciéon analitica (lineas
continuas) y los resultados predichos por la PINN (lineas discontinuas) entrenando en el
rango de = € (—4,4) y extrapolando al rango de = € (—9,9)..

En la Figura @a el error es del 41.7% (con respecto al exacto) y en la Figura |§|b
obtenemos un EAM % del 0.19% .

14

5.2. Modelo de Romeo y Julieta

El modelo de Romeo y Julieta es un sistema de ecuaciones diferenciales que simbo-
liza de manera matematica la dindmica emocional entre dos individuos. A continuacion,
trataremos de encontrar una soluciéon para el sistema de EDOs de Romeo y Julieta, que

viene dado por el siguiente sistema de ecuaciones.

dR
%——m-J con R(0) =1
(16)
dJ
@—n-R con J(0) =0

donde R(x) representa el amor (u odio si es negativo) de Romeo por Julieta a tiempo x y
J(x) representa el amor (u odio si es negativo) de Julieta por Romeo a tiempo x.

Los parametros m y n son constantes arbitrarias. Para nuestro estudio tomaremos
m=3 y n=>o.

Si nos fijamos en las ecuaciones, es un sistema de amor-odio. Cuanto més quiere Ju-
lieta a Romeo, mas decrece el amor de Romeo. Cuanto méas quiere Romeo a Julieta, mas
le quiere Julieta. Por tanto, la solucién es ciclica: una elipse en el plano R-J. Esto causara

una serie de problemas que trataremos de solucionar posteriormente.

En la Tabla [2| se muestran los hiperpardmetros que emplearemos en nuestra PINN
para resolver el sistema de ecuaciones [16, Una ventaja de las PINNs es que, con relativa
facilidad, es posible resolver multitud de ecuaciones diferenciales, tan s6lo modificando
unas lineas de cédigo. En este ejemplo, sélo se han modificado las lineas de codigo donde
se define la funcién de coste asociada a la EDO. Los hiperparametros utilizados son
practicamente los mismos que en la Tabla [1| salvo el niimero de puntos de entrenamiento
que se ha aumentado en un factor 10 y en este caso, el nimero de neuronas de entrada
sigue siendo 1 pero ahora el nimero de neuronas de salida es 2.

Hiperparametro Valor
n? de puntos de entrenamiento 500
mini-batch size 64
Funcién de activacion elu
n® neuronas por capa 1,50,50,50,2
Optimizador Adam
Tasa de aprendizaje 0.001

Tabla 2: Hiperparametros para resolver el sistema de ecuaciones

En la Figura |7k se presenta la prediccion de la red y la solucion analitica para las dos

componentes en un intervalo temporal z € (0, 2).

15

En la Figura[7p se representa la solucién analitica y la predicha por la red en el plano
R-J, que como hemos dicho anteriormente, es una elipse. El entrenamiento se ha realizado

con 1000 épocas.

(@) (b)

J] —— y(x) analitica
0.0

y(x) PINN

—0.51 =0.51

—— y(x) analitica
-==y(x) PINN

0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 2.00 -1.00 -0.75 —-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figura 7: (a) Comparacién entre la solucién analitica (lineas continuas) y los resultados
predichos por la PINN (lineas discontinuas) por componentes. (b) Comparacion entre
la solucién analitica (lineas continuas) y los resultados predichos por la PINN (lineas

discontinuas) en el plano R-J.

En este caso obtenemos un EAM % del 0.77 % que es considerablemente bajo.

Representamos en la Figura [§] la funcién coste total para comprobar la convergencia
del método. Se trata de la suma de la funcién de coste de la ecuacién diferencial y la
funcién de coste de las condiciones iniciales. En este caso, el método ha requerido 1000
épocas para converger, mientras que en el caso de la ecuacion de movimiento constante,

la convergencia se logré en solo 100 épocas.

1071 4

Coste

0 200 400 600 800 1000
Epocas

Figura 8: Evolucién de la funcién coste con el niimero de épocas (escala logaritmica) para
el sistema de ecuaciones |16 en el rango = € (0,2). La funcién de coste se corresponde con
la suma de la contribucién de la EDO y las condiciones iniciales (ver ecuacién .

16

5.2.1. Problemas asociados al dominio de entrenamiento

Las PINNs pueden presentar problemas cuando el dominio de entrenamiento crece.
Este hecho lo podemos observar en la Figura [9) donde se ha aumentado el dominio tem-
poral a x tales que 0 < z < 4. También se ha aumentado el nimero de épocas a 3000 para
asegurar la convergencia del célculo. En la Figura [Op Se observa que la solucién predicha
por la PINN sigue la tendencia oscilatoria pero decae a 0 y no coincide con la solucion
analitica a pesar de que el método haya convergido.

