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Resumen

La gestión de residuos urbanos es un campo crucial para la sostenibilidad medioambiental, que persi-
gue minimizar la generación de desechos y maximizar su reutilización y reciclaje. Las primeras decisio-
nes al diseñar un sistema de gestión de residuos se refieren a la planificación estratégica de ubicación de
instalaciones, como vertederos y centros de reciclaje, y determinación de sus capacidades, que faciliten
la gestión eficaz de los residuos en su recogida y tratamiento, y se reduzca el impacto medioambiental.
Este trabajo fin de grado (TFG) se centra en la aplicación de modelos de optimización binivel cuando en
la gestión de los residuos intervienen varios agentes en la toma de decisiones, situados en una estructura
jerárquica de decisión.

En el primer capítulo, se presentan las características de los sistemas de residuos sólidos urbanos
que van a considerarse en el TFG, y su relevancia actual para alcanzar las metas establecidas por los
Objetivos de Desarrollo Sostenible. En relación con los modelos matemáticos utilizados, se presentan los
modelos de optimización binivel así como las dificultades que surgen en la definición de las soluciones
factibles del problema y la existencia de cierto tipo de restricciones. El capítulo finaliza describiendo una
aproximación habitual en la resolución de los modelos binivel y las principales contribuciones de este
TFG.

En el segundo capítulo, se introducen tres modelos de optimización binivel que abordan el problema
de ubicación de instalaciones para la gestión de residuos. En el nivel superior de decisión, una autoridad
decide qué instalaciones se abren y con qué capacidad, para minimizar el coste total de apertura. En el
primer modelo, en el nivel inferior, una empresa determina, una vez conoce las instalaciones abiertas y su
capacidad, cómo asigna los clientes a cada una de las instalaciones, atendiendo al beneficio que le reporta.
En el segundo modelo, la autoridad determina la apertura de las instalaciones y asigna una capacidad en
cada instalación para cada cliente. Cada cliente tiene un rol activo y éstos deciden a qué única instalación
se van a dirigir para tratar los residuos, atendiendo a su beneficio. Este modelo se extiende flexibilizando
que cada cliente pueda llevar los residuos a más de una instalación. El tercer modelo es una extensión
del segundo al considerar varios tipos de residuos. En el TFG, se considera una formulación alternativa
del primer modelo, que se denota por BFLP-E, y se demuestra su reformulación como un problema de
un solo nivel que puede ser resuelto por un software de optimización.

Finalmente, en el tercer capítulo, se realiza una experiencia computacional con el modelo BFLP-
E. En primer lugar, un ejemplo contribuye a ilustrar las características especiales de los modelos de
optimización binivel. En particular, permite visualizar cómo las decisiones tomadas por el nivel superior
afectan al nivel inferior, y viceversa. Esto muestra la necesidad de abordar los problemas de decisión
con una estructura jerárquica a partir de los modelos binivel. En la segunda parte del capítulo, se han
generado aleatoriamente, dos ejemplos de mayor tamaño y varios escenarios para analizar la influencia,
en las soluciones del modelo, de dos parámetros del problema: los precios del servicio y la proporción
mínima de demanda a satisfacer a los clientes. Esta experiencia computacional se ha programado en
Python utilizando el software de optimización Gurobi.
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Abstract

Urban waste management is crucial for environmental sustainability, aiming to minimize waste ge-
neration and maximize reuse and recycling. The first steps in designing a waste management system in-
clude strategically planning the location of facilities like landfills and recycling centers, and determining
their capacities to ensure efficient waste collection and treatment, and to reduce environmental impact.
This Final Degree Project focuses on applying bilevel optimization models in waste management, where
multiple agents are involved in decision-making within a hierarchical structure. These models help solve
complex planning and management issues by considering the interactions and potential conflicts between
different decision levels, aiming to find optimal, efficient, and sustainable solutions.

Chapter 1 presents the characteristics of the urban solid waste systems to be considered in this project,
along with their current relevance in achieving the goals set by the Sustainable Development Goals.
Regarding the mathematical models used, bilevel optimization models are introduced, as well as the
difficulties that arise from defining feasible solutions to the problem and the existence of certain types of
constraints. The chapter concludes by describing a common approach to solving bilevel models and the
main contributions of this final degree project.

Chapter 2 introduces three bilevel optimization models addressing the facility location problem for
waste management. In the upper decision level, an authority decides which facilities to open and their
capacities to minimize the total opening cost. In the first model, at the lower level, a company determines,
once the open facilities and their capacities are known, how to assign clients to each facility based on
the generated profit. In the second model, the authority determines the facility openings and assigns a
capacity to each facility for each client. Each client has an active role and decides which single facility to
go to for waste treatment based on their benefit. This model is extended by allowing each client to distri-
bute their waste to more than one facility. The third model is an extension of the second one, considering
multiple types of waste. In this project, an alternative formulation of the first model, denoted as BFLP-E,
is considered, and its reformulation as a single-level problem that can be solved by optimization software
is demonstrated.

Finally, in the third chapter, a computational experiment is conducted with the BFLP-E model. First,
an example helps illustrate the special characteristics of bilevel optimization models. In particular, it
allows visualizing how the upper level decisions affect the lower level, and vice versa. This demonstrates
the need of addressing decision-making problems with a hierarchical structure using bilevel models.
In the second part of the chapter, two larger examples and several scenarios are randomly generated to
analyze the influence of two problem parameters on the model solutions: service prices and the minimum
proportion of demand to be satisfied for clients. This computational experiment is programmed in Python
using the Gurobi optimization software.
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Capítulo 1

Introducción

1.1. Sistemas de gestión de residuos

Hoy en día, el consumo y la gran cantidad de residuos que produce la industria está generando una
grave preocupación mundial. La generación mundial de residuos sólidos urbanos (MSW, del inglés mu-
nicipal solid waste) es catastrófica y se prevé que será de más de 2200 millones de toneladas/año para
2025. La eliminación directa en vertederos (sin ningún tratamiento previo) de los MSW provoca varios
problemas ambientales, como emisiones de gases de efecto invernadero y de compuestos orgánicos vo-
látiles peligrosos, así como olores y contaminación de aguas subterráneas debido a filtraciones. Además,
el 11% del metano mundial se genera debido a la mala gestión de los MSW y se considera la tercera
fuente antropogénica más grande de gases de efecto invernadero. Por todo ello, gestionar los desechos
de manera sostenible, ha de ser el principal objetivo de la sociedad a nivel mundial [10].

La gestión de residuos abarca varios procesos: recolección, transporte, procesado, reciclado, dese-
chado y monitorizado [7]. El objetivo que se persigue es minimizar el impacto de los residuos en la
tierra utilizada y en la población a nivel mundial. Actualmente, los Objetivos de Desarrollo Sostenible
(ODS) constituyen un llamamiento universal a la acción para, entre otros fines, proteger el planeta [11].
La Agenda2030 establece las acciones y metas a alcanzar hasta 2030. En lo que concierne a la gestión
de residuos cabe destacar los dos siguientes:

Objetivo 11: Ciudades y comunidades sostenibles.
Recientemente, la expansión urbana está superando el crecimiento de la población en la mayoría de
las ciudades, con efectos perjudiciales sobre la sostenibilidad. Es por ello que este objetivo busca
ciudades más sostenibles. En concreto, su meta 11.6 hace referencia a la gestión de los desechos
municipales, así como a una reducción del impacto medioambiental que éstos conllevan [11].

Objetivo 12: Producción y consumo responsables.
El consumo poblacional ha aumentado significativamente en los últimos años. Por ello, este objeti-
vo trata de aumentar la eficiencia de recursos, al mismo tiempo que promover una vida sostenible.
En particular, en sus metas 12.4 y 12.5, apela a la necesidad de una reducción en la generación de
los residuos así como a una adecuada gestión de los mismos [11].

En definitiva, la gestión de los MSW es un problema mundial que se debe manejar de manera sos-
tenible. Este Trabajo Fin de Grado (TFG) se va a centrar en la toma de decisiones sobre la ubicación de
instalaciones para el tratamiento de los residuos urbanos tras su recogida y segregación. La Figura 1.1
muestra el esquema de un posible sistema de gestión de residuos urbanos [7]. Los ciudadanos deposi-
tan sus residuos en centros de recogida, y a continuación, una autoridad local transporta los residuos a
instalaciones de clasificación. Una vez clasificados, los restos son enviados a un vertedero o a un incine-
rador, todo ello con el principal objetivo de minimizar el impacto medioambiental. Esta gestión se ha de
realizar de forma que se minimicen los costes de transporte y de apertura de las instalaciones necesarias,
mientras se satisfacen las demandas de la población, en relación al tratamiento de los MSW, y se atiende
a criterios medioambientales.
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2 Capítulo 1. Introducción

Existen distintas maneras de abordar el problema de gestión de los MSW y una de ellas consiste en
modelar el sistema real mediante un problema de optimización matemática. Caramia y Pizzari [7] consi-
deran la gestión de los MSW como un proceso de toma de decisiones jerárquico, en el que el líder o nivel
superior de decisión, toma sus decisiones, y el seguidor o nivel inferior, reacciona a las mismas, tomando
las decisiones que considera según sus propios objetivos. En la Figura 1.1 se observa que las decisiones
sobre la apertura de instalaciones de clasificación y tratamiento son tomadas por el decisor denominado
leader (rectángulos blancos) y las decisiones sobre el transporte, por otro decisor denominado follower
(rectángulos grises). El modelo que va a permitir representar adecuadamente este proceso de toma de
decisiones, es un modelo de optimización binivel. En el siguiente apartado, se introducen los conceptos
fundamentales sobre estos modelos de optimización matemática.

Figura 1.1: Red de gestión de residuos y sus correspondientes áreas de decisión. Fuente: [7]

1.2. Optimización binivel

La optimización binivel (BP, del inglés Bilevel Programming) se propone como una generalización
de la optimización matemática estándar para modelar adecuadamente la toma de decisiones en un sis-
tema jerárquico con dos niveles de decisión. Estos sistemas se caracterizan por la existencia de una
jerarquía organizativa entre ellos, a menudo con objetivos diferentes y conflictivos, y controlando cada
uno, únicamente algunas variables de decisión. Es por ello, que el comportamiento de cada decisor se
ve afectado por las decisiones tomadas en el otro nivel de decisión [9]. El decisor, situado en el nivel
superior y conocido como líder, determina el valor de las variables de decisión que éste controla con el
propósito de optimizar su función objetivo. Además, debe tener en cuenta, la reacción del decisor del
nivel inferior, llamado seguidor. Este decisor, conocida la decisión del líder, resuelve su propio problema
de optimización, cuya función objetivo y restricciones, pueden estar parcialmente determinadas por las
decisiones del líder. Por lo tanto, un problema de BP es un modelo de optimización en el que la región
de factibilidad está implícitamente determinada por otro problema de optimización. Se puede escribir, en
su forma general, de la siguiente manera:

“mı́n
x

” f1(x,y)

sujeto a: g(x,y)≤ 0
x ≥ 0n1

donde, para cada x, y es solución de:
mı́n

y
f2(x,y)

sujeto a: h(x,y)≤ 0
y ≥ 0n2

(1.1)
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donde x ∈ Rn1 son las variables de decisión controladas por el líder; y ∈ Rn2 las variables de decisión
controladas por el seguidor; f1 y f2 son las funciones objetivo del líder y del seguidor, respectivamente;
g(x,y) : Rn1+n2 → Rm1 y h(x,y) : Rn1+n2 → Rm2 determinan el conjunto de restricciones del problema.
En la siguiente subsección se detalla la razón de “mı́n

x
”.

Este TFG se va a centrar en problemas de optimización binivel lineales [3] (LBP, del inglés Linear
Bilevel Programming), en los que en el problema (1.1) todas las funciones y restricciones son lineales.
A continuación se muestra una formulación general para un LBP:

“mı́n
x

” c1x+d1y (1.2a)

sujeto a: A1x+B1y ≤ b1 (1.2b)

x ≥ 0n1 (1.2c)

donde, dado x, y es solución del problema:

mı́n
y

d2y (1.2d)

sujeto a: A2x+B2y ≤ b2 (1.2e)

y ≥ 0n2 (1.2f)

donde para i = 1,2, ci y di son vectores fila de dimensión n1 y n2, respectivamente; bi es un vector de
dimensión mi, Ai es una matriz mi x n1 y Bi es una matriz mi x n2. Las variables de decisión del líder y
del seguidor, x e y, respectivamente, se asumen no negativas.

Ejemplo 1.2.1. Sea el siguiente problema binivel lineal en el que el nivel superior controla la variable z
y las variables x, y son controladas por el nivel inferior:

“mı́n
z

” x− z

sujeto a: z ≤ 3
z ≥ 0
donde, dado z, (x,y) resuelve :

máx
x,y

x+ y

sujeto a: x+ y ≤ 5
x ≥ 0, y ≥ 0

En la Figura 1.2 se puede ver representado el poliedro determinado por todas las restricciones.

1.2.1. Definición de solución factible

La función objetivo del líder (1.2a) consiste en minimizar, así como la función objetivo del seguidor,
(1.2d). Sea R el poliedro definido por las restricciones del problema del nivel superior (1.2b)-(1.2c) y
S el poliedro definido por las restricciones del problema del nivel inferior (1.2e)-(1.2f). El conjunto de
restricciones comunes definen un poliedro T = R∩S.

Sea R1 ⊂ Rn1 , la proyección del poliedro R en Rn1 , entonces dado x ∈ R1, el problema del nivel
inferior viene dado por (1.2d)-(1.2f). Sea S(x) = {y ∈Rn2 : (x,y)∈ S} el conjunto de soluciones factibles
del problema del nivel inferior fijado x, y M(x) el conjunto de soluciones óptimas. En la formulación (1.2)
se indica “mı́n

x
” porque cuando en el problema del nivel inferior tiene solución óptima múltiple, esto es,

el conjunto M(x) contiene más de un punto, no está claro qué solución y ∈ M(x) elegirá el decisor del
nivel inferior.

La región factible del problema de optimización binivel (1.2), denominada región inducida, se define:

IR = {(x,y) : (x,y) ∈ T,y ∈ M(x)}
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En la literatura, se han utilizado principalmente dos aproximaciones para dar respuesta a la existencia
de óptimo múltiple en el nivel inferior para una decisión dada del nivel superior. La más habitual o apro-
ximación optimista consiste en asumir que el nivel superior tiene influencia sobre el nivel inferior para
que éste elija siempre la solución óptima que más le conviene al nivel superior. Así, entre las múltiples
soluciones óptimas del nivel inferior, éste siempre se queda con la que da un mejor valor a la función
objetivo del nivel superior. En este caso, la región inducida se define de la siguiente manera:

IR = {(x,y) : (x,y) ∈ T,y ∈ arg mı́n
y∈M(x)

f1(x,y)}

y en lugar de, “mı́n
x

”, se puede escribir mı́n
x,y

.

