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Abstract

Ruin theory is a field of applied probability that quantifies a firm’s vulnerability to insolvency and
ruin. In particular, we are about to study the classical model which starting with an initial capital u at time
t = 0, describes both cash flows: incoming premiums and outgoing claims. In particular, it is assumed
that the capital grows linearly with a constant rate c, and claims arrive according to a Poisson process. If
the capital of the company becomes negative at any time, then the ruin occurs. This work aims to describe
the ruin probability for this model. At the end, an approximation will be described since there does not
always exist a way to describe an explicit expression for it.

The work is divided into four chapters. Chapter 1 establishes the essential probabilistic concepts that
will be necessary to understand further contents. Specifically, it is divided into 7 sections. The first one
introduces concepts such as probability space, a random variable, and the distribution function. The se-
cond one includes the definition of mathematical expectation of both discrete and continuous random
variables and a statement of independent variables in terms of expectation, it also includes the definition
of moments and its particular case, the variance. The description of the families of distribution that will
be used in the following chapters can be found in the third section. The next section defines conditional
expectation and includes some of its properties. In section number five we describe the convolution for-
mula for independent random variables. A sixth section on the Laplace-Stieltjes transform that will be
needed to calculate the approximation in Chapter 4. A final section defining the concept of compound
distribution and its density function is included.

Chapter 2 describes the classical risk model and the probability of ruin. Firstly it introduces stochas-
tic processes, in particular, it defines in more detail the Poisson process that will be used to explain the
classical risk model. This chapter also defines the ruin probability. In order to give an expression of it,
we describe a variable called the maximum aggregate loss and we use it to describe the ruin probability
using the so called Beekman convolution formula. At the end we define the adjustment coefficient, which
is necessary to give the Lundberg exponential bound for the probability of ruin. This chapter is based on
Chapter 4 from [1], Chapter 1 from [2] and [7].

In Chapter 3 we study in more depth random sums (compound distributions) of the form:

S = X1 + · · ·+XN

were Xi are nonnegative random variables independent and identically distributed and N is independent
of the previous Xi. As seen in Chapter 2, random sums allow us to describe the losses in the classical
risk model. Random sums also allow us to compute ruin probabilities. Then we use the properties of the
conditional expectation defined in Chapter 1 to describe the expectation and the generating function of
S. That will give us the tools to give the ruin probability formula for a specific distribution, in particular,
we give an explicit formula when the amounts claimed are exponentials. Finally, we will state and prove
Panjer’s recursion theorem which gives a recursion formula for calculating the distribution function of
radom sums of random variables in a risk model when the summands are discrete random variables, but
not all types of N holds Panjer’s formula, so we will explain in more detail those that satisfies it. In this
chapter we have mainly used the third chapter of [1].

III



IV Abstract

We will conclude with Chapter 4, which gives us the theoretical basis that will be used to give ap-
proximations for compound distributions, which are an alternative to usual methods. We will use it to
obtain an approximation to the ruin probability formula when the claim amounts are exponential which
is given in Chapter 3. We will compare this approximation with those obtained when we use classical
discretization methods. To get the approximation we use Laplace-Stieljes transform and we describe so-
me of its properties and an error bound using gamma-type operators. This Chapter is based on [3] and
[4].
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Capítulo 1

Conceptos probabilísticos

En este capítulo introducimos algunos conceptos de probabilidad y distribuciones probabilísticas que
utilizaremos en los siguientes capítulos.

1.1. Primeras definiciones

Para cada experimento aleatorio podemos definir un espacio de probabilidad que nos va a permitir
estudiarlo.

Definición 1. Sea Ω espacio muestral, es decir, un conjunto formado por todos los sucesos asociados
a un experimento aleatorio. Sea F una familia de subconjuntos de Ω con estructura de σ−álgebra y
una función de probabilidad P: F −→ [0,1] tal que para todo A ∈ F , P(A) denota la probabilidad del
suceso A. Entonces llamamos espacio probabilístico a la terna (Ω,F ,P).

Al resultado de un suceso aleatorio le corresponde un valor numérico, que puede ser continuo o
discreto. Definimos formalmente este concepto como sigue.

Definición 2. Dado un espacio probabilístico (Ω,F ,P), definimos una variable aleatoria como una apli-
cación medible Borel X : Ω−→R tal que a cada valor de X le corresponde una un número real. Decimos
que una variable aleatoria es discreta si sus posibles valores constituyen un conjunto finito o numerable.
Además, si existe una función medible f : R−→ [0,∞) tal que P(X ∈ A) =

∫
A f (x)dx para todo boleriano

A, diremos que X es absolutamente continua.

La función de distribución de una variable aleatoria asigna a cada suceso definido la probabilidad
acumulada hasta un cierto valor, y la función de supervivencia es su complementaria.

Definición 3. Sea (Ω,F ,P) espacio probabilístico, dada una variable aleatoria X definimos la función
de distribución de X a la aplicación F: R −→ [0,1] definida por F(x) = P[X ≤ x]. Además, definimos
función de supervivencia de una variable aleatoria X como:

P(X > x) = 1−F(x) (1.1)

A continuación, recordamos el concepto de variables independientes.

Definición 4. Dada una colección de n variables aleatorias X1, . . . ,Xn definidas sobre el mismo espacio
de probabilidad, se dice que son independientes si cumplen

P(X1 ∈ B1, . . . ,Xn ∈ Bn) = P(X1 ∈ B1)· · ·P(Xn ∈ Bn), (1.2)

para cualesquiera conjuntos de Borel B1, . . . ,Bn ⊆ R.

1



2 Capítulo 1. Conceptos probabilísticos

1.2. Esperanza matemática

Nos referimos a la esperanza matemática de una variable aleatoria como su valor esperado y recor-
daremos su expresión según la variable sea continua o discreta.

Definición 5. Sea (Ω,F ,P) espacio de probabilidad y sea X variable aleatoria definida en dicho espacio,
entonces la esperanza o valor esperado de la variable aleatoria X , denotada por E[X ], está definida por la
integral Lebesgue

E[X ] =
∫
R

xdF(x) (1.3)

siempre que
∫
R |x|dF(x)< ∞.

Podemos distinguir dos casos según sea una variable aleatoria discreta o continua.

Proposición 1.1. Sea X una variable aleatoria discreta que puede tomar valores x1,x2, . . . ,xn, n ∈ N,
con probabilidad P(X = xi), definimos esperanza matemática de X como sigue:

E[X ] =
n

∑
i=1

xiP(X = xi) (1.4)

Siempre que ∑i |xi|P(X = Xi) < ∞. Análogamente, sea X una variable aleatoria continua con f (x) su
función de densidad, entonces la esperanza matemática de X es

E[X ] =
∫

∞

−∞

x f (x)dx (1.5)

Siempre que
∫

∞

−∞
|x| f (x)dx < ∞.

El siguiente resultado relaciona la independencia entre variables aleatorias y su esperanza.

Teorema 1.1. Sean X e Y variables aleatorias independientes, entonces E[XY ] = E[X ]E[Y ].

1.2.1. Momentos

Definición 6. Sea X una variable aleatoria, llamamos el momento r−ésimo al valor esperado de X r y
definido por mr = E[X r]. El r−ésimo momento centrado de una variable aleatoria X denotado por µr

queda definido como el valor esperado de (X −EX)r y viene dado por la siguiente fórmula

µr = E[(X −EX)r] (1.6)

Concretamente para r = 2, recibe el nombre de varianza y lo definimos de la siguiente manera:

Definición 7. Sea X una variable aleatoria, llamaremos varianza de X al segundo momento centrado de
X y la denotamos Var[X ]

Var[X ] = µ2 = E[(X −E(X))2] (1.7)

Y llamamos desviación típica de X a la raíz cuadrada de la varianza de X denotada por σ , esto es

σ =
√

VarX =
√

σ2 (1.8)

luego Var(X) = σ2.

Finalmente, recordamos el concepto de función generadora de momentos de una variable aleatoria

Definición 8. Sea X una variable aleatoria, su función generadora de momentos viene dada por MX(t) =
E[etX ] para todo t tal que dicha esperanza existe.

Observación 1.1. Recordemos que la función generadora de momentos, si existe en un entorno del
origen nos permite calcular los momentos de dicha variable mediante derivación sucesiva. Además la
función generadora de momentos caracteriza a la distribución.
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1.3. Distribuciones de probabilidad

En esta sección vemos algunas distribuciones de probabilidad importantes y que utilizaremos en
los siguientes capítulos, indicaremos también el valor esperado, la varianza y la función generadora de
momentos de cada una de ellas.

1.3.1. Distribución Binomial

La distribución binomial cuenta el número de éxitos en n ensayos independientes con probabilidad de
éxito p. Sea X una variable aleatoria discreta con distribución Binomial de parámetros n y p y denotada
por X ∼ Bin(n, p) entonces la probabilidad de obtener k éxitos en n ensayos es la siguiente:

P(X = k) =
(

n
k

)
pk(1− p)n−k, k = 0,1, . . . ,n (1.9)

La esperanza, la varianza y la función generadora de momentos de una variable aleatoria con función de
distribución binomial son las siguientes:

E[X ] = np Var[X ] = np(1− p) mX(t) = (1− p+ pet)n (1.10)

1.3.2. Distribución geométrica

Una variable aleatoria geométrica cuenta el número de fracasos antes del primer éxito en ensayos
independientes, cada uno de los intentos tiene probabilidad de acierto p. Sea X una variable aleatoria con
distribución geométrica de parámetro p y expresada X ∼ Geo(p), la probabilidad de n fracasos antes del
primer éxito, con probabilidad de éxito p es la siguiente:

P[X = k] = (1− p)k p, k = 0,1,2, , . . . (1.11)

La esperanza, la varianza y la función generadora de momentos de una variable aleatoria geométrica son
las siguientes:

E[X ] =
(1− p)

p
Var[X ] =

1− p
p2 mX(t) =

p
1− (1− p)et (1.12)

1.3.3. Distribución binomial negativa

La distribución binomial negativa es una ampliación de las distribuciones binomial y geométrica.
De hecho se utiliza para conocer el número de fracasos necesarios para conseguir r éxitos. Sea X una
variable aleatoria discreta que sigue una distribución binomial negativa con parámetros r y p denotada por
X ∼ BN(r, p), entonces la probabilidad de que en el k−ésimo ensayo independiente ocurra el r−ésimo
éxito viene dado por la siguiente formula:

P[X = k] =
(

r+ k−1
k

)
pr(1− p)k, k = 0,1,2, . . . (1.13)

La esperanza, la varianza y la función generadora de momentos de una variable aleatoria geométrica son
las siguientes:

E[X ] =
r(1− p)

p
Var[X ] =

r(1− p)
p2 mX(t) =

(
p

1− (1− p)et

)r

(1.14)

Notar que la distribución geométrica es un caso concreto de la distribución binomial negativa en la que
r = 1.
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1.3.4. Distribución de Poisson

Sea X una variable aleatoria discreta, se dice tiene una distribución de Poisson de parámetro λ deno-
tada por X ∼ Poi(λ ) si la probabilidad de que ocurra un suceso k veces viene dada por:

P(X = k)
λ ke−λ

k!
, k = 0,1, . . . (1.15)

La esperanza, la varianza y la función generadora de momentos de una variable aleatoria con distribución
de Poisson son las siguientes:

E[X ] = λ Var[X ] = λ mX(t) = exp(λ (et −1)) (1.16)

1.3.5. Distribución exponencial

Sea X una variable aleatoria continua decimos que tiene una distribución exponencial de parámetro
λ > 0 y lo denotamos X ∼ Exp(λ ) si tiene la siguiente función de densidad:

f (x) = λe−λx, 0 (1.17)

La esperanza, la varianza y la función generadora de momentos de una variable aleatoria con función de
distribución exponencial son las siguientes:

E[X ] =
1
λ

Var[X ] =
1

λ 2 mX(t) =
λ

λ − t
(1.18)

Observación 1.2. Una variable aleatoria exponencial es adecuada para describir tiempos de espera.