Una forma de mitigar el problema es eligiendo las funciones de activacién adecuadas.
En la Figura [h se ha empleado la funcién de activacién elu y en la Figura [Ob se ha
empleado la funcién de activacion tanh, manteniendo el resto de hiperparametros iguales.
En este caso, cambiar de la funcion de activacion elu a la tanh corrige el problema en el
intervalo elegido, como se ve en la Figura[9] La funcién tanh esta acotada mientras que la
elu no lo esta. Por tanto, para el caso de las constantes de movimiento la funcién elu era
adecuada, sin embargo, para funciones oscilantes, que estan acotadas, conviene utilizar

una funcién de activacién que no tienda a infinito.

(@) (b)

1.0

0.5

0.5

—0.51 -0.5

—— y(x) analitica
-==y(x) PINN

—— y(x) analitica
-==y(x) PINN

-1.0

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

Figura 9: (a) Comparacion entre la solucién analitica (lineas continuas) y los resultados
predichos por la PINN (lineas discontinuas) empleando la funcién de activacion elu, en
el rango x € (0,4) (b) Comparacién entre la solucién analitica (lineas continuas) y los
resultados predichos por la PINN (lineas discontinuas) empleando la funcién de activacién
tanh, en el rango = € (0,4).

Una vez comprobado que la red entrena adecuadamente, podemos realizar una serie
de cambios. Parece que para valores de x pequenos o cercanos a las condiciones iniciales,
la prediccion de la red muestra un comportamiento que coincide con la solucién analitica.
Sin embargo, cuando el rango de valores de x aumenta todavia mas, el problema vuelve a

aparecer como se ve en la Figura [10]incluso si se aumentan las épocas de entrenamiento.

17

(@) (b)

- T
- ~
~

- ~<

— y()analitica | | Nl Tmme—e—e - y(x) analitica
--- y(x) PINN --—y(x) PINN

0 2 4 " 6 8 10 -1.00 -0.75 -0.50 -0.25 UF0{0 0.25 0.50 0.75 1.00
Figura 10: (a) Comparacion entre la solucién analitica (lineas continuas) y los resultados
predichos por la PINN (lineas discontinuas) por componentes. (b) Comparacién entre
la solucién analitica (lineas continuas) y los resultados predichos por la PINN (lineas
discontinuas) en el plano R-J.

Observamos que, a pesar de que la PINN muestra un comportamiento oscilatorio, con
el paso del tiempo la solucion decae a 0. La hipodtesis es que la PINN encuentra una
solucion a las ecuaciones pero para distintas condiciones iniciales en cada punto. Esto
es tipico con funciones oscilantes. La razon por la que la PINN obtiene esta solucion
a pesar de que la funcién de coste de la EDO es muy baja es la siguiente: localmente
(en los puntos de entrenamiento), la red cumple bastante bien la EDO ya que, aunque
tiene menos amplitud, la solucién sigue oscilando. Esta amplitud va decayendo hasta que
alcanza la soluciéon y=0, la solucion trivial, que también cumple la EDO, haciendo que
la funcién de coste de la EDO siga siendo muy baja. Representamos en la Figura la
funcion de coste de la EDO y la funcion de coste de las condiciones iniciales, que dada la
tendencia y los valores obtenidos producen la falta impresion de que la prediccion de la
PINN es correcta.

(a) (b)

100]

Coste EDO
Coste CI

1073

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Epocas Epocas

Figura 11: (a) Evolucion de la funcién coste de la EDO con el niimero de épocas (escala
logaritmica) (ver ecuacién [13). (b) Evolucién de la funcién coste de las CI con el nimero
de épocas (escala logaritmica) (ver ecuacion

18

Podemos entonces concluir que la red entrena bien para intervalos pequefios de x,
cercanos a la condicion inicial. Cuando aumentamos el intervalo, la solucion decae a 0. La
funcién nula es soluciéon de la EDO y aunque no cumpla las condiciones iniciales, la red

es la unica soluciéon que encuentra.

5.2.2. Entrenamiento por subintervalos

Con el objetivo de mejorar el entrenamiento de la PINN para intervalos mayores y
lejanos a las condiciones iniciales proponemos en este trabajo un algoritmo iterativo que
consiste en dividir el dominio temporal en n subintervalos. Entonces, se implementa un
bucle en el que entrenamos la red en el primer subintervalo y fijamos el ultimo punto
de entrenamiento como si fuera una condiciéon de contorno. Estas nuevas condiciones de
contorno son dindmicas y se generan con las predicciones de la PINN entrenada con los
intervalos anteriores. Por tanto, las condiciones de contorno dindmicas (CCD) son pares
de datos (x,7) que se afiaden a la funcién de coste de las condiciones iniciales (Ccy).

