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Prdlogo

La teoria de trenzas es una rama de las matematicas situada entre la topologia y el dlgebra,
que estudia el concepto intuitivo de una trenza como hilos entrelazados. Uno de los primeros
matematicos en estudiar este campo fue Emil Artin (1898-1962), en sus trabajos Theorie der
Zopfe (1925) [1], basado en estudiar las proyecciones de las trenzas en el plano, y Theory of
Braids (1947) [2]. El objetivo de este trabajo es hacer una revisién del segundo articulo de Artin
y explicarlo con un lenguaje mas moderno.

En este articulo se define el concepto de trenza como un conjunto de hilos en R? que solo
cortan una vez a cada plano z = 2y y que se mantienen constantes para ciertos valores z < a,
z > b. También se introduce la nocién de s-isotopia, que es una relaciéon de equivalencia entre
las trenzas de n hilos, que geométricamente consiste en deformar los hilos de una trenza sin
que se corten entre si. Adaptaremos estos conceptos en la Seccién 2.1 con algunos cambios
respecto a Artin: llamaremos n-movimiento a lo que Artin define como trenza (Definicién 2.1.1) y
definiremos los n-movimientos solamente en [0, 1], al contrario que Artin, quien define las trenzas
en todo R. Para nosotros, las n-trenzas seran la clase de equivalencia de los n-movimientos dada
por la s-isotopia (ver la Definicién 2.1.4 y en general §2.2).

Posteriormente, Artin muestra que las trenzas forman un grupoide con la operacién dada
por la concatenacién de trenzas con los mismos extremos. Para ello, nosotros introduciremos la
nocién de espacio de configuracion en la Seccién 2.2, que permite entender los n-movimientos
como caminos en cierto espacio topoldgico. Aqui definiremos el grupo de n-trenzas B, como el
grupo fundamental de uno de estos espacios.

Por otra parte, los n-movimientos estan estrechamente relacionados con los homeomorfis-
mos del disco que son la identidad en la frontera, que nosotros llamaremos d-homeomorfismos
(ver §1.2.2). Esta relacion se vera en profundidad en la Seccién 3.1, concretamente en el Teore-
ma 3.1.1 y en el Corolario 3.1.2. Este tltimo corolario introduce un homeomorfismo que sustituye
el concepto de coordenadas de trenza utilizado por Artin.

Uno de los resultados mas importantes del articulo es establecer un homomorfismo entre el
grupo de trenzas y el grupo de automorfismos del grupo libre (ver Proposiciones 3.2.9 y 3.2.13),
combinando topologia y algebra. Artin demostré que este homomorfismo es inyectivo y caracte-
rizé su imagen como los automorfismos del grupo libre que envian los generadores de una base
ordenada a conjugados de ellos y fija el producto. Trataremos esto en la Seccién 3.2.

Para terminar, en el articulo Theory of Braids [2] Artin no da una presentacién del grupo de
trenzas, ya que la dio en Theorie der Zopfe [1] de una manera geométrica. Aun asi, al comienzo de
Theory of Braids se hace referencia a esa demostracion, diciendo textualmente: “En mi articulo
Theorie der Zopfe (...) presenté una teoria que condujo a una clasificacién de las trenzas (...).
La mayoria de las pruebas son totalmente intuitivas. La demostracion del teorema principal ni
siquiera es convincente. Es posible corregir las pruebas.” [2, p. 101].

Y mas adelante en Theory of Braids se dice: “En Theorie der Zipfe he demostrado que las
relaciones (2.1) y (2.2) forman un conjunto completo de relaciones definitorias para el grupo
de trenzas. El método es geométrico y se puede hacer rigurosamente mediante las herramientas
desarrolladas en este articulo. Sin embargo, una prueba més interesante se da en el articulo
de F. Bohnenblust The Algebraical Braid Group (1947) [3] que es esencialmente algebraica y
profundiza en la teoria del grupo.” [2, p. 115]



ii

Nuestro objetivo en el Capitulo 4 serd dar vida a la frase de Artin donde sugiere que se
puede llevar a cabo una demostracién alternativa a partir de las herramientas desarrolladas en
el articulo, y redemostrar que la presentacién con las relaciones (2.1) y (2.2) permite ver el grupo
de trenzas como un grupo finitamente presentado.

Resumen por Capitulos

Capitulo 1

En la Seccién 1.1 definimos los conceptos de grupo libre y grupo finitamente presentado.
Ademés, daremos una condicién para establecer homomorfismos entre grupos finitamente pre-
sentados. En la Seccién 1.2 introducimos los d-homeomorfismos y exploramos resultados rela-
cionados con las clases de J-isotopia del disco. Muchos de estos resultados se demostraran en el
apéndice.

Capitulo 2

En la Seccién 2.1 formalizamos el concepto de “hilos que se entrelazan”, denominado n-
movimiento, y definimos la s-isotopia entre movimientos, una relacién de equivalencia que geo-
métricamente consiste en deformar los hilos sin cortarse y manteniendo fijos los extremos. En la
Seccion 2.2 presentamos los espacios de configuracion, que nos permiten interpretar las trenzas
como caminos. Utilizando la teoria de homotopia, definimos los grupos de trenzas B,, y P,, como
grupos fundamentales de estos espacios.

Capitulo 3

En la Seccién 3.1 tratamos la relacién entre las trenzas y los homeomorfismos. Extendemos
la s-isotopia a un homeomorfismo en C e introducimos un homeomorfismo Cg que “rehace”
una trenza dada. En la siguiente seccion veremos cémo cada trenza induce naturalmente un
automorfismo del grupo libre. También demostraremos la existencia de un antimonomorfismo
de grupos entre B,, y Aut(F,,), caracterizando su imagen.

Capitulo 4

En este capitulo, demostramos que las relaciones (2.1) y (2.2) son las tnicas relaciones del
grupo de trenzas y daremos una presentacién del grupo de trenzas utilizando los generadores de
Artin, como se muestra a continuacién:

B, = (o1,...,0n-1]| 0i0j = 0j0i, j—1i>1, 00i410; = 0i110:0i11) -



Prologue

Braid theory is a branch of mathematics located between topology and algebra, which studies
the intuitive concept of braids as intertwined threads. One of the first mathematicians to study
this field was Emil Artin (1898-1962), in his works Theorie der Zdpfe (1925) [1], based on the
study of their projections on the two-dimensional plane, and Theory of Braids (1947) [2]. The
aim of this work is to review Artin’s second article and explain it in more modern language.

In this article, the concept of a braid is defined as a set of threads in R3 that intersect each
plane z = zy only once and remain constant for certain values z < a and z > b. The notion
of s-isotopy is also introduced, which is an equivalence relation between braids with n threads
that geometrically consists of deforming the threads of a braid without them intersecting. We
will adapt these concepts in Section 2.1 with some changes from Artin’s definitions: we will call
n-movement what Artin defines as braid (Definition 2.1.1) and we will define n-movements only
in [0, 1], unlike Artin, who defines braids in all of R. For us, n-braids will be the equivalence
class of n-movements given by s-isotopy (see Definition 2.1.4 and in general §2.2).

Later, Artin shows that braids form a groupoid with the operation given by concatenation
of braids with the same ends. To do this, we will introduce the notion of configuration space
in Section §2.2, which allows us to understand n-movements as paths in a certain topological
space. Here we will define the group of n-braids B,, as the fundamental group of one of these
spaces.

On the other hand, n-movements are closely related to homeomorphisms of the disk that are
the identity on the boundary, which we will call §-homeomorphisms (see §1.2.2). This relationship
will be explored in depth in Section 3.1, specifically in Theorem 3.1.1 and Corollary 3.1.2. This
last corollary introduces a homeomorphism that replaces the concept of braid coordinates used
by Artin.

One of the most important results of the article is to establish a homomorphism between the
braid group and the group of automorphisms of the free group (see Proposition 3.3 and 3.2.13),
combining topology and algebra. Artin proved that this homomorphism is injective and charac-
terized its image as the automorphisms of the free group that send the generators of an ordered
base to conjugates of them and fixes the product. We will deal with this in Section §3.2.

Finally, in Artin’s article Theory of Braids [2], a presentation of the braid group is not
provided since he gave it in Theorie der Zopfe [1] in a geometric way. Nevertheless, at the
beginning of Theory of Braids, Artin mentions this proof, stating textually: “ A theory of braids
leading to a classification was given in my paper Theorie der Zopfe (...). Most of the proofs are
entirely intuitive. That of the main theorem is not even convincing. It is possible to correct the
proofs. ” [2, p. 101]

And later in Theory of Braids, it is said: “In Theorie der Zopfe 1 have shown that that
these relations 2.2 form a full set of defining relations for the group. The method is geometric
and can easily be made rigorous by means of the tools developed in this paper. However a more
interesting proof shall be given in a paper by F. Bohnenblust The Algebraical Braid Group (1947)
[3] which is essentially algebraic and leads deeper into the theory of the group.” [2, p. 115]

Our goal in Chapter 4 is to explore Artin’s idea, suggesting that an alternative proof can be
carried out using the tools of the article, and to prove in another way that the presentation with
relations (2.1) and (2.2) allows us to view the group of braids as a finitely presented group.

iii
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Summary by Chapters

Chapter 1

In Section 1.1 we define the concepts of free group and finitely presented group. In addition,
we will give a condition to establish homomorphisms between the finitely presented groups. In
Section 1.2 we introduce d-homeomorphisms and we will explore results related to d-isotopy
classes of the disk. Many of these results will be proved in the appendix.

Chapter 2

In Section 2.1, we formalize the concept of “intertwined threads”, called n-movement, and
define s-isotopy between movements, an equivalence relation that geometrically consists of de-
forming the threads without cutting them and keeping the ends fixed. In Section 2.2, we present
configuration spaces, which allow us to interpret braids as paths. Using homotopy theory, we
define the braid groups B,, and P,, as the fundamental groups of these spaces.

Chapter 3

In Section 3.1, we show the relationship between braids and homeomorphisms. We will extend
s-isotopy to a homeomorphism in C, and we will introduce a homeomorphism Cg that “builds” a
given braid. In the next section, we will see how each braid naturally induces an automorphism
of the free group. We will also prove the existence of an antimonomorphism of groups between
B,, and Aut(F,,), and we will characterize its image.

Chapter 4

In this chapter, we prove that the relations 2.1 and 2.2 are the only relations of the braid
group and we will give a presentation of the braid group using Artin’s generators, as shown
below:

Bn = <0’1, ceey0On—1 | 0;05 = 0404, ] -1 > 1, 0;0;4+10; = Ji+10i0i+1> .
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Capitulo 1

Preliminares

1.1. Grupos finitamente presentados

Vamos a establecer algunos resultados sobre grupos finitamente presentados que seran utiles
después.

