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1. Introducción 

Este trabajo busca estudiar la conexión entre reactividad química de los minerales de carbonato 

de calcio (CaCO) y las propiedades estructurales de estos cristales a través de información 

proporcionada por una técnica de microscopía especial basada en difracción de rayos X (en ingles 

“Bragg coherent diffraction imaging”, BCDI). Esta es una técnica de microscopia novedosa que 

nos proporciona una visión única de la forma y la estructura interna de cristales nanométricos en 

tres dimensiones. Ofrece la información necesaria para conectar reactividad química y estructura 

cristalina, y así identificar los mecanismos estructurales que están involucrados en procesos de 

disolución. 

Nos centraremos en el mineral a base de carbonato de calcio, la calcita, cuando está en contacto 

o inmerso en una solución acuosa. Los minerales a base de carbonato de calcio tienen importancia 

por varias razones: 

• Son omnipresentes en la Tierra y en los tejidos duros de los animales vivos. El carbonato 

de calcio se encuentra en los caparazones, esqueletos y conchas de muchos organismos 

marinos, como corales o moluscos. Cuando estos organismos mueren, sus restos se 

depositan en el fondo marino, formando sedimentos de carbonato de calcio1. 

• Desempeñan un papel crucial en varios procesos ambientales, incluyendo la 

acidificación de los océanos y el ciclo del carbono, ambos influenciados por las 

actividades humanas2.  

Por estas razones, queremos comprender el proceso de disolución de estos minerales cuando están 

en contacto o inmersos en una solución acuosa e identificar los mecanismos que gobiernan este 

proceso químico en la nanoescala. En particular nos centraremos en los mecanismos estructurales 

que se activan en distintas fases de la disolución (defectos cristalinos, campos de distorsión, etc). 

Este trabajo está organizado en 3 secciones: 

• Primero, describimos la microscopía basada en difracción de rayos X coherentes: 

comenzamos hablando del principio de microscopía por difracción de rayos X (o en inglés 

Coherent diffraction imaging CDI), describiendo sus fundamentos matemáticos y 

características experimentales. Luego, nos centraremos en la implementación de CDI en 

geometría de reflexión de Bragg, que se denomina Bragg CDI (BCDI). 

• En segundo lugar, vamos a describir los procesos de disolución de minerales de 

carbonato de calcio en medio líquido. Para ello, explicaremos el rol de uno de los 

parámetros que controlan la tasa global de disolución: el índice de saturación de la 
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solución acuosa. Después, describiremos aquellos mecanismos que controlan las tasas de 

disolución locales, y que son esencialmente mecanismos estructurales. En esta parte 

explicaremos como BCDI nos proporciona información única para modelizar dichos 

mecanismos estructurales. Dentro de este último apartado describiremos el sistema 

cristalino haciendo énfasis en:  

1) la coordinación de las celdas unidad (abreviado c.u.) del cristal.  

2) el campo de distorsión cristalino tanto sobre la superficie como en el interior 

del cristal. Esto se hará a partir de medidas de BCDI reales.  

• Por último, realizaremos una simulación de disolución de un nanocristal de calcita 

utilizando los datos obtenidos a partir de medidas de BCDI y analizaremos los resultados 

obtenidos. 

 

2. Principio de microscopía Basada en la difracción de 

rayos X coherentes 

En este apartado describiremos la microscopía de rayos X coherentes (en inglés, coherent 

diffraction imaging, CDI), una técnica avanzada de microscopía que se fundamenta en el principio 

de la difracción de rayos X y que, en lugar de una lente, utiliza un algoritmo matemático para 

formar la imagen.  

Primero, compararemos CDI con la microscopía óptica convencional. Especificaremos el 

fundamento matemático de la técnica que es la transformada de Fourier y definiremos la magnitud 

que medimos experimentalmente, la intensidad difractada. A continuación, explicaremos como 

la transformada de Fourier establece unos requisitos necesarios para obtener imágenes de un 

cristal a partir de medidas del patrón de difracción producido por dicho cristal. Después, 

describiremos las relaciones de reciprocidad entre los espacios directo y reciproco y la coherencia 

de los haces, fundamental en este tipo de microscopía. Luego, veremos cómo implementar las 

condiciones experimentales para que las medidas satisfagan los requisitos matemáticos y se pueda 

reconstruir una imagen de un objeto a partir de intensidades difractadas. En dichas condiciones, 

Bragg-CDI nos da información sobre la forma y la estructura interna en 3D del cristal que 

utilizaremos en las simulaciones. 
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2.1. Microscopía de rayos X coherentes vs microscopía 

óptica normal 

La microscopía de difracción de rayos X coherentes (CDI) se basa en la dispersión de los rayos 

X incidentes al interactuar con la muestra (Figura 1.b). En contraste con la microscopia 

convencional, que depende de lentes físicas para generar imágenes (Figura 1.a), la microscopía 

de difracción de rayos X coherentes ilumina el objeto de estudio con un haz coherente, registra la 

intensidad de luz difractada a través de un detector y reconstruye la imagen gracias a un algoritmo. 

Ambas permiten ampliar un plano 2D recreando la forma del objeto. 

 

 

 

  

 

 

 

 

Figura 1. Comparación a) microscopia convencional y b) microscopía CDI  

 

2.2. Fundamentos matemáticos de CDI 

En CDI se miden intensidades difractadas de las ondas de un haz coherente en el espacio recíproco 

y se restituye la imagen del objeto en el espacio real a partir de estas. El haz difractado está 

formado por una superposición de ondas que tienen diferentes fases tras interaccionar con el 

objeto de estudio. Dicha superposición genera las interferencias constructivas y destructivas. En 

el caso de fotones coherentes, produce un patrón de “speckles” en el espacio reciproco. 

