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Resumen

La gestion de residuos urbanos es un campo crucial para la sostenibilidad medioambiental, que persi-
gue minimizar la generacién de desechos y maximizar su reutilizacién y reciclaje. Las primeras decisio-
nes al disefiar un sistema de gestion de residuos se refieren a la planificacion estratégica de ubicacién de
instalaciones, como vertederos y centros de reciclaje, y determinacién de sus capacidades, que faciliten
la gestién eficaz de los residuos en su recogida y tratamiento, y se reduzca el impacto medioambiental.
Este trabajo fin de grado (TFG) se centra en la aplicacién de modelos de optimizacion binivel cuando en
la gestidn de los residuos intervienen varios agentes en la toma de decisiones, situados en una estructura
jerdrquica de decision.

En el primer capitulo, se presentan las caracteristicas de los sistemas de residuos s6lidos urbanos
que van a considerarse en el TFG, y su relevancia actual para alcanzar las metas establecidas por los
Objetivos de Desarrollo Sostenible. En relacién con los modelos matematicos utilizados, se presentan los
modelos de optimizacién binivel asi como las dificultades que surgen en la definicién de las soluciones
factibles del problema y la existencia de cierto tipo de restricciones. El capitulo finaliza describiendo una
aproximacion habitual en la resolucién de los modelos binivel y las principales contribuciones de este
TFG.

En el segundo capitulo, se introducen tres modelos de optimizacién binivel que abordan el problema
de ubicacion de instalaciones para la gestion de residuos. En el nivel superior de decision, una autoridad
decide qué instalaciones se abren y con qué capacidad, para minimizar el coste total de apertura. En el
primer modelo, en el nivel inferior, una empresa determina, una vez conoce las instalaciones abiertas y su
capacidad, cémo asigna los clientes a cada una de las instalaciones, atendiendo al beneficio que le reporta.
En el segundo modelo, la autoridad determina la apertura de las instalaciones y asigna una capacidad en
cada instalacion para cada cliente. Cada cliente tiene un rol activo y éstos deciden a qué Unica instalacién
se van a dirigir para tratar los residuos, atendiendo a su beneficio. Este modelo se extiende flexibilizando
que cada cliente pueda llevar los residuos a mds de una instalacién. El tercer modelo es una extensién
del segundo al considerar varios tipos de residuos. En el TFG, se considera una formulacién alternativa
del primer modelo, que se denota por BFLP-E, y se demuestra su reformulacién como un problema de
un solo nivel que puede ser resuelto por un software de optimizacion.

Finalmente, en el tercer capitulo, se realiza una experiencia computacional con el modelo BFLP-
E. En primer lugar, un ejemplo contribuye a ilustrar las caracteristicas especiales de los modelos de
optimizacién binivel. En particular, permite visualizar cémo las decisiones tomadas por el nivel superior
afectan al nivel inferior, y viceversa. Esto muestra la necesidad de abordar los problemas de decision
con una estructura jerdrquica a partir de los modelos binivel. En la segunda parte del capitulo, se han
generado aleatoriamente, dos ejemplos de mayor tamafo y varios escenarios para analizar la influencia,
en las soluciones del modelo, de dos pardmetros del problema: los precios del servicio y la proporcién
minima de demanda a satisfacer a los clientes. Esta experiencia computacional se ha programado en
Python utilizando el software de optimizacién Gurobi.
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Abstract

Urban waste management is crucial for environmental sustainability, aiming to minimize waste ge-
neration and maximize reuse and recycling. The first steps in designing a waste management system in-
clude strategically planning the location of facilities like landfills and recycling centers, and determining
their capacities to ensure efficient waste collection and treatment, and to reduce environmental impact.
This Final Degree Project focuses on applying bilevel optimization models in waste management, where
multiple agents are involved in decision-making within a hierarchical structure. These models help solve
complex planning and management issues by considering the interactions and potential conflicts between
different decision levels, aiming to find optimal, efficient, and sustainable solutions.

Chapter 1 presents the characteristics of the urban solid waste systems to be considered in this project,
along with their current relevance in achieving the goals set by the Sustainable Development Goals.
Regarding the mathematical models used, bilevel optimization models are introduced, as well as the
difficulties that arise from defining feasible solutions to the problem and the existence of certain types of
constraints. The chapter concludes by describing a common approach to solving bilevel models and the
main contributions of this final degree project.

Chapter 2 introduces three bilevel optimization models addressing the facility location problem for
waste management. In the upper decision level, an authority decides which facilities to open and their
capacities to minimize the total opening cost. In the first model, at the lower level, a company determines,
once the open facilities and their capacities are known, how to assign clients to each facility based on
the generated profit. In the second model, the authority determines the facility openings and assigns a
capacity to each facility for each client. Each client has an active role and decides which single facility to
go to for waste treatment based on their benefit. This model is extended by allowing each client to distri-
bute their waste to more than one facility. The third model is an extension of the second one, considering
multiple types of waste. In this project, an alternative formulation of the first model, denoted as BFLP-E,
is considered, and its reformulation as a single-level problem that can be solved by optimization software
is demonstrated.

Finally, in the third chapter, a computational experiment is conducted with the BFLP-E model. First,
an example helps illustrate the special characteristics of bilevel optimization models. In particular, it
allows visualizing how the upper level decisions affect the lower level, and vice versa. This demonstrates
the need of addressing decision-making problems with a hierarchical structure using bilevel models.
In the second part of the chapter, two larger examples and several scenarios are randomly generated to
analyze the influence of two problem parameters on the model solutions: service prices and the minimum
proportion of demand to be satisfied for clients. This computational experiment is programmed in Python
using the Gurobi optimization software.
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Capitulo 1

Introduccion

1.1. Sistemas de gestion de residuos

Hoy en dia, el consumo y la gran cantidad de residuos que produce la industria estd generando una
grave preocupacion mundial. La generacién mundial de residuos sélidos urbanos (MSW, del inglés mu-
nicipal solid waste) es catastréfica y se prevé que serd de mas de 2200 millones de toneladas/afio para
2025. La eliminacién directa en vertederos (sin ningtn tratamiento previo) de los MSW provoca varios
problemas ambientales, como emisiones de gases de efecto invernadero y de compuestos organicos vo-
latiles peligrosos, asi como olores y contaminacién de aguas subterrdneas debido a filtraciones. Ademas,
el 11 % del metano mundial se genera debido a la mala gestién de los MSW y se considera la tercera
fuente antropogénica mas grande de gases de efecto invernadero. Por todo ello, gestionar los desechos
de manera sostenible, ha de ser el principal objetivo de la sociedad a nivel mundial [10].

La gestién de residuos abarca varios procesos: recoleccion, transporte, procesado, reciclado, dese-
chado y monitorizado [7]. El objetivo que se persigue es minimizar el impacto de los residuos en la
tierra utilizada y en la poblacion a nivel mundial. Actualmente, los Objetivos de Desarrollo Sostenible
(ODS) constituyen un llamamiento universal a la accidn para, entre otros fines, proteger el planeta [11].
La Agenda2030 establece las acciones y metas a alcanzar hasta 2030. En lo que concierne a la gestién
de residuos cabe destacar los dos siguientes:

= Objetivo 11: Ciudades y comunidades sostenibles.
Recientemente, la expansion urbana esta superando el crecimiento de la poblacién en la mayoria de
las ciudades, con efectos perjudiciales sobre la sostenibilidad. Es por ello que este objetivo busca
ciudades mds sostenibles. En concreto, su meta 11.6 hace referencia a la gestion de los desechos
municipales, asi como a una reduccién del impacto medioambiental que éstos conllevan [11].

= Objetivo 12: Produccion y consumo responsables.
El consumo poblacional ha aumentado significativamente en los dltimos afos. Por ello, este objeti-
vo trata de aumentar la eficiencia de recursos, al mismo tiempo que promover una vida sostenible.
En particular, en sus metas 12.4 y 12.5, apela a la necesidad de una reduccién en la generacion de
los residuos asi como a una adecuada gestion de los mismos [11].

En definitiva, la gestién de los MSW es un problema mundial que se debe manejar de manera sos-
tenible. Este Trabajo Fin de Grado (TFG) se va a centrar en la toma de decisiones sobre la ubicacién de
instalaciones para el tratamiento de los residuos urbanos tras su recogida y segregacion. La Figura 1.1
muestra el esquema de un posible sistema de gestién de residuos urbanos [7]. Los ciudadanos deposi-
tan sus residuos en centros de recogida, y a continuacién, una autoridad local transporta los residuos a
instalaciones de clasificacion. Una vez clasificados, los restos son enviados a un vertedero o a un incine-
rador, todo ello con el principal objetivo de minimizar el impacto medioambiental. Esta gestion se ha de
realizar de forma que se minimicen los costes de transporte y de apertura de las instalaciones necesarias,
mientras se satisfacen las demandas de la poblacidn, en relacion al tratamiento de los MSW, y se atiende
a criterios medioambientales.
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Existen distintas maneras de abordar el problema de gestién de los MSW y una de ellas consiste en
modelar el sistema real mediante un problema de optimizacién matematica. Caramia y Pizzari [7] consi-
deran la gestion de los MSW como un proceso de toma de decisiones jerarquico, en el que el lider o nivel
superior de decisién, toma sus decisiones, y el seguidor o nivel inferior, reacciona a las mismas, tomando
las decisiones que considera segin sus propios objetivos. En la Figura 1.1 se observa que las decisiones
sobre la apertura de instalaciones de clasificacion y tratamiento son tomadas por el decisor denominado
leader (rectdngulos blancos) y las decisiones sobre el transporte, por otro decisor denominado follower
(rectangulos grises). El modelo que va a permitir representar adecuadamente este proceso de toma de
decisiones, es un modelo de optimizacion binivel. En el siguiente apartado, se introducen los conceptos
fundamentales sobre estos modelos de optimizacién matematica.

COLLECTION
CENTRE

SORTING
FACILITY

LEADER LEADER

Figura 1.1: Red de gestion de residuos y sus correspondientes dreas de decisidon. Fuente: [7]

1.2. Optimizacion binivel

La optimizacion binivel (BP, del inglés Bilevel Programming) se propone como una generalizacion
de la optimizacién matematica estdndar para modelar adecuadamente la toma de decisiones en un sis-
tema jerarquico con dos niveles de decision. Estos sistemas se caracterizan por la existencia de una
jerarquia organizativa entre ellos, a menudo con objetivos diferentes y conflictivos, y controlando cada
uno, Unicamente algunas variables de decision. Es por ello, que el comportamiento de cada decisor se
ve afectado por las decisiones tomadas en el otro nivel de decisioén [9]. El decisor, situado en el nivel
superior y conocido como lider, determina el valor de las variables de decisién que éste controla con el
proposito de optimizar su funcién objetivo. Ademds, debe tener en cuenta, la reaccion del decisor del
nivel inferior, llamado seguidor. Este decisor, conocida la decision del lider, resuelve su propio problema
de optimizacién, cuya funcién objetivo y restricciones, pueden estar parcialmente determinadas por las
decisiones del lider. Por lo tanto, un problema de BP es un modelo de optimizacién en el que la regién
de factibilidad est4 implicitamente determinada por otro problema de optimizacién. Se puede escribir, en
su forma general, de la siguiente manera:

“min”  fi(x.y)
sujeto a:  g(x,y) <0
x>0,

donde, para cada x, y es solucion de: (1.1)
min f2(x.y)
sujeto a: A(x,y) <0

y =0,



Un modelo de optimizacién binivel en la gestion de residuos - Silvia Alvarez Tena 3

donde x € R™ son las variables de decisién controladas por el lider; y € R" las variables de decisién
controladas por el seguidor; f; y f> son las funciones objetivo del lider y del seguidor, respectivamente;
g(x,y) : R — R™ y p(x,y) : R"*" — R"™ determinan el conjunto de restricciones del problema.
En la siguiente subseccion se detalla la razén de “min”.