Otra aproximación utilizada en la literatura, asume que el nivel inferior siempre escoge la solución
óptima que menos le conviene al nivel superior, es decir, aquella que proporciona un peor valor a su
función objetivo. En este caso, se denomina aproximación pesimista y la región inducida se define:

IR = {(x,y) : (x,y) ∈ T,y ∈ arg máx
y∈M(x)

f1(x,y)}

En este TFG se va a utilizar la aproximación optimista en el tratamiento de los modelos binivel formula-
dos.

Ejemplo 1.2.2. Se considera el LBP del Ejemplo 1.2.1. El objetivo del nivel superior consiste en mini-
mizar f1 = x− z, mientras que el objetivo del nivel inferior consiste en maximizar f2 = x+ y.

Notar que si el nivel superior toma la decisión z = 0, la región de factibilidad del nivel inferior queda
definida por S(0), que corresponde a la región azul de la Figura 1.2. El segmento entre (5,0,0) y (0,5,0)
es el conjunto de soluciones óptimas del problema inferior fijado z= 0, por lo que existe óptimo múltiple,
es decir, el conjunto M(0) tiene más de un elemento. Notemos que, dado un valor z0 ≤ 3, M(z0) coincide
con el segmento que une los puntos (5,0,z0) y (0,5,z0).

En el caso de la aproximación optimista, el seguidor escoge la opción más conveniente para el líder
que desea minimizar x− z. Luego, la solución del problema inferior viene dada por el punto (0,5,z0).
En la Figura 1.2, el punto en naranja es el punto factible binivel calculado con z = 0. Por tanto, la
región inducida coincide con el segmento que une los puntos (0,5,0) y (0,5,3). Atendiendo a la función
objetivo del líder, la solución del problema binivel viene dada por el punto (0,5,3), marcado en rosa en
la Figura 1.2.

Sin embargo, aplicando una aproximación pesimista, el seguidor escoge la opción que menos le
conviene al líder, el punto (5,0,z0), esto es, el punto (5,0,0), marcado en azul en la Figura 1.2 cuando
z = 0. En este caso, la región inducida es el segmento entre los puntos (5,0,0) y (5,0,3), y la solución
al problema binivel es el punto (5,0,3), marcado en verde en la Figura 1.2.

x

y

z

S(0)

x+ y = 5

x = 5

y = 5

(5,0,0)

(0,5,0)

(5,0,3)

(0,5,3)

Figura 1.2: Ejemplo ilustrativo de un problema LBP con óptimos múltiples en el nivel inferior.
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1.2.2. Restricciones en el nivel superior que incluyen variables del nivel inferior

Cuando las restricciones del nivel superior (1.2b) contienen variables del nivel inferior, se denominan
restricciones coupling y pueden provocar que el problema binivel sea no factible. Dado x ∈ R1, si existe
un vector y ∈ Rn2 tal que (x,y) ∈ IR, entonces x se dice admisible. En el caso de que no existan puntos
admisibles, el problema binivel es no factible [2].

Ejemplo 1.2.3. Se considera el Ejemplo 1.2.1, añadiendo la siguiente restricción coupling:

2x+ y−10z ≤−10

El problema del nivel inferior no se ha modificado, por lo que fijado z = z0, el conjunto M(z0) incluye
todos los puntos del segmento (5,0,z0) y (0,5,z0). En la Figura 1.3 se ha incluido el plano que determina
la restricción coupling. Si se considera el conjunto de soluciones óptimas del problema inferior para
z0 = 0, el segmento marcado en negro entre los puntos (5,0,0) y (0,5,0), no verifican dicha restricción.
Por tanto, el punto z0 = 0 no es un punto admisible.

En el caso de la aproximación optimista, el seguidor escoge la opción más conveniente para el líder
que desea minimizar x− z. Por tanto, cuando x = 0 y y = 5 la región factible es el segmento entre los
puntos (0,5,1.5) y (0,5,3), y para z < 1.5 no son puntos admisibles.

Sin embargo, en la aproximación pesimista, el seguidor escoge la opción que menos le conviene al
líder, el punto (5,0,z0). En este caso, la región factible es el segmento entre los puntos (5,0,2) y (5,0,3),
y para z < 2 no son puntos admisibles.

x

y

z

x+ y = 5

(5,0,0)

(5,0,2)
(0,5,1.5)

(0,5,0)

(0,0,3)

(5,0,3)

(0,5,3)

Figura 1.3: Ejemplo ilustrativo de un problema LBP con restricciones coupling.

1.3. Reformulación del LBP en un problema de un nivel

Un problema de especial interés relacionado con el problema (1.2) es el denominado problema rela-
jado, [3] que no considera el problema de optimización del nivel inferior:

mı́n
x,y

c1x+d1y

sujeto a: A1x+B1y ≤ b1
A2x+B2y ≤ b2
x ≥ 0n1 , y ≥ 0n2

(1.3)

Si la solución al problema relajado es factible binivel, el problema se considera trivial. En caso contra-
rio, el valor óptimo proporcionado por la solución óptima del problema relajado, proporciona una cota
inferior del valor óptimo del problema binivel (1.2).
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Para abordar el problema binivel (1.2) se han propuesto en la literatura diferentes aproximaciones.
Una de ellas consiste en caracterizar el conjunto de soluciones óptimas del problema del nivel inferior.
Al tratarse de un problema lineal, se va a utilizar la teoría de la dualidad [1]. En el Anexo A se incluye la
relación entre los problemas primal y dual, junto con un ejemplo.

El problema del nivel inferior en (1.2) se va a sustituir por las condiciones de Karush–Kuhn–Tucker
(KKT) que caracterizan a las soluciones óptimas de dicho problema. De esta forma, el problema LBP se
podrá resolver como un problema de un solo nivel.

Una vez que el nivel superior fija el valor de las variables que controla, x ∈ R1, el problema lineal del
nivel inferior queda formulado como sigue:

mı́n
y

d2y

sujeto a: B2y ≤ b2 −A2x
y ≥ 0n2

(1.4)

El problema dual de (1.4) es:
máx

u
u(A2x−b2)

sujeto a: uB2 ≥−d2
u ≥ 0m2

(1.5)

donde u es el vector fila m2 de variables duales, cada una asociada con una de las restricciones del
problema primal. Aplicando la teoría de la dualidad, dado un valor x ∈ R1 fijado por el nivel superior,
y ∈ Rn2 es solución óptima del problema (1.4) si y solo si existe u ∈ Rm2 , de variables duales, tal que se
verifican las condiciones de KKT, que se muestran a continuación:

B2y ≤ b2 −A2x

y ≥ 0n2

uB2 ≥−d2

u ≥ 0m2

(d2 +uB2)y = 0

u(b2 −A2x−B2y) = 0

(1.6)

Notar que, las dos últimas restricciones son la suma de productos de dos términos no negativos, lo que
permite reformular el problema (1.2), asumiendo la aproximación optimista, como un problema de un
solo nivel, en el que se despliegan las dos últimas restricciones en (1.6) en dos conjuntos de n2 y m2
restricciones, respectivamente:

mı́n
x,y

c1x+d1y

sujeto a: A1x+B1y ≤ b1
A2x+B2y ≤ b2

uB2 ≥−d2
(d2 +uB2)iyi = 0, i = 1, . . . ,n2

u j(b2 −A2x−B2y) j = 0, j = 1, . . . ,m2

x ≥ 0n1 , y ≥ 0n2 , u ≥ 0m2

(1.7)

donde dado un vector a, se ha denotado por ak a la componente k-ésima del vector.
El problema (1.7) es no lineal por el conjunto de restricciones (d2 + uB2)iyi = 0, i = 1, . . . ,n2 y

u j(b2 − A2x − B2y) j = 0, j = 1, . . . ,m2. Estas restricciones garantizan que al menos uno de los dos
términos tiene que ser cero. Para linealizar cada una de estas restricciones, se introduce una variable
binaria y se sustituye dicha restricción por dos restricciones adicionales. Sean las variables binarias, αi y
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β j, i = 1, . . . ,n2, j = 1, . . . ,m2:

αi =

{
1 si yi = 0
0 en otro caso

β j =

{
1 si u j = 0
0 en otro caso

En el caso del primer conjunto de restricciones, i = 1, . . . ,n2:

(d2 +uB2)iyi = 0 ⇐⇒
(d2 +uB2)i ≤ M1αi

yi ≤ M2(1−αi)

donde M1, M2 son constantes suficientemente grandes. Cuando αi = 0, la primera restricción garantiza
que (d2 +uB2)i ≤ 0 luego (d2 +uB2)i = 0, por ser éste un término no negativo, y en la segunda restric-
ción, el valor de M2 ha de ser una cota válida para yi. Cuando αi = 1, la segunda restricción garantiza
que yi = 0, ya que yi es una variable no negativa. En la primera restricción, (d2 +uB2)i ≤ M1, se verifica
por ser M1 una cota válida para (d2 +uB2)i.

Del mismo modo, el segundo conjunto de restricciones, j = 1, . . . ,m2:

u j(b2 −A2x−B2y) j = 0 ⇐⇒
(b2 −A2x−B2y) j ≤ M3(1−β j)

u j ≤ M4β j

donde M3 y M4 son cotas válidas para (b2 −A2x−B2y) j y u j, respectivamente. En este caso, si β j = 0
se garantiza que u j = 0 y si β j = 1, que la holgura (b2 −A2x−B2y) j = 0.

1.4. Contribución del TFG

En este TFG se aborda el problema de ubicación de instalaciones para la gestión de residuos urbanos
mediante la optimización binivel. Se ha revisado la literatura sobre este tipo de modelos y estudiado con
mayor detalle la formulación matemática de tres modelos binivel que atienden a diferentes características
de los sistemas de gestión de residuos. En los tres modelos, se presenta un líder o autoridad municipal
y uno o varios seguidores. Es posible que los seguidores sean directamente los clientes que utilizan las
instalaciones, o puede haber un único seguidor, por ejemplo, una empresa que hace de intermediario y
asigna a los clientes qué instalación han de utilizar. Además, también es posible considerar la gestión de
varios tipos de residuos (papel, plástico, vidrio, etc.).

En este TFG, se ha propuesto una formulación alternativa para los dos modelos binivel en los que se
trata con un solo tipo de residuos. En uno de ellos hay un único decisor, y en el segundo de los modelos,
hay múltiples seguidores, ya que son los clientes quienes utilizan directamente las instalaciones.

En la resolución de los tres modelos, los autores de los trabajos proponen un algoritmo heurístico,
es decir, utilizan un método que solo proporciona una solución aproximada sin garantía de ser óptima.
En este TFG, se ha reformulado el modelo de un único seguidor, a partir de la formulación alternativa
propuesta, como un problema de un solo nivel, aplicando los resultados de la teoría de la dualidad. El
problema, una vez reformulado, precisa de la linealización de un conjunto de restricciones, que requieren
de la obtención de cotas válidas. Tras demostrar la validez de las cotas, el problema lineal entero mixto
se resuelve con un software de optimización.

Finalmente, la experiencia computacional se ha realizado mediante el uso del lenguaje de programa-
ción Python y al software de optimización matemática Gurobi. En una primera parte, se han proporcio-
nado varios ejemplos ilustrativos. En la segunda parte de la experimentación se han generado diversos
escenarios para evaluar el efecto en el tiempo computacional y las soluciones propuestas. En particular,
se ha estudiado el comportamiento del problema variando dos parámetros relevantes, la demanda mínima
a satisfacer de los clientes y el precio de los residuos.





Capítulo 2

Modelos de optimización binivel en gestión
de residuos

En este capítulo se realiza una revisión de la literatura sobre algunos problemas en gestión de re-
siduos que se han abordado a través de modelos de optimización binivel. En particular, se introducen
tres modelos de localización de instalaciones en sistemas de gestión de residuos con diferentes caracte-
rísticas. En dos de los modelos se va a proponer una formulación alternativa y extender a un caso más
general. Además, el primer modelo, se va a reformular como un modelo de optimización de un solo nivel
para así resolverlo con un software de optimización.

2.1. Descripción del problema

En esta sección se aborda el problema de ubicación de instalaciones para la gestión de residuos a
partir del modelo introducido en [6], BFLP, (del inglés Bilevel Facility Location Problem). Dado un con-
junto de ubicaciones potenciales, este problema consiste en determinar qué instalaciones han de abrirse y
con qué capacidad para atender la demanda de un conjunto de clientes mientras se minimizan los costes
de gestión del sistema.

Sea J = {1, . . . ,m} el conjunto de instalaciones potenciales. El coste fijo de abrir una instalación
j ∈ J, es f j. Además, se denota por g j, el coste por unidad de capacidad en cada instalación j ∈ J.
Cuando una sola empresa decide qué instalaciones se abren, es posible asumir que g j = g, j ∈ J, es decir,
que el coste por unidad de capacidad sea el mismo para todas las instalaciones j ∈ J. Por otro lado, sea
I = {1, . . . ,n}, el conjunto de clientes. Para cada cliente i ∈ I, se define di como la demanda de servicio
del cliente, y pi el precio que paga el cliente i por unidad de demanda atendida. Además, sea ci j el coste
por el envío de una unidad de demanda desde el cliente i hasta la instalación j ∈ J, la ganancia unitaria
por la gestión de la demanda del cliente i, atendida por la instalación j ∈ J, se obtiene como πi j = pi−ci j.

Caramia y Costa [4] utilizan el BFLP para modelar un sistema de gestión de residuos con una estruc-
tura jerárquica. El nivel superior decide qué instalaciones se abren, esto es, dónde se abren y cuál es la
capacidad de las mismas, con el objetivo de minimizar el coste total que conlleva abrir las instalaciones
necesarias. Luego, las variables de decisión controladas por el líder son las variables binarias que deciden
sobre la apertura de las instalaciones y las variables continuas no negativas, que representan la capacidad
que se le asigna a cada instalación:

x j =

{
1 si la instalación j se abre j ∈ J
0 en otro caso

, z j ≥ 0, j ∈ J

El nivel inferior va a decidir sobre qué instalaciones va a utilizar, de las que haya abierto el nivel supe-
rior. Por ello, las variables de decisión controladas por el nivel inferior, son las variables continuas no
negativas que representan el porcentaje de demanda enviada por el cliente i a la instalación j:

yi j ≥ 0, i ∈ I, j ∈ J

9
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De ahora en adelante, para simplificar la notación, al conjunto de variables {x j} j∈J , {yi j}i∈I, j∈J y {z j} j∈J ,
se les denotará como x, y y z, respectivamente.