Matemáticamente, pasamos del espacio real al espacio recíproco mediante la transformada de 

Fourier:  

𝐹𝑇[𝜌(𝑥, 𝑦)] = 𝐹(𝑢, 𝑤) = 𝐹0(𝑢, 𝑤)𝑒𝑖𝛼(𝑢,𝑤) =   ∑ 𝜌0(𝑥, 𝑦)𝑒𝑖𝜙(𝑥,𝑦)𝑛º 𝑝𝑖𝑥
𝑥,𝑦                    (1) 

Donde 𝜌(𝑥, 𝑦) es el objeto complejo definido en la retícula del espacio directo (x,y) con 

modulo 𝜌0(𝑥, 𝑦) y fase 𝜙(𝑥, 𝑦) y 𝐹(𝑢, 𝑤) es el factor de estructura, también complejo, con 



4 
 

módulo 𝐹0(𝑢, 𝑤) y fase 𝛼(𝑢, 𝑤) y definido en la retícula de frecuencias (u,w). El factor de 

estructura es el campo difractado por los átomos en el espacio recíproco. La relación de 

reciprocidad entre los espacios directo y recíproco, y entre objeto e intensidad difractada se ilustra 

en la Figura 2:  

 

Figura 2. Transformada de Fourier que relaciona a) los retículos de los espacios y b) un objeto 

en el espacio directo con su patrón el espacio recíproco. 

En la Figura 2.a vemos la relación de reciprocidad entre las retículas del espacio real y el espacio 

directo. En la Figura 2.b vemos el ejemplo de un objeto cuadrado ubicado en una ventana 

numérica y su correspondiente patrón de difracción en el espacio recíproco relacionados mediante 

la transformada de Fourier. En este caso el patrón de difracción del objeto cuadrado se describe 

mediante una función de “seno cardinal” que se define como  
sin(π x)

πx
  y donde vemos una serie de 

picos modulados por una función envolvente. Dichos picos son el resultado de las antes 

mencionadas interacciones constructivas y destructivas y se llaman “speckle” o “franjas” en el 

caso de CDI. Su anchura ∆𝑞 es inversamente proporcional al tamaño del objeto D.  

La inversa de la transformada de Fourier nos permite hallar el objeto a partir del factor de 

estructura (𝐹(𝑢, 𝑤)): 

𝐹𝑇−1[𝐹(𝑢, 𝑤)] = 𝜌(𝑥, 𝑦) = 𝜌0(𝑥, 𝑦)𝑒𝑖𝜙(𝑥,𝑦) =   
1

2𝜋
∑ 𝐹0(𝑢, 𝑤)𝑒𝑖𝛼(𝑢,𝑤)𝑛º 𝑝𝑖𝑥 𝑑𝑒𝑡𝑒𝑐

𝑥,𝑦            (2) 

Finalmente, la intensidad difractada que medimos con CDI se define como el módulo al cuadrado 

del factor de estructura: 

𝐼(𝑢, 𝑤) = |𝐹(𝑢, 𝑤)|2                                                              (3) 
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Experimentalmente, se mide esta intensidad difractada en el detector y con un algoritmo se 

reconstruye la forma y estructura interna del objeto a partir de dicha intensidad. 

 

2.3. Condiciones matemáticas para obtener una imagen a 

partir de las medidas de intensidad difractada e 

implementación experimental - Problema de fase 

Como ya hemos mencionado, en CDI el haz de rayos X coherente interactúa con el objeto y se 

difracta propagándose hasta que lo medimos en con detector. Sin embargo, los detectores solo 

pueden registrar magnitudes reales, es decir, solo pueden registrar la intensidad del factor de 

estructura ( 𝐼~|𝐹(𝑢, 𝑤)|2 en la ecuación 3), por lo que la información de la fase se pierde. Esta 

incapacidad del detector para registrar las fases del frente de onda produce una pérdida de 

información directa conocida como el “problema de la fase” 3,4. 

A partir de la medida de las intensidades difractadas con un detector de N píxeles necesitamos 

determinar el módulo 𝜌
0

(𝑥, 𝑦)  y fase 𝜙(𝑥, 𝑦) del objeto complejo 𝜌(𝑥, 𝑦) para cada uno de esos 

N píxeles (ecuación 2). Matemáticamente, esta situación se corresponde con la resolución de 

un sistema de N ecuaciones correspondientes a las N intensidades medidas en el detector y 2N 

variables desconocidas (modulo y fase del objeto en cada píxel). Este sistema de N ecuaciones 

con 2N incógnitas se resuelve mediante algoritmos iterativos5.  

Para poder solucionar el problema de la fase, hay que lograr que el número de incógnitas y de 

ecuaciones sea equiparable. Para ello hay que lograr incluir "constricciones" que simplifiquen el 

problema (es decir que reduzcan la proporción entre incógnitas y ecuaciones). Veremos a 

continuación qué condiciones experimentales equivalen a dichas “constricciones” matemáticas y 

nos permiten medir una distribución de intensidad difractada a partir de la cual un algoritmo pueda 

reconstruir la imagen compleja del objeto. También describiremos cómo dichas condiciones 

experimentales van a determinar los parámetros característicos de la microscopía CDI: su 

resolución espacial (i.e. el tamaño mínimo que podemos resolver) y su campo de visión (i.e. el 

tamaño máximo de la ventana que podemos observar). 

 

2.3.1.  Resolución espacial 

Puesto que la transformada de Fourier es la transformación fundamental que conecta el objeto 

con el campo difractado, es también la transformación que conecta el espacio directo (x,y) (donde 

se define el objeto) y el espacio recíproco (u.w)  (donde se define el factor de estructura). Por ello, 
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ambos espacios están conectados por relaciones de reciprocidad que podemos observar 

gráficamente en la Figura 2.a. y b.  

La resolución en el espacio recíproco (δq) se obtiene a partir del tamaño de la retícula en el 

espacio directo (D). El tamaño de la retícula en el espacio recíproco (Drep) está relacionado con 

la resolución en el espacio directo (δp): 

 

𝛿𝑞 =
2𝜋

𝐷
                                                                          (4) 

                           𝐷𝑟𝑒𝑝 =
2𝜋

𝛿𝑝
                                                                         (5) 

 

Al aumentar el tamaño de la retícula en el espacio directo (D), disminuye el tamaño de píxel en 

el espacio recíproco (2π/D). De manera análoga, si aumentamos el tamaño de píxel en el espacio 

directo (δp) disminuimos el tamaño de la retícula en el espacio recíproco (2π/δp).  