Definiciéon 1.1.1. Un subconjunto X de un grupo G es un conjunto de generadores si cada
elemento g € G se puede expresar como un producto finito

g=axtey? - xp” (1.1)

en donde z; € X y n; € Z. Diremos entonces que los elementos de X generan o engendran G.

Si ademads, la manera de expresar g € G\ {e} como en (1.1) es tnica siempre y cuando
xT; # 201 ¥y n; # 0, entonces decimos que X es un conjunto libre de generadores y la expresiéon
anterior es una palabra reducida. Si un grupo G tiene un conjunto libre de generadores se dice
que es un grupo libre.

Definicién 1.1.2. Dado un conjunto no vacio X el grupo libre F(X) generado por X es el
conjunto de palabras reducidas finitas de elementos de X, donde la multiplicaciéon de dos palabras
es la reduccion natural de la yuxtaposicion de ambas en el orden indicado.

Proposicion 1.1.3. Todo grupo es cociente de un grupo libre por un subgrupo normal.

Demostracion. Basta considerar el epimorfismo
F(X) —— G
El teorema de isomorfia de grupos asegura que G = F(X)/N, donde N = ker ¢. O

Definicién 1.1.4. Sea R una coleccién de palabras de F(X) y denotemos N(R) es el menor
subgrupo normal que las contiene. Entonces el par (X : R) es una presentacion del grupo
F(X)/N(R).

Definicion 1.1.5. Se dice que G es un grupo finitamente presentado si existen subconjuntos
X =A{x1,...,zpn}y R={r1,...,7s} tal que

G=(X:R).

Proposicién 1.1.6. Sean G = (X : R) un grupo finitamente presentado, H un grupo y {hy |
x € X} una familia de elementos de H. Entonces, existe un homomorfismo

(X:R) —*— H
xr —— hy
si y solo si w(hy) =1 € H, Vw € R. En tal caso, ¢ es dnico.

1



2 Capitulo 1. Preliminares

1.2. Homeomorfismos del disco

Esta seccién establece algunos resultados teéricos que necesitaremos més adelante para es-
tudiar las trenzas, que estan estrechamente relacionadas con las isotopias y los homeomorfismos
del disco. Las demostraciones de algunos de los resultados se pueden encontrar en el apéndice.

Notacion 1.2.1. En esta seccién y también a lo largo del trabajo utilizaremos la siguiente
notacioén.

(a) Denotamos por S! el circulo de radio r en el plano complejo, es decir, St := {z € C |
|z| = r}. Asimismo, denotamos por D, el disco cerrado de radio r en el plano complejo, es
decir, D, := {z € C | |z| < r}. Denotamos por S y D la circunferencia y el disco unidad y
cuando el centro zg sea distinto del origen lo indicaremos como S (zo) y D, (z0).

(b) Dada una homotopia H : X x I — Y y dado t € I llamaremos H; : X — Y a la aplicacién
H; := H(z,t).

(¢c) Dados dos caminos f,g : [0,1] — X tales que f(1) = ¢(0) denotaremos por f - g o
simplemente por fg al producto de los caminos f v g v por f~! el camino recorrido al
revés.

Para los siguientes enunciados necesitamos el siguiente teorema clésico.

Teorema (Teorema de la curva de Jordan). Toda curva cerrada simple C : I — C divide el
plano en dos componentes conexas disjuntas, teniendo la curva como frontera comin. Una de
estas componentes es acotada (el interior de la curva) y la otra es no acotada (el exterior).

Observacion 1.1. A lo largo de este trabajo consideraremos subconjuntos A C C homeomorfos
a la circunferencia, lo que implica que m1(A4;a9) = Z, Yag € A. Este grupo solo tiene dos
generadores y elegir uno de ellos supone identificar el grupo con Z. Vamos a ver como elegir
el generador e identificar el grupo con Z. Segtin el Teorema de Jordan, esta curva divide C en
una regién interior y una exterior. Tomamos un punto a en la regién interior y consideramos
un lazo o : I — A C C tal que Ind(c, a) = 1. Este lazo determina un generador de m1(A;ag) y
por tanto una identificaciéon de este grupo con Z; la identificacion no depende de a. Si B C C es
otro subconjunto homeomorfo a S!, podemos identificar sus grupos fundamentales con Z de la
misma manera.

Sip: A — B es un homeomorfismo, el isomorfismo en grupos fundamentales lo podemos ver
como un automorfismo de grupos ¢, : Z — Z con la identificacién anterior. Entonces, ¢, = 17
si y solo si a estd en la region interior determinada por A y b en la regién interior determinada
porbya:I— ACC esun lazo tal que Ind(a, a) = 1, entonces Ind(¢ o o, b) = 1.

1.2.1. Homeomorfismos de la circunferencia

Proposicién 1.2.2. Sea ¢ : S! — S' un homeomorfismo. Entonces, ¢ es isétopo a un homeo-
morfismo que fija el punto 1.

Proposicién 1.2.3. Sea ¢ : St — S! un homeomorfismo. Entonces ¢ es isétopo a a la identidad
0 a la conjugacion compleja.

Estos resultados se demuestran en el Apéndice A.

Proposicién 1.2.4. Sea ¢ : S — S un homeomorfismo. Entonces, ¢ es isétopo a la identidad
sty solo st . = 1y.

Demostracion. (=) Es trivial, ya que un homeomorfismo isétopo a la identidad induce el iso-
morfismo 1.

(<) La Proposicién 1.2.3 establece que solo hay dos clases de isotopia de S'. La clase de
isotopia de la identidad induce el isomorfismo trivial ¢, = 1z, mientras que la clase de la
conjugacion compleja induce el isomorfismo 1 — —1. Si ¢, = 17, entonces ¢ pertenece a la clase
de isotopia de la identidad, es decir, es isétopo a la identidad. ]
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1.2.2. Homeomorfismos del disco

Por las propiedades del grupo fundamental, cualquier homeomorfismo del disco en si mismo
envia la circunferencia a la circunferencia.

Con un razonamiento similar al de la seccién anterior, obtenemos un resultado andlogo a la
Proposicion 1.2.2 para el disco. Con un poco mas de trabajo, también se pueden establecer los
resultados equivalentes a las Proposiciones 1.2.3 y 1.2.4.

A partir de ahora, nos enfocaremos en el estudio de los homeomorfismos del disco que son la
identidad en la circunferencia (denominados 9-homeomorfismos ) y de las isotopias que también
son la identidad en la circunferencia (denominadas J-isotopias). Los siguientes resultados seran
utiles después.

Teorema 1.2.5. Sea ¢ : D — D un d-homeomorfismo tal que p(0) = 0. Entonces existe una
0-isotopia H : 1D x [0,1] = D con Hy = 1p, Hy = ¢ tal que Hs(0) =0 Vs € [0, 1]

Demostracion. Sea ¢ : D — D un 9-homeomorfismo tal que ¢(0) = 0. Definimos una 0-isotopia
H :D x [0,1] — D de la siguiente manera:

z si z ¢ Dt
H(z,t) = {tp(%) sizeD\{0}
0 si (z,t) = (0,0)

Claramente Hy = 1p y H1 = ¢. Falta comprobar que H es continua y que H; es un 0-
homeomorfismo.

= La funcién H es continua. Los tnicos puntos donde la continuidad no estd clara son en
|z| =t yen (z,t) = (0,0). Si|z| =t # 0 tenemos que |%| =1 =ty (¢) =t = 2. Por otra
parte la funcién ¢ es acotada por el Teorema de Weierstrass, asi que

z
, <t i o (2
iy 662101 < tim, e[ (7)

ST .
et} < Jm i (£ [o])} = 0

Por tanto es continua en (0, 0)

= H, es un 9-homeomorfismo para cada t € [0, 1] porque z — t¢(12z) es un homeomorfismo
de Dy en si mismo y claramente es la identidad en JD. 0

Observacion 1.2.6. Aplicando una homotecia, el teorema anterior es cierto para un disco cual-
quiera de radio r > 0 . También se puede extender facilmente para un punto fijo zy cualquiera.
Posteriormente utilizaremos que el lema es valido para un disco D, (zg) donde el punto fijo es el
centro zg.

Lema 1.2.7. Sea ¢ : D — D un 9-homeomorfismo, sea r < 1 y ¢r = ¢|s1 ,. Entonces el
isomorfismo ¢, . es la identidad.

Demostracién. Consideremos dos caminos cerrados simples o, en S! y o en S! con puntos base
en la parte superior de las respectivas circunferencias y con mdlce 1 alrededor de un punto
arbitrario zy en D,. Tomamos también un camino recto w en D\ ID)T, desde o (0) hasta a(0). Es
evidente que los caminos a y w™! - o - w son equivalentes en D\ D,.. Utilizando el hecho de que
¢ es la identidad en S!, obtenemos la siguiente equivalencia de caminos en I\ D,

-1 -1

er(ar) ~o(w-a-w™) ~pw) - a-p(w)

El indice con respecto a zy de los caminos a,. y « es 1. También lo es el indice del camino
o(w) - a - p(w)~!, por lo tanto, también lo es el de ¢,.(a,) ya que la equivalencia de caminos
respeta el indice. Por la Observacion 1.1, se tiene que ¢, 4 = 17. O
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Estos lemas también se demuestran en el Apéndice A.

Lema 1.2.8. Sean ¢+ : S — S! dos homeomorfismos isétopos a la identidad. Entonces, existe
un homeomorfismo ® : S* x [~1,1] — S! x [-1,1] tal que ®(x,t) = (P¢(x),t) con &1 = @, y
‘I)_l = P_.

Lema 1.2.9. Sea C' = Ds\ ]]3))1 una corona circular y sean ¢; : 0D; — 0D, j = 1,2 ho-
meomorfismos isotopos a la identidad. Entonces existe un homeomorfismo ¢ : C' — C tal que

WaJDj = ¥j-

Observacion 1.2.10. Este lema es valido para una corona circular C' cualquiera, ya que todas
son homeomorfas entre si.

Lema 1.2.11. Sean Ay, As C C conjuntos homeomorfos a una corona circular C centrada en 0.
Denotamos por A;, a las fronteras interiores y exteriores de A;, i = 1,2. Sean ¢4 : A1, — Ao,
homeomorfismos de manera que el isomorfismo de grupos inducido es la identidad, i.e. o1+, = 17,.
Entonces existe un homeomorfismo ® : Ay — Ag tal que (I)|Aii = .

Teorema 1.2.12. Sea ¢ : D — D un d-homeomorfismo y sean z1,...,z, puntos distintos en
el interior de D. Escribimos ¢(z;) = 2 Vi = 1,...,n. Entonces existen 0 < rg <11 < 1 y una
0-isotopia H tal que:

1 H0:¢7

3) Hy(z) =2Vt €10,1],

o

(1)
(2) Hi coincide con la funcion z v~ z + z} — z; en Dy, (2;),
(3)
(4) Hy coincide con ¢ en D\ Ui~ Dy, (2;) Vt € [0, 1].