Con la notación introducida, se van a presentar tres modelos diferentes que proporcionan sistemas de
gestión alternativos.

2.1.1. Modelo de ubicación de instalaciones con una empresa en el nivel inferior

En este primer caso, todos los clientes son gestionados por una empresa [6] que toma la decisión co-
rrespondiente a todos ellos. La empresa, en el nivel inferior, reacciona a cada decisión del nivel superior,
es decir, según las instalaciones que decida abrir y su capacidad, la empresa determina cómo va a realizar
el envío de los residuos de cada cliente i ∈ I a cada instalación abierta j ∈ J.

El nivel inferior, la empresa, una vez informado de las instalaciones abiertas y su capacidad, trata de
satisfacer la demanda de los clientes, atendiendo a su objetivo de maximizar beneficios y determinando
qué instalación va a satisfacer la demanda de cada cliente. Dado que la empresa no está obligada a
satisfacer el total de la demanda de los clientes y el nivel superior no puede controlar ni aplicar ninguna
sanción por ello, se incluye una restricción en el nivel superior que garantiza que a cada cliente i ∈ I se
le ha de satisfacer al menos una proporción mínima de demanda λi conocida.

La formulación matemática de este primer modelo, denotado por BFLP-e, es la siguiente:

mı́n
x,z,y ∑

j∈J
f jx j +∑

j∈J
gz j (2.1a)

sujeto a: ∑
j∈J

yi j ≥ λi, i ∈ I (2.1b)

x j ∈ {0,1}, z j ≥ 0, j ∈ J (2.1c)

dado (x, z), y resuelve:

máx
y ∑

i∈I
∑
j∈J

diπi jyi j (2.1d)

sujeto a: ∑
j∈J

yi j ≤ 1, i ∈ I (2.1e)

∑
i∈I

diyi j ≤ z j, j ∈ J (2.1f)

yi j ≤ x j, i ∈ I, j ∈ J (2.1g)

yi j ≥ 0, i ∈ I, j ∈ J (2.1h)

La función objetivo del nivel superior (2.1a) consiste en minimizar el coste fijo de apertura de las insta-
laciones y el coste total correspondiente a la capacidad de las instalaciones abiertas.

El conjunto de restricciones (2.1b) garantiza que para cada cliente i ∈ I se satisfaga, entre todas
las instalaciones, una proporción mínima λi de la demanda. Las restricciones (2.1c) indican el carácter
binario de las variables x y que las variables z sean continuas no negativas.

El problema de la empresa queda formulado por (2.1d)-(2.1h). La función objetivo (2.1d) consiste
en maximizar el beneficio neto obtenido por la atención de la demanda de todos los clientes por todas las
instalaciones.

El conjunto de restricciones (2.1e), asegura que la demanda de cada uno de los clientes, i ∈ I no se
exceda. Las restricciones (2.1f) garantizan que para cada instalación no se supere la capacidad disponible,
y las restricciones (2.1g) no permiten a la empresa asignar un cliente i a una instalación j en el caso de
que esta última no este abierta, ya que si x j = 0, la instalación j está cerrada, y por la correspondiente
restricción (2.1g) todas las variables yi j = 0, i ∈ I, j ∈ J. Finalmente, las restricciones (2.1h) son de
signo para las variables del nivel inferior. Aunque las variables y son continuas no negativas, expresan



Un modelo de optimización binivel en la gestión de residuos - Silvia Álvarez Tena 11

una proporción, por ello tomarán siempre un valor menor o igual a 1. Esto queda garantizado a partir de
las restricciones (2.1e).

Cabe destacar que, en este modelo, las restricciones (2.1b) son coupling. Esto significa que es posible
que ciertas decisiones del nivel superior sobre la apertura y la capacidad de las instalaciones, al resolver
el problema la empresa, el valor de las variables y, no verifiquen las restricciones (2.1b). En ese caso, no
se considerará una decisión admisible del nivel superior.

2.1.2. Modelo de ubicación de instalaciones con clientes en el nivel inferior

En este caso, los clientes toman sus propias decisiones, es decir, cada uno toma sus decisiones sin
ser gestionados por una empresa [4]. Se denota por BFLP-u al modelo binivel correspondiente. En la
Figura 2.1 se muestra la estructura binivel de este sistema de gestión de residuos.

La compañía municipal encargada de la recogida y eliminación de residuos se sitúa en el nivel supe-
rior de la toma de decisiones y su objetivo consiste en minimizar los costes de localización y de capacidad
asignada a las instalaciones abiertas. En el nivel inferior, a diferencia del modelo BFLP-e, se sitúan cada
una de las familias y trabajadores residentes, que han de utilizar adecuadamente los recursos, para lo
cual, son incentivados con algún tipo de utilidad. Por ejemplo, una posible forma de incentivar es que las
familias puedan reducir las tasas a pagar si realizan una buena gestión de los residuos.

Figura 2.1: Esquema conceptual del modelo BFLP-u. Fuente: [4]

En este caso, al considerar los clientes de forma individual, el nivel superior va asignar una capacidad
en cada instalación j ∈ J a cada cliente i ∈ I, que se representa por las nuevas variables continuas no
negativas:

zi j ≥ 0, i ∈ I, , j ∈ J

Además, se va a asumir que cada cliente i solo puede ser atendido por una instalación. Para ello, se
introducen las siguientes variables binarias:

x′i j =

{
1 si la instalación j atiende al cliente i
0 en otro caso

i ∈ i, j ∈ J

De ahora en adelante, como en el problema anterior (2.1), por simplificar la notación, el conjunto
{zi j}i∈I, j∈J se denotará como z.

La formulación matemática del modelo BFLP-u es la siguiente:
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mı́n
x,z,y ∑

j∈J
f jx j +∑

i∈I
∑
j∈J

gzi j (2.2a)

sujeto a: ∑
j∈J

yi j ≥ λi, i ∈ I (2.2b)

zi j ≤ dix j, i ∈ I, j ∈ J (2.2c)

x j ∈ {0,1}, zi j ≥ 0, i ∈ I, j ∈ J (2.2d)

dado (x, z), cada cliente i ∈ I, resuelve:

máx
y ∑

j∈J
diπi jyi j (2.2e)

sujeto a: ∑
j∈J

x′i j ≤ 1 (2.2f)

diyi j ≤ zi j, j ∈ J (2.2g)

yi j ≤ x′i j, j ∈ J (2.2h)

x′i j ∈ {0,1}, yi j ≥ 0, j ∈ J (2.2i)

La función objetivo del nivel superior (2.2a) y el conjunto de restricciones (2.2b) coinciden con las
correspondientes al modelo (2.1), ya que el nivel superior continúa minimizando los costes de apertura
y capacidad, y desea garantizar una demanda mínima atendida a cada cliente. La restricción (2.2c) ga-
rantiza que la capacidad de cada instalación j ∈ J asignada a cada cliente i es mayor que 0 solo si la
instalación j ha sido abierta. Las restricciones (2.2d) indican el carácter binario de las variables x y que
las variables z sean continuas no negativas.

El problema para cada uno de los clientes queda formulado por (2.2e)-(2.2i). La función objetivo
(2.2e) consiste en maximizar la utilidad del cliente i.

El conjunto de restricciones (2.2f) asegura que cada cliente i solo puede ser atendido por una insta-
lación. Las restricciones (2.2g) imponen que el cliente i no supere la capacidad que se le ha asignado
en cada instalación j ∈ J. Dado el cliente, si x′i j = 0 entonces el cliente i no puede ser atendido por la
instalación j. Esto se garantiza por la restricción (2.2h) correspondiente. Finalmente, las restricciones
(2.2i) indican el carácter binario de las variables x′i j y que las variables y sean continuas no negativas. Al
igual que en el problema (2.1), las variables y son continuas no negativas cuyo valor está acotado por 1,
debido a las restricciones (2.2h), expresando la proporción de demanda atendida de un cliente por una
instalación.

En este modelo también se incluyen las restricciones coupling (2.2b). Por tanto, de nuevo, es posible
que ciertas decisiones del nivel superior sobre la apertura y la capacidad de las instalaciones, provoquen
una reacción en los clientes, tal que el valor propuesto de las variables y, no verifique las restricciones
(2.2b). En ese caso, no se considerará como decisión admisible del nivel superior de decisión.

El modelo anterior (2.2) se puede extender, de forma que, cada cliente pueda ser atendido por más
de una instalación como en el modelo previo (2.1). En la literatura, se conocen por modelos single
source y multiple source, respectivamente. La formulación alternativa matemática del nuevo modelo es
la siguiente:
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mı́n
x,z,y ∑

j∈J
f jx j +∑

i∈I
∑
j∈J

gzi j (2.3a)

sujeto a: ∑
j∈J

yi j ≥ λi, i ∈ I (2.3b)

zi j ≤ dix j, i ∈ I, j ∈ J (2.3c)

x j ∈ {0,1}, zi j ≥ 0, i ∈ I, j ∈ J (2.3d)

dado (x, z), cada cliente i ∈ I, resuelve:

máx
y ∑

j∈J
diπi jyi j (2.3e)

sujeto a: ∑
j∈J

yi j ≤ 1, (2.3f)

diyi j ≤ zi j, j ∈ J (2.3g)

yi j ≥ 0, j ∈ J (2.3h)

Notar que en el modelo (2.3) se han suprimido las variables x′. La función objetivo del líder (2.3a) y el
conjunto de restricciones (2.3b), (2.3c) y (2.3d) coinciden con las correspondientes al modelo (2.2), ya
que el nivel superior continúa minimizando los costes de apertura y capacidad, y desea garantizar una
demanda mínima atendida a cada cliente.

El problema de los clientes queda formulado por (2.3e)-(2.3h). La función objetivo (2.3e) y la restric-
ción (2.3g) se mantienen como en el problema (2.2). Las restricciones (2.2f) y (2.2h) se han suprimido
y se han sustituido por las restricciones (2.3f), que garantizan que la demanda atendida del cliente i por
las instalaciones j, no se exceda. Finalmente, las restricciones (2.3h) son de signo para las variables del
nivel inferior.

2.1.3. Modelo de ubicación de instalaciones de gestión de residuos diferenciados y clien-
tes en el nivel inferior

Este tercer modelo, denotado por BFLP-r, extiende el modelo anterior BFLP-u, al considerar clien-
tes que toman decisiones en el nivel inferior y añadir la recolección de residuos diferenciados para el
reciclaje. Sea K el conjunto de tipos de residuos. En este caso, en el nivel superior, una autoridad muni-
cipal, trata de incentivar a los clientes a utilizar centros de recolección de residuos de varios tipos [5].

Al considerar residuos diferenciados, cada instalación j ∈ J tiene un conjunto asociado K j tal que,
en dicha instalación se puede reciclar el residuo k si k ∈ K j y la capacidad viene dada por el parámetro
Qk

j. En este modelo, cada cliente i ∈ I tiene una demanda de gestión dk
i de residuo k ∈ K. Se asume que

el cliente i no conoce la capacidad de las instalaciones j ∈ J para cada residuo k ∈ K j.
Para cada residuo k ∈ K se define el conjunto Jk ⊆ J de instalaciones en las que se puede reciclar el

residuo k.
En este modelo se introducen nuevas variables continuas no negativas controladas por el nivel supe-

rior para representar la capacidad que el líder reserva para el cliente i, en cada instalación j ∈ J para el
residuo k ∈ K:

zk
i j ≥ 0, i ∈ I, j ∈ J, k ∈ K j

En el nivel inferior, se define una nueva variable continua no negativa que representa el porcentaje de
demanda dk

i del cliente i satisfecha en la instalación j del residuo k:

yk
i j ≥ 0, i ∈ I, j ∈ J, k ∈ K j

Como en el modelo (2.2) se impone que cada cliente i ∈ I puede ser asignado para atender su demanda
de residuo de tipo k ∈ K a lo sumo por una instalación j ∈ Jk, por lo que se introducen las siguientes
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variables binarias:

x′ki j =

{
1 si la instalación j atiende al cliente i para el residuo k, i ∈ i, k ∈ K, j ∈ Jk

0 en otro caso

Por último, λ k representa la proporción mínima de demanda del tipo de residuo k ∈ K que ha de ser
atendida en todos los clientes; gk

j es el coste de instalar una unidad de capacidad del residuo k ∈ K en
la instalación j ∈ Jk; y Ui j es la utilidad para cada cliente i ∈ I por el hecho de utilizar la instalación
j ∈ J. Notar que, en este modelo, los costes de instalar capacidad en una instalación, a diferencia de los
modelos anteriores, no son iguales.

La formulación matemática del modelo BFLP-r es la siguiente:

mı́n
x,z,y ∑

j∈J
f jx j +∑

j∈J
∑

k∈K j

gk
j ∑

i∈I
zk

i j (2.4a)

sujeto a: ∑
j∈Jk

yk
i j ≥ λ

k, i ∈ I, k ∈ K (2.4b)

zk
i j ≤ dk

i x j, i ∈ I, j ∈ J, k ∈ K j (2.4c)

x j ∈ {0,1}, zk
i j ≥ 0, i ∈ I, j ∈ J, k ∈ K j (2.4d)

dado (x, z), cada cliente i ∈ I, resuelve:

máx
y ∑

j∈J
∑

k∈K j

Ui jdk
i yk

i j (2.4e)

sujeto a: ∑
j∈Jk

x′ki j ≤ 1, k ∈ K (2.4f)

dikyk
i j ≤ zk

i j, j ∈ J, k ∈ K j (2.4g)

yk
i j ≤ x′ki j, j ∈ J, k ∈ K j (2.4h)

x′ki j ≤ 1− x′k
′

i j′ , j, j′ ∈ J, j′ ̸= j, k,k′ ∈ K j′, k ̸= k′ (2.4i)

yk
i j ≥ 0, j ∈ J, k ∈ K j (2.4j)

x′ik j ∈ {0,1}, j ∈ J, k ∈ K j (2.4k)

La función objetivo del nivel superior (2.4a) consiste en minimizar el coste fijo de apertura de las insta-
laciones y el coste total correspondiente a la capacidad de las instalaciones abiertas de todos los tipos de
residuos k ∈ K.