X
Este TFG se va a centrar en problemas de optimizacion binivel lineales [3] (LBP, del inglés Linear
Bilevel Programming), en los que en el problema (1.1) todas las funciones y restricciones son lineales.
A continuacién se muestra una formulacién general para un LBP:

“min” c1x+dyy (1.2a)

X
sujeto a: A;x+B1y < by (1.2b)
x>0, (1.2¢)

donde, dado x, y es solucién del problema:

min doy (1.2d)

y
sujeto a:  Ayx+ By < b, (1.2e)
y>0, (1.2f)

donde para i = 1,2, ¢; y d; son vectores fila de dimensién n; y ny, respectivamente; b; es un vector de
dimensién m;, A; es una matriz m; X n; y B; es una matriz m; X ny. Las variables de decision del lider y
del seguidor, x e y, respectivamente, se asumen no negativas.

Ejemplo 1.2.1. Sea el siguiente problema binivel lineal en el que el nivel superior controla la variable z
y las variables x, y son controladas por el nivel inferior:

“ml’n” xX—z
z
sujetoa: z<3
z>0
donde, dado z, (x,y) resuelve :

max x+y

X,y

sujetoa: x+y<5
x>0, y>0

En la Figura 1.2 se puede ver representado el poliedro determinado por todas las restricciones.

1.2.1. Definicion de solucion factible

La funcidn objetivo del lider (1.2a) consiste en minimizar, asi como la funcién objetivo del seguidor,
(1.2d). Sea R el poliedro definido por las restricciones del problema del nivel superior (1.2b)-(1.2¢) y
S el poliedro definido por las restricciones del problema del nivel inferior (1.2e)-(1.2f). El conjunto de
restricciones comunes definen un poliedro 7 = RN S.

Sea R; C R™, la proyeccién del poliedro R en R"™, entonces dado x € Ry, el problema del nivel
inferior viene dado por (1.2d)-(1.2f). Sea S(x) = {y € R" : (x,y) € S} el conjunto de soluciones factibles
del problema del nivel inferior fijado x, y M (x) el conjunto de soluciones 6ptimas. En la formulacién (1.2)
se indica “mxl’n” porque cuando en el problema del nivel inferior tiene solucién éptima muiltiple, esto es,

el conjunto M(x) contiene mas de un punto, no esté claro qué solucién y € M(x) elegira el decisor del
nivel inferior.

La region factible del problema de optimizacién binivel (1.2), denominada region inducida, se define:

IR={(x,y): (x,y) €T,y e M(x)}



4 Capitulo 1. Introduccién

En la literatura, se han utilizado principalmente dos aproximaciones para dar respuesta a la existencia
de 6ptimo multiple en el nivel inferior para una decisién dada del nivel superior. La mas habitual o apro-
ximacion optimista consiste en asumir que el nivel superior tiene influencia sobre el nivel inferior para
que éste elija siempre la solucién 6ptima que mas le conviene al nivel superior. Asi, entre las multiples
soluciones 6ptimas del nivel inferior, éste siempre se queda con la que da un mejor valor a la funcién
objetivo del nivel superior. En este caso, la regién inducida se define de la siguiente manera:

IR ={(x,y): (x,y) € T,y €arg min fi(x,y)}
YEM (x)

y en lugar de, “min”, se puede escribir min.
X X,y
Otra aproximacion utilizada en la literatura, asume que el nivel inferior siempre escoge la solucién

optima que menos le conviene al nivel superior, es decir, aquella que proporciona un peor valor a su
funcién objetivo. En este caso, se denomina aproximacion pesimista y la regién inducida se define:

IR={(x,y): (x,y) € T,y € arg max fi(x,y)}
yEM (x)

En este TFG se va a utilizar la aproximacién optimista en el tratamiento de los modelos binivel formula-
dos.

Ejemplo 1.2.2. Se considera el LBP del Ejemplo 1.2.1. El objetivo del nivel superior consiste en mini-
mizar f; = x — z, mientras que el objetivo del nivel inferior consiste en maximizar f, = x+y.

Notar que si el nivel superior toma la decision z = 0, la regién de factibilidad del nivel inferior queda
definida por S(0), que corresponde a la regién azul de la Figura 1.2. El segmento entre (5,0,0) y (0,5,0)
es el conjunto de soluciones 6ptimas del problema inferior fijado z = 0, por lo que existe 6ptimo mudltiple,
es decir, el conjunto M(0) tiene mds de un elemento. Notemos que, dado un valor zg < 3, M(z9) coincide
con el segmento que une los puntos (5,0,z0) y (0,5,z0).

En el caso de la aproximacion optimista, el seguidor escoge la opcién mds conveniente para el lider
que desea minimizar x — z. Luego, la solucién del problema inferior viene dada por el punto (0,5,zp).
En la Figura 1.2, el punto en naranja es el punto factible binivel calculado con z = 0. Por tanto, la
region inducida coincide con el segmento que une los puntos (0,5,0) y (0,5, 3). Atendiendo a la funcién
objetivo del lider, la solucién del problema binivel viene dada por el punto (0,5,3), marcado en rosa en
la Figura 1.2.

Sin embargo, aplicando una aproximacién pesimista, el seguidor escoge la opcién que menos le
conviene al lider, el punto (5,0,z), esto es, el punto (5,0,0), marcado en azul en la Figura 1.2 cuando
z=0. En este caso, la regién inducida es el segmento entre los puntos (5,0,0) y (5,0,3), y la solucién
al problema binivel es el punto (5,0,3), marcado en verde en la Figura 1.2.

Z

xX+y=35

Figura 1.2: Ejemplo ilustrativo de un problema LBP con 6ptimos multiples en el nivel inferior.
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1.2.2. Restricciones en el nivel superior que incluyen variables del nivel inferior

Cuando las restricciones del nivel superior (1.2b) contienen variables del nivel inferior, se denominan
restricciones coupling y pueden provocar que el problema binivel sea no factible. Dado x € Ry, si existe
un vector y € R™ tal que (x,y) € IR, entonces x se dice admisible. En el caso de que no existan puntos
admisibles, el problema binivel es no factible [2].

Ejemplo 1.2.3. Se considera el Ejemplo 1.2.1, afiadiendo la siguiente restriccién coupling:
2x+y—10z < —10

El problema del nivel inferior no se ha modificado, por lo que fijado z = zp, el conjunto M(zp) incluye
todos los puntos del segmento (5,0,z9) y (0,5,z0). En la Figura 1.3 se ha incluido el plano que determina
la restriccion coupling. Si se considera el conjunto de soluciones 6ptimas del problema inferior para
20 = 0, el segmento marcado en negro entre los puntos (5,0,0) y (0,5,0), no verifican dicha restriccion.
Por tanto, el punto zp = 0 no es un punto admisible.

En el caso de la aproximacién optimista, el seguidor escoge la opcién mds conveniente para el lider
que desea minimizar x — z. Por tanto, cuando x = 0 y y = 5 la regidn factible es el segmento entre los
puntos (0,5,1.5) y (0,5,3), y para z < 1.5 no son puntos admisibles.

Sin embargo, en la aproximacién pesimista, el seguidor escoge la opcién que menos le conviene al
lider, el punto (5,0,z9). En este caso, la region factible es el segmento entre los puntos (5,0,2) y (5,0,3),
y para z < 2 no son puntos admisibles.

(0,0,3)

(0,5,1.5)

(5,0,2)
(5,0,0) y
x+y=5
Figura 1.3: Ejemplo ilustrativo de un problema LBP con restricciones coupling.

1.3. Reformulacion del LBP en un problema de un nivel

Un problema de especial interés relacionado con el problema (1.2) es el denominado problema rela-
jado, [3] que no considera el problema de optimizacién del nivel inferior:

min cix+dyy
X,y
sujetoa:  A;x+Bjy <by (1.3)

Arx+ Bry < b,
Xzonla yzonz

Si la solucién al problema relajado es factible binivel, el problema se considera trivial. En caso contra-
rio, el valor 6ptimo proporcionado por la solucién éptima del problema relajado, proporciona una cota
inferior del valor 6ptimo del problema binivel (1.2).
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Para abordar el problema binivel (1.2) se han propuesto en la literatura diferentes aproximaciones.
Una de ellas consiste en caracterizar el conjunto de soluciones 6ptimas del problema del nivel inferior.
Al tratarse de un problema lineal, se va a utilizar la teoria de la dualidad [1]. En el Anexo A se incluye la
relacion entre los problemas primal y dual, junto con un ejemplo.

El problema del nivel inferior en (1.2) se va a sustituir por las condiciones de Karush—Kuhn-Tucker
(KKT) que caracterizan a las soluciones 6ptimas de dicho problema. De esta forma, el problema LBP se
podra resolver como un problema de un solo nivel.

Una vez que el nivel superior fija el valor de las variables que controla, x € Ry, el problema lineal del
nivel inferior queda formulado como sigue:

min day
y
sujetoa:  Byy < by —Arx (1.4)
y Z 0112
El problema dual de (1.4) es:
max u(Ax —by)
u
sujeto a: uB, > —d; (1.5)
u >0y,

donde u es el vector fila m, de variables duales, cada una asociada con una de las restricciones del
problema primal. Aplicando la teoria de la dualidad, dado un valor x € R; fijado por el nivel superior,
y € R™ es solucién 6ptima del problema (1.4) siy solo si existe u € R™2, de variables duales, tal que se
verifican las condiciones de KKT, que se muestran a continuacion:

Byy < by —Asx

y > Op,

ub, > —d;

w0, (1.6)
(d2+uBy)y=0

ll(bz —A2X — Bzy) =0

Notar que, las dos udltimas restricciones son la suma de productos de dos términos no negativos, lo que
permite reformular el problema (1.2), asumiendo la aproximacién optimista, como un problema de un
solo nivel, en el que se despliegan las dos tltimas restricciones en (1.6) en dos conjuntos de ny y mi;
restricciones, respectivamente:

min cix+dyy

'x7y

sujeto a: A1x+ By <bg
Axx+ Byy < b,
ub; > —d, (L.7)
(dz—i—uBg),-yi:O, i=1,....,m

uj(bz—Azx—Bzy)j:O, jZl,...,n’lz
XZOnl,yzonz,uZOmz

donde dado un vector a, se ha denotado por a; a la componente k-ésima del vector.