 

Como hemos dicho anteriormente, para obtener una imagen compleja (módulo y fase) del objeto, 

el algoritmo tiene que poder solucionar el problema de la fase. Para ello, necesitamos medir la 

intensidad difractada con una frecuencia (es decir sobre una retícula) donde la proporción entre 

incógnitas y ecuaciones que llamamos razón de sobremuestreo (o “oversampling ratio” en inglés) 

sea: 

𝜎 =
𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠

𝑖𝑛𝑐ó𝑔𝑛𝑖𝑡𝑎𝑠
≥ 2                                                                 (6) 

Experimentalmente, esta condición de sobremuestreo equivale a que cada franja de intensidad de 

tamaño 𝛥𝑞 en el espacio recíproco se mida con un mínimo de dos píxeles de detector (𝛿𝑞). En el 

espacio real, esta condición es equivalente a tener un objeto (𝐷𝛿) como mínimo dos veces más 

pequeño que la ventana numérica (D).5 En la Figura 2.b ilustramos los requisitos matemáticos 

en el espacio recíproco: 

      𝛥𝑞

𝛿𝑞
≥ 2                                                                   (7) 

 y en el espacio real 

𝐷

𝐷𝛿
≥ 2                                                                             (8) 

En la Figura 3 podemos observar el efecto de la frecuencia de muestreo de la intensidad difractada 

en 2 casos. El caso a), en el que se cumple el sobremuestreo, podemos reconstruir el objeto a 

estudiar con bordes bien definidos. Por otro lado, en el caso b), donde no se cumple el 

sobremuestreo, los píxeles en espacio recíproco son demasiado grandes como para resolver las 
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franjas del patrón de intensidad. La consecuencia es que el objeto reconstruido no tiene bordes 

bien definidos. 

Figura 3. Esquema que ilustra la condición necesaria para el sobremuestreo donde en a) se 

cumple la condición para reconstruir la imagen y en b) no. 

Para que la medida de la intensidad difractada satisfaga la condición de sobremuestreo, tenemos 

que elegir con cuidado algunos parámetros experimentales.  La condición de sobremuestreo exige 

que, en el espacio recíproco, el tamaño del píxel sea dos veces menor que el tamaño de las franjas 

de difracción. El tamaño del píxel en el espacio recíproco se calcula a partir de la siguiente 

relación:  

𝛿𝑞 =
2𝜋

𝜆

𝛿𝑝

𝐷𝑚−𝑑
                                                                       (9) 

y se ilustra en la Figura 4. Este tamaño depende de la longitud de onda del haz (𝜆), del tamaño 

físico de los pixeles del detector (𝛿𝑝) y de la distancia muestra-detector (𝐷𝑚−𝑑). 

 

Figura 4. Obtención del tamaño de píxel en el espacio recíproco a partir de las magnitudes. La 

tangente del ángulo  es el cociente entre el tamaño de píxel y la distancia detector-muestra en 
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el espacio directo. También se corresponde con el cociente entre el tamaño de píxel  y  el 

espacio reciproco. 

 

2.3.2. Campo de visión 

El campo de visión (el tamaño máximo de la ventana que podemos observar) en este tipo de 

microscopía depende de la coherencia del haz. Un haz es coherente si sus fotones mantienen una 

relación de fase a lo largo del espacio y del tiempo. Si el haz no es monocromático o no está 

colimado las ondas del haz se desfasan unas de otras resultando en la incoherencia de este6.  

En la Figura 5.a ilustramos el efecto de la falta de monocromaticidad en la coherencia 

longitudinal del haz. Tenemos dos ondas, roja y azul, con una pequeña diferencia en sus 

longitudes de onda (λ y λ − Δλ) que comienzan en fase y a distancia LL se desfasan π. Esta distancia 

se define como la longitud de coherencia longitudinal (LL). Para una distancia 2𝐿𝐿 volvemos a 

estar en fase de tal manera que hay un numero entero de longitudes de onda. Obtenemos: 

2𝐿𝐿 = 𝑁𝜆 = (𝑁 + 1)(𝜆 − 𝛥𝜆)                                                   (10) 

Despejando tenemos (𝑁 + 1) =
𝜆

𝛥𝜆
 o 𝑁 ≈

𝜆

𝛥𝜆
 y podemos reescribir la expresión como: 

𝐿𝐿 ≈
1

2

𝜆2

𝛥𝜆
                                                              (11) 

En la Figura 5.b ilustramos el efecto de la falta de colimación en la coherencia transversal del 

haz.  Vemos como una fuente no puntual (con un tamaño D) irradia dos ondas con la misma 

longitud de onda, pero propagándose en direcciones ligeramente diferentes. La longitud de 

coherencia transversal, LT, se define como la longitud entre dos puntos de los frentes de ondas, 

roja y azul, que están desfasadas π en el plano de observación. De esta manera tenemos: 

𝐿𝑇 =
𝜆

2

𝐷𝑑−𝑚

𝐷
                                                                      (12) 
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Figura 5. a) Longitud de coherencia longitudinal afectada por la falta de monocromaticidad 

(en la dirección de propagación del haz) b) Longitud de coherencia transversal afectada por la 

falta de coligación de los haces (en el plano transversal a la dirección de propagación del haz).   

Si el tamaño de la muestra es mayor que la longitud de coherencia transversal dará como resultado 

que se pierda el contraste entre las franjas de interferencia y sea imposible la reconstrucción de la 

imagen. Es importante también que el tamaño de la muestra en la dirección de propagación del 

haz sea mayor que la longitud de coherencia longitudinal. Esto se cumple en la mayoría de los 

casos para cristales nanométricos y longitudes de coherencia longitudinales típicas de ~ 1 µm en 

fuentes de sincrotrón. 