El conjunto de restricciones (2.4b) garantiza, para cada cliente i ∈ I, que el porcentaje reciclado de
la demanda de residuos de tipo k ∈ K es al menos la proporción mínima λ k. El conjunto de restricciones
(2.4c) establece que la capacidad zk

i j asignada a un cliente i de tipo de residuo k será 0 si la instalación
j está cerrada y a lo más, la demanda de ese tipo de residuo del cliente, si está abierta. Las restricciones
(2.4d) indican el carácter binario de las variables x j y que las variables zk

i j sean continuas no negativas.
El problema que resuelve cada cliente i ∈ I es (2.4e)-(2.4k). La función objetivo (2.4e) consiste en

maximizar la utilidad derivada del uso de las instalaciones j ∈ J para gestionar los residuos k ∈ Jk.
El conjunto de restricciones (2.4f) garantiza para cada tipo de residuo k ∈ K que el cliente solo puede

ser asignado a lo más a una instalación j ∈ Jk. Para cada instalación j ∈ J y tipo de residuo gestionado en
ella k ∈ K j, la correspondiente restricción (2.4g) asegura que a lo más se utiliza la capacidad zk

i j asignada.
En el caso de que una instalación j ∈ J no haya sido asignada al cliente para atender la demanda de
un tipo de residuo, esto es, x′ki j = 0, dicha instalación no atenderá ninguna demanda del cliente por la
correspondiente restricción (2.4h).

Dada una instalación j ∈ J, el conjunto de restricciones (2.4i) garantiza que si el cliente es atendido
por otra instalación j′ diferente para la demanda de un residuo k′ que también es tratado en la instalación
j, entonces el cliente no puede ser atendido en dicha instalación j ∈ J para ningún otro residuo k ∈ K j.
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Finalmente, las restricciones (2.4j) y (2.4k) indican el carácter binario de la variable x′ki j y que las
variables yk

i j sean continuas no negativas.

2.2. Reformulación del modelo binivel BFLP-e

De los tres modelos propuestos se va a considerar el modelo BFLP-e (2.1) de ubicación de instala-
ciones donde en el nivel inferior hay una empresa. Antes de reformularlo como un problema de un solo
nivel utilizando la aproximación dada en la sección 1.3, se plantea una formulación alternativa.

En el modelo binivel (2.1), la demanda satisfecha a cada cliente i ∈ I desde una instalación j ∈ J
se expresa como un porcentaje. En el tratamiento del problema resulta más intuitivo que la variable yi j

represente directamente la cantidad de demanda satisfecha. Por ello, se propone una nueva formulación
(denotada BFLP-E), del modelo binivel (2.1):

mı́n
x,z,y ∑

j∈J
f jx j +∑

j∈J
gz j (2.5a)

sujeto a: ∑
j∈J

yi j ≥ λidi, i ∈ I (2.5b)

x j ∈ {0,1}, z j ≥ 0, j ∈ J (2.5c)

dado (x, z), y resuelve:

máx
y ∑

i∈I
∑
j∈J

πi jyi j (2.5d)

sujeto a: ∑
j∈J

yi j ≤ di, i ∈ I (2.5e)

∑
i∈I

yi j ≤ z j j ∈ J (2.5f)

yi j ≤ dix j, i ∈ I, j ∈ J (2.5g)

yi j ≥ 0, i ∈ I, j ∈ J (2.5h)

donde el conjunto de restricciones (2.5b) garantiza, para cada cliente, que se satisfaga la cantidad mínima
de demanda, en sustitución del conjunto de restricciones (2.1b). Las restricciones (2.5c) se mantienen
iguales que (2.1c).

En el problema del nivel inferior, (2.5d)-(2.5h), la función objetivo (2.5d), maximiza el beneficio
neto de la asignación de clientes a las instalaciones, en sustitución de la función objetivo (2.1d).
Las restricciones (2.5e) garantizan que para cada cliente i ∈ I, la cantidad recibida de todas las instalacio-
nes, no supera su demanda, lo que corresponde a la restricción (2.1e). El conjunto de restricciones (2.5f)
sustituye al conjunto (2.1f), y asegura que la suma de la cantidad de la demanda de todos los clientes,
satisfecha por la instalación j, es menor o igual que la capacidad de dicha instalación. La restricción
(2.5g), como (2.1g), asegura que la cantidad de demanda del cliente i, satisfecha por la instalación j,
es menor o igual que la demanda del cliente i, en caso de que la instalación j resulte abierta. En caso
contrario, obliga a que yi j = 0, es decir, si la instalación j no es abierta por el nivel superior, x j = 0, y no
se puede atender demanda de ningún cliente i. Finalmente, la restricción (2.5h), igual que (2.1h), es de
signo para las variables controladas por el nivel inferior.

2.2.1. Caracterización de las soluciones óptimas del problema del nivel inferior

Con el objetivo de caracterizar las soluciones óptimas del problema del nivel inferior, dado un valor de
las variables controladas por el nivel superior, x, se considera el conjunto:

J(x) = { j ∈ J : x j = 1},

que identifica el conjunto de instalaciones abiertas.
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El problema del nivel inferior se puede reescribir utilizando el conjunto J(x) como:

máx
y ∑

i∈I
∑

j∈J(x)
πi jyi j (2.6a)

sujeto a: ∑
j∈J(x)

yi j ≤ di, i ∈ I (2.6b)

∑
i∈I

yi j ≤ z j, j ∈ J(x) (2.6c)

yi j ≥ 0, i ∈ I, j ∈ J(x) (2.6d)

donde se mantienen todas restricciones del problema (2.5), a excepción de las restricciones (2.5g). Estas
restricciones no son necesarias porque al introducir el conjunto J(x), en el problema (2.6) solo se definen
las variables yi j con i ∈ I, j ∈ J(x).

A continuación, se formula el problema dual del problema (2.6). Sean wi, i ∈ I, las variables duales
asociadas a cada una de las restricciones en (2.6b) y u j, j ∈ J(x), las variables duales correspondientes
al conjunto de restricciones (2.6c). El problema dual del problema (2.6) se formula:

mı́n
w,u ∑

i∈I
widi + ∑

j∈J(x)
z ju j

sujeto a: wi +u j ≥ πi j, i ∈ I, j ∈ J(x)

wi ≥ 0, i ∈ I
u j ≥ 0, j ∈ J(x)

(2.7)

Aplicando la teoría de la dualidad como se ha explicado en la sección 1.3, las condiciones de KKT
que caracterizan las soluciones óptimas del problema del nivel inferior son:

∑
j∈J(x)

yi j ≤ di, i ∈ I

∑
i∈I

yi j ≤ z j, j ∈ J(x)

wi +u j ≥ πi j, i ∈ I, j ∈ J(x)

(wi +u j −πi j)yi j = 0, i ∈ I, j ∈ J(x)(
di − ∑

j∈J(x)
yi j

)
wi = 0, i ∈ I(

z j −∑
i∈I

yi j

)
u j = 0 , j ∈ J(x)

wi ≥ 0, i ∈ I

u j ≥ 0, j ∈ J(x)

yi j ≥ 0, i ∈ I, j ∈ J(x)

(2.8)

El conjunto de restricciones (2.8) caracteriza la solución del problema del nivel inferior dado el valor
x,z de variables del nivel superior. Para reformular el problema binivel (2.5) como un problema de un
solo nivel, se sustituye el problema del nivel inferior (2.5d)-(2.5h) por el conjunto de restricciones (2.8).
Si bien hay que definir el valor de todas las variables yi j, i ∈ I, j ∈ J y las correspondientes variables
u j, j ∈ J, garantizando que tomarán el valor 0 si j /∈ J(x) y que las correspondientes restricciones en el
sistema (2.8) no restrinjan el valor de ninguna variable. Por lo tanto, el problema de optimización binivel
(2.5), queda reformulado a un problema de optimización de un solo nivel:
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mı́n
x,y,z ∑

j∈J
f jx j +∑

j∈J
gz j (2.9a)

sujeto a: ∑
j∈J

yi j ≥ λidi, i ∈ I (2.9b)

∑
j∈J

yi j ≤ di, i ∈ I (2.9c)

∑
i∈I

yi j ≤ z j, j ∈ J (2.9d)

yi j ≤ dix j, i ∈ I, j ∈ J (2.9e)

wi +u j ≥ πi jx j, i ∈ I, j ∈ J (2.9f)

u j ≤ Mx j, j ∈ J (2.9g)

(wi +u j −πi j)yi j = 0, i ∈ I, j ∈ J (2.9h)

wi

(
di −∑

j∈J
yi j

)
= 0, i ∈ I (2.9i)

u j

(
z j −∑

i∈I
yi j

)
= 0, j ∈ J (2.9j)

x j ∈ {0,1}, z j ≥ 0, j ∈ J (2.9k)

yi j ≥ 0, i ∈ I, j ∈ J (2.9l)

wi ≥ 0, i ∈ I (2.9m)

u j ≥ 0, j ∈ J (2.9n)

donde M es una constante suficientemente grande. La función objetivo (2.9a) coincide con la función ob-
jetivo del nivel superior del problema (2.5). El conjunto de restricciones (2.9b) y (2.9k) son restricciones
del nivel superior del problema (2.5). Las restricciones (2.9e) y (2.9g) garantizan que las correspondien-
tes variables yi j = u j = 0 para i ∈ I y j /∈ J(x). El resto de restricciones son las restricciones del conjunto
(2.8). En el caso de las restricciones (2.9f) se ha multiplicado el término de la derecha por x j para que
sea una restricción válida para cualquier j ∈ J. De forma que si j ∈ J(x) entonces x j = 1 y la restricción
coincide con la dada en (2.8).

El problema (2.9) es no lineal por los conjuntos de restricciones (2.9h), (2.9i) y (2.9j). Para lineali-
zarlo se introducen tantas variables binarias como restricciones no lineales incluye el modelo. Sean las
variables γi j, αi y β j, i ∈ I, j ∈ J asociadas a las restricciones (2.9h), (2.9i) y (2.9j), respectivamente:

γi j =

{
1 si yi j = 0
0 en otro caso

αi =

 1 si di −∑
j∈J

yi j = 0

0 en otro caso
β j =

{
1 si z j −∑

i∈I
yi j = 0

0 en otro caso

y se añaden las correspondientes restricciones al problema, siendo finalmente el problema (2.9) formu-
lado como un problema lineal:
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mı́n
x,y,z ∑

j∈J
f jx j +∑

j∈J
gz j (2.10a)

sujeto a: ∑
j∈J

yi j ≥ λidi, i ∈ I (2.10b)

∑
j∈J

yi j ≤ di, i ∈ I (2.10c)

∑
i∈I

yi j ≤ z j, j ∈ J (2.10d)

yi j ≤ dix j, i ∈ I, j ∈ J (2.10e)

u j ≤ M5
j x j, j ∈ J (2.10f)

wi +u j ≥ πi jx j, i ∈ I, j ∈ J (2.10g)

yi j ≤ M1
i (1− γi j), i ∈ I, j ∈ J (2.10h)

di −∑
j∈J

yi j ≤ M2
i (1−αi), i ∈ I (2.10i)

z j −∑
i∈I

yi j ≤ M3(1−β j), j ∈ J (2.10j)

wi ≤ M4
i αi, i ∈ I (2.10k)

u j ≤ M5
j β j, j ∈ J (2.10l)

wi +u j −πi j ≤ M6
i jγi j, i ∈ I, j ∈ J (2.10m)

x j ∈ {0,1}, z j ≥ 0, yi j ≥ 0, i ∈ I, j ∈ J (2.10n)

wi ≥ 0, u j ≥ 0, i ∈ I, j ∈ J (2.10ñ)

αi,β j,γi j ∈ {0,1}, i ∈ I, j ∈ J (2.10o)

Los conjuntos de restricciones (2.10h)-(2.10m) se han introducido junto con las variables binarias γi j, αi

y β j, i∈ I, j ∈ J, para linealizar los términos no lineales. En particular, las restricciones (2.10h) y (2.10m)
corresponden a las restricciones (2.9h). Las restricciones (2.10i) y (2.10k) sustituyen a las restricciones
(2.9i). Las restricciones (2.10j) y (2.10l) garantizan que se cumplan las restricciones (2.9j). Los valores
de las constantes M se han de calcular para cada una de las restricciones para garantizar que sean válidas.

2.2.2. Cálculo de las gran M

En esta sección, con el objetivo de resolver el problema (2.10), se van a buscar cotas adecuadas
para los valores de M1

i ,M
2
i ,M

3
j ,M

4
i ,M

5
j ,M

6 que sean suficientemente grandes para garantizar que no
se eliminan soluciones factibles binivel y suficientemente pequeñas para que la solución obtenida sea
factible binivel [8].

Lema 2.2.1. Una cota válida en las restricciones (2.10h) es M1
i = di, i ∈ I.

Demostración. Dado i ∈ I, j ∈ J, se obtiene:

yi j ≤ ∑
j∈J

yi j ≤ di

donde la segunda desigualdad es válida por la restricción (2.9c). Por tanto, Mi
1 = di, i ∈ I es una cota

válida.
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Lema 2.2.2. Una cota válida en las restricciones (2.10i) es M2
i = (1−λi)di, i ∈ I.

Demostración. Dado i ∈ I,
di −∑

j∈J
yi j ≤ di −λidi = (1−λi)di

el primer término representa la demanda no satisfecha del cliente i que puede ser acotado superiormente
aplicando la restricción (2.10b). Por tanto, Mi

2 = (1−λi)di, i ∈ I es una cota válida para la demanda no
satisfecha.

Lema 2.2.3. Una cota válida en las restricciones (2.10j) es M3 = ∑
i∈I

di, j ∈ J.

Demostración. En el caso de que β j = 0, entonces M3 ha de ser una cota válida:

z j −∑
i∈I

yi j ≤ M3

y el valor máximo que puede alcanzar z j −∑
i∈I

yi j, se tiene cuando el total de la capacidad de la instalación

j está disponible, es decir, cuando ∑
i∈I

yi j = 0. Y como z j se puede acotar por el total de la demanda de

los clientes,
z j ≤ ∑

i∈I
di

se obtiene que, M3 = ∑
i∈I

di, j ∈ J, es una cota válida.

Lema 2.2.4. Una cota válida en las restricciones (2.10k) es M4
i = máx{0, máx

j∈J
πi j}, i ∈ I.