1.3.6. Distribución Gamma

Una variable aleatoria continua X que sigue una distribución gamma de parámetros α > 0 y β > 0 la
denotamos por X ∼ Γ(α,β ) tiene función de densidad:

f (x) =
β (βx)α−1e−βx

Γ(α)
, x > 0 (1.19)

donde Γ(α) es la función Gamma, es decir,

Γ(α) =
∫

∞

0
xα−1e−xdx (1.20)

La esperanza, la varianza y la función generadora de momentos de una variable aleatoria con función de
distribución gamma son las siguientes:

E[X ] =
α

β
Var[X ] =

α

β 2 mX(t) =
1

1− (1− t/β )α
(1.21)

Podemos relacionar la distribución gamma con otras distribuciones, por ejemplo la suma de n exponen-
ciales independientes de parámetro λ es una distribución Γ(n,λ ) con λ > 0, es decir, la distribución
exponencial es un caso particular de Gamma cuando α = 1. Una variable aleatoria gamma es adecuada
para describir tiempos de espera.
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1.4. Esperanza condicionada y propiedades

Dadas dos variables aleatorias X e Y definidas sobre el mismo espacio probabilístico, la esperanza
condicionada E[X |Y = y] representa el valor esperado de la variable X dado que la Y toma el valor y.
La existencia de dicha esperanza queda garantizada gracias al Teorema de Radon-Nikodym que esta-
blece una relación entre dos medidas definidas en el mismo espacio. Para su cálculo diferenciamos los
casos más usuales según sean variables aleatorias discretas o continuas. Sean X e Y variables aleatorias
discretas y P(X |Y = y) la probabilidad de X cuando Y = y, entonces la esperanza condicionada es

E[X |Y = y] =
n

∑
i=1

xiP(X = xi|Y = y) (1.22)

Análogamente, para X e Y variables aleatorias continuas y f (x|y) el valor de la función de densidad de
X condicionada a Y = y, la esperanza condicionada es

E[X |Y = y] =
∫

∞

−∞

x f (x|y) (1.23)

La siguiente propiedad la utilizaremos posteriormente.

Teorema 1.2. Sea (Ω,F ,P) espacio de probabilidad, y sean X e Y variables aleatorias , entonces
siempre que exista E[X ], tenemos

E[E(X |Y )] = E[X ] (1.24)

1.5. Convolución

La operación de convolución para distribuciones nos permite calcular la función de distribución
de la suma de dos variables aleatorias independientes. Sean X e Y variables aleatorias independientes,
entonces:

FX+Y (s) = P[X +Y ≤ s] =
∫

∞

−∞

FY (s− x)dFX(x) =: FX ∗FY (s)

Llamamos a FX ∗FY (s) la convolución de las funciones de distribución de las variables X e Y .
Si al menos una de las funciones de distribución FX ó FY es absolutamente continua, entonces FX ∗FY es
absolutamente continua.
Si ambas variables son discretas, sean sus respectivas funciones de masa de probabilidad FX y FY , enton-
ces la función de distribución y su respectiva función de masa de probabilidad son:

FX ∗FY (s) = ∑
x

FY (s− x) fX(x) fX ∗ fY (s) = ∑
x

fY (s− x) fX(x), ∀x con f (x)> 0 (1.25)

Análogamente, si X e Y son variables continuas, entonces:

FX ∗FY (s) =
∫

∞

−∞

FY (s− x) fX(x)dx fX ∗ fY (s) =
∫

∞

−∞

fY (s− x) fX(x)dx (1.26)

La n− ésima convolución de F , denotada por F∗n y viene definida como sigue:

F∗0(x) = δ0(x), n = 0 con δ0(x) =

{
1 si x ≥ 0
0 si x < 0

(1.27)

F∗n = F∗(n−1) ∗F = F ∗ · · · ∗F︸ ︷︷ ︸
nveces

, n ≥ 1 (1.28)

Observación 1.3. Utilizando la función generadora de momentos, se puede probar que la convolución
de distribuciones binomiales y Poisson resulta en una distribución binomial o Poisson. Del mismo modo,
la convolución de distribuciones geométricas genera una distribución binomial negativa y la convolución
de distribuciones exponenciales produce una distribución gamma.
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1.6. Transformada de Laplace-Stieltjes

La transformada de Laplace es una herramienta útil en muchas áreas de las matemáticas, formalmente
la definimos de la siguiente manera:

Definición 9. Dada f : [0,∞]−→ C, definimos la transformada de Laplace de f como la integral

L ( f )(z) =
∫

∞

0
e−zt f (t)dt (1.29)

Definimos la transformada de Laplace-Stieltjes similar a la transformada de Laplace y muy utilizada
en el área de la probabilidad cuando se trabaja con variables aleatorias no negativas.

Definición 10. Sea X una variable aleatoria no negativa con función de distribución F(x), definimos la
transformada de Laplace-Stieltjes de X como

φX(t) = E(e−tu) =
∫

∞

0
e−stdF(u) (1.30)

De hecho en el caso que X sea una variable aleatoria continua con función de densidad f (x), entonces la
transformada de Laplace-Stieltjes de X se simplifica a

φX(t) =
∫

∞

0
e−st f (u)du (1.31)

Notar que la transformada de Laplace-Stieltjes coincide con la función generadora de momentos,
excepto por un cambio de signo en el exponente. Además |φ(t)| < 1 para todo t ≥ 0, por lo que esta
transformada siempre existe y además caracteriza la distribución de partida. Además dadas dos variables
aleatorias independientes X e Y , la suma Z = X +Y satisface

φZ(t) = φX(t) ·φY (t) (1.32)

1.7. Distribución compuesta

Las distribuciones compuestas son de gran utilidad en matemática actuarial, como veremos en los
siguientes capítulos.

Definición 11. Sea X1,X2, . . . una sucesión de variables aleatorias positivas independientes e idéntica-
mente distribuidas y sea N una variable aleatoria no negativa, entera e independiente de Xi, entonces
SN = ∑

N
i=1 Xi es una variable aleatoria a la que llamamos distribución compuesta. Condicionando a los

posibles valores de N, la función de distribución de SN viene dada por

GSN (x) = P[S ≤ x] =
∞

∑
n=0

P[X1 + · · ·+XN ≤ x|N = n]P[N = n] (1.33)

=
∞

∑
n=0

P[X1 + · · ·+Xn ≤ x]P[N = n], x ∈ R (1.34)

Donde en la última igualdad hemos utilizado la independencia entre N y X1,X2, . . . De hecho, su función
de distribución se puede expresar utilizando la fórmula de convolución como sigue:

GSN (x) =
∞

∑
n=0

F∗n(x)P(N = n) (1.35)

donde F es la función de distribución de Xi y F∗n la n−ésima convolución de F . Si Xi es absolutamente
continua, con función de densidad f , si derivamos en (1.35 ) podemos calcular una expresión para su
función derivada:

g(x) =
∞

∑
n=0

f ∗n(x)P[N = n] (1.36)

donde f ∗n denota la n− ésima convolución de la función de densidad f .



Capítulo 2

Modelo de riesgo clásico y probabilidad de
ruina.

2.1. Introducción.

Nos situamos en el punto de mira de una entidad aseguradora y comenzamos con un ejemplo con-
creto: Consideramos todas las pólizas que cubren incendios en apartamentos de un barrio en una ciudad
y que están suscritas por una compañía de seguros, en este caso los bienes asegurados tienen un valor
comparable y las probabilidades de incendio probablemente no difieran mucho de un edificio a otro es
decir, tal conjunto de pólizas constituye una cartera de seguros homogénea.

En un negocio de seguros encontramos distintas ramas, tales como incendios, automóviles, robos,
salud, propiedad, pensiones, etc. Dentro de cada rama podemos encontrar carteras de seguros que cubren
riesgos distintos, por ejemplo, dentro del riesgo de incendio podemos diferenciar entre casas unifami-
liares, adosadas, apartamentos, tiendas, sitios industriales para los que hay que diseñar distintas carteras
de seguros ya que las probabilidades de incendio podrían variar y las cantidades reclamadas podrían ser
incomparables. Por ello trabajamos con una cartera específica caracterizada por elementos de naturaleza
tanto determinista como estocástica como pueden ser el capital inicial de la aseguradora, el número de
sucesos con sus respectivas cantidades reclamadas y el tiempo de ocurrencia entre ellos.

En este trabajo describiremos un modelo de riesgo clásico, que es aquel para el que el número de
imprevistos siguen un proceso de Poisson. Para ello primero describimos dicho proceso.

2.2. Introducción a los procesos estocásticos. El proceso de Poisson

La evolución en el tiempo del capital en una compañía de seguros se describirá mediante un proce-
so estocástico. Por ello comenzamos con una introducción a los procesos estocásticos en general, y el
proceso de Poisson en particular, que será necesaria para entender lo siguiente.

2.2.1. Procesos estocásticos

Los procesos estocásticos se utilizan en el estudio de las magnitudes aleatorias que evolucionan
respecto al tiempo. Matemáticamente podemos definirlo del siguiente modo:

Definición 12. Sea (Ω,F,P) un espacio probabilístico e I ⊆ [0,∞) un intervalo temporal. Un proceso
estocástico Z = {Zt}t∈I es un conjunto de variables aleatorias Zt : Ω −→ E donde E ⊆ R se denomina
espacio de estados.