Como resumen los requisitos matemáticos para la reconstrucción de la muestra y su 

implementación experimental son: 

 Requisitos Matemáticos Implementación      Experimental 

Espacio recíproco 

Sobremuestreo: 

𝛥𝑞

𝛿𝑞
≥ 2 

 

Tamaño de píxel en espacio recíproco:  

𝛿𝑞 =
2𝜋

𝜆

𝛿𝑝

𝐷𝑚−𝑑
 

donde escogemos correctamente 

longitud de onda (𝜆), la distancia 

muestra-detector (𝐷𝑚−𝑑) y el tamaño 

de píxel físico del detector (𝛿𝑝). 



10 
 

Espacio real 

     Ventana numérica: 

𝐷

𝐷𝛿
≥ 2 

Iluminación tal que la longitud de 

coherencia transversal sea dos veces 

mayor que el tamaño del objeto: 

𝐿𝑇 ≥ 2𝐷𝛿  

Tabla 1. Requisitos matemáticos e implementación física para la reconstrucción de la muestra 

2.4. CDI en geometría de Bragg 

En BCDI el objetivo es obtener información en 3D de la forma y la estructura de un cristal. Para 

ello hay que medir la distribución 3D de intensidades difractadas en torno a una reflexión de 

Bragg7 . 

 

Figura 6. Esquema microscopía Bragg CDI. 

En un experimento BCDI, un haz coherente de rayos X con cierta longitud de onda λ inciden en 

fase sobre la red cristalográfica con un ángulo de incidencia θ como vemos en la Figura 6. 

Para que exista reflexión constructiva es crucial que las ondas sigan estando en fase tras la 

reflexión. Esto solo ocurrirá si la diferencia de caminos recorridos por los frentes de onda de los 

diferentes átomos corresponde a un número entero de veces (n) la longitud de onda de la radiación 

incidente. Matemáticamente podemos expresarlo como: 

𝑛𝜆 = 2𝑑𝑠𝑖nθ                                                         (13) 

donde 𝑑 es la distancia entre planos y por lo tanto 2𝑑𝑠𝑖nθ corresponde a la diferencia de caminos 

recorridos por los haces. Esta es la ley de Bragg. 

Para medir la intensidad difractada en torno al pico de Bragg correspondiente a la familia de 

planos HKL, la geometría que tenemos que adoptar en BCDI es tal que el vector de Bragg GHKL, 

que indica la posición del pico de Bragg HKL en el espacio recíproco, se corresponde a la 

transferencia de momento entre el haz incidente ki y el haz detectado kf: 
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𝐺𝐻𝐾𝐿 = 𝑘𝑓 − 𝑘𝑖                                                                (14) 

Para obtener la información en tres dimensiones se realiza un "rocking curve scan" que consiste 

en girar el cristal sobre el eje perpendicular al plano de difracción (eje 𝑦̂ en el caso de la Figura 

6) de tal manera que el detector registre una serie de cortes bidimensionales de dicha intensidad. 

Finalmente, el conjunto de estos planos bidimensionales forma un conjunto de datos en 3D. 

La microscopía BCDI nos da información única acerca de la forma y estructura de los cristales 

porque nos proporciona imágenes en 3D y, al reconstruir el campo difractado complejo, tiene 

acceso a la información de la fase que es muy sensible a la presencia de cualquier defecto o 

distorsión cristalina. Además, es una técnica no destructiva, por lo que, si necesitamos que los 

materiales estudiados no sean alterados o dañados, es muy conveniente. Esta técnica utiliza rayos 

X "duros" (con energía superior a 8 keV), que son altamente penetrantes. Por ello, es 

particularmente adecuada para estudiar sistemas in situ en entornos experimentales complejos 

como veremos en este trabajo, donde vamos a estudiar los mecanismos estructurales de disolución 

en un mineral ejemplar como es la calcita. 

 

3. Disolución de minerales de carbonato de calcio 

En esta sección nos centraremos en el estudio de los mecanismos de disolución de minerales de 

carbonato de calcio. Empezaremos describiendo uno de sus polimorfos cristalinos más comunes: 

la calcita. Después, hablaremos de los parámetros que afectan su reactividad química 

centrándonos en el índice de saturación y de los mecanismos estructurales en distintos regímenes 

de saturación. Finalmente, describiremos la información relevante para estudiar la disolución que 

nos da BCDI.  

 

3.1. Estructura de la calcita 

La calcita es el polimorfo más estable del carbonato de calcio, en comparación con los otros dos 

polimorfos que comparten la misma fórmula química, pero tienen estructuras cristalinas 

diferentes: el aragonito y la vaterita, que son más inestables y solubles. La calcita cristaliza en el 

sistema trigonal, ya que sus átomos están dispuestos en un patrón repetitivo con tres ejes 

simétricos. Su celda unitaria es romboédrica, lo que significa que todos sus ejes tienen la misma 

longitud y el ángulo entre ellos es de 101º55’. 

Dentro de la celda unitaria, los iones de calcio (Ca²⁺) forman planos paralelos a lo largo de la 

estructura, y cada ion Ca²⁺ está coordinado con seis átomos de oxígeno pertenecientes a seis 

grupos carbonato (CO₃²⁻) en una configuración octaédrica. Cada ion carbonato (CO₃²⁻) tiene una 
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configuración trigonal plana, en la cual el átomo de carbono está rodeado por tres átomos de 

oxígeno en un mismo plano. 

 

 

 

 

 

 

 

Figura 7. Panel izquierdo: Estructura de la calcita 8. Panel derecho: imagen de microscopía 

electrónica que muestra cristales de calcita con su típica forma romboédrica de tamaño 

nanométrico. Tomado de Ref, A. Suzana et al., Adv. Mater., 23, 2024 9. 

 

3.2. Parámetros que afectan reactividad química en medio 

líquido índice de saturación de la solución 

La disolución cristalina es un proceso complejo que depende de muchos parámetros importantes 

para comprender y controlar el comportamiento de los solutos y solventes: la saturación de la 

solución líquida, la temperatura y el pH, entre otros10. Nosotros nos vamos a centrar en la 

saturación. 