Demostración. Dado i ∈ I, j ∈ J, cuando x j = 1, la restricción (2.10g) establece que

wi +u j ≥ πi j

Por las restricciones de signo (2.10n), wi ≥ 0 y u j ≥ 0. Entonces,

wi ≤ wi +u j

Así, el máximo valor que toma wi se da cuando u j = 0, y en ese caso, por la restricción (2.10g)

wi ≥ πi j

Y dado que en el problema (2.7) se está minimizando y los coeficientes de wi en la función objetivo son
mayores o iguales que 0, es decir, di ≥ 0, se tendrá que:

wi ≤ máx
j∈J

πi j

Sin embargo, cabe la posibilidad de que πi j ≤ 0 para todo j ∈ J, en ese caso, wi = 0. En general, se
obtiene que:

wi ≤ máx{0, máx
j∈J

πi j}

Por tanto, M4
i = máx{0, máx

j∈J
πi j} es una cota válida para i ∈ I .

Lema 2.2.5. Una cota válida en las restricciones (2.10l) es M5
j = máx{0, máx

i∈I
πi j}, j ∈ j.

Demostración. Con un razonamiento similar, al proporcionado en el Lema 2.2.4, se demuestra que Mi
5 =

máx{0, máx
i∈I

πi j}, es una cota válida para j ∈ j.
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Lema 2.2.6. Una cota válida en las restricciones (2.10m) es M6
i j = máx{0, máx

i∈I, j∈J
πi j}−πi j.

Demostración. Dado i ∈ I, j ∈ J, cuando x j = 1, la restricción (2.10g) establece que

wi +u j ≥ πi j

En el problema (2.7), la función objetivo es de mínimo y por las restricciones de signo (2.10n), wi ≥ 0 y
u j ≥ 0, entonces:

wi +u j ≤ máx{0, máx
i∈I, j∈J

πi j}

Por tanto, se deduce que M6
i j =máx{0, máx

i∈I, j∈J
πi j}−πi j es una cota válida para la restricción (2.10m).



Capítulo 3

Experiencia computacional con el modelo
BFLP-E

En este capítulo se consideran varios escenarios para los que se resolverá el modelo BFLP-E (2.5).
En primer lugar, se muestra un ejemplo pequeño para ilustrar las características del modelo. A continua-
ción, se describe la experiencia computacional llevada a cabo y se analizan los resultados obtenidos para
conocer la influencia del número de clientes, la proporción de la demanda mínima y de los precios.

La experiencia computacional ha sido llevada a cabo en un ordenador con procesador Intel Core i3-
6006U de 200 GHz, 4.00 GB de RAM y Windows 10 64-bits como sistema operativo. Se ha utilizado
el lenguaje de programación Python para la definición de los parámetros de entrada en los modelos,
la ejecución del modelo de optimización y la escritura de los resultados. El software de optimización
utilizado ha sido Gurobi. La versión de Pyhton utilizada ha sido la versión 3.10.12, y en el caso de
Gurobi, se ha hecho uso de la licencia académica (ya que se trata de un solver de optimización de pago),
utilizando la versión 11.0.2. El código programado se encuentra en el Anexo C.

3.1. Ejemplo ilustrativo

Para ilustrar las características del modelo BFLP-E se introduce un ejemplo con 4 clientes (|I|= 4 )
y 3 instalaciones potenciales (|J|= 3), donde |A| indica el cardinal del conjunto A.

Los valores de los parámetros del modelo se incluyen en la Tabla 3.1. En la segunda columna se indica
la demanda de cada cliente. En la tercera columna se indica el porcentaje mínimo a atender al cliente y,
entre paréntesis, el valor de esa demanda mínima. En la cuarta columna se muestran dos precios, ya que
se resuelve el problema en dos escenarios. En el primer escenario, el precio es constante para todos los
usuarios, y en el segundo, el precio para cada cliente es igual al máximo correspondiente de los costes de
envío a las tres instalaciones, que se incluyen en las columnas quinta a séptima. El coste por abrir cada
una de las instalaciones y por unidad de capacidad se incluye en las dos últimas filas de la tabla.

Demanda Porcentaje mínimo a Precio Costes, ci j, i ∈ I, j ∈ J
di, i ∈ I atender, λi, i ∈ I pi, i ∈ I Inst.1 Inst.2 Inst.3

Cliente 1 10 0.7 (7) 50, 90 90 60 70
Cliente 2 30 0.9 (27) 50, 30 30 20 5
Cliente 3 50 0.8 (40) 50, 60 60 50 40
Cliente 4 5 0.6 (3) 50, 20 20 20 10

Coste fijo de apertura f j, j ∈ J 100 120 90
Coste por unidad de capacidad, g j, j ∈ J 1 1 1

Tabla 3.1: Valor de los parámetros en el ejemplo ilustrativo

De ahora en adelante, en todos los casos en los que se proporciona una solución, se identifican solo
las variables no nulas.

21
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Solución del problema relajado

El nivel superior no atiende al beneficio ni los costes de transporte de los clientes a las instalaciones,
por ello, sea el precio, constante o diferente para cada cliente, el problema relajado es el mismo en
ambos escenarios. En la Figura 3.1 se ha representado el sistema mediante un grafo, con los valores
de los parámetros en negro y gris, y la solución del problema relajado en azul. La solución óptima
consiste en abrir la instalación 3 (x3 = 1) con una capacidad de 77 unidades (z3 = 77), que le permite
satisfacer la demanda mínima exigida de los 4 clientes. El coste de esta solución para el nivel superior es
90+77 = 167.

I1

10 (7)

I2

30 (27)

I3

50 (40)

I4

5 (3)

J1

100, 1 (0)

J2

120, 1 (0)

J3

90, 1 (77)

90
60
70

30
20
5

60
50
40

20 20

10

Figura 3.1: Solución del problema relajado en el ejemplo ilustrativo

Notar que, el beneficio para el nivel inferior con la asignación dada por la solución del relajado es, en el
primer escenario con precios constantes para todos los clientes:

((50−70)×7)+((50−5)×27)+((50−40)×40)+((50−10)×3) = 1595

y en el segundo escenario:

((90−70)×7)+((30−5)×27)+((60−40)×40)+((20−10)×3) = 1645

Solución del problema del nivel inferior con x3 = 1, z3 = 77

Para ilustrar lo que significa considerar la reacción del nivel inferior en la toma de decisiones por parte
del nivel superior, se resuelve el problema del nivel inferior, en ambos escenarios, fijadas las variables
controladas por el nivel superior en el valor dado por el relajado: x3 = 1, z3 = 77.

Cuando el nivel superior establece la apertura de la tercera ubicación con una capacidad de 77 unida-
des, el segundo nivel decide satisfacer primero la demanda de aquellos clientes que le proporcionan un
mayor beneficio.

En la Figura 3.2a se representa la solución óptima en el caso de que los precios sean iguales para
todos los clientes. En este caso, se atiende la demanda total de los clientes 2 y 4, y 42 unidades del cliente
3, lo que le reporta el siguiente beneficio:

((50−5)×30)+((50−40)×42)+((50−10)×5) = 1970

que es superior al beneficio dado por la solución del relajado. Esta solución no verifica las restricciones
coupling, ya que no se satisface la demanda mínima al cliente 1. Notar que en la resolución del problema
relajado, el nivel superior de decisión no considera la reacción del nivel inferior, y dado que al cliente
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1 no se le satisface el mínimo establecido (restricción coupling), la decisión del nivel superior (x3 = 1,
z3 = 77), no es un punto admisible, al no proporcionar una solución factible binivel.

I1

I2

I3

I4

J1

J2

J3

30

42

5

(a) Solución del problema del nivel inferior
con pi = 50, i ∈ I

I1

I2

I3

I4

J1

J2

J3

30

40

7

(b) Solución del problema del nivel inferior
con precios pi = máx

j∈J
(ci j), i ∈ I

Figura 3.2: Soluciones del problema del nivel inferior para x3 = 1, z3 = 77 en el ejemplo ilustrativo

La solución óptima del problema del nivel inferior, cuando para cada cliente el precio es igual al
máximo de los costes de envío correspondientes, se muestra en la Figura 3.2b. En este caso, el valor
óptimo es:

((90−70)×7)+((30−5)×30)+((60−40)×40) = 1690

superior al dado por la solución del relajado. En este caso, tampoco proporciona una solución factible
binivel ya que no se atiende el mínimo de la demanda del cliente 4.

Solución del problema binivel

En ambos escenarios, no hay ninguna decisión del nivel superior admisible y por tanto, el problema
binivel es no factible.

3.2. Descripción de la experiencia computacional

En la experiencia computacional se consideran |J| = 10 instalaciones potenciales y dos valores del
número de clientes, |I| ∈ {20, 100}, con el propósito de ver su influencia en el tiempo computacional re-
querido para resolver el modelo. Las coordenadas de la localización de los clientes y de las instalaciones
se han generado según una distribución uniforme en un plano 100×100. En el Anexo B, las Figuras B.1
y B.2 muestran la distribución de instalaciones y clientes en el plano para |I|= 20 y |I|= 100, respecti-
vamente. El coste de envío ci j de un cliente i ∈ I a cada instalación j ∈ J se ha fijado como la distancia
euclídea obtenida a partir de las coordenadas de localización correspondientes. El coste fijo de instala-
ción en cada ubicación j ∈ J se genera a partir de una distribución uniforme U (100,150) y el coste por
unidad de capacidad se considera constante e igual a 1. La demanda de los clientes se ha generado a
partir de una distribución uniforme U (20,100). Los valores de todos estos parámetros quedan recogidos
en el Anexo B y el código utilizado para generarlos en el Anexo C.

El modelo BFLP-E se resuelve en varios escenarios para evaluar la influencia del valor de dos pará-
metros del modelo: los precios y la proporción mínima de demanda a satisfacer. La descripción de cada
escenario [A,B] indica el valor del precio A y el valor de la proporción mínima B, con:

A ∈ {Fmin, Fmax, Fmean,Vmin,Vmax,Vmean} B ∈ {0.1, 0.5, 0.9, r}
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donde F indica el mismo precio para todos los clientes (precio fijo) y V indica un precio diferente para
cada cliente (precio variable). El valor Fmin es el menor precio fijo entero para el que el correspondiente
problema binivel es factible, Fmax es máximo de los costes ( máx

i∈I, j∈J
ci j) y Fmean, el valor medio de los dos

anteriores ((Fmin +Fmax)/2). En el caso de los precios variables, Vmin y Vmax, se define como precio para
cada cliente el mínimo y el máximo, respectivamente, de sus costes de envío. Con Vmean, el precio para
cada cliente es el precio medio entre el mínimo y el máximo. El valor r (random) indica que la proporción
mínima de demanda se ha generado según una distribución uniforme U (0.2,0.8).

3.3. Resultados de la experiencia computacional

Problema relajado

En primer lugar, se resuelve el problema relajado, con |I| ∈ {20, 100} y se analiza la influencia de la
proporción mínima B, ya que los valores de A no le afectan.

En la Tabla 3.2 se resume la información de los 8 problemas resueltos. La primera columna indica el
escenario. Para cada valor de |I|, la primera columna proporciona el tiempo de ejecución en segundos del
modelo. La segunda y tercera columnas, el valor de las variables del nivel superior y la función objetivo
en el óptimo.

Solución |I|= 20 |I|= 100
relajado T(s) (x,z) VFO1 T(s) (x,z) VFO1
[A,0.1] 0.04 (4,121.3) 223.3 0.05 (4,577.9) 679.9
[A,0.5] 0.03 (4,606.5) 708.5 0.05 (4,2889.5) 2991.5
[A,0.9] 0.03 (4,1091.7) 1193.7 0.05 (4,5201.1) 5303.1
[A,r] 0.04 (4,543.7) 645.7 0.06 (4,2941.3) 3043.3

Tabla 3.2: Solución del problema relajado modificando valores de |I| y B

Los tiempos de resolución están por debajo de los 0.06 segundos, siendo ligeramente más costoso
resolver el problema con 100 clientes. Al nivel superior, para minimizar los costes de apertura le interesa
abrir una única planta y asignarle toda la capacidad necesaria para atender el mínimo de demanda, ya
que se está asumiendo que el coste por capacidad es el mismo en todas las instalaciones. En todos
los escenarios abre la instalación 4, de menor coste de apertura. Conforme aumenta la proporción de
demanda mínima a satisfacer a los clientes, aumenta la capacidad necesaria y con ella, el valor de V FO1.
En todos los escenarios, el problema binivel va a ser no trivial, ya que ninguna de las soluciones del
problema relajado es factible binivel.

Influencia de la proporción de demanda mínima

Fijado el valor A =Vmax, se resuelve el modelo BFLP-E en los escenarios generados por el valor de
B. La Tabla 3.3 tiene la misma estructura que la Tabla 3.2. En todas las soluciones óptimas del modelo
binivel con |I| fijado, el valor de la función objetivo del segundo nivel coincide y se ha incluido su valor
en la última fila.

En relación con los tiempos computacionales, la resolución del modelo binivel requiere más tiempo
que el problema relajado y estos tiempos se incrementan al pasar de 20 a 100 clientes, como cabía esperar.
En todos los escenarios, las soluciones del modelo binivel consideran la apertura de la instalación 3 con
una capacidad suficiente para atender las demandas mínimas, que se incrementan según el valor de B.
Notemos que, el valor óptimo de z en la solución del relajado de la Tabla 3.2 proporciona la suma total de
las demandas mínimas. Por tanto, en la solución del modelo binivel, se satisface siempre más demanda
que ese valor mínimo para algunos clientes. Por ejemplo, en el escenario [Vmax,0.1] con |I| = 20, la
demanda mínima total es 121.3 y en la solución óptima binivel se satisface 745.9, de modo que a 12 de
los 20 clientes se les satisface el 100% de la demanda.
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Solución |I|= 20 |I|= 100
BFLP-E T(s) (x,z) VFO1 100% T(s) (x,z) VFO1 100%
[Vmax,0.1] 10.42 (3,745.9) 871.9 12 53.33 (3,3555.1) 3681.1 61
[Vmax,0.5] 2.17 (3,953.5) 1079.5 12 136.46 (3,4543.5) 4669.5 61
[Vmax,0.9] 1.41 (3,1161.1) 1287.1 12 55.10 (3,5531.9) 5657.9 61
[Vmax,r] 5.88 (3,882.8) 1008.8 12 144.78 (3,4470.7) 4596.7 61

VFO2 24323 VFO2 121886

Tabla 3.3: Solución del modelo BFLP-E modificando |I| y B

Influencia de los precios

Fijado el valor B = r, se resuelve el problema (2.5) en los escenarios generados por el valor de A.
A partir de la solución del relajado, se conoce que la suma de las demandas mínimas de los clientes es
543.7. La Tabla 3.4 tiene la misma estructura que las anteriores.

