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Prólogo

La teoría de trenzas es una rama de las matemáticas situada entre la topología y el álgebra,
que estudia el concepto intuitivo de una trenza como hilos entrelazados. Uno de los primeros
matemáticos en estudiar este campo fue Emil Artin (1898-1962), en sus trabajos Theorie der
Zöpfe (1925) [1], basado en estudiar las proyecciones de las trenzas en el plano, y Theory of
Braids (1947) [2]. El objetivo de este trabajo es hacer una revisión del segundo artículo de Artin
y explicarlo con un lenguaje más moderno.

En este artículo se define el concepto de trenza como un conjunto de hilos en R3 que solo
cortan una vez a cada plano z = z0 y que se mantienen constantes para ciertos valores z ≤ a,
z ≥ b. También se introduce la noción de s-isotopía, que es una relación de equivalencia entre
las trenzas de n hilos, que geométricamente consiste en deformar los hilos de una trenza sin
que se corten entre sí. Adaptaremos estos conceptos en la Sección 2.1 con algunos cambios
respecto a Artin: llamaremos n-movimiento a lo que Artin define como trenza (Definición 2.1.1) y
definiremos los n-movimientos solamente en [0, 1], al contrario que Artin, quien define las trenzas
en todo R. Para nosotros, las n-trenzas serán la clase de equivalencia de los n-movimientos dada
por la s-isotopía (ver la Definición 2.1.4 y en general §2.2).

Posteriormente, Artin muestra que las trenzas forman un grupoide con la operación dada
por la concatenación de trenzas con los mismos extremos. Para ello, nosotros introduciremos la
noción de espacio de configuración en la Sección 2.2, que permite entender los n-movimientos
como caminos en cierto espacio topológico. Aquí definiremos el grupo de n-trenzas Bn como el
grupo fundamental de uno de estos espacios.

Por otra parte, los n-movimientos están estrechamente relacionados con los homeomorfis-
mos del disco que son la identidad en la frontera, que nosotros llamaremos δ-homeomorfismos
(ver §1.2.2). Esta relación se verá en profundidad en la Sección 3.1, concretamente en el Teore-
ma 3.1.1 y en el Corolario 3.1.2. Este último corolario introduce un homeomorfismo que sustituye
el concepto de coordenadas de trenza utilizado por Artin.

Uno de los resultados más importantes del artículo es establecer un homomorfismo entre el
grupo de trenzas y el grupo de automorfismos del grupo libre (ver Proposiciones 3.2.9 y 3.2.13),
combinando topología y álgebra. Artin demostró que este homomorfismo es inyectivo y caracte-
rizó su imagen como los automorfismos del grupo libre que envían los generadores de una base
ordenada a conjugados de ellos y fija el producto. Trataremos esto en la Sección 3.2.

Para terminar, en el artículo Theory of Braids [2] Artin no da una presentación del grupo de
trenzas, ya que la dio en Theorie der Zöpfe [1] de una manera geométrica. Aun así, al comienzo de
Theory of Braids se hace referencia a esa demostración, diciendo textualmente: “En mi artículo
Theorie der Zöpfe (...) presenté una teoría que condujo a una clasificación de las trenzas (...).
La mayoría de las pruebas son totalmente intuitivas. La demostración del teorema principal ni
siquiera es convincente. Es posible corregir las pruebas.” [2, p. 101].

Y más adelante en Theory of Braids se dice: “En Theorie der Zöpfe he demostrado que las
relaciones (2.1) y (2.2) forman un conjunto completo de relaciones definitorias para el grupo
de trenzas. El método es geométrico y se puede hacer rigurosamente mediante las herramientas
desarrolladas en este artículo. Sin embargo, una prueba más interesante se da en el artículo
de F. Bohnenblust The Algebraical Braid Group (1947) [3] que es esencialmente algebraica y
profundiza en la teoría del grupo.” [2, p. 115]
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Nuestro objetivo en el Capítulo 4 será dar vida a la frase de Artin donde sugiere que se
puede llevar a cabo una demostración alternativa a partir de las herramientas desarrolladas en
el artículo, y redemostrar que la presentación con las relaciones (2.1) y (2.2) permite ver el grupo
de trenzas como un grupo finitamente presentado.

Resumen por Capítulos

Capítulo 1

En la Sección 1.1 definimos los conceptos de grupo libre y grupo finitamente presentado.
Además, daremos una condición para establecer homomorfismos entre grupos finitamente pre-
sentados. En la Sección 1.2 introducimos los δ-homeomorfismos y exploramos resultados rela-
cionados con las clases de δ-isotopía del disco. Muchos de estos resultados se demostrarán en el
apéndice.

Capítulo 2

En la Sección 2.1 formalizamos el concepto de “hilos que se entrelazan”, denominado n-
movimiento, y definimos la s-isotopía entre movimientos, una relación de equivalencia que geo-
métricamente consiste en deformar los hilos sin cortarse y manteniendo fijos los extremos. En la
Sección 2.2 presentamos los espacios de configuración, que nos permiten interpretar las trenzas
como caminos. Utilizando la teoría de homotopía, definimos los grupos de trenzas Bn y Pn como
grupos fundamentales de estos espacios.

Capítulo 3

En la Sección 3.1 tratamos la relación entre las trenzas y los homeomorfismos. Extendemos
la s-isotopía a un homeomorfismo en C e introducimos un homeomorfismo Cβ que “rehace”
una trenza dada. En la siguiente sección veremos cómo cada trenza induce naturalmente un
automorfismo del grupo libre. También demostraremos la existencia de un antimonomorfismo
de grupos entre Bn y Aut(Fn), caracterizando su imagen.

Capítulo 4

En este capítulo, demostramos que las relaciones (2.1) y (2.2) son las únicas relaciones del
grupo de trenzas y daremos una presentación del grupo de trenzas utilizando los generadores de
Artin, como se muestra a continuación:

Bn = ⟨σ1, . . . , σn−1 | σiσj = σjσi, j − i > 1, σiσi+1σi = σi+1σiσi+1⟩ .



Prologue

Braid theory is a branch of mathematics located between topology and algebra, which studies
the intuitive concept of braids as intertwined threads. One of the first mathematicians to study
this field was Emil Artin (1898-1962), in his works Theorie der Zöpfe (1925) [1], based on the
study of their projections on the two-dimensional plane, and Theory of Braids (1947) [2]. The
aim of this work is to review Artin’s second article and explain it in more modern language.

In this article, the concept of a braid is defined as a set of threads in R3 that intersect each
plane z = z0 only once and remain constant for certain values z ≤ a and z ≥ b. The notion
of s-isotopy is also introduced, which is an equivalence relation between braids with n threads
that geometrically consists of deforming the threads of a braid without them intersecting. We
will adapt these concepts in Section 2.1 with some changes from Artin’s definitions: we will call
n-movement what Artin defines as braid (Definition 2.1.1) and we will define n-movements only
in [0, 1], unlike Artin, who defines braids in all of R. For us, n-braids will be the equivalence
class of n-movements given by s-isotopy (see Definition 2.1.4 and in general §2.2).

Later, Artin shows that braids form a groupoid with the operation given by concatenation
of braids with the same ends. To do this, we will introduce the notion of configuration space
in Section §2.2, which allows us to understand n-movements as paths in a certain topological
space. Here we will define the group of n-braids Bn as the fundamental group of one of these
spaces.

On the other hand, n-movements are closely related to homeomorphisms of the disk that are
the identity on the boundary, which we will call δ-homeomorphisms (see §1.2.2). This relationship
will be explored in depth in Section 3.1, specifically in Theorem 3.1.1 and Corollary 3.1.2. This
last corollary introduces a homeomorphism that replaces the concept of braid coordinates used
by Artin.

One of the most important results of the article is to establish a homomorphism between the
braid group and the group of automorphisms of the free group (see Proposition 3.3 and 3.2.13),
combining topology and algebra. Artin proved that this homomorphism is injective and charac-
terized its image as the automorphisms of the free group that send the generators of an ordered
base to conjugates of them and fixes the product. We will deal with this in Section §3.2.

Finally, in Artin’s article Theory of Braids [2], a presentation of the braid group is not
provided since he gave it in Theorie der Zöpfe [1] in a geometric way. Nevertheless, at the
beginning of Theory of Braids, Artin mentions this proof, stating textually: “ A theory of braids
leading to a classification was given in my paper Theorie der Zöpfe (...). Most of the proofs are
entirely intuitive. That of the main theorem is not even convincing. It is possible to correct the
proofs. ” [2, p. 101]

And later in Theory of Braids, it is said: “In Theorie der Zöpfe I have shown that that
these relations 2.2 form a full set of defining relations for the group. The method is geometric
and can easily be made rigorous by means of the tools developed in this paper. However a more
interesting proof shall be given in a paper by F. Bohnenblust The Algebraical Braid Group (1947)
[3] which is essentially algebraic and leads deeper into the theory of the group.” [2, p. 115]

Our goal in Chapter 4 is to explore Artin’s idea, suggesting that an alternative proof can be
carried out using the tools of the article, and to prove in another way that the presentation with
relations (2.1) and (2.2) allows us to view the group of braids as a finitely presented group.
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Summary by Chapters

Chapter 1

In Section 1.1 we define the concepts of free group and finitely presented group. In addition,
we will give a condition to establish homomorphisms between the finitely presented groups. In
Section 1.2 we introduce δ-homeomorphisms and we will explore results related to δ-isotopy
classes of the disk. Many of these results will be proved in the appendix.

Chapter 2

In Section 2.1, we formalize the concept of “intertwined threads”, called n-movement, and
define s-isotopy between movements, an equivalence relation that geometrically consists of de-
forming the threads without cutting them and keeping the ends fixed. In Section 2.2, we present
configuration spaces, which allow us to interpret braids as paths. Using homotopy theory, we
define the braid groups Bn and Pn as the fundamental groups of these spaces.

Chapter 3

In Section 3.1, we show the relationship between braids and homeomorphisms. We will extend
s-isotopy to a homeomorphism in C, and we will introduce a homeomorphism Cβ that “builds” a
given braid. In the next section, we will see how each braid naturally induces an automorphism
of the free group. We will also prove the existence of an antimonomorphism of groups between
Bn and Aut(Fn), and we will characterize its image.

Chapter 4

In this chapter, we prove that the relations 2.1 and 2.2 are the only relations of the braid
group and we will give a presentation of the braid group using Artin’s generators, as shown
below:

Bn = ⟨σ1, . . . , σn−1 | σiσj = σjσi, j − i > 1, σiσi+1σi = σi+1σiσi+1⟩ .
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Capítulo 1

Preliminares

1.1. Grupos finitamente presentados
Vamos a establecer algunos resultados sobre grupos finitamente presentados que serán útiles

después.

Definición 1.1.1. Un subconjunto X de un grupo G es un conjunto de generadores si cada
elemento g ∈ G se puede expresar como un producto finito

g = xn1
1 xn2

2 · · ·xnk
k (1.1)

en donde xi ∈ X y ni ∈ Z. Diremos entonces que los elementos de X generan o engendran G.
Si además, la manera de expresar g ∈ G \ {e} como en (1.1) es única siempre y cuando

xi ̸= xi+1 y ni ̸= 0, entonces decimos que X es un conjunto libre de generadores y la expresión
anterior es una palabra reducida. Si un grupo G tiene un conjunto libre de generadores se dice
que es un grupo libre.

Definición 1.1.2. Dado un conjunto no vacío X el grupo libre F(X) generado por X es el
conjunto de palabras reducidas finitas de elementos de X, donde la multiplicación de dos palabras
es la reducción natural de la yuxtaposición de ambas en el orden indicado.

Proposición 1.1.3. Todo grupo es cociente de un grupo libre por un subgrupo normal.

Demostración. Basta considerar el epimorfismo

F(X) G
φ

El teorema de isomorfía de grupos asegura que G ∼= F (X)/N , donde N = kerφ.