Posteriormente, entrenamos la red en el primer y segundo intervalo con la primera
CCD fija, es decir, obligamos a la prediccion de la red a pasar por ese punto. Y asi
sucesivamente hasta, en la tltima iteracion, la red se entrena en todos los puntos del
dominio, que es la uniéon de todos los subintervalos, forzandola a pasar por todas las
CCD. Es decir, estamos realizando un entrenamiento acumulativo y forzando a la PINN
a pasar por unos puntos que se asumen son soluciéon de la EDO.

Introducimos pues un nuevo parametro, el nimero de subintervalos, n sub. El cdédigo
empleado se presenta en el Anexo[A] Fijando 10 subintervalos y entrenando la red con los
mismos pardmetros que en la Tabla[2]y 5000 épocas, obtenemos la Figura[12] Se muestran

las CCD generadas durante el entrenamiento de la PINN mediante simbolos.

1.0 4

0.5 1

_05 4

e CCD
~1.04 = y(x) analitica
= = y(x) PINN

0 2 4 6 8 10

Figura 12: Comparaciéon entre la soluciéon analitica (lineas continuas) y los resultados
predichos por la PINN (lineas discontinuas) junto a las CCD (circulos verdes) generadas
en el entrenamiento. El entrenamiento se ha realizado en el rango = € (0, 10) utilizando
10 subintervalos y 5000 épocas.

19

Realizando este procedimiento de entrenar por subintervalos, conseguimos reducir el
EAM % al 5.99 %. Cabe destacar también que para que la prediccion de la red pase por
todas las CCD, se ha de aumentar el nimero de épocas como se ha comentado anterior-

mente, con el consiguiente aumento del tiempo de ejecucién un factor 10.

Al estar entrenando por subintervalos, conviene conocer las pérdidas de cada subin-
tervalo. En la Figura [[3p se muestra la funcién de coste de la ecuacién diferencial para
cada subintervalo y en la Figura [I3p se muestra la funcién de coste de las condiciones
iniciales para cada subintervalo. Cabe destacar que en el subintervalo 2 se incluye también
el 1, en el subinervalo 3 se incluyen el 1 y el 2 y asi sucesivamente. Como hemos dicho, el
entrenamiento es acumulativo, y en el ultimo subintervalo se entrena la red en todos los

puntos del dominio.

Se observa en la Figura[I3|que la funcién coste decrece mucho en el primer subintervalo,
y en cada iteracién este decrecimiento es menor. Esto podria ser por lo descrito en el
parrafo anterior. En cada iteracién, la PINN es entrenada en un dominio mayor, y por
tanto la funcién de coste es mayor.

Subintervalo 1 10° 4
Subintervalo 2
Subintervalo 3
Subintervalo 4
Subintervalo 5
Subintervalo 6
Subintervalo 7
Subintervalo 8
Subintervalo 9
Subintervalo 10

Subintervalo 1
Subintervalo 2
Subintervalo 3
Subintervalo 4
Subintervalo 5
Subintervalo 6
Subintervalo 7
Subintervalo 8
Subintervalo 9
j —— Subintervalo 10

Coste EDO
Coste CI

104 4

[1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Epocas Epocas

Figura 13: (a) Evolucion de la funcién coste de la EDO con el niimero de épocas (escala
logaritmica) por subintervalo (ver ecuacién [L3). (b) Evolucién de la funcién coste de las
CI con el nimero de épocas (escala logaritmica) por subintervalo (ver ecuacién

5.2.3. Extrapolacion con funciones oscilantes

A continuacién, entrenaremos la red en el intervalo x € (0,2) y representamos la
extrapolacion de la prediccion de la red en la Figura al igual que se ha hecho en el
apartado[5.1.1] Para el caso de las constantes de movimiento, la red era capaz de predecir
el comportamiento de la funcién en un entorno del intervalo de entrenamiento. Notamos
de la Figura [I4] que en este caso, la red no es capaz de hacerlo. Esto se debe a que estamos
trabajando con una funcién oscilante que tiene patrones mas complejos que las funciones
lineales. Los datos de entrenamiento no cubren suficientes periodos de oscilaciéon y la red

no es capaz de aprender estos patrones de oscilacién.

20

y(x) analitica N —— y(x) analitica
-=- y(x) PINN ---y(x) PINN hN

-1.0 -0.5 0.0 0.5 1.0 15 2.0 25 3.0 -1.0 -0.5 0.0 0.5 1.0 15 2.0 25 3.0

Figura 14: (a) Comparacion entre la solucién analitica (lineas continuas) y los resultados
predichos por la PINN (lineas discontinuas) entrenando en el rango de x € (0,2) y extra-
polando al rango de x € (—1, 3) empleando la funcién de activacion elu. (b) Comparacién
entre la solucién analitica (lineas continuas) y los resultados predichos por la PINN (lineas
discontinuas) entrenando en el rango de = € (0,4) y extrapolando al rango de = € (-1, 3)

empleando la funcion de activacién tanh.

