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Abstract

Ruin theory is a field of applied probability that quantifies a firm’s vulnerability to insolvency and
ruin. In particular, we are about to study the classical model which starting with an initial capital u at time
t = 0, describes both cash flows: incoming premiums and outgoing claims. In particular, it is assumed
that the capital grows linearly with a constant rate ¢, and claims arrive according to a Poisson process. If
the capital of the company becomes negative at any time, then the ruin occurs. This work aims to describe
the ruin probability for this model. At the end, an approximation will be described since there does not
always exist a way to describe an explicit expression for it.

The work is divided into four chapters. Chapter 1 establishes the essential probabilistic concepts that
will be necessary to understand further contents. Specifically, it is divided into 7 sections. The first one
introduces concepts such as probability space, a random variable, and the distribution function. The se-
cond one includes the definition of mathematical expectation of both discrete and continuous random
variables and a statement of independent variables in terms of expectation, it also includes the definition
of moments and its particular case, the variance. The description of the families of distribution that will
be used in the following chapters can be found in the third section. The next section defines conditional
expectation and includes some of its properties. In section number five we describe the convolution for-
mula for independent random variables. A sixth section on the Laplace-Stieltjes transform that will be
needed to calculate the approximation in Chapter 4. A final section defining the concept of compound
distribution and its density function is included.

Chapter 2 describes the classical risk model and the probability of ruin. Firstly it introduces stochas-
tic processes, in particular, it defines in more detail the Poisson process that will be used to explain the
classical risk model. This chapter also defines the ruin probability. In order to give an expression of it,
we describe a variable called the maximum aggregate loss and we use it to describe the ruin probability
using the so called Beekman convolution formula. At the end we define the adjustment coefficient, which
is necessary to give the Lundberg exponential bound for the probability of ruin. This chapter is based on
Chapter 4 from [1], Chapter 1 from [2] and [7].

In Chapter 3 we study in more depth random sums (compound distributions) of the form:
S=Xi+---+Xy

were X; are nonnegative random variables independent and identically distributed and N is independent
of the previous X;. As seen in Chapter 2, random sums allow us to describe the losses in the classical
risk model. Random sums also allow us to compute ruin probabilities. Then we use the properties of the
conditional expectation defined in Chapter 1 to describe the expectation and the generating function of
S. That will give us the tools to give the ruin probability formula for a specific distribution, in particular,
we give an explicit formula when the amounts claimed are exponentials. Finally, we will state and prove
Panjer’s recursion theorem which gives a recursion formula for calculating the distribution function of
radom sums of random variables in a risk model when the summands are discrete random variables, but
not all types of N holds Panjer’s formula, so we will explain in more detail those that satisfies it. In this
chapter we have mainly used the third chapter of [1].
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v Abstract

We will conclude with Chapter 4, which gives us the theoretical basis that will be used to give ap-
proximations for compound distributions, which are an alternative to usual methods. We will use it to
obtain an approximation to the ruin probability formula when the claim amounts are exponential which
is given in Chapter 3. We will compare this approximation with those obtained when we use classical
discretization methods. To get the approximation we use Laplace-Stieljes transform and we describe so-
me of its properties and an error bound using gamma-type operators. This Chapter is based on [3] and

[4].
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Capitulo 1

Conceptos probabilisticos

En este capitulo introducimos algunos conceptos de probabilidad y distribuciones probabilisticas que
utilizaremos en los siguientes capitulos.

1.1. Primeras definiciones

Para cada experimento aleatorio podemos definir un espacio de probabilidad que nos va a permitir
estudiarlo.

Definicion 1. Sea Q espacio muestral, es decir, un conjunto formado por todos los sucesos asociados
a un experimento aleatorio. Sea .# una familia de subconjuntos de € con estructura de ¢—algebra y
una funcién de probabilidad P: .# — [0, 1] tal que para todo A € .% , P(A) denota la probabilidad del
suceso A. Entonces llamamos espacio probabilistico a la terna (Q,.%#,P).

Al resultado de un suceso aleatorio le corresponde un valor numérico, que puede ser continuo o
discreto. Definimos formalmente este concepto como sigue.

Definiciéon 2. Dado un espacio probabilistico (Q,.%,P), definimos una variable aleatoria como una apli-
cacién medible Borel X : © — R tal que a cada valor de X le corresponde una un nimero real. Decimos
que una variable aleatoria es discreta si sus posibles valores constituyen un conjunto finito o numerable.
Ademds, si existe una funcién medible f: R — [0, ) tal que P(X € A) = [, f(x)dx para todo boleriano
A, diremos que X es absolutamente continua.

La funcién de distribucién de una variable aleatoria asigna a cada suceso definido la probabilidad
acumulada hasta un cierto valor, y la funcidn de supervivencia es su complementaria.

Definicion 3. Sea (Q,.%,P) espacio probabilistico, dada una variable aleatoria X definimos la funcién
de distribucion de X a la aplicacion F: R — [0, 1] definida por F(x) = P[X < x|. Ademds, definimos
funcién de supervivencia de una variable aleatoria X como:

P(X >x)=1—F(x) (1.1)

A continuacién, recordamos el concepto de variables independientes.

Definicion 4. Dada una coleccion de n variables aleatorias X, ..., X, definidas sobre el mismo espacio
de probabilidad, se dice que son independientes si cumplen

P(X, €By,...,X, €B,) =P(X| € B))---P(X, € B,), (1.2)

para cualesquiera conjuntos de Borel By, ..., B, CR.
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1.2. Esperanza matematica

Nos referimos a la esperanza matematica de una variable aleatoria como su valor esperado y recor-
daremos su expresion segin la variable sea continua o discreta.

Definicion 5. Sea (Q,.#,P) espacio de probabilidad y sea X variable aleatoria definida en dicho espacio,
entonces la esperanza o valor esperado de la variable aleatoria X, denotada por E[X], estd definida por la
integral Lebesgue

E[X] = /R xdF(x) (1.3)
siempre que [ |[x|dF(x) < oo.
Podemos distinguir dos casos seglin sea una variable aleatoria discreta o continua.
Proposicion 1.1. Sea X una variable aleatoria discreta que puede tomar valores x1,x2,...,X,, n € N,
con probabilidad P(X = x;), definimos esperanza matemdtica de X como sigue:

E[X} = ix,-P(X :X,') (14)
i=1

Siempre que Y ;|x;|P(X = X;) < oo. Andlogamente, sea X una variable aleatoria continua con f(x) su
funcion de densidad, entonces la esperanza matemdtica de X es

E[X] = /_ o;xf(x)dx (1.5)

Siempre que [ |x|f(x)dx < .
El siguiente resultado relaciona la independencia entre variables aleatorias y su esperanza.

Teorema 1.1. Sean X e Y variables aleatorias independientes, entonces E[XY| = E[X|E[Y].

1.2.1. Momentos

Definicién 6. Sea X una variable aleatoria, llamamos el momento r—ésimo al valor esperado de X" y
definido por m, = E[X"]. El r—ésimo momento centrado de una variable aleatoria X denotado por L,
queda definido como el valor esperado de (X —EX)" y viene dado por la siguiente férmula

w- = E[(X —EX)"] (1.6)
Concretamente para r = 2, recibe el nombre de varianza y lo definimos de la siguiente manera:

Definicion 7. Sea X una variable aleatoria, llamaremos varianza de X al segundo momento centrado de
X y la denotamos Var[X]
Var[X] =t = E[(X —E(X))?] (1.7)

Y llamamos desviacion tipica de X a la raiz cuadrada de la varianza de X denotada por o, esto es

o =VVarX = Vo? (1.8)

luego Var(X) = c2.

Finalmente, recordamos el concepto de funcién generadora de momentos de una variable aleatoria

Definicion 8. Sea X una variable aleatoria, su funcién generadora de momentos viene dada por Mx (1) =
E[e'X] para todo t tal que dicha esperanza existe.

Observacion 1.1. Recordemos que la funcion generadora de momentos, si existe en un entorno del
origen nos permite calcular los momentos de dicha variable mediante derivacion sucesiva. Ademds la
funcion generadora de momentos caracteriza a la distribucion.
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1.3. Distribuciones de probabilidad

En esta seccién vemos algunas distribuciones de probabilidad importantes y que utilizaremos en
los siguientes capitulos, indicaremos también el valor esperado, la varianza y la funcién generadora de
momentos de cada una de ellas.

1.3.1. Distribucion Binomial

La distribucién binomial cuenta el niimero de éxitos en n ensayos independientes con probabilidad de
éxito p. Sea X una variable aleatoria discreta con distribucién Binomial de pardmetros n y p y denotada
por X ~ Bin(n, p) entonces la probabilidad de obtener k éxitos en n ensayos es la siguiente:

P(X =k) = <Z)pk(l—p)"k, k=0,1,....n (1.9)

La esperanza, la varianza y la funcién generadora de momentos de una variable aleatoria con funcién de
distribucién binomial son las siguientes:

E[X] =np Var[X] =np(1—p) mx(t) = (1—p+pe)" (1.10)

1.3.2. Distribucion geométrica

Una variable aleatoria geométrica cuenta el nimero de fracasos antes del primer éxito en ensayos
independientes, cada uno de los intentos tiene probabilidad de acierto p. Sea X una variable aleatoria con
distribucién geométrica de pardmetro p y expresada X ~ Geo(p), la probabilidad de n fracasos antes del
primer éxito, con probabilidad de éxito p es la siguiente:

PIX =kl =(1-p)p, k=0,1,2,,... (1.11)

La esperanza, la varianza y la funcidon generadora de momentos de una variable aleatoria geométrica son
las siguientes:

_r
1—(1—p)e

E[X] = Var[X] = my (t) = (1.12)

1.3.3. Distribucién binomial negativa

La distribucién binomial negativa es una ampliaciéon de las distribuciones binomial y geométrica.
De hecho se utiliza para conocer el nimero de fracasos necesarios para conseguir r éxitos. Sea X una
variable aleatoria discreta que sigue una distribucién binomial negativa con parametros r y p denotada por
X ~ BN(r,p), entonces la probabilidad de que en el k—ésimo ensayo independiente ocurra el r—ésimo
éxito viene dado por la siguiente formula:

k—1
P[X =] = <r+k >pr(1—p)k, k=0,1,2,... (1.13)

La esperanza, la varianza y la funcién generadora de momentos de una variable aleatoria geométrica son
las siguientes:

E[X] = r(1-p) Var[X] = L_Zp) my(t) = <1’t>r (1.14)
p p I—(1—pe
Notar que la distribucién geométrica es un caso concreto de la distribucién binomial negativa en la que
r=1.
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1.3.4. Distribucion de Poisson

Sea X una variable aleatoria discreta, se dice tiene una distribucién de Poisson de parametro A deno-
tada por X ~ Poi(A) si la probabilidad de que ocurra un suceso k veces viene dada por:

Ake=2

PO =k,

k=0,1,... (1.15)

La esperanza, la varianza y la funcién generadora de momentos de una variable aleatoria con distribucién
de Poisson son las siguientes:

E[X] = A Var[X] = A my(t) = exp(A(e' — 1)) (1.16)

1.3.5. Distribucion exponencial

Sea X una variable aleatoria continua decimos que tiene una distribucién exponencial de pardmetro
A > 0y lo denotamos X ~ Exp(A) si tiene la siguiente funcién de densidad:

fx)=1e ™™, 0 (1.17)

La esperanza, la varianza y la funcién generadora de momentos de una variable aleatoria con funcién de
distribucién exponencial son las siguientes:

Var[X] = - my(t) = —— (1.18)

E[X] = =

1
)

Observacion 1.2. Una variable aleatoria exponencial es adecuada para describir tiempos de espera.