Definición 1.1.4. Sea R una colección de palabras de F(X) y denotemos N(R) es el menor
subgrupo normal que las contiene. Entonces el par ⟨X : R⟩ es una presentación del grupo
F(X)/N(R).

Definición 1.1.5. Se dice que G es un grupo finitamente presentado si existen subconjuntos
X = {x1, . . . , xn} y R = {r1, . . . , rs} tal que

G ∼= ⟨X : R⟩.

Proposición 1.1.6. Sean G ∼= ⟨X : R⟩ un grupo finitamente presentado, H un grupo y {hx |
x ∈ X} una familia de elementos de H. Entonces, existe un homomorfismo

⟨X : R⟩ H

x hx

φ

si y solo si w(hx) = 1 ∈ H, ∀w ∈ R. En tal caso, φ es único.

1



2 Capítulo 1. Preliminares

1.2. Homeomorfismos del disco
Esta sección establece algunos resultados teóricos que necesitaremos más adelante para es-

tudiar las trenzas, que están estrechamente relacionadas con las isotopías y los homeomorfismos
del disco. Las demostraciones de algunos de los resultados se pueden encontrar en el apéndice.
Notación 1.2.1. En esta sección y también a lo largo del trabajo utilizaremos la siguiente
notación.

(a) Denotamos por S1
r el círculo de radio r en el plano complejo, es decir, S1

r := {z ∈ C |
|z| = r}. Asimismo, denotamos por Dr el disco cerrado de radio r en el plano complejo, es
decir, Dr := {z ∈ C | |z| ≤ r}. Denotamos por S1 y D la circunferencia y el disco unidad y
cuando el centro z0 sea distinto del origen lo indicaremos como S1

r(z0) y Dr(z0).

(b) Dada una homotopía H : X × I → Y y dado t ∈ I llamaremos Ht : X → Y a la aplicación
Ht := H(z, t).

(c) Dados dos caminos f, g : [0, 1] → X tales que f(1) = g(0) denotaremos por f · g o
simplemente por fg al producto de los caminos f y g y por f−1 el camino recorrido al
revés.

Para los siguientes enunciados necesitamos el siguiente teorema clásico.
Teorema (Teorema de la curva de Jordan). Toda curva cerrada simple C : I → C divide el
plano en dos componentes conexas disjuntas, teniendo la curva como frontera común. Una de
estas componentes es acotada (el interior de la curva) y la otra es no acotada (el exterior).
Observación 1.1. A lo largo de este trabajo consideraremos subconjuntos A ⊂ C homeomorfos
a la circunferencia, lo que implica que π1(A; a0) ∼= Z, ∀a0 ∈ A. Este grupo solo tiene dos
generadores y elegir uno de ellos supone identificar el grupo con Z. Vamos a ver cómo elegir
el generador e identificar el grupo con Z. Según el Teorema de Jordan, esta curva divide C en
una región interior y una exterior. Tomamos un punto a en la región interior y consideramos
un lazo α : I → A ⊂ C tal que Índ(α, a) = 1. Este lazo determina un generador de π1(A; a0) y
por tanto una identificación de este grupo con Z; la identificación no depende de a. Si B ⊂ C es
otro subconjunto homeomorfo a S1, podemos identificar sus grupos fundamentales con Z de la
misma manera.

Si φ : A → B es un homeomorfismo, el isomorfismo en grupos fundamentales lo podemos ver
como un automorfismo de grupos φ∗ : Z → Z con la identificación anterior. Entonces, φ∗ = 1Z
si y solo si a está en la región interior determinada por A y b en la región interior determinada
por b y α : I → A ⊂ C es un lazo tal que Índ(α, a) = 1, entonces Índ(ϕ ◦ α, b) = 1.

1.2.1. Homeomorfismos de la circunferencia

Proposición 1.2.2. Sea φ : S1 → S1 un homeomorfismo. Entonces, φ es isótopo a un homeo-
morfismo que fija el punto 1.
Proposición 1.2.3. Sea φ : S1 → S1 un homeomorfismo. Entonces φ es isótopo a a la identidad
o a la conjugación compleja.

Estos resultados se demuestran en el Apéndice A.
Proposición 1.2.4. Sea φ : S1 → S1 un homeomorfismo. Entonces, φ es isótopo a la identidad
si y solo si φ∗ = 1Z.
Demostración. (⇒) Es trivial, ya que un homeomorfismo isótopo a la identidad induce el iso-
morfismo 1Z.

(⇐) La Proposición 1.2.3 establece que solo hay dos clases de isotopía de S1. La clase de
isotopía de la identidad induce el isomorfismo trivial φ∗ = 1Z, mientras que la clase de la
conjugación compleja induce el isomorfismo 1 7→ −1. Si φ∗ = 1Z, entonces φ pertenece a la clase
de isotopía de la identidad, es decir, es isótopo a la identidad.
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1.2.2. Homeomorfismos del disco

Por las propiedades del grupo fundamental, cualquier homeomorfismo del disco en sí mismo
envía la circunferencia a la circunferencia.

Con un razonamiento similar al de la sección anterior, obtenemos un resultado análogo a la
Proposición 1.2.2 para el disco. Con un poco más de trabajo, también se pueden establecer los
resultados equivalentes a las Proposiciones 1.2.3 y 1.2.4.

A partir de ahora, nos enfocaremos en el estudio de los homeomorfismos del disco que son la
identidad en la circunferencia (denominados ∂-homeomorfismos ) y de las isotopías que también
son la identidad en la circunferencia (denominadas ∂-isotopías). Los siguientes resultados serán
útiles después.

Teorema 1.2.5. Sea φ : D → D un ∂-homeomorfismo tal que φ(0) = 0. Entonces existe una
∂-isotopía H : D × [0, 1] → D con H0 = 1D, H1 = φ tal que Hs(0) = 0 ∀s ∈ [0, 1]

Demostración. Sea φ : D → D un ∂-homeomorfismo tal que φ(0) = 0. Definimos una ∂-isotopía
H : D × [0, 1] → D de la siguiente manera:

H(z, t) =


z si z /∈ Dt
tφ( zt ) si z ∈ Dt \ {0}
0 si (z, t) = (0, 0)

Claramente H0 = 1D y H1 = φ. Falta comprobar que H es continua y que Ht es un ∂-
homeomorfismo.

La función H es continua. Los únicos puntos donde la continuidad no está clara son en
|z| = t y en (z, t) = (0, 0). Si |z| = t ̸= 0 tenemos que | zt | = 1 ⇒ tφ

(
z
t

)
= t zt = z. Por otra

parte la función φ es acotada por el Teorema de Weierstrass, así que

ĺım
z,t→0

|ϕ(z, t)| ≤ ĺım
z,t→0

máx
{∣∣∣∣tφ(

z

t

)∣∣∣∣ , |z|} ≤ ĺım
z,t→0

máx {tK, |z|} = 0.

Por tanto es continua en (0, 0)

Hs es un ∂-homeomorfismo para cada t ∈ [0, 1] porque z 7→ tφ(1
t z) es un homeomorfismo

de Dt en sí mismo y claramente es la identidad en ∂D.

Observación 1.2.6. Aplicando una homotecia, el teorema anterior es cierto para un disco cual-
quiera de radio r > 0 . También se puede extender fácilmente para un punto fijo z0 cualquiera.
Posteriormente utilizaremos que el lema es válido para un disco Dr(z0) donde el punto fijo es el
centro z0.

Lema 1.2.7. Sea φ : D → D un ∂-homeomorfismo, sea r ≤ 1 y φr := φ|S1
r,∗. Entonces el

isomorfismo φr,∗ es la identidad.

Demostración. Consideremos dos caminos cerrados simples αr en S1
r y α en S1 con puntos base

en la parte superior de las respectivas circunferencias y con índice 1 alrededor de un punto
arbitrario z0 en D̊r. Tomamos también un camino recto w en D \ D̊r, desde αr(0) hasta α(0). Es
evidente que los caminos α y w−1 ·αr ·w son equivalentes en D \ D̊r. Utilizando el hecho de que
φ es la identidad en S1, obtenemos la siguiente equivalencia de caminos en D \ D̊r:

φr(αr) ∼ φ(w · α · w−1) ∼ φ(w) · α · φ(w)−1

El índice con respecto a z0 de los caminos αr y α es 1. También lo es el índice del camino
φ(w) · α · φ(w)−1, por lo tanto, también lo es el de φr(αr) ya que la equivalencia de caminos
respeta el índice. Por la Observación 1.1, se tiene que φr,∗ = 1Z.
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Estos lemas también se demuestran en el Apéndice A.

Lema 1.2.8. Sean φ± : S1 → S1 dos homeomorfismos isótopos a la identidad. Entonces, existe
un homeomorfismo Φ : S1 × [−1, 1] → S1 × [−1, 1] tal que Φ(x, t) = (Φt(x), t) con Φ1 = φ+ y
Φ−1 = φ−.

Lema 1.2.9. Sea C = D2\
◦
D1 una corona circular y sean φj : ∂Dj → ∂Dj, j = 1, 2 ho-

meomorfismos isótopos a la identidad. Entonces existe un homeomorfismo ψ : C → C tal que
ψ|∂Dj

= φj.

Observación 1.2.10. Este lema es válido para una corona circular C cualquiera, ya que todas
son homeomorfas entre sí.

Lema 1.2.11. Sean A1, A2 ⊂ C conjuntos homeomorfos a una corona circular C centrada en 0.
Denotamos por Ai± a las fronteras interiores y exteriores de Ai, i = 1, 2. Sean φ± : A1± → A2±

homeomorfismos de manera que el isomorfismo de grupos inducido es la identidad, i.e. φ±∗ = 1Z.
Entonces existe un homeomorfismo Φ : A1 → A2 tal que Φ|Ai±

= φ±.

Teorema 1.2.12. Sea φ : D → D un ∂-homeomorfismo y sean z1, . . . , zn puntos distintos en
el interior de D. Escribimos φ(zi) = z′

i ∀i = 1, . . . , n. Entonces existen 0 < r0 < r1 < 1 y una
∂-isotopía H tal que:

(1) H0 = φ,

(2) H1 coincide con la función z 7→ z + z′
i − zi en Dr0(zi),

(3) Ht(zi) = z′
i ∀t ∈ [0, 1],

(4) Ht coincide con φ en D \
⋃n
i=1 D̊r1(zi) ∀t ∈ [0, 1].

Demostración. Tomamos 0 < r0 < r1 < 1 − máxi{|zi| , |z′
i|} tales que Dr0(z′

i) ⊆ φ(Dr1(zi)) para
todo i = 1, . . . , n y además ⋂

iDr1(zi) = ∅ y ⋂
i φ(Dr1(zi)) = ∅. La existencia de tales r0 y r1 se

deriva de que los puntos z′
i = φ(zi) son todos distintos ya que φ es inyectiva. Fijamos uno de

los puntos zi y suponemos a partir de ahora que todos los discos y circunferencias en los que no
aparezca el centro están centrados en zi.

Los conjuntos φ(Dr1) \ Dr0(z′
i) y Dr1\

◦
Dr0 son homeomorfos a una corona circular y φ es un

∂-homeomorfismo, así que por el Lema 1.2.7 se tiene que φ|Sr1,∗ = 1Z. Aplicamos el Lema 1.2.11
a φ|S1

r1
y a la traslación fi : S1

r0 → S1
r0(z′

i), fi(z) = z + z′
i − zi y obtenemos que existe un

homeomorfismo:

Φ : Dr1\
◦
Dr0→ φ(Dr1) \ Dr0(z′

i), con Φ|S1
r1

= φ|S1
r1
,Φ|S1

r0
= fi.

Lo extendemos a todo Dr1 por ψ:

ψ(z) =
{

Φ(z) si z ∈ Dr1 \ Dr0

z + z′
i − zi si z ∈ Dr0

que es un homeomorfismo, coincide con φ en la frontera de Dr1 y con una traslación en Dr0 . Por
composición ψ−1 ◦φ : Dr1 → Dr1 es un ∂-homeomorfismo y además fija zi. Por el Teorema 1.2.5,
existe una ∂-isotopía

H : Dr1 × [0, 1] → Dr1 con H0 = ψ−1 ◦ φ, H1 = 1|Dr1
y Ht(zi) = zi ∀t ∈ [0, 1].