5.3. Ecuaciones de Lorenz

El sistema de Lorenz es el comienzo de la rama de las matematicas y la fisica aplicada
conocida como teoria del caos. Poincaré habia afirmado que pequenas variaciones en las
condiciones iniciales de ciertos sistemas pueden suponer grandes cambios en la evolucion
a lo largo del tiempo del sistema [11]. Un claro ejemplo de este tipo de comportamientos
se da en la evolucion del tiempo atmosférico.

En 1963, Edward Lorenz estudiando la conveccién atmosférica, se encontrd con un sis-
tema de ecuaciones diferenciales en tres dimensiones que mostraban este comportamiento
cadtico. Para ciertos valores en los parametros del sistema, las trayectorias tendian a
formar una figura que hoy es conocida como atractor de Lorenz. Un atractor es una re-
gién del espacio de fases hacia la cual convergen las trayectorias posibles de un sistema.
Ademas, corroboré la afirmacion de Poincaré, ya que dicho sistema era extremadamente
sensible a las condiciones iniciales. La contribucién de Lorenz no se reduce tinicamente a
descubrir el comportamiento cadtico de las ecuaciones, sino que reconoci6 un cierto orden
en el caos. En su investigaciéon mostré cémo un sistema determinista podia generar un

comportamiento cadtico.

21

Las ecuaciones de Lorenz vienen dadas por las ecuaciones siguientes.

d

%:a'(:%_yl) con yl(o)zl

dyo

T y1-(b—y3) —ys conys(0) =1 (17)
x

d

% = Y1Y2 — CY2 con y3(0) =

donde a es el nimero de Prandtl y b es el nimero de Rayleigh. Los tres parametros
a, by ¢ son estrictamente positivos. Normalmente se toma a=10, ¢=8/3 y b variable. El
sistema de Lorenz muestra un comportamiento cadtico para b=28.

En la Figura [15| se muestra la solucién al sistema de ecuaciones de Lorenz para los
parametros mencionados calculada mediante el método numérico de Runge-Kutta. Se ha
calculado para x € (0,40)

Atractor de Lorenz

y3(x)

0

5
Vi)™ 10 o

Figura 15: Representacion grafica del Atractor de Lorenz

A continuacién, se describe el proceso que permite resolver la ecuacién de Lorenz
mediante el uso de la PINN construida. Los hiperparametros de nuestra red vienen dados
esencialmente por los de la Tabla[2] Lo tinico que varia es el nimero de neuronas de la capa

de salida, que en este caso son 3. Nuevamente, destacamos la ventaja de la versatilidad
de las PINN.

22

Realizaremos el entrenamiento de la PINN por subintervalos como se ha explicado en
el apartado [5.2.2] Fijamos un dominio temporal x tales que 0<x<1.3. En este punto, el
comportamiento de atractor ya ha comenzado y es de esperar que la PINN necesite muchas
CCD para lograr imitar el comportamiento del atractor. Se ha realizado la simulaciéon con
20 subintervalos y 10000 épocas para que el método converja y la PINN pase por todas
las CCD generadas durante el entrenamiento de la PINN.

En la Figura [I6] se muestra la solucién predicha por la PINN y la obtenida mediante

el método numérico Runge-Kutta para las tres componentes del sistema.

El tiempo de ejecuciéon ha sido de 45 minutos. Reducir los tiempos de simulacién
constituye un desafio crucial para las PINNs; al igual que lo es en el resto de métodos
computacionales. En los ejemplos descritos en este trabajo, el algoritmo de Runge-Kutta
generalmente es mas rapido, dado que las EDOs involucradas no son computacionalmente
exigentes. No obstante, esta investigacion en PINNs y el método de las CCD pueden
ser relevantes en sistemas de ecuaciones parciales, donde los métodos clasicos suelen ser
notablemente mas lentos.

50
40
« CCD
301 === Ypnni(x)
—— y1(x) Runge-Kutta
2] === Ypnn2(x)
—— ya(x) Runge-Kutta
ad === Ypnnz(x)
01 —— y3(x) Runge-Kutta
.10<
0.0 0.2 0.4 0.6 0.8 1.0 12

X

Figura 16: Comparacién entre la solucién obtenida mediante el método Runge-Kutta
(lineas continuas) y los resultados predichos por la PINN (lineas discontinuas) junto a las
CCD (circulos verdes) generadas en el entrenamiento. El entrenamiento se ha realizado
en el rango x € (0, 1,3) utilizando 20 subintervalos y 10000 épocas.

En la Figura se muestra la predicciéon de la PINN junto a la solucion calculada

mediante el método numérico de Runge-Kutta en tres dimensiones.