Demostracién. Tomamos 0 < ro < 1 < 1 —méx;{|z]|,|2}|} tales que Dy, (z)) C o(Dy, (2;)) para
todoi=1,...,ny ademas ;D (z) =0y N, ¢(Dr, (z)) = 0. La existencia de tales g y 1 se
deriva de que los puntos z; = ¢(z;) son todos distintos ya que ¢ es inyectiva. Fijamos uno de
los puntos z; y suponemos a partir de ahora que todos los discos y circunferencias en los que no
aparezca el centro estan centrados en z;.

Los conjuntos ¢(D,,) \ Dy, (2)) y Dy \ ]]%)ro son homeomorfos a una corona circular y ¢ es un
0-homeomorfismo, asi que por el Lema 1.2.7 se tiene que (p‘grl’* = 17. Aplicamos el Lema 1.2.11
a go]S;I y a la traslacién f; : S}, — S} (%)), fi(z) = z 4 2z, — z; y obtenemos que existe un
homeomorfismo:

U ]Drl\ Dro— @(Drl) \DTO('Z:‘)’ con (I)|S}1 = W|S}1 ) (1>|S}0 = fi.

Lo extendemos a todo D,, por 1:

0(z) = {@(z) si z € Dy, \ Dy,

/ .
2+ 2z, —2z sizeD,

que es un homeomorfismo, coincide con ¢ en la frontera de D, y con una traslacién en D,,,. Por
composicion 9~ Lop : D, — D, es un d-homeomorfismo y ademds fija z;. Por el Teorema 1.2.5,
existe una J-isotopia

H:Dy, x[0,1] = Dy, con Hy=v¢"" o, Hy =1|p,, y Hy(z) =2Vt € [0,1].
Componiendo con 1 obtenemos la isotopia

H:=1oH:D, x[0,1] 5D, convoHy=,hoH =1y Hi(z)==zvtel01].
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Dado que H una 0O-isotopia, es decir, es la identidad en el borde de D,,, tenemos que H |S}1 =
Yls1, = elsy -

Hasta aqui hemos obtenido n isotopias H; : D, (z) x [0,1] = @(D,, (2)), definidas en
conjuntos disjuntos, con imagenes disjuntas, que coinciden con ¢ en el borde de D, (z;), donde

HZ 1 coincide con la traslacién z — 2z + p(z;) — z; en Dy (z;) y verificando que H, (zi,t) =zl Vt €
[0, 1]. Extendemos estas isotopias a todo el disco y tenemos el resultado. La funcién

H(ot) = {ﬁi(z,t) s% z € Dm(zin) Q
p(z)  sizeD\Ui,Dr (2)
cumple todas las condiciones del enunciado. ]

Lema 1.2.13. Dados p,q € ]13) existe un 0-homeomorfismo hqp, : D — D tal que h(q) = p

Demostracion. Lo vemos para g = 0. Para un ¢ cualquiera consideramos dos homeomorfismos
[¢]
ho p, ho,q tales que ho,(0) = p, ho4(0) = ¢ y tomamos hyp, = hop o h&;. Dado p € D definimos:

hop:D ————— D

z— z+(1—|z|)p

Es un 0-homeomorfismo, ho,(0) =py hyp, =1|c Vp € D. Ademas la funcién:

DxDxD —D

(2,4,p) —— hgp(2)

es continua.
h(z)
Figura 1.1: Homeomorfismo Ay p.

Observacion 1.2.14. El lema se puede aplicar para un disco de cualquier radio r.

Definiciéon 1.2.15. Se define el espacio de configuracion de n puntos ordenados en C como el
conjunto X,, = {(z1,...,2n) € C" | z; # x; Vi # j}.

Lema 1.2.16. Dados 0 < 71 < 2rg se define Ay, », :={(x,y) € X2 | |zi—x;] > ro, |wi—yi| < r1}.
Sean hy, 4, t =1,...,n los 0-homeomorfismos definidos en el Lema 1.2.13. Definimos la siguiente
funcion:
G:CxA,,, ——C
(Z, X, y) — Gx,y(z)
= si z & Uiy D(wi,71)
con Gixy(2) = { ha, v (2), siz€ D(xi,r)

Entonces G es continua, Gxy es un homeomorfismo para cada (x,y) € Ay, o y Gxx = 1c
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Capitulo 2

Movimientos y espacios de
configuracion

2.1. Primeras definiciones

Definicién 2.1.1. Llamaremos cuerda o hilo a una aplicacién continua C' : [0,1] — C . Un
n-movimiento § es un conjunto de n cuerdas 8 = {f1, ..., Bn} tales que §;(t) # B;(t) Vt € [0,1]
si j # 4. Llamaremos extremos superior e inferior del n-movimiento a los puntos ﬁ;r = Bi(1)
y B; = Bi(0). Por dltimo se dice que un n-movimiento es cerrado si {8; }; = {8},
en contraposicién a un n-movimiento abierto. Si §; = ﬂj Vi € {1,...,n} diremos que el n-
movimiento es puro.

Observacion 2.1.2. En la definicion de n-movimiento estamos ordenando implicitamente los
caminos ;. Se deducira del contexto si esta ordenacion es relevante.

Representaremos los n-movimientos en C x [0, 1] por las curvas parametrizadas ¢t — (3;(t),t).

L \
\
) )

Figura 2.1: 3-movimiento no puro (izquierda) y 3-movimiento puro (derecha)

Observacion 2.1.3. Los n-movimientos cerrados inducen una permutacion de sus extremos. Si
denotamos por Y, el grupo simétrico de orden n, la accién de o € ¥, sobre la cifra ¢ como i y C,
el conjunto de n-movimientos cerrados entonces existe una aplicacién sobreyectiva S : C,, — X,
tal que para cualquier 8 € C), existe o € X, tal que 8; = ﬂzt para todoi=1,...,n.

Geométricamente parece que al deformar ligeramente los hilos de un n-movimiento mante-
niendo los extremos fijos se obtiene otro movimiento que es esencialmente el mismo. La nocién
de s-isotopia formaliza esta idea.

Definicién 2.1.4. Dos n-movimientos 3, 3’ son s-isdtopos si existen n aplicaciones continuas
H; :[0,1] x [0,1] — C (homotopias), i = 1,...,n tales que:

= Bi(t) y Hi(t,1) = Bi(t) Vte[0,1]

= (i(0) = Bi(0) y Hi(L,s) = Bi(1) = Bi(1) Vs €0,1]
i(t,s) # Hj(t,s) Vt,s€0,1]sii#j.

1. Hi(t,0)
2. Hi(O,S)
3. Hy(
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Figura 2.2: 3-movimientos s-isétopos

2.2. Espacios de configuracion

En esta seccién introduciremos la nocién de espacio de configuracién, que nos permitird
interpretar los n-movimientos como caminos y la s-isotopia como una homotopia de caminos
relativa a los extremos.

Definicion 2.2.1. Dado un espacio topoldgico T, se define el espacio de configuracion de n pun-
tos ordenados en T' como el conjunto

dotado de la topologia de subespacio de T™.

Hay una accién natural del grupo simétrico 3, en los puntos de X,,(7") dada por

Xn(T) x 8, —— X,(T)

(x1,...,2pn),0) —— (T10, ..., Tpo)
Esto sugiere la siguiente definicién

Definiciéon 2.2.2. Dado un espacio topoldgico T, se define el espacio de configuracion de n
puntos en T' como el conjunto
Yn<T) = Xn(T)/Em

es decir, el espacio de orbitas de la accion, con la topologia cociente.

También identificaremos los elementos de Y,, con los subconjuntos de C de cardinal n que
tienen todos sus elementos distintos, asi que usaremos la notacién {z1, ..., z,} para los elementos
de Y,,. Por ltimo escribiremos simplemente X, e Y;, cuando el espacio topolégico sea C.

= En estos espacios la relacién entre caminos y m-movimientos es clara. Un camino en Y,
es una aplicacién ¢t — {ci(t),...,cn(t)} tal que ¢;(t) # ¢;j(t) si ¢ # j que es justo la
definicién de n-movimiento. Por lo tanto los n-movimientos son caminos en Y,,. Por otra
parte un camino en Y, o un n-movimiento dan lugar a n! caminos en X,, al ordenar sus
componentes.

= Inicialmente habiamos definido la s-isotopia entre n-movimientos con n funciones H;, i =
1,...,n. En el espacio Y,, esto es una homotopia de caminos relativa a los extremos asi que
escribiremos H : [0,1] x [0,1] — Y}, con H(t,s) = {Hi(t,s),..., H,(t,s)} para denotar la
s-isotopfa. Como es usual utilizaremos la notacién S~' := {B7},..., 3, !} para el camino
recorrido en sentido inverso, 1y para el camino constante 8 = {x1,...,z,} y escribiremos
[B] para designar la clase de equivalencia del n-movimiento 3, que es el conjunto de n-
movimientos s-isétopos a § y que llamaremos n-trenza.

= Por dltimo la composiciéon de caminos en Y, se traslada también a la composicién de
n-movimientos. Dados dos n-movimientos 3, 3" € Y,, tales que 3(1) = §(0), se define el
n-movimiento compuesto 53’ con la composicién usual de caminos, donde eventualmente
hay que permutar los indices de los hilos. Vistos como trenzas en C x [0, 1] esta operacién
se corresponde con apilar una trenza encima de otra y reescalar.
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N L o
\ N
) h 3

Figura 2.3: Trenzas 3, ', 55’

Definicion 2.2.3. El grupo de n-trenzas puras P, es el grupo fundamental de X, es decir,
]P)n = T (Xn)

Definicion 2.2.4. El grupo de trenzas de n cuerdas, B,, es el grupo fundamental de Y;,, es
decir,
B, = m(Y,) = m(Xn/En).

Observacion 2.2.5. Los elementos de estos grupos son las clases de equivalencia de los n-
movimientos cerrados. Por otra parte los espacios X, e Y,, son conexos por caminos, asi que
omitiremos el punto base.

Definicion 2.2.6. Se definen los generadores estandar o generadores de Artin como los n-
movimientos o;, con 1 < i < n — 1, donde todos los hilos son rectos excepto el hilo i-ésimo, que
pasa solamente sobre el hilo 7 + 1-ésimo, y este solamente por detras del anterior.

Estos movimientos estan definidos salvo s-isotopia y se indican en la Figura 2.4, con extremos
superiores e inferiores en el conjunto {1,2,...,n}.