Componiendo con ψ obtenemos la isotopía

Ĥ := ψ ◦H : Dr1 × [0, 1] → Dr1 con ψ ◦H0 = φ, ψ ◦H1 = ψ y Ĥt(zi) = z′
i ∀t ∈ [0, 1].
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Dado que H una ∂-isotopía, es decir, es la identidad en el borde de Dr1 , tenemos que Ĥ|S1
r1

=
ψ|S1

r1
= φ|S1

r1
.

Hasta aquí hemos obtenido n isotopías Ĥi : Dr1(zi) × [0, 1] → φ(Dr1(zi)), definidas en
conjuntos disjuntos, con imágenes disjuntas, que coinciden con φ en el borde de Dr1(zi), donde
Ĥi,1 coincide con la traslación z 7→ z+φ(zi) − zi en Dr0(zi) y verificando que Ĥi(zi, t) = z′

i ∀t ∈
[0, 1]. Extendemos estas isotopías a todo el disco y tenemos el resultado. La función

H̃(z, t) =
{
Ĥi(z, t) si z ∈ Dr1(zi)
φ(z) si z ∈ D \

⋃n
i=1 D̊r1(zi)

cumple todas las condiciones del enunciado.

Lema 1.2.13. Dados p, q ∈
◦
D existe un ∂-homeomorfismo hq,p : D → D tal que h(q) = p

Demostración. Lo vemos para q = 0. Para un q cualquiera consideramos dos homeomorfismos
h0,p, h0,q tales que h0,p(0) = p, h0,q(0) = q y tomamos hq,p = h0,p ◦ h−1

0,q . Dado p ∈
◦
D definimos:

h0,p : D D

z z + (1 − |z|)p

Es un ∂-homeomorfismo, h0,p(0) = p y hp,p = 1|C ∀p ∈
◦
D. Además la función:

D × D × D D
(z, q, p) hq,p(z)

es continua.

q

p

z h(z)

Figura 1.1: Homeomorfismo hq,p.

Observación 1.2.14. El lema se puede aplicar para un disco de cualquier radio r.

Definición 1.2.15. Se define el espacio de configuración de n puntos ordenados en C como el
conjunto Xn = {(x1, . . . , xn) ∈ Cn | xi ̸= xj ∀i ̸= j}.

Lema 1.2.16. Dados 0 < r1 < 2r2 se define Ar1,r2 := {(x,y) ∈ X2
n | |xi−xj | > r2, |xi−yi| < r1}.

Sean hxi,yi i = 1, . . . , n los ∂-homeomorfismos definidos en el Lema 1.2.13. Definimos la siguiente
función:

G : C × Ar1,r2 C

(z,x,y) Gx,y(z)

con Gx,y(z) :=
{
z, si z /∈

⋃n
i=1D(xi, r1)

hxi,yi(z), si z ∈ D(xi, r1)

Entonces G es continua, Gx,y es un homeomorfismo para cada (x,y) ∈ Ar1,r2 y Gx,x = 1C
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Capítulo 2

Movimientos y espacios de
configuración

2.1. Primeras definiciones
Definición 2.1.1. Llamaremos cuerda o hilo a una aplicación continua C : [0, 1] → C . Un
n-movimiento β es un conjunto de n cuerdas β = {β1, . . . , βn} tales que βi(t) ̸= βj(t) ∀ t ∈ [0, 1]
si j ̸= i. Llamaremos extremos superior e inferior del n-movimiento a los puntos β+

i := βi(1)
y β−

i := βi(0). Por último se dice que un n-movimiento es cerrado si {β−
i }ni=1 = {β+

i }ni=1,
en contraposición a un n-movimiento abierto. Si β−

i = β+
i ∀i ∈ {1, . . . , n} diremos que el n-

movimiento es puro.

Observación 2.1.2. En la definición de n-movimiento estamos ordenando implícitamente los
caminos βi. Se deducirá del contexto si esta ordenación es relevante.

Representaremos los n-movimientos en C× [0, 1] por las curvas parametrizadas t 7→ (βi(t), t).

Figura 2.1: 3-movimiento no puro (izquierda) y 3-movimiento puro (derecha)

Observación 2.1.3. Los n-movimientos cerrados inducen una permutación de sus extremos. Si
denotamos por Σn el grupo simétrico de orden n, la acción de σ ∈ Σn sobre la cifra i como iσ y Cn
el conjunto de n-movimientos cerrados entonces existe una aplicación sobreyectiva S : Cn → Σn

tal que para cualquier β ∈ Cn existe σ ∈ Σn tal que β−
i = β+

iσ para todo i = 1, . . . , n.
Geométricamente parece que al deformar ligeramente los hilos de un n-movimiento mante-

niendo los extremos fijos se obtiene otro movimiento que es esencialmente el mismo. La noción
de s-isotopía formaliza esta idea.

Definición 2.1.4. Dos n-movimientos β, β′ son s-isótopos si existen n aplicaciones continuas
Hi : [0, 1] × [0, 1] → C (homotopías), i = 1, . . . , n tales que:

1. Hi(t, 0) = βi(t) y Hi(t, 1) = β′
i(t) ∀ t ∈ [0, 1]

2. Hi(0, s) = βi(0) = β′
i(0) y Hi(1, s) = βi(1) = β′

i(1) ∀ s ∈ [0, 1]

3. Hi(t, s) ̸= Hj(t, s) ∀ t, s ∈ [0, 1] si i ̸= j.

7
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Figura 2.2: 3-movimientos s-isótopos

2.2. Espacios de configuración
En esta sección introduciremos la noción de espacio de configuración, que nos permitirá

interpretar los n-movimientos como caminos y la s-isotopía como una homotopía de caminos
relativa a los extremos.

Definición 2.2.1. Dado un espacio topológico T , se define el espacio de configuración de n pun-
tos ordenados en T como el conjunto

Xn(T ) = {(x1, . . . , xn) ∈ Tn | xi ̸= xj ∀i ̸= j},

dotado de la topología de subespacio de Tn.

Hay una acción natural del grupo simétrico Σn en los puntos de Xn(T ) dada por

Xn(T ) × Σn Xn(T )
((x1, . . . , xn), σ) (x1σ , . . . , xnσ )

Esto sugiere la siguiente definición

Definición 2.2.2. Dado un espacio topológico T , se define el espacio de configuración de n
puntos en T como el conjunto

Yn(T ) = Xn(T )/Σn,

es decir, el espacio de órbitas de la acción, con la topología cociente.

También identificaremos los elementos de Yn con los subconjuntos de C de cardinal n que
tienen todos sus elementos distintos, así que usaremos la notación {x1, . . . , xn} para los elementos
de Yn. Por último escribiremos simplemente Xn e Yn cuando el espacio topológico sea C.

En estos espacios la relación entre caminos y n-movimientos es clara. Un camino en Yn
es una aplicación t 7→ {c1(t), . . . , cn(t)} tal que ci(t) ̸= cj(t) si i ̸= j que es justo la
definición de n-movimiento. Por lo tanto los n-movimientos son caminos en Yn. Por otra
parte un camino en Yn o un n-movimiento dan lugar a n! caminos en Xn al ordenar sus
componentes.

Inicialmente habíamos definido la s-isotopía entre n-movimientos con n funciones Hi, i =
1, . . . , n. En el espacio Yn esto es una homotopía de caminos relativa a los extremos así que
escribiremos H : [0, 1] × [0, 1] → Yn con H(t, s) = {H1(t, s), . . . ,Hn(t, s)} para denotar la
s-isotopía. Como es usual utilizaremos la notación β−1 := {β−1

1 , . . . , β−1
n } para el camino

recorrido en sentido inverso, 1x para el camino constante β = {x1, . . . , xn} y escribiremos
[β] para designar la clase de equivalencia del n-movimiento β, que es el conjunto de n-
movimientos s-isótopos a β y que llamaremos n-trenza.

Por último la composición de caminos en Yn se traslada también a la composición de
n-movimientos. Dados dos n-movimientos β, β′ ∈ Yn tales que β(1) = β′(0), se define el
n-movimiento compuesto ββ′ con la composición usual de caminos, donde eventualmente
hay que permutar los índices de los hilos. Vistos como trenzas en C× [0, 1] esta operación
se corresponde con apilar una trenza encima de otra y reescalar.
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Figura 2.3: Trenzas β, β′, ββ′

Definición 2.2.3. El grupo de n-trenzas puras Pn, es el grupo fundamental de Xn, es decir,

Pn = π1(Xn).

Definición 2.2.4. El grupo de trenzas de n cuerdas, Bn, es el grupo fundamental de Yn, es
decir,

Bn = π1(Yn) = π1(Xn/Σn).

Observación 2.2.5. Los elementos de estos grupos son las clases de equivalencia de los n-
movimientos cerrados. Por otra parte los espacios Xn e Yn son conexos por caminos, así que
omitiremos el punto base.

Definición 2.2.6. Se definen los generadores estándar o generadores de Artin como los n-
movimientos σi, con 1 ≤ i ≤ n− 1, donde todos los hilos son rectos excepto el hilo i-ésimo, que
pasa solamente sobre el hilo i+ 1-ésimo, y este solamente por detrás del anterior.

Estos movimientos están definidos salvo s-isotopía y se indican en la Figura 2.4, con extremos
superiores e inferiores en el conjunto {1, 2, . . . , n}.

1 · · · j − 1 j j + 1 j + 2 · · · n

Figura 2.4: Generador de Artin σj

Como hemos venido haciendo, representamos las trenzas mediante su proyección en R×[0, 1].
En esta proyección interpretamos que un hilo pasa por encima de otro si, al considerarlos como
caminos en el plano complejo C, el hilo que está por encima tiene una parte imaginaria menor
en el punto de cruce. Aplicando una homotopía si fuera necesario, podemos suponer que esta
proyección tiene un número finito de puntos de cruce entre los hilos, en los cuales solo intervienen
dos cuerdas a la vez. Además, podemos asumir que estos cruces ocurren a diferentes alturas, es
decir, para distintos valores de t ∈ [0, 1]. Por lo tanto, cualquier n-movimiento se puede escribir
como composición de generadores de Artin. Esto significa que los grupos Pn y Bn están generados
por los generadores de Artin.

Observación 2.2.7. En el espacio Yn y fijado el punto base {1, . . . , n} el generador de Artin σj
se corresponde con la clase de homotopía del siguiente camino:

σj(t) :=
{

1, . . . , j − 1, j + 1 − eiπt

2 , j + 1 + eiπt

2 , j + 2, . . . , n
}
.
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Observación 2.2.8. Los generadores de Artin cumplen ciertas relaciones. Para empezar

σiσj = σjσi, si |i− j| > 1, (2.1)

ya que estas trenzas involucran hilos distintos. También se cumple la relación (ver Figura 2.5)

σiσi+1σi = σi+1σiσi+1. (2.2)

Figura 2.5: Trenzas σiσi+1σi y σi+1σiσi+1

Definición 2.2.9. Se define el espacio de polinomios mónicos de grado n como Mn := {p ∈
C[t] | p mónico de grado n}.

Proposición 2.2.10. Los espacios Mn e Yn son homeomorfos y Yn es homeomorfo a un un
abierto de Cn.

Demostración. El homeomorfismo entre Mn e Yn lo da la aplicación

Yn Mn

{x1, . . . , xn}
∏n
i=1(t− xi)

ψ

Cn Mn

(x1, . . . , xn) ∏n
i=1(t− xi)

ψ̃

Veamos que ψ̃−1(Mn) es un abierto de Cn. Tenemos que

ψ̃−1(Mn) = Cn \ {(x1, . . . , xn) ∈ Cn | ∃ i, j ∈ {1, . . . , n} con i ̸= j tales que xi = xj}

= Cn \
⋃

i,j∈{1,...,n}
{(x1, . . . , xn) ∈ Cn | xi = xj}

Los conjuntos {(x1, . . . , xn) ∈ Cn | xi = xj} son cerrados en Cn por ser el núcleo de las
aplicaciones continuas fij(x1, . . . , xn) = xi − xj . Por tanto la unión finita⋃

i,j∈{1,...,n}
{(x1, . . . , xn) ∈ Cn | xi = xj}

también es cerrada, así que Mn es abierto.