Según la cardinalidad del conjunto I podemos diferenciar dos casos importantes, procesos estocásti-
cos en tiempo discreto si I es un conjunto numerable, por ejemplo, I = 1,2, · · · , o un proceso estocástico

7



8 Capítulo 2. Modelo de riesgo clásico y probabilidad de ruina.

en tiempo continuo si I es un conjunto infinito no numerable, por ejemplo I = [0,∞). El proceso estocás-
tico número de reclamaciones en una compañía de seguros hasta el instante t es un ejemplo de proceso
en tiempo continuo.

Análogamente, podemos diferenciar procesos estocásticos con espacio de estados discreto, por ejem-
plo E = {0( f also),1(verdadero)} (si estamos observando la ocurrencia o no de un determinado evento),
o continua, por ejemplo el precio en bolsa de una acción: E = [0,∞).

Definición 13. Sea Zt un proceso estocástico definido sobre (Ω,F ,P) y sea ω ∈ Ω, la trayectoria del
proceso está formada por los valores que el proceso toma sobre ω para cada instante de tiempo t, esto es,
por el conjunto {Zt(ω), t ∈ I}.

El siguiente gráfico dibuja una posible trayectoria (Nt , t ≥ 0) del número de reclamaciones recibidas
por una aseguradora hasta un tiempo t. Los instantes de tiempo Ti serán aleatorios, y representarán los
momentos donde se produce una nueva reclamación.

Nt

t -

6

T0 T1

r b
T2

r b
T3

r b

T4

r b

T5

r

Posible trayectoria del número de reclamaciones con respecto al tiempo

La evolución en el tiempo del capital en una compañía de seguros según el modelo de riesgo clásico
será un proceso estocástico con incrementos estacionarios e independientes, que se define como:

Definición 14. Sea (Z(t), t ≥ 0) un proceso estocástico entonces decimos que (Z(t), t ≥ 0) tiene incre-
mentos estacionarios e independientes si verifica que:

Dados n instantes de tiempo 0 ≤ t1 < t2 < · · ·< tn, las variables Z(t2)−Z(t1), · · · ,Z(tn)−Z(tn−1)
son independientes, es decir, si hay independencia entre los incrementos ocurridos en intervalos
disjuntos.

Dado un instante de tiempo arbitrario s ≥ 0 y un intervalo de tiempo t > 0, las distribuciones de
Z(t+s)−Z(s) y Z(t)−Z(0) coinciden, es decir , la distribución de los incrementos en un intervalo
de tiempo depende de su longitud pero no del instante inicial de observación.

Introducimos ahora los procesos de recuento que se pueden definir como procesos estocásticos en
los que las variables aleatorias contabilizan el número de veces que se repite un determinado suceso.
Formalmente lo definimos como sigue:

Definición 15. Se dice que un proceso estocástico (N(t), t ≥ 0) es un proceso de recuento si satisface:

(I). N(t)≥ 0.

(II). N(t) ∈ N ∀t.

(III). Si h < t entonces N(h)≤ N(t).

(IV). Para h < t, N(t)−N(h) cuenta el número de sucesos que han ocurrido en el intervalo (h, t].
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Ejemplos de procesos de recuento son los coches que pasan por un determinado punto de la carretera o
las reclamaciones de una compañía de seguros.

Una vez definidos estos conceptos, veamos un ejemplo importante y muy utilizado en los siguientes
apartados: El proceso de Poisson.

2.2.2. Proceso de Poisson

Veremos como el proceso de Poisson es un proceso de recuento definido en tiempo continuo y espacio
de estados discretos y por ello, es adecuado para describir el número de reclamaciones en una compañía
de seguros, lo que será muy útil en modelos de riesgo.

Trabajaremos más adelante con procesos de Poisson homogéneos, que se define como sigue.

Definición 16. Un proceso de Poisson homogéneo (N(t), t ≥ 0) de intensidad λ , verifica:

(I). N(0) = 0.

(II). Tiene incrementos estacionarios e independientes.

(III). N(t) tiene distribución de Poisson de media λ t.

(IV). Las trayectorias del proceso son funciones continuas a derecha y con límites a izquierda.

Observación 2.1. A partir de un instante arbitrario, el proceso que se observa es de nuevo un proceso
de Poisson, esta es una consecuencia de la propiedad de incrementos estacionarios e independientes.

Definición 17. Dado un proceso de Poisson de intervalo X , definimos Wi el tiempo entre la (i−1)−ésima
llegada y la i− ésima para i = 1,2, . . . por ejemplo, W1 denota el primer tiempo de llegada.
Notemos que

P(W1 > t) = P(N(t) = 0) = e−λ t , t > 0 (2.1)

esto es, W1 es exponencial de parámetro λ . Se puede probar que esto es generalizable a cualquier tiempo
entre llegadas, ya que el proceso de Poisson es de incrementos estacionarios e independientes. Una
propiedad que utilizaremos más adelante es la siguiente:

Proposición 2.1. Dado (N(t), t ≥ 0) un proceso de Poisson de parámetro λ , los tiempos entre llegadas
W1,W2, . . . son variables independientes, idénticamente distribuidas con distribución exponencial de
parámetro λ .

2.3. Modelo de riesgo

Como ya hemos mencionado antes, una cartera de seguros está caracterizada por elementos que
describiremos brevemente a continuación:

Denotamos por T1,T2 . . . los instantes de llegada de las reclamaciones, respectivamente W1,W2, . . . es
el tiempo que transcurre entre sucesivas reclamaciones, es decir, Wn = Tn −Tn−1.
El número total de sucesos durante un periodo de tiempo [0, t] es N(t) := sup{i ≥ 1 : Ti ≤ t} para t ≥ 0
y la cantidad reclamada asociada a Tn es Xn, por tanto S(t) = X1 +X2 + · · ·+XN(t) es el importe total
reclamado a la aseguradora en un periodo de tiempo t.
Llamamos Π(t) a los ingresos de aseguradora en un tiempo t, y U(t) denota el capital de esta en un
instante de tiempo t, así U(0) = 0 será el capital inicial de la aseguradora. Podemos expresar el capital
de la compañía en un instante t como sigue:

U(t) = u+Π(t)−
N(t)

∑
i=1

Xi (2.2)
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2.3.1. Modelo de riesgo clásico

El objetivo en este trabajo es analizar un modelo de riesgo clásico que se caracteriza por lo siguiente:

Los ingresos son lineales y por tanto Π(t) = ct,c > 0, donde c representará la tasa de ingresos de
la compañía por unidad de tiempo.

El número total de reclamaciones (N(t), t ≥ 0) sigue un proceso de Poisson homogéneo de inten-
sidad λ .

Las cantidades reclamadas X1,X2, . . . son variables aleatorias independientes e idénticamente dis-
tribuidas, no negativas e independientes del proceso de llegadas, con distribución común FX1 .

Si el total de cantidades reclamadas en un tiempo determinado es mayor que el capital inicial u mas
la suma de los ingresos en dicho tiempo, entonces U(t)< 0, es decir, el capital es negativo, si esto ocurre
decimos que hemos alcanzado la ruina en un tiempo t y al primer t en alcanzar la ruina lo denotamos T
y lo podemos expresar del siguiente modo:

T =

{
ı́nf{t | t ≥ 0, U(t)< 0} si U(t)< 0 para algún t
∞ si U(t)≥ 0 para todo t

A continuación vemos una representación gráfica del modelo:

Capital

0

u �
���

�

T 1

X1

���
�

X2

T 2

��
�

X3

T 3

��

X4

T 4=T
��

���

tiempo (t)

Capital de la compañía con respecto al tiempo

U(t) = u+ ct −S(t)

Si no hay reclamaciones, los ingresos anuales de la compañía son fijos, crecientes y con pendiente
c. Notar que en los instantes Ti en el que se produce la i-ésima reclamación el capital desciende una
cantidad Xi que se representa con un salto. Notar que en la cuarta reclamación se ha producido la ruina
de la compañía.

2.4. Probabilidad de ruina

En esta sección buscamos determinar la probabilidad de ruina en el modelo de riesgo clásico y bajo
la condición de de beneficio neto que definiremos a continuación.

Definición 18. La función probabilidad de ruina la expresamos como sigue:

ψ(u) = P( Ruina, con capital inicial u) = P(T < ∞)

Es decir, si T = ∞ significa que nunca se alcanza a la ruina.
A continuación vamos a definir la condición de beneficio neto y el factor de recargo. Veremos que la

primera es muy importante para garantizar que la ruina no sea un suceso seguro. El factor de recargo lo
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utilizaremos más adelante para dar una cota de la probabilidad de ruina. Recordemos por la proposición
2.1 que en un proceso de Poisson de tasa λ los tiempos entre llegadas Wi son exponenciales, y por tanto
E[Wi] = 1/λ .

Definición 19. Sean (Wi)i∈N∗ los tiempos entre reclamaciones, entonces decimos que si se cumple
cEWi −EXi = c/λ −EXi > 0, entonces diremos que se cumple la condición de beneficio neto. El factor
de recargo θ se define como c = (1+θ)λE[Xi], y por tanto:

θ =
c

λE[Xi]
−1 (2.3)

Notemos que la condición de beneficio neto, nos asegura que tenemos más ingresos esperados que
pérdidas esperadas por cada ciclo entre dos reclamaciones consecutivas. Notemos que θ = 0 significa
que c = λEXi, por lo que la compañía no llegaría a la solvencia (los ingresos esperados por ciclo iguala-
rían a las pérdidas). El factor de recargo, es por tanto una medida de la solvencia de la compañía.

Con el objetivo de dar una expresión que nos permita calcular la probabilidad de ruina, definimos la
variable pérdida máxima acumulada como la máxima diferencia en el tiempo entre los ingresos de la
aseguradora en dicho tiempo y los gastos de los que se tienen que hacer cargo y la denotamos por L,
entonces:

L = sup{S(t)− ct|t ≥ 0}
Observar que si L > u entonces existe un instante t tal que el capital para dicho t es negativo, es decir, la
compañía sufre la ruina y podemos concluir que L > u y T < ∞ son equivalentes y por ello:

ψ(u) = P(L > u) = 1−FL(u) (2.4)

2.4.1. Probabilidad de ruina como una suma

En esta sección estudiamos la probabilidad de no ruina y cómo se puede escribir como suma aleatoria
donde el número aleatorio de sumandos sigue una distribución geométrica.