1 e =1 i+1 j+2 - n

Figura 2.4: Generador de Artin o;

Como hemos venido haciendo, representamos las trenzas mediante su proyeccién en R x [0, 1].
En esta proyeccién interpretamos que un hilo pasa por encima de otro si, al considerarlos como
caminos en el plano complejo C, el hilo que estd por encima tiene una parte imaginaria menor
en el punto de cruce. Aplicando una homotopia si fuera necesario, podemos suponer que esta
proyeccién tiene un ntmero finito de puntos de cruce entre los hilos, en los cuales solo intervienen
dos cuerdas a la vez. Ademds, podemos asumir que estos cruces ocurren a diferentes alturas, es
decir, para distintos valores de ¢ € [0, 1]. Por lo tanto, cualquier n-movimiento se puede escribir
como composicién de generadores de Artin. Esto significa que los grupos P,, y B,, estdn generados
por los generadores de Artin.

Observacion 2.2.7. En el espacio Y;, y fijado el punto base {1,...,n} el generador de Artin o;
se corresponde con la clase de homotopia del siguiente camino:

_ em’t 1 + 6wrt

1 . .
U](t) = {177j_17]+27]+27]+277n}
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Observacion 2.2.8. Los generadores de Artin cumplen ciertas relaciones. Para empezar
oi0; = 004, si |i —j| > 1, (2.1)
ya que estas trenzas involucran hilos distintos. También se cumple la relacién (ver Figura 2.5)

0304105 = 0i410i05+1- (2.2)

\ .

\
kS
) )

Figura 2.5: Trenzas 0;0;4+10; ¥ 0i+10:0;+1

Definicién 2.2.9. Se define el espacio de polinomios mdnicos de grado n como M, := {p €
C[t] | p ménico de grado n}.

Proposicién 2.2.10. Los espacios M, e Y, son homeomorfos y Y, es homeomorfo a un un
abierto de C™.

Demostracion. El homeomorfismo entre M, e Y,, lo da la aplicacién

Y, — M,
{z1,.. ., 20} —— T (t — )
0
¢, — M,

(1, ympy) — [T (t — 24)

Veamos que 1)~ (M,) es un abierto de C". Tenemos que
PN M,) = C"\ {(x1,...,2,) €C" | F4,j € {1,...,n} con i # j tales que x; = x;}

=C"\ |J A{(z1,...,2n) €C" |25 = a5}

i7j6{17"'7n}
Los conjuntos {(z1,...,2,) € C" | ; = x;} son cerrados en C" por ser el nicleo de las
aplicaciones continuas fi;(z1,...,2,) = z; — ;. Por tanto la unién finita
n — .
U {(x1,...,2p) € C" | ; = x5}
i,j€{1,...,n}

O]

también es cerrada, asi que M, es abierto.

Observacion 2.2.11. Podemos ver una n-trenza como un camino C': [0, 1] — M, donde los hilos
vienen dados por el camino que describen las raices de los polinomios en Y.



Capitulo 3

Trenzas, homeomorfismos y grupos
libres

3.1. Trenzas versus homeomorfismos

En esta seccion estudiaremos la relaciéon entre los n-movimientos y los homeomorfismos del
plano. Veremos como se extiende la s-isotopia entre movimientos a una familia de homeomorfis-
mos del plano e introduciremos un homeomorfismo Cs al que Artin se refiere como “coordenadas
de trenza” que relaciona el n-movimiento 3 con el n-movimiento trivial.

Teorema 3.1.1. Sean = {51,...,06n} v B ={5,..., 0.} n-movimientos s-isétopos y sea
H:={H;,...,H,}:[0,1] x [0,1] = Y,

una s-isotopia desde 3 hasta [3'. Existe una aplicacién continua

F:Cx|[0,1] x[0,1] —— C

(z,t,8) ———— F;4(2)
tal que
(T1) F;s:C — C es un homeomorfismo.
(T2) Fys=1c si(t,s) € [0,1] x {0} U {0,1} x [0,1].
(T3) 3K >0 tal que Fy s|c\p, = le\p, para todo t,s € [0,1].
(T4) Fis(Bi(t)) = Hilt, 5).
Demostracion. Por compacidad existe » > 0 tal que
|H;(t,s) — Hj(t,s)| >3r, Vi#j Vt,sel0,1].

También por compacidad existe una particién 0 = sp < s; < --- < s, = 1 del intervalo [0, 1] tal
que:
|H;(t,s) — Hi(t,s")| <r, Vtel0,1],Vs,s € [s;,si41]

Definiremos primero la funcién F en el intervalo [sg, s1] y después la extenderemos continuamente
a todo [0, 1].

Consideramos la funcién G definida en el Lema 1.2.16 con r; = r, ro = 3r. Para cada
s € [so, s1] y cada t € [0,1] se define:

Ft752C4>(C

2z —— Fys(2) = Gr1,00),H(t,5) (?)

11
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Podemos definir esta funcién porque
(H(t,s), H(t,s") € {(x,y) € X2 | |w; — x5 > ro, |zi — vi| <7m1},

que es el requisito necesario para aplicar el Lema 1.2.16.

Dado que Gx,y es un homeomorfismo para todo (x,y) € A, ,, fijos se deduce que Fj
también lo es. Ademéas G, , = 1|c, y para s = 0 tenemos que H;(t,s9) = H;(t,s). Parat =0
se tiene que H;(t,s) = H;(0,s) = £;(0) y en t = 1 H,(t,s) = H;(1,s) = Bi(1). Por lo tanto se
cumplen las dos primeras propiedades.

Para la tercera propiedad tomamos K = méax{|H;(t,s)| | t,s € [0,1]} + r y tenemos que

|z| > K = |Hi(t,s) —z| >r Vt,s €[0,1] = F; 5(2) =z Vt,s € [0,1]
Recalcamos que este K vale no solo para s € [sg, s1] sino para todo s € [0, 1]. Por tltimo:

Fys(Hi(1,0)) = G, oy, (s, (Hi(t,0)) = Hi(t, s)

por definicién de G. Con esto ya tenemos F; s definida en [sg, s1] cumpliendo todas las propie-
dades requeridas. Supongamos que hemos definido F} s con las condiciones requeridas para todo
s € [S0, Sm|. Para s € [sy, Sm+1], se define:

Fys(2) = Gty (Hi(t,5)7, (Frsin (2))

En s = s, tenemos H;(t, s,m) = H;(t,s), por lo que G es la identidad y obtenemos Fj s(2) =
F, s, (%), asi que la extensién es continua. De nuevo se verifican todas las propiedades del enun-
ciado.

Finalmente F' : C x [0,1] x [0,1] — C es continua por composicién de funciones y porque
G :C x A, ,, = C es continua. O

Corolario 3.1.2. Sea 8 un n-movimiento. Existe un homeomorfismo

Cg:Cx[0,1] —— C x[0,1]

(2,8) —— (Cpa(2),1)
cumpliendo:
(C1) Cpo=1lc.
(C2) 3K >0 tal que Cgyl(c\pg) = 1l(c\py) Para todo t € [0, 1].
(C3) Cpe(B:i(0)) = Bi(t).

Dado " un n-movimiento s-isétopo a 3 se pueden construir Cg y Cg tales que Cg1 = Cprq

Demostracién. Dados 3, 8/ n-movimientos s-isotopos, sabemos que el n-movimiento 83’1 es s-
isétopo al n-movimiento constante dado por 15y = {31(0),...,8.(0)}. Sea H = {Hy,..., Hy}
una s-isotopia desde 1g) hasta BB'~1. Por el Teorema 3.1.1 existe una familia de homeo-
morfismos F;; : C — C cumpliendo las propiedades (T1)-(T4) que extienden esta s-isotopia.
Definimos:

Cpi(2) = F1;1(2)-

Esta funciéon cumple con las propiedades deseadas. Demostramos solo la tltima, las demés se
derivan facilmente de las propiedades de la funcién Fj ;. Recordamos que geométricamente, en
el producto 34'~! el movimiento /3 se encuentra en la parte inferior.

Ca (61(0) = Fypy (1300,0) = Fyon (130, (5t) ) = H: (58:1) = 6570 (5t) = 50
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Por otra parte, haciendo una reflexién sobre el plano t = % se define de la misma manera una

funcién Cpgr 4(2) = Flféyl(z), que también cumple con las propiedades (C1)-(C3). En t = 1
obtenemos C31(2) = F1 ,(2) = Cp 1(2). O
2’

Observacion 3.1.3. Geométricamente Cg “rehace” la trenza 3 partiendo de 1g(p), dejando fija
la base y moviendo los extremos superiores. Se mueve solo en planos horizontales y define un
homeomorfismo del par (C x [0,1],15(0)) en (C x [0,1],3), considerando 1) y 8 como las
imdgenes de las curvas t — (1g(o)(t),t) y t = (B(t),?) . Recalcamos que la funcién Cp no es
tnica. Otra manera de interpretarla es como una isotopia desde 1¢ hasta Cpg 1.

1 2 3 4 1 2 3 4

Figura 3.1: Transformacién mediante Cpg

Notacién 3.1.4. Dada una funcién Cg cumpliendo las propiedades (C1)-(C3) se denota el
homeomorfismo Cg; como Dg.

Observacion 3.1.5. Con esta notacién no estd claro de qué funciéon Cp proviene una funciéon Dg,
pero quedard claro cuando hagamos uso de ella. Al igual que antes Dg determina un homeo-
morfismo del par (C, 3(0)) en (C, (1))

Ejemplo 3.1.6. Consideremos el generador de Artin oy con extremos en {—%, %} que tiene
como representante el siguiente movimiento:

eiﬂ't eiﬂ't
o1(t) := {‘2’ 2} '

El siguiente homeomorfismo Cj : C x [0,1] — C x [0, 1] recibe el nombre de twist de Dehn.

emit sizel
Cpi(z) = Qe 1Dz si 2 € Dy \ Dy
z size C\ Dy

Se cumplen todas las propiedades (C1)-(C3). Para t = 1 se obtiene el siguiente homeomorfismo:

—z sizel
Dg(z) = ™1z siz e Dy \ Dy
z size C\ Dy

Observamos que Dg permuta los extremos de la trenza de la manera deseada y es la identidad
fuera de Ds.

La teoria que hemos desarrollado previamente estd definida en C. Los homeomorfismos e
isotopias con los que hemos trabajado son en realidad d-homeomorfismos y 0-isotopias en un
disco D, suficientemente grande. Por tanto estas funciones se pueden restringir a D, x [0,1] o a
D,. Reciprocamente, si definimos estas funciones en D,, se pueden extender facilmente a C por
la identidad, ya que coinciden con la identidad en el borde del disco. Por lo tanto la eleccién
entre D, y C es arbitraria. Por comodidad a partir de ahora trabajaremos en el disco
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3.2. Trenzas como automorfismos de F,

En este capitulo daremos otra interpretacion del grupo de n-trenzas. Aunque inicialmente las
hemos definido como una coleccién de cuerdas, existe una representacion natural de las n-trenzas
como automorfismos del grupo libre F,, con n generadores.