Observación 2.2.11. Podemos ver una n-trenza como un camino C : [0, 1] → Mn, donde los hilos
vienen dados por el camino que describen las raíces de los polinomios en Yn.



Capítulo 3

Trenzas, homeomorfismos y grupos
libres

3.1. Trenzas versus homeomorfismos
En esta sección estudiaremos la relación entre los n-movimientos y los homeomorfismos del

plano. Veremos cómo se extiende la s-isotopía entre movimientos a una familia de homeomorfis-
mos del plano e introduciremos un homeomorfismo Cβ al que Artin se refiere como “coordenadas
de trenza” que relaciona el n-movimiento β con el n-movimiento trivial.

Teorema 3.1.1. Sean β = {β1, . . . , βn} y β′ = {β′
1, . . . , β

′
n} n-movimientos s-isótopos y sea

H := {H1, . . . ,Hn} : [0, 1] × [0, 1] → Yn

una s-isotopía desde β hasta β′. Existe una aplicación continua

F : C × [0, 1] × [0, 1] C

(z, t, s) Ft,s(z)

tal que

(T1) Ft,s : C → C es un homeomorfismo.

(T2) Ft,s = 1C si (t, s) ∈ [0, 1] × {0} ∪ {0, 1} × [0, 1].

(T3) ∃K > 0 tal que Ft,s|C\DK
= 1|C\DK

para todo t, s ∈ [0, 1].

(T4) Ft,s(βi(t)) = Hi(t, s).

Demostración. Por compacidad existe r > 0 tal que

|Hi(t, s) −Hj(t, s)| > 3r, ∀ i ̸= j, ∀ t, s ∈ [0, 1].

También por compacidad existe una partición 0 = s0 < s1 < · · · < sn = 1 del intervalo [0, 1] tal
que: ∣∣Hi(t, s) −Hi(t, s′)

∣∣ < r, ∀ t ∈ [0, 1], ∀ s, s′ ∈ [si, si+1]
Definiremos primero la función F en el intervalo [s0, s1] y después la extenderemos continuamente
a todo [0, 1].

Consideramos la función G definida en el Lema 1.2.16 con r1 = r, r2 = 3r. Para cada
s ∈ [s0, s1] y cada t ∈ [0, 1] se define:

Ft,s : C C

z Ft,s(z) := GH(t,s0),H(t,s)(z)

11
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Podemos definir esta función porque

(H(t, s), H(t, s′)) ∈ {(x,y) ∈ X2
n | |xi − xj | > r2, |xi − yi| < r1},

que es el requisito necesario para aplicar el Lema 1.2.16.
Dado que Gx,y es un homeomorfismo para todo (x,y) ∈ Ar1,r2 fijos se deduce que Ft,s

también lo es. Además Gx,x = 1|C, y para s = 0 tenemos que Hi(t, s0) = Hi(t, s). Para t = 0
se tiene que Hi(t, s) = Hi(0, s) = βi(0) y en t = 1 Hi(t, s) = Hi(1, s) = βi(1). Por lo tanto se
cumplen las dos primeras propiedades.

Para la tercera propiedad tomamos K = máx{|Hi(t, s)| | t, s ∈ [0, 1]} + r y tenemos que

|z| > K ⇒ |Hi(t, s) − z| > r ∀ t, s ∈ [0, 1] ⇒ Ft,s(z) = z ∀ t, s ∈ [0, 1]

Recalcamos que este K vale no solo para s ∈ [s0, s1] sino para todo s ∈ [0, 1]. Por último:

Ft,s(Hi(t, 0)) = G(Hi(t,0))n
i=1,(Hi(t,s))n

i=1
(Hi(t, 0)) = Hi(t, s)

por definición de G. Con esto ya tenemos Ft,s definida en [s0, s1] cumpliendo todas las propie-
dades requeridas. Supongamos que hemos definido Ft,s con las condiciones requeridas para todo
s ∈ [s0, sm]. Para s ∈ [sm, sm+1], se define:

Ft,s(z) = G(Hi(t,sm))n
i=1,(Hi(t,s))n

i=1
(Ft,sm(z))

En s = sm tenemos Hi(t, sm) = Hi(t, s), por lo que G es la identidad y obtenemos Ft,s(z) =
Ft,sm(z), asi que la extensión es continua. De nuevo se verifican todas las propiedades del enun-
ciado.

Finalmente F : C × [0, 1] × [0, 1] → C es continua por composición de funciones y porque
G : C × Ar1,r2 → C es continua.

Corolario 3.1.2. Sea β un n-movimiento. Existe un homeomorfismo

Cβ : C × [0, 1] C × [0, 1]

(z, t) (Cβ,t(z), t)

cumpliendo:

(C1) Cβ,0 = 1|C.

(C2) ∃K > 0 tal que Cβ,t|(C\DK) = 1|(C\DK) para todo t ∈ [0, 1].

(C3) Cβ,t(βi(0)) = βi(t).

Dado β′ un n-movimiento s-isótopo a β se pueden construir Cβ y Cβ′ tales que Cβ,1 = Cβ′,1

Demostración. Dados β, β′ n-movimientos s-isotopos, sabemos que el n-movimiento ββ′−1 es s-
isótopo al n-movimiento constante dado por 1β(0) = {β1(0), . . . , βn(0)}. Sea H = {H1, . . . ,Hn}
una s-isotopía desde 1β(0) hasta ββ′−1. Por el Teorema 3.1.1 existe una familia de homeo-
morfismos Ft,1 : C → C cumpliendo las propiedades (T1)-(T4) que extienden esta s-isotopía.
Definimos:

Cβ,t(z) = F 1
2 t,1

(z).

Esta función cumple con las propiedades deseadas. Demostramos solo la última, las demás se
derivan fácilmente de las propiedades de la función Ft,1. Recordamos que geométricamente, en
el producto ββ′−1 el movimiento β se encuentra en la parte inferior.

Cβ,t (βi(0)) = F 1
2 t,1

(
1β(0)i

(0)
)

= F 1
2 t,1

(
1β(0)i

(1
2 t

))
= Hi

(1
2 t, 1

)
= (β ¯β′−1)i

(1
2 t

)
= βi(t)



Trenzas - Alejandro Simal 13

Por otra parte, haciendo una reflexión sobre el plano t = 1
2 se define de la misma manera una

función Cβ′,t(z) := F1− t
2 ,1

(z), que también cumple con las propiedades (C1)-(C3). En t = 1
obtenemos Cβ,1(z) = F 1

2 ,1
(z) = Cβ′,1(z).

Observación 3.1.3. Geométricamente Cβ “rehace” la trenza β partiendo de 1β(0), dejando fija
la base y moviendo los extremos superiores. Se mueve solo en planos horizontales y define un
homeomorfismo del par (C × [0, 1],1β(0)) en (C × [0, 1], β), considerando 1β(0) y β como las
imágenes de las curvas t 7→ (1β(0)(t), t) y t 7→ (β(t), t) . Recalcamos que la función Cβ no es
única. Otra manera de interpretarla es como una isotopía desde 1C hasta Cβ,1.

Cβ

1 2 3 4 1 2 3 4

Figura 3.1: Transformación mediante Cβ

Notación 3.1.4. Dada una función Cβ cumpliendo las propiedades (C1)-(C3) se denota el
homeomorfismo Cβ,1 como Dβ.

Observación 3.1.5. Con esta notación no está claro de qué función Cβ proviene una función Dβ,
pero quedará claro cuando hagamos uso de ella. Al igual que antes Dβ determina un homeo-
morfismo del par (C, β(0)) en (C, β(1))

Ejemplo 3.1.6. Consideremos el generador de Artin σ1 con extremos en
{

−1
2 ,

1
2

}
que tiene

como representante el siguiente movimiento:

σ1(t) :=
{

−eiπt

2 ,
eiπt

2

}
.

El siguiente homeomorfismo Cβ : C × [0, 1] → C × [0, 1] recibe el nombre de twist de Dehn.

Cβ,t(z) =


eπitz si z ∈ D1

eπit(2−|z|)z si z ∈ D2 \ D1

z si z ∈ C \ D2

Se cumplen todas las propiedades (C1)-(C3). Para t = 1 se obtiene el siguiente homeomorfismo:

Dβ(z) =


−z si z ∈ D1

eπi(2−|z|)z si z ∈ D2 \ D1

z si z ∈ C \ D2

Observamos que Dβ permuta los extremos de la trenza de la manera deseada y es la identidad
fuera de D2.

La teoría que hemos desarrollado previamente está definida en C. Los homeomorfismos e
isotopías con los que hemos trabajado son en realidad ∂-homeomorfismos y ∂-isotopías en un
disco Dr suficientemente grande. Por tanto estas funciones se pueden restringir a Dr × [0, 1] o a
Dr. Recíprocamente, si definimos estas funciones en Dr, se pueden extender fácilmente a C por
la identidad, ya que coinciden con la identidad en el borde del disco. Por lo tanto la elección
entre Dr y C es arbitraria. Por comodidad a partir de ahora trabajaremos en el disco
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3.2. Trenzas como automorfismos de Fn
En este capítulo daremos otra interpretación del grupo de n-trenzas. Aunque inicialmente las

hemos definido como una colección de cuerdas, existe una representación natural de las n-trenzas
como automorfismos del grupo libre Fn con n generadores.

Notación 3.2.1. Introducimos algunas funciones que utilizaremos después.

(1) Sea x = {x1, . . . , xn} ∈ Yn. Llamamos Dr,x al disco Dr agujereado en los puntos xi, esto es

Dr,x := Dr \
n⋃
i=1

{xi}

(2) Dado un n-movimiento β contenido en Dr llamamos Xr,β a Dr × [0, 1] \ β.

Observamos que el grupo fundamental de Dr,x es isomorfo a Fn. Vamos a describir una base
canónica de π1(Dr,x;P ). Todos los caminos que describiremos a continuación vivirán en Dr,x.

Tomamos n circunferencias ci del mismo radio, recorridas en sentido antihorario, alrededor
de los puntos xi. Las tomamos suficientemente pequeñas para que no haya intersecciones
entre ellas. Recalcamos que el radio no afecta a los generadores del grupo siempre que sea
lo suficientemente pequeño para que no haya intersecciones entre ellos, así que podemos
reducirlo si en algún momento es necesario.

Fijamos un punto base punto P en la parte superior de Dr, es decir, el punto con mayor
parte imaginaria, y tomamos n caminos simples li conectando ci y P , en ese sentido, de la
siguiente manera:

• Si la parte real de todos los xi es distinta, nos desplazamos desde P , por el borde
superior del disco, hasta que la parte real coincida con la de xi. En ese momento
trazamos un segmento vertical hasta la parte superior del camino ci. Los caminos li
serán los caminos descritos pero recorridos en sentido inverso.

• Si la parte real de dos o más puntos xi1 , . . . , xik coincide, nos desplazamos de la
misma manera que antes por el borde del disco hasta que las partes reales coincidan.
Entonces trazamos k caminos hasta el extremo superior de los cij correspondientes,
dejando a la derecha los demás xij .

Ordenaremos los puntos xi con el orden lexicográfico en C, esto es

a+ bi ≤C a
′ + b′i ⇔ a <R a

′ ó (a = a′ y b ≤R b
′)

y reordenamos también los subíndices de los hilos βi y de los caminos li, ci de manera
acorde al punto que rodean.