1.3.6. Distribucion Gamma

Una variable aleatoria continua X que sigue una distribucién gamma de pardmetros &« >0y 3 > 0la
denotamos por X ~ I'(ct, B) tiene funcién de densidad:

B(Bx)* e P
= 0 1.1
f(x) (o) ;o X> (1.19)
donde I'(@) es la funcién Gamma, es decir,
(o) = / x* e dx (1.20)
0

La esperanza, la varianza y la funcién generadora de momentos de una variable aleatoria con funcién de
distribucién gamma son las siguientes:

E[X]:g VHI[X]:% mX(t)Zl—(lit/ﬁ)O‘

1.21
B (121

Podemos relacionar la distribucién gamma con otras distribuciones, por ejemplo la suma de n exponen-
ciales independientes de pardmetro A es una distribucion I'(n,A) con A > 0, es decir, la distribucién
exponencial es un caso particular de Gamma cuando o = 1. Una variable aleatoria gamma es adecuada
para describir tiempos de espera.
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1.4. Esperanza condicionada y propiedades

Dadas dos variables aleatorias X e Y definidas sobre el mismo espacio probabilistico, la esperanza
condicionada E[X|Y = y] representa el valor esperado de la variable X dado que la Y toma el valor y.
La existencia de dicha esperanza queda garantizada gracias al Teorema de Radon-Nikodym que esta-
blece una relacién entre dos medidas definidas en el mismo espacio. Para su célculo diferenciamos los
casos mds usuales segtin sean variables aleatorias discretas o continuas. Sean X e Y variables aleatorias
discretas y P(X|Y = y) la probabilidad de X cuando Y =y, entonces la esperanza condicionada es

EX|Y =)]= Zx, X =x|Y =y) (1.22)

Andlogamente, para X e Y variables aleatorias continuas y f(x|y) el valor de la funcién de densidad de
X condicionada a Y =y, la esperanza condicionada es

EIXIY =y = [ _ofeh) (123)

La siguiente propiedad la utilizaremos posteriormente.

Teorema 1.2. Sea (Q,.#,P) espacio de probabilidad, y sean X e Y variables aleatorias , entonces
siempre que exista E[X|, tenemos
E[E(X|Y)] =E[X] (1.24)

1.5. Convolucion

La operacion de convolucién para distribuciones nos permite calcular la funcién de distribucién
de la suma de dos variables aleatorias independientes. Sean X e Y variables aleatorias independientes,
entonces:

Frsy(s) = PIX +Y <s] = /_ZFY(s—x)dFX(x) . Fy# Fy (s)

Llamamos a Fx x Fy (s) la convolucién de las funciones de distribucién de las variables X e Y.

Si al menos una de las funciones de distribucion Fy 6 Fy es absolutamente continua, entonces Fy * Fy es
absolutamente continua.

Si ambas variables son discretas, sean sus respectivas funciones de masa de probabilidad Fy y Fy, enton-
ces la funcién de distribucién y su respectiva funcién de masa de probabilidad son:

Fx + Fy(s ZFY s —x) fx (x) fx* fr(s ny s—x)fx(x), ¥x con f(x) >0 (1.25)
Andlogamente, si X e Y son variables continuas, entonces:
Fx*Fy / FY S—X fX ) fX *fy / fY S—X fx( ) (126)

La n — ésima convolucién de F, denotada por F*" y viene definida como sigue:

1 six>0
FO) =&(x), n=0 con &)=< % (1.27)
0 six<O
Fr=F0VyF=Fx-..xF, n>1 (1.28)
———

nveces

Observacion 1.3. Utilizando la funcion generadora de momentos, se puede probar que la convolucion
de distribuciones binomiales y Poisson resulta en una distribucion binomial o Poisson. Del mismo modo,
la convolucion de distribuciones geométricas genera una distribucion binomial negativa y la convolucion
de distribuciones exponenciales produce una distribucion gamma.
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1.6. Transformada de Laplace-Stieltjes

La transformada de Laplace es una herramienta ttil en muchas areas de las matematicas, formalmente
la definimos de la siguiente manera:

Definicion 9. Dada f: [0,00] — C, definimos la transformada de Laplace de f como la integral

2(1)@) = [ e (129)

Definimos la transformada de Laplace-Stieltjes similar a la transformada de Laplace y muy utilizada
en el 4rea de la probabilidad cuando se trabaja con variables aleatorias no negativas.

Definicién 10. Sea X una variable aleatoria no negativa con funcién de distribucién F(x), definimos la
transformada de Laplace-Stieltjes de X como

ox (1) = B(e ™) = /0 " e dF (u) (1.30)

De hecho en el caso que X sea una variable aleatoria continua con funcién de densidad f(x), entonces la
transformada de Laplace-Stieltjes de X se simplifica a

o= | " e f(u)du (131)

Notar que la transformada de Laplace-Stieltjes coincide con la funcién generadora de momentos,
excepto por un cambio de signo en el exponente. Ademas |¢(7)| < 1 para todo ¢ > 0, por lo que esta
transformada siempre existe y ademads caracteriza la distribucién de partida. Ademds dadas dos variables
aleatorias independientes X e Y , la suma Z = X +7Y satisface

Oz (1) = ¢x (1) - 9y (7) (1.32)

1.7. Distribucion compuesta

Las distribuciones compuestas son de gran utilidad en matematica actuarial, como veremos en los
siguientes capitulos.

Definicion 11. Sea X, X>,... una sucesion de variables aleatorias positivas independientes e idéntica-
mente distribuidas y sea N una variable aleatoria no negativa, entera e independiente de X;, entonces
Sy = Z?]:lX,- es una variable aleatoria a la que llamamos distribucién compuesta. Condicionando a los
posibles valores de N, la funcién de distribucion de Sy viene dada por

oo

Gsy(x) =P[S<x]= Y P[X; 4+ Xy < x|N =n]P[N = 1] (1.33)
n=0
_y PX;+ - +X,<x]P[N=n], xcR (1.34)
n=0

Donde en la dltima igualdad hemos utilizado la independencia entre N y X1, X>, ... De hecho, su funcién
de distribucién se puede expresar utilizando la férmula de convolucién como sigue:

Gs, (x) = i F™(x)P(N=n) (1.35)
n=0

donde F es la funcidn de distribucion de X; y F*" la n—ésima convolucién de F. Si X; es absolutamente
continua, con funcién de densidad f, si derivamos en (1.35 ) podemos calcular una expresién para su
funcién derivada:

§() = ZO £ (PN =] (1.36)

donde f*" denota la n — ésima convolucién de la funcién de densidad f.



Capitulo 2

Modelo de riesgo clasico y probabilidad de
ruina.

2.1. Introduccion.

Nos situamos en el punto de mira de una entidad aseguradora y comenzamos con un ejemplo con-
creto: Consideramos todas las pdlizas que cubren incendios en apartamentos de un barrio en una ciudad
y que estdn suscritas por una compaiiia de seguros, en este caso los bienes asegurados tienen un valor
comparable y las probabilidades de incendio probablemente no difieran mucho de un edificio a otro es
decir, tal conjunto de pdlizas constituye una cartera de seguros homogénea.

En un negocio de seguros encontramos distintas ramas, tales como incendios, automéviles, robos,
salud, propiedad, pensiones, etc. Dentro de cada rama podemos encontrar carteras de seguros que cubren
riesgos distintos, por ejemplo, dentro del riesgo de incendio podemos diferenciar entre casas unifami-
liares, adosadas, apartamentos, tiendas, sitios industriales para los que hay que disefiar distintas carteras
de seguros ya que las probabilidades de incendio podrian variar y las cantidades reclamadas podrian ser
incomparables. Por ello trabajamos con una cartera especifica caracterizada por elementos de naturaleza
tanto determinista como estocastica como pueden ser el capital inicial de la aseguradora, el nimero de
sucesos con sus respectivas cantidades reclamadas y el tiempo de ocurrencia entre ellos.

En este trabajo describiremos un modelo de riesgo cldsico, que es aquel para el que el nimero de
imprevistos siguen un proceso de Poisson. Para ello primero describimos dicho proceso.

2.2. Introduccion a los procesos estocasticos. El proceso de Poisson

La evolucién en el tiempo del capital en una compaifiia de seguros se describird mediante un proce-
so estocdstico. Por ello comenzamos con una introduccidn a los procesos estocdsticos en general, y el
proceso de Poisson en particular, que serd necesaria para entender lo siguiente.

2.2.1. Procesos estocasticos

Los procesos estocdsticos se utilizan en el estudio de las magnitudes aleatorias que evolucionan
respecto al tiempo. Matematicamente podemos definirlo del siguiente modo:

Definicién 12. Sea (Q,F,P) un espacio probabilistico e I C [0,c0) un intervalo temporal. Un proceso
estocdstico Z = {Z; };cs es un conjunto de variables aleatorias Z,: Q — E donde E C R se denomina
espacio de estados.

Segun la cardinalidad del conjunto / podemos diferenciar dos casos importantes, procesos estocasti-
cos en tiempo discreto si I es un conjunto numerable, por ejemplo, I = 1,2, ---, o un proceso estocéstico

7
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en tiempo continuo si / es un conjunto infinito no numerable, por ejemplo I = [0, ). El proceso estocas-
tico nimero de reclamaciones en una compaiiia de seguros hasta el instante ¢ es un ejemplo de proceso
en tiempo continuo.

Andlogamente, podemos diferenciar procesos estocdsticos con espacio de estados discreto, por ejem-
plo E = {0(falso),1(verdadero)} (si estamos observando la ocurrencia o no de un determinado evento),
o continua, por ejemplo el precio en bolsa de una accién: E = [0,0).