23

—— y(x) PINN
y(x) Runge-Kutta

S 3
Y3(x)

= 0 \-\3
y_z(x) 10 15 -10

Figura 17: Comparacién entre la soluciéon obtenida mediante el método Runge-Kutta

(lineas continuas) y los resultados predichos por la PINN (lineas discontinuas) en 3D

6. Conclusiones

En este trabajo se ha estudiado la evolucion de sistemas dinamicos mediante el uso de

RNs, que resultan muy ttiles en la resolucién de EDOs, fundamentales en la fisica.

Las PINNs presentan grandes ventajas en comparaciéon con los métodos numéricos
tradicionales como se ha visto en este trabajo. Por ejemplo, destacamos su versatilidad.
En el transcurso de este trabajo se ha desarrollado una PINN capaz de abordar tanto
ecuaciones lineales como oscilantes en dominios pequenos y cercanos a las condiciones
iniciales. Ademas, se ha implementado el método de las CCD para que la misma PINN
fuera capaz de resolver las ecuaciones en un dominio temporal mayor.

El método propuesto ha demostrado ser efectivo, especialmente en la resolucion del
sistema de ecuaciones de Lorenz. Sin embargo, se reconoce la necesidad de optimizar
el tiempo de ejecucion. Esta optimizacion constituye un area de desarrollo para futuras
investigaciones.

En el trabajo también se ha visto la capacidad de extrapolacion de las PINNs para
sistemas de ecuaciones lineales. Sin embargo, no son capaces de predecir buenos resultados

fuera del rango de entrenamiento para funciones oscilantes.

En conclusion, las PINNs pueden ser una herramienta poderosa en la resolucion de
EDOs en fisica gracias a su capacidad de generalizacion, flexibilidad y a su eficiencia
computacional. Facilitan la resolucion de sistemas complejos y es un campo que permite

innovar y desarrollar el campo de la fisica aplicada y experimental.

24

7.

Bibliografia

Referencias

1]
2]

[10]

[11]

[12]

Frangois Chollet. Deep Learning with Python. Manning Publications, 2018.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686-707, 2019.

Luis Medrano Navarro et al. Solving differential equations with deep learning: a
beginner’s guide. Furopean Journal of Physics, arXiv:2307.11237v1, 2023.

Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric
sciences, 20:130-141, 1963.

Steven H. Strogatz. Love affairs and differential equations. Mathematics Magazine,
61:35-42, 1988.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386-408, 1958.

Angel Sanchez Ruiz. Descenso de gradiente estocéstico. 2019.

Aurélien Géron. Hands-on Machine Learning with Scikit-Learn, Keras and Tensor-
Flow. O'Reilly Media, 2017.

Jimmy Lei Ba and Diederik P. Kingma. Adam: A method for stochastic optimization.
In International Conference on Learning Representations (ICLR), 2015. Published
as a conference paper at ICLR, arXiv:1412.6980v9.

Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, and Nitish
Srivastava. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929-1958, 2014.

H. Poincaré. Les Méthodes nouvelles de la Mécanique Céleste. Gauthier-Villars et

Fils, Imprimeurs-Libraires, 1892.

M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

25

A. Anexo A: Cédigo

Listing 1: Codigo en Python para resolver el sistema de ecuaciones de Romeo y Julieta

entrenando la red por subintervalos.

1

2| # In[1]:#THE PINN CLASS

3

4| import tensorflow as tf

5| from tensorflow.keras.layers import Input, Dense

6| from tensorflow.keras.optimizers import Adam

7| import numpy as np

8| import matplotlib.pyplot as plt

9| import keras

10| import time

11

12| start_time = time.time ()

13

14lm = tf.constant (3.0, dtype=tf.float32)

15|n = tf.constant (5.0, dtype=tf.float32)

16

17| # defino la PINN

18

19| class ODE_1st(tf.keras.Model):

20

21 def __init__(self, x0, yO_exact, *args, **kwargs):

22 super () . __init__(*args, *xkwargs)

23 self.loss_tracker = keras.metrics.Mean(name="loss")

24 self.loss_ode_tracker = keras.metrics.Mean(name="loss_ode")

25 self.loss_boundary_tracker = keras.metrics.Mean(name="
loss_boundary")

26 self .x0 = xO0

27 self.y0_exact = yO_exact

28

29

30 def train_step(self, data):

31 # Training points and the analytical (exzact) solution at
this points

32 X, y_exact = data # entiendo q el y_ezxzact ahora es un
vector de 3 comps

33

34 # Calculate the gradients and update weights and bias

35 with tf.GradientTape() as tape:

36 # Calculate the gradients dy/dx #habr que hacer esto

para las 3 comps del wector

37 with tf.GradientTape () as tape2:

38 tape2.watch(self.x0)

39 tape2.watch (x)

40 yO_NN = self(self.x0, training=True)