El problema (1.7) es no lineal por el conjunto de restricciones (dy +uB3);y; =0, i=1,...,nmp y
uj(bp —Axx—Byy); =0, j=1,...,my. Estas restricciones garantizan que al menos uno de los dos
términos tiene que ser cero. Para linealizar cada una de estas restricciones, se introduce una variable
binaria y se sustituye dicha restriccion por dos restricciones adicionales. Sean las variables binarias, o; y
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ﬁj,iZL...,nz, jZl,...,mzi

o — 1 siy;=0 B — I siuj=0
"1 0 en otrocaso 771 0 en otro caso

En el caso del primer conjunto de restricciones, i = 1,...,ny:

(dz—i-uBz)i < Mo
(d2+uBy)y =0~
yi <Mr(1— o)

donde M;, M, son constantes suficientemente grandes. Cuando ¢; = 0, la primera restriccién garantiza
que (dz +uB;); <0 luego (dz +uB;); = 0, por ser éste un término no negativo, y en la segunda restric-
cién, el valor de M, ha de ser una cota vélida para y;. Cuando o; = 1, la segunda restriccién garantiza
que y; = 0, ya que y; es una variable no negativa. En la primera restriccion, (dz +uB;); < Mj, se verifica
por ser M| una cota vélida para (dy +uBy);.

Del mismo modo, el segundo conjunto de restricciones, j = 1,...,mjy:

(b2 —Aox — Boy); < M3(1 - ;)

uj(bz —AzX—Bzy)j =0<—
uj < My
donde M3 y M, son cotas vilidas para (b —A>x — Boy); y u;, respectivamente. En este caso, si ; =0
se garantiza que u; = 0y si B; = 1, que la holgura (b —A>x — Byy); = 0.

1.4. Contribucion del TFG

En este TFG se aborda el problema de ubicacién de instalaciones para la gestién de residuos urbanos
mediante la optimizacién binivel. Se ha revisado la literatura sobre este tipo de modelos y estudiado con
mayor detalle la formulacién matemética de tres modelos binivel que atienden a diferentes caracteristicas
de los sistemas de gestion de residuos. En los tres modelos, se presenta un lider o autoridad municipal
y uno o varios seguidores. Es posible que los seguidores sean directamente los clientes que utilizan las
instalaciones, o puede haber un Unico seguidor, por ejemplo, una empresa que hace de intermediario y
asigna a los clientes qué instalacion han de utilizar. Ademads, también es posible considerar la gestion de
varios tipos de residuos (papel, pléstico, vidrio, etc.).

En este TFG, se ha propuesto una formulacién alternativa para los dos modelos binivel en los que se
trata con un solo tipo de residuos. En uno de ellos hay un tnico decisor, y en el segundo de los modelos,
hay multiples seguidores, ya que son los clientes quienes utilizan directamente las instalaciones.

En la resolucién de los tres modelos, los autores de los trabajos proponen un algoritmo heuristico,
es decir, utilizan un método que solo proporciona una solucidon aproximada sin garantia de ser dptima.
En este TFG, se ha reformulado el modelo de un tnico seguidor, a partir de la formulacién alternativa
propuesta, como un problema de un solo nivel, aplicando los resultados de la teoria de la dualidad. El
problema, una vez reformulado, precisa de la linealizacién de un conjunto de restricciones, que requieren
de la obtencidn de cotas vdlidas. Tras demostrar la validez de las cotas, el problema lineal entero mixto
se resuelve con un software de optimizacion.

Finalmente, la experiencia computacional se ha realizado mediante el uso del lenguaje de programa-
cién Python y al software de optimizacién matematica Gurobi. En una primera parte, se han proporcio-
nado varios ejemplos ilustrativos. En la segunda parte de la experimentacién se han generado diversos
escenarios para evaluar el efecto en el tiempo computacional y las soluciones propuestas. En particular,
se ha estudiado el comportamiento del problema variando dos pardmetros relevantes, la demanda minima
a satisfacer de los clientes y el precio de los residuos.






Capitulo 2

Modelos de optimizacion binivel en gestion
de residuos

En este capitulo se realiza una revisién de la literatura sobre algunos problemas en gestién de re-
siduos que se han abordado a través de modelos de optimizacién binivel. En particular, se introducen
tres modelos de localizacién de instalaciones en sistemas de gestion de residuos con diferentes caracte-
risticas. En dos de los modelos se va a proponer una formulacién alternativa y extender a un caso mas
general. Ademds, el primer modelo, se va a reformular como un modelo de optimizacién de un solo nivel
para asi resolverlo con un software de optimizacion.

2.1. Descripcion del problema

En esta seccidn se aborda el problema de ubicacion de instalaciones para la gestion de residuos a
partir del modelo introducido en [6], BFLP, (del inglés Bilevel Facility Location Problem). Dado un con-
junto de ubicaciones potenciales, este problema consiste en determinar qué instalaciones han de abrirse y
con qué capacidad para atender la demanda de un conjunto de clientes mientras se minimizan los costes
de gestion del sistema.

Sea J = {1,...,m} el conjunto de instalaciones potenciales. El coste fijo de abrir una instalacién
J €J, es fj. Ademds, se denota por g;, el coste por unidad de capacidad en cada instalacién j € J.
Cuando una sola empresa decide qué instalaciones se abren, es posible asumir que g; = g, j € J, es decir,
que el coste por unidad de capacidad sea el mismo para todas las instalaciones j € J. Por otro lado, sea
I={1,...,n}, el conjunto de clientes. Para cada cliente i € I, se define d; como la demanda de servicio
del cliente, y p; el precio que paga el cliente i por unidad de demanda atendida. Ademas, sea c;; el coste
por el envio de una unidad de demanda desde el cliente i hasta la instalacién j € J, la ganancia unitaria
por la gestion de la demanda del cliente 7, atendida por la instalacion j € J, se obtiene como 7;; = p; — ¢jj.

Caramia y Costa [4] utilizan el BFLP para modelar un sistema de gestién de residuos con una estruc-
tura jerdrquica. El nivel superior decide qué instalaciones se abren, esto es, donde se abren y cudl es la
capacidad de las mismas, con el objetivo de minimizar el coste total que conlleva abrir las instalaciones
necesarias. Luego, las variables de decisién controladas por el lider son las variables binarias que deciden
sobre la apertura de las instalaciones y las variables continuas no negativas, que representan la capacidad
que se le asigna a cada instalacién:

, zj >0, jeJ

. 1 silainstalacion j se abre j € J
7771 0 en otro caso

El nivel inferior va a decidir sobre qué instalaciones va a utilizar, de las que haya abierto el nivel supe-
rior. Por ello, las variables de decisidon controladas por el nivel inferior, son las variables continuas no
negativas que representan el porcentaje de demanda enviada por el cliente 7 a la instalacién j:

¥ij =0, i€l jel

9
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De ahora en adelante, para simplificar la notacion, al conjunto de variables {x;} jcs, {vijtier, jes ¥ {2j} jess
se les denotard como X, y y z, respectivamente.

Con la notacién introducida, se van a presentar tres modelos diferentes que proporcionan sistemas de
gestion alternativos.

2.1.1. Modelo de ubicacion de instalaciones con una empresa en el nivel inferior

En este primer caso, todos los clientes son gestionados por una empresa [0] que toma la decisién co-
rrespondiente a todos ellos. La empresa, en el nivel inferior, reacciona a cada decision del nivel superior,
es decir, segtin las instalaciones que decida abrir y su capacidad, la empresa determina cémo va a realizar
el envio de los residuos de cada cliente i € I a cada instalacion abierta j € J.

El nivel inferior, la empresa, una vez informado de las instalaciones abiertas y su capacidad, trata de
satisfacer la demanda de los clientes, atendiendo a su objetivo de maximizar beneficios y determinando
qué instalacion va a satisfacer la demanda de cada cliente. Dado que la empresa no estd obligada a
satisfacer el total de la demanda de los clientes y el nivel superior no puede controlar ni aplicar ninguna
sancion por ello, se incluye una restriccion en el nivel superior que garantiza que a cada cliente i € [ se
le ha de satisfacer al menos una proporcién minima de demanda A; conocida.

La formulaciéon matemaética de este primer modelo, denotado por BFLP-e, es la siguiente:

min ijXj—f—Zng (2.1a)
XAy jel jel
sujeto a: Zyij > A, iel (2.1b)
jel
xe{0,1}, z >0, jeJ (2.1¢)

dado (x, z), y resuelve:

max Z Z d,‘T[,'jy,'j (2 ld)
y icl jeJ

sujeto a: Zyijg 1, iel (2.1e)
jeJ
Zdiyij <zj, JjeJ (2.19)
il
yij < xj, iel, jelJ 2.1g)
yij > 0, icl, jeJ (2.1h)

La funcién objetivo del nivel superior (2.1a) consiste en minimizar el coste fijo de apertura de las insta-
laciones y el coste total correspondiente a la capacidad de las instalaciones abiertas.

El conjunto de restricciones (2.1b) garantiza que para cada cliente i € I se satisfaga, entre todas
las instalaciones, una proporciéon minima A; de la demanda. Las restricciones (2.1c) indican el cardcter
binario de las variables x y que las variables z sean continuas no negativas.

El problema de la empresa queda formulado por (2.1d)-(2.1h). La funcién objetivo (2.1d) consiste
en maximizar el beneficio neto obtenido por la atencién de la demanda de todos los clientes por todas las
instalaciones.

El conjunto de restricciones (2.1e), asegura que la demanda de cada uno de los clientes, i € I no se
exceda. Las restricciones (2.1f) garantizan que para cada instalacion no se supere la capacidad disponible,
y las restricciones (2.1g) no permiten a la empresa asignar un cliente i a una instalacién j en el caso de
que esta tultima no este abierta, ya que si x; = 0, la instalacion j estd cerrada, y por la correspondiente
restriccion (2.1g) todas las variables y;; =0, i € I, j € J. Finalmente, las restricciones (2.1h) son de
signo para las variables del nivel inferior. Aunque las variables y son continuas no negativas, expresan



Un modelo de optimizacién binivel en la gestion de residuos - Silvia Alvarez Tena 11

una proporcion, por ello tomardn siempre un valor menor o igual a 1. Esto queda garantizado a partir de
las restricciones (2.1¢).

Cabe destacar que, en este modelo, las restricciones (2.1b) son coupling. Esto significa que es posible
que ciertas decisiones del nivel superior sobre la apertura y la capacidad de las instalaciones, al resolver
el problema la empresa, el valor de las variables y, no verifiquen las restricciones (2.1b). En ese caso, no
se considerard una decision admisible del nivel superior.

2.1.2. Modelo de ubicacion de instalaciones con clientes en el nivel inferior

En este caso, los clientes toman sus propias decisiones, es decir, cada uno toma sus decisiones sin
ser gestionados por una empresa [4]. Se denota por BFLP-u al modelo binivel correspondiente. En la
Figura 2.1 se muestra la estructura binivel de este sistema de gestién de residuos.

La compaiifa municipal encargada de la recogida y eliminacion de residuos se sitda en el nivel supe-
rior de la toma de decisiones y su objetivo consiste en minimizar los costes de localizacion y de capacidad
asignada a las instalaciones abiertas. En el nivel inferior, a diferencia del modelo BFLP-e, se sitian cada
una de las familias y trabajadores residentes, que han de utilizar adecuadamente los recursos, para lo
cual, son incentivados con algun tipo de utilidad. Por ejemplo, una posible forma de incentivar es que las
familias puedan reducir las tasas a pagar si realizan una buena gestion de los residuos.