Definicién 13. Sea Z; un proceso estocéstico definido sobre (Q,.7,P) y sea @ € Q, la trayectoria del
proceso estd formada por los valores que el proceso toma sobre @ para cada instante de tiempo ¢, esto es,
por el conjunto {Z;(®),r € I}.

El siguiente grafico dibuja una posible trayectoria (N;,# > 0) del nimero de reclamaciones recibidas
por una aseguradora hasta un tiempo ¢. Los instantes de tiempo 7; serdn aleatorios, y representardn los
momentos donde se produce una nueva reclamacion.

N,
: i
: i
. .
£ : — ‘ .
Iy, T ) T, Ts

Posible trayectoria del nimero de reclamaciones con respecto al tiempo

La evolucioén en el tiempo del capital en una compaiiia de seguros segin el modelo de riesgo clasico
serd un proceso estocdstico con incrementos estacionarios e independientes, que se define como:

Definicion 14. Sea (Z(¢),t > 0) un proceso estocdstico entonces decimos que (Z(z),t > 0) tiene incre-
mentos estacionarios e independientes si verifica que:

» Dados n instantes de tiempo 0 < 7] < f, < --- < ty, las variables Z(t2) — Z(t1), -+, Z(ty) — Z(tn—1)
son independientes, es decir, si hay independencia entre los incrementos ocurridos en intervalos
disjuntos.

= Dado un instante de tiempo arbitrario s > 0 y un intervalo de tiempo ¢ > 0, las distribuciones de
Z(t+s5)—Z(s) y Z(t) — Z(0) coinciden, es decir, la distribucién de los incrementos en un intervalo
de tiempo depende de su longitud pero no del instante inicial de observacién.

Introducimos ahora los procesos de recuento que se pueden definir como procesos estocdsticos en
los que las variables aleatorias contabilizan el nimero de veces que se repite un determinado suceso.
Formalmente lo definimos como sigue:

Definicién 15. Se dice que un proceso estocéstico (N(¢),z > 0) es un proceso de recuento si satisface:
(D. N(t) > 0.
(. N(t) e N Vr.

(111). Sih <t entonces N(h) < N(z).

(1v). Para h <t, N(t) — N(h) cuenta el nimero de sucesos que han ocurrido en el intervalo (,1].
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Ejemplos de procesos de recuento son los coches que pasan por un determinado punto de la carretera o
las reclamaciones de una compaiiia de seguros.

Una vez definidos estos conceptos, veamos un ejemplo importante y muy utilizado en los siguientes
apartados: El proceso de Poisson.

2.2.2. Proceso de Poisson

Veremos como el proceso de Poisson es un proceso de recuento definido en tiempo continuo y espacio
de estados discretos y por ello, es adecuado para describir el nimero de reclamaciones en una compaiiia
de seguros, lo que serd muy ttil en modelos de riesgo.

Trabajaremos mas adelante con procesos de Poisson homogéneos, que se define como sigue.

Definicién 16. Un proceso de Poisson homogéneo (N(¢),7 > 0) de intensidad A, verifica:
(1. N(0) =0.
(1r). Tiene incrementos estacionarios e independientes.
(111). N(¢) tiene distribucién de Poisson de media Az.
(1v). Las trayectorias del proceso son funciones continuas a derecha y con limites a izquierda.

Observacion 2.1. A partir de un instante arbitrario, el proceso que se observa es de nuevo un proceso
de Poisson, esta es una consecuencia de la propiedad de incrementos estacionarios e independientes.

Definicion 17. Dado un proceso de Poisson de intervalo X, definimos W; el tiempo entre la (i — 1)—ésima
llegada y la i —ésima para i = 1,2, ... por ejemplo, W; denota el primer tiempo de llegada.
Notemos que

PW,>1)=P(N(t)=0)=¢*, >0 2.1)

esto es, Wi es exponencial de pardmetro A. Se puede probar que esto es generalizable a cualquier tiempo
entre llegadas, ya que el proceso de Poisson es de incrementos estacionarios e independientes. Una
propiedad que utilizaremos més adelante es la siguiente:

Proposicion 2.1. Dado (N(t),t > 0) un proceso de Poisson de pardmetro A, los tiempos entre llegadas
Wi, Wa,... son variables independientes, idénticamente distribuidas con distribucion exponencial de
pardmetro A.

2.3. Modelo de riesgo

Como ya hemos mencionado antes, una cartera de seguros estd caracterizada por elementos que
describiremos brevemente a continuacion:

Denotamos por 71,75 ... los instantes de llegada de las reclamaciones, respectivamente Wi, W, ... es
el tiempo que transcurre entre sucesivas reclamaciones, es decir, W,, =T, — T,,_;.
El niimero total de sucesos durante un periodo de tiempo [0,¢] es N(¢) :=sup{i > 1:T; <t} parat >0
y la cantidad reclamada asociada a T, es X, por tanto S(t) = X; +Xo + - -- + Xn(;) es el importe total
reclamado a la aseguradora en un periodo de tiempo ¢.
Llamamos I1(z) a los ingresos de aseguradora en un tiempo ¢, y U(¢) denota el capital de esta en un
instante de tiempo ¢, asi U(0) = 0 serd el capital inicial de la aseguradora. Podemos expresar el capital
de la compafiia en un instante ¢ como sigue:

Z

)
Ut) =u+11(1)~ ¥ X 2.2)

i

I
—_
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2.3.1. Modelo de riesgo clasico

El objetivo en este trabajo es analizar un modelo de riesgo cldsico que se caracteriza por lo siguiente:

= Los ingresos son lineales y por tanto I1(z) = ct,c > 0, donde ¢ representara la tasa de ingresos de
la compaifiia por unidad de tiempo.

» El niimero total de reclamaciones (N(¢), ¢t > 0) sigue un proceso de Poisson homogéneo de inten-
sidad A.

= [as cantidades reclamadas X1, X>,... son variables aleatorias independientes e idénticamente dis-
tribuidas, no negativas e independientes del proceso de llegadas, con distribucién comun Fy, .

Si el total de cantidades reclamadas en un tiempo determinado es mayor que el capital inicial « mas
la suma de los ingresos en dicho tiempo, entonces U (7) < 0, es decir, el capital es negativo, si esto ocurre
decimos que hemos alcanzado la ruina en un tiempo ¢ y al primer ¢ en alcanzar la ruina lo denotamos T’
y lo podemos expresar del siguiente modo:

inf{r |t >0, U(r) <0} siU(t) <0 paraalgin ¢
oo si U(t) > 0 para todo ¢

A continuacién vemos una representacion grafica del modelo:
Capital

X
X2

X4
U(t) =u+ct—S(t)

0 fl T, Ts tiempo (t)
T4=T

Capital de la compaiiia con respecto al tiempo

Si no hay reclamaciones, los ingresos anuales de la compafiia son fijos, crecientes y con pendiente
c. Notar que en los instantes 7; en el que se produce la i-ésima reclamacion el capital desciende una
cantidad X; que se representa con un salto. Notar que en la cuarta reclamacién se ha producido la ruina
de la compaiiia.

2.4. Probabilidad de ruina

En esta seccién buscamos determinar la probabilidad de ruina en el modelo de riesgo cldsico y bajo
la condicién de de beneficio neto que definiremos a continuacion.

Definicion 18. La funcion probabilidad de ruina la expresamos como sigue:
y(u) = P( Ruina, con capital inicial u) = P(T < )

Es decir, si T = oo significa que nunca se alcanza a la ruina.
A continuacién vamos a definir la condicién de beneficio neto y el factor de recargo. Veremos que la
primera es muy importante para garantizar que la ruina no sea un suceso seguro. El factor de recargo lo
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utilizaremos mds adelante para dar una cota de la probabilidad de ruina. Recordemos por la proposicién
2.1 que en un proceso de Poisson de tasa A los tiempos entre llegadas W; son exponenciales, y por tanto
EW;|=1/A.

Definicion 19. Sean (W;);,en+ los tiempos entre reclamaciones, entonces decimos que si se cumple
cEW; — EX; = ¢/A — EX; > 0, entonces diremos que se cumple la condicién de beneficio neto. El factor
de recargo 6 se define como ¢ = (1+ 0)AE[X;], y por tanto:
c
0=———1 2.3
AEX] -
Notemos que la condicién de beneficio neto, nos asegura que tenemos mds ingresos esperados que
pérdidas esperadas por cada ciclo entre dos reclamaciones consecutivas. Notemos que 6 = 0O significa
que ¢ = AEX;, por lo que la compaiifa no llegaria a la solvencia (los ingresos esperados por ciclo iguala-
rian a las pérdidas). El factor de recargo, es por tanto una medida de la solvencia de la compaiiia.

Con el objetivo de dar una expresiéon que nos permita calcular la probabilidad de ruina, definimos la
variable pérdida mixima acumulada como la médxima diferencia en el tiempo entre los ingresos de la
aseguradora en dicho tiempo y los gastos de los que se tienen que hacer cargo y la denotamos por L,
entonces:

L = sup{S(¢) —ct|t > 0}
Observar que si L > u entonces existe un instante ¢ tal que el capital para dicho ¢ es negativo, es decir, la
compaiiia sufre la ruina y podemos concluir que L > u 'y T < oo son equivalentes y por ello:

y(u)=P(L>u)=1—F.(u) (2.4)
2.4.1. Probabilidad de ruina como una suma

En esta seccién estudiamos la probabilidad de no ruina y cdmo se puede escribir como suma aleatoria
donde el ndmero aleatorio de sumandos sigue una distribucién geométrica.