Notacion 3.2.1. Introducimos algunas funciones que utilizaremos después.

(1) Seax = {x1,...,2,} € Y,. Llamamos D, x al disco D, agujereado en los puntos z;, esto es
n
Dry :=Dp \ [ J{z:}
i=1

(2) Dado un n-movimiento 3 contenido en D, llamamos X, 3 a D, x [0,1] \ .

Observamos que el grupo fundamental de ID;. x es isomorfo a IF;,,. Vamos a describir una base
canénica de 71 (D, x; P). Todos los caminos que describiremos a continuacién viviran en Dy x.

= Tomamos n circunferencias ¢; del mismo radio, recorridas en sentido antihorario, alrededor
de los puntos ;. Las tomamos suficientemente pequenas para que no haya intersecciones
entre ellas. Recalcamos que el radio no afecta a los generadores del grupo siempre que sea
lo suficientemente pequefio para que no haya intersecciones entre ellos, asi que podemos
reducirlo si en algin momento es necesario.

= Fijamos un punto base punto P en la parte superior de I, es decir, el punto con mayor
parte imaginaria, y tomamos n caminos simples [; conectando ¢; y P, en ese sentido, de la
siguiente manera:

e Si la parte real de todos los x; es distinta, nos desplazamos desde P, por el borde
superior del disco, hasta que la parte real coincida con la de x;. En ese momento
trazamos un segmento vertical hasta la parte superior del camino ¢;. Los caminos [;
seran los caminos descritos pero recorridos en sentido inverso.

o Si la parte real de dos o més puntos z;,,...,x; coincide, nos desplazamos de la
misma manera que antes por el borde del disco hasta que las partes reales coincidan.
Entonces trazamos k caminos hasta el extremo superior de los ¢;; correspondientes,
dejando a la derecha los demas w;; .

= Ordenaremos los puntos x; con el orden lexicografico en C, esto es
a+bi<cd +bi & a<gd 6(a=d yb<gl)

y reordenamos también los subindices de los hilos 3; y de los caminos I;, ¢; de manera
acorde al punto que rodean.

Definimos los lazos t; := [ L.¢;i-1;, basados en P. Estos serdn los generadores del grupo. Haciendo
un pequeno abuso de notacién denotaremos por ¢; los generadores de todos los discos ;. x sin
hacer mencién al radio del disco. Ademds denotaremos por t; los generadores de 71 (Dx; P) sin
escribir los corchetes y se distinguiran de los caminos por el contexto.

Proposicién 3.2.2. Las clases de equivalencia de los lazos t; := li_1 - ¢i -l son un conjunto
generador de 7 (Dyx, P), es decir m(Dyx, P) = (t1,...,tn | ti = l;l v ly 1 =1,...,n).
Ademds, el lazo t1 - ... - t, es equivalente al lazo OD,., basado en P y recorrido en sentido
antihorario.

Demostracion. La demostracién es inmediata por la construccién de los lazos t;. ]
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Figura 3.2: Generadores de 71 (D, x; P), x = {z1,...,24}.

Notacién 3.2.3. Introducimos algunas funciones que utilizaremos después.

(1) Sea f un camino en un espacio topolégico X con punto inicial f(0) = xg y punto final
f(1) = z1. Denotamos por uy : w1 (X, z9) — m1(X, x1) el isomorfismo de grupos dado por
a— floa-f.

(2) Denotaremos por g el camino g : [0, 1] — D x [0, 1] definido por ¢ — (P, ).
(3) Por ultimo, dado = € [0, 1] definimos la inlcusion iy : D — D x {z} C D x [0, 1].

Observacion 3.2.4. Sean x = {x1,...,zp} € Y, y sean D,, y I, dos discos que contienen en su
interior a los puntos z;. Existe un isomorfismo natural ¢ entre sus grupos fundamentales:

Wl(]D)rl,x;Pl) < Wl(Drg,x;PQ)

zj zj (3.1)

m(C\x;P1) — m(C\ x; P)

donde f es el segmento que une los puntos base y el generador t; € m(D,, x; P1) se envia al
generador t; € m(Dy, x; P2). Por lo tanto el radio del disco es irrelevante y a partir de ahora lo
omitiremos.

Proposicion 3.2.5. El siguiente diagrama es conmutativo:

Dg
m1(Dgoy; P) —— m1(Dgqy; P)

1;17* il,*
Cpoa
7I-l()(lg(o); (P7 1)) B 7T1(X,3; (P’ ]‘))
1. ug Ug=UCy(g) (3.2)

Cpa
T1( X143 (P,0)) —— m1(Xp; (P,0))

7:0,* ioi*
1*
m1(Dg(0); P) ——— m1(Dg(o); P)
En particular Dg , = zii O Ug—1 0170 -

Demostracion. Tomamos un homeomorfismo Cg cualquiera cumpliendo las propiedades (C1)-
(C3). Es necesario verificar la conmutatividad de los 4 cuadrados del diagrama. En el cuadrado
de la izquierda, la igualdad 1, = zl_i ougoig« es evidente ya que las inclusiones son isomorfismos
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porque Dgy x {j}, j = 0,1, son retractos por deformacién de X140 El cuadrado de arriba
también es claro por la definicién de Dg . En el del medio utilizamos que dado un elemento
[a] € m(Xa,,); (P, 1)), la clase Cp . 0 ugla] estd representada por el lazo Cg o (g7t a-g) =
g1 (Cgoa)-g, porque Cj fija D x [0, 1]. Por otro lado, la clase uy0Cjp .[a] estd representada por
el mismo lazo, y por lo tanto, el cuadrado central conmuta. En el cuadrado de abajo utilizamos
de nuevo que Dg gy X {0} es un retracto por deformacién de Xy s0) ¥ due Cp es la identidad en
la base. O

Observacion 3.2.6. La proposicién anterior prueba que el isomorfismo Dg, es equivalente a
tomar un generador t; € Dg(g), incluirlo en Dgy x {0}, subirlo hasta Dy x {1} conjugando
por g e incluirlo en Dg(1). La siguiente imagen ilustra este proceso:

Figura 3.3: Automorfismo inducido por 3

Corolario 3.2.7. El isomorfismo Dg , solo depende de la n-trenza [f3].

Demostracion. Es inmediato a partir de la Proposicién 3.2.5 y del Corolario 3.1.2, que demuestra
que si By /' son s-is6topas se pueden construir homeomorfismos tales que Dg = Dg. O

Proposicién 3.2.8. Sean (3, 3" dos n-movimientos tales que B(1) = '(0). Entonces Dgp , =
Dy 0 Dg .

Demostracion. Utilizamos el siguiente diagrama:

DBBI’*
m1(Dp(0y; P) —=— m1(Dpqry; P) —— m1(Dgr1y; P)

1,0,% Lo i1,
U —1

1 (Xgs (P,0) — m (X (P, 3)) —— m(Xspi (P1))

Ug

donde g; es el camino dado por t — (P, %) y go el camino t — (P, £+ 1). A partir de las
proposiciones anteriores y aplicando homotecias D x [0,1] — D x [0, 3], D x [0,1] — D x [5,1] es
inmediato que el diagrama es conmutativo, por lo tanto Dgg/ » = Dgr s 0 Dg .. O
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Notacién. A partir de aqui denotaremos a las trenzas por (3, sin escribir los corchetes. Se distin-
guirdn de los movimientos por el contexto. Denotaremos los generadores del grupo 1 (Dgg); P)
por t; y los generadores de 1 (Dg(y); PP) por t;r . Estos generadores son la clase de homotopia de
los lazos descritos al comienzo del capitulo.

Proposicion 3.2.9. La aplicacion

B, —— Aut(F,)

(3.3)
B Dp
estd bien definida y es un antihomomorfismo de grupos.
Demostracion. Es inmediato a partir del Corolario 3.2.7 y la Proposicién 3.2.8 0

Proposicién 3.2.10. Dada una n-trenza (3, el isomorfismo Dg . es de la forma

Dg : mi(Dpg(o); P) —— m1(Dp(1y; P)

tm ——————— S7h ot S,

Ademds, Dg . (t] -... ;) =t] ... t}.

Demostracion. El Teorema 1.2.12 garantiza que podemos escoger un J-homeomorfismo Dpg :
D — D y un radio o lo suficientemente pequeno tales que Dg coincida en D, (/5;(0)) con una
traslacién a lo largo de §;(1) — ;(0) para todo i = 1,...,n. Por otra parte, los caminos cli son
circunferencias alrededor de ﬁii, que podemos tomar del mismo radio r < rg. Por tanto, tenemos
que Dg(c; ) = cf. Consideramos las siguientes equivalencias de caminos en Dg(q):

Dy(t7) ~ Dy (15 >-1-c;-Z;)

~ Dg(l;)~" - Dgle;) - Dp(ly)

~ Ds(l;7) 7 - ¢f - Ds(ly)

~ D) )T e ()T D)
~ St tj-sz,

donde S; = ()1 - Ds(l).

Finalmente, debido a la forma en que hemos descrito los generadores, el producto ¢ ---t,, es
hométopo al borde de D. Como Dg es la identidad en el borde, se cumple que Dg . (t]t5 ---t,,) =
+yt
tity -t O
Definicién 3.2.11. Dado un punto x = {z1,...,z,} donde los puntos x; estin ordenados con

el orden lexicografico en C se define el n-movimiento lexicografico en x como:

Lx(t) = (L =0){L,....n} + H{zr, ..., 20}

Lema 3.2.12. El isomorfismo inducido por un n-movimiento lexicogrdfico es la identidad.

Demostracion. Se deriva de la forma en la que estéd construida la trenza. Se comprueba facilmente
que los hilos de la trenza también estan ordenados lexicograficamente, es decir,

(1—t)j+tzj<c (1 —t)(G+1) +tajn VE€[0,1],Vi=1,...,n—1

Por lo tanto nunca se produce un cruce entre los hilos. Representando geométricamente el
movimiento es inmediato ver que cada lazo gflti_ g en la base es homodtopo al lazo t;r en la tapa
de arriba. O
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Proposicién 3.2.13. Los generadores de Artin o; inducen el siguiente automorfismo del grupo

libre:
tjtj+1t;1 st 1= j,
Dy, «(ti) = { t; sii=j+1,
t; 8% 1 75 j,j + 1.
Demostracion. Si consideramos trenzas con extremos en {1,...,n} entonces el generador de

Artin o; tiene como representante el siguiente movimiento:

1_6i7rt 1_|_6i7rt
] R )

t—<1,...,9
{7 7j+ 2 ?]+ 2

La representacién grafica de este movimiento se muestra en la Figura 3.4.