41 y_NN = self(x, training=True) # la y_NN tiene 2

comps

26

42
43
44
45
46
47
48
49
50
o1
52
53
54

55

o6
o7
58
59

60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88

print ("forma,y_NN", y_NN.shape)
print ("forma_ de,x", x.shape)

dy_dx_NN = tape2.batch_jacobian(y_NN, x)

print ("Shapeof ,dy_dx_NN:", dy_dx_NN.shape)
print ("Shapeof ,y_NN:", y_NN.shape)
print ("Shape of x:", x.shape)

print (dy_dx_NN[:, 0, O].shape)
print (y_NN[:, 1].shape)
print (y_NN[:, O].shape)

loss_ode = self.compiled_loss(dy_dx_NN[:, 0, 0], -mx*(
y_NN[:, 11)) \
+ self.compiled_loss(dy_dx_NN[:, 1, 0], (nxy_NN[:,
01))

yO_NN = tf.reshape(yO_NN, shape=self.yO_exact.shape)

loss_boundary = self.compiled_loss(yO_NN, self.yO_exact
)

loss = tf.cast(loss_ode, dtype=’float32’) + \
tf.cast(loss_boundary, dtype=’float32’)

gradients = tape.gradient(loss, self.trainable_weights)
self .optimizer.apply_gradients(zip(gradients, self.
trainable_weights))
self.compiled_metrics.update_state(y_exact, y_NN)
self.loss_tracker.update_state(loss)
self.loss_ode_tracker.update_state(loss_ode)
self.loss_boundary_tracker.update_state(loss_boundary)

return {m.name: m.result() for m in self.metrics}

In[2]: #INIT PARAMETERS

x0 = tf.constant ([[0.0]], dtype=tf.float32)

x0 = tf.convert_to_tensor ([[0.0]], dtype=tf.float32)
yO_exact = np.array([[1.0, 0.0]11)

print (yO_exact.shape)

ejecuto la PINN
n_train = 500
xmin = O

xmax = 10.0

Definition of the function domain

x_train = np.linspace(xmin, xmax, n_train)
X_train = np.reshape(x_train, (n_train, 1))
print(x_train.shape) # (ntrain,1)

27

89| # The real solution y(z) for training evaluation

90| y_train = np.zeros((n_train, 2)) #2 neuronas de salida
91| print (y_train.shape)

92
93| # In[3]:#NEURAL NETWORK MODEL

94| # Input and output neurons (from the data)

95| input_neurons = 1

96| output_neurons = 2

97

98| epochs = 5000

99

100| minib_size = 64

101

102| # Definition of the the model
103| activation = ’tanh’

104| input_layer = Input(shape=(input_neurons,))

105|x = Dense (50, activation=activation) (input_layer)

106|x = Dense (50, activation=activation) (x)

107|x = Dense (50, activation=activation) (x)

108| output _layer = Dense(output_neurons, activation=None) (x)

109| print (x0.shape) # (1,1)

110| print (yO_exact .shape) # (1,2)

111} print (input_layer.shape) # (Nomne,1)
112| print (output_layer.shape) # (None,b2)

113

114

115| # Definition of the metrics, optimizer and loss
116/ 1loss = tf.keras.losses.MeanSquaredError ()
117|metrics = tf.keras.metrics.MeanSquaredError ()

118| optimizer = Adam(learning_rate=0.001)
119
120\ # In[4]:#ITERATIVE ALGORITHM
121|# Iterar sobre los subinterwvalos
122|n_subintervalos = 10

123
124| x0_1ist = []
125 print (x0_list)

126| yO_exact_list = [yO_exact]
127| print (yO_exact_list)
128

129/ losses_ode = []

130/ losses_boundary = []
131|losses = []

132|MSEs = []

133| predicciones = []

134

135/ for i in range(n_subintervalos):

136 xmin_sub = i * (xmax - xmin)/n_subintervalos

137 xmax_sub = (i + 1) * (xmax - xmin)/n_subintervalos
138 X_train_sub = np.linspace(xmin, xmax_sub, int(

139 n_train/n_subintervalos) * (i + 1))

28

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187
188
189

X_train_sub = np.reshape/(
x_train_sub, (int(n_train/n_subintervalos) * (i + 1),
y_train_sub = np.zeros((len(x_train_sub), 2))
Crear y_train para este subintervalo si es mnecesario
print ("Dimensiones_ de x_train_sub, paragelsubintervalo",
i, ":", x_train_sub.shape)
print("Dimensiones_ de,y_train_sub para,el subintervalo",

i, ":", y_train_sub.shape)