Comenzamos probando que podemos descomponer L en una suma de variables aleatorias, para ello
consideramos los momentos en los que el proceso alcanza sus puntos mas bajos y notamos que estos
necesariamente van a suceder en momentos en los que la aseguradora se hace cargo de algtn siniestro.
Definimos descenso récord de la siguiente manera: En el primer instante en el que el capital de la com-
paififa de seguros se sitte por debajo de u, se producird el primer descenso récord, y L; serd la diferencia
entre ese minimo y u. En general, denotamos por L;, j = 1,2,... a la diferencia entre el dltimo minimo
histdrico y el anterior. Sea M el nimero aleatorio de descensos récord en toda la vida de la compaiifa,
tenemos:

L=L+L,+ ---+Ly (2.5)

Entendemos mejor este concepto a través de la siguiente representacion:

Capital

Ly
Ly

tiempo (t)

Capital de la compaiifa con respecto al tiempo
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Destacar que la ocurrencia de un siniestro no implica que tenga asociado un cantidad L;, en nuestra

grafica esto sucede con la tercera reclamacioén, es cierto que el capital sufre una caida pero no es lo
suficiente para llegar al minimo alcanzado con la reclamacién anterior. A su vez, tener asociado un
L;, no significa ruina, sino que se ha alcanzado un nuevo minimo histérico, como ejemplo la cantidad
Ly, donde tras la primera reclamacién el capital es menor que el inicial, andlogamente ocurre con la
segunda reclamacién L, y no es hasta la cuarta reclamacién que volvemos a tener un minimo histérico
y en este caso u < 0, y por ello estamos en ruina. Concretamente, en la trayectoria dibujada arriba, se
han producido 3 descensos récord, y el dltimo (que ha sucedido en la cuarta reclamacién), es el que ha
provocado la ruina de la compafiia.
El proceso de Poisson, al ser de incrementos estacionarios e independientes, no tiene memoria y por ello
la probabilidad de que un determinado descenso récord sea el dltimo siempre es la misma, ademas, los
descensos récord futuros se producirdn independientemente de los descensos récord pasados. De este
hecho, se puede demostrar que M sigue una distribucién geométrica y que las cantidades L;,L,,... son
independientes e idénticamente distribuidas. El pardmetro de M que es la probabilidad de que el descenso
récord anterior sea el dltimo, es igual a la probabilidad de no llegar a ruina con un capital inicial igual
a 0, por lo que es igual a 1 — y(0). Asi L es una suma aleatoria geométrica. La distribucién de L viene
dada por el siguiente resultado:

Teorema 2.1 (Distribucién de la pérdida maxima acumulada). Sea un modelo de riesgo cldsico que
satisface la condicion de beneficio neto. Definimos p := % Sea M el niimero aleatorio de descen-
sos récord y L la pérdida mdxima acumulada, de modo que L = L + Ly + ...Lys se tiene que M es

independiente de (L;) jcn y tiene distribucion geométrica:
PM=n)=(1-p)p", n=0,1,... (2.6)

Ademds la distribucion de descensos récord es la siguiente:

1

P(L] SM) = E(X])

/ P(X; >s)ds, u>0 2.7
0

Esta expresion recibe el nombre de distribucion de equilibrio.

Observacion 2.2. La deduccion del resultado anterior es larga pero se puede probar usando técnicas
elementales. Este no es el objetivo del trabajo pero en [2] podemos encontrar una prueba utilizando
transformada de Laplace.

De la expresion de la funcién de distribucion para una distribucién compuesta vista en (1.35) , pode-
mos deducir el siguiente resultado:

Corolario 2.1 (Férmula de convolucién de Beekman). Si Ly es la distribucion de equilibrio vista en
el teorema anterior, la probabilidad de ruina puede ser expresada por la formula de convolucion de
Beekman:

oo

y(u)=P(L>u)=Y (1—-p)p"P(Li+--+L, > u) (2.8)
n=1
Observacion 2.3. La formula de convolucion de Beekman nos sefiala que la probabilidad de ruina se
calcula como la cola de una suma geométrica. Ademds a partir de la distribucion de equilibrio (2.7)
podemos deducir que los descensos récord son variables continuas.

Observacion 2.4. En particular el resultado anterior nos garantiza que , bajo la condicion de beneficio
neto, la ruina no es segura, ya que y(u) < y(0) = p, donde la ultima igualdad se puede comprobar
particularizando en u = 0 en (2.8).

Aunque el corolario 2.1 nos indica la forma de calcular la probabilidad de ruina, s6lo es posible
encontrar una expresion explicita para (2.8) en ejemplos muy concretos, por ello, utilizamos algunas
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férmulas recursivas para el cdlculo aproximado de la probabilidad, por ejemplo, la férmula de recursién
de Panjer, que lo veremos en el siguiente capitulo.

Vamos a finalizar este capitulo dando una cota superior para la férmula de la probabilidad de ruina,
primero introducimos algunos conceptos:

Definicion 20. Dado el modelo de riesgo cldsico con cantidades reclamadas distribuidas como X > 0
con u; = E[X] el coeficiente de ajuste R es la solucion positiva de la siguiente ecuacién en r (siempre
que dicha solucién exista):

1+ (1+0)ur=my(r) (2.9)

Donde my (r) es la funcién generadora de momentos de X y 6 es el factor de recargo definido en (2.3).

Para todos los valores de r se cumple que nx (¢) es estrictamente convexa ya que my (t) = E[X%e'X] >
0, my (0) = uy < (14 0)u, y salvo excepciones, my (1) — oo, por ello existe un tnico r > 0 que satisface
la ecuacion y es el coeficiente de ajuste. Notar que para 6 | O el limite del coeficiente de ajuste R es 0 de
otro modo, si 0 1 oo, R tiende a la asintota de my (r) 6 a . El coeficiente de ajuste de la ecuacién anterior
es equivalente a la solucién en r de la ecuacién A + cr = Amx(r). Sea S(1) la cantidad total reclamada
en un intervalo de longitud 1, entonces ¢ — S es el beneficio en ese intervalo. Puesto que S es una suma
aleatoria donde el nimero de sumandos sigue una distribucién de Poisson de pardmetro A se tiene que
mg(r) = exp{A(mx(r) —1)} por (1.16) y (3.1). Teniendo en cuenta lo ultimo, el coeficiente de ajuste R
es solucién de las siguientes ecuaciones equivalentes:

. , . . 1
R =E[eR) o e = E[e R o, o(—R) =1 c= Elogms(r) (2.10)

Ejemplo (Coeficiente de ajuste en una distribucion exponencial) Sea X distribuida exponencialmente
con pardmetro 3 = i El coeficiente de ajuste correspondiente es la solucién positiva de

B
B—r

Para la dltima igualdad recordamos (1.17) y para despejar r, primero multiplicamos a ambos lados (§ —

r):

L1+ (1+0)ur=my(r)=

@2.11)

(B=r)+(B=r)(1+6)mr=p (2.12)

Pasamos todo al mismo lado de la igualdad y sacando r factor comun, las soluciones son r = 0
(solucidn trivialmente excluida) y r tal que

1—-B—r)(1+6)u; =0 (2.13)
es decir, 5
0
—R— i o (2.14)

Este caso admite una expresién explicita para el coeficiente de ajuste.

Veamos ahora un conocido resultado de F. Lundberg en teoria de ruina.

Teorema 2.2 (Cota exponencial de Lundberg para la probabilidad de ruina). Dado un modelo de riesgo
cldsico con capital inicial u y coeficiente de ajuste R, entonces la probabilidad de ruina satisface la
siguiente desigualdad:

v(u) <e R (2.15)

Demostracion. Definimos Wy (u) para —oo < u < ooy k=0,1,2,... como la probabilidad de arruinarse
antes o en la k — esima reclamacion, concretamente cuando u < 0, yi(u) = 1. Notar que i (u) es cre-
ciente en k, asi para el caso k — oo, Wy (u) crece hasta su limite que serd y(u) para todo u, asi, basta
probar que (1) < e R para cada k.
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Para k = 0 se satisface la desigualdad ya que si el capital u < 0 entonces la probabilidad yp(u) =1
y Wo(u) =0 si u > 0. Para k # 0, vamos a obtener la siguiente expresion recursiva para Y (u) en la
que x representa la magnitud de la primera reclamacién y ¢ el instante de tiempo en el que ocurre x,
en particular utilizamos que el primer tiempo de llegada en un proceso de Poisson tiene distribucién
exponencial (recordar proposicicion 2.1).

Wi () = /0 ) /0 W (4ot — x)dFy, (x)Ae Mt (2.16)

Expliquemos la expresion anterior, notar intuitivamente que a partir del tiempo ¢ observariamos un
proceso de Poisson (recordar la observacién 2.1 ), en el que el capital inicial ha disminuido una cantidad
x, es decir, tras la primera reclamacion, el capital restante seria u 4 cf —x. W;_; representa la probabi-
lidad de ruina desde ese momento hasta la k-ésima reclamacion (ya que en ese intervalo habrdn k — 1
reclamaciones), es decir, la probabilidad de ruina a partir de la primera reclamacion.

Apliquemos induccién, supongamos que se cumple para k — 1, es decir, W1 (u) < e % con u real.
Entonces, a partir de la expresion anterior:

Vi(u) < /O°° /Omexp{—R(u—i—ct—x)}dF(x)e_Mdt

= ¢ Ru /wlexp{—t(l +Rc)}dt /m R dF (x)
0 0

Donde la ultima igualdad viene dada por la ecuacidn (2.5) del coeficiente de ajuste. O



Capitulo 3

Modelo de Riesgo. Recursion de Panjer

En este capitulo estudiamos mds en profundidad las distribuciones compuestas, que como hemos
visto, se utilizan para expresar las pérdidas de una compaifiia de seguros en un intervalo de tiempo vy,
sobre todo, se utilizan para calcular la probabilidad de ruina en el modelo de riesgo clasico, ademas
veremos la recursion de Panjer que la utilizamos para expresar o aproximar su probabilidad.

3.1. Distribucion compuesta

Suponer que S es una variable aleatoria compuesta descrita como en la introduccion, utilizamos la
siguiente notacion:

;. = E[X¥] F(x) =P(X <x) G(s) =P(S <)

Vamos a calcular E[S] . Primero condicionaremos a N y luego utilizamos la independencia entre X; y N.
Se sigue del siguiente modo:

EIS) = E[E[SIN] = Y E[X; + -+ Xx|N = nP[N = 1]
n=0

=Y E[X; +---+X,|N =n]P[N = 1]
n=0

oo oo

=) EXi+-+XJP[N =n] = ) nuP[N = n] = E[N]
n=0 n=0

Observemos que en la peniltima desigualdad es donde se ha aplicado la independencia entre X, ..., X,
y N. Notar que el valor esperado del total reclamado coincide con el nimero de reclamaciones esperadas
multiplicadas por las dimensiones de dichas reclamaciones.