BILEVEL STRUTURE OF THE STUDIED PROBLEM

MUNICIPAL
. COMPANY IN
IS " CHARGE OF WASTE
COLLECTION AND

LEADER DECISION = PISPOSAL
MAKER T —__ MINIMIZING
AIMS > OVERALL

AT LOCATION
COSTS

FAMILIES
ARE -7 WORKERS
) T RESIDENTS

FOLLOWER DECISION

MAKERS i . MAXIMIZING THEIR

AIMAT = yTILITIES
Figura 2.1: Esquema conceptual del modelo BFLP-u. Fuente: [4]

En este caso, al considerar los clientes de forma individual, el nivel superior va asignar una capacidad
en cada instalacién j € J a cada cliente i € I, que se representa por las nuevas variables continuas no
negativas:

>0, iel, ,jel

Ademds, se va a asumir que cada cliente i solo puede ser atendido por una instalacién. Para ello, se
introducen las siguientes variables binarias:
/ 1 silainstalacion j atiende al cliente i R
Xii= iei, jel
J 0 en otro caso
De ahora en adelante, como en el problema anterior (2.1), por simplificar la notacién, el conjunto
{zij}ier, jes se denotard como z.
La formulacién matemética del modelo BFLP-u es la siguiente:
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min ijxj+ZZgzij (2.2a)

X2y jes icl jeJ

sujeto a: Zy,-j > A, iel (2.2b)
jer
zij < dix;j, icl, jel (2.2¢)
x;€{0,1}, z;>0, icl, jeJ 2.2d)

dado (x, z), cada cliente i € I, resuelve:

méx Y dimjyi; (2.2¢)
y j€l

sujeto a: le’j <1 (2.2f)
jeJ

diyij < zij, JEJ (2.2g)

yij < xij, jed (2.2h)

x;;€{0,1}, y;>0, jeu (2.21)

La funcién objetivo del nivel superior (2.2a) y el conjunto de restricciones (2.2b) coinciden con las
correspondientes al modelo (2.1), ya que el nivel superior continia minimizando los costes de apertura
y capacidad, y desea garantizar una demanda minima atendida a cada cliente. La restriccion (2.2c) ga-
rantiza que la capacidad de cada instalacién j € J asignada a cada cliente i es mayor que O solo si la
instalacién j ha sido abierta. Las restricciones (2.2d) indican el cardcter binario de las variables x y que
las variables z sean continuas no negativas.

El problema para cada uno de los clientes queda formulado por (2.2e)-(2.2i). La funcién objetivo
(2.2e) consiste en maximizar la utilidad del cliente i.

El conjunto de restricciones (2.2f) asegura que cada cliente i solo puede ser atendido por una insta-
lacién. Las restricciones (2.2g) imponen que el cliente i no supere la capacidad que se le ha asignado
en cada instalacién j € J. Dado el cliente, si ; = 0 entonces el cliente i no puede ser atendido por la
instalacién j. Esto se garantiza por la restriccion (2.2h) correspondiente. Finalmente, las restricciones
(2.2i) indican el cardcter binario de las variables x; ; ¥ que las variables y sean continuas no negativas. Al
igual que en el problema (2.1), las variables y son continuas no negativas cuyo valor estd acotado por 1,
debido a las restricciones (2.2h), expresando la proporcién de demanda atendida de un cliente por una
instalacién.

En este modelo también se incluyen las restricciones coupling (2.2b). Por tanto, de nuevo, es posible
que ciertas decisiones del nivel superior sobre la apertura y la capacidad de las instalaciones, provoquen
una reaccion en los clientes, tal que el valor propuesto de las variables y, no verifique las restricciones
(2.2b). En ese caso, no se considerard como decisién admisible del nivel superior de decision.

El modelo anterior (2.2) se puede extender, de forma que, cada cliente pueda ser atendido por mas
de una instalaciéon como en el modelo previo (2.1). En la literatura, se conocen por modelos single
source y multiple source, respectivamente. La formulacion alternativa matemética del nuevo modelo es
la siguiente:
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min Z fjxj + Z Z 8Zij (23&)

X2y = il jeJ

sujeto a: Zyij > A, iel (2.3b)
=
zij < dix;, icl, jel (2.3¢)
xj€{0,1}, zj;>0, iel, jel (2.3d)

dado (x, z), cada cliente i € I, resuelve:

max Z diﬂijyij (236)
y jer

sujeto a: Zyij <1, (2.3
jeJ

diyij < zij, jeJ (2.3g)

yij >0, jeJ (2.3h)

Notar que en el modelo (2.3) se han suprimido las variables x". La funcién objetivo del lider (2.3a) y el
conjunto de restricciones (2.3b), (2.3¢) y (2.3d) coinciden con las correspondientes al modelo (2.2), ya
que el nivel superior continda minimizando los costes de apertura y capacidad, y desea garantizar una
demanda minima atendida a cada cliente.

El problema de los clientes queda formulado por (2.3e)-(2.3h). La funcién objetivo (2.3e) y la restric-
cién (2.3g) se mantienen como en el problema (2.2). Las restricciones (2.2f) y (2.2h) se han suprimido
y se han sustituido por las restricciones (2.3f), que garantizan que la demanda atendida del cliente i por
las instalaciones j, no se exceda. Finalmente, las restricciones (2.3h) son de signo para las variables del
nivel inferior.

2.1.3. Modelo de ubicacion de instalaciones de gestion de residuos diferenciados y clien-
tes en el nivel inferior

Este tercer modelo, denotado por BFLP-r, extiende el modelo anterior BFLP-u, al considerar clien-
tes que toman decisiones en el nivel inferior y afiadir la recoleccién de residuos diferenciados para el
reciclaje. Sea K el conjunto de tipos de residuos. En este caso, en el nivel superior, una autoridad muni-
cipal, trata de incentivar a los clientes a utilizar centros de recoleccion de residuos de varios tipos [5].

Al considerar residuos diferenciados, cada instalacion j € J tiene un conjunto asociado K tal que,
en dicha instalacién se puede reciclar el residuo & si k € K y la capacidad viene dada por el pardmetro
Q’;- . En este modelo, cada cliente i € [ tiene una demanda de gestion dll‘ de residuo k € K. Se asume que
el cliente i no conoce la capacidad de las instalaciones j € J para cada residuo k € K.

Para cada residuo k € K se define el conjunto J* C J de instalaciones en las que se puede reciclar el
residuo k.

En este modelo se introducen nuevas variables continuas no negativas controladas por el nivel supe-
rior para representar la capacidad que el lider reserva para el cliente i, en cada instalacién j € J para el
residuo k € K:

d>0, i€l jel keK;

En el nivel inferior, se define una nueva variable continua no negativa que representa el porcentaje de
demanda d del cliente i satisfecha en la instalacién j del residuo k:

¥i; =0, i€l jeJ, keKk;

Como en el modelo (2.2) se impone que cada cliente i € I puede ser asignado para atender su demanda
de residuo de tipo k € K a lo sumo por una instalacién j € J¥, por lo que se introducen las siguientes
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variables binarias:

Wk 1 silainstalacién j atiende al cliente i para el residuo k, i€i, ke K, jeJ*
71 0 enotrocaso

Por tltimo, A* representa la proporcién minima de demanda del tipo de residuo k € K que ha de ser
atendida en todos los clientes; g’;- es el coste de instalar una unidad de capacidad del residuo k € K en
la instalacién j € J*; y U; ; es la utilidad para cada cliente i € I por el hecho de utilizar la instalacion
j € J. Notar que, en este modelo, los costes de instalar capacidad en una instalacidn, a diferencia de los
modelos anteriores, no son iguales.

La formulaciéon matemética del modelo BFLP-r es la siguiente:

min Y i+ Y Y &Y 4 (2.42)

Xy jel jeJkek; il

sujeto a: Z yi-‘j > Ak, iel, keK (2.4b)
jeJk
2 <dfx;, icl, jeJ, kekK; (24c)
x;€{0,1}, z;>0, icl, jeJ, kekK; (24d)

dado (x, z), cada cliente i € I, resuelve:

max Z Z Ui jdf‘yé‘j (2.4e)
y JETkEK;

sujeto a: Z x;]]‘ <1, ke K (2.4f)
jeJk
diy§; < 2, jE€J, keK; (24
¥i; < Xk, jE€T, keK; (24h)
dE<1—xk, Q€T J A KK k£K (2.4
Yi; >0, JjeJ, keK; (24
xigj € {0,1}, jeJ, kek; (24K

La funcién objetivo del nivel superior (2.4a) consiste en minimizar el coste fijo de apertura de las insta-
laciones y el coste total correspondiente a la capacidad de las instalaciones abiertas de todos los tipos de
residuos k € K.

El conjunto de restricciones (2.4b) garantiza, para cada cliente i € I, que el porcentaje reciclado de
la demanda de residuos de tipo k € K es al menos la proporcién minima A*. El conjunto de restricciones
(2.4c) establece que la capacidad zi-‘j asignada a un cliente i de tipo de residuo k serd O si la instalacion
Jj estd cerrada y a lo mas, la demanda de ese tipo de residuo del cliente, si estd abierta. Las restricciones
(2.4d) indican el carécter binario de las variables x; y que las variables zf-‘j sean continuas no negativas.

El problema que resuelve cada cliente i € I es (2.4e)-(2.4k). La funcién objetivo (2.4e) consiste en
maximizar la utilidad derivada del uso de las instalaciones j € J para gestionar los residuos k € JX.

El conjunto de restricciones (2.4f) garantiza para cada tipo de residuo k € K que el cliente solo puede
ser asignado a lo mds a una instalacién j € Ji. Para cada instalacién j € J y tipo de residuo gestionado en
ella k € K, la correspondiente restriccion (2.4g) asegura que a lo mas se utiliza la capacidad zf/. asignada.
En el caso de que una instalacién j € J no haya sido asignada al cliente para atender la demanda de
un tipo de residuo, esto es, xﬁ'; = 0, dicha instalacién no atenderd ninguna demanda del cliente por la
correspondiente restriccion (2.4h).

Dada una instalacién j € J, el conjunto de restricciones (2.41) garantiza que si el cliente es atendido
por otra instalacion j” diferente para la demanda de un residuo k' que también es tratado en la instalacion
J» entonces el cliente no puede ser atendido en dicha instalacion j € J para ningtin otro residuo k € K.
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Finalmente, las restricciones (2.4j) y (2.4k) indican el carécter binario de la variable xf’j y que las
variables yfj sean continuas no negativas.

2.2. Reformulacion del modelo binivel BFLP-e

De los tres modelos propuestos se va a considerar el modelo BFLP-e (2.1) de ubicacién de instala-
ciones donde en el nivel inferior hay una empresa. Antes de reformularlo como un problema de un solo
nivel utilizando la aproximacién dada en la seccién 1.3, se plantea una formulacién alternativa.

En el modelo binivel (2.1), la demanda satisfecha a cada cliente i € I desde una instalacién j € J
se expresa como un porcentaje. En el tratamiento del problema resulta mds intuitivo que la variable y;;
represente directamente la cantidad de demanda satisfecha. Por ello, se propone una nueva formulacién
(denotada BFLP-E), del modelo binivel (2.1):

min Y fixi+) gz (2.52)
XLy jer =
sujeto a: Y yij > Aid;, icl (2.5b)
jeJ
xj€{0,1}, z; >0, jeldJ (2.5¢)

dado (x, z), y resuelve:

max Z Z 7t,~jy,~j (25d)
y icl jeJ

sujeto a: Zyi.i <d;, iel (2.5¢)
jes
Y vij <z jel (2.5f)
iel
yij < dix;, iel, jel (2.5g)
yij =0, iel, jelJ (2.5h)

donde el conjunto de restricciones (2.5b) garantiza, para cada cliente, que se satisfaga la cantidad minima
de demanda, en sustitucién del conjunto de restricciones (2.1b). Las restricciones (2.5¢) se mantienen
iguales que (2.1c).