El índice de saturación (Ω) es una medida que determina el estado de equilibrio de una solución 

e indica su tendencia a precipitar o disolver un mineral dependiendo si la solución está en 

equilibrio, sobresaturada o insaturada. 

Se calcula comparando el producto iónico de la solución con el producto de solubilidad del 

mineral: 

Ω =
𝑄

𝐾𝑠𝑝
                                                                       (15) 

donde 𝑄 es el producto iónico de la actividad de los iones en solución y 𝐾𝑠𝑝 es el producto de 

solubilidad del carbonato de calcio. 

• Producto de solubilidad (𝑲𝒔𝒑) - Equilibrio químico 

Para el carbonato de calcio, la reacción en equilibrio se puede escribir como: 

𝐶𝑎𝐶𝑂3(𝑠) ↔ 𝐶𝑎2+(𝑎𝑞) + 𝐶𝑂3
2−(𝑎𝑞)                                       (16) 

Este equilibrio es dinámico, lo que significa que continuamente hay carbonato de calcio 

pasando a la disolución, mientras que los iones carbonato y calcio se combinan y precipitan 
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como sólido. Ambos procesos, disolución y cristalización, ocurren a la misma velocidad por 

lo que no hay cambio neto en la concentración de las especies en solución, aunque las 

reacciones individuales continúan ocurriendo. La constante de equilibrio de este compuesto 

en específico se denomina constante del producto de solubilidad (𝐾𝑠𝑝) y se expresa mediante.  

𝐾𝑠𝑝 =
[𝐶𝑎2+]

𝑒𝑞
[𝐶𝑂3

2−]
𝑒𝑞

[ 𝐶𝑎𝐶𝑂3]𝑒𝑞
                                                         (17) 

• Producto iónico (Q) – Desequilibrio químico 

Si utilizamos las concentraciones de cualquier otro estado del sistema en desequilibrio ya no 

sería 𝐾𝑠𝑝 sino el cociente de reacción Q conocido como producto iónico de las actividades de 

los iones en solución: 

𝑄 =
[𝐶𝑎2+][𝐶𝑂3

2−]

[ 𝐶𝑎𝐶𝑂3]
                                                               (18) 

- Si 𝛺 = 1 entonces 𝑄 = 𝐾𝑠𝑝 y la solución está en equilibrio con respecto a CaCO₃. No hay 

tendencia a disolver o precipitar. 

- Si 𝛺 > 1 entonces 𝑄 > 𝐾𝑠𝑝 y la solución está sobresaturada con respecto a CaCO₃. Para alcanzar 

el equilibrio, el sistema químico evoluciona hacia la izquierda (disminuirán las concentraciones 

de los productos y aumentarán las de los reactivos). Existe una tendencia a la precipitación de 

CaCO₃. 

- Si 𝛺 < 1 entonces 𝑄 < 𝐾𝑠𝑝 y la solución está subsaturada con respecto a CaCO₃. Para alcanzar 

el equilibrio, el sistema químico evoluciona hacia la derecha (aumentando las concentraciones de 

los productos y disminuyendo las de los reactivos). Existe una tendencia a la disolución de 

CaCO₃.   

 

3.3. Mecanismos estructurales activos en distintos regímenes 

de saturación 

Los mecanismos estructurales de disolución son el medio material a través del cual los cristales 

se disuelven en soluciones líquidas. Varios estudios realizaron experimentos en calcita con varios 

grados de subsaturación y sobretaturación. El objetivo era investigar la activación de distintos 

mecanismos como por ejemplo, la formación de pozos por disolución o montículos por 

crecimiento 10,11 (ver Figura 8). 
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Figura 8. Mecanismos estructurales activos en distintos regímenes de saturación. Los distintos 

números del 1 al 4 se refieren a distintos regímenes de disolución Adaptada de la REF P. Dove 

et al. (Journal, año). 8 

Como se ve en la Figura 8, con una subsaturación baja (régimen 1) las superficies muestran solo 

escalones de bordes rectos sin evidencia de pozos y la disolución se produce a través de la 

dinámica de dichos escalones. Conforme mayor sea la subsaturación se forman pozos separados 

en regiones relativamente planas (régimen 2). En los regímenes 3 y 4, se forma una mezcla de 

pozos a lo largo de la superficie.  

 

3.4. ¿Qué información nos da BCDI que sea relevante para 

estudiar la disolución? 

Como hemos visto anteriormente BCDI es altamente sensible a la morfología en 3D y a la 

existencia de defectos cristalinos sobre la superficie y en el interior de los cristales. Esta 

información está contenida en la imagen compleja del objeto que es reconstruida a partir de las 

intensidades difractadas. Por un lado, su amplitud nos dará información sobre la distribución de 

la densidad electrónica (es decir sobre la forma/morfología del cristal) mientras que la fase nos 

dará información sobre deformaciones y tensiones en el interior y en la superficie por lo que es 

particularmente útil para estudiar cómo las imperfecciones cristalinas afectan a la reactividad 

química de cristales en entornos reactivos (por ejemplo, cristal de calcita en contacto con solución 

acuosa). Además, dado que los rayos X tienen altas energías (> 8 keV), pueden utilizarse para 

estudiar tanto la morfología de las terrazas en la superficie de un cristal como los defectos en su 

volumen. Su gran capacidad de penetración permite analizar cristales incluso cuando están 

inmersos en medios líquidos. 



15 
 

A continuación, vamos a describir las dos informaciones primordiales que BCDI nos proporciona 

para estudiar procesos de disolución cristalina: 1) la morfología del cristal y 2) la estructura 

interna (ambas en 3D). 