Utilizamos la misma técnica para calcular la funcién generadora de momentos:

ms(t) = Ele'] = E[E[¢"|N]] = i E[¢!X1 XN |N = p]P[N = n]
n=0

oo

E[e’(xl+"'+x")]P[N —n] = Z E[etxl oX ,e[Xn]P[N =n]
n=0

oo

E[etX|]E[etX2] . ~E[etX"]P[N _ n] — i‘z){mx(t)}nP[N — n] = ;)n (elong(’)>”P[N = n]

I
s 10

3
i

I
t
O

elogmx(l)‘N] = my(logmx(t))

15
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Ejemplo (Una distribucion compuesta con forma cerrada.) Queremos ver cudl es la funcién de dis-
tribuciéon de S cuando N sigue una distribucién geométrica de parametro p con 0 < p < 1, y X una
distribucién exponencial de pardmetro 3. Para ello primero calculamos la funcién generadora de mo-
mentos de S e intentamos identificarla con la funcién generadora de momentos de una variable aleatoria
conocida. Para facilitar los cdlculos denotamos ¢ = 1 — p y recordamos (1.12) tenemos que:

oo

p
my(t) =Y "pq" = (3.2)
(1) n;) —

Recordad que X ~ exp(B) y por (1.18) su funcién generadora de momentos es my (t) = (1 —1/8)7".
A partir de la expresion obtenida arriba de mg(r) tenemos:

p p

ms(t) =my(log(mx(t))) = ————==p+q (3.3)
1 —gmx (t) p—t/B
Ahora consideremos una variable aleatoria X con funcién de distribucién:
G(x)=p+q(l—e PP )=1—ge P, x>0 (3.4)

Notar que mg(t) coincide con la funcién generatriz de una variable cuya funcién de distribucion es G(x)
en (3.4) y asi por la unicidad de la funcién generadora de momentos, se sigue que la funcién de distribu-
cién de S es (3.4), y por tanto tiene un salto en O de longitud p y de O en adelante se comporta como una
distribucién exponencial de parametro p.

Gracias a este ejemplo y a la férmula de convolucién de Beekman, podemos escribir de manera explicita
la probabilidad de ruina cuando las cantidades reclamadas son exponenciales.

Sea X; ~ Exp(f), sustituyendo la funcién de distribucién de la exponencial en la distribucién de equili-
brio vista en (2.7) obtenemos:

P(L; <u)= ﬁ/ e Prds =1—e P (3.5)
0

Asi L; sigue una distribucién exponencial de pardmetro B y podemos utilizar el ejemplo anterior con
N ~ Geo(l — p) y X; ~ Exp(B), concretamente de (3.4) deducimos que P(L < u) = 1 — pe~(1-P)Bu e
decir, podemos expresar la probabilidad de ruina en este caso como sigue:

v(u) = P(L > u) = pe Pr1=7) (3.6)

Este es uno de los pocos casos en los que la probabilidad de ruina se puede calcular de modo explicito.
Veamos ahora en otro ejemplo el computo de una suma aleatoria en la que N es Poisson y las cantidades
reclamadas son exponenciales para observar que en este caso, no podemos dar una férmula cerrada.

Ejemplo (Distribuciéon compuesta con cantidades reclamadas exponenciales y N Poisson.) Sean
X; ~ Exp(B) y N ~ Poi(1), queremos calcular la distribucién de Yo X;. Por (1.17), sabemos que
flx)= Be Px, entonces X| + - - +X,, por ser suma de exponenciales, es una variable aleatoria gamma de
pardmetros n'y 3 con funcién de densidad

B" .1 B

*1 _ n X

f (x)—(n_l)!x e ™ x>0 3.7
Como N es una variable aleatoria de Poisson de pardmetro A, utilizando (1.36) podemos calcular la
funcién de distribucion de ZI,YZO Xi, que tendrd como derivada la siguiente expresion:

oo e—kln ﬁn
s =2 (n—1)!

n=1

e B x>0 (3.8)

Sin embargo, no es posible dar una expresion explicita para dicha expresion. Por tanto, si las cantidades
reclamadas son exponenciales, la distribucidn de la pérdida méxima acumulada adolece de este problema.
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3.2. Distribucion del nimero de reclamaciones

Como se ha indicado en el capitulo anterior, un modelo frecuente para describir la distribucién del ni-
mero de reclamaciones es la variable aleatoria de Poisson. Este es un modelo sencillo, ya que tinicamente
tenemos que estimar un parametro. Sin embargo, la adecuacién de esta distribucion deberia contrastarse
con datos histéricos. En los casos pricticos, no siempre tendremos datos suficientes para contrastar si
una distribucién de Poisson es adecuada para N. Sin embargo notemos que en una distribucién de Pois-
son de pardmetro A, tanto la esperanza como la varianza son iguales a A. Si Var[N|/E[N]| > 1, es decir,
existe una sobredispersion, entonces una posible candidata seria la distribucién binomial negativa como
muestra el siguiente ejemplo.

Ejemplo (Distribucién de Poisson) Imaginar que un conductor de coche provoca un nimero de acci-
dentes anuales que siguen una distribucién Poi(A). El pardmetro A es desconocido y diferente para cada
conductor. Asumimos que A es resultado de una variable aleatoria A, entonces la distribucién condicio-
nada al nimero de accidentes N anuales es Poi(A) con A = A Veamos cudl es la distribucién marginal de
N:SeaU(A) =P(A < A) la funcién de distribucién de A, entonces podemos escribir las probabilidades
marginales de N = n como sigue:

) 1) ln
P(N = n) :/O P(N = n|A = A)dU (1) :/0 e au(a) (3.9)
Asumimos que A ~ I'(ct, 3) entonces:
my (1) = E[E[¢™|A]] = E[eM¢ ] = ma(e — 1) (3.10)

~(5t) = (=de) @10

donde p = /(B +1). Notar que la férmula anterior coincide con la funcion generadora de momentos de

una binomial negativa de pardmetros @ y p = % es decir, BN(a., %) por tanto sustituyendo en (1.14)
tenemos E[N]| = % y Var|[N] = % por lo que la binomial negativa seria un modelo que describiria la

sobredispersion debida a la aleatoriedad de A. El valor de de A no es es una variable aleatoria observable
para un conductor concreto, pero si pudiéramos observar a dicho conductor por un largo periodo de
tiempo, notarfamos que la frecuencia de accidentes observados en un afio, converge a su frecuencia a
largo plazo, siempre que su patrén de siniestros no cambie.

3.3. Recursion de Panjer

En el afio 1981, Panjer describié6 un método para calcular recursivamente la funcién de masa de
probabilidad de una distribucién compuesta cuando las cantidades reclamadas son discretas. Esta férmula
es muy conocida en el entorno actuarial y aparece en la mayoria de los libros de texto actuales en esta
materia. Una de las utilidades de esta formula es dar aproximaciones para la probabilidad de ruina, como
veremos mas adelante. El resultado es el siguiente:

Teorema 3.1. Considerar una distribucion compuesta S = YN | X; donde los sumandos X; son variables
aleatorias que toman valores sobre los enteros no negativos, con funcion de masa de probabilidad p(x),
x=0,1,.... Considerar que N, el niimero aleatorio de sumandos tiene funcion de masa de probabilidad
qn = P(N = n), satisfaciendo que

b
q,,:(a-l-;)qn,l, n=1,2,... (3.12)
Sea g(s) =P(S=s), s=0,1,... entonces se satisfacen las siguientes relaciones de probabilidad:

0) = {P(N =0) si p(0) = 0;

. (3.13)
my(logp(0)) i p(0) > 0;
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Donde my es la funcion generatriz de momentos de N, y

> bh
g(s) = —= (a—l—)phfs—h), s=1,2,... (3.14)
1 —ap(0) ,;1 S ()1
Demostracion. Notar que por ser reclamaciones independientes e idénticamente distribuidas y no ne-
gativas, tenemos que P(X; +---+ X, = 0) = p"(0), entonces el valor de f(0) lo obtenemos de (1.35) a
partir de

F(S=0)= Y. P(V=mp"(0) = Y PN =n) expn log (p(0))] (3.15)
n=0 n=0

Para hallar la segunda igualdad, escribimos T = Xj + --- 4+ Xj y notar que por idéntica distribucién
tenemos la siguiente igualdad:

bXi 1 bX; b b
E —|\Tr=s|==-) E — | Tr=s| = —E[Ti|Ty =s] =a+ —. 3.16
[a—i— % s} ki; [a—i— | Tk s] at [Tx|T} = s] at (3.16)
Andlogamente, podemos describir la misma esperanza como sigue:
bX J bh
. [a+1 o :S] -y <a+> PIX, — h[Ti = 5] (3.17)
s = s

Utilizando que P[X| = h|Ty = s] = P[X; = h, Ty — X; = s — h]/P[T; = 5] y que las X; son independientes,
se sigue de (3.16) y (3.17)

b ¢ bh\ P[X; = h|P[Ty — X, = s — ]

Utilizando los resultados (3.12) y (3.18) tenemos que paras = 1,2,...

= b
(Tk = S) = k;lqkil (a—i— k> P(Tk = S)

qk—1 Z Cl+> P(Xl = h)P(Tk*Xl :th)

o

2
I I
DMe TP

AN

=~

3

~
Il
-
il
o

I
M-

(
a+ bh) P(X, =h) i Gi—1P(Te— X, =s—h)
)

h=0 < § k=1
~ ¥ (a2 ) POt = )pets
h=0
— ap(0)g(s)+ ¥ <a+ ) PIX; = Alp(h)g(s—h).
h=1

Notemos que en la peniltima igualdad se ha tenido en cuenta que P(Ty —X; =s—h) =P(Xa +-- -+ X =
s—h)=P(X;+---+X;_1 =s—h) =P(T;_ =s—h) lo cual es cierto por ser X; idénticamente distribuidas
para todo i, y por tanto el segundo sumatorio coincide con g(s — k). De la expresion anterior podemos
obtener:

J bh
o)1 =ap0) = ¥ (a+ ™) pirg(s ) 6.19
h=1
Y finalmente nos quedaria:
1 u bh
€0 = oy X (a5 plhlets = (3.20)



Aproximaciones en modelos de matematica actuarial - Marina Aguilar Salvador 19

Ejemplo (Distribuciones apropiadas para la recursion de Panjer) Las distribuciones que satisfacen
la relacién (3.12) son las siguientes:

1. Distribucién de Poisson, notar:

——F—— neN 3.21)
n—1)!
N——
qn—1

e A" Ae At
ql’l = —— = ;

n!

Asia=0yb=A>0y (3.13) y (3.14) se simplifica como sigue:
g(0) = e A1-P0);

8(5) =1 . Ahp() (s~ h):
h=1

Sia+b=0,entonces gqo =1y g;=0para j=1,2,..., y obtenemos una distribucién Poi(0).

1. Distribucién de Pascal o distribucién binomial negativa, notar:

n = <r+n_ 1>(1 -p)'p"

n

= () EE2=D) (B gy, nen

n

dn—1

De aqui obtenemos a=1—py b= (1—p)(r—1) =a(r—1), es decir, una distribucién BN(r, p)
conp=1l—ayr=1+b/a,yporlotanto0<a<lya+b>0.

I1I. Distribucion Binomial, observar:

Gn = (i)pn(l —p)"

R

-~

qn—1
Despejando obtenemos a = p/(p—1)yb=p(k+1)/(1—p) entoncesa <0y b= —a(k+1) > 0.