Definimos los lazos ti := l−1
i ·ci ·li, basados en P . Estos serán los generadores del grupo. Haciendo

un pequeño abuso de notación denotaremos por ti los generadores de todos los discos Dr,x sin
hacer mención al radio del disco. Además denotaremos por ti los generadores de π1(Dx;P ) sin
escribir los corchetes y se distinguirán de los caminos por el contexto.

Proposición 3.2.2. Las clases de equivalencia de los lazos ti := l−1
i · ci · li son un conjunto

generador de π1(Dr,x, P ), es decir π1(Dr,x, P ) = ⟨t1, . . . , tn | ti = l−1
i · ci · li, i = 1, . . . , n⟩.

Además, el lazo t1 · . . . · tn es equivalente al lazo ∂Dr, basado en P y recorrido en sentido
antihorario.

Demostración. La demostración es inmediata por la construcción de los lazos ti.
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x1

x2

x3 x4

ℓ1

ℓ2

ℓ4

P

Figura 3.2: Generadores de π1(Dr,x;P ), x = {x1, . . . , x4}.

Notación 3.2.3. Introducimos algunas funciones que utilizaremos después.

(1) Sea f un camino en un espacio topológico X con punto inicial f(0) = x0 y punto final
f(1) = x1. Denotamos por uf : π1(X,x0) → π1(X,x1) el isomorfismo de grupos dado por
α 7→ f−1 · α · f .

(2) Denotaremos por g el camino g : [0, 1] → D × [0, 1] definido por t 7→ (P, t).

(3) Por último, dado x ∈ [0, 1] definimos la inlcusión ix : D ↪→ D × {x} ⊂ D × [0, 1].

Observación 3.2.4. Sean x = {x1, . . . , xn} ∈ Yn y sean Dr1 y Dr2 dos discos que contienen en su
interior a los puntos xi. Existe un isomorfismo natural φ entre sus grupos fundamentales:

π1(Dr1,x;P1) π1(Dr2,x;P2)

π1(C \ x;P1) π1(C \ x;P2)

φ

i∗ i∗

uf

(3.1)

donde f es el segmento que une los puntos base y el generador ti ∈ π1(Dr1,x;P1) se envía al
generador ti ∈ π1(Dr2,x;P2). Por lo tanto el radio del disco es irrelevante y a partir de ahora lo
omitiremos.

Proposición 3.2.5. El siguiente diagrama es conmutativo:

π1(Dβ(0);P ) π1(Dβ(1);P )

π1(X1β(0) ; (P, 1)) π1(Xβ; (P, 1))

π1(X1β(0) ; (P, 0)) π1(Xβ; (P, 0))

π1(Dβ(0);P ) π1(Dβ(0);P )

Dβ,∗

i1,∗

1∗

i1,∗

Cβ,∗

ug
ug=uCβ(g)

Cβ,∗

1∗

i0,∗ i0,∗

(3.2)

En particular Dβ,∗ = i−1
1,∗ ◦ ug−1 ◦ i0,∗.

Demostración. Tomamos un homeomorfismo Cβ cualquiera cumpliendo las propiedades (C1)-
(C3). Es necesario verificar la conmutatividad de los 4 cuadrados del diagrama. En el cuadrado
de la izquierda, la igualdad 1∗ = i−1

1,∗ ◦ug ◦ i0,∗ es evidente ya que las inclusiones son isomorfismos
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porque Dβ(0) × {j}, j = 0, 1, son retractos por deformación de X1β(0) . El cuadrado de arriba
también es claro por la definición de Dβ . En el del medio utilizamos que dado un elemento
[α] ∈ π1(X1β(0) ; (P, 1)), la clase Cβ,∗ ◦ ug[α] está representada por el lazo Cβ ◦ (g−1 · α · g) =
g−1 ·(Cβ◦α)·g, porque Cβ fija ∂D×[0, 1]. Por otro lado, la clase ug◦Cβ,∗[α] está representada por
el mismo lazo, y por lo tanto, el cuadrado central conmuta. En el cuadrado de abajo utilizamos
de nuevo que Dβ(0) × {0} es un retracto por deformación de X1β(0) y que Cβ es la identidad en
la base.

Observación 3.2.6. La proposición anterior prueba que el isomorfismo Dβ,∗ es equivalente a
tomar un generador ti ∈ Dβ(0), incluirlo en Dβ(0) × {0}, subirlo hasta Dβ(1) × {1} conjugando
por g e incluirlo en Dβ(1). La siguiente imagen ilustra este proceso:

t1

g

P

β

Figura 3.3: Automorfismo inducido por β

Corolario 3.2.7. El isomorfismo Dβ,∗ solo depende de la n-trenza [β].

Demostración. Es inmediato a partir de la Proposición 3.2.5 y del Corolario 3.1.2, que demuestra
que si β y β′ son s-isótopas se pueden construir homeomorfismos tales que Dβ = Dβ′ .

Proposición 3.2.8. Sean β, β′ dos n-movimientos tales que β(1) = β′(0). Entonces Dββ′,∗ =
Dβ′,∗ ◦Dβ,∗.

Demostración. Utilizamos el siguiente diagrama:

π1(Dβ(0);P ) π1(Dβ(1);P ) π1(Dβ′(1);P )

π1(Xββ′ ; (P, 0)) π1(Xββ′ ; (P, 1
2)) π1(Xββ′ ; (P, 1))

Dβ,∗

i,0,∗

Dββ′,∗

Dβ′,∗

i 1
2 ,∗ i1,∗

ug1

ug

u
g−1

2

donde g1 es el camino dado por t 7→ (P, t2) y g2 el camino t 7→ (P, t2 + 1
2). A partir de las

proposiciones anteriores y aplicando homotecias D× [0, 1] → D× [0, 1
2 ], D× [0, 1] → D× [1

2 , 1] es
inmediato que el diagrama es conmutativo, por lo tanto Dββ′,∗ = Dβ′,∗ ◦Dβ,∗.
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Notación. A partir de aquí denotaremos a las trenzas por β, sin escribir los corchetes. Se distin-
guirán de los movimientos por el contexto. Denotaremos los generadores del grupo π1(Dβ(0);P )
por t−i y los generadores de π1(Dβ(1);P ) por t+i . Estos generadores son la clase de homotopía de
los lazos descritos al comienzo del capítulo.

Proposición 3.2.9. La aplicación

Bn Aut(Fn)
β Dβ,∗

µ

(3.3)

está bien definida y es un antihomomorfismo de grupos.

Demostración. Es inmediato a partir del Corolario 3.2.7 y la Proposición 3.2.8

Proposición 3.2.10. Dada una n-trenza β, el isomorfismo Dβ,∗ es de la forma

Dβ,∗ : π1(Dβ(0);P ) π1(Dβ(1);P )

t−i S−1
i · t+i · Si

Además, Dβ,∗(t−1 · . . . · t−n ) = t+1 · . . . · t+n .

Demostración. El Teorema 1.2.12 garantiza que podemos escoger un ∂-homeomorfismo Dβ :
D → D y un radio r0 lo suficientemente pequeño tales que Dβ coincida en Dr0(βi(0)) con una
traslación a lo largo de βi(1) − βi(0) para todo i = 1, . . . , n. Por otra parte, los caminos c±

i son
circunferencias alrededor de β±

i , que podemos tomar del mismo radio r < r0. Por tanto, tenemos
que Dβ(c−

i ) = c+
i . Consideramos las siguientes equivalencias de caminos en Dβ(1):

Dβ(t−i ) ∼ Dβ

(
(l−i )−1 · c−

i · l−i
)

∼ Dβ(l−i )−1 ·Dβ(c−
i ) ·Dβ(l−i )

∼ Dβ(l−i )−1 · c+
i ·Dβ(l−i )

∼ Dβ(l−i )−1 · l+i · (l+i )−1 · c+
i · l+i · (l+i )−1 ·Dβ(l−i )

∼ S−1
i · t+i · Si,

donde Si = (l+i )−1 ·Dβ(l−i ).
Finalmente, debido a la forma en que hemos descrito los generadores, el producto t−1 · · · t−n es

homótopo al borde de D. Como Dβ es la identidad en el borde, se cumple que Dβ,∗(t−1 t−2 · · · t−n ) =
t+1 t

+
2 · · · t+n .

Definición 3.2.11. Dado un punto x = {x1, . . . , xn} donde los puntos xi están ordenados con
el orden lexicográfico en C se define el n-movimiento lexicográfico en x como:

Lx(t) := (1 − t){1, . . . , n} + t{x1, . . . , xn}

Lema 3.2.12. El isomorfismo inducido por un n-movimiento lexicográfico es la identidad.

Demostración. Se deriva de la forma en la que está construida la trenza. Se comprueba fácilmente
que los hilos de la trenza también están ordenados lexicográficamente, es decir,

(1 − t)j + txj <C (1 − t)(j + 1) + txj+1 ∀t ∈ [0, 1],∀j = 1, . . . , n− 1

Por lo tanto nunca se produce un cruce entre los hilos. Representando geométricamente el
movimiento es inmediato ver que cada lazo g−1t−i g en la base es homótopo al lazo t+i en la tapa
de arriba.
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Proposición 3.2.13. Los generadores de Artin σj inducen el siguiente automorfismo del grupo
libre:

Dσj ,∗(ti) =


tjtj+1t

−1
j si i = j,

tj si i = j + 1,
ti si i ̸= j, j + 1.

Demostración. Si consideramos trenzas con extremos en {1, . . . , n} entonces el generador de
Artin σj tiene como representante el siguiente movimiento:

t 7→
{

1, . . . , j + 1 − eiπt

2 , j + 1 + eiπt

2 , . . . , n

}
.

La representación gráfica de este movimiento se muestra en la Figura 3.4.

· · · · · ·

tj+1

tj

g

j j + 1

σj

1 n

Figura 3.4: Automorfismo inducido por σj

Es claro que los caminos g−1tj+1g y tj , así como los caminos g−1tig y ti, son homótopos.
También podemos definir una homotopía explícita utilizando la función Cβ del Ejemplo 3.1.6
desplazada adecuadamente sumando j + 1

2 . Esta homotopía viene dada por la conjugación del
camino t 7→ Cβ(ti(t), t) por el camino gt definido como el segmento recto desde (P, t) hasta
(P, 1).

Para el lazo tj , sabemos que el producto de los generadores debe quedar fijo, es decir,
Dσj ,∗(t1t2 · · · tn) = t1t2 · · · tn. Operando con lo que ya hemos demostrado, obtenemos que

Dσj ,∗(tj) · tj = tjtj+1 ⇒ Dσj ,∗(tj) = tjtj+1t
−1
j .

Si consideramos un generador σj con extremos cualesquiera en x ∈ Yn basta conjugar con la
trenza lexicográfica Lx y considerar LxσjL−1

x . Por la forma en la que hemos descrito la trenza
lexicográfica es fácil ver que LxσjL−1

x tiene extremos en {1, . . . , n} y cumple con la definición
de generador de Artin, es decir, solo se produce un cruce enntre los hilos j y j + 1 y admite
un representante en el que el resto de hilos son rectos, así que el automorfismo que induce es el
indicado en el enunciado. El Lema 3.2.12 garantiza que Lx da lugar al isomorfismo trivial así
que por composición σj induce el automorfismo del enunciado.

Corolario 3.2.14. El automorfismo que induce σ−1
j es:

Dσ−1
j ,∗(ti) =


tj si i = j,

t−1
j+1tjtj+1 si i = j + 1,
ti si i ̸= j, j + 1.
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Demostración. Se deduce inmediatamente a partir de la Proposición 3.2.13 teniendo en cuenta
que σ−1

j induce el automorfismo inverso a Dσj ,∗.

Más adelante utilizremos el Corolario 3.2.14 y la Proposición 3.2.13 para demostrar que Bn
es isomorfo a cierto subgrupo de Aut(Fn).