En el problema del nivel inferior, (2.5d)-(2.5h), la funcién objetivo (2.5d), maximiza el beneficio
neto de la asignacién de clientes a las instalaciones, en sustitucién de la funcién objetivo (2.1d).
Las restricciones (2.5¢) garantizan que para cada cliente i € /, la cantidad recibida de todas las instalacio-
nes, no supera su demanda, lo que corresponde a la restriccion (2.1e). El conjunto de restricciones (2.5f)
sustituye al conjunto (2.1f), y asegura que la suma de la cantidad de la demanda de todos los clientes,
satisfecha por la instalacién j, es menor o igual que la capacidad de dicha instalacidn. La restriccién
(2.5g), como (2.1g), asegura que la cantidad de demanda del cliente i, satisfecha por la instalacién j,
es menor o igual que la demanda del cliente i, en caso de que la instalacién j resulte abierta. En caso
contrario, obliga a que y;; = 0, es decir, si la instalacion j no es abierta por el nivel superior, x; =0, y no
se puede atender demanda de ningtin cliente i. Finalmente, la restriccién (2.5h), igual que (2.1h), es de
signo para las variables controladas por el nivel inferior.

2.2.1. Caracterizacion de las soluciones 6ptimas del problema del nivel inferior

Con el objetivo de caracterizar las soluciones éptimas del problema del nivel inferior, dado un valor de
las variables controladas por el nivel superior, X, se considera el conjunto:

Jx)={jeJ:x;=1},

que identifica el conjunto de instalaciones abiertas.
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El problema del nivel inferior se puede reescribir utilizando el conjunto J(x) como:

max Z Z ﬂijy,‘j (2-63)
Y i€l jeJ(x)
sujetoa: Y yi; <d, icl (2.6b)
JEI(x)
Y vij <z, j€J(x) (2.6¢)
il
yij >0, iel, jelJ(x) (2.6d)

donde se mantienen todas restricciones del problema (2.5), a excepcion de las restricciones (2.5g). Estas
restricciones no son necesarias porque al introducir el conjunto J(x), en el problema (2.6) solo se definen
las variables y;; coni €1, j € J(x).

A continuacion, se formula el problema dual del problema (2.6). Sean w;, i € I, las variables duales
asociadas a cada una de las restricciones en (2.6b) y u;, j € J(x), las variables duales correspondientes
al conjunto de restricciones (2.6¢). El problema dual del problema (2.6) se formula:

min Zw,-d,- + Z ZjU;j

i icl JjeI(x)

sujeto a: witu; > mj, iel, jelJ(x) 2.7
w; >0, iel
Uuj >0, S J(X)

Aplicando la teoria de la dualidad como se ha explicado en la seccién 1.3, las condiciones de KKT
que caracterizan las soluciones 6ptimas del problema del nivel inferior son:

Z vij < dj, iel

JEJ(x)

Y yii <z, JjeJ(x)

iel

W,“f‘l/ljZﬂ',‘j, iel, ]GJ(X)

(Wi +u;—m;j)yi; =0, iel, jelx)

(di_ Z yij> w; =0, iel (2.8)
JeJ(x)

(Zj—zy,'j) I/lj:() , jEJ(X)
icl

w; >0, iel

I/thO, ]EJ(X)

y,'jZO, iel, jEJ(X)

El conjunto de restricciones (2.8) caracteriza la solucién del problema del nivel inferior dado el valor
X,z de variables del nivel superior. Para reformular el problema binivel (2.5) como un problema de un
solo nivel, se sustituye el problema del nivel inferior (2.5d)-(2.5h) por el conjunto de restricciones (2.8).
Si bien hay que definir el valor de todas las variables y;;, i € I, j € J y las correspondientes variables
uj, j € J, garantizando que tomarén el valor 0 si j ¢ J(x) y que las correspondientes restricciones en el
sistema (2.8) no restrinjan el valor de ninguna variable. Por lo tanto, el problema de optimizacién binivel
(2.5), queda reformulado a un problema de optimizacion de un solo nivel:
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min Y fixit+ Y 85 (2.92)
jeJ jeJ

sujeto a: Zy,-j > Aid;, iel (2.9b)
jel
Y vij <d, icl (2.9¢)
jel
Y vij <z, jeJ (2.9d)
icl
yij < dixj, icl, jelJ (2.9e)
wit+uj > miXj, iel, jeJ (2.91)
Uj §ij', jeJ (2.9g)
(w,-—i—uj—ﬁ,-j)yl-j:O, iel, jelJ (2.9h)

wi (d,' — Zyi]) =0, iel (2.91)

jes

uj (Zj = Zyij) =0, jel 2.9))

il
x;€{0,1}, z;>0, jedJ (2.9k)
yij 2 0, iel, jeJ (2.9
w; > 0, icl (2.9m)
uj >0, jeJ (2.9n)

donde M es una constante suficientemente grande. La funcidn objetivo (2.9a) coincide con la funcién ob-
jetivo del nivel superior del problema (2.5). El conjunto de restricciones (2.9b) y (2.9k) son restricciones
del nivel superior del problema (2.5). Las restricciones (2.9¢) y (2.9g) garantizan que las correspondien-
tes variables y;j =u; =0 parai € [ 'y j ¢ J(x). El resto de restricciones son las restricciones del conjunto
(2.8). En el caso de las restricciones (2.9f) se ha multiplicado el término de la derecha por x; para que
sea una restriccién vilida para cualquier j € J. De forma que si j € J(x) entonces x; = 1 y la restriccién
coincide con la dada en (2.8).

El problema (2.9) es no lineal por los conjuntos de restricciones (2.9h), (2.91) y (2.9j). Para lineali-
zarlo se introducen tantas variables binarias como restricciones no lineales incluye el modelo. Sean las
variables ¥, o y Bj, i € I, j € J asociadas a las restricciones (2.9h), (2.91) y (2.9j), respectivamente:

0 . o = jes iel
€n otro caso 0 en otro caso 0 en otro caso

I siyy;=0 L sidi—) y;=0 I osizj=) vy =0
Yij = B =

y se afiaden las correspondientes restricciones al problema, siendo finalmente el problema (2.9) formu-
lado como un problema lineal:
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min
X,Y,Z

sujeto a:

Capitulo 2. Modelos de optimizacion binivel en gestion de residuos

Y fixit+ Y ez

i€l i€l
Y vij > Ad;,
i€l
Y vij <d,
jel
Zyl] SZjv
icl
vij < dix;j,

5
uj SMij,

W,“i‘blj > J'L'ijx]',
1
yij < M; (1=%;),

di =Y yij <M;(1- ),
=

2= Y vij <M (1=;),

icl
4
w; < M; o,
u-<M5~B-
i = Mjpj,

6
wi+uj—mj < MY

XJ'E{O,I}, ZjZO, yljzoa

w;i >0, u;>0,

ai,ﬁjv%’j € {07 1}7

iel,
iel,
iel,

icl,

i€l
jel
jel
jel
jel
jel

iel

jer

iel
jel
jel
jel
jel
jel

(2.10a)

(2.10b)

(2.10¢)

(2.10d)

(2.10e)
(2.10f)
(2.109)
(2.10h)
(2.10i)

(2.10j)

(2.10K)

(2.101)
(2.10m)
(2.10n)
(2.10f)
(2.100)

Los conjuntos de restricciones (2.10h)-(2.10m) se han introducido junto con las variables binarias ¥;;, ¢
y Bj,i €1, j € J, para linealizar los términos no lineales. En particular, las restricciones (2.10h) y (2.10m)
corresponden a las restricciones (2.9h). Las restricciones (2.101) y (2.10k) sustituyen a las restricciones
(2.91). Las restricciones (2.10j) y (2.101) garantizan que se cumplan las restricciones (2.9j). Los valores
de las constantes M se han de calcular para cada una de las restricciones para garantizar que sean vélidas.

2.2.2. Calculo de las gran M

En esta seccidn, con el objetivo de resolver el problema (2.10), se van a buscar cotas adecuadas
para los valores de M,-l,M,-Z,M;,M?,MJS.,M(’ que sean suficientemente grandes para garantizar que no
se eliminan soluciones factibles binivel y suficientemente pequeiias para que la solucién obtenida sea
factible binivel [8].

Lema 2.2.1. Una cota valida en las restricciones (2.10h) es M,-1 =d;, i€l

Demostracion. Dado i € 1, j € J, se obtiene:

Yij < Y yij <di
jel

donde la segunda desigualdad es valida por la restricciéon (2.9c). Por tanto, M{ =d;,i € I es una cota

valida.

O]



Un modelo de optimizacién binivel en Ia gestion de residuos - Silvia Alvarez Tena 19

Lema 2.2.2. Una cota vilida en las restricciones (2.10i) es M? = (1 —A;)d;, i € I.

Demostracion. Dado i € 1,
di— Y vij < di—Aidi = (1= X;)d;
jel
el primer término representa la demanda no satisfecha del cliente i que puede ser acotado superiormente
aplicando la restriccién (2.10b). Por tanto, Mé = (1 — A;)d;,i € I es una cota vdlida para la demanda no
satisfecha. O

Lema 2.2.3. Una cota vélida en las restricciones (2.10j) es M 3= de’ jeJ.
icl
Demostracion. En el caso de que 8 = 0, entonces M? ha de ser una cota vilida:
3
=Y yij <M
icl
y el valor maximo que puede alcanzar z; — Z Yij> se tiene cuando el total de la capacidad de la instalacién
il
Jj estd disponible, es decir, cuando Z yij = 0. Y como z; se puede acotar por el total de la demanda de
il
los clientes,
zj < Zdi
icl
se obtiene que, M3 = Zd,-, j € J, es una cota vélida.
icl

Lema 2.2.4. Una cota vilida en las restricciones (2.10k) es M} = max{0, méjx mit il
j€E

Demostracion. Dado i € I, j € J, cuando x; = 1, la restriccion (2.10g) establece que
wi+t+u;j > T
Por las restricciones de signo (2.10n), w; > 0y u; > 0. Entonces,
wi<w;i+u Jj
Asi, el médximo valor que toma w; se da cuando u; = 0, y en ese caso, por la restriccion (2.10g)
w; > T

Y dado que en el problema (2.7) se estd minimizando y los coeficientes de w; en la funcién objetivo son
mayores o iguales que 0, es decir, d; > 0, se tendra que:

w; < max T
jeJ

Sin embargo, cabe la posibilidad de que 7;; < 0 para todo j € J, en ese caso, w; = 0. En general, se
obtiene que:
w; < mdx{0, mix ;; }
jeJ

Por tanto, M} = méx{0, méjx T;;} es una cota vélida parai €] . O
j€
Lema 2.2.5. Una cota vélida en las restricciones (2.101) es MJS. = max{0, mélx Tt jEJ.
S

Demostracion. Con un razonamiento similar, al proporcionado en el Lema 2.2.4, se demuestra que Mg =
méx{0, mélx ;;}, es una cota vélida para j € j.
1SS
O
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Lema 2.2.6. Una cota vélida en las restricciones (2.10m) es Miéj = max{0, _nllé_xj T} — Tj.
1€l,j€

Demostracion. Dado i € I, j € J, cuando x; = 1, la restriccién (2.10g) establece que
wituj >

En el problema (2.7), la funcién objetivo es de minimo y por las restricciones de signo (2.10n), w; >0y
u; > 0, entonces:
wi+u; < méx{0, mix m;
! J = { 7iel,jeJ U}

Por tanto, se deduce que ij =max{0, .nllai.xj m;j} — m;; es una cota valida para la restriccion (2.10m).  [J
1el,jc



Capitulo 3

Experiencia computacional con el modelo
BFLP-E

En este capitulo se consideran varios escenarios para los que se resolverd el modelo BFLP-E (2.5).
En primer lugar, se muestra un ejemplo pequeiio para ilustrar las caracteristicas del modelo. A continua-
cidn, se describe la experiencia computacional llevada a cabo y se analizan los resultados obtenidos para
conocer la influencia del nimero de clientes, la proporcién de la demanda minima y de los precios.