 

3.4.1. Morfología del cristal en 3D 

Mediante la medida de un pico de bragg en BCDI, obtenemos la densidad electrónica de un cristal 

y, por tanto, su forma. Aunque BCDI no tiene resolución atómica, para modelar el efecto de la 

forma del cristal en la disolución, podemos rellenar el volumen marcado por la morfología del 

cristal con celdas cúbicas de modo que tengamos un modelo cristalino en el que las celdas unidad 

tienen una velocidad de disolución que dependa del número de celdas vecinas. La coordinación 

se define como el número de vecinos más próximos que rodean una celda. 

En el interior del cristal tenemos celdas con 

coordinación 6 a las que llamaremos “bulk”. Estas, 

al no estar en contacto con la solución líquida en la 

que está inmerso el cristal, tendrán una velocidad de 

disolución cercana a 0.  

Los cinco modos de coordinación que puede tener 

cada celda que está en la superficie tienen 1, 2, 3, 4 

y 5 ligandos (es decir, vecinos). A los sitios de 

coordinación 1 los llamaremos “adatom”, con 

coordinación 2 “step-adatom”, con coordinación 3 

“corner&kink”, con coordinación 4 “edge&step” y 

con coordinación 5 “fase” (Figura 9). 

                           

 

 

 

 

 

 

Figura 9. Geometría de un modelo de 

superficie reticular cuadrada. 

 

Desde el punto de vista de la tasa de disolución, los distintos sitios de la superficie tienen 

diferentes energías de activación. Un “adatom” (coordinación 1) es muy reactivo y un “bulk” 

(coordinación 6) no es reactivo12. 

 

3.4.2. Estructura interna del cristal en 3D (análisis de la fase) 

Recordemos que el objeto reconstruido a partir de medidas de BCDI es complejo y que en la fase 

se encuentra información sobre la existencia y forma de deformaciones cristalinas. En particular, 

la fase se define como el producto escalar entre el vector de Bragg, G𝐻𝐾𝐿 ,  y el vector 

desplazamiento respecto a su posición ideal en la red cristalina del átomo u(r) 13: 

𝜙 = G𝐻𝐾𝐿 ∙  u(r)                                                              (19) 
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Figura 10. Efecto en la onda difractada de un desplazamiento de plano cristalino (retícula 

azul) con respecto a su posición ideal (retícula negra): el desfase es proporcional a u, vector de 

desplazamiento. Inspirada de la Ref. Robinson et al. Nat. Mater. 2009 13. 

La fase determina la interferencia constructiva o destructiva de los rayos X difractados (Figura 

10). Cuando la fase resultante es cercana a cero, las ondas difractadas están en fase y contribuyen 

constructivamente a la difracción.  En este caso, la posición de los átomos se corresponde con su 

posición ideal y no existen deformaciones cristalinas. Por otro lado, cuando la fase resultante es 

diferente a 0, las ondas están fuera de fase y contribuyen destructivamente en la difracción, lo que 

implica que hay un desplazamiento de los átomos respecto a su posición ideal en la red cristalina. 

Finalmente, a partir de la fase, se puede calcular el campo de distorsión cristalina en la dirección 

específica de GHKL. La relación entre fase y distorsión de campo cristalino se ilustra en la Figura 

11.   

En la Figura 11.a tenemos un cristal expandido, es decir, cuyos planos cristalinos están más lejos 

de su posición ideal. En este caso, al representar la fase vs. u tendremos una dependencia lineal 

con pendiente positiva (ver Figura 12.a). En la Figura 11.b, al contrario, representamos un cristal 

comprimido, es decir donde los planos están más cerca que su distancia ideal. En este caso, al 

representar la fase vs u, la dependencia seguirá siendo lineal pero la pendiente será negativa (ver 

Figura 12.b). 

Figura 11. a) Expansión de los planos cristalinos. b) Compresión de los planos cristalinos.  
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Figura 12. Fase (𝜙) vs vector desplazamiento (u) en una expansión de los planos cristalinos 

(Panel a) y una compresión de los planos cristalinos (Panel b). 

En la Figura 11 d es la distancia entre los planos de la red, dexp la distancia entre planos teniendo 

en cuenta la expansión y dcomp la distancia entre planos teniendo en cuenta la compresión. 

 

4. Simulación de procesos de disolución 

En esta sección vamos a describir la simulación de procesos de disolución de un cristal de calcita 

con forma real, obtenida a partir de medidas de BCDI, en un régimen de saturación de la solución 

líquida concreto, con índice de saturación Ω =0.5. 

En primer lugar, describiremos el algoritmo de simulación que hemos utilizado y el modelo para 

asignar probabilidades de disolución a los distintos tipos de c.u. En segundo lugar, mostraremos 

como utilizar la morfología de un cristal de calcita reconstruida a partir de medidas reales de 

BCDI para simular un proceso de disolución. En la sección de resultados, analizaremos la relación 

entre probabilidad de disolución y grado de distorsión cristalina (dada por la fase de las medidas 

BCDI). 

 

4.1. Algoritmo de Montecarlo 

La simulación se desarrolló usando el lenguaje de computación provisto por el software Matlab 

y se basa en un algoritmo Monte Carlo. El algoritmo de Monte Carlo se basa en el cálculo de la 

probabilidad de aceptar o no la disolución de cada átomo del cristal, en base a unas energías de 

activación relacionadas con la coordinación de las celdas unidad (abreviando “c.u”) y 

potencialmente, con el grado de distorsión cristalina en la región en la que se encuentran las celdas 

unidad. 
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4.1.1. Modelo para calcular las tasas de disolución y la 

probabilidad de disolución 

Distinguimos dos tipos de tasas de disolución: 

● 𝜏0: tasa global que depende del índice de saturación. 

● 𝜏𝑐𝑜𝑜𝑟𝑑: tasa local que depende de la coordinación de la celda. Recordemos que hemos 

definido en la sección 3.4.1 distintos tipos de ceda que hemos llamado según su 

coordinación: “bulk” , “fase”, “edge&step”, “corner&kink”, “step-adatom”, “adatom”. 

 

4.1.1.1. Tasa global (índice de saturación)  

Para calcular  𝜏0 usaremos los datos reportados en el trabajo de P. Dove et al. (ver referencia 8) 

mostrados en la Figura 13 donde se ve la tasa de disolución en función del índice de saturación. 