Comenzamos probando que podemos descomponer L en una suma de variables aleatorias, para ello
consideramos los momentos en los que el proceso alcanza sus puntos más bajos y notamos que estos
necesariamente van a suceder en momentos en los que la aseguradora se hace cargo de algún siniestro.
Definimos descenso récord de la siguiente manera: En el primer instante en el que el capital de la com-
pañía de seguros se sitúe por debajo de u, se producirá el primer descenso récord, y L1 será la diferencia
entre ese mínimo y u. En general, denotamos por L j, j = 1,2, . . . a la diferencia entre el último mínimo
histórico y el anterior. Sea M el número aleatorio de descensos récord en toda la vida de la compañía,
tenemos:

L = L1 +L2 + · · ·+LM (2.5)

Entendemos mejor este concepto a través de la siguiente representación:

Capital

0

���
��

X1

��
��

L1 X2

�
��

X3
��

X4

L2

L3

tiempo (t)

Capital de la compañía con respecto al tiempo
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Destacar que la ocurrencia de un siniestro no implica que tenga asociado un cantidad L j, en nuestra
gráfica esto sucede con la tercera reclamación, es cierto que el capital sufre una caída pero no es lo
suficiente para llegar al mínimo alcanzado con la reclamación anterior. A su vez, tener asociado un
L j, no significa ruina, sino que se ha alcanzado un nuevo mínimo histórico, como ejemplo la cantidad
L1, donde tras la primera reclamación el capital es menor que el inicial, análogamente ocurre con la
segunda reclamación L2 y no es hasta la cuarta reclamación que volvemos a tener un mínimo histórico
y en este caso u < 0, y por ello estamos en ruina. Concretamente, en la trayectoria dibujada arriba, se
han producido 3 descensos récord, y el último (que ha sucedido en la cuarta reclamación), es el que ha
provocado la ruina de la compañía.
El proceso de Poisson, al ser de incrementos estacionarios e independientes, no tiene memoria y por ello
la probabilidad de que un determinado descenso récord sea el último siempre es la misma, además, los
descensos récord futuros se producirán independientemente de los descensos récord pasados. De este
hecho, se puede demostrar que M sigue una distribución geométrica y que las cantidades L1,L2, . . . son
independientes e idénticamente distribuidas. El parámetro de M que es la probabilidad de que el descenso
récord anterior sea el último, es igual a la probabilidad de no llegar a ruina con un capital inicial igual
a 0, por lo que es igual a 1−ψ(0). Así L es una suma aleatoria geométrica. La distribución de L viene
dada por el siguiente resultado:

Teorema 2.1 (Distribución de la pérdida máxima acumulada). Sea un modelo de riesgo clásico que
satisface la condición de beneficio neto. Definimos p := λE(X1)

c . Sea M el número aleatorio de descen-
sos récord y L la pérdida máxima acumulada, de modo que L = L1 + L2 + . . .LM se tiene que M es
independiente de (L j) j∈N y tiene distribución geométrica:

P(M = n) = (1− p)pn, n = 0,1, . . . (2.6)

Además la distribución de descensos récord es la siguiente:

P(L1 ≤ u) =
1

E(X1)

∫ u

0
P(X1 > s)ds, u ≥ 0 (2.7)

Esta expresión recibe el nombre de distribución de equilibrio.

Observación 2.2. La deducción del resultado anterior es larga pero se puede probar usando técnicas
elementales. Este no es el objetivo del trabajo pero en [2] podemos encontrar una prueba utilizando
transformada de Laplace.

De la expresión de la función de distribución para una distribución compuesta vista en (1.35) , pode-
mos deducir el siguiente resultado:

Corolario 2.1 (Fórmula de convolución de Beekman). Si L1 es la distribución de equilibrio vista en
el teorema anterior, la probabilidad de ruina puede ser expresada por la fórmula de convolución de
Beekman:

ψ(u) = P(L > u) =
∞

∑
n=1

(1− p)pnP(L1 + · · ·+Ln > u) (2.8)

Observación 2.3. La fórmula de convolución de Beekman nos señala que la probabilidad de ruina se
calcula como la cola de una suma geométrica. Además a partir de la distribución de equilibrio (2.7)
podemos deducir que los descensos récord son variables continuas.

Observación 2.4. En particular el resultado anterior nos garantiza que , bajo la condición de beneficio
neto, la ruina no es segura, ya que ψ(u) ≤ ψ(0) = p, donde la ultima igualdad se puede comprobar
particularizando en u = 0 en (2.8).

Aunque el corolario 2.1 nos indica la forma de calcular la probabilidad de ruina, sólo es posible
encontrar una expresión explícita para (2.8) en ejemplos muy concretos, por ello, utilizamos algunas
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fórmulas recursivas para el cálculo aproximado de la probabilidad, por ejemplo, la fórmula de recursión
de Panjer, que lo veremos en el siguiente capítulo.

Vamos a finalizar este capítulo dando una cota superior para la fórmula de la probabilidad de ruina,
primero introducimos algunos conceptos:

Definición 20. Dado el modelo de riesgo clásico con cantidades reclamadas distribuidas como X ≥ 0
con µ1 = E[X ] el coeficiente de ajuste R es la solución positiva de la siguiente ecuación en r (siempre
que dicha solución exista):

1+(1+θ)µ1r = mX(r) (2.9)

Donde mX(r) es la función generadora de momentos de X y θ es el factor de recargo definido en (2.3).

Para todos los valores de r se cumple que mX(t) es estrictamente convexa ya que m′′
X(t) = E[X2etX ]>

0, m′
X(0) = µ1 < (1+θ)µ1 y salvo excepciones, mX(t)→ ∞, por ello existe un único r > 0 que satisface

la ecuación y es el coeficiente de ajuste. Notar que para θ ↓ 0 el límite del coeficiente de ajuste R es 0 de
otro modo, si θ ↑ ∞, R tiende a la asíntota de mX(r) ó a ∞. El coeficiente de ajuste de la ecuación anterior
es equivalente a la solución en r de la ecuación λ + cr = λmX(r). Sea S(1) la cantidad total reclamada
en un intervalo de longitud 1, entonces c−S es el beneficio en ese intervalo. Puesto que S es una suma
aleatoria donde el número de sumandos sigue una distribución de Poisson de parámetro λ se tiene que
mS(r) = exp{λ (mX(r)−1)} por (1.16) y (3.1). Teniendo en cuenta lo último, el coeficiente de ajuste R
es solución de las siguientes ecuaciones equivalentes:

eRc = E[eRs]⇔ eRc = E[e−R(c−S)+Rc]⇔ mc−S(−R) = 1 ⇔ c =
1
R

logmS(r) (2.10)

Ejemplo (Coeficiente de ajuste en una distribución exponencial) Sea X distribuida exponencialmente
con parámetro β = 1

µ1
. El coeficiente de ajuste correspondiente es la solución positiva de

1+(1+θ)µ1r = mX(r) =
β

β − r
(2.11)

Para la última igualdad recordamos (1.17) y para despejar r, primero multiplicamos a ambos lados (β −
r):

(β − r)+(β − r)(1+θ)µ1r = β (2.12)

Pasamos todo al mismo lado de la igualdad y sacando r factor común, las soluciones son r = 0
(solución trivialmente excluida) y r tal que

1− (β − r)(1+θ)µ1 = 0 (2.13)

es decir,

r = R =
θβ

1+θ
(2.14)

Este caso admite una expresión explícita para el coeficiente de ajuste.

Veamos ahora un conocido resultado de F. Lundberg en teoría de ruina.

Teorema 2.2 (Cota exponencial de Lundberg para la probabilidad de ruina). Dado un modelo de riesgo
clásico con capital inicial u y coeficiente de ajuste R, entonces la probabilidad de ruina satisface la
siguiente desigualdad:

ψ(u)≤ e−Ru (2.15)

Demostración. Definimos ψk(u) para −∞ < u < ∞ y k = 0,1,2, ... como la probabilidad de arruinarse
antes o en la k− esima reclamación, concretamente cuando u < 0, ψk(u) = 1. Notar que ψk(u) es cre-
ciente en k, así para el caso k → ∞, ψk(u) crece hasta su límite que será ψ(u) para todo u, así, basta
probar que ψk(u)≤ e−Ru para cada k.
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Para k = 0 se satisface la desigualdad ya que si el capital u < 0 entonces la probabilidad ψ0(u) = 1
y ψ0(u) = 0 si u ≥ 0. Para k ̸= 0, vamos a obtener la siguiente expresión recursiva para ψk(u) en la
que x representa la magnitud de la primera reclamación y t el instante de tiempo en el que ocurre x,
en particular utilizamos que el primer tiempo de llegada en un proceso de Poisson tiene distribución
exponencial (recordar proposicición 2.1).

ψk(u) =
∫

∞

0

∫
∞

0
ψk−1(u+ ct − x)dFX1(x)λe−λ tdt (2.16)

Expliquemos la expresión anterior, notar intuitivamente que a partir del tiempo t observaríamos un
proceso de Poisson (recordar la observación 2.1 ), en el que el capital inicial ha disminuido una cantidad
x, es decir, tras la primera reclamación, el capital restante sería u+ ct − x. ψk−1 representa la probabi-
lidad de ruina desde ese momento hasta la k-ésima reclamación (ya que en ese intervalo habrán k− 1
reclamaciones), es decir, la probabilidad de ruina a partir de la primera reclamación.

Apliquemos inducción, supongamos que se cumple para k−1, es decir, ψk−1(u) ≤ e−Ru con u real.
Entonces, a partir de la expresión anterior:

ψk(u)≤
∫

∞

0

∫
∞

0
exp{−R(u+ ct − x)}dF(x)e−λ tdt

= e−Ru
∫

∞

0
λexp{−t(λ +Rc)}dt

∫
∞

0
eRxdF(x)

= e−Ru λ

λ + cR
mY (R) = e−Ru

Donde la ultima igualdad viene dada por la ecuación (2.5) del coeficiente de ajuste.



Capítulo 3

Modelo de Riesgo. Recursión de Panjer

En este capítulo estudiamos más en profundidad las distribuciones compuestas, que como hemos
visto, se utilizan para expresar las pérdidas de una compañía de seguros en un intervalo de tiempo y,
sobre todo, se utilizan para calcular la probabilidad de ruina en el modelo de riesgo clásico, además
veremos la recursión de Panjer que la utilizamos para expresar o aproximar su probabilidad.

3.1. Distribución compuesta

Suponer que S es una variable aleatoria compuesta descrita como en la introducción, utilizamos la
siguiente notación:

µk = E[Xk] F(x) = P(X ≤ x) G(s) = P(S ≤ s)

Vamos a calcular E[S] . Primero condicionaremos a N y luego utilizamos la independencia entre Xi y N.
Se sigue del siguiente modo:

E[S] = E[E[S|N]] =
∞

∑
n=0

E[X1 + · · ·+XN |N = n]P[N = n]

=
∞

∑
n=0

E[X1 + · · ·+Xn|N = n]P[N = n]

=
∞

∑
n=0

E[X1 + · · ·+Xn]P[N = n] =
∞

∑
n=0

nµ1P[N = n] = µ1E[N]

Observemos que en la penúltima desigualdad es donde se ha aplicado la independencia entre X1, . . . ,Xn

y N. Notar que el valor esperado del total reclamado coincide con el número de reclamaciones esperadas
multiplicadas por las dimensiones de dichas reclamaciones.