Notación 3.2.15. Como mencionamos en el primer capítulo, existe un epimorfismo

S : Bn Σn

β σ

dado por la permutación de los extremos de los hilos. Sea Gn ⊂ Σn el estabilizador de la
cifra n en Σn. Se trata de un subgrupo de índice n. Denotaremos Sn := S−1(Gn), subgrupo de
índice n de Bn que consiste en las trenzas cuyo último hilo termina y empieza en el mismo punto.
Consideremos también el homomorfismo de grupos Υn : Sn → Bn−1, que consiste en olvidar el
último hilo. Por último denotamos Tn := ker Υn, que es el grupo de las trenzas que admiten un
representante con los n− 1 primeros hilos rectos.

Lema 3.2.16. Sea β ∈ Tn, es decir, admite como representante un n-movimiento con los n− 1
primeros hilos rectos. Entonces, si β ∈ kerµ, se tiene que β = 1.

Demostración. Primero consideramos la aplicación

Ψ : Tn → π1(D \ xn−1;xn)

donde xn−1 := {x1, . . . , xn−1} y que se define geométricamente como sigue. Sea τ ∈ Tn y
considerémoslo representado por un n-movimiento {x1, . . . , xn−1, τn} donde los n − 1 primeros
hilos son rectos. Entonces se define Ψ(τ) = τn. Recíprocamente, dado γ ∈ π1(D \ xn−1;xn), es
fácil ver que Ψ−1(γ) es la trenza definida por el movimiento {x1, . . . , xn−1, γ}. Es decir, Ψ es un
isomorfismo, y se corresponde con proyectar el hilo n-ésimo en Dxn−1 .

Por los resultados anteriores sabemos que la imagen por i1 del camino µ(β)(tn) es homótopo
en Dxn−1 × [0, 1] al lazo

g−1 · i0(tn) · g ∼ g−1 · i0(l−1
n ) · i0(cn) · i0(ln) · g

que a su vez es homótopo a

(g−1 · i0(l−1
n ) · β̃n · i1(ln)) · (i1(l−1

n ) · i1(cn) · i1(ln)) · (g−1 · i0(l−1
n ) · β̃n · i1(ln))−1

donde β̃n es paralelo a βn en el cilindro de radio horizontal r de ánima βn. Obtenemos que el
lazo

g−1 · i0(l−1
n ) · β̃n · i1(ln)

es homótopo al lazo imagen por i1 de

l−1
n · γ̃ · ln =: γ̂,

donde γ̃ es un lazo en D\x basado en xn y ligeramente trasladado de Ψ(β). Con esta construcción
hemos obtenido que tn = µ(β)(tn) = γ̂ · tn · γ̂−1, es decir, γ̂ conmuta con tn.

Por último, tenemos una aplicación

ψ : π1(D \ x;P ) → π1(D \ xn−1;xn)

que consiste en la inclusión y conjugar con ln. Entonces Ψ(β) = ψ(γ̂) por construcción y γ̂ es
una potencia de tn, por lo que γ̂ ∈ kerψ. Por lo tanto, Ψ(β) = 1 y como Ψ es un isomorfismo,
se deduce que β = 1.
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Teorema 3.2.17. El antihomomorfismo de grupos µ de la Proposición 3.2.9 es inyectivo.
Demostración. Haremos la demostración por inducción sobre el número de hilos n. Para n = 1
tenemos que B1 = {1} por lo que µ es trivialmente la identidad. Suponemos cierto el resultado
para n− 1.

Sea β ∈ kerµ, es claro que β ∈ Sn ⊂ Pn. Consideremos la trenza obtenida al eliminar el hilo
n de β, es decir τ := Υn(β) ∈ Bn−1. Claramente τ ∈ kerµ y τ ∈ Bn−1, así que por inducción
τ = 1.

Ahora es fácil ver que β ∈ Tn. Sea {x1, . . . , xn−1} un representante con hilos rectos de τ
y {β1, . . . , βn−1, βn} un representante de β. Aquí {β1, . . . , βn−1} es otro representante de τ ,
por tanto existe una s-isotopía desde {β1, . . . , βn−1} hasta {x1, . . . , xn−1}. Por el Teorema 3.1.1
podemos extender la s-isotopía a una ∂-isotopía F . Aplicada a β obtenemos una s-isotopía desde
{β1, . . . , βn−1, βn} hasta {x1, . . . , xn−1, Ft,1(βn(t))}. Por lo tanto, β admite un representante con
los n− 1 primeros hilos rectos, así que β ∈ Tn. Por el Lema 3.2.16 obtenemos que β = 1 y por
lo tanto µ es inyectiva.

Notación. . Sea An := {φ ∈ Aut(Fn) | φ(ti) = Q−1
i tiσQi, φ(t1 . . . tn) = t1 . . . tn}. Por la

Proposición 3.2.10, sabemos que µ(Bn) ⊂ An. Por tanto, a partir de ahora consideraremos µ
como un antimonomorfismo Bn → An.
Teorema 3.2.18. La aplicación µ es un anti-isomorfismo.
Demostración. La inyectividad ya se ha visto. Falta la sobreyectividad. Para empezar dado
φ ∈ An escribiremos φ(ti) = Q−1

i tiσQi, donde cada Qi es una palabra reducida y se cumple

φ(t1) · . . . · φ(tn) = φ(t1 · . . . · tn) = t1 · . . . · tn. (3.4)

Fijada una base de Fn tenemos el concepto de longitud de un elemento. La longitud de φ es
la suma de las longitudes de los Qi. El resultado se demuestra por inducción sobre la longitud
de φ.

Si la longitud de φ es 0, entonces φ(ti) = ti para todo i y el automorfismo φ es la imagen de
la trenza trivial.

Suponemos entonces que para todo φ ∈ An con longitud m < k existe una trenza β ∈ Bn
tal que φ = µ(β). Supongamos entonces que φ es de longitud k > 0. En este supuesto, para que
se cumpla (3.4) deben tener lugar si algunas cancelaciones en el producto de los φ(ti). Como
son reducidos, estas cancelaciones deben tener lugar entre factores adyacentes. φ(ti), φ(ti+1). Se
pueden dar dos casos:

1) Los términos intermedios tiσ no se ven afectados en ninguna cancelación entre factores
adyacentes. Sea Ri la palabra que sobrevive de cada φ(ti); necesariamente Ri no es el
elemento neutro. Por construcción R1 · . . . · Rn es reducida e igual a t1 · . . . · tn. La única
opción es Ri = ti por lo que este caso no es posible al ser k > 0.

2) Existen dos términos adyacentes φ(ti), φ(ti+1) tales que en una cancelación entre sus tér-
minos se cancela tiσ ó t(i+1)σ .

a) Supongamos primero que se cancela tiσ con términos de Q−1
i+1. Es decir existe una

palabra reducida R tal que Qi+1 = RtiσQi. Operamos:

φ(ti) ·φ(ti+1) = Q−1
i ��tiσ��

��QiQ
−1
i �

�t−1
iσ R

−1ti+1σRtiσQi=((RQi)−1ti+1σ (RQi))︸ ︷︷ ︸
Ti

(Q−1
i tiσQi)︸ ︷︷ ︸
Ti+1

.

Como Ti+1 = φ(ti), tenemos que φ(ti+1) = Ti+1 · Ti · T−1
i+1. Si denotamos Tj = φ(tj),

si j ̸= i, i+ 1, entonces T1, . . . , Tn es una base del grupo libre y

Fn Fn
ti Ti

ψ
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es un elemento de An; como la longitud de RQi es menor que la de Qi+1, la longitud
de Ψ es menor que k y existe τ ∈ Bn tal que µ(τ) = ψ. Sea j ̸= i, i+ 1:

µ(σ−1
i · τ)(tj) = (µ(τ) ◦ µ(σi)−1)(tj) = ψ(tj) = Tj = φ(tj).

Además

µ(σ−1
i · τ)(ti) = (µ(τ) ◦ µ(σi)−1)(ti) = ψ(ti+1) = Ti+1 = φ(ti).

µ(σ−1
i · τ)(ti+1) = (µ(τ) ◦µ(σi)−1)(ti+1) = ψ(t−1

i+1 · ti · ti+1) = Ti+1 ·Ti ·T−1
i+1 = φ(ti+1).

Es decir, µ(σ−1
i · τ) = φ y φ está en la imagen de µ.

b) Se cancela t(i+1)σ con términos de Qi. Es decir existe una palabra reducida R tal que
Qi = Rt−1

(i+1)σQi+1. Operamos:

φ(ti) · φ(ti+1) = Q−1
i+1ti+1σR−1tiσR�����(ti+1σ )−1

�����
Qi+1Q

−1
i+1���ti+1σQi+1

= (Q−1
i+1ti+1σQi+1)︸ ︷︷ ︸

Ti

((RQi+1)−1tiσ (RQi+1))︸ ︷︷ ︸
Ti+1

.

Como Ti = φ(ti+1), tenemos que φ(ti) = Ti · Ti+1 · T−1
i . Si denotamos Tj = φ(tj), si

j ̸= i, i+ 1, entonces T1, . . . , Tn es una base del grupo libre y

Fn Fn
ti Ti

ψ

es un elemento de An; como la longitud de RQi+1 es menor que la de Qi, la longitud
de Ψ es menor que k y existe τ ∈ Bn tal que µ(τ) = ψ. Sea j ̸= i, i+ 1:

µ(σi · τ)(tj) = (µ(τ) ◦ µ(σi))(tj) = ψ(tj) = Tj = φ(tj).

Además

µ(σi · τ)(ti) = (µ(τ) ◦ µ(σi))(ti) = ψ(titi+1t
−1
i ) = TiTi+1T

−1
i = φ(ti).

µ(σi · τ)(ti+1) = (µ(τ) ◦ µ(σi))(ti+1) = ψ(ti) = Ti = φ(ti+1).

Es decir, µ(σi · τ) = φ y φ está en la imagen de µ.

Observación 3.2.19. El Teorema 3.2.18 proporciona una demostración alternativa de las relacio-
nes σiσj = σjσi si |i − j| > 1 y σiσi+1σi = σi+1σiσi+1. Basta verificar que los automorfismos
inducidos por los generadores de Artin cumplen estas relaciones. También permite, por induc-
ción, encontrar la escritura de una trenza en función de los generadores.
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Capítulo 4

Presentación del grupo de trenzas

Como comentamos en el resumen, Artin dio una presentación del grupo de trenzas en Theorie
der Zöpfe [1] con una demostración geométrica. Sin embargo en Theory of Braids [2] se menciona
que es posible dar una demostración alternativa utilizando las herramientas desarrolladas en ese
artículo, que son las que hemos adaptado en este trabajo. Eso es lo que haremos en esta sección:
describiremos el grupo de trenzas como un grupo finitamente presentado y lo demostraremos
desde una perspectiva algebraica.

Definición 4.0.1. El grupo de trenzas algebraico es el grupo finitamente presentado

B̃n := ⟨σ̃1, . . . , σ̃n−1 | [σ̃i, σ̃j ] = 1 si j − i > 1, σ̃iσ̃i+1σ̃i = σ̃i+1σ̃iσ̃i+1⟩ .

Proposición 4.0.2. Existe un epimorfismo natural

B̃n Bn
σ̃i σi

Fn

Además existe un epimorfismo S̃ : B̃n → Σn tal que S̃ = S ◦ Fn, donde S : Bn → Σn es el
epimorfismo dado por la permutación de los hilos.

Demostración. La primera parte es inmediata por la Proposición 1.1.6. El homomorfismo S̃ está
bien definido y es un epimorfismo por composición.

Notación. Al igual que en Bn, escribiremos P̃n := ker S̃ y S̃n := S̃−1(Gn) = F−1
n (Sn), que es

un subgrupo de índice n, donde Gn es el estabilizador de la cifra n en el grupo simétrico.

Lema 4.1. Las trenzas σ1, . . . , σn−2, σ
2
n−1 engendran el subgrupo Sn.

Demostración. Para empezar, tenemos que nS(τ) = n para todo τ ∈ {σ1, . . . , σn−2, σ
2
n−1}, así

que estas trenzas viven en Sn. A partir de aquí hacemos la demostración por inducción sobre n.