Set weights from previous model
if(i > 0):
model.set_weights (w)

x0_list.append(xmin_sub)

x0_array = np.array(xO_list)

print (x0_array.shape)

x0_array = np.reshape(x0O_array, (i+1, 1))
print (x0_array.shape)

print (x0_array[il])

if(i > 0):
yO_exact_i = model.predict(np.reshape(x0_array[i], (1,
yO_exact_list.append(yO_exact_i)
yO_exact_array = np.array(yO_exact_list)
else:
yO_exact_array = yO_exact

print ("y0O_exact_array, =", yO_exact_array)

x0_tensor = tf.constant(x0_array)
yO_exact_tensor = tf.constant(yO_exact_array)
print(x_train_sub.shape)

print (np.min(x_train_sub))

print (np.max(x_train_sub))

print ("SHAPE_ XO_ARRAY,=_,", np.shape(x0O_array),
" ; uSHAPE YO_EXACT_ =", np.shape(yO_exact))
model = O0DE_1st(x0=x0_tensor, yO_exact=yO_exact_tensor,
inputs=input_layer , outputs=output_layer)
model.compile(loss=1loss,
optimizer=optimizer,
metrics=[metrics])
history = model.fit(x_train_sub, y_train_sub,
batch_size=minib_size, epochs=epochs,
verbose=True)
losses.append(history.history[’loss’])
losses_ode.append(history.history[’loss_ode’])
losses_boundary.append (history.history[’loss_boundary’])
MSEs . append (history.history[’mean_squared_error’])

w = model.get_weights ()

29

1))

1))

190
191
192
193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234
235
236
237

In[5]:Metrics: total loss and MSE

Grafica las p rdidas por subinterwvalo
loss total

plt.figure(figsize=(8, 5))

for i, loss_sub in enumerate(losses):

plt.plot(loss_sub, label=f’Subintervalo, {i+1}’)
plt.xlabel(’ pocas ’,fontsize=12)
plt.ylabel(’Coste’,fontsize=12)

plt.yscale("log")

plt.title(’Funci ncoste durante el entrenamientopor,subintervalo
>’ fontsize=15)

plt.legend(loc="upper right",fontsize=10)

plt.savefig(’lossrjpartestocho.pdf’,dpi=500)

plt.show ()

for i, mse_sub in enumerate (MSEs):

plt.plot (mse_sub, label=f’Subintervalo {i+1}°’)
plt.xlabel(’ pocas ’)
plt.ylabel (’MSE’)
plt.yscale("log")
plt.title (’MSE durante el entrenamiento por,subintervalo’)
plt.savefig(’msesub_zmaxz=0,1_nsub=4_epochs=2000")
plt.legend(loc="upper,right")
plt.show ()

In[6]:Metrics: ODE losses
loss_ode
plt.figure(figsize=(8, 5))
for i, loss_ode_sub in enumerate (losses_ode):
SGR: loss_ode_sub instead of losses_ode
plt.plot(loss_ode_sub, label=f’Subintervalo {i+1}’)
plt.xlabel(’ pocas ’,fontsize=12)
plt.ylabel(’Coste’,fontsize=12)
plt.yscale("log")
plt.title(’Funci nycoste 0DE_ durante el entrenamiento pory
subintervalo’,fontsize=15)
plt.legend(loc="upper,right", fontsize=11)
plt.savefig(’loss_ode_subintervalo.pdf’,dpi=500)
plt.show ()

In[7]:Metrics: Boundary condition losses
loss_boundary
plt.figure(figsize=(8, 5))
for i, loss_boundary_sub in enumerate(losses_boundary):
SGR: loss_boundary_sub instead of lossess_boundary
plt.plot(loss_boundary_sub, label=f’Subintervalo {i+1}’)
plt.xlabel(’ pocas ’,fontsize=12)
plt.ylabel(’Coste’,fontsize=12)
plt.yscale("log")

30

238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

279
280
281
282
283
284
285
286

plt.title(’Funci nycoste C.I durante el entrenamiento pory

subintervalo’,fontsize=15)
plt.legend(loc="1lower ,left", fontsize=11)
plt.savefig(’loss_CI_subintervalo.pdf’,dpi=500)
plt.show ()

summarize history for loss and metris (todo)

plt.rcParams[’figure.dpi’] = 150

plt.plot(history.history[’loss’], color=’magenta’,
label=’Funci n, coste ($L_D + L_B$)’)

plt.yscale("log")

plt.xlabel(’ pocas ’)

plt.legend(loc=’upper,right’)

#plt.savefig(’losstotalrjpartes ’)

plt.show ()

In[8]:Check PINN predictions

raizlb5 = tf.sqrt(15.0)
print("raizlb", raizilh)
raizl15_3 = raiz15/3
print(raiz15_3)

n = 500

X = np.linspace(0, 10, n)
print (x.shape)
print (x)

y_exact = np.zeros((n, 2))

print (y_exact.shape)

tf.cos(raizi1b5%*x)

raiz15_3*tf.sin(raiz15x*x)

y_exact[:, 0]

y_exact[:, 1]
print (x.shape)
y_NN = model.predict(x)
print (y_NN.shape)

print (x0_array.shape)

print (yO_exact_array.shape)

print (x.shape, y_exact.shape)

print (np.squeeze (x0_array) .shape, np.squeeze(yO_exact_array) [:,

shape)
print (x0_array)
print (yO_exact_array)

Plot the results

LAS DOS COMPS

plt.scatter(np.squeeze (x0_array), np.squeeze(

yO_exact_array) [:, 0], label=’CCD’,color="limegreen")

31

0] .