Utilizamos la misma técnica para calcular la función generadora de momentos:

mS(t) = E[etS] = E[E[etS|N]] =
∞

∑
n=0

E[et(X1+···+XN)|N = n]P[N = n]

=
∞

∑
n=0

E[et(X1+···+Xn)]P[N = n] =
∞

∑
n=0

E[etX1etX2 · · ·etXn ]P[N = n]

=
∞

∑
n=0

E[etX1 ]E[etX2 ] · · ·E[etXn ]P[N = n] =
∞

∑
n=0

{mX(t)}nP[N = n] =
∞

∑
n=0

n
(

elogmX (t)
)n

P[N = n]

= E
[
elogmX (t)·N

]
= mN(logmX(t))

(3.1)
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Ejemplo (Una distribución compuesta con forma cerrada.) Queremos ver cuál es la función de dis-
tribución de S cuando N sigue una distribución geométrica de parámetro p con 0 < p < 1, y X una
distribución exponencial de parámetro β . Para ello primero calculamos la función generadora de mo-
mentos de S e intentamos identificarla con la función generadora de momentos de una variable aleatoria
conocida. Para facilitar los cálculos denotamos q = 1− p y recordamos (1.12) tenemos que:

mN(t) =
∞

∑
n=0

ent pqn =
p

1−qet (3.2)

Recordad que X ∼ exp(β ) y por (1.18) su función generadora de momentos es mX(t) = (1− t/β )−1.
A partir de la expresión obtenida arriba de mS(t) tenemos:

mS(t) = mN(log(mX(t))) =
p

1−qmX(t)
= p+q

p
p− t/β

(3.3)

Ahora consideremos una variable aleatoria X con función de distribución:

G(x) = p+q(1− e−pβx) = 1−qe−pβx, x ≥ 0 (3.4)

Notar que mS(t) coincide con la función generatriz de una variable cuya función de distribución es G(x)
en (3.4) y así por la unicidad de la función generadora de momentos, se sigue que la función de distribu-
ción de S es (3.4), y por tanto tiene un salto en 0 de longitud p y de 0 en adelante se comporta como una
distribución exponencial de parámetro p.
Gracias a este ejemplo y a la fórmula de convolución de Beekman, podemos escribir de manera explícita
la probabilidad de ruina cuando las cantidades reclamadas son exponenciales.
Sea Xi ∼ Exp(β ), sustituyendo la función de distribución de la exponencial en la distribución de equili-
brio vista en (2.7) obtenemos:

P(Li ≤ u) = β

∫ u

0
e−βxds = 1− e−βu (3.5)

Así Li sigue una distribución exponencial de parámetro β y podemos utilizar el ejemplo anterior con
N ∼ Geo(1− p) y Xi ∼ Exp(β ), concretamente de (3.4) deducimos que P(L ≤ u) = 1− pe−(1−p)βu, es
decir, podemos expresar la probabilidad de ruina en este caso como sigue:

ψ(u) = P(L > u) = pe−βu(1−p) (3.6)

Este es uno de los pocos casos en los que la probabilidad de ruina se puede calcular de modo explícito.
Veamos ahora en otro ejemplo el cómputo de una suma aleatoria en la que N es Poisson y las cantidades
reclamadas son exponenciales para observar que en este caso, no podemos dar una fórmula cerrada.

Ejemplo (Distribución compuesta con cantidades reclamadas exponenciales y N Poisson.) Sean
Xi ∼ Exp(β ) y N ∼ Poi(λ ), queremos calcular la distribución de ∑

N
n=0 Xi. Por (1.17), sabemos que

f (x) = βe−βx, entonces X1+ · · ·+Xn por ser suma de exponenciales, es una variable aleatoria gamma de
parámetros n y β con función de densidad

f ∗n(x) =
β n

(n−1)!
xn−1e−βx, x > 0 (3.7)

Como N es una variable aleatoria de Poisson de parámetro λ , utilizando (1.36) podemos calcular la
función de distribución de ∑

N
n=0 Xi, que tendrá como derivada la siguiente expresión:

g(x) =
∞

∑
n=1

e−λ λ n

n!
β n

(n−1)!
xn−1e−βx, x > 0 (3.8)

Sin embargo, no es posible dar una expresión explicita para dicha expresión. Por tanto, si las cantidades
reclamadas son exponenciales, la distribución de la pérdida máxima acumulada adolece de este problema.
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3.2. Distribución del número de reclamaciones

Como se ha indicado en el capítulo anterior, un modelo frecuente para describir la distribución del nú-
mero de reclamaciones es la variable aleatoria de Poisson. Este es un modelo sencillo, ya que únicamente
tenemos que estimar un parámetro. Sin embargo, la adecuación de esta distribución debería contrastarse
con datos históricos. En los casos prácticos, no siempre tendremos datos suficientes para contrastar si
una distribución de Poisson es adecuada para N. Sin embargo notemos que en una distribución de Pois-
son de parámetro λ , tanto la esperanza como la varianza son iguales a λ . Si Var[N]/E[N] > 1, es decir,
existe una sobredispersión, entonces una posible candidata sería la distribución binomial negativa como
muestra el siguiente ejemplo.

Ejemplo (Distribución de Poisson) Imaginar que un conductor de coche provoca un número de acci-
dentes anuales que siguen una distribución Poi(λ ). El parámetro λ es desconocido y diferente para cada
conductor. Asumimos que λ es resultado de una variable aleatoria Λ, entonces la distribución condicio-
nada al número de accidentes N anuales es Poi(λ ) con Λ = λ Veamos cuál es la distribución marginal de
N: Sea U(λ ) = P(Λ ≤ λ ) la función de distribución de Λ, entonces podemos escribir las probabilidades
marginales de N = n como sigue:

P(N = n) =
∫

∞

0
P(N = n|Λ = λ )dU(λ ) =

∫
∞

0
e−λ λ n

n!
dU(λ ) (3.9)

Asumimos que Λ ∼ Γ(α,β ) entonces:

mN(t) = E[E[etN |Λ]] = E[eΛ(et−1] = mΛ(et −1) (3.10)

=

(
β

β − (et −1)

)α

=

(
p

1− (1− p)et

)α

(3.11)

donde p = β/(β +1). Notar que la fórmula anterior coincide con la función generadora de momentos de
una binomial negativa de parámetros α y p= β

β+1 , es decir, BN(α, β

β+1), por tanto sustituyendo en (1.14)

tenemos E[N] = α

β
y Var[N] = α(β+1)

β 2 por lo que la binomial negativa sería un modelo que describiría la
sobredispersión debida a la aleatoriedad de Λ. El valor de de Λ no es es una variable aleatoria observable
para un conductor concreto, pero si pudiéramos observar a dicho conductor por un largo periodo de
tiempo, notaríamos que la frecuencia de accidentes observados en un año, converge a su frecuencia a
largo plazo, siempre que su patrón de siniestros no cambie.

3.3. Recursión de Panjer

En el año 1981, Panjer describió un método para calcular recursivamente la función de masa de
probabilidad de una distribución compuesta cuando las cantidades reclamadas son discretas. Esta fórmula
es muy conocida en el entorno actuarial y aparece en la mayoría de los libros de texto actuales en esta
materia. Una de las utilidades de esta fórmula es dar aproximaciones para la probabilidad de ruina, como
veremos más adelante. El resultado es el siguiente:

Teorema 3.1. Considerar una distribución compuesta S = ∑
N
i=1 Xi donde los sumandos Xi son variables

aleatorias que toman valores sobre los enteros no negativos, con función de masa de probabilidad p(x),
x = 0,1, . . . . Considerar que N, el número aleatorio de sumandos tiene función de masa de probabilidad
qn = P(N = n), satisfaciendo que

qn = (a+
b
n
) ·qn−1, n = 1,2, . . . (3.12)

Sea g(s) = P(S = s), s = 0,1, . . . entonces se satisfacen las siguientes relaciones de probabilidad:

g(0) =

{
P(N = 0) si p(0) = 0;
mN(log p(0)) si p(0)> 0;

(3.13)
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Donde mN es la función generatriz de momentos de N, y

g(s) =
1

1−ap(0)

s

∑
h=1

(
a+

bh
s

)
p(h) f (s−h), s = 1,2, . . . (3.14)

Demostración. Notar que por ser reclamaciones independientes e idénticamente distribuidas y no ne-
gativas, tenemos que P(X1 + · · ·+Xn = 0) = pn(0), entonces el valor de f (0) lo obtenemos de (1.35) a
partir de

F(S = 0) =
∞

∑
n=0

P(N = n)pn(0) =
∞

∑
n=0

P(N = n) exp [n log(p(0))] (3.15)

Para hallar la segunda igualdad, escribimos Tk = X1 + · · ·+ Xk y notar que por idéntica distribución
tenemos la siguiente igualdad:

E
[

a+
bX1

s

∣∣∣∣Tk = s
]
=

1
k

k

∑
i=1

E
[

a+
bXi

s

∣∣∣∣Tk = s
]
= a+

b
sk

E[Tk|Tk = s] = a+
b
k
. (3.16)

Análogamente, podemos describir la misma esperanza como sigue:

E
[

a+
bX1

s

∣∣∣∣Tk = s
]
=

s

∑
h=0

(
a+

bh
s

)
P[X1 = h|Tk = s] (3.17)

Utilizando que P[X1 = h|Tk = s] = P[X1 = h,Tk −X1 = s−h]/P[Tk = s] y que las Xi son independientes,
se sigue de (3.16) y (3.17)

a+
b
k
=

s

∑
h=0

(
a+

bh
s

)
P[X1 = h]P[Tk −X1 = s−h]

P[Tk = s]
(3.18)

Utilizando los resultados (3.12) y (3.18) tenemos que para s = 1,2, . . .

g(s) =
∞

∑
k=1

qkP(Tk = s) =
∞

∑
k=1

qk−1

(
a+

b
k

)
P(Tk = s)

=
∞

∑
k=1

qk−1

s

∑
h=0

(
a+

bh
s

)
P(X1 = h)P(Tk −X1 = s−h)

=
s

∑
h=0

(
a+

bh
s

)
P(X1 = h)

∞

∑
k=1

qk−1P(Tk −X1 = s−h)

=
s

∑
h=0

(
a+

bh
s

)
P(X1 = h)p(h)g(s−h)

= ap(0)g(s)+
s

∑
h=1

(
a+

bh
s

)
P[X1 = h]p(h)g(s−h).