La experiencia computacional ha sido llevada a cabo en un ordenador con procesador Intel Core 13-
6006U de 200 GHz, 4.00 GB de RAM y Windows 10 64-bits como sistema operativo. Se ha utilizado
el lenguaje de programacién Python para la definicion de los pardmetros de entrada en los modelos,
la ejecucién del modelo de optimizacién y la escritura de los resultados. El software de optimizacién
utilizado ha sido Gurobi. La versién de Pyhton utilizada ha sido la versiéon 3.10.12, y en el caso de
Gurobi, se ha hecho uso de la licencia académica (ya que se trata de un solver de optimizacién de pago),
utilizando la versién 11.0.2. El cédigo programado se encuentra en el Anexo C.

3.1. Ejemplo ilustrativo

Para ilustrar las caracteristicas del modelo BFLP-E se introduce un ejemplo con 4 clientes (|| =4 )
y 3 instalaciones potenciales (|/| = 3), donde |A| indica el cardinal del conjunto A.

Los valores de los pardmetros del modelo se incluyen en la Tabla 3.1. En la segunda columna se indica
la demanda de cada cliente. En la tercera columna se indica el porcentaje minimo a atender al cliente y,
entre paréntesis, el valor de esa demanda minima. En la cuarta columna se muestran dos precios, ya que
se resuelve el problema en dos escenarios. En el primer escenario, el precio es constante para todos los
usuarios, y en el segundo, el precio para cada cliente es igual al mdximo correspondiente de los costes de
envio a las tres instalaciones, que se incluyen en las columnas quinta a séptima. El coste por abrir cada
una de las instalaciones y por unidad de capacidad se incluye en las dos tltimas filas de la tabla.

Demanda | Porcentaje minimo a | Precio | Costes, ¢;j,i €1, j€J

di,iel atender, A;,i €1 pii €1 | Inst.1 1Inst2 Inst3
Cliente 1 10 0.7 (7) 50,90 90 60 70
Cliente 2 30 0.9 (27) 50, 30 30 20 5
Cliente 3 50 0.8 (40) 50, 60 60 50 40
Cliente 4 5 0.6 (3) 50, 20 20 20 10
Coste fijo de apertura f;, j€J | 100 120 90
Coste por unidad de capacidad, g;, j € J 1 1 1

Tabla 3.1: Valor de los pardmetros en el ejemplo ilustrativo

De ahora en adelante, en todos los casos en los que se proporciona una solucién, se identifican solo
las variables no nulas.

21
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Solucién del problema relajado

El nivel superior no atiende al beneficio ni los costes de transporte de los clientes a las instalaciones,
por ello, sea el precio, constante o diferente para cada cliente, el problema relajado es el mismo en
ambos escenarios. En la Figura 3.1 se ha representado el sistema mediante un grafo, con los valores
de los parametros en negro y gris, y la solucidon del problema relajado en azul. La solucién 6ptima
consiste en abrir la instalacién 3 (x3 = 1) con una capacidad de 77 unidades (zz = 77), que le permite
satisfacer la demanda minima exigida de los 4 clientes. El coste de esta solucién para el nivel superior es
90+77 =167.

10 (7)

100, 1 (0)

Figura 3.1: Solucién del problema relajado en el ejemplo ilustrativo

Notar que, el beneficio para el nivel inferior con la asignacién dada por la solucién del relajado es, en el
primer escenario con precios constantes para todos los clientes:

((50—=70) x7)+ ((50—5) x 27) + ((50 — 40) x 40) + ((50 — 10) x 3) = 1595
y en el segundo escenario:

((90—70) x 7) + ((30 — 5) x 27) + (60 — 40) x 40) + ((20 — 10) x 3) = 1645

Solucion del problema del nivel inferior con x3 = 1, z3 =77

Para ilustrar lo que significa considerar la reaccidn del nivel inferior en la toma de decisiones por parte
del nivel superior, se resuelve el problema del nivel inferior, en ambos escenarios, fijadas las variables
controladas por el nivel superior en el valor dado por el relajado: x3 =1, z3 = 77.

Cuando el nivel superior establece la apertura de la tercera ubicacion con una capacidad de 77 unida-
des, el segundo nivel decide satisfacer primero la demanda de aquellos clientes que le proporcionan un
mayor beneficio.

En la Figura 3.2a se representa la solucién 6ptima en el caso de que los precios sean iguales para
todos los clientes. En este caso, se atiende la demanda total de los clientes 2 y 4, y 42 unidades del cliente
3, lo que le reporta el siguiente beneficio:

((50 = 5) x 30) + ((50 — 40) x 42) + (50 — 10) x 5) = 1970

que es superior al beneficio dado por la solucién del relajado. Esta solucién no verifica las restricciones
coupling, ya que no se satisface la demanda minima al cliente 1. Notar que en la resolucién del problema
relajado, el nivel superior de decisién no considera la reaccién del nivel inferior, y dado que al cliente
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1 no se le satisface el minimo establecido (restriccién coupling), la decisién del nivel superior (x3 = 1,
z3 = 77), no es un punto admisible, al no proporcionar una solucién factible binivel.

) o)
W 0

o (2
G 42

ORNG
(=)

40
=) )
(a) Solucién del problema del nivel inferior (b) Solucién del problema del nivel inferior
con p; =50,i€l con precios p; = n_laijx(c,-j), iel
je

Figura 3.2: Soluciones del problema del nivel inferior para x3 = 1, z3 = 77 en el ejemplo ilustrativo

La solucién 6ptima del problema del nivel inferior, cuando para cada cliente el precio es igual al
maximo de los costes de envio correspondientes, se muestra en la Figura 3.2b. En este caso, el valor
optimo es:

((90—170) x 7) 4+ ((30—5) x 30) + ((60 —40) x 40) = 1690
superior al dado por la solucién del relajado. En este caso, tampoco proporciona una solucién factible
binivel ya que no se atiende el minimo de la demanda del cliente 4.

Solucion del problema binivel

En ambos escenarios, no hay ninguna decision del nivel superior admisible y por tanto, el problema
binivel es no factible.

3.2. Descripcion de la experiencia computacional

En la experiencia computacional se consideran |J| = 10 instalaciones potenciales y dos valores del
nimero de clientes, |I| € {20, 100}, con el propésito de ver su influencia en el tiempo computacional re-
querido para resolver el modelo. Las coordenadas de la localizacién de los clientes y de las instalaciones
se han generado segtin una distribucién uniforme en un plano 100 x 100. En el Anexo B, las Figuras B.1
y B.2 muestran la distribucién de instalaciones y clientes en el plano para |I| =20y |I| = 100, respecti-
vamente. El coste de envio ¢;; de un cliente i € I a cada instalacion j € J se ha fijado como la distancia
euclidea obtenida a partir de las coordenadas de localizacion correspondientes. El coste fijo de instala-
cién en cada ubicacion j € J se genera a partir de una distribucién uniforme %/ (100, 150) y el coste por
unidad de capacidad se considera constante e igual a 1. La demanda de los clientes se ha generado a
partir de una distribucién uniforme %/ (20, 100). Los valores de todos estos pardmetros quedan recogidos
en el Anexo B y el cédigo utilizado para generarlos en el Anexo C.

El modelo BFLP-E se resuelve en varios escenarios para evaluar la influencia del valor de dos paré-
metros del modelo: los precios y la proporcién minima de demanda a satisfacer. La descripcion de cada
escenario [A, B] indica el valor del precio A y el valor de la proporcién minima B, con:

Ac {Fmina Fma}m Fmeany Vmim Vmaxv Vmean} B e {017 057 097 I"}
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donde F indica el mismo precio para todos los clientes (precio fijo) y V indica un precio diferente para

cada cliente (precio variable). El valor F,,;, es el menor precio fijo entero para el que el correspondiente

problema binivel es factible, F,, es mdximo de los costes (_nllei_xj €ij) Y Fneans €l valor medio de los dos
1el,je

anteriores ((Fyin + Fuax)/2). En el caso de los precios variables, Vi ¥ Vinax, s€ define como precio para
cada cliente el minimo y el maximo, respectivamente, de sus costes de envio. Con V.4, €l precio para
cada cliente es el precio medio entre el minimo y el maximo. El valor r (random) indica que la proporcién
minima de demanda se ha generado segin una distribucién uniforme %/ (0.2,0.8).

3.3. Resultados de la experiencia computacional

Problema relajado

En primer lugar, se resuelve el problema relajado, con || € {20, 100} y se analiza la influencia de la
proporcién minima B, ya que los valores de A no le afectan.

En la Tabla 3.2 se resume la informacién de los 8 problemas resueltos. La primera columna indica el
escenario. Para cada valor de |/|, la primera columna proporciona el tiempo de ejecucion en segundos del
modelo. La segunda y tercera columnas, el valor de las variables del nivel superior y la funcién objetivo
en el 6ptimo.

Solucion 1] =20 |I] = 100
relajado | T(s) (x,2) VFO; | T(s) (x,z) VFO,
[A,0.1] | 0.04 | (4,121.3) | 223.3 | 0.05 | (4,577.9) | 679.9
[A,0.5] | 0.03 | (4,606.5) | 708.5 | 0.05 | (4,2889.5) | 2991.5
[A,0.9] | 0.03 | (4,1091.7) | 1193.7 | 0.05 | (4,5201.1) | 5303.1
[A,r] 0.04 | (4,543.7) | 645.7 | 0.06 | (4,2941.3) | 3043.3

Tabla 3.2: Solucién del problema relajado modificando valores de |I| y B

Los tiempos de resolucién estan por debajo de los 0.06 segundos, siendo ligeramente mas costoso
resolver el problema con 100 clientes. Al nivel superior, para minimizar los costes de apertura le interesa
abrir una uUnica planta y asignarle toda la capacidad necesaria para atender el minimo de demanda, ya
que se estd asumiendo que el coste por capacidad es el mismo en todas las instalaciones. En todos
los escenarios abre la instalacion 4, de menor coste de apertura. Conforme aumenta la proporcioén de
demanda minima a satisfacer a los clientes, aumenta la capacidad necesaria y con ella, el valor de VF Oy.
En todos los escenarios, el problema binivel va a ser no trivial, ya que ninguna de las soluciones del
problema relajado es factible binivel.

Influencia de la proporcién de demanda minima

Fijado el valor A = V4, se resuelve el modelo BFLP-E en los escenarios generados por el valor de
B. La Tabla 3.3 tiene la misma estructura que la Tabla 3.2. En todas las soluciones 6ptimas del modelo
binivel con |/| fijado, el valor de la funcién objetivo del segundo nivel coincide y se ha incluido su valor
en la dltima fila.