Solución |I|= 20 |I|= 100
BFLP-E T(s) (x,z) VFO1 VFO2 100% T(s) (x,z) VFO1 VFO2 100%
[Fmin,r] 0.18 (1,302.5) 1492.9 51797.8 16 0.06 Infactible

(2,448.3)
(6,338.1)

[Fmax,r] 12.92 (10,1145) 1264 80154 19 626.75 (10,5737.5) 5856.5 418600.5 99
[Fmean,r] 6.77 (10,1145) 1264 54391.5 19 54.87 (10,5737.5) 5856.5 289506.8 99
[Vmin,r] 0.02 Infactible 0.03 Infactible
[Vmax,r] 5.88 (3,882.8) 1008.8 24323 12 144.78 (3,4470.7) 4596.7 121886 61
[Vmean,r] 0.02 Infactible 0.03 Infactible

Tabla 3.4: Solución del problema BFLP-E modificando |I| y A

Notar que, el tiempo para detectar la infactibilidad es inferior a 0.18 segundos en todos los escenarios.
En la resolución del modelo binivel aumenta con el número de clientes y los escenarios con precios
iguales valores máximos de costes de envío tienen tiempos mayores de resolución.

De todos los escenarios, [Fmin,r] con |I| = 20 es el único en el que se abre más de una instalación,
satisfaciendo el 100% de la demanda a 16 clientes de los 20. La capacidad total con la que se abren
las tres plantas es 1088.9, casi el doble de la demanda mínima 543.7. En esta solución, la instalación
1 atiende a los clientes {2,3,5,6,9,15}, la instalación 2 a los clientes {7,8,12,14,16− 18,20}, y la
instalación 6 a los clientes {1,4,10,11,13,19}.

En los escenarios [Fmax,r] y [Fmean,r], con |I| = 20, se abre la instalación 10 con capacidad 1145 y
se atiende el 100% de la demanda de 19 clientes. El correspondiente valor de f2 cambia porque en el
escenario [Fmax,r] los precios son más elevados. El mismo comportamiento se observa con |I|= 100. La
instalación 10 con capacidad 5737.5 atiende el 100% de la demanda de 99 clientes, siendo la suma total
de la demanda mínima 2941.3.

Los escenarios [Vmin,r] y [Vmean,r] con |I| ∈ {20, 100} son no factibles, esto es, no hay ninguna
apertura que pueda proporcionar el nivel superior para la que las decisiones del nivel inferior verifiquen
la restricción de demanda mínima a todos los clientes. Se observa, que los precios fijos obtienen en más
ocasiones soluciones factibles.

En este modelo, el primer nivel de decisión solo está obligado a satisfacer el mínimo de la demanda
λidi a cada uno de los clientes i ∈ I. Sin embargo, el seguidor decide cómo atender la demanda de los
clientes en su beneficio. Por eso, cuando dispone de una capacidad atiende primero toda la demanda de
aquellos clientes con los que obtiene mayor beneficio, dejando, por tanto, a otros clientes con el 0% de
demanda atendida. Esto obliga al líder a aumentar la capacidad de las instalaciones para que a todos los
clientes les llegue al menos la demanda mínima.
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Anexo A

Relación entre el problema primal y dual

Se llama problema dual, al problema asociado al problema primal que tiene: mismo número de res-
tricciones que variables tiene el problema primal, y mismo número de variables que restricciones tiene
el problema primal. Los coeficientes de la función objetivo del problema primal, son los términos inde-
pendientes de las restricciones del problema dual, y los coeficientes de la función objetivo del problema
dual, son los términos independientes de las restricciones del problema primal. Además, si el problema
primal es de máximo, el problema dual es de mínimo, y viceversa. Las relaciones que se establecen entre
el signo de las restricciones y las variables del problema primal y dual vienen dadas en la Tabla A.1. Si
el problema es de máximo, se lee de izquierda a derecha, y si el problema es de mínimo, al contrario [1].

Máximo Mínimo
restricciones ≤ variables ≥ 0
variables ≥ 0 restricciones ≥

restricciones = variables no restringidas
variables no restringidas restricciones =

restricciones ≥ 0 variables≤ 0
variables ≤ 0 restricciones ≤ 0

Tabla A.1: Relación entre las restricciones y las variables el problema primal y dual

A continuación, se ilustra un ejemplo:
Sea el problema primal:

máx
x1,x2,x3

x1 +2x2 + x3

sujeto a: x1 + x2 − x3 ≤ 2
x1 − x2 + x3 = 1
2x1 + x2 + x3 ≥ 2
x1 ≥ 0, x2 ≤ 0, x3 no restringida

(A.1)

entonces, su correspondiente problema dual es:

mı́n
w1,w2,w3

2w1 +w2 +2w3

sujeto a: w1 +w2 +2w3 ≥ 1
w1 −w2 +w3 ≤ 2
−w1 +w2 +w3 = 1
w1 ≥ 0, w2 no restringida, w3 ≤ 0

(A.2)
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Anexo B

Valores en la experiencia computacional

Posiciones de las instalaciones |J|= 10:

(74,62),(64,12),(11,93),(67,78),(56,96),(15,70),(80,19),(95,90),(88,72),(47,81)

Posiciones de los clientes |I|= 20:

(18,47),(78,96),(75,52),(15,64),(97,74),(70,88),(98,12),(24,4),(92,57),(13,52),
(4,38),(58,14),(19,72),(26,15),(58,53),(34,26),(95,22),(29,32),(47,94),(84,35)

x

y

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Figura B.1: Plano con las posiciones de 20 clientes (negro) y 10 instalaciones (rojo).
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Con todo ello, considerando la distancia euclídea, se calcula C la matriz de distancias (y costes) ci j,
desde cada cliente i, a cada instalación j.

C =



58 58 47 58 63 24 69 89 75 45
35 86 68 22 22 69 78 19 26 35
11 42 77 28 48 63 34 43 24 41
60 72 30 54 53 6 80 85 74 37
26 71 89 31 47 83 58 17 10 51
27 77 60 11 17 58 70 26 25 25
56 34 119 73 94 102 20 79 61 86
77 41 90 86 98 67 58 112 94 81
19 53 89 33 54 79 40 34 16 51
62 65 42 60 62 19 75 91 78 45
74 66 56 75 78 34 79 105 91 61
51 7 92 65 83 71 23 85 66 68
56 75 23 49 45 5 81 79 69 30
68 39 80 76 87 57 55 102 85 70
19 42 62 27 44 47 41 53 36 31
54 34 71 62 74 48 47 89 71 57
46 33 110 63 84 94 16 68 51 77
55 41 64 60 70 41 53 88 72 53
42 84 37 26 10 40 82 49 47 13
29 31 94 47 68 78 17 57 38 60


Además, se considera una demanda de clientes también generada aleatoriamente, con una distribución
uniforme U (20,100):

di = [96 51 39 66 66 37 85 51 47 43 40 22 35 25 88 94 97 73 83 75]

Y se obtiene la proporción mínima de demanda a satisfacer λi, con otra distribución uniforme U (0.2,0.8),
es:

λi = [0.3 0.5 0.6 0.7 0.8 0.7 0.2 0.7 0.6 0.7 0.2 0.3 0.5 0.7 0.3 0.5 0.2 0.2 0.7 0.2]

Así mismo, se proporcionan aleatoriamente, valores entre [100,150] de f j, es decir, de los costes fijos
por abrir cada una de las instalaciones j:

fj = [124,148,126,102,116,132,131,125,150,119]

Se repite el proceso para |I|= 100:

Posiciones de los clientes |I|= 100:

(17,72),(97,8),(32,15),(63,97),(57,60),(83,48),(26,12),(62,3),(49,55),(77,97),
(98,0),(89,57),(34,92),(29,75),(13,40),(3,2),(3,83),(69,1),(48,87),(27,54),
(92,3),(67,28),(97,56),(63,70),(29,44),(29,86),(28,97),(58,37),(2,53),(71,82),
(12,23),(80,92),(37,15),(95,42),(92,91),(64,54),(64,85),(24,38),(36,75),(63,64),
(50,75),(4,61),(31,95),(51,53),(85,22),(46,70),(89,99),(86,94),(47,11),(56,84)
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Figura B.2: Plano con las posiciones de 100 clientes (negro) y 10 instalaciones (rojo).

Y con ello, considerando de nuevo la distancia euclídea, se calcula C la matriz de distancias (y costes)
ci j, desde cada cliente i a cada instalación j:
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C =



58 77 22 51 46 3 83 81 71 32
59 34 121 77 98 103 21 83 65 89
64 33 81 73 85 58 49 98 80 68
37 86 53 20 8 56 80 33 36 23
18 49 57 21 37 44 48 49 34 24
17 41 85 34 56 72 30 44 25 49
70 38 83 78 90 60 55 105 87 73
61 10 104 76 94 82 25 94 74 80
26 46 54 30 42 38 48 58 43 27
36 86 67 22 22 68 79 20 28 34
67 37 128 84 105 109 27 91 73 96
16 52 86 31 52 76 40 34 16 49
50 86 24 36 23 30 87 62 58 18
47 73 26 39 35 15 76 68 60 19
65 59 54 67 71 31 71 97 82 54
93 62 92 100 108 70 79 128 111 91
75 94 13 65 55 18 101 93 86 45
62 13 109 78 96 88 22 93 74 83
37 77 38 22 13 38 76 48 43 7
48 56 43 47 52 20 64 77 64 34
62 30 122 80 100 103 20 88 70 91
35 17 86 50 69 67 16 69 49 57
24 55 94 38 58 84 41 35 19 56
14 59 57 9 27 48 54 38 26 20
49 48 53 51 59 30 57 81 66 42
51 82 20 39 29 22 85 67 61 19
58 93 18 44 29 30 94 68 65 25
30 26 74 42 60 55 29 65 47 46
73 75 41 70 70 22 86 101 89 53
21 71 61 6 21 58 64 26 20 25
74 54 71 78 86 48 69 107 91 68
31 82 70 20 25 69 73 16 22 35
60 28 83 70 84 60 44 95 77 67
29 44 99 46 67 85 28 48 31 62
35 84 82 29 37 80 73 4 20 47
13 42 66 25 43 52 39 48 30 32
26 73 54 8 14 52 68 32 28 18
56 48 57 59 67 34 60 89 73 49
41 69 31 32 29 22 72 61 53 13
12 53 60 15 33 49 49 42 27 24
28 65 43 18 22 36 64 48 39 7
71 78 33 66 63 15 87 96 85 48
55 90 21 40 26 30 91 65 62 22
25 44 57 30 44 40 45 58 42 29
42 24 103 59 80 85 6 69 51 71
30 61 42 23 28 31 62 53 43 12
40 91 79 31 34 80 81 11 28 46
35 85 76 25 31 75 76 10 23 42
58 18 90 70 86 68 34 93 74 70
29 73 46 13 12 44 70 40 35 10
50 2 97 66 84 76 17 83 64 71
49 36 115 67 88 98 20 71 54 81
15 39 70 29 48 55 35 50 32 37
27 53 48 26 36 33 55 56 43 19
62 31 122 80 101 103 21 88 70 91
59 9 101 74 92 80 25 92 73 78
45 82 29 31 19 32 82 56 53 13
14 65 70 12 31 64 57 23 11 32
12 40 77 29 50 63 32 46 27 42
42 21 102 59 80 84 3 71 52 70
54 68 31 49 48 9 75 79 68 32
76 37 94 86 99 71 55 111 93 82
45 37 111 62 83 95 19 66 49 76
10 59 63 9 30 54 53 33 20 25
47 53 46 47 53 24 61 77 63 35
21 33 73 35 53 57 30 55 37 42
18 35 79 34 54 64 27 51 31 45
33 23 76 45 63 57 27 68 49 49
13 62 77 19 39 69 52 23 5 39
32 83 66 19 22 67 75 19 24 33
76 74 46 74 74 26 86 104 91 57
21 61 88 30 50 80 49 26 10 50
59 73 28 53 50 5 80 83 73 35
27 69 91 33 50 85 56 20 12 53
49 57 42 48 52 20 65 78 65 35
68 76 33 63 61 13 85 93 82 45
30 63 41 22 26 32 63 53 42 10
38 15 91 54 73 72 12 70 51 61
15 40 68 27 45 53 37 50 32 34
21 34 71 34 52 54 32 56 38 39
28 34 65 37 53 47 37 63 45 38
75 86 28 68 63 16 94 98 89 49
18 68 60 3 22 55 61 29 21 23
21 34 85 38 59 69 24 51 32 50
22 65 50 10 21 44 62 40 31 13
79 64 65 81 86 43 78 111 96 69
41 20 100 58 79 82 4 70 51 69
13 63 62 5 27 56 56 30 19 25
73 42 83 81 92 60 58 107 90 74
31 21 85 47 66 67 17 64 44 55
74 96 10 64 53 20 102 92 86 44
84 56 84 90 99 61 72 118 101 81
73 77 38 69 67 19 87 99 88 51
81 105 11 69 55 30 111 95 91 49
35 40 103 52 73 89 23 56 38 68
52 40 63 57 67 40 52 86 69 50
63 84 15 54 46 10 90 82 75 34
55 53 51 56 62 28 63 86 71 45
66 28 89 77 91 66 45 101 82 74
68 44 74 75 84 51 60 102 85 67


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De nuevo, se considera una demanda de clientes también generada aleatoriamente, con una distribu-
ción uniforme U (20,100):

di = [64 77 68 64 54 72 55 91 97 51 83 62 65 94 26 27 22 87 82 90
98 84 57 82 29 71 31 96 62 53 41 82 56 65 22 69 69 69 95 75
49 55 76 25 73 74 37 30 45 49 66 55 99 28 37 33 72 40 57 40
33 29 73 31 36 49 86 28 87 28 98 57 98 68 79 23 43 30 44 29
45 53 25 75 65 41 62 28 66 94 45 73 31 77 43 35 67 22 86 20]

Y se obtiene la proporción mínima de demanda a satisfacer λi, con otra distribución uniforme
U (0.2,0.8), es:

λi = [0.6 0.4 0.6 0.8 0.3 0.5 0.6 0.5 0.3 0.8 0.5 0.7 0.6 0.4 0.7 0.4 0.7 0.5 0.7 0.6
0.6 0.5 0.8 0.6 0.5 0.6 0.2 0.4 0.6 0.4 0.6 0.5 0.3 0.4 0.5 0.6 0.5 0.6 0.6 0.5
0.7 0.4 0.5 0.7 0.7 0.6 0.3 0.8 0.6 0.8 0.3 0.7 0.3 0.6 0.3 0.7 0.7 0.5 0.4 0.2
0.6 0.5 0.6 0.7 0.8 0.7 0.2 0.4 0.6 0.3 0.5 0.2 0.3 0.2 0.7 0.3 0.4 0.8 0.6 0.2
0.3 0.6 0.5 0.3 0.8 0.6 0.5 0.6 0.6 0.4 0.4 0.3 0.3 0.8 0.6 0.5 0.3 0.4 0.2 0.5]





Anexo C

Código programado en Python

1

2 !pip install gurobipy
3 import gurobipy as gp
4 from gurobipy import GRB , Env
5

6 import numpy as np
7 import random
8 import pandas as pd
9

10 env = Env(params = {"WLSACCESSID" : " ",
11 "WLSSECRET" : " ",
12 "LICENSEID" : })
13

14 ##Problema relajado en el ejemplo ilustrativo
15 mrelajado =gp.Model("mip", env = env)
16 # Conjuntos
17 I = [i for i in range (0,4)]
18 J = [j for j in range (0,3)]
19

20 # Parametros
21 d = [10 ,30 ,50,5]
22 lambda_i =[0.7 ,0.9 ,0.8 ,0.6]
23

24 f = [100 ,120 ,90]
25 g = 1 #se puede asumir g_j=g
26

27 # Variables
28 x = mrelajado.addVars(J, vtype=GRB.BINARY , name="x")
29 z = mrelajado.addVars(J, vtype=GRB.CONTINUOUS , name="z")
30 y = mrelajado.addVars(I, J, vtype=GRB.CONTINUOUS , name="y")
31

32 # Funcion objetivo
33 mrelajado.setObjective(gp.quicksum(f[j] * x[j] + g * z[j] for j in J),GRB.