Hemos visto que si a+ b = 0 estamos ante una distribucion Poi(0), excluyendo este caso, existen va-
lores de a y b para los que ¢, = (a+ %)qn_l para todo n = 1,2,... no admite ninguna distribucién de
probabilidad valida, estos casos son los siguientes:

= Una probabilidad no puede ser negativa pero en el caso de gg tampoco puede ser O ya que entonces
tendriamos g, = O paran = 1,2,... y la suma de probabilidades no serd 1, por tanto gg < 0 no es
factible y como consecuencia gg > 0.

= a+b < 0implica g; < 0, lo que tampoco es posible por ser una probabilidad.

» Sia<0ya#b/n,entonces (a+b/n) <0 para algiin n y las probabilidades serian negativas, por
lo tanto, no es factible.

» sia>1ya+b>0,entonces ng, = (n—1)a+a+b)g,_1,asi g, > ,n=1,2,... y por tanto
Y., g, = o= y tampoco es factible ya que la suma de probabilidades deberia dar 1.
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Ejemplo Si X son variables aleatorias enteras y no negativas, consideramos una distribucién de Poisson
_ 111

compuesta con A =4y P(X = 1,2,3) = 3, 5, 7, utilizando el ejemplo anterior, tenemos:
1
g(s) = ;[f(s— D)+4f(s—2)+3f(s=3)], s=1,2,... (3.22)

Comenzando con el valor £(0) = e~* ~ 0,0183. Tenemos:

§2) = 311 +47O) = 3,
§(0) = §[F2) +47(1) +37(O) = e *

y asi sucesivamente.

En el apéndice A tenemos un programa de R que nos irfa calculando la funcién de masa de probabi-
lidad en este caso.



Capitulo 4

Aproximaciones a la probabilidad de ruina

El objetivo de este capitulo es encontrar una aproximacion a una distribuciéon compuesta, es decir, a la
distribucién de sumas aleatorias, para ello tratamos de sustituir cada sumando por una variable aleatoria
discreta cuya funcién de masa de probabilidad podamos calcular a través de la transformada de Laplace.
Primero damos una introduccién de los procesos gamma que utilizaremos més adelante.

Definicion 21. Sea (S(u),u > 0) un proceso estocdstico ,diremos que es un proceso gamma si verifica:
1. S(0)=0.
1. Tiene incrementos estacionarios e independientes.
1. S(u) tiene densidad gamma de pardmetros & =uy ff = 1.

Iv. Las trayectorias del proceso son funciones continuas a derecha y con limites a izquierda.

4.1. Discretizacion de una variable aleatoria no negativa usando su trans-
formada de Laplace-Stieltjes

Sea X una variable aleatoria no negativa y sea F' su funcién de distribucién, denotamos por ¢y la
transformada de Laplace-Stieltjes de X definida:

ox (1) = E[e ] = /O T (), 10 @.1)

k

Con el objetivo de discretizar X, definimos para todo ¢ > 0 la variable aleatoria X* que toma valores ;,

k € N de modo que:

. Kk —1)k
P (x ‘= t) _ k') 0 (1), keN 4.2)
donde (I))((k) denota la k — ésima derivada de ¢, sea F;(x) la funcion de distribucién de X*':
[1x] k
o —t
F(x)=PX"<x)=Y ( k‘) ol x>0 4.3)
=0

donde [x] se refiere al mayor nimero entero que es menor o igual que x. No es contenido de este trabajo,
pero esta probado que F; converge a F en todo punto de continuidad de F' (es decir, se da la convergencia
en distribucion de X* a X) [5], y por ello, podemos utilizar X* para aproximar X.

Para calcular la funcién de masa de probabilidad de X* se necesita la transformada de Laplace-
Stieltjes de X y sus derivadas. Como ejemplo, vamos a ver como quedaria la aproximacién cuando X
sigue una distribucién gamma I'(, @), entonces su transformada de Laplace-Stieltjes es la siguiente:

ox(1) = (“)ﬁ 4.4)



22 Capitulo 4. Aproximaciones a la probabilidad de ruina

Observar que coincide con la funcién generadora de momentos vista en (1.21) con el signo cambiado.
Unos cdlculos sencillos nos llevarian a probar que la funcién de masa de probabilidad de X*' es la
siguiente ( ver [5]):

B ¢ :
P(X'f:k/r):<l3+lf 1) <H’(x> <t+“a> . kENI>0 (4.5)

Nuestro objetivo es aplicar este método a una suma aleatoria de variables aleatorias. Veamos como ha-
cerlo:

Sea (X;);en+ una sucesion de variables aleatorias independientes e idénticamente distribuidas, aplica-
mos (4.2) a cada una de las X; para obtener (X*');cn+ una sucesion de variables aleatorias independientes
e idénticamente distribuidas. De este modo podemos utilizar ¥, X para obtener una aproximacién
de Zﬁ‘i] X;. Una de las ventajas computacionales de este método es la siguiente: Si podemos calcular
la transformada de Laplace de Y'M, X;, entonces el método se puede aplicar directamente obteniendo
(£, X;)". En relacién a esto, veamos el siguiente resultado:

Proposicion 4.1. Sea (X;)ien+ una sucesion de v.a.i.i.d con funcion de distribucion comiin F, considera-

mos (X )ien+, con t > 0 una sucesion de v.a.i.i.d cuya funcion de masa de probabilidad viene dada al

aplicar (4.2) para cada X;, entonces:

(a) Se cumple
X+ 4+ Xy = (L) X+ + X)), t>0,neN

donde = (£) significa igualdad en distribucion.

(b) Sea M una variable aleatoria no negativa e independiente de (X;)ien+. Se cumple:

fx;f = (%) (fxl) , 1>0
i=1 i=1

Demostracion. Probamos el apartado (a) por induccién sobre n. Seat >0,y k € N, el cason =1 es
trivial, para el caso general, primero probaremos que si X; e ¥; son independientes (no necesariamente
idénticamente distribuidas), entonces X" +Y,” = (.Z)(X; +Y;)*, para ello utilizamos (4.2) como sigue:

Kk
P =5) = E000, 0 = Cl o 0)¢

donde la segunda igualdad es cierta por ser X; e Y; independientes. A continuacién aplicamos la regla de
Leibniz para derivadas de un producto de orden superior.

k

kK . '
P =1) =Sl y (f) oy <r>¢é,"*”<r>

j*O
(—)
( 7 )

L5
i < ) <Y"_ktj> P<X +Y":]:> (4.6)

Asi pues, asumimos que (a) se cumple para n y vemos que para n+ 1, tenemos por (4.6) aplicado a
Y1 =Xo+ -+ X,41 lo siguiente:

X XX = (X074 (X 1) = (L)X 4+ X+ Ko )
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El apartado (b) se sigue a partir del apartado (a) , ya que para todo x > 0 tenemos,

M oo
I«ZV§O=;ﬂMwM@mw+m%w
n=|

i=1

= iP(M:n)P((X1+-~-+Xn)°’ Sx)—P((MX,) Sx)
i=1

n=0 i
Lo que prueba el apartado (b). O

Observacion 4.1. Consideramos €'[0,0) el conjunto de funciones continuas definidas en [0,0) y con-
tinuas por la derecha en 0. A partir de ahora consideramos que F € €[0,) donde F es la funcion de
distribucion comiin a todas las variables de la sucesion (X;)icn+. Esto asegura que F; definido en (4.3)
satisface limy_,o F; (x) = F (x) para todo x > 0.

El objetivo ahora es verificar una propiedad que hace esta aproximacién bastante interesante: La
convergencia uniforme de la aproximacién vista utilizando el método anterior. Esto significaria que
los errores de aproximacién se mantendrdn estables en x, lo que a priori, puede no suceder con otras
aproximaciones. Sea X una variable aleatoria no negativa con funcién de distribucién F € €[0,). Sea
(S(u),u > 0) un proceso gamma como en la definicion21 , se cumple que (ver [5]):

F(x) =EF (‘W) x>0 4.7)

De este modo hemos conseguido expresar F; en funcion de un operador de tipo gamma al cual denotamos
L' y que se define de forma que dada una funcién f definida en [0, o), el operador viene dado por la
expresion:

tipei=r (S o @8

siempre que Lj|f](x) < oo, x > 0,1 > 0, es decir, el operador estd bien definido.
Vamos a utilizar la férmula (4.7) para evaluar la distancia entre Y2, X; y Y, X*' y estudiar la cota de
error de la aproximacion. Dadas dos funciones f'y g definidas en [0.00), definimos la norma infinito:

1f —ell = sup f(x) —g(x)]

Recordar que dadas dos variables aleatorias no negativas X e Y y sus respectivas funciones de distribucién
F y G, entonces la distancia de Kolmogorov de X e Y es la mdxima distancia entre sus funciones de
distribucion, es decir, utilizando la notacién anterior:

d(X,Y):=||F-G] 4.9)

en nuestro caso, tenemos X y X* variables aleatorias no negativas y sus respectivas funciones de distri-
bucién F' y LfF, definido segtin (4.8), y siguiendo lo anterior llegamos a dar una expresion de la distancia
entre X y X* en términos del operador de tipo gamma:

d(X,X*) = ||F —L}F| (4.10)

Dado que nuestro objetivo se centra en evaluar la distancia entre Y, X; y Y/ | X', vemos un resultado
que nos facilita aplicar lo visto en nuestro caso:

Proposicion 4.2. Sea (X;)icy+ una sucesion de variables aleatorias no negativas independientes e idén-
ticamente distribuidas y funcion de distribucion F € C|0,e0). Sea para cada t >0, (X*") una sucesion
de variables aleatorias discretas no negativas independientes e idénticamente distribuidas cuya funcion
de masa de probabilidad viene dada en (4.2). Sea L definido en (4.8), entonces:
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(a) Dada F*" la funcion de distribucion de X\ + - -- + X, entonces L{F*" la funcion de distribucion
de X' +---+ X3, y se verifica:

dXy 4+ X, X -+ X0 = [ = LF™|, neN

(b) Sea M una variable aleatoria no negativa e independiente de (X;);en+, entonces para todo t > 0
M M
d{ Yy x.,) x Z P(M =n)||L;F*" — F*"|
=1 =1

Demostracion. Hemos visto en la proposicion (4.1) que la funcién de distribucion de X" + --- + X'
coincide con la funcién de distribucién de (X; +--- 4+ X,,)* que es LF*", por lo que el apartado (a) se
sigue inmediatamente al sustituir en (4.10). Para demostrar el apartado (b), aplicamos la desigualdad
triangular y el apartado (a),

(Ex i) _sup{gP(M_n>P ($55) - - (72
ol o)

Z M=n HL*F*n F*nH

n=1

O]

Observacion 4.2. Vemos que la aproximacion que planteamos es invariante respecto a un cambio de
escala en la sucesion inicial (X;)ien+, es decir, sea X una variable aleatoria no negativa 'y X*' descrita
segiin (4.2) para t > 0, se tiene que:

(cX)" =(L)eX*, 1>0,c>0 @.11)
Esto se puede probar aplicando (Pg? (t)=c (]))((k) (ct) parak € N, en (4.3),

et 5/ (_ep)h
k!