En relacién con los tiempos computacionales, la resolucién del modelo binivel requiere mds tiempo
que el problema relajado y estos tiempos se incrementan al pasar de 20 a 100 clientes, como cabia esperar.
En todos los escenarios, las soluciones del modelo binivel consideran la apertura de la instalacién 3 con
una capacidad suficiente para atender las demandas minimas, que se incrementan segin el valor de B.
Notemos que, el valor 6ptimo de z en la solucién del relajado de la Tabla 3.2 proporciona la suma total de
las demandas minimas. Por tanto, en la solucién del modelo binivel, se satisface siempre mas demanda
que ese valor minimo para algunos clientes. Por ejemplo, en el escenario [V,4y,0.1] con |I| = 20, la
demanda minima total es 121.3 y en la solucién 6ptima binivel se satisface 745.9, de modo que a 12 de
los 20 clientes se les satisface el 100 % de la demanda.
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Solucion 1] =20 |I| = 100

BFLP-E | T(s) (x,z) VFO; | 100% | T(s) (x,z) VFO; | 100%

[Vinax,0.11] 10.42 | (3,745.9) | 871.9 12 53.33 | (3,3555.1) | 3681.1 61

[Vinax,0.51] 2.17 | (3,953.5) | 1079.5 12 136.46 | (3,4543.5) | 4669.5 61
( )
( )

[Vinax,0.91] 1.41 | (3,1161.1) | 1287.1 12 55.10 | (3,5531.9) | 5657.9 61
[Vinax,] | 5.88 | (3,882.8) | 1008.8 12 144.78 | (3,4470.7) | 4596.7 61
VFO, 24323 VFO, 121886

Tabla 3.3: Solucién del modelo BFLP-E modificando |/| y B

Influencia de los precios

Fijado el valor B = r, se resuelve el problema (2.5) en los escenarios generados por el valor de A.
A partir de la solucién del relajado, se conoce que la suma de las demandas minimas de los clientes es
543.7. La Tabla 3.4 tiene la misma estructura que las anteriores.

Solucién |1] =20 |7] = 100
BFLP-E T(s) (x,2) VFO, [ VFO, [100% | T(s) (x,z) | VFO, | VFO, [ 100%
[Fnin, 7] 0.18 | (1,302.5) | 14929 | 51797.8 | 16 0.06 Infactible

(2,448.3)

(6,338.1)
[Fnax, 7] 12.92 [ (10,1145) | 1264 | 80154 19 | 626.75 | (10,5737.5) [ 5856.5 [ 418600.5 [ 99
[Fnean, 7] 6.77 | (10,1145) | 1264 [54391.5 | 19 | 54.87 [ (10,5737.5) [ 5856.5 | 289506.8 | 99
[Vinin, 7] 0.02 Infactible 0.03 Infactible
[Vinax, 7] 5.88 | (3,882.8) [ 1008.8 [ 24323 [ 12 | 144.78 | (3,4470.7) [ 4596.7 [ 121886 [ 6l
[Vinean 7] 0.02 Infactible 0.03 Infactible

Tabla 3.4: Solucién del problema BFLP-E modificando || y A

Notar que, el tiempo para detectar la infactibilidad es inferior a 0.18 segundos en todos los escenarios.
En la resolucién del modelo binivel aumenta con el ndmero de clientes y los escenarios con precios
iguales valores maximos de costes de envio tienen tiempos mayores de resolucion.

De todos los escenarios, [Fy,,r] con |I| = 20 es el tnico en el que se abre mas de una instalacion,
satisfaciendo el 100% de la demanda a 16 clientes de los 20. La capacidad total con la que se abren
las tres plantas es 1088.9, casi el doble de la demanda minima 543.7. En esta solucidn, la instalacion
1 atiende a los clientes {2,3,5,6,9,15}, la instalacién 2 a los clientes {7,8,12,14,16 — 18,20}, y la
instalacion 6 a los clientes {1,4,10,11,13,19}.

En los escenarios [Fiux, 1 Y [Fuean, 7], con |[I| = 20, se abre la instalacién 10 con capacidad 1145 y
se atiende el 100% de la demanda de 19 clientes. El correspondiente valor de f, cambia porque en el
escenario [Fjqy, r] los precios son més elevados. El mismo comportamiento se observa con |I| = 100. La
instalacion 10 con capacidad 5737.5 atiende el 100 % de la demanda de 99 clientes, siendo la suma total
de la demanda minima 2941.3.

Los escenarios [Viin, 7] Y [Vinean,r] con |I| € {20, 100} son no factibles, esto es, no hay ninguna
apertura que pueda proporcionar el nivel superior para la que las decisiones del nivel inferior verifiquen
la restriccién de demanda minima a todos los clientes. Se observa, que los precios fijos obtienen en mas
ocasiones soluciones factibles.

En este modelo, el primer nivel de decision solo esta obligado a satisfacer el minimo de la demanda
Aid; a cada uno de los clientes i € I. Sin embargo, el seguidor decide cémo atender la demanda de los
clientes en su beneficio. Por eso, cuando dispone de una capacidad atiende primero toda la demanda de
aquellos clientes con los que obtiene mayor beneficio, dejando, por tanto, a otros clientes con el 0% de
demanda atendida. Esto obliga al lider a aumentar la capacidad de las instalaciones para que a todos los
clientes les llegue al menos la demanda minima.
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Anexo A

Relacion entre el problema primal y dual

Se llama problema dual, al problema asociado al problema primal que tiene: mismo nimero de res-
tricciones que variables tiene el problema primal, y mismo niimero de variables que restricciones tiene
el problema primal. Los coeficientes de la funcién objetivo del problema primal, son los términos inde-
pendientes de las restricciones del problema dual, y los coeficientes de la funcidn objetivo del problema
dual, son los términos independientes de las restricciones del problema primal. Ademads, si el problema
primal es de médximo, el problema dual es de minimo, y viceversa. Las relaciones que se establecen entre
el signo de las restricciones y las variables del problema primal y dual vienen dadas en la Tabla A.1. Si
el problema es de maximo, se lee de izquierda a derecha, y si el problema es de minimo, al contrario [1].

Maximo

Minimo

restricciones <
variables > 0
restricciones =
variables no restringidas
restricciones > 0
variables < 0

variables > 0
restricciones >
variables no restringidas
restricciones =
variables< 0
restricciones < 0

Tabla A.1: Relacion entre las restricciones y las variables el problema primal y dual

A continuacidn, se ilustra un ejemplo:
Sea el problema primal:

max X1+ 2x0 +x3
X1,X2,X3
sujeto a: X14+x—x3<2
x1—x+x3=1 (A.1)
2x1+x0+x3 > 2
x1 >0, x <0, x3 norestringida
entonces, su correspondiente problema dual es:
min 2wy +wy 4+ 2ws
w1,W2,Ww3
sujeto a: wi+wy+2w3 > 1
wi—wr+w3 <2 (A.2)

—wi+wr+wz =1

wi >0, wp

31

no restringida,






Anexo B

Valores en la experiencia computacional

» Posiciones de las instalaciones |J| = 10:

(74,62),(64,12),(11,93),(67,78),(56,96), (15,70), (80, 19), (95,90), (88,72), (47,81)

= Posiciones de los clientes |/| = 20:

(18,47),(78,96), (75,52), (15,64), (97,74),(70,88), (98, 12), (24,4), (92,57), (13,52),
(4,38),(58,14),(19,72),(26,15),(58,53), (34,26), (95,22), (29,32), (47,94), (84, 35)

100 -

T

90 + o

70 1

50

30 +

10 +

10 20 30 40 50 60 70 80 90 100 *

Figura B.1: Plano con las posiciones de 20 clientes (negro) y 10 instalaciones (rojo).
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Anexo B. Valores en la experiencia computacional

Con todo ello, considerando la distancia euclidea, se calcula C la matriz de distancias (y costes) ¢;;,

desde cada cliente i, a cada instalacién j.

58 58 47 58 63 24 69 89 75 45
35 86 68 22 22 69 78 19 26 35
11 42 77 28 48 63 34 43 24 41
60 72 30 54 353 6 80 & 74 37
26 71 89 31 47 83 58 17 10 51
27 77 60 11 17 58 70 26 25 25
56 34 119 73 94 102 20 79 61 86
77 41 90 86 98 67 58 112 94 81
19 53 89 33 54 79 40 34 16 51
62 65 42 60 62 19 75 91 78 45
74 66 56 75 78 34 79 105 91 61
51 7 92 65 8 71 23 85 66 68
56 75 23 49 45 5 8 79 69 30
68 39 80 76 87 57 55 102 85 70
19 42 62 27 44 47 41 53 36 31
54 34 71 62 74 48 47 89 T1 57
46 33 110 63 84 94 16 68 51 77
55 41 64 60 70 41 53 88 72 53
42 84 37 26 10 40 82 49 47 13
29 31 94 47 68 78 17 57 38 60

Ademads, se considera una demanda de clientes también generada aleatoriamente, con una distribucién
uniforme %/ (20,100):

d; = [96 51 39 66 66 37 85 51 47 43 40 22 35 25 88 94 97 73 83 75]

Y se obtiene la proporciéon minima de demanda a satisfacer A;, con otra distribucién uniforme % (0.2,0.8),

€S:

4i=1[0.30.50.60.70.80.70.20.70.60.70.20.30.50.70.30.50.2 0.2 0.7 0.2]

Asi mismo, se proporcionan aleatoriamente, valores entre [100,150] de f;, es decir, de los costes fijos
por abrir cada una de las instalaciones j:

f; = [124,148,126,102,116,132,131,125,150,119]

Se repite el proceso para |I| = 100:

» Posiciones de los clientes || = 100:

(17,72),(97,8), (32,15), (63,97), (57,60), (83,48), (26,12), (62,3), (49,55), (77,97),
(98,0),(89,57), (34,92),(29,75), (13,40), (3,2), (3,83), (69, 1), (48,87), (27,54),
(92,3),(67,28),(97,56), (63,70), (29,44), (29,86), (28,97), (58,37), (2,53),(71,82),
(12,23),(80,92), (37,15),(95,42), (92,91), (64,54), (64,85), (24,38), (36,75), (63,64),
(50,75), (4,61),(31,95), (51,53), (85,22), (46,70),(89,99), (86,94), (47, 11), (56,84)
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Figura B.2: Plano con las posiciones de 100 clientes (negro) y 10 instalaciones (rojo).