Notemos que en la penúltima igualdad se ha tenido en cuenta que P(Tk −X1 = s−h) = P(X2+ · · ·+Xk =
s−h)= P(X1+ · · ·+Xk−1 = s−h)= P(Tk−1 = s−h) lo cual es cierto por ser Xi idénticamente distribuidas
para todo i, y por tanto el segundo sumatorio coincide con g(s− h). De la expresión anterior podemos
obtener:

g(s)(1−ap(0)) =
s

∑
h=1

(
a+

bh
s

)
p(h)g(s−h) (3.19)

Y finalmente nos quedaría:

g(s) =
1

1−ap(0)

s

∑
h=1

(
a+

bh
s

)
p(h)g(s−h) (3.20)
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Ejemplo (Distribuciones apropiadas para la recursión de Panjer) Las distribuciones que satisfacen
la relación (3.12) son las siguientes:

I. Distribución de Poisson, notar:

qn =
e−λ λ n

n!
=

λ

n
e−λ λ n−1

(n−1)!︸ ︷︷ ︸
qn−1

n ∈ N (3.21)

Así a = 0 y b = λ ≥ 0 y (3.13) y (3.14) se simplifica como sigue:

g(0) = e−λ (1−p(0));

g(s) =
1
s

s

∑
h=1

λhp(h) f (s−h);

Si a+b = 0, entonces q0 = 1 y q j = 0 para j = 1,2, . . . , y obtenemos una distribución Poi(0).

II. Distribución de Pascal o distribución binomial negativa, notar:

qn =

(
r+n−1

n

)
(1− p)r pn

=

(
(1+ p)+

(1− p)(r−1)
n

)(
r+n−2

n

)
(1− p)r pn−1︸ ︷︷ ︸

qn−1

, n ∈ N

De aquí obtenemos a = 1− p y b = (1− p)(r−1) = a(r−1) , es decir, una distribución BN(r, p)
con p = 1−a y r = 1+b/a, y por lo tanto 0 < a < 1 y a+b > 0.

III. Distribución Binomial, observar:

qn =

(
k
n

)
pn(1− p)k−n

=

(
p

p−1
+

p(k+1)
(1− p)n

)(
k

n−1

)
pn−1(1− p)k−n+1︸ ︷︷ ︸

qn−1

, 0 ≤ k ≤ n

Despejando obtenemos a = p/(p−1) y b = p(k+1)/(1− p) entonces a < 0 y b =−a(k+1)> 0.

Hemos visto que si a+ b = 0 estamos ante una distribución Poi(0), excluyendo este caso, existen va-
lores de a y b para los que qn = (a+ b

n)qn−1 para todo n = 1,2, . . . no admite ninguna distribución de
probabilidad válida, estos casos son los siguientes:

Una probabilidad no puede ser negativa pero en el caso de q0 tampoco puede ser 0 ya que entonces
tendríamos qn = 0 para n = 1,2, . . . y la suma de probabilidades no será 1, por tanto q0 ≤ 0 no es
factible y como consecuencia q0 > 0.

a+b < 0 implica q1 < 0, lo que tampoco es posible por ser una probabilidad.

Si a < 0 y a ̸= b/n , entonces (a+b/n)< 0 para algún n y las probabilidades serían negativas, por
lo tanto, no es factible.

si a ≥ 1 y a+ b > 0, entonces nqn = ((n−1)a+a+b)qn−1, así qn >
q1
n ,n = 1,2, . . . y por tanto

∑n qn = ∞ y tampoco es factible ya que la suma de probabilidades debería dar 1.
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Ejemplo Si X son variables aleatorias enteras y no negativas, consideramos una distribución de Poisson
compuesta con λ = 4 y P(X = 1,2,3) = 1

4 ,
1
2 ,

1
4 , utilizando el ejemplo anterior, tenemos:

g(s) =
1
s
[ f (s−1)+4 f (s−2)+3 f (s−3)], s = 1,2, . . . (3.22)

Comenzando con el valor f (0) = e−4 ≈ 0,0183. Tenemos:

g(1) = f (0) = e−4,

g(2) =
1
2
[ f (1)+4 f (0)] =

5
2

e−4,

g(3) =
1
3
[ f (2)+4 f (1)+3 f (0)] =

19
6

e−4

y así sucesivamente.

En el apéndice A tenemos un programa de R que nos iría calculando la función de masa de probabi-
lidad en este caso.



Capítulo 4

Aproximaciones a la probabilidad de ruina

El objetivo de este capítulo es encontrar una aproximación a una distribución compuesta, es decir, a la
distribución de sumas aleatorias, para ello tratamos de sustituir cada sumando por una variable aleatoria
discreta cuya función de masa de probabilidad podamos calcular a través de la transformada de Laplace.
Primero damos una introducción de los procesos gamma que utilizaremos más adelante.

Definición 21. Sea (S(u),u ≥ 0) un proceso estocástico ,diremos que es un proceso gamma si verifica:

I. S(0) = 0.

II. Tiene incrementos estacionarios e independientes.

III. S(u) tiene densidad gamma de parámetros α = u y β = 1.

IV. Las trayectorias del proceso son funciones continuas a derecha y con límites a izquierda.

4.1. Discretización de una variable aleatoria no negativa usando su trans-
formada de Laplace-Stieltjes

Sea X una variable aleatoria no negativa y sea F su función de distribución, denotamos por φX la
transformada de Laplace-Stieltjes de X definida:

φX(t) := E[e−tX ] =
∫

∞

0
e−tudF(u), t > 0 (4.1)

Con el objetivo de discretizar X , definimos para todo t > 0 la variable aleatoria X•t que toma valores k
t ,

k ∈ N de modo que:

P
(

X•t =
k
t

)
=

(−t)k

k!
φ
(k)
X (t), k ∈ N (4.2)

donde φ
(k)
X denota la k− ésima derivada de φX , sea Ft(x) la función de distribución de X•t :

Ft(x) := P(X•t ≤ x) =
[tx]

∑
k=0

(−t)k

k!
φ
(k)
X , x ≥ 0 (4.3)

donde [x] se refiere al mayor número entero que es menor o igual que x. No es contenido de este trabajo,
pero está probado que Ft converge a F en todo punto de continuidad de F (es decir, se da la convergencia
en distribución de X•t a X) [5], y por ello, podemos utilizar X•t para aproximar X .

Para calcular la función de masa de probabilidad de X•t se necesita la transformada de Laplace-
Stieltjes de X y sus derivadas. Como ejemplo, vamos a ver cómo quedaría la aproximación cuando X
sigue una distribución gamma Γ(β ,α), entonces su transformada de Laplace-Stieltjes es la siguiente:

φX(t) =
(

α

α + t

)β

(4.4)

21
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Observar que coincide con la función generadora de momentos vista en (1.21) con el signo cambiado.
Unos cálculos sencillos nos llevarían a probar que la función de masa de probabilidad de X•t es la
siguiente ( ver [5]):

P(X•t = k/t) =
(

β + k−1
k

)(
t

t +α

)k(
α

t +α

)β

, k ∈ N, t > 0 (4.5)

Nuestro objetivo es aplicar este método a una suma aleatoria de variables aleatorias. Veamos como ha-
cerlo:

Sea (Xi)i∈N∗ una sucesión de variables aleatorias independientes e idénticamente distribuidas, aplica-
mos (4.2) a cada una de las Xi para obtener (X•t)i∈N∗ una sucesión de variables aleatorias independientes
e idénticamente distribuidas. De este modo podemos utilizar ∑

M
i=1 X•t

i para obtener una aproximación
de ∑

M
i=1 Xi. Una de las ventajas computacionales de este método es la siguiente: Si podemos calcular

la transformada de Laplace de ∑
M
i=1 Xi, entonces el método se puede aplicar directamente obteniendo(

∑
M
i=1 Xi

)•t . En relación a esto, veamos el siguiente resultado:

Proposición 4.1. Sea (Xi)i∈N∗ una sucesión de v.a.i.i.d con función de distribución común F, considera-
mos (X•t

i )i∈N∗ , con t > 0 una sucesión de v.a.i.i.d cuya función de masa de probabilidad viene dada al
aplicar (4.2) para cada Xi, entonces:

(a) Se cumple
X•t

1 + · · ·+X•t
n ≡ (L )(X1 + · · ·+Xn)

•t , t > 0,n ∈ N∗

donde ≡ (L ) significa igualdad en distribución.

(b) Sea M una variable aleatoria no negativa e independiente de (Xi)i∈N∗ . Se cumple:

M

∑
i=1

X•t
i ≡ (L )

(
M

∑
i=1

Xi

)•t

, t > 0

Demostración. Probamos el apartado (a) por inducción sobre n. Sea t > 0, y k ∈ N, el caso n = 1 es
trivial, para el caso general, primero probaremos que si X1 e Y1 son independientes (no necesariamente
idénticamente distribuidas), entonces X•t

1 +Y •t
1 ≡ (L )(X1+Y1)

•t , para ello utilizamos (4.2) como sigue:

P
(
(X1 +Y1)

•t =
k
t

)
=

(−t)k

k!
φ
(k)
X1+Y1

(t) =
(−t)k

k!
(φX1(t)φY1(t))

(k)

donde la segunda igualdad es cierta por ser X1 e Y1 independientes. A continuación aplicamos la regla de
Leibniz para derivadas de un producto de orden superior.

P
(
(X1 +Y1)

•t =
k
t

)
=

(−t)k

k!

k

∑
j=0

(
k
j

)
φ
( j)
X1

(t)φ (k− j)
Y1

(t)

=
k

∑
j=0

(−t) j

j!
φ
( j)
X1

(t)
(−t)k− j

(k− j)!
φ
(k− j)
Y1

(t)

=
k

∑
j=0

P
(

X•t
1 =

j
t

)
P
(

Y •t
1 =

k− j
t

)
= P

(
X•t

1 +Y •t
1 =

k
t

)
(4.6)

Así pues, asumimos que (a) se cumple para n y vemos que para n+ 1, tenemos por (4.6) aplicado a
Y1 = X2 + · · ·+Xn+1 lo siguiente:

X•t
1 + · · ·+X•t

n +X•t
n+1 ≡ (X1)

•t +(X2 + · · ·+Xn+1)
•t ≡ (L )(X1 + · · ·+Xn +Xn+1)

•t
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El apartado (b) se sigue a partir del apartado (a) , ya que para todo x ≥ 0 tenemos,

P

(
M

∑
i=1

X•t
i ≤ x

)
=

∞

∑
n=0

P(M = n)P(X•t
1 + · · ·+X•t

n ≤ x)

=
∞

∑
n=0

P(M = n)P((X1 + · · ·+Xn)
•t ≤ x) = P

((
M

∑
i=1

Xi

)•t

≤ x

)

Lo que prueba el apartado (b).

Observación 4.1. Consideramos C [0,∞) el conjunto de funciones continuas definidas en [0,∞) y con-
tinuas por la derecha en 0. A partir de ahora consideramos que F ∈ C [0,∞) donde F es la función de
distribución común a todas las variables de la sucesión (Xi)i∈N∗ . Esto asegura que Ft definido en (4.3)
satisface lı́mt→∞ Ft(x) = F(x) para todo x ≥ 0.