 

 

 

 

 

 

 

 

 

Figura 13. Tasas de disolución proporcionados por el artículo de la referencia 8 de P. Dove et 

al. 10 

En esta figura, los números del 1 al 4 se corresponden con los mecanismos estructurales en 

distintos regímenes de saturación de la Figura 8. 

 

4.1.1.2. Tasas locales para cada coordinación  

Para calcular el factor de disolución dependiente de la coordinación, usaremos los datos 

proporcionados en el trabajo de K. Yuan et al. (ver referencia 12) y mostrados en la Figura 14.   

En este estudio, se observó que las velocidades de disolución fueron más rápidas en las esquinas 

y bordes, pero más lentas en las caras planas, lo que provoca un redondeo de la forma 

romboédrica.  
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Figura 14. A la izquierda se representa un histograma de la distribución de las tasas de 

disolución. En la derecha se representa un mapa en 3D con las tasas de disolución locales 

contenidas en el histograma. De esta manera, se puede correlacionar la forma del cristal y la 

reactividad química del cristal (medida a través de la tasa de disolución) l. Estos datos están 

proporcionados por el artículo de la referencia 12 por K. Yuan et al. (ACS Earth Space Chem. 

3, 833–843,2019) .14 

Para asociar una tasa de disolución a cada coordinación, utilizamos un factor proporcional a la 

velocidad de disolución reportada en la referencia 12. Hemos resumido las velocidades de 

disolución y las correspondientes tasas de disolución en la Tabla 2. 

Nombre Coordinación 
Velocidad de 

disolución (nm/s) 
Tasa de disolución 

“Bulk” 6 0 0 

“Fase” 5 7 0.07 

“Edge&step” 4 20 0.2 

“Corner&kink” 3 30 0.3 

“Step-adatom” 2 50 0.5 

“Adatom” 1 99 0.99 

Tabla 2. Factor de disolución asociado a cada coordinación. 

En nuestro modelo asumimos que las velocidades de disolución para cada coordinación se 

mantienen constantes a lo largo del proceso. 

 

4.2. Sistema 

En este apartado describiremos el sistema sobre el que realizaremos la simulación de disolución.  

Este consiste en un cristal con la forma romboédrica característica de un mineral de calcita real 

obtenido mediante microscopía Bragg CDI. 
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4.2.1. Cristal con forma proporcionada por medidas de BCDI 

En esta sección vamos a describir cómo generar un cristal para la simulación a partir de datos 

realistas sobre su forma y su estructura interna. Para ello, el primer paso es entender el 

procedimiento seguido para hacer las medidas de BCDI.  

Como hemos explicado en el apartado 2.4, en BCDI, nos colocamos en geometría de Bragg. Esto 

quiere decir que el haz incidente y el haz saliente, de vectores de ondas ki y kf, respectivamente, 

forman un ángulo de 2𝜃 entre sí y que la transferencia de momento (diferencia de los vectores de 

onda) se corresponde a un vector de Bragg: GHKL. Por tanto, el primer paso para utilizar datos 

experimentales extraídos de BCDI es entender cuál es la geometría de Bragg utilizada. En este 

caso particular, utilizamos datos medidos en el sincrotrón Advanced Photon Source (Argonne 

National Laboratory, Chicago). Se trata de “rocking curve scans” medidos en torno a la reflexión 

(104) de la calcita con una energía incidente de 9 keV, que se corresponde a una longitud de onda 

~ 1.377 Å.  

El ángulo de Bragg a esa energía es de 13.1 grados y el detector se orienta en una dirección de 

ángulo de 26.2 grados con respecto a la dirección del haz incidente. La Figura 15 muestra un 

esquema del haz incidente, saliente y del cristal. El módulo del vector de Bragg se puede calcular 

a partir de la siguiente relación G𝐻𝐾𝐿 = 𝑘𝑓 − 𝑘𝑖 : 

 

 

 

 

Figura 15. Geometría de dispersión (dirección del haz incidente, detectado y orientación 

relativa del cristal) y orientación del vector de Bragg GHKL 

El resultado de la inversión de las medidas de BCDI se muestra en la Figura 16. En el panel a) 

mostramos la forma del cristal y el mapa de color se corresponde con la fase. En el panel b) 

mostramos cortes de dicho mapa de fases en los principales planos del espacio directo.  Se aprecia 

la forma romboédrica en la sección XY del panel b) (plano rojo). Además, se observa que el cristal 

apenas tiene distorsiones en el interior porque la distribución de fases es cercana a 0. 
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             a) 

 

 

 

 

b) 

 

 

 

Figura 16. Panel a) mapa en 3D de la fase del cristal y Panel b) cortes a través del mapa de 

fases en los planos indicados con los colores rojo, verde y azul. Los ejes están en pixeles. La 

escala es 1pixel: 55m 

En la Figura 17 mostramos cómo hemos asociado a cada celda unidad que rellena la forma del 

cristal una coordinación y una fase. En concreto, el panel a) muestra la posición de cada celda en 

el cristal con una bolita cuyo color depende de la coordinación. En el panel b) mostramos de igual 

manera la posición de las celdas, pero esta vez el color de cada celda depende del valor de la fase, 

que hemos extraído de la inversión de las medidas de BCDI. Dicho valor de fase está asociado a 

la existencia de una distorsión cristalina (es decir del desplazamiento local de los átomos con 

respecto a su posición ideal).  
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Figura 17. a) Coordinación de las celdas unidad del cristal. b) Fases las celdas unidad del 

crista.l c) Histogramas de la distribución de fases para cada coordinación. 