Figura 3.4: Automorfismo inducido por o

Es claro que los caminos gilth gy tj, asi como los caminos g g v t;, son hométopos.
También podemos definir una homotopia explicita utilizando la funcién Cg del Ejemplo 3.1.6
desplazada adecuadamente sumando j + % Esta homotopia viene dada por la conjugacién del
camino t — Cg(t;(t),t) por el camino g; definido como el segmento recto desde (P,t) hasta
(P, 1).

Para el lazo t;, sabemos que el producto de los generadores debe quedar fijo, es decir,
DU].,* (tytg - - t,) = tita - - - t,. Operando con lo que ya hemos demostrado, obtenemos que

Do, 4(t5) - tj = titj1 = Do, u(t;) = titjat; "

Si consideramos un generador o; con extremos cualesquiera en x € Y, basta conjugar con la
trenza lexicogréafica Lx y considerar Lxo;L!. Por la forma en la que hemos descrito la trenza
lexicografica es facil ver que Lxo;Ly! tiene extremos en {1,...,n} y cumple con la definicién
de generador de Artin, es decir, solo se produce un cruce enntre los hilos j y j + 1 y admite
un representante en el que el resto de hilos son rectos, asi que el automorfismo que induce es el
indicado en el enunciado. El Lema 3.2.12 garantiza que Lx da lugar al isomorfismo trivial asi
que por composicién o; induce el automorfismo del enunciado. O

Corolario 3.2.14. El automorfismo que induce oj_l es:

t; st =7,
D071 *(tl) = tj__&ltjtj—&-l st =7j4+1,
t; sii# 4,7+ 1.

i
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Demostracion. Se deduce inmediatamente a partir de la Proposicion 3.2.13 teniendo en cuenta
que O'j_l induce el automorfismo inverso a ngy*. O

Mas adelante utilizremos el Corolario 3.2.14 y la Proposicién 3.2.13 para demostrar que B,
es isomorfo a cierto subgrupo de Aut(Fy,).

Notacion 3.2.15. Como mencionamos en el primer capitulo, existe un epimorfismo

S:B, — X,

B— o0

dado por la permutacién de los extremos de los hilos. Sea &,, C X, el estabilizador de la
cifra n en ¥,,. Se trata de un subgrupo de indice n. Denotaremos S,, := S~!(®,,), subgrupo de
indice n de B,, que consiste en las trenzas cuyo tltimo hilo termina y empieza en el mismo punto.
Consideremos también el homomorfismo de grupos T, : S,, — B,_1, que consiste en olvidar el
ultimo hilo. Por ultimo denotamos T,, := ker T,,, que es el grupo de las trenzas que admiten un
representante con los n — 1 primeros hilos rectos.

Lema 3.2.16. Sea S € Ty, es decir, admite como representante un n-movimiento con los n — 1
primeros hilos rectos. Entonces, si 3 € ker i, se tiene que 5 = 1.

Demostracion. Primero consideramos la aplicacién
U:T, »mD\xy_1;2n)

donde x,—1 := {x1,...,2p—1} ¥ que se define geométricamente como sigue. Sea 7 € T, y
considerémoslo representado por un n-movimiento {z1,...,z,—1,7,} donde los n — 1 primeros
hilos son rectos. Entonces se define ¥(7) = 7,. Reciprocamente, dado v € m1(D \ xp,—1;2y), €s
facil ver que ¥~1(7) es la trenza definida por el movimiento {z1,...,z,_1,7}. Es decir, ¥ es un
isomorfismo, y se corresponde con proyectar el hilo n-ésimo en Dy, .

Por los resultados anteriores sabemos que la imagen por i del camino u(3)(t,) es hométopo
en Dy, , x [0,1] al lazo

g do(tn) g ~ gt io(lyY) Sio(en) Sio(ln) - g

que a su vez es hométopo a

(67" a0y ") - B 1)) - (1(0yY) - inlen) - ia(la)) - (g™ -0l ) - B - (1)) ™!

donde B, es paralelo a 3, en el cilindro de radio horizontal r de dnima ,. Obtenemos que el
lazo

g~ oty h) - B - in(ln)
es homotopo al lazo imagen por i1 de

=4,
donde 4 es un lazo en D\ x basado en z;, y ligeramente trasladado de ¥ (). Con esta construccién
hemos obtenido que t,, = u(B)(tp) = 4 - t,, - 71, es decir, 4 conmuta con t,,.
Por dltimo, tenemos una aplicaciéon

Y :m(D\x;P) = m(D\ xp—1;20)

que consiste en la inclusién y conjugar con [,. Entonces W(/3) = ¢ (%) por construccién y 4 es
una potencia de t,, por lo que 4 € kert. Por lo tanto, ¥(3) =1 y como ¥ es un isomorfismo,
se deduce que 8 = 1. O
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Teorema 3.2.17. El antihomomorfismo de grupos p de la Proposicion 3.2.9 es inyectivo.

Demostracion. Haremos la demostracién por induccién sobre el niimero de hilos n. Para n = 1
tenemos que By = {1} por lo que p es trivialmente la identidad. Suponemos cierto el resultado
para n — 1.

Sea 3 € ker u, es claro que 8 € S,, C P,. Consideremos la trenza obtenida al eliminar el hilo
n de B, es decir 7 := T\, (f) € B,,—1. Claramente 7 € kerpu y 7 € B,,_1, asi que por induccién
T=1.

Ahora es facil ver que g € T,,. Sea {x1,...,2,—1} un representante con hilos rectos de 7
y {Bi1,...,Pn-1,0n} un representante de . Aqui {f1,...,B,—1} es otro representante de T,
por tanto existe una s-isotopia desde {31, ..., B,—1} hasta {x1,...,z,_1}. Por el Teorema 3.1.1
podemos extender la s-isotopia a una d-isotopia F'. Aplicada a [ obtenemos una s-isotopia desde
{B1,...,Bn-1,Bn} hasta {z1,...,2n_1, F;1(Bn(t))}. Por lo tanto, 5 admite un representante con
los n — 1 primeros hilos rectos, asi que 8 € T,,. Por el Lema 3.2.16 obtenemos que = 1 y por
lo tanto p es inyectiva. O

Notacién. . Sea A, = {p € Aut(F,) | ¢(t;)) = Q; *tiQi, @(t1...t,) = t1...t,}. Por la
Proposiciéon 3.2.10, sabemos que u(B,) C A,. Por tanto, a partir de ahora consideraremos p
como un antimonomorfismo B,, — A,,.

Teorema 3.2.18. La aplicacion p es un anti-isomorfismo.

Demostracion. La inyectividad ya se ha visto. Falta la sobreyectividad. Para empezar dado
¢ € A, escribiremos ¢(t;) = Qi_lticr Q;, donde cada @; es una palabra reducida y se cumple

O(t) - plty) = @ty tn) =t . (3.4)

Fijada una base de F,, tenemos el concepto de longitud de un elemento. La longitud de ¢ es
la suma de las longitudes de los Q;. El resultado se demuestra por induccién sobre la longitud
de ¢.

Si la longitud de ¢ es 0, entonces p(t;) = t; para todo i y el automorfismo ¢ es la imagen de
la trenza trivial.

Suponemos entonces que para todo ¢ € A, con longitud m < k existe una trenza g € B,
tal que ¢ = u(B). Supongamos entonces que ¢ es de longitud k& > 0. En este supuesto, para que
se cumpla (3.4) deben tener lugar si algunas cancelaciones en el producto de los ¢(t;). Como
son reducidos, estas cancelaciones deben tener lugar entre factores adyacentes. ¢(t;), ¢(ti+1). Se
pueden dar dos casos:

1) Los términos intermedios ¢, no se ven afectados en ninguna cancelacién entre factores
adyacentes. Sea R; la palabra que sobrevive de cada ¢(t;); necesariamente R; no es el
elemento neutro. Por construccién Ry - ... R, es reducida e igual a ¢t - ... t,. La tnica
opcién es R; = t; por lo que este caso no es posible al ser k£ > 0.

2) Existen dos términos adyacentes ¢(t;), ¢(t;+1) tales que en una cancelacién entre sus tér-
minos se cancela tic 6 t(;;1)o.

a) Supongamos primero que se cancela t;o con términos de Q;ll Es decir existe una
palabra reducida R tal que Q;1+1 = Rt;+(Q;. Operamos:

o(ti)-p(tiv1) = Q;IMM%R_lti—H"RtWQi:((RQi)_ltz‘+1"(RQi)) (Q; e Q).

T; Tiv1

Como T;y1 = o(t;), tenemos que @(tiy1) = Tiv1 - T; - T;ll Si denotamos T = ¢(t;),

si j #14,i+ 1, entonces T1, ..., T, es una base del grupo libre y

F, —* F,

ti —— T;
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es un elemento de A,,; como la longitud de R@Q); es menor que la de Q;41, la longitud
de U es menor que k y existe 7 € B, tal que p(7) = 1. Sea j # i,i + 1:

wloi - 1)(t) = (u(r) o (o)) () = v(ty) = Tj = ¢(t)).

Ademids
(ot 7)(t:) = (u(r) o p(od) ™) (k) = (ti1) = Togr = o(t).

ploi - 7)(tipr) = (u(r) o (o) ™) (tip1) = Dtk i tivr) = T - Ti- Ty = @(tivn).
Es decir, pu(o; ' -7) = ¢ y ¢ estd en la imagen de p.
b) Se cancela t(;;1)s con términos de @;. Es decir existe una palabra reducida R tal que

_ 1
Qi = Rt(i+1

o(ti) - @(tiv1) = Qi tiv1o R tio Rtier) Qi @7 i Qi1
= Qi ti+19Qit1) (RQiy1) 'tio (RQit1)) -

T; Tiv1

)GQi+1. Operamos:

Como T; = p(ti+1), tenemos que p(t;) = T; - Tiy1 - T[l. Si denotamos T; = ¢(t;), si
j # 1,1+ 1, entonces 11, ..., T, es una base del grupo libre y
F, — T,

ti—— T;

es un elemento de A,,; como la longitud de RQ;11 es menor que la de Q;, la longitud
de U es menor que k y existe 7 € B, tal que p(7) = 1. Sea j #i,i + 1:

(o - 7)(t5) = (u(7r) o u(03))(t;) = ¥(t;) = Tj = (L)
Ademas
ploi-T)(t:) = ((r) 0 (o)) (t:) = Y(titipat; ) = TTin T ' = (k).
(o - 7)(tir1) = (u(7) 0 p(03)) (tiv1) = V(i) = Ti = @(tit).
Es decir, pu(o; - 7) = ¢ y ¢ estd en la imagen de p. O

Observacion 3.2.19. El Teorema 3.2.18 proporciona una demostracion alternativa de las relacio-
nes 0,05 = 0j0; si |i —j| > 1y 0j0i410; = 0441040;41. Basta verificar que los automorfismos
inducidos por los generadores de Artin cumplen estas relaciones. También permite, por induc-
cién, encontrar la escritura de una trenza en funcién de los generadores.
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Capitulo 4

Presentacion del grupo de trenzas

Como comentamos en el resumen, Artin dio una presentacién del grupo de trenzas en Theorie
der Zopfe [1] con una demostracién geométrica. Sin embargo en Theory of Braids [2] se menciona
que es posible dar una demostracion alternativa utilizando las herramientas desarrolladas en ese
articulo, que son las que hemos adaptado en este trabajo. Eso es lo que haremos en esta seccion:
describiremos el grupo de trenzas como un grupo finitamente presentado y lo demostraremos
desde una perspectiva algebraica.