El objetivo ahora es verificar una propiedad que hace esta aproximación bastante interesante: La
convergencia uniforme de la aproximación vista utilizando el método anterior. Esto significaría que
los errores de aproximación se mantendrán estables en x, lo que a priori, puede no suceder con otras
aproximaciones. Sea X una variable aleatoria no negativa con función de distribución F ∈ C [0,∞). Sea
(S(u),u ≥ 0) un proceso gamma como en la definición21 , se cumple que (ver [5]):

Ft(x) = EF
(

S([tx]+1
t

)
, x ≥ 0 (4.7)

De este modo hemos conseguido expresar Ft en función de un operador de tipo gamma al cual denotamos
L∗

t y que se define de forma que dada una función f definida en [0,∞), el operador viene dado por la
expresión:

L∗
t f (x) := E f

(
(S[tx]+1)

t

)
, x ≥ 0 (4.8)

siempre que L∗
1| f |(x)< ∞, x ≥ 0, t > 0, es decir, el operador está bien definido.

Vamos a utilizar la fórmula (4.7) para evaluar la distancia entre ∑
M
i=1 Xi y ∑

M
i=1 X•t

i y estudiar la cota de
error de la aproximación. Dadas dos funciones f y g definidas en [0.∞), definimos la norma infinito:

∥ f −g∥ := sup
x≥0

| f (x)−g(x)|

Recordar que dadas dos variables aleatorias no negativas X e Y y sus respectivas funciones de distribución
F y G, entonces la distancia de Kolmogorov de X e Y es la máxima distancia entre sus funciones de
distribución, es decir, utilizando la notación anterior:

d(X ,Y ) := ∥F −G∥ (4.9)

en nuestro caso, tenemos X y X•t variables aleatorias no negativas y sus respectivas funciones de distri-
bución F y L∗

t F , definido según (4.8), y siguiendo lo anterior llegamos a dar una expresión de la distancia
entre X y X•t en términos del operador de tipo gamma:

d(X ,X•t) := ∥F −L∗
t F∥ (4.10)

Dado que nuestro objetivo se centra en evaluar la distancia entre ∑
M
i=1 Xi y ∑

M
i=1 X•t

i , vemos un resultado
que nos facilita aplicar lo visto en nuestro caso:

Proposición 4.2. Sea (Xi)i∈N∗ una sucesión de variables aleatorias no negativas independientes e idén-
ticamente distribuidas y función de distribución F ∈ C[0,∞). Sea para cada t > 0 , (X•t

i ) una sucesión
de variables aleatorias discretas no negativas independientes e idénticamente distribuidas cuya función
de masa de probabilidad viene dada en (4.2). Sea L∗

1 definido en (4.8), entonces:
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(a) Dada F∗n la función de distribución de X1 + · · ·+Xn, entonces L∗
t F∗n la función de distribución

de X•t
1 + · · ·+X•t

n , y se verifica:

d(X1 + · · ·+Xn,X•t
1 + · · ·+X•t

n ) = ∥F∗n −L∗
t F∗n∥, n ∈ N∗

(b) Sea M una variable aleatoria no negativa e independiente de (Xi)i∈N∗ , entonces para todo t > 0

d

(
M

∑
i=1

Xi,
M

∑
i=1

X•t
i

)
≤

∞

∑
n=1

P(M = n)∥L∗
t F∗n −F∗n∥

Demostración. Hemos visto en la proposición (4.1) que la función de distribución de X•t
1 + · · ·+X•t

n
coincide con la función de distribución de (X1 + · · ·+Xn)

•t que es L∗
t F∗n, por lo que el apartado (a) se

sigue inmediatamente al sustituir en (4.10). Para demostrar el apartado (b), aplicamos la desigualdad
triangular y el apartado (a),

d

(
M

∑
i=1

Xi,
M

∑
i=1

X•t
i

)
= sup

x

{
∞

∑
n=1

P(M = n)P

(
n

∑
i=1

Xi ≤ x

)
−

∞

∑
n=1

P(M = n)P

(
n

∑
i=1

X•t
i ≤ x

)}

≤ sup
x

{
∞

∑
n=1

P(M = n)

∣∣∣∣∣P
(

n

∑
i=1

Xi ≤ x

)
−P

(
n

∑
i=1

X•t
i ≤ x

)∣∣∣∣∣
}

=
∞

∑
n=1

P(M = n)∥L∗
t F∗n −F∗n∥

Observación 4.2. Vemos que la aproximación que planteamos es invariante respecto a un cambio de
escala en la sucesión inicial (Xi)i∈N∗ , es decir , sea X una variable aleatoria no negativa y X•t descrita
según (4.2) para t > 0, se tiene que:

(cX)•t ≡ (L )cX•ct , t > 0,c > 0 (4.11)

Esto se puede probar aplicando φ
(k)
cX (t) = ckφ

(k)
X (ct) para k ∈ N, en (4.3),

P((cX)•t ≤ x) =
[tx]

∑
k=0

(−t)k

k!
φ
(k)
cX (t) =

[ct x/c]

∑
k=0

(−ct)k

k!
φ
(k)
X (ct) = P(X•ct ≤ x

c
)

esto demuestra que (cX)•t y cX•ct tienen la misma función de distribución y esto prueba (4.11). Como
consecuencia tenemos que ∑

M
i=1(cXi)

•t ≡ (L )c∑
M
i=1 X•ct

i entonces:

d

(
M

∑
i=1

cXi,
M

∑
i=1

(cXi)
•t

)
= d

(
c

M

∑
i=1

Xi,c
M

∑
i=1

(Xi)
•ct

)
= d

(
M

∑
i=1

Xi,
M

∑
i=1

(Xi)
•ct

)
(4.12)

Donde hemos utilizado que d(cX ,cY ) = d(X ,Y ) lo cual es cierto por definición. Esta observación será
útil para dar simplificaciones en la notación.

En el siguiente resultado damos (sin demostración) una cota de error para el la aproximación vista
en el caso particular de una distribución gamma de parámetro de forma β y parámetro de escala 1
(aunque la observación 4.2 nos indica que el resultado es cierto para cualquier parámetro de escala).
Este resultado nos da una cota de error cuando discretizamos una suma aleatoria con sumandos gamma.
Como caso particular, veremos el comportamiento de esta aproximación la probabilidad de ruina cuando
las cantidades reclamadas son gamma.
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Teorema 4.1. Sea (Xi)i∈N∗ una sucesión de variables aleatorias independientes e idénticamente distri-
buidas cuya función de distribución es la de una Γ(β ,1) (es decir, una distribución gamma de parámetro
de forma β ) y sea (X•t

i )i∈N∗ para t > 0 una sucesión de variables aleatorias independientes e idéntica-
mente distribuidas cuya función de distribución viene dada en (4.5) . Dada M una variable aleatoria en-
tera no negativa e independiente de (Xi)i∈N∗ tal que P(M > 0)> 0. Definimos m : =min{n∈N∗ : P(M =
n)> 0}, donde N∗ denota los enteros estrictamente positivos. Entonces si mβ ≥ 1, se cumple:

d

(
M

∑
i=1

Xi,
M

∑
i=1

X•t
i

)
≤ c2(mβ )P(M > 0)

1
t
≤

(
1+

3e−1

4
+

√
e−2 +4

4

)
1
t

(4.13)

con c2 definido como sigue:

c2(β ) : =
1

Γ(β )

(
a(β )+

3
4

b(β )+
1
4

√
b(β )2 +4a(β )2

)
(4.14)

para

a(β ) : = (β −1)(β−1)e−(β−1) (4.15)

b(β ) := máx
{

x(β−1)
1 e−x1(β −1− x1), x(β−1)

2 e−x2(x2 − (β −1))
}
, (4.16)

donde
x1 = β − 1

2
− 1

2

√
4β −3 y x2 = β − 1

2
+

1
2

√
4β −3.

4.2. Aproximaciones para cantidades reclamadas exponenciales.

En esta sección es utilizaremos la aproximación anterior en el caso en que Xi ∼Exp(β ) y N ∼Geo(p)
para calcular la probabilidad de ruina.
Sea Xi ∼ Exp(β ), hemos visto en (3.5) que la distribución de equilibrio de Li también es exponencial
y por lo tanto utilizando la fórmula de convolución de Beekman, podemos expresar la probabilidad de
ruina como:

ψ(u) = P

(
M

∑
i=1

Li > u

)
(4.17)

donde M es una geométrica de parámetro 1 − p y Li es exponencial de parámetro β . Puesto que la
distribución exponencial es continua, vamos a utilizar la aproximación del Capítulo 4 para discretizar
la variable aleatoria Li. Denotamos L•t

i a la discretización de la variable aleatoria Li y utilizando (4.2)
podemos ver que su función de masa de probabilidad es la siguiente:

P
(

L•t
i =

k
t

)
=

(−t)k

k!

(
(−1)k βk!

(β + t)k+1

)
=

tkβ

(β + t)k+1 (4.18)

Observar que L•t
i = 1

t Zi donde Zi ∼ Geo
(

β

β+t

)
ya que podemos expresarla de la siguiente forma

P
(

L•t
i =

k
t

)
=

tkβ

(β + t)k+1 =
β

β + t

(
t

β + t

)k

(4.19)

donde
t

β + t
= 1− β

β + t
(4.20)

Es decir, utilizando esta aproximación, obtenemos que la probabilidad de ruina puede expresarse como
una suma geométrica de variables aleatorias geométricas. De esta manera obtendríamos la siguiente
aproximación para la probabilidad de ruina:

ψap(u) = P

(
1
t

N

∑
i=1

Zi > u

)
= P

(
N

∑
i=1

Zi > tu

)
(4.21)



26 Capítulo 4. Aproximaciones a la probabilidad de ruina

Podemos comparar la aproximación estudiada con las aproximaciones calculadas en [6], y aunque no
las vamos a demostrar, diferenciamos entre cota superior e inferior. Para la cota superior, aproximamos
Li por h([Li/h]+1), es decir, discretizamos los valores de Li en un intervalo de longitud h a su valor en
el extremo superior. Llamando Ni = [Li/h]+1, tendríamos:

ψu(u) = P

(
h

N

∑
i=1

Ni > u

)
= P

(
N

∑
i=1

Ni >
u
h

)
, u ≥ 0 (4.22)

La cota inferior viene dada aproximando Li por h[Li/h], es decir, discretizamos los valores de Li un un
intervalo de longitud h por su valor en el extremo inferior Llamando Ki = [Li/h], tendríamos:

ψl(u) = P

(
N

∑
i=1

Ki >
u
h

)
, u ≥ 0 (4.23)

También podemos comparar con el valor exacto de la probabilidad de ruina, recordamos por (3.6) que el
valor exacto de la probabilidad de ruina en este caso viene dada por:

ψ(u) = pe−βu(1−p), u ≥ 0 (4.24)

En el anexo B encontramos un ejemplo numérico para comprobar el comportamiento de las aproxima-
ciones usando la recursión de Panjer y t = 1/h, para obtener las mismas longitudes de discretización.
Utilizaremos el paquete de R ”actuar” el cual está pensado para realizar cálculos asociados a la mate-
mática actuarial y en particular permite discretizar una variable continua por los métodos anteriormente
descritos y aplicar la recursión de Panjer.
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Anexo A

Implementación de la recursión de Panjer
en R

Utilizaremos un código en R para calcular la recursión de Panjer de una distribución de Poisson de
parámetro λ y podremos calcular el ejemplo planteado en el capítulo 3. Para ello primero explicamos el
código.