En la Figura 17.c mostramos histogramas que asocian la distribución de fases a cada 

coordinación. Por ejemplo, para la coordinación de 6 (“bulk”) los valores de la fase están todos 

muy cercanos a 0, lo que indica que las celdas unidad apenas están desplazados con respecto a su 

posición de equilibrio y por tanto que el cristal no contiene defectos internos. Sin embargo, para 

una coordinación 2 la distribución cambia. Se trata de celdas unidad que están en los bordes del 

cristal. En esas posiciones, se observa la existencia de fase distinta de cero y, por tanto, 

distorsiones más acentuadas.  Conforme la coordinación disminuye tenemos fases distintas a 0 lo 

que indica que las celdas unidad más superficiales los que presentan un desplazamiento mayor 

con respecto a su posición natural en la red. 

 

4.3. Resultados de las simulaciones 

En esta sección vamos a presentar el resultado de la simulación del proceso de disolución para un 

índice de saturación Ω = 0.5. Dicho valor implica según la ref 8 (P. Dove et al) que estamos en 

un régimen moderadamente subsaturado (en términos de las Figuras 8 y 13 se corresponde con 

el régimen 3) en el que nos esperamos que la disolución advenga en los bordes de las terrazas y 

de las imperfecciones topográficas (es decir, las celdas unidad de coordinación ≤ 3). Para 

observar el cambio morfológico del cristal en los distintos estadios de disolución, hemos simulado 

el proceso durante un total de 250 iteraciones. Representamos un resumen de la evolución del 

sistema durante la simulación en la Figura 18. 
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Figura 18. Disolución de un cristal para un índice de saturación Ω = 0.5 mostrando los rangos 

de iteraciones 1-5, 96-100, 196-200.  

La Figura 18 está organizada en tres paneles, a, b y c que representan distintos estadios 

temporales de la simulación. Para cada estadio temporal representamos en la parte izquierda tres 

mapas tridimensionales de distintos parámetros relevantes. En el mapa etiquetado a1 

representamos la probabilidad de disolución de cada c.u. Para ello consideramos que un ciclo de 

disolución está formado por 5 iteraciones. El color de cada c.u dependerá del momento en el que 

esta se disuelva en el margen de un ciclo. Por ejemplo, las c.u etiquetadas en rojo se disuelven en 

un plazo de 5 iteraciones mientras que aquellas c.u etiquetadas en amarillo se disuelven en el 

plazo de una iteración. Finalmente, las c.u etiquetadas en gris no se disuelven. En el panel a2 

hemos representado la coordinación de las c.u. disueltas entre el rango iteraciones 1-5. En el panel 

a3 hemos representado la fase de las c.u. disueltas entre el mismo rango de iteraciones. También 

utilizamos histogramas para representar la frecuencia con los que c.u de distinta coordinación 

(panel a4) y fase (panel a5) se disuelven. 
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Lo que observamos es que ciclos de disolución que se desarrollan al principio o a mitad de la 

simulación están caracterizados por histogramas de coordinación muy similares (paneles a4-5 y 

b4-5). Se observa en dichos histogramas que aquellas c.u más proclives a disolverse son aquellas 

con coordinación 3. Esto se corresponde a los puntos donde el borde de las terrazas se dobla (en 

inglés “kinks”). Desde el punto de vista de la fase, observamos que en las iteraciones iniciales 

hay una fracción de c.u disueltas que tienen un valor de fase en torno a 
2𝜋

3
 (es decir que están 

moderamente desplazadas con respecto a su posición de equilibrio). Sin embargo, esta fracción 

de c.u ya no existen en ciclos de disolución que se produzcan más adelante en la simulación. La 

razón es que en nuestra simulación mantenemos el mapa inicial de fases. Y como vemos en la 

Figura 16, el cristal apenas está distorsionado en su interior. Este factor es un límite de nuestro 

modelo. Finalmente, es necesario recalcar que, en ciclos de disolución tomados al final de la 

simulación, la mayor parte de las c.u. están disueltas y, no se puede considerar que tengamos una 

red cristalina. Por lo tanto, los resultados que mostramos en cuanto a la fase y a la coordinación 

dan información relevante sobre el rol de la fase y la forma en la disolución. 

 

5. Conclusiones 

En este trabajo hemos estudiado procesos de disolución cristalina desde el punto de vista 

estructural. Es decir, que el objetivo es identificar los mecanismos estructurales y los sitios activos 

durante un proceso de disolución de un cristal en medio líquido. Para ello hemos realizado 

simulaciones de un cristal de calcita cuya forma viene dada por medidas de una técnica de 

microscopía especial llamada BCDI. Como hemos visto en este trabajo BCDI se basa en la 

difracción de rayos X coherentes y es una técnica capaz de proporcionarnos una imagen en 3D de 

la forma y la estructura interna de un nano-cristal. Es esta información la que hemos utilizado 

para generar un cristal de calcita realista y observar su evolución morfológica durante un proceso 

de disolución en medio líquido.  

La simulación que hemos realizado se basa en un modelo que considera dos tasas de disolución: 

1) global y 2) local. La tasa global de disolución está asociada al índice de saturación de la 

solución. La tasa de disolución local está asociada principalmente al grado de coordinación de las 

celdas unidades que forman el cristal. Lo que observamos para un índice de saturación de Ω =

0.5 es que las principales estructuras activas en la disolución son las esquinas de las terrazas 

cristalinas (coordinación 3). En cuanto al rol de la distorsión cristalina (asociada a la fase), nuestro 

modelo está limitado. El primer limite es que no asocia una tasa de disolución al valor de la fase 

y con lo cual esta no juega ningún papel en la disolución. El segundo límite es que el mapa de 

fases se mantiene igual al mapa inicial durante toda la simulación.  
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Por lo tanto, este trabajo ilustra principalmente el papel de la topografía de un cristal (es decir de 

las distintas estructuras que se encuentran sobre una superficie cristalina: escalones, terrazas, etc.) 

en la disolución. Sin embargo, el papel de las distorsiones cristalinas no queda debidamente 

reflejado en el modelo. Por ello, proponemos una serie de mejoras: 1) generar un modelo que 

incluyese un mapa de fases dinámico que evoluciona al hilo de la disolución y 2) incluir en las 

tasas de disolución locales, asociadas a la coordinación, un factor asociado a la fase. 
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