MINIMIZE)
34

35 # Restricciones
36 mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J) >= lambda_i[i] *d[i] for i

in I))
37 mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J) <= d[i] for i in I))
38 mrelajado.addConstrs ((gp.quicksum(y[i, j] for i in I) <= z[j] for j in J))
39 mrelajado.addConstrs ((y[i, j] <= d[i] * x[j] for i in I for j in J))
40

41 # Optimize the model
42 mrelajado.optimize ()
43

44 ## Problema primal para el nivel inferior (empresa) con 4 clientes y 3
instalaciones , precio fijo.

39
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45

46 mprimal = gp.Model("mip", env = env)
47

48 # Conjuntos
49 I = [i for i in range (0,4)]
50 J = [j for j in range (0,3)]
51

52 # Parametros
53 matriz_distancias = np.array([
54 [90, 60, 70],
55 [30, 20, 5],
56 [60, 50, 40],
57 [20, 20, 10]
58 ])
59

60 matriz_costes = np.array([
61 [50, 50, 50, 50]
62 ]).T
63 d=[10 ,30 ,50 ,5]
64 z=[0,0,77]
65

66 pi=matriz_costes -matriz_distancias
67

68 # Variables
69 y = mprimal.addVars(I, J, vtype=GRB.CONTINUOUS , name="y")
70

71 mprimal.update ()
72

73 #Funcion Objetivo
74 objective = gp.quicksum(pi[i][j] * y[i, j] for i in I for j in J)
75 mprimal.setObjective(objective , GRB.MAXIMIZE)
76

77 mprimal.update ()
78

79 # Restricciones
80 for i in I:
81 mprimal.addConstr(gp.quicksum(y[i, j] for j in J) <= d[i])
82

83 for j in J:
84 mprimal.addConstr(gp.quicksum (y[i, j] for i in I) <= z[j])
85

86 # Optimizar
87 mprimal.optimize ()
88

89 ## Problema primal para el nivel inferior (empresa) con 4 clientes y 3
instalaciones , precio variable.

90

91 mprimal = gp.Model("mip", env = env)
92

93 # Conjuntos
94 I = [i for i in range (0,4)]
95 J = [j for j in range (0,3)]
96

97 # Parametros
98 matriz_distancias = np.array([
99 [90, 60, 70],

100 [30, 20, 5],
101 [60, 50, 40],
102 [20, 20, 10]
103 ])
104

105 matriz_costes = np.array([
106 [90, 30, 60, 20]
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107 ]).T
108 d=[10 ,30 ,50 ,5]
109 z=[0,0,77]
110 #pi = 50- matriz_distancias
111 pi=matriz_costes -matriz_distancias
112

113 # Variables
114 y = mprimal.addVars(I, J, vtype=GRB.CONTINUOUS , name="y")
115

116 mprimal.update ()
117

118 #Funcion Objetivo
119 objective = gp.quicksum(pi[i][j] * y[i, j] for i in I for j in J)
120 mprimal.setObjective(objective , GRB.MAXIMIZE)
121

122 mprimal.update ()
123

124 # Restricciones
125 for i in I:
126 mprimal.addConstr(gp.quicksum(y[i, j] for j in J) <= d[i])
127

128 for j in J:
129 mprimal.addConstr(gp.quicksum (y[i, j] for i in I) <= z[j])
130

131 # Optimizar
132 mprimal.optimize ()
133

134 ##Generar posiciones de 20 clientes y 10 instalaciones
135

136 random.seed (0)
137

138 # Plano
139 ancho_plano = 100
140 alto_plano = 100
141

142 # Numero de clientes y plantas
143 num_clientes = 20
144 num_instalaciones = 10
145

146 # Posiciones aleatorias para los clientes
147 posiciones_clientes = [( random.randint(0, ancho_plano -1), random.randint(0,

alto_plano -1)) for _ in range(num_clientes)]
148

149 # Posiciones aleatorias para las instalaciones
150 posiciones_instalaciones = [( random.randint(0, ancho_plano -1), random.randint(0,

alto_plano -1)) for _ in range(num_instalaciones)]
151

152 print("Posiciones de los clientes:", posiciones_clientes)
153 print("Posiciones de las instalaciones:", posiciones_instalaciones)
154

155 ## Matriz distancias c_{ij} de cada cliente , a cada instalacion
156 import math
157 matriz_distancias = []
158

159 for cliente in posiciones_clientes:
160 fila_distancias = []
161 for instalacion in posiciones_instalaciones:
162 distancia = math.ceil(math.sqrt(( cliente [0] - instalacion [0]) **2 + (

cliente [1] - instalacion [1]) **2))
163 fila_distancias.append(distancia)
164 matriz_distancias.append(fila_distancias)
165 matriz_distancias=np.array(matriz_distancias)
166 matriz_distancias
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167

168 ##Generar demanda clientes
169

170 np.random.seed (0)
171

172 #Numero de clientes
173 num_clientes = 20
174

175 # Generar demanda con distribucion uniforme en el intervalo [20, 100]
176 demanda_i = np.array(np.round(np.random.uniform (20, 100, num_clientes)))
177 lambda_i = np.array(np.round(np.random.uniform (0.2, 0.8, num_clientes)))
178

179 print("Demanda de los clientes:")
180 print(demanda_i)
181

182 print("Proporcion minima de demanda a satisfacer de los clientes:")
183 print(lambda_i)
184

185 import random
186 random.seed (0)
187 f_values = [random.randint (100, 150) for _ in range (10)]
188 print(f_values)
189

190 ##Problema relajado con 20 clientes y 10 instalaciones
191

192 mrelajado =gp.Model("mip", env = env)
193 # Conjuntos
194 I = [i for i in range (0 ,20)]
195 J = [j for j in range (0 ,10)]
196

197 # Parametros
198 d = {i: demanda_i[i] for i in I}
199 #lambda_i ={i: 0.1 for i in I}
200 #lambda_i ={i: 0.5 for i in I}
201 lambda_i ={i: 0.9 for i in I}
202 #lambda_i
203 f = f_values
204 g = 1 #se puede asumir g_j=g
205

206 # Variables
207 x = mrelajado.addVars(J, vtype=GRB.BINARY , name="x")
208 z = mrelajado.addVars(J, vtype=GRB.CONTINUOUS , name="z")
209 y = mrelajado.addVars(I, J, vtype=GRB.CONTINUOUS , name="y")
210

211 # Funcion objetivo
212 mrelajado.setObjective(gp.quicksum(f[j] * x[j] + g * z[j] for j in J),GRB.

MINIMIZE)
213

214 # Restricciones
215 mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J) >= lambda_i[i] *d[i] for i

in I))
216 mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J) <= d[i] for i in I))
217 mrelajado.addConstrs ((gp.quicksum(y[i, j] for i in I) <= z[j] for j in J))
218 mrelajado.addConstrs ((y[i, j] <= d[i] * x[j] for i in I for j in J))
219

220 # Optimize the model
221 mrelajado.optimize ()
222

223 ## Problema primal para el nivel inferior (empresa) con los valores de z_j
obtenidos en el problema relajado

224 mprimal = gp.Model("mip", env = env)
225

226 # Conjuntos
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227 I = [i for i in range (0 ,20)]
228 J = [j for j in range (0 ,10)]
229

230 # Parametros
231 d=demanda_i
232 z=[0,0,0,543.7,0,0,0,0,0,0]
233 pi = 50- matriz_distancias
234

235 # Variables
236 y = mprimal.addVars(I, J, vtype=GRB.CONTINUOUS , name="y")
237

238 mprimal.update ()
239

240 #Funcion Objetivo
241 objective = gp.quicksum(pi[i][j] * y[i, j] for i in I for j in J)
242 mprimal.setObjective(objective , GRB.MAXIMIZE)
243

244 mprimal.update ()
245

246 # Restricciones
247 for i in I:
248 mprimal.addConstr(gp.quicksum(y[i, j] for j in J) <= d[i])
249

250 for j in J:
251 mprimal.addConstr(gp.quicksum (y[i, j] for i in I) <= z[j])
252

253 # Optimizar
254 mprimal.optimize ()
255

256 ## Problema lineal para los escenarios propuestos con 20 clientes y 10
instalaciones

257

258 def modelo_lineal(instalaciones , clientes , distancias , demandas , precios , pi,
259 lambdaa , costes_fijos , costes_variables , M1, M2, M3 , M4 , M5,

M6 ):
260 ’’’
261 instalaciones: conjunto de las instalaciones de las que se dispone
262 clientes: conjunto de clientes que tienen demanda
263 distancias: distancia desde el cliente i a la instalacion j. Se asume que

el coste es igual a la distancia
264 demandas: demanda del cliente i
265 precios: precio que paga el cliente i por que se le atienda su demanda
266 pi: ganancia unitaria por atender la demanda , es el precio -distancias
267 lambdaa: porcentaje minimo de demanda que se esta obligado a satisfacer
268 costes_fijos: costes que tiene el lider por abrir una instalacion j
269 costes_variables: costes que tiene el lider por cada unidad de capacidad de

la instalacion j
270 M1 , M2 , M3, M4, M5 , M6: cotas validas para sus correspondientes

restricciones
271 ’’’
272 mlineal = gp.Model("mip", env = env)
273

274 #mlineal.setParam (" OutputFlag", 0)
275

276 # Variables
277 x = mlineal.addVars(instalaciones , vtype=GRB.BINARY , name="x")
278 z = mlineal.addVars(instalaciones , vtype=GRB.CONTINUOUS , name="z")
279 y = mlineal.addVars(clientes , instalaciones , vtype=GRB.CONTINUOUS , name="y")
280

281 w = mlineal.addVars(clientes , vtype=GRB.CONTINUOUS , name="w")
282 u = mlineal.addVars(instalaciones , vtype=GRB.CONTINUOUS , name="u")
283

284 alpha = mlineal.addVars(clientes , vtype=GRB.BINARY , name="alpha")
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285 beta = mlineal.addVars(instalaciones , vtype=GRB.BINARY , name="beta")
286 gamma = mlineal.addVars(clientes , instalaciones , vtype=GRB.BINARY , name="

gamma")
287

288 # Funcion Objetivo
289 objective=gp.quicksum(costes_fijos[j] * x[j] for j in instalaciones) + gp.

quicksum(costes_variables * z[j] for j in instalaciones)
290 mlineal.setObjective(objective , GRB.MINIMIZE)
291

292 # Restricciones
293 mlineal.addConstrs ((gp.quicksum(y[i, j] for j in instalaciones) >= lambdaa[i

] *demandas[i] for i in clientes))
294 mlineal.addConstrs ((gp.quicksum(y[i, j] for j in instalaciones) <= demandas[

i] for i in clientes))
295 mlineal.addConstrs ((gp.quicksum(y[i, j] for i in clientes) <= z[j] for j in

instalaciones))
296 mlineal.addConstrs ((w[i] + u[j] >= pi[i, j] * x[j] for i in clientes for j

in instalaciones))
297 mlineal.addConstrs ((y[i, j] <= demandas[i] * x[j] for i in clientes for j in

instalaciones))
298 mlineal.addConstrs ((y[i, j] <= M1[i] * (1 - gamma[i, j]) for i in clientes

for j in instalaciones))
299 mlineal.addConstrs (( demandas[i] - gp.quicksum(y[i, j] for j in instalaciones

) <= M2[i] * (1 - alpha[i]) for i in clientes))
300 mlineal.addConstrs ((z[j] - gp.quicksum(y[i, j] for i in clientes) <= M3[j] *

(1 - beta[j]) for j in instalaciones))
301 mlineal.addConstrs ((w[i] <= M4[i] * alpha[i] for i in clientes))
302 mlineal.addConstrs ((u[j] <= M5[j] * beta[j] for j in instalaciones))
303 mlineal.addConstrs ((u[j] <= M5[j] * x[j] for j in instalaciones))
304 mlineal.addConstrs ((w[i] + u[j] - pi[i, j] <= M6 * gamma[i, j] for i in

clientes for j in instalaciones))
305

306 # Optimizar
307 mlineal.optimize ()
308

309 if mlineal.status == GRB.INFEASIBLE:
310 print(’El modelo es infactible ’)
311 return None , None , None , None , None , None , None
312 else:
313