1) Para n = 1, el grupo Sn es trivial.

2) Para n = 2, tenemos que B2 = ⟨σ1⟩ y por otra parte σ2
1 ∈ S2 pero σ1 /∈ S2, así que

S2 = ⟨σ2
1⟩.

Supongamos que el resultado es cierto para todo m < n. Hacemos ahora otra inducción sobre
la longitud de τ ∈ Sn.

1) Si l(τ) = 0, el caso es trivial.

2) Si l(τ) = 1, entonces necesariamente τ = σi con i ̸= n − 1 ya que σn−1 /∈ Sn, así que el
resultado es cierto.
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Supongamos que toda trenza τ ∈ Sn con longitud menor que k1 se expresa como producto de
las trenzas σ1, . . . , σn−2, σ

2
n−1.

Hacemos una tercera inducción sobre #σ±1
n−1(τ), que definimos como el número de elementos

σ±1
n−1 en la palabra reducida τ ∈ Sn.

1) Si #σ±1
n−1(τ) = 0, entonces τ es producto de σ1, . . . , σn−2.

2) Si #σ±1
n−1(τ) = 1, entonces por inducción sobre la longitud de τ podemos suponer que

τ = σ±1
n−1, quitando otros elementos σi si la palabra τ empieza por ellos, pero σ±1

n−1 /∈ Sn y
este caso es una contradicción.

3) Si #σ±1
i (τ) = 2, con el mismo razonamiento del caso anterior podemos suponer que τ =

σ±1
n−1ασ

±1
n−1 donde α es una palabra en la que no aparece el elemento σn−1, así que α ∈ Bn−1.

Es inmediato comprobar que α ∈ Sn−1. Por inducción, α es producto de σ1, . . . , σn−3, σ
2
n−2.

Dado que la conjugación por un elemento es un isomorfismo de grupos, tenemos que
σ1
n−1ασ

−1
n−1 es producto de:

σn−1σ1σ
−1
n−1, . . . , σn−1σn−3σ

−1
n−1, σn−1σ

2
n−2σ

−1
n−1

Y por las relaciones es producto de σ1, . . . , σn−3, σn−2σ
2
n−1σn−2. El caso σ1

n−1ασ
−1
n−1 se

deriva del anterior multiplicando a derecha por σ−2
n−1 y los demás se obtienen considerando

τ−1. Así que se cumple el enunciado.

Con esto, suponemos que el enunciado es cierto para toda trenza τ ∈ Sn con longitud menor
que k1 o tal que #σ±1

i (τ) < k2.
Sea τ ∈ Sn con longitud k1 y #σ±1

i (τ) = k2. Como n > 2 y por inducción sobre la longitud
de τ podemos suponer que τ es de la forma σ±1

n−1ασ
±1
n−1βσ

±1
n−1, donde α es una palabra en la que

no aparecen σ±1
n−1. También asumimos que α y β son no triviales, en caso contrario el resultado

es inmediato.
Sea j := nS(σ±1

n−1ασ
±1
n−1).

1) Si j = n entonces σ±1
n−1ασ

±1
n−1 ∈ Sn y βσ±1

n−1 ∈ Sn y sus longitudes son menores que k1, por
lo tanto se expresan como producto de las trenzas del enunciado.

2) Si j < n consideramos las siguientes trenzas:

τ1 := σ±1
n−1ασ

±1
n−1σ

±1
j . . . σ±1

n−1, τ2 := σ∓1
n−1σ

∓1
j . . . σ∓1

n−1βσ
±1
n−1.

Es claro que τ = τ1τ2 y que ambas están en Sn. Operando en τ1 tenemos que:

τ1 = σ±1
n−1ασ

±1
j . . . σ±1

n−1σ
±1
n−2σ

±1
n−2,

En esta nueva escritura #σ±1
n−1(τ1) = 2 y ya hemos probado este caso. Por otra parte,

#σ±1
n−1(τ2) = k2 − 1 y el resultado se sigue por inducción.

Observación 4.2. En la demostración anterior solo hemos utilizado las relaciones [σi, σj ] =
1 si j − i > 1 y σiσi+1σi = σi+1σiσi+1. Estas relaciones también se cumplen en B̃n por lo
que el resultado similar se cumple también para S̃n.

Proposición 4.3. Sea Υn : Sn → Bn−1 el epimorfismo definido por olvidar el último hilo y
Tn = ker Υn el subgrupo formado por las trenzas que admiten un representante con los n − 1
primeros hilos rectos. Entonces Tn es un grupo libre con n− 1 generadores yi de la forma

ηi = (σn−2 · . . . · σi)−1 · σ2
n−1 · (σn−2 · . . . · σi)
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Demostración. Recordemos de la demostración del Lema 3.2.16 que existe un isomorfismo

ψ : Tn π1(Dxn−1 ;xn)
τ τn

definido por proyectar el hilo n-ésimo. Tomamos una base y1, . . . , yn−1 de π1(Dxn−1 ;xn) de
manera que yi sean lazos basados en xn y rodeando solamente el punto xi. Las antiimagenes de
estos lazos serán un conjunto generador de Tn.

· · ·

1 n − 2 n − 1 n

x1 xn−2 xn−1 xn

· · ·
ψ

σ2
n−1

yn−1

Figura 4.1: Proyección por ψ

Es claro que la preimagen del generador yn−1 es la trenza σ2
n−1. También es fácil ver que la

preimagen de los generadores yi son las siguientes trenzas:

ηi := (σn−1 · . . . · σi+1) · σ2
i · (σn−1 · . . . · σi+1)−1.

Veamos que ηi = (σn−2 · . . . ·σi)−1 ·σ2
n−1 · (σn−2 · . . . ·σi). Lo hacemos por inducción descendente

sobre i. Si i = n− 1 entonces sabemos que

σn−1σ
2
n−2σ

−1
n−1 = σn−2σ

2
n−1σn−2

y el resultado se cumple. Suponemos cierto el resultado para i ≥ m+ 1. Entonces por hipótesis
de inducción

σ−1
m (σn−2 · · ·σm+1)−1σ2

n−1(σn−2 · · ·σm+1)σm = σ−1
m (σn−1 · · ·σm+2)σ2

m+1(σn−1 · · ·σm+2)−1σm

Utilizando que σm conmuta con σj si j > m+ 1 obtenemos:

σ−1
m (σn−1 · · ·σm+2)σ2

m+1(σn−1 · · ·σm+2)−1σm = (σn−1 · · ·σm+2)σ−1
m σ2

m+1σm(σn−1 · · ·σm+2)−1

Y usando que σ−1
m σ2

m+1σm = σm+1σ
2
mσ

−1
m+1 tenemos:

σ−1
m (σn−1 · · ·σm+2)σ2

m+1(σn−1 · · ·σm+2)−1σm = (σn−1 · · ·σm+2)σm+1σ
2
mσ

−1
m+1(σn−1 · · ·σm+2)−1

lo que finaliza la demostración.

Lema 4.4. Sean η̃i = (σ̃n−1 . . . σ̃i+1)σ̃2
i (σ̃n−1 . . . σ̃i+1)−1. Entonces

β̃ := η̃1 . . . η̃n−1 = σ̃n−1 . . . σ̃2σ̃
2
1σ̃2 . . . σ̃n−1.

Además, β̃ conmuta con σ̃i si i < n− 1.

Demostración. Primero vamos a probar que β̃ es de la forma deseada, por inducción sobre n.

Para n = 1, el grupo B̃1 es trivial.
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Para n = 2, tenemos que β̃ = η̃1 = σ̃2
1 y se cumple el enunciado.

Para n = 3, tenemos que β̃ = η̃1η̃2 = σ̃2σ̃
2
1σ̃

−1
2 σ̃2

2 = σ̃2σ̃
2
1σ̃2 y también se cumple.

Supongamos que β̃ es de la forma del enunciado para todo m ≤ n−1. Denotaremos por η̃∗
i ∈ Bn−1

las palabras (σ̃n−2 . . . σ̃i+1)σ̃2
i (σ̃n−2 . . . σ̃i+1)−1. Se tiene que η̃i = σ̃n−1η̃

∗
i σ̃

−1
n−1. Obtenemos lo

siguiente:

β̃ = η̃1 . . . η̃n−1 = σ̃n−1η̃
∗
1σ̃

−1
n−1 . . . σ̃n−1η̃

∗
n−2σ̃

−1
n−1η̃n−1 = σ̃n−1η̃

∗
1 . . . η̃

∗
n−2σ̃

−1
n−1η̃n−1.

Por hipótesis de inducción obtenemos que

β̃ = σ̃n−1σ̃n−2 . . . σ̃2σ̃
2
1σ̃2 . . . σ̃n−2σ̃

−1
n−1η̃n−1.

Y como η̃n−1 = σ̃n−1, tenemos:

β̃ = σ̃n−1 . . . σ̃2σ̃
2
1σ̃2 . . . σ̃n−1.

Que es lo que queríamos. Veamos ahora que β̃ conmuta con σ̃i. Sea i < n− 1,

σ̃iβ̃σ̃
−1
i = (σ̃n−1 . . . σ̃i+2)σ̃iσ̃i+1σ̃i . . . σ̃2σ̃

2
1σ̃2 . . . σ̃iσ̃i+1σ̃

−1
i (σ̃i+2 . . . σ̃n−1)−1.

Aplicando las relaciones entre los generadores obtenemos:

σ̃iβ̃σ̃
−1
i = (σ̃n−1 . . . σ̃i+2)σ̃i+1σ̃i���σ̃i+1σ̃i−1 . . . σ̃

2
1 . . . σ̃i−1�

��σ̃−1
i+1σ̃iσ̃i+1(σ̃i+2 . . . σ̃n−1) = β̃,

donde los elementos σ̃i+1 y σ̃−1
i+1 se cancelan porque conmutan con todos los elementos interme-

dios.

Teorema 4.5. El epimorfismo de grupos Fn : B̃n → Bn es un isomorfismo.

Demostración. Haremos la demostración por inducción sobre n. Para n = 1 es trivial ya que
ambos grupos son triviales. Suponemos el resultado cierto para todo k ≤ n − 1. Consideremos
el siguiente diagrama:

Tn Sn Bn−1

T̃n S̃n B̃n−1

Υn

Fn

Υ̃n

Fn Fn−1

Donde se define el epimorfismo Υ̃n : S̃n → B̃n−1 como Υ̃n := F−1
n−1 ◦ Υn ◦ Fn. Esta función

está bien definida ya que por hipótesis de inducción Fn−1 es un isomorfismo. Se define también
T̃n := ker Υ̃n. Primero vamos a demostrar que el grupo T̃n está engendrado por:

η̃i = (σ̃n−2 · . . . · σ̃i)−1 · σ̃2
n−1 · (σ̃n−2 · . . . · σ̃i).

Lo haremos en dos partes. Primero veremos que T̃n es el menor subgrupo normal de S̃n
engendrado por σ̃2

n−1. Una vez probado esto, bastará ver que τ̃ ϵη̃iτ̃−ϵ se puede escribir como
producto de los elementos η̃i, para todo τ̃ ∈ {σ̃1, . . . , σ̃n−2, σ̃

2
n−1} y para todo i = 1, . . . , n − 1,

con ϵ = ±1.
Vamos con la primera parte. Consideremos la aplicación:

B̃n−1 Bn
σ̃i σ̃i

Está bien definida porque respeta las relaciones; además, es claro que la imagen está en S̃n.
Como la composición con Υ̃n es la identidad, entonces es inyectiva. Sea Kn el menor subgrupo
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normal engendrado por σ̃2
n−1 y sea Hn el cociente de S̃n por Kn. Consideramos por una parte la

aplicación inducida B̃n−1 → Hn. Por otra parte, Kn ⊂ ker Υ̃n ya que Υ̃n(σ̃2
n−1) es el elemento

neutro, así que tenemos una aplicación inducida por Υ̃n, Hn → B̃n−1. Como la composición de
estas dos aplicaciones es la identidad, esta segunda aplicación es inyectiva, es decir, T̃n = Kn,
que es lo que queríamos ver.