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

plt.scatter(np.squeeze (x0_array), np.squeeze(
yO_exact_array)[:, 1], color="limegreen")

plt.plot(x, y_exact[:,0], color="royalblue",linestyle=’solid’,
linewidth=2.5,label="8$y(x)$,anal tica")

plt.plot(x, y_exact[:,1], color="royalblue",linestyle=’solid’,
linewidth=2.5)

plt.plot(x, y_NN[:,0], color="deeppink",linestyle=’dashed’,
linewidth=2.5, label="$y(x)$,PINN")

plt.plot(x, y_NN[:,1], color="deeppink",linestyle=’dashed’,
linewidth=2.5)

plt.legend ()

plt.title ("RJPARTES")

plt.legend(loc=’lower left’,fontsize=11)

plt.title("Soluci nyanal ticayvs PINN",fontsize=15)

plt.xlabel ("x",fontsize=15)

plt.ylabel("y",fontsize=15,rotation=0)

plt.savefig(’rjpartes2comps_x=10_5000_10sub.pdf’, dpi=500)

plt.show ()

ESPIRAL

plt.plot(y_exact[:,0] , y_exact[:,1],color="royalblue",linestyle="

solid’,
linewidth=2.5,1label="8%y(x)$,anal tica")

plt.plot(y_NN[:,0] , y_NN[:,1],color="deeppink",linestyle=’dashed’,

linewidth=2.5,1label="8$y(x)$,PINN")
plt.legend O)
plt.xlabel ("R(t)")
plt.ylabel ("J(t)",rotation=0)
plt.title(’Soluci nyrealvs PINN’)
#plt.savefig(’RJ_zmaz=0,1_nsub=4_epochs=2000"’)
plt.savefig(’rjparteselipse.pdf’,dpi=400)
plt.show ()

Fin del crom metro
end_time = time.time ()
Tiempo de ejecuct n

execution_time = end_time - start_time
print(f"Tiempode ejecuci n: {execution_timel} segundos")

fig, (axl, ax2) = plt.subplots(l, 2, figsize=(16, 6))
Plot ODE loss

for i, loss_ode_sub in enumerate(losses_ode):
axl.plot(loss_ode_sub, label=f’Subintervalo, {i+1}’)

32

337
338
339
340

341
342
343
344
345
346
347
348
349
350

351
352
353
354
355

356

357
358
359
360
361
362

axl.set_xlabel(’ pocas ’, fontsize=20)

axl.set_ylabel(’Coste EDO0’, fontsize=20)

axl.set_yscale("log")

#azxl.set_title(’Funci n coste ODE durante el entrenamiento por
subintervalo’, fontsize=15)

axl.legend (loc="upperyright", fontsize=13)

Plot CI loss
for i, loss_boundary_sub in enumerate(losses_boundary):
ax2.plot(loss_boundary_sub, label=f’Subintervalo, {i+1}’)

ax2.set_xlabel(’ pocas ’, fontsize=20)

ax2.set_ylabel(’Coste CI’, fontsize=20)

ax2.set_yscale("log")

#azx2.set_title(’Funci n coste C.I durante el entrenamiento por
subintervalo’, fontsize=15)

ax2.legend (loc="lower_ left", fontsize=13)

Agregar etiquetas (a) y (b) arriba de las subfiguras

fig.text(0.05, 0.97, ’(a)’, fontsize=20, verticalalignment=’top’,

horizontalalignment=’left’)

fig.text(0.55, 0.97, ’(b)’, fontsize=20, verticalalignment=’top’,

horizontalalignment=’left’)

Ajustar el layout para dejar espactio en la parte superior
plt.subplots_adjust (top=0.85)

plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.savefig(’loss_ode_CI_panel.pdf’, dpi=500)

plt.show ()

33

	Introducción
	Objetivos y metodología
	Conceptos básicos sobre redes neuronales
	Perceptrón
	Funciones de activación
	La función sigmoide
	La función tangente hiperbólica
	La función ReLU

	Arquitectura de una red neuronal
	La función de coste
	Entrenamiento
	Overfitting
	Técnicas de regularización

	Physics-Informed Neural Networks (PINNs)
	Resultados
	Ecuación de movimiento constante
	Extrapolación de la PINN con funciones lineales

	Modelo de Romeo y Julieta
	Problemas asociados al dominio de entrenamiento
	Entrenamiento por subintervalos
	Extrapolación con funciones oscilantes

	Ecuaciones de Lorenz

	Conclusiones
	Bibliografía
	Referencias
	Anexo A: Código