314 #Instalaciones abiertas
315 decision_instalaciones=pd.DataFrame ()
316 for j in instalaciones:
317 decision_instalaciones.loc[j,’x’]=x[j].X
318 decision_instalaciones.loc[j,’z’]=z[j].X
319 # decision_instalaciones.loc[j,’Capacidad_utilizada ’]=sum(y[i,j].X

for i in clientes)
320

321 #Valores funciones objetivo
322 #lider
323 vfo_lider=mlineal.ObjVal
324 #seguidor
325 vfo_seguidor=sum(pi[i,j]*y[i, j].X for i in clientes for j in

instalaciones)
326

327 #demanda satisfecha
328 demanda_satisfecha=pd.DataFrame ()
329 for i in clientes:
330 demanda_satisfecha.loc[i,’Demanda_satisfecha ’]=( sum(y[i,j].X for j

in instalaciones)/demandas[i])*100
331

332 #numero de clientes con demanda satisfecha al 100 %
333 clientes_demanda_satisfecha=len(demanda_satisfecha[demanda_satisfecha.
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Demanda_satisfecha ==100]. index)
334

335 #numero de clientes con demanda satisfecha al min
336 clientes_min_demanda_satisfecha=len(demanda_satisfecha[

demanda_satisfecha.Demanda_satisfecha == lambdaa *100]. index)
337

338 #variables y_{ij}
339 variables_y_ij = pd.DataFrame(index=clientes , columns=instalaciones)
340 for i in clientes:
341 for j in instalaciones:
342 variables_y_ij.loc[i, j] = y[i, j].X
343

344

345 return decision_instalaciones , vfo_lider , vfo_seguidor ,
demanda_satisfecha , clientes_demanda_satisfecha ,
clientes_min_demanda_satisfecha , variables_y_ij

346

347 escenarios=range (0,6)
348

349 resultados=dict()
350

351 for e in escenarios:
352 resultados[e]=dict()
353

354 # Conjuntos
355 I = [i for i in range (0 ,20)]
356 J = [j for j in range (0 ,10)]
357

358 # Parametros
359 d=demanda_i
360 p_i = np.array([
361 [74 for _ in I],
362 [119 for _ in I],
363 [96.5 for _ in I],
364 [min(matriz_distancias[i, :]) for i in I],
365 [max(matriz_distancias[i, :]) for i in I],
366 [(max(matriz_distancias[i, :]) + min(matriz_distancias[i, :])) / 2 for i

in I]
367 ]).T
368

369 pi = p_i[:,e:e+1] - matriz_distancias
370 #lambda_i=np.array ([0.1 for i in I])
371 #lambda_i=np.array ([0.5 for i in I])
372 #lambda_i=np.array ([0.9 for i in I])
373

374 f = f_values
375 g = 1 #se puede asumir g_j=g
376

377 # Valores M_n
378 M1 = {i: d[i] for i in I}
379 M2 = {i: (1 - lambda_i[i]) * d[i] for i in I}
380 M3 = {j: sum(d[i] for i in I) for j in J}
381 M4 = {i: max(0,max([pi[i, j] for j in J])) for i in I}
382 M5 = {j: max(0,max([pi[i, j] for i in I])) for j in J}
383 M6 = max(0, max([pi[i,j] for i in I for j in J] ))
384

385

386 result=modelo_lineal(J,I,matriz_distancias ,demanda_i ,p_i ,pi ,lambda_i ,f,g,M1 ,M2
,M3 ,M4 ,M5 ,M6)

387 resultados[e][’decision_instalaciones ’]= result [0]
388 resultados[e][’vfo_lider ’]= result [1]
389 resultados[e][’vfo_seguidor ’]= result [2]
390 resultados[e][’demanda_satisfecha ’]= result [3]
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391 resultados[e][’clientes_demanda_satisfecha ’]= result [4]
392 resultados[e][’clientes_min_demanda_satisfecha ’]= result [5]
393 resultados[e][’variables_y_ij ’]= result [6]
394

395 resultados
396

397 ## Generar 100 clientes
398 random.seed (1)
399 num_clientes = 100
400

401 # Posiciones aleatorias para los clientes
402 posiciones_clientes = [( random.randint(0, ancho_plano -1), random.randint(0,

alto_plano -1)) for _ in range(num_clientes)]
403 print("Posiciones de los clientes:", posiciones_clientes)
404

405 ## Matriz distancias c_{ij} de cada cliente , a cada instalacion
406 import math
407 matriz_distancias = []
408

409 for cliente in posiciones_clientes:
410 fila_distancias = []
411 for instalacion in posiciones_instalaciones:
412 distancia = math.ceil(math.sqrt(( cliente [0] - instalacion [0]) **2 + (

cliente [1] - instalacion [1]) **2))
413 fila_distancias.append(distancia)
414 matriz_distancias.append(fila_distancias)
415 matriz_distancias=np.array(matriz_distancias)
416 matriz_distancias
417

418 ##Generar demanda 100 clientes
419

420 np.random.seed (0)
421

422 #Numero de clientes
423 num_clientes = 100
424

425 # Generar demanda con distribucion uniforme en el intervalo [20, 100]
426 demanda_i = np.round(np.random.uniform (20, 100, num_clientes))
427 lambda_i = np.round(np.random.uniform (0.2, 0.8, num_clientes) ,1)
428

429 print("Demanda de los clientes:")
430 print(demanda_i)
431

432 print("Proporcion minima de demanda a satisfacer de los clientes:")
433 print(lambda_i)
434

435 ##Problema relajado para 100 clientes
436

437 mrelajado =gp.Model("mip", env = env)
438 # Conjuntos
439 I = [i for i in range (0 ,100)]
440 J = [j for j in range (0 ,10)]
441

442 # Parametros
443 d = {i: demanda_i[i] for i in I}
444

445 #lambda_i ={i: 0.1 for i in I}
446 #lambda_i ={i: 0.5 for i in I}
447 #lambda_i ={i: 0.9 for i in I}
448 #lambda_i
449 f = f_values
450 g = 1 #se puede asumir g_j=g
451
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452 # Variables
453 x = mrelajado.addVars(J, vtype=GRB.BINARY , name="x")
454 z = mrelajado.addVars(J, vtype=GRB.CONTINUOUS , name="z")
455 y = mrelajado.addVars(I, J, vtype=GRB.CONTINUOUS , name="y")
456

457 # Funcion objetivo
458 mrelajado.setObjective(gp.quicksum(f[j] * x[j] + g * z[j] for j in J),GRB.

MINIMIZE)
459

460 # Restricciones
461 mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J) >= lambda_i[i] *d[i] for i

in I))
462 mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J) <= d[i] for i in I))
463 mrelajado.addConstrs ((gp.quicksum(y[i, j] for i in I) <= z[j] for j in J))
464 mrelajado.addConstrs ((y[i, j] <= d[i] * x[j] for i in I for j in J))
465

466 # Optimize the model
467 mrelajado.optimize ()
468

469 ## Problema lineal para los seis escenarios propuestos
470

471 def modelo_lineal(instalaciones , clientes , distancias , demandas , precios , pi,
472 lambdaa , costes_fijos , costes_variables , M1, M2, M3 , M4 , M5,

M6 ):
473 ’’’
474 instalaciones: conjunto de las instalaciones de las que se dispone
475 clientes: conjunto de clientes que tienen demanda
476 distancias: distancia desde el cliente i a la instalacion j. Se asume que

el coste es igual a la distancia
477 demandas: demanda del cliente i
478 precios: precio que paga el cliente i por que se le atienda su demanda
479 pi: ganancia unitaria por atender la demanda , es el precio -distancias
480 lambdaa: porcentaje minimo de demanda que se esta obligado a satisfacer
481 costes_fijos: costes que tiene el lider por abrir una instalacion j
482 costes_variables: costes que tiene el lider por cada unidad de capacidad de

la instalacion j
483 M1 , M2 , M3, M4, M5 , M6: cotas validas para sus correspondientes

restricciones
484 ’’’
485 mlineal = gp.Model("mip", env = env)
486

487 #mlineal.setParam (" OutputFlag", 0)
488

489 # Variables
490 x = mlineal.addVars(instalaciones , vtype=GRB.BINARY , name="x")
491 z = mlineal.addVars(instalaciones , vtype=GRB.CONTINUOUS , name="z")
492 y = mlineal.addVars(clientes , instalaciones , vtype=GRB.CONTINUOUS , name="y")
493

494 w = mlineal.addVars(clientes , vtype=GRB.CONTINUOUS , name="w")
495 u = mlineal.addVars(instalaciones , vtype=GRB.CONTINUOUS , name="u")
496

497 alpha = mlineal.addVars(clientes , vtype=GRB.BINARY , name="alpha")
498 beta = mlineal.addVars(instalaciones , vtype=GRB.BINARY , name="beta")
499 gamma = mlineal.addVars(clientes , instalaciones , vtype=GRB.BINARY , name="

gamma")
500

501 # Funcion Objetivo
502 objective=gp.quicksum(costes_fijos[j] * x[j] for j in instalaciones) + gp.

quicksum(costes_variables * z[j] for j in instalaciones)
503 mlineal.setObjective(objective , GRB.MINIMIZE)
504

505 # Restricciones
506 mlineal.addConstrs ((gp.quicksum(y[i, j] for j in instalaciones) >= lambdaa[i
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] *demandas[i] for i in clientes))
507 mlineal.addConstrs ((gp.quicksum(y[i, j] for j in instalaciones) <= demandas[

i] for i in clientes))
508 mlineal.addConstrs ((gp.quicksum(y[i, j] for i in clientes) <= z[j] for j in

instalaciones))
509 mlineal.addConstrs ((w[i] + u[j] >= pi[i, j] * x[j] for i in clientes for j

in instalaciones))
510 mlineal.addConstrs ((y[i, j] <= demandas[i] * x[j] for i in clientes for j in

instalaciones))
511 mlineal.addConstrs ((y[i, j] <= M1[i] * (1 - gamma[i, j]) for i in clientes

for j in instalaciones))
512 mlineal.addConstrs (( demandas[i] - gp.quicksum(y[i, j] for j in instalaciones

) <= M2[i] * (1 - alpha[i]) for i in clientes))
513 mlineal.addConstrs ((z[j] - gp.quicksum(y[i, j] for i in clientes) <= M3[j] *

(1 - beta[j]) for j in instalaciones))
514 mlineal.addConstrs ((w[i] <= M4[i] * alpha[i] for i in clientes))
515 mlineal.addConstrs ((u[j] <= M5[j] * beta[j] for j in instalaciones))
516 mlineal.addConstrs ((u[j] <= M5[j] * x[j] for j in instalaciones))
517 mlineal.addConstrs ((w[i] + u[j] - pi[i, j] <= M6 * gamma[i, j] for i in

clientes for j in instalaciones))
518

519 # Optimizar
520 mlineal.optimize ()
521

522 if mlineal.status == GRB.INFEASIBLE:
523 print(’El modelo es infactible ’)
524 return None , None , None , None , None , None , None
525 else:
526

527 #Instalaciones abiertas
528 decision_instalaciones=pd.DataFrame ()
529 for j in instalaciones:
530 decision_instalaciones.loc[j,’x’]=x[j].X
531 decision_instalaciones.loc[j,’z’]=z[j].X
532 # decision_instalaciones.loc[j,’Capacidad_utilizada ’]=sum(y[i,j].X

for i in clientes)
533

534 #Valores funciones objetivo
535 #lider
536 vfo_lider=mlineal.ObjVal
537 #seguidor
538 vfo_seguidor=sum(pi[i,j]*y[i, j].X for i in clientes for j in

instalaciones)
539

540 #demandad satisfecha
541 demanda_satisfecha=pd.DataFrame ()
542 for i in clientes:
543 demanda_satisfecha.loc[i,’Demanda_satisfecha ’]=( sum(y[i,j].X for j

in instalaciones)/demandas[i])*100
544

545 #numero de clientes con demanda satisfecha al 100 %
546 clientes_demanda_satisfecha=len(demanda_satisfecha[demanda_satisfecha.

Demanda_satisfecha ==100]. index)
547

548 #numero de clientes con demanda satisfecha al min
549 clientes_min_demanda_satisfecha=len(demanda_satisfecha[

demanda_satisfecha.Demanda_satisfecha == lambdaa *100]. index)
550

551 #variables y_{ij}
552 variables_y_ij = pd.DataFrame(index=clientes , columns=instalaciones)
553 for i in clientes:
554 for j in instalaciones:
555 variables_y_ij.loc[i, j] = y[i, j].X



Silvia Álvarez Tena 49

556

557

558 return decision_instalaciones , vfo_lider , vfo_seguidor ,
demanda_satisfecha , clientes_demanda_satisfecha ,
clientes_min_demanda_satisfecha , variables_y_ij

559

560 escenarios=range (0,2)
561

562 resultados=dict()
563

564 for e in escenarios:
565 resultados[e]=dict()
566

567 # Conjuntos
568 I = [i for i in range (0 ,100)]
569 J = [j for j in range (0 ,10)]
570

571 # Parametros
572 d=demanda_i
573 p_i = np.array([
574 [74 for _ in I],
575 [119 for _ in I],
576 [96.5 for _ in I],
577 [min(matriz_distancias[i, :]) for i in I],
578 [max(matriz_distancias[i, :]) for i in I],
579 [(max(matriz_distancias[i, :]) + min(matriz_distancias[i, :])) / 2 for i

in I]
580 ]).T
581

582 pi = p_i[:,e:e+1] - matriz_distancias
583 #lambda_i=np.array ([0.1 for i in I])
584 #lambda_i=np.array ([0.5 for i in I])
585 #lambda_i=np.array ([0.5 for i in I])
586

587 f = f_values
588 g = 1 #se puede asumir g_j=g
589

590 # Valores M_n
591 M1 = {i: d[i] for i in I}
592 M2 = {i: (1 - lambda_i[i]) * d[i] for i in I}
593 M3 = {j: sum(d[i] for i in I) for j in J}
594 M4 = {i: max(0,max([pi[i, j] for j in J])) for i in I}
595 M5 = {j: max(0,max([pi[i, j] for i in I])) for j in J}
596 M6 = max(0, max([pi[i,j] for i in I for j in J] ))
597

598

599 result=modelo_lineal(J,I,matriz_distancias ,demanda_i ,p_i ,pi ,lambda_i ,f,g,M1 ,M2
,M3 ,M4 ,M5 ,M6)

600 resultados[e][’decision_instalaciones ’]= result [0]
601 resultados[e][’vfo_lider ’]= result [1]
602 resultados[e][’vfo_seguidor ’]= result [2]
603 resultados[e][’demanda_satisfecha ’]= result [3]
604 resultados[e][’clientes_demanda_satisfecha ’]= result [4]
605 resultados[e][’clientes_min_demanda_satisfecha ’]= result [5]
606 resultados[e][’variables_y_ij ’]= result [6]
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