] Nk
P((ex) <x) = Y W0 =

i 0 (ct) = P(X*" <
k=0 :

o=

)

k=0

esto demuestra que (cX)* y cX*“ tienen la misma funcion de distribucion y esto prueba (4.11). Como
consecuencia tenemos que Y™ | (cX;)* = (£)c ¥, X' entonces:

E
E
§

(ZCX,,Z ) <ZX,,CZ ’) (ZX,Z '“) (4.12)

i= i= i=1

—
—_

Donde hemos utilizado que d(cX,cY) = d(X,Y) lo cual es cierto por definicion. Esta observacion serd
itil para dar simplificaciones en la notacion.

En el siguiente resultado damos (sin demostracién) una cota de error para el la aproximacion vista
en el caso particular de una distribuciéon gamma de pardmetro de forma f y pardmetro de escala 1
(aunque la observacién 4.2 nos indica que el resultado es cierto para cualquier pardimetro de escala).
Este resultado nos da una cota de error cuando discretizamos una suma aleatoria con sumandos gamma.
Como caso particular, veremos el comportamiento de esta aproximacién la probabilidad de ruina cuando
las cantidades reclamadas son gamma.
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Teorema 4.1. Sea (X;);cn+ una sucesion de variables aleatorias independientes e idénticamente distri-
buidas cuya funcion de distribucion es la de una T'(B, 1) (es decir, una distribucion gamma de pardmetro
de forma B )y sea (X*")ien+ para t > 0 una sucesion de variables aleatorias independientes e idéntica-
mente distribuidas cuya funcion de distribucion viene dada en (4.5) . Dada M una variable aleatoria en-
tera no negativa e independiente de (X;)icn- tal que P(M > 0) > 0. Definimos m: =min{n € N*: P(M =
n) > 0}, donde N* denota los enteros estrictamente positivos. Entonces si mf3 > 1, se cumple:

M M — o
d ( X;, X,”) < cr(mB)P(M > 0)% < <1+ 3‘34 1 T :H) % (4.13)
i=1 i=1
con ¢y definido como sigue:
x(B)s = g (aB)+ 30(B)+ 1 o(B) +4a(B)) @.14)
para
a(B): =(B—1)F"De(B-1) (4.15)
b(B) i=mix Ve (B—1-x), Ve (- (B-1)) (4.16)
donde

11 11
xi=B—=—=V4B-3 y xx=B—=+=-+4B-3.
2 2 22
4.2. Aproximaciones para cantidades reclamadas exponenciales.

En esta seccion es utilizaremos la aproximacién anterior en el caso en que X; ~ Exp() y N ~ Geo(p)
para calcular la probabilidad de ruina.
Sea X; ~ Exp(f), hemos visto en (3.5) que la distribucién de equilibrio de L; también es exponencial
y por lo tanto utilizando la férmula de convolucién de Beekman, podemos expresar la probabilidad de
ruina como:

M
v(u)=P (ZLi > u) (4.17)
i=1

donde M es una geométrica de pardmetro 1 — p y L; es exponencial de pardmetro 3. Puesto que la
distribucién exponencial es continua, vamos a utilizar la aproximacién del Capitulo 4 para discretizar
la variable aleatoria L;. Denotamos L;’ a la discretizacion de la variable aleatoria L; y utilizando (4.2)
podemos ver que su funcién de masa de probabilidad es la siguiente:

ot k (_t)k ﬁk! th
P =1) =5 (0 ) = g @

Observar que LY = %Z,- donde Z; ~ Geo (%) ya que podemos expresarla de la siguiente forma

of _ k _ tkﬁ o B t k
P =) =G = g () )
donde . 5
ﬁ zl—ﬁ (4.20)

Es decir, utilizando esta aproximacion, obtenemos que la probabilidad de ruina puede expresarse como
una suma geométrica de variables aleatorias geométricas. De esta manera obtendriamos la siguiente
aproximacion para la probabilidad de ruina:

1 N N
Yop(u) =P| =Y. Zi>u | =P| Y Zi>tu (4.21)
i=1 i=1
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Podemos comparar la aproximacién estudiada con las aproximaciones calculadas en [6], y aunque no
las vamos a demostrar, diferenciamos entre cota superior e inferior. Para la cota superior, aproximamos
L; por h([L;/h] + 1), es decir, discretizamos los valores de L; en un intervalo de longitud h a su valor en
el extremo superior. Llamando N; = [L;/h] + 1, tendriamos:

N N u
Yu(w) =P(hY Ni>u | =P|} Ni>— |, u>0 (4.22)
i=1 i=1

La cota inferior viene dada aproximando L; por h[L;/h], es decir, discretizamos los valores de L; un un
intervalo de longitud h por su valor en el extremo inferior Llamando K; = [L;/h], tendriamos:

N u
vi(u) =P (ZK» h), u>0 (4.23)
i=1

También podemos comparar con el valor exacto de la probabilidad de ruina, recordamos por (3.6) que el
valor exacto de la probabilidad de ruina en este caso viene dada por:

w(u)=pe PO u>0 (4.24)

En el anexo B encontramos un ejemplo numérico para comprobar el comportamiento de las aproxima-
ciones usando la recursién de Panjer y t = 1/h, para obtener las mismas longitudes de discretizacion.
Utilizaremos el paquete de R “actuar” el cual estd pensado para realizar cdlculos asociados a la mate-
matica actuarial y en particular permite discretizar una variable continua por los métodos anteriormente
descritos y aplicar la recursién de Panjer.
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Anexo A

Implementacion de la recursion de Panjer
en R

Utilizaremos un cdédigo en R para calcular la recursiéon de Panjer de una distribucién de Poisson de
pardmetro A y podremos calcular el ejemplo planteado en el capitulo 3. Para ello primero explicamos el
codigo.

A.1. Explicacion cédigo

El objetivo es implementar en R las siguientes funciones, las cuales ya hemos visto que satisfacen la
formula de la recursion de Panjer en una distribucién de Poisson

g(0) = e A1-p(0)).

LY Anp(h)g(s—h):
h=1

g(s) =

El cédigo utilizado es el siguiente:

Panjer.Poisson<-function(p, lambda){
if (sum(p)>1||any(p<0)) stop("p es un pardmetro, no una densidad")
if (lambda * sum (p) >727) stop("underflow")
cumul<-g<-exp(-lambda * sum(p))
r<-length(p)
5<-0
repeat{
s<-s+1
m<-min(s, T)
last<-lambda / s*sum(l:m * head(p,m)*rev(tail(f,m)))
g<-c(g,last)
cumul<- cumul+last
if (cumul > 0.99999999) break }
return(g)

}

A continuacién desglosamos el codigo para entenderlo mejor. Recordar que el pardmetro p es un vector
de probabilidades que contiene los valores p(1),p(2),... , asi podemos denotar g(0) = 1—Y,_; p(h),
es por esto que en primer lugar descartamos la posibilidad de que la suma de los componentes de este
vector sea mayor que 1. Ademads el pardmetro "lambda’ representa A y no deberia ser demasiado grande,
por ello el programa se detiene si A(1 — p(0)) > 727 ya que en ese caso el valor de g(0) es demasiado
pequeiio. Utilizamos la operacion if para implementar estas dos condiciones:

1
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if (sum(p)>1||any(p<0)) stop("p es un pardmetro, no una densidad")
if (lambda * sum (p) >727) stop("underflow")

El valor de g(0) se calcula teniendo en cuenta la siguiente expresién f(0) =1 —Y,_; p(h) y utilizamos
una variable a la que llamamos ’cumul’ para almacenar sus valores.

cumul<-f<-exp(-lambda * sum(p))

Para el cdlculo de g(s) definimos una variable s que inicializamos en 0 y r otra variable que la definimos
como la longitud de del vector de probabilidades p. Con estas variables definidas, iniciamos un bucle que
calculard su valor utilizando las funciones head, rev y tail donde head permite visualizar las primeras
observar las primeras filas de datos, rev que coloca los componentes de un vector en orden inverso y tail
permite obtener las ultimas filas de datos.

r<-length(p)
s<-0
repeat{
s<-s+1
m<-min(s, r)
last<-lambda / s*sum(l:m * head(p,m)*rev(tail(f,m)))
g<-c(g,last)

Y para obtener el valor final de g(s):

cumul<- cumul+last

A.2. Ejemplo numérico

Vamos a utilizar el cédigo explicado para obtener el valor numérico en el ejemplo (3.3) donde el
vector de probabilidades es (0,25,0,5,0,25) y A =4

pp<-Panjer.Poisson (c(0.25,0.5,0.25), 4)%exp(4)
pp

Y obtenemos como resultado los valores de g(h) para h € [1,45]

> pp

[1] 1.000000e+00 1.000000e+00 2.500000e+00 3.166667e+00 4.041667e+00 4. 841667e+00

[7] 5.084722e+00 5.225198e+00 5.011136e+00 4.574011e+00 4.029415e+00 3. 396260e+00
[13] 2.769663e+00 2.187919e+00 1.675382e+00 1.249070e+00 9.071473e-01 6.429161e-01
[19] 4.454841e-01 3.020311e-01 2.006358e-01 1.307244e-01 8.360731e-02 5.253967e-02
[25] 3.240425e-02 1.973779%e-02 1.181592e-02 6.968883e-03 4.051640e-03 2.323273e-03
[31] 1.31454%e-03 7.342762e-04 4.0530717e-04 2.207826e-04 1.189382e-04 6.335096e-05
[37] 3.337365e-05 1.739438e-05 B.972154e-06 4.381298e-06 2.316326e-06 1.159951e-06
[43] 5.75455%e-07 2.82889%2e-07



Anexo B

Aproximaciones de la probabilidad de
ruina en R

El objetivo es obtener un resultado numérico de la probabilidad de ruina cuando X; ~ Exp(f) y
N ~ Geo(p) utilizando la aproximacién del Capitulo 4 y comparar los resultados con los obtenidos
en [6]. Para ello, calculamos en R la probabilidad de ruina utilizando la recursién de Panjer con la
aproximacion calculada y comparamos el resultado con las aproximaciones en [6] y con su valor exacto.

B.1. Explicacion cédigo

Dividimos la explicacién en dos partes, primero obtendremos una cota superior e inferior de la pro-
babilidad de ruina utilizando el método de [6] y a continuacién calcularemos la misma probabilidad
con la aproximacion descrita anteriormente en ( 4.19 ). Una vez tengamos ambos célculos, podremos
compararlos.