Definicion 4.0.1. El grupo de trenzas algebraico es el grupo finitamente presentado

B, :=(01,...,0n-1 | [6i,05] =1sij—i>1, 6;6i410; = Gi410:0it1) -
Proposiciéon 4.0.2. Existe un epimorfismo natural
B, " B,
0; — 0y
Ademds existe un epimorfismo S Bn — X, tal que S =250 F,, donde S : B, — X, es el

epimorfismo dado por la permutacion de los hilos.

Demostracion. La primera parte es inmediata por la Proposicién 1.1.6. El homomorfismo S est4
bien definido y es un epimorfismo por composicion. ]

Notacién. Al igual que en B,,, escribiremos P, := ker S y S, := S~1(8,) = F; %(S,), que es

n
un subgrupo de indice n, donde &, es el estabilizador de la cifra n en el grupo simétrico.

Lema 4.1. Las trenzas o1, ...,0,_2,0-_, engendran el subgrupo S,.

Demostracion. Para empezar, tenemos que n°( = n para todo 7 € {o1,... ,an,g,ag_l}, asi

que estas trenzas viven en S,. A partir de aqui hacemos la. demostracion por induccién sobre n.
1) Para n =1, el grupo S, es trivial.

2) Para n = 2, tenemos que By = (01) y por otra parte 02 € Sy pero o1 ¢ So, asi que
Sz = (1)

Supongamos que el resultado es cierto para todo m < n. Hacemos ahora otra induccién sobre
la longitud de 7 € S,,.

1) Sil(r) =0, el caso es trivial.

2) Si l(1) = 1, entonces necesariamente 7 = 0; con i # n — 1 ya que 0,1 ¢ Sy, asi que el
resultado es cierto.

23
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Supongamos que toda trenza 7 € S,, con longitud menor que k; se expresa como producto de
2
las trenzas o1, ...,0n-2,05_1.
Hacemos una tercera induccién sobre #o-! (1), que definimos como el niimero de elementos
+1
o

-—1 en la palabra reducida 7 € S,,.

1) Si #afﬁl(T) = 0, entonces 7 es producto de o1,...,0,_3.

2) Si #03_11(7') = 1, entonces por induccién sobre la longitud de 7 podemos suponer que
—1, quitando otros elementos o; si la palabra 7 empieza por ellos, pero af}l ¢Sny
este caso es una contradiccion.

T=o0

3) Si #0:F1(1) = 2, con el mismo razonamiento del caso anterior podemos suponer que T =

1 donde a es una palabra en la que no aparece el elemento o,,—1, asi que o € B,,_1.

Es inmediato comprobar que a € S,,_1. Por induccién, « es producto de o1, ...,0,_3, U,%_Q.

Dado que la conjugacion por un elemento es un isomorfismo de grupos, tenemos que
1 —1 )

0, _1a0,_; es producto de:

On—1010,_1, <y On—10n-30,_1, On—10y,_20,_1

: 2 1 —1
Y por las relaciones es producto de o, ... ,Un,géan,gan_lan,g El caso o, _ja0,~; se
deriva del anterior multiplicando a derecha por o, “; y los demés se obtienen considerando

771, Asf que se cumple el enunciado.

Con esto, suponemos que el enunciado es cierto para toda trenza 7 € S, con longitud menor
que kp o tal que #0:5(1) < ko.

Sea 7 € S, con longitud k1 y #cr;tl(T) = ko. Como n > 2 y por induccién sobre la longitud
de 7 podemos suponer que 7 es de la forma af}laafil Baﬂil, donde « es una palabra en la que
no aparecen Uf}l. También asumimos que « y 8 son no triviales, en caso contrario el resultado
es inmediato.

Sea j:=n

1) Si j = n entonces Uff_llomi[_ll eSS,y Ba,“ﬂl € S, y sus longitudes son menores que ki, por
lo tanto se expresan como producto de las trenzas del enunciado.

2) Si j < n consideramos las siguientes trenzas:

S = e 5 | +1 — . Fl _F1 1 p 1
T i= 0, 100,10, ...0, 1, Ty =0l 0f o Boy .

Es claro que 7 = 1172 y que ambas estdn en S,,. Operando en 71 tenemos que:

+1 +1 +1 _+1 _+1
'T]_ == O'n_IOéO'J - Un_lan_QO-n_2,
En esta nueva escritura #af}l(ﬁ) = 2 y ya hemos probado este caso. Por otra parte,

#0331(7'2) = ko — 1 y el resultado se sigue por induccién. O

Observacion 4.2. En la demostracion anterior solo hemos utilizado las relaciones [o;,0;] =

1sij—¢>1y 0i0i410; = 0j+10;0;+1. Estas relaciones también se cumplen en B, por lo
que el resultado similar se cumple también para S,,.

Proposicién 4.3. Sea T, : S,, — B,_1 el epimorfismo definido por olvidar el dltimo hilo y
T, = ker T, el subgrupo formado por las trenzas que admiten un representante con los n — 1
primeros hilos rectos. Entonces T, es un grupo libre con n — 1 generadores y; de la forma

-1

M= (0n—a-c.o0) 02 (Opa-... ;)
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Demostracion. Recordemos de la demostracion del Lema 3.2.16 que existe un isomorfismo

Y : Ty, —— m(Dx, ,;2n)

T — Tnp

definido por proyectar el hilo n-ésimo. Tomamos una base y1,...,yn—1 de m(Dx, ,;zy,) de
manera que y; sean lazos basados en x, y rodeando solamente el punto z;. Las antiimagenes de
estos lazos serdn un conjunto generador de T,,.

1 n—2 n—1 n
Figura 4.1: Proyeccién por ¢

Es claro que la preimagen del generador 7,1 es la trenza o2_;. También es facil ver que la
preimagen de los generadores y; son las siguientes trenzas:

i ‘= (Un—l Cat Ui+l) . Ji2 . (O’n_l et O'H_l)_l.

Veamos que 1; = (0p—2+...-0;) L -02_1 - (0p—2-...0;). Lo hacemos por induccién descendente

sobre 4. Si ¢ =n — 1 entonces sabemos que
2 -1 2
On—-10p_20p—1 = On—-20p,_10n-2

y el resultado se cumple. Suponemos cierto el resultado para ¢ > m + 1. Entonces por hipdtesis
de induccién

U;nl (On—2-- Um-&-l)ilar%—l(Un—? S Omg1)Om = ‘7;11 (On—1--- Um+2)072n+1 (on—1--- Um+2)710m

Utilizando que o0, conmuta con o; si j > m + 1 obtenemos:

‘71:11 (on—1--- 0m+2)‘7r2n+1(0n—1 T Um+2)71‘7m = (op—1-+- Um+2)07711‘772n+10m(0n—1 T 0m+2)71

1072n+10m = Um+1(7%10;111 tenemos:

Y usando que o,
-1 2 -1 _ 2 -1 —1
O (On—1""Om42)0041(On—1+ Om+42) " Om = (On—1"+ Om+2)0m+10,0 41 (On—1 -+ Omy2)

lo que finaliza la demostracién. O

Lema 4.4. Sean #j; = (Gp_1...6i11)5(5n-1-..5i+1) *. Entonces

Ademds, B conmuta con &; sii <n—1.

Demostracion. Primero vamos a probar que 8 es de la forma deseada, por induccion sobre n.

= Para n =1, el grupo B, es trivial.
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» Para n = 2, tenemos que § = i = &2 y se cumple el enunciado.

—1 ~

» Para n = 3, tenemos que [ = il = 020710, 52 = 696269 y también se cumple.

Supongamos que  es de la forma del enunciado para todo m < n—1. Denotaremos por 7 € Bp—1
las palabras (6,-2...5i+1)52(6p—2...5i41) L. Se tiene que 7; = &n_lﬁ;‘@;_ll. Obtenemos lo
siguiente:

B=i . fn-1 = Gn1l1{0, 1 - Fn 1Tl 0T 171 = Gl « - Ty 0T 11
Por hipétesis de induccién obtenemos que
B=6Gp16n-2...506%52...Gn—26," 1Tn—1.
Y como 7,1 = dp—1, tenemos:
B=6p_1...6065G...60 1.
Que es lo que querfamos. Veamos ahora que 8 conmuta con ;. Sea i < n — 1,
Gifo;t = (Gn_1...5i12)5i6i115; ... 52555 ... 551116, (Fiya ... Fn1)""
Aplicando las relaciones entre los generadores obtenemos:
Gifo;t = (Gn_1...5i42)5i+160:iG1Gi—1... 5% .. .&i_lg;{@&m(&m e Gp1) =P,
donde los elementos ;411 y 0, 1 se cancelan porque conmutan con todos los elementos interme-
dios. 0

Teorema 4.5. El epimorfismo de grupos F, : B, — B,, es un isomorfismo.

Demostracion. Haremos la demostracion por induccion sobre n. Para n = 1 es trivial ya que
ambos grupos son triviales. Suponemos el resultado cierto para todo & < n — 1. Consideremos
el siguiente diagrama:

Ty
Tn Sn IB%n—l
FnT FnT Fn71T
P]NI‘n Sn . IB371—1
Donde se define el epimorfismo Y, : S, — B,_1 como T, := F_ 10T, o F,. Esta funcién
esta bien definida ya que por hlpote51s de induccién Fy,_1 es un 1somorﬁsmo Se define también
T,, := ker T,,. Primero vamos a demostrar que el grupo T, estd engendrado por:
S ~\—1 =2 ~ ~
M= (Op-g-...c0i) 01 -(Op_z-... 7).

Lo haremos en dos partes. Primero veremos que T, es el menor subgrupo normal de S,
engendrado por 62_;. Una vez probado esto, bastara ver que 7¢7j;7 ¢ se puede escribir como
producto de los elementos 7j;, para todo 7 € {61,...,0p,-2,0 n—l} y para todoi=1,...,n — 1,
con € = £1.