A.1. Explicación código

El objetivo es implementar en R las siguientes funciones, las cuales ya hemos visto que satisfacen la
formula de la recursión de Panjer en una distribución de Poisson

g(0) = e−λ (1−p(0));

g(s) =
1
s

s

∑
h=1

λhp(h)g(s−h);

El código utilizado es el siguiente:

Panjer.Poisson<-function(p, lambda){
if (sum(p)>1||any(p<0)) stop("p es un parámetro, no una densidad")
if (lambda * sum (p) >727) stop("underflow")
cumul<-g<-exp(-lambda * sum(p))
r<-length(p)
s<-0
repeat{

s<-s+1
m<-min(s, r)
last<-lambda / s*sum(1:m * head(p,m)*rev(tail(f,m)))
g<-c(g,last)
cumul<- cumul+last
if (cumul > 0.99999999) break }

return(g)
}

A continuación desglosamos el código para entenderlo mejor. Recordar que el parámetro p es un vector
de probabilidades que contiene los valores p(1), p(2), . . . , así podemos denotar g(0) = 1−∑h=1 p(h),
es por esto que en primer lugar descartamos la posibilidad de que la suma de los componentes de este
vector sea mayor que 1. Además el parámetro ’lambda’ representa λ y no debería ser demasiado grande,
por ello el programa se detiene si λ (1− p(0)) > 727 ya que en ese caso el valor de g(0) es demasiado
pequeño. Utilizamos la operación i f para implementar estas dos condiciones:

1
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if (sum(p)>1||any(p<0)) stop("p es un parámetro, no una densidad")
if (lambda * sum (p) >727) stop("underflow")

El valor de g(0) se calcula teniendo en cuenta la siguiente expresión f (0) = 1−∑h=1 p(h) y utilizamos
una variable a la que llamamos ’cumul’ para almacenar sus valores.

cumul<-f<-exp(-lambda * sum(p))

Para el cálculo de g(s) definimos una variable s que inicializamos en 0 y r otra variable que la definimos
como la longitud de del vector de probabilidades p. Con estas variables definidas, iniciamos un bucle que
calculará su valor utilizando las funciones head, rev y tail donde head permite visualizar las primeras
observar las primeras filas de datos, rev que coloca los componentes de un vector en orden inverso y tail
permite obtener las ultimas filas de datos.

r<-length(p)
s<-0
repeat{

s<-s+1
m<-min(s, r)
last<-lambda / s*sum(1:m * head(p,m)*rev(tail(f,m)))
g<-c(g,last)

Y para obtener el valor final de g(s):

cumul<- cumul+last

A.2. Ejemplo numérico

Vamos a utilizar el código explicado para obtener el valor numérico en el ejemplo (3.3) donde el
vector de probabilidades es (0,25,0,5,0,25) y λ = 4

Y obtenemos como resultado los valores de g(h) para h ∈ [1,45]



Anexo B

Aproximaciones de la probabilidad de
ruina en R

El objetivo es obtener un resultado numérico de la probabilidad de ruina cuando Xi ∼ Exp(β ) y
N ∼ Geo(p) utilizando la aproximación del Capítulo 4 y comparar los resultados con los obtenidos
en [6]. Para ello, calculamos en R la probabilidad de ruina utilizando la recursión de Panjer con la
aproximación calculada y comparamos el resultado con las aproximaciones en [6] y con su valor exacto.

B.1. Explicación código

Dividimos la explicación en dos partes, primero obtendremos una cota superior e inferior de la pro-
babilidad de ruina utilizando el método de [6] y a continuación calcularemos la misma probabilidad
con la aproximación descrita anteriormente en ( 4.19 ). Una vez tengamos ambos cálculos, podremos
compararlos.

Vamos a utilizar el paquete ”actuar” que incluye funciones específicas de matemática actuarial. Puesto
que algunas funciones específicas para el cálculo numérico de dicha probabilidad requieren una distri-
bución discreta, vamos a utilizar una función que sirve para discretizar las funciones de distribución
continuas, esta función se llama ”discretize” y en nuestro caso la utilizamos para discretizar una distri-
bución exponencial de parámetro β . Esta función admite varios métodos de discretización, en concreto
utilizaremos los métodos ”upper” y ”lower”, el resultado será una distribución definida en 0,h,2h, . . .
donde h es la longitud de discretización.

fL<-discretize(pexp(x,beta), from= 0, to = 1000, step=h, method="lower")
fU<-discretize(pexp(x,beta), from= 0, to = 1000, step=h, method="upper")

En este caso hemos tomado un rango de discretización de 0 a 1000 y la orden ”pexp” indica la función
de distribución de una exponencial de parámetro β .
Una vez obtenida la discretización, podemos utilizamos la función ”aggregateloss” con los sumandos
parametrizados que nos permite aproximar la distribución de la pérdida máxima acumuladas. Concreta-
mente utilizaremos el método ”recursivo” en el cual utiliza el algoritmo de Panjer.

FL<-aggregateDist(method = "recursive", model.freq= "geometric", model.sev = fL,
prob= 1-p, x.scale = h)
FU<-aggregateDist(method = "recursive", model.freq= "geometric", model.sev = fU,
prob= 1-p, x.scale = h)

La entrada ”model.sev” es un vector de probabilidades de las cantidades reclamadas, que en nuestro caso
se ha calculado con la función de discretización, y ”model. f req” representa la distribución del número

3
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de reclamaciones, que en esta caso es geométrica de parámetro 1− p como hemos visto en (2.6).
Por último obtenemos una aproximación a la probabilidad de ruina para la cota superior e inferior.

psiL<-function(u){1-FU(u)}
psiU<-function(u){1-FL(u)}

Una vez calculada la aproximación a la probabilidad de ruina usando este método, repetimos el
proceso pero con la aproximación calculada en el Capítulo 4.

fJ<-dgeom((0:1000), j)
FJ<-aggregateDist(method = "recursive", model.freq= "geometric", model.sev = fJ,
prob= 1-p, x.scale = h)
psiJ<-function(u){1-FJ(u)}

En este caso la función ”aggregateDist” utiliza de nuevo el método ”recursive” con la misma distri-
bución para el número de reclamaciones que en los casos anteriores, sin embargo, ahora la función de
distribución de las cantidades reclamadas es la geométrica de parámetro j calculada en el Capítulo 4.
Utilizamos la expresión explicita calculada en (3.6) en el que cantidades reclamadas son exponenciales
y número de sucesos tiene una distribución geométrica para calcular la probabilidad exacta de ruina.

psiE<-function(U){p*exp(-beta*u*(1-p))}

Finalmente escribimos los resultados en un vector para poder compararlos con la siguiente orden.

cbind(u=u, lower= 1- FU(u), psiE=psiE(u), upper=1-FL(u) , aproximación=1-FJ(u))

Y terminamos con una representación gráfica de los resultados obtenidos.

plot(u, 1- FL(u),xlim=c(0,15), type="l", col="green", ylab= " ")
lines(u, 1- FU(u),xlim=c(0,15), type="l", col="blue", ylab= " ")
lines(u, 1- FJ(u),xlim=c(0,15), type="l", col="black", ylab= " ")
lines(u, p*exp(-beta*u*(1-p)),xlim=c(0,15), type="l", col="red",
ylab= " Probabilidad de ruina")
legend("topright", legend = c("cota inferior ", "valor exacto",
"cota superior", "aproximación"), lwd = 3, col=c("blue", "red", "green", "black"))

B.2. Primer ejemplo numérico

Primero debemos introducir el capital inicial para el que vamos a calcular la probabilidad, concreta-
mente hemos establecido que sea un vector que toma valores de 0 a 100 aunque tan solo utilizaremos la
primera mitad para hacer la comparación. También es importante definir la longitud de discretización h,
el parámetro de la distribución exponencial β , la constante c y el parámetro λ necesarios para calcular la
probabilidad p = λE[Xi]/c, con E[Xi] = 1/β , entonces:

h<-0.5
beta<-0.4
media<-1/beta
c<-1.2
lambda<-0.2
p<-lambda*media/c
u<-seq(0,1000)
j<- beta/(beta + 1/h)
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Con estos parámetros, imprimimos la siguiente tabla con la probabilidad de riesgo para cada método y
para cada valor de u. La primera y tercera columna son los resultados al utilizar el método ”lower” y
”upper” respectivamente, la segunda columna es el valor exacto de las probabilidades y la cuarta es el
valor obtenido al utiliza la aproximación descrita en el Capítulo 4.

Observar que los valores obtenidos para la aproximación descrita en el Capítulo 4 se encuentra siem-
pre entre la probabilidad de ruina calculada con los métodos ”lower” y ”upper” . Para que sea más
sencilla la comprensión de los datos, dibujamos la gráfica en la que se puede observar cómo esta aproxi-
mación es mejor que las anteriores, (excepto en torno a 0, ya que el método ”upper” da la probabilidad
exacta de ruina en el 0).



6 Anexo B. Aproximaciones de la probabilidad de ruina en R

B.3. Segundo ejemplo numérico

Podemos repetir los cálculos con datos diferentes, por ejemplo:

h<-0.25
beta<-1
media<-1/beta
c<-1.2
lambda<-0.6
p<-lambda*media/c
u<-seq(0,1000)
j<- beta/(beta + 1/h)

En este caso, ocurre de manera similar al anterior, el valor de la aproximación estudiada en el Ca-
pítulo 4 es siempre menor que la aproximación por el método ”upper” y mayor que la calculada con el
método ”lower”, de hecho observamos de nuevo que cuando u es pequeño, la aproximación del Capítulo
4 es menor que el valor real y por tanto se asemeja más a la calculada por el método ”lower”:

Y según aumenta u, la aproximación del Capítulo 4 es mayor que el valor real y por tanto se aseme-
ja más a la aproximación calculada por el método ”upper”:
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Gráficamente obtenemos :

De este modo, hemos visto que la aproximación calculada en el último capítulo es mejor que las calcu-
ladas por los métodos ”upper” (excepto para valores de u próximos a 0) y ”lower” y que funciona para
distintos valores de h.
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