Vamos con la segunda parte. Empezamos con la conjugación por σ̃2
n−1. Como σ̃2

n−1 = η̃n−1,
es inmediato que cualquier palabra σ̃±2

n−1η̃iσ̃
±2
n−1 se puede escribir como producto de elementos

η̃i.
Para σ̃j con j < n − 1 lo probamos para la conjugación σ̃−1

j η̃iσ̃j . El caso σ̃j η̃iσ̃
−1
j será

inmediato una vez probado este.

1) σ̃−1
j η̃iσ̃j = η̃i si j < i− 1.

Ya que η̃i es una palabra en la que solo aparecen generadores σ̃k con k > j + 1.

2) σ̃−1
i−1η̃iσ̃i−1 = η̃i−1 si j = i− 1.

σ̃−1
i−1η̃iσ̃i−1 = (σ̃n−1 . . . σ̃i+1)σ̃−1

i−1σ̃
2
i σ̃i−1(σ̃n−1 . . . σ̃i+1)−1

= (σ̃n−1 . . . σ̃i+1)σ̃iσ̃2
i−1σ̃

−1
i (σ̃n−1 . . . σ̃i+1)−1 = η̃i−1

3) σ̃−1
j η̃iσ̃j = η̃i si j > i.

σ̃j η̃iσ̃j = (σ̃n−1 . . . σ̃j+2)σ̃−1
j σ̃j+1σ̃j . . . σ̃i+1σ̃

2
i σ̃

−1
i+1 . . . σ̃

−1
j−1σ̃

−1
j+1σ̃j(σ̃n−1 . . . σ̃j+2)−1 =

(σ̃n−1 . . . σ̃j+2)σ̃j+1σ̃j�
��σ̃−1
j+1σ̃j−1 . . . σ̃i+1σ̃

2
i σ̃

−1
i+1 . . . σ̃

−1
j−1���σ̃j+1σ̃

−1
j σ̃−1

j+1(σ̃n−1 . . . σ̃j+2)−1 = η̃i,

donde los elementos σ̃j+1 y σ̃−1
j+1 se cancelan porque conmutan con todos los elementos

intermedios.

4) Para σ̃−1
i η̃iσ̃i = η̃−i+2

i η̃1 . . . η̃n−1η̃
−n+i+1
i , utilizamos los casos anteriores y el hecho de que

β̃ = η̃1 . . . η̃n conmuta con σ̃i si i < n− 1, demostrado en el Lema 4.4:

σ̃−1
i η̃1σ̃i . . . σ̃

−1
i η̃iσ̃i . . . σ̃

−1
i η̃n−2σ̃iσ̃

−1
i η̃n−1σ̃i = σ̃−1

i β̃σ̃i = β̃.

Despejamos con lo que ya hemos demostrado y obtenemos:

η̃i . . . η̃i︸ ︷︷ ︸
i−2

η̃i−1σ̃
−1
i η̃iσ̃i η̃i . . . η̃i︸ ︷︷ ︸

n−i−1

= η̃1 . . . η̃n−1

⇒ σ̃−1
i η̃iσ̃i = η̃−i+2

i η̃1 . . . η̃n−1η̃
−n+i+1
i .

Con esto terminamos los casos σ̃−1
j η̃iσ̃j . Para la conjugación σ̃j η̃iσ̃

−1
j basta despejar η̃i a la

izquierda de las igualdades ya demostradas en los casos j ̸= i y después utilizar la conmutación
con β̃ para obtener el caso j = i.

Sea ahora τ̃ ∈ T̃n tal que Fn(τ̃) = 1. Acabamos de demostrar que τ̃ es producto de η̃i,
pero las relaciones que cumplen los elementos ηi ∈ Tn son triviales porque Tn es libre. Así que
necesariamente τ̃ = 1 y el epimorfismo T̃n → Tn es un isomorfismo.

De la misma manera si tomamos τ̃ ∈ S̃n tal que Fn(τ̃) = 1 se tiene que τ̃ ∈ T̃n y como
acabamos de ver τ̃ = 1. Es decir, la aplicación S̃n → Sn es un isomorfismo. Por último vamos a
considerar el siguiente diagrama:

Sn Bn

S̃n B̃n

Fn

Sea τ̃ ∈ kerFn, entonces Fn(τ̃) = 1 ∈ Sn y como la flecha de la izquierda es un isomorfismo
τ̃ = 1. Por tanto la aplicación Fn : B̃n → Bn es un isomorfismo. Es decir,

Bn := ⟨σ1, . . . , σn−1 | [σi, σj ] = 1, j − i > 1, σiσi+1σi = σi+1σiσi+1⟩ .
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Apéndice A

Algunas demostraciones

Demostración de la Proposición 1.2.2. Sea α = arg(φ(1)). Definimos una isotopía H : S1 ×
[0, 1] → S1 por

H(z, t) := e−itαφ(z).

Veamos que H es una isotopía entre φ y un homeomorfismo que fija el punto 1. Para t = 0,
tenemos

H(z, 0) = e0φ(z) = φ(z).

Por lo tanto, H(z, 0) = φ(z). Para t = 1, obtenemos

H(z, 1) = e−iαφ(z) = φ(1)−1φ(z).

En particular, para z = 1, se cumple que

H(1, 1) = φ(1)−1φ(1) = 1.

Esto muestra que H(z, 1) es un homeomorfismo que fija el punto 1.
Por último, para cada t ∈ [0, 1], la función z 7→ e−itαφ(z) es un homeomorfismo de S1 en S1,

ya que es la composición de una rotación y un homeomorfismo.

Demostración de la Proposición 1.2.3. Definimos la función e : [0, 1] → S1 como e(z) = e2πiz.
Entonces e|(0,1) es un homeomorfismo de (0, 1) en S1 \ {1}.

Sea φ : S1 → S1 un homeomorfismo, por la Proposición 1.2.2, podemos suponer que φ(1) = 1.
Definimos

(0, 1) S1 S1 (0, 1).e

H

φ e−1

Por composición H es un homeomorfismo. Por lo tanto debe ser estrictamente creciente o es-
trictamente decreciente.

Comencemos primero con el caso creciente. En ese caso, H se extiende a un homeomorfismo
H ′ : [0, 1] → [0, 1] tal que H ′(0) = 0, H ′(1) = 1. Tenemos e ◦H ′ = φ ◦ e.

Definimos
ϕ : [0, 1] × [0, 1] → [0, 1], ϕ(s, t) = (1 − t)H ′(s) + ts.

Esto es una homotopía relativa a {0, 1} desde H ′ hasta la identidad. Veamos que es una isotopía.
Claramente, cada ϕt = ϕ(s, t) es sobreyectiva (por el teorema del valor medio). Dado que H ′ es
estrictamente creciente, para s1 > s2 obtenemos

ϕt(s1) = (1 − t)H ′(s1) + ts1 > (1 − t)H ′(s2) + ts2 = ϕt(s2),

lo que significa que ϕt es estrictamente creciente, por lo tanto, inyectiva.
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Así que ϕt es una biyección continua entre espacios Hausdorff compactos, por lo tanto, un
homeomorfismo. Además ϕ induce una homotopía ψ : S1 × [0, 1] → S1 tal que ψ(e(s), t) =
e(ϕ(s, t)). Esta homotopía ψ viene dada por

ψ(s, t) = e ◦ ϕt ◦ e|−1
(0,1)(s) si s ̸= 1, ψ(1, t) = 1

Como antes ψ es continua y ψt es biyectiva, por tanto ψt son homeomorfismos. Así que ψ es una
isotopía entre φ y la identidad.

El caso decreciente es similar. En ese caso, H se extiende a un homeomorfismo H ′ : [0, 1] →
[0, 1] tal que H ′(0) = 1, H ′(1) = 0. Se define

ϕ : [0, 1] × [0, 1] → [0, 1], ϕ(s, t) = (1 − t)H ′(s) + t(1 − s)

Es una isotopía desde H ′ hasta 1 e induce una isotopía ψ : S1 × [0, 1] → S1 de φ en z 7→ z:

ψ(z, t) = e ◦ ϕt ◦ e|−1
(0,1)(z) si z ̸= 1, ψ(1, t) = 1

Lo vemos para z ∈ S1 \ {1} :

ψ(z, 1) = e ◦ (z 7→ 1 − z) ◦ e−1(z) = e ◦ (1 − e−1(z)) = e2πi(1−e−1(z)) = e−2πi(e−1(z)) = z.

Demostración del Lema 1.2.8. Dado que φ± son isótopos a la identidad, existen dos isotopías
H± : S1 × [0, 1] → S1 tales que H±(x, 0) = φ±(x) y H±(x, 1) = 1S1(x). Basta concatenar estas
isotopías para obtener el homeomorfismo deseado. Definimos Φ : S1 × [−1, 1] → S1 × [−1, 1] por
Φ(x, t) = (Φt(x), t), donde:

Φt(x) =
{
H−(x, 1 + t) si t ∈ [−1, 0]
H+(x, 1 − t) si t ∈ [0, 1]

Es fácil ver que las funciones Φt : S1 → S1 y Φ : S1 × [−1, 1] → S1 × [−1, 1] son homeomorfismos
y cumplen las propiedades requeridas.

Demostración del Lema 1.2.9. Definimos el homeomorfismo

C S1 × [−1, 1]

z
(
z

|z| , 2|z| − 3
)f

Definimos también las funciones h− y h+ como:

h− := f |∂D1 ◦ φ1 ◦ (f |∂D1)−1 : S1 × {−1} → S1 × {−1},
h+ := f |∂D2 ◦ φ2 ◦ (f |∂D2)−1 : S1 × {1} → S1 × {1}.

Tenemos que f |∂D1(z) = (z,−1) y f |∂D2(z) =
(
z
2 , 1

)
. Es fácil ver que estos homeomorfismos son

isótopos a la identidad, así que por composición, h+ y h− también lo son. Por el Lema 1.2.8,
existe un homeomorfismo Φ : S1 × [−1, 1] → S1 × [−1, 1] tal que Φ(x, t) = (Φt(x), t) con Φ1 = h+
y Φ−1 = h−. Definimos ψ := f−1 ◦ Φ ◦ f : C → C. Es un homeomorfismo por ser composición
de homeomorfismos. Finalmente,

ψ|∂D2 = f−1 ◦ Φ ◦ f |∂D2 = f |−1
∂D2

◦ f |∂D2 ◦ φ2 ◦ (f |∂D2)−1 ◦ f |∂D2 = φ2.

De la misma manera se prueba que ψ|∂D1 = φ1.
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Demostración del Lema 1.2.11. Sean A1, A2 ⊂ C conjuntos homeomorfos a una corona C por
los homeomorfismos fi : C → Ai. Denotamos por S1

± a las fronteras interior y exterior de C.
Podemos suponer que fi(S1

±) = Ai± y que las funciones fi|S1
±

son isótopas a la identidad. Si
no es así, en el primer caso redefinimos los fi componiendo con una reflexión adecuada. En el
segundo caso, por el Lema 1.2.3, basta componer con la conjugación compleja. Las funciones:

f−1
2 ◦ φ± ◦ f1|S1

±
: S1

± → S1
±

son homeomorfismos por composición, y también por composición inducen el isomorfismo 1Z.
Por la Proposición 1.2.4, son isótopas a la identidad.

Aplicando el Lema 1.2.9, existe un homeomorfismo ψ : C → C que cumple

ψ|S1
±

= f−1
2 ◦ φ± ◦ f1|S1

±

Definimos:
Φ := f2 ◦ ψ ◦ f1

Entonces, se tiene que:

Φ|Ai±
= f2 ◦ ψ ◦ f1|Ai±

= f2 ◦ ψ|S1
±

◦ f1|Ai±
= f2 ◦ f−1

2 ◦ φ± ◦ f1|S1
±

◦ f−1
1 |Ai±

= φ±

Por tanto Φ cumple la condición del enunciado.
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