Vamos con la primera parte. Consideremos la aplicacién:

anl — Bn

i s 3

Esta bien definida porque respeta las relaciones; ademas, es claro que la imagen esta en S,,.
Como la composiciéon con T, es la identidad, entonces es inyectiva. Sea K,, el menor subgrupo
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normal engendrado por 52_, y sea H, el cociente de S,, por K. Consideramos por una parte la
aplicacién inducida B,,_; —> H,. Por otra parte, K, C ker T,, ya que T 7(52_1) es el elemento
neutro, asi que tenemos una aplicacién inducida por Tp, Hy, — Bp_1. Como la composicion de
estas dos aplicaciones es la identidad, esta segunda aplicacién es inyectiva, es decir, T,, = K,
que es lo que queriamos ver.

Vamos con la segunda parte. Empezamos con la conjugacién por 62_;. Como 62_; = fj,_1,
es inmediato que cualquier palabra &ilm&fil se puede escribir como producto de elementos
e

Para ¢; con j < m — 1 lo probamos para la conjugacion 6j_1fh~&j. El caso &jf]i&j_l sera
inmediato una vez probado este.

a1~ ~ ~ .. .
1) G; M6 =1isij<i—1
Ya que 7; es una palabra en la que solo aparecen generadores &3 con k > j + 1.
a1 ~ ~ - .. .
2) 0, 1Mi0i—1 =1ij—1 S1 ] =1 — 1.
o P ~ -1 2~ ~ ~ -
G, 1Mi0i—1 = (Op-1...0i41)0;_10;0;-1(0n—1-..0i41)
~ 2 ~—1(x ~ =1 _
= (Gp-1...0i41)0i0;_10; (On-1...0i+1) = Ti-1
a1~ ~ - .. .
3) 6, MG =1l sij > i.

o B e U U U N
G100 = (Un_1...oj+2)oj O']_HO'J...O'H_10'i0'4+1...Uj_10j+10'](0n_1...O']_;,_Q) =

~ ~ ~ ~ o~V ~ ~2~ ~ -1 ~
(Gn—1-. -Uj+2)0j+10’j%{0j—1 -Ci410; 0,4 M85 10 (G Fe) T =
donde los elementos ;11 y 0; 11 se cancelan porque conmutan con todos los elementos
intermedios.
sl o it 2 —ntitl e .
4) Para 6; 0;6; =1; "1 .. p—17); , utilizamos los casos anteriores y el hecho de que

B =11...7, conmuta con 6; si i <n — 1, demostrado en el Lema 4.4:
Sl ~ 1 ~ B T 17~ 5
G, MO;...0; 1i0;...0; fln—20;0; Tp-10; =0, Bo; = f.
Despejamos con lo que ya hemos demostrado y obtenemos:

i - =167 7305 T -7y = 71 - - 1
—— ——
i—2 n—i—1
= 6, 6y = 7, PR AT

Con esto terminamos los casos o, ma] Para la conjugaciéon 010} ! basta despejar 7j; a la
izquierda de las igualdades ya demostradas en los casos j iy despues utilizar la conmutacién
con f3 para obtener el caso j = i.

Sea ahora 7 € T, tal que F,(7) = 1. Acabamos de demostrar que 7 es producto de 7,
pero las relaciones que cumplen los elementos n; € T, son triviales porque T,, es libre. Asi que
necesariamente 7 = 1 y el epimorfismo T,, — T, es un isomorfismo.

De la misma manera si tomamos 7 € S, tal que F,,(7) = 1 se tiene que 7 € T, y como
acabamos de ver 7 = 1. Es decir, la aplicacién S,, — S,, es un isomorfismo. Por tltimo vamos a
considerar el siguiente diagramas:

S, —— B,

Sea 7 € ker F,,, entonces F,,(7) =1 € S, y como la flecha de la izquierda es un isomorfismo
7 = 1. Por tanto la aplicacion Fj, : B,, — B,, es un isomorfismo. Es decir,

By :=(01,...,0n-1|[05,05] =1, j—i>1, 0304410; = 0i110:0i41) - O
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Apéndice A
Algunas demostraciones

Demostracion de la Proposicion 1.2.2. Sea a = arg(p(1)). Definimos una isotopfa H : S! x
[0,1] — S! por ‘
H(z,t) := e "p(2).

Veamos que H es una isotopia entre ¢ y un homeomorfismo que fija el punto 1. Para t = 0,
tenemos

H(z,0) = e%(2) = ¢(2).

Por lo tanto, H(z,0) = ¢(z). Para t = 1, obtenemos

H(z,1) = e7p(2) = (1) 'p(2).

En particular, para z = 1, se cumple que
H(1L,1) = (1) 'p(1) = L.

Esto muestra que H(z,1) es un homeomorfismo que fija el punto 1.
Por tltimo, para cada t € [0,1], la funcién z — e~#%p(2) es un homeomorfismo de S! en S,
ya que es la composicién de una rotacién y un homeomorfismo. O

Demostracién de la Proposicién 1.2.3. Definimos la funcién e : [0,1] — S! como e(z) = >,
Entonces €|(g,1) es un homeomorfismo de (0,1) en S*\ {1}.
Sea ¢ : S! — S! un homeomorfismo, por la Proposicién 1.2.2, podemos suponer que (1) = 1.

Definimos
H

/\

(0,1) —¢— st —£5 s < (0,1).

Por composicion H es un homeomorfismo. Por lo tanto debe ser estrictamente creciente o es-
trictamente decreciente.
Comencemos primero con el caso creciente. En ese caso, H se extiende a un homeomorfismo
H':[0,1] — [0,1] tal que H'(0) =0, H'(1) = 1. Tenemos eo H' = poe.
Definimos
¢:[0,1] x [0,1] = [0,1], ¢(s,t) = (1 —t)H'(s) + ts.

Esto es una homotopia relativa a {0, 1} desde H' hasta la identidad. Veamos que es una isotopfa.
Claramente, cada ¢; = ¢(s,t) es sobreyectiva (por el teorema del valor medio). Dado que H' es
estrictamente creciente, para s; > so obtenemos

qﬁt(sl) = (1 — t)H/(Sl) +ts1 > (1 — t)H/(SQ) + tsg = ¢t(82),
lo que significa que ¢; es estrictamente creciente, por lo tanto, inyectiva.
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Asi que ¢ es una biyeccién continua entre espacios Hausdorff compactos, por lo tanto, un
homeomorfismo. Ademds ¢ induce una homotopia v : S' x [0,1] — S! tal que ¥(e(s),t) =
e(¢(s,t)). Esta homotopia v viene dada por

U(s,t) = eodroelgy(s) sis# 1 w(l,1) =1

Como antes v es continua y 1, es biyectiva, por tanto 1)y son homeomorfismos. Asi que ¥ es una
isotopia entre ¢ y la identidad.

El caso decreciente es similar. En ese caso, H se extiende a un homeomorfismo H' : [0,1] —
[0,1] tal que H'(0) =1, H'(1) = 0. Se define

¢:10,1] x [0,1] = [0,1], (s, t) = (1 —t)H'(s) +t(1 — s)
Es una isotopia desde H’ hasta 1 e induce una isotopia 1 : S' x [0,1] — S' de p en z — Z:
Y(z,t) =eo¢;o e|(—0}1)(z) siz#1,9(1,t) =1
Lo vemos para z € S'\ {1} :
P(z,1)=eo(z1—2)oet(z)=eo(l—et(2) = 2mill=eT1(2)) — o=2mile™'(2)) — 7 O

Demostracion del Lema 1.2.8. Dado que @+ son isétopos a la identidad, existen dos isotopias
Hy : St x [0,1] — S! tales que Hy(x,0) = p+(z) y Hi(x,1) = 1g1(z). Basta concatenar estas
isotopias para obtener el homeomorfismo deseado. Definimos ® : S* x [~1,1] — S x [~1,1] por
O(z,t) = (Py(z),t), donde:

) H_(z,1+1¢t) site[-1,0]
() = { Hy(z,1—1t) sitel0,1]

Es facil ver que las funciones ®; : S' — S' y & : S! x [~1,1] — S! x [~1, 1] son homeomorfismos
y cumplen las propiedades requeridas. ]

Demostracion del Lema 1.2.9. Definimos el homeomorfismo

c—Lstx-1,1]

z —> (i 2|z| —3)

|2[
Definimos también las funciones h_ y h, como:

h_ = f|(9]D)1 o010 (f‘@ID)l)_l : Sl X {—1} — Sl X {—1},

By i= floms 0 20 (flops) ™"+ 8" x {1} — 8 x {1},
Tenemos que flap, (2) = (2,—1) y flom,(2) = (3,1). Es facil ver que estos homeomorfismos son
isotopos a la identidad, asi que por composicién, hy y h_ también lo son. Por el Lema 1.2.8,
existe un homeomorfismo ® : St x [-1,1] — S! x [~1,1] tal que ®(z,t) = (®4(x),t) con &1 = h
y ®_1 = h_. Definimos ¢ := f~1o® o f : C — C. Es un homeomorfismo por ser composicion
de homeomorfismos. Finalmente,

Ylop, = [~ o ® o flom, = flap, © floms © w2 0 (flon,) ™ o flom, = w2

De la misma manera se prueba que ¥|sp, = ¢1. O
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Demostracion del Lema 1.2.11. Sean A1, Ao C C conjuntos homeomorfos a una corona C por
los homeomorfismos f; : C — A;. Denotamos por SL a las fronteras interior y exterior de C.
Podemos suponer que f;(SL) = A;. y que las funciones fi|Sli son is6topas a la identidad. Si
no es asi, en el primer caso redefinimos los f; componiendo con una reflexiéon adecuada. En el
segundo caso, por el Lema 1.2.3, basta componer con la conjugacién compleja. Las funciones:

fitowsofilg :Sp —Si

son homeomorfismos por composicién, y también por composicién inducen el isomorfismo 1.
Por la Proposicion 1.2.4, son isétopas a la identidad.
Aplicando el Lema 1.2.9, existe un homeomorfismo 1 : C' — C' que cumple

Ylsy = f3' opxo filsy

Definimos:
Q= frovofy

Entonces, se tiene que:
-1 -1
Ola,, = foopo fila, = faodls o fila, = faofy owxofilg ofi |a, =¢+

Por tanto ® cumple la condicién del enunciado. ]



	Prólogo
	Prologue
	Preliminares
	Grupos finitamente presentados
	Homeomorfismos del disco
	Homeomorfismos de la circunferencia
	Homeomorfismos del disco


	Movimientos y espacios de configuración
	Primeras definiciones
	Espacios de configuración

	Trenzas, homeomorfismos y grupos libres
	Trenzas versus homeomorfismos
	Trenzas como automorfismos de Fn

	Presentación del grupo de trenzas
	Biliografía
	Algunas demostraciones