Vamos a utilizar el paquete "actuar” que incluye funciones especificas de matemadtica actuarial. Puesto
que algunas funciones especificas para el cdlculo numérico de dicha probabilidad requieren una distri-
bucién discreta, vamos a utilizar una funcién que sirve para discretizar las funciones de distribucién
continuas, esta funcién se llama “discretize” y en nuestro caso la utilizamos para discretizar una distri-
bucioén exponencial de pardmetro . Esta funcion admite varios métodos de discretizacion, en concreto
utilizaremos los métodos "upper” y "lower”, el resultado serd una distribucién definida en 0,4,2h, ...
donde 4 es la longitud de discretizacion.

1000, step=h, method="lower")
1000, step=h, method="upper")

flL<-discretize(pexp(x,beta), from= 0, to
fU<-discretize(pexp(x,beta), from= 0, to

En este caso hemos tomado un rango de discretizacién de 0 a 1000 y la orden ”pexp” indica la funcién
de distribucion de una exponencial de pardmetro 3.

Una vez obtenida la discretizacion, podemos utilizamos la funcién “aggregateloss” con los sumandos
parametrizados que nos permite aproximar la distribucion de la pérdida maxima acumuladas. Concreta-
mente utilizaremos el método “recursivo” en el cual utiliza el algoritmo de Panjer.

FL<-aggregateDist (method = "recursive", model.freq= "geometric", model.sev = fL,
prob= 1-p, x.scale = h)
FU<-aggregateDist (method = "recursive", model.freq= "geometric", model.sev = fU,

prob= 1-p, x.scale = h)

La entrada ”model.sev” es un vector de probabilidades de las cantidades reclamadas, que en nuestro caso
se ha calculado con la funcién de discretizacion, y "model. freq” representa la distribucion del nimero
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de reclamaciones, que en esta caso es geométrica de pardmetro 1 — p como hemos visto en (2.6).
Por dltimo obtenemos una aproximacion a la probabilidad de ruina para la cota superior e inferior.

psil<-function(u){1-FU(u)}
psiU<-function(u){1-FL(u)}

Una vez calculada la aproximacién a la probabilidad de ruina usando este método, repetimos el
proceso pero con la aproximacion calculada en el Capitulo 4.

fJ<-dgeom((0:1000), j)

FJ<-aggregateDist (method = "recursive", model.freq= "geometric", model.sev = £fJ,
prob= 1-p, x.scale = h)

psiJ<-function(u){1-FJ(u)}

En este caso la funcién “aggregateDist” utiliza de nuevo el método “recursive” con la misma distri-
bucién para el nimero de reclamaciones que en los casos anteriores, sin embargo, ahora la funcién de
distribucion de las cantidades reclamadas es la geométrica de parametro j calculada en el Capitulo 4.
Utilizamos la expresion explicita calculada en (3.6) en el que cantidades reclamadas son exponenciales
y niimero de sucesos tiene una distribucién geométrica para calcular la probabilidad exacta de ruina.

psiE<-function(U){p*exp(-beta*u*(1-p))}
Finalmente escribimos los resultados en un vector para poder compararlos con la siguiente orden.
cbind (u=u, lower= 1- FU(u), psiE=psiE(u), upper=1-FL(u) , aproximacidén=1-FJ(u))

Y terminamos con una representacion grafica de los resultados obtenidos.

plot(u, 1- FL(u),xlim=c(0,15), type="1", col="green", ylab= " ")
lines(u, 1- FU(w),xlim=c(0,15), type="1", col="blue", ylab= " ")
lines(u, 1- FJ(u),xlim=c(0,15), type="1", col="black", ylab= " ")

lines(u, p*exp(-beta*u*(1-p)),xlim=c(0,15), type="1", col="red",

ylab= " Probabilidad de ruina")

legend("topright", legend = c("cota inferior ", "valor exacto",

"cota superior", "aproximacién"), lwd = 3, col=c("blue", "red", "green", "black"))

B.2. Primer ejemplo numérico

Primero debemos introducir el capital inicial para el que vamos a calcular la probabilidad, concreta-
mente hemos establecido que sea un vector que toma valores de 0 a 100 aunque tan solo utilizaremos la
primera mitad para hacer la comparacién. También es importante definir la longitud de discretizacién A,
el pardmetro de la distribucién exponencial 3, la constante ¢ y el pardmetro A necesarios para calcular la
probabilidad p = AE[X;]/c, con E[X;] = 1/, entonces:

h<-0.5

beta<-0.4
media<-1/beta

c<-1.2

lambda<-0.2
p<-lambda*media/c
u<-seq(0,1000)

j<- beta/(beta + 1/h)
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Con estos pardmetros, imprimimos la siguiente tabla con la probabilidad de riesgo para cada método y
para cada valor de u. La primera y tercera columna son los resultados al utilizar el método lower” y
“upper” respectivamente, la segunda columna es el valor exacto de las probabilidades y la cuarta es el

valor obtenido al utiliza la aproximacién descrita en el Capitulo 4.

[1,]
[2,]
[3,]
[4,]
[5,]
(6, ]

7]
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,]
[28,]
[29,]
[30,]

Observar que los valores obtenidos para la aproximacién descrita en el Capitulo 4 se encuentra siem-
pre entre la probabilidad de ruina calculada con los métodos “lower” y “upper” . Para que sea mas
sencilla la comprension de los datos, dibujamos la gréfica en la que se puede observar como esta aproxi-
macién es mejor que las anteriores, (excepto en torno a 0, ya que el método “upper” da la probabilidad

W e G on B b = O

R e B v e T e e R I =T o T o o R W - B o - T S T S S S R WY

16
17
18
19
20
21
22
23
24
25
26
27
28
29

1ower

. 630086e-01
LB04223e-01
. 270008e-01
. 7B0422e-01
.396428e-01
.085252e-01
.590321e-02
. 737595e-02
. 284457e-02
L1447 326e-02
. 250808e-02
. 549687 e-02
. 9997 80e-02
. 568476e-02
.230193e-02
. B4869%e-03
. 567706e-03
.935533e-03
.B535381e-03
.B51327e-03
.BB3E23e-03
. 246165e-03
. 7B1721e-03
. 381760e-03
.083748e-03
. 500092e-04
. BBEE2Ee-04
. 228951e-04
L101192e-04
. 216663e-04

exacta de ruina en el 0).

m~wMOoRFFEFRMNMWWEDSNODRFEFRMMNWRERELO@GERERRSWER

psiE

.166667e-01
. 299540e-01
LB12871e-01
.069105e-01
.B638503e-01
.297513e-01
L027487e-01
.136565e-02
L443261e-02
.102351e-02
.04049%9e-02
.199629e-02
.533753e-02
.006452e-02
. 58EEEQe-02
L258224e-02
.963747e-03
.BO01E87e-03
.248157e-03
. 947850e-03
.918151e-03
L102743e-03
L457030e-03
.94560962-03
L 540777e-03
L220125e-03
.B6620422-04
LB651270e-04
.058961e-04
. 7OB028e-04

[ I R e B e e L LT R WU I o I B Ve T e R e S S R L R R C o e - o T S S T L I S R R

upper

.166667e-01
.332084e-01
. 66466%e-01
.130936e-01
.704110e-01
.362777e-01
.0B9E13e-01
.715240e-02
.969580e-02
.573574e-02
L45718%e-02
.564415e-02
.850464e-02
. 279516e-02
.B22930e-02
LA57797e-02
.165801e-02
.322913e-03
.455536e-03
.962194e-03
.767968e-03
.B812945e-03
.049213e-03
.438456e-03
.950034e-03
.559443e-03
. 247087 e-03
.972956e-04
97537 5e-04
. 377910e-04

a
3
2
2
1
1
1
G
7
&
3
4
3
2
2
1.
1
1
B
7
3
4
3
2
2
1
1
1
G
7
G

proximacion
.731343e-01
.99238%e-01
.399778e-01
.924526e-01
.543304e-01
L237741e-01
.926190e-02
.960411e-02
.383934e-02
.119%662e-02
L105766e-02
L292661e-02
.B640584e-02
L117643e-02
698266e-02
.3619422-02
L092224e-02
. 759200e-03
.024531e-03
.633395e-03
. 517760e-03
.B623064e-03
.905554e-03
.330139%e-03
.B6E679e-03
L498606e-03
L201823e-03
.B638143e-04
. 72940%9e-04
19867 9e-04



6 Anexo B. Aproximaciones de la probabilidad de ruina en R

04

cota inferior
valor exacto
cota superior
= aproximacion

0.3

Probahilidad de ruina
0.1 02

00

B.3. Segundo ejemplo numérico
Podemos repetir los cdlculos con datos diferentes, por ejemplo:

h<-0.25

beta<-1
media<-1/beta

c<-1.2

lambda<-0.6
p<-lambda*media/c
u<-seq(0,1000)

j<- beta/(beta + 1/h)

En este caso, ocurre de manera similar al anterior, el valor de la aproximacién estudiada en el Ca-
pitulo 4 es siempre menor que la aproximacion por el método “upper” y mayor que la calculada con el
método “lower”, de hecho observamos de nuevo que cuando u es pequeio, la aproximacién del Capitulo
4 es menor que el valor real y por tanto se asemeja mds a la calculada por el método ”lower’:

u lower psiE upper aproximacion
[1,] 0 4,378235e-01 5.000000e-01 5.000000e-01 4.444444e-01
[2,] 1 2.574040e-01 3.032653e-01 3.128666e-01 2.774645e-01
[3,] 2 1.513323e-01 1.839397e-01 1.957711e-01 1.7321597e-01
[4,] 3 8.897087e-02 1.115%6531e-01 1.225005e-01 1.081402e-01

Y segiin aumenta u, la aproximacién del Capitulo 4 es mayor que el valor real y por tanto se aseme-
ja mds a la aproximacion calculada por el método "upper’:

[27,] 26 0.000000e+00 1.130165e-06 2.541505e-06 2.127919%e-06
[28,] 27 0.000000e+00 H£.834795e-07 1.500304e-06 1.328450e-06
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Graficamente obtenemos :

w0

= — cota inferior
@ < = valor exacto
5 ° cota superior
L o = aproximacion
L] D N
m
T o
o o 7
L}
0
o = |
o (o]

@ |

= | | | |

0 6] 10 15
u

De este modo, hemos visto que la aproximacién calculada en el dltimo capitulo es mejor que las calcu-
ladas por los métodos “upper” (excepto para valores de u préximos a 0) y “lower” y que funciona para
distintos valores de h.
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