Y con ello, considerando de nuevo la distancia euclidea, se calcula C la matriz de distancias (y costes)
cij, desde cada cliente i a cada instalacion j:
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58
59
64
37
18
17
70
61
26
36
67
16
50
47
65
93
75
62
37
48
62
35
24
14
49
51
58
30
73
21
74
31
60
29
35
13
26
56
41
12
28
71
55
25
42
30
40
35
58
29
50
49
15
27
62
59
45
14
12
42
54
76
45
10
47
21
18
33
13
32
76
21
59
27
49
63
30
38
15
21
28
75
18
21
2
79
41
13
73
31
74
84
73
81
35
52
63
55
66
68

77
34
33
86
49
41
38
10
46
86
37
52
86
73
59
62
94
13
77
56
30
17
55
59
48
82
93
2
75
71
54
82
28
44
84
42
73
48
69

65
78
90
44
24
61
91
85
18
73

36
39
53
31

82
65
40
21
68
37
37
59
53
33
35
23
62
83
74
61
73
69
57
76
63
15
40
34
34
86
68
34
65
64
20
63
42
21
9
56
77
105
40
40
84
53
28
44

22
121
81

57
85
83
104
54
67
128
86
24
26
54
92
13
109
38
43
122
86
94
57
53
20
18
74
41
61
71
70
83
99
82
66
54
57
31
60
43
33
21
57
103
42
79
76
90
46
97
115
70
48
122
101
29
70
77
102
31
94
111
63
46
73
79
76
77
66
46
88
28
91
42
33
41
91
68
71
65
28
60
85
50
65
100
62
83
85
10
84
38
11
103
63
15
51
89
74

100

46
98
85

37
56
90
94
42
2
105
52
23
35
71
108
55
9%
13
52
100
69
58
27
59
29
29
60
70
21
86
25
84
67
37
43
14
67
29
33
22
63
26
44
80
28
34
31
86
12
84
88
48
36
101
92
19
31
50
80
48
99
83
30
53
53
54
63
39
2
74
50
50
50
52
61
26

45
52
53
63
22
59
21
86
79
27
92
66
53
99
67
55
73
67
46
62
91
84

Anexo B.
3 83
103 21
58 49
56 80
44 48
72 30
60 55
82 25
38 48
68 79
109 27
76 40
30 87
15 76
31 71
70 79
18 101
88 22
38 76
20 64
103 20
67 16
84 41
48 54
30 57
22 85
30 94
55 29
22 86
58 64
48 69
69 73
60 44
85 28
80 73
52 39
52 68
34 60
22 72
49 49
36 64
15 87
30 91
40 45
85 6
31 62
80 81
75 76
68 34
44 70
76 17
98 20
55 35
33 55
103 21
80 25
32 82
64 57
63 32
84 3
9 75
71 55
95 19
54 53
24 61
57 30
64 27
57 27
69 52
67 75
26 86
80 49
5 80
85 56
20 65
13 85
32 63
72 12
53 37
54 32
47 37
16 94
55 61
69 24
44 62
43 78
82 4
56 56
60 58
67 17
20 102
61 72
19 87
30 111
89 23
40 52
10 90
28 63
66 45
51 60

Valores en la experiencia computacional

81
83
98
33
49
44
105
94
58
20
91
34
62
68
97
128
93
93
48
77
88
69
35

81
67
68
65
101
26
107
16
95
48

48
32
89
61
42
48
96
65
58
69
53
11
10
93
40
83
71
50
56
88
92
56
23
46
71
79
111
66
33
77
55
51
68
23
19
104
26
83
20
78
93
53
70
50
56
63
98
29
51
40
111
70
30
107
64
92
118
99
95
56
86
82
86
101
102

71
65
80
36
34
25
87
74
43
28
73
16
58
60
82
111
86
74
43
64
70
49
19
26
66
61
65
47
89
20
91
22
71
31
20
30
28
73
53
27
39
85
62
42
51
43
28
23
74
35
64
54
32
43
70

53
11
27
52
68
93
49
20
63
37
31
49

24
91
10
73
12
65
82
42
51
32
38
45
89
21
32
31
9%
51
19
90
44
86
101
88
91

69
75
71
82
85

32
89
68
23
24
49
73
80
27
34
96
49
18
19
54
91
45
83

34
91

56
20
42
19
25
46
53
25
68
35
67
62
47
32
18
49
13
24

48
22
29
71
12
46
42
70
10
71
81
37
19
91
78
13
32
42
70
32
82
76
25
35
42
45
49
39
33
57
50
35

35
45
10
61
34
39
38
49
23
50
13
69
69
25
74
55
44
81
51
49
68
50
34
45
74
67
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De nuevo, se considera una demanda de clientes también generada aleatoriamente, con una distribu-
ci6én uniforme % (20, 100):
d;=1[64 77 68 64 54 72 55 91 97 51 83 62 65 94 26 27 22 87 82 90
98 84 57 82 29 71 31 96 62 53 41 82 56 65 22 69 69 69 95 75
49 55 76 25 73 74 37 30 45 49 66 55 99 28 37 33 72 40 57 40
33 29 73 31 36 49 86 28 87 28 98 57 98 68 79 23 43 30 44 29
45 53 25 75 65 41 62 28 66 94 45 73 31 77 43 35 67 22 86 20|
Y se obtiene la proporcién minima de demanda a satisfacer A;, con otra distribucién uniforme
% (0.2,0.8), es:
Ai=[0.6 0.4 0.6 0.8 0.3 0.5 0.6 0.5 0.3 0.8 0.5 0.7 0.6 04 0.7 0.4 0.7 0.5 0.7 0.6
06 0.5 0.8 0.6 0.5 06 02 04 0.6 04 0.6 0.5 0.3 04 0.5 0.6 0.5 0.6 0.6 0.5
0.7 04 0.5 0.7 0.7 0.6 0.3 0.8 0.6 0.8 0.3 0.7 0.3 0.6 0.3 0.7 0.7 0.5 04 0.2
06 0.5 0.6 0.7 0.8 0.7 0.2 04 0.6 0.3 0.5 0.2 0.3 0.2 0.7 0.3 04 0.8 0.6 0.2
0.3 0.6 0.5 0.3 0.8 0.6 0.5 0.6 0.6 0.4 04 0.3 0.3 0.8 0.6 0.5 0.3 04 0.2 0.5]






Anexo C

Codigo programado en Python

!pip install gurobipy
import gurobipy as gp
from gurobipy import GRB, Env

import numpy as np
import random
import pandas as pd

env = Env(params = {"WLSACCESSID" : " ",
"WLSSECRET" : " ",
"LICENSEID" : })

##Problema relajado en el ejemplo ilustrativo
mrelajado =gp.Model("mip", env = env)

# Conjuntos

I = [i for i in range(0,4)]

J [j for j in range(0,3)]

# Parametros
d = [10,30,50,5]
lambda_i=[0.7,0.9,0.8,0.6]

name="z"

f = [100,120,90]

g = 1 #se puede asumir g_j=g

# Variables

x = mrelajado.addVars(J, vtype=GRB.BINARY, name="x"
z = mrelajado.addVars(J, vtype=GRB.CONTINUQUS,

y = mrelajado.addVars(I, J, vtype=GRB.CONTINUOUS,

# Funcion objetivo

name=

n

yn)

mrelajado.setObjective (gp.quicksum(£f[j] * x[j]l + g * z[j] for j in J),GRB.

MINIMIZE)

# Restricciones

mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J)

in I))

mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J)
mrelajado.addConstrs ((gp.quicksum(y[i, j] for i in I)
mrelajado.addConstrs ((y[i, jl] <= d[i] * x[j] for i in I for j in J))

# Optimize the model
mrelajado.optimize ()

## Problema primal para el nivel inferior (empresa)

instalaciones, precio fijo.

39

>

<
<

lambda_i[i] *d[i] for i

d[i] for i in I))
z[j] for j in 1))

con 4 clientes y 3
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mprimal = gp.Model("mip", env = env)

3 # Conjuntos

H

= [i for i in range(0,4)]
[j for j in range(0,3)]

[
I

# Parametros

3 matriz_distancias = np.array ([

[90, 60, 701,
(30, 20, 51,
(60, 50, 401,
[20, 20, 10]

D

matriz_costes = np.array ([
[50, 50, 50, 50]

D.T

d=[10,30,50,5]

z=[0,0,77]

pi=matriz_costes-matriz_distancias

# Variables

y = mprimal.addVars(I, J, vtype=GRB.CONTINUOUS,

mprimal .update ()

#Funcion Objetivo

objective = gp.quicksum(pilil[j] * yl[i,
5 mprimal.setObjective (objective, GRB.MAXIMIZE)

mprimal .update ()

# Restricciones
for i in I:

mprimal.addConstr (gp.quicksum(y[i,

3 for j im J:
mprimal.addConstr (gp.quicksum (yl[i,

# Optimizar
mprimal.optimize ()

Anexo C. Cédigo programado en Python

name="y")

jl for i in I for j in J)

jl for j in J) <= d[il)

jl for i in I) <= z[jl)

## Problema primal para el nivel inferior (empresa) con 4 clientes y 3

instalaciones, precio variable.

mprimal = gp.Model("mip", env = env)

3 # Conjuntos

]

= [i for i in range(0,4)]
J = [j for j in range(0,3)]

# Parametros
matriz_distancias = np.array ([
[90, 60, 701,
[30, 20, 51,
[60, 50, 401,
[20, 20, 10]

s 1)

5 matriz_costes = np.array ([

[90, 30, 60, 20]
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D.T

d=[10,30,50,5]

z=[0,0,77]

#pi = 50- matriz_distancias

pi=matriz_costes-matriz_distancias

3 # Variables

y = mprimal.addVars(I, J, vtype=GRB.CONTINUOUS, name="y")

mprimal .update ()

#Funcion Objetivo

objective = gp.quicksum(pil[il[j] * y[i, j] for i in I for j in J)
mprimal.setObjective (objective, GRB.MAXIMIZE)

mprimal .update ()

# Restricciones

5 for i in I:

mprimal.addConstr (gp.quicksum(y[i, j]l for j in J) <= d[il)

for j in J:
mprimal .addConstr (gp.quicksum (y[i, j] for i in I) <= z[j])

# Optimizar
mprimal .optimize ()

##Generar posiciones de 20 clientes y 10 instalaciones
random.seed (0)

# Plano
ancho_plano = 100
alto_plano = 100

# Numero de clientes y plantas
num_clientes = 20
num_instalaciones = 10

# Posiciones aleatorias para los clientes
posiciones_clientes = [(random.randint (0, ancho_plano-1), random.randint (0,
alto_plano-1)) for _ in range(num_clientes)]

# Posiciones aleatorias para las instalaciones

posiciones_instalaciones = [(random.randint (0, ancho_plano-1), random.randint (0,
alto_plano-1)) for _ in range(num_instalaciones)]

print ("Posiciones de los clientes:", posiciones_clientes)

print ("Posiciones de las instalaciones:", posiciones_instalaciones)

## Matriz distancias c_{ij} de cada cliente, a cada instalacion
import math
matriz_distancias = []

for cliente in posiciones_clientes:
fila_distancias = []
for instalacion in posiciones_instalaciones:
distancia = math.ceil (math.sqrt((cliente[0] - instalacion[0])**x2 + (
cliente[1] - instalacion[1]) *%*2))
fila_distancias.append(distancia)
matriz_distancias.append(fila_distancias)
matriz_distancias=np.array(matriz_distancias)
matriz_distancias
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168 ##Generar demanda clientes
170 np.random. seed (0)

172 #Numero de clientes
173 num_clientes = 20

175 # Generar demanda con distribucion uniforme en el intervalo [20, 100]
176 demanda_i = np.array(np.round(np.random.uniform(20, 100, num_clientes)))
177 lambda_i = np.array(np.round(np.random.uniform(0.2, 0.8, num_clientes)))

179 print ("Demanda de los clientes:")
150 print (demanda_i)

182 print ("Proporcion minima de demanda a satisfacer de los clientes:")
183 print (lambda_i)

185 import random
186 random.seed (0)

187 £f_values = [random.randint (100, 150) for in range (10)]

188 print (£f_values)
190 ##Problema relajado con 20 clientes y 10 instalaciones

192 mrelajado =gp.Model("mip", env = env)
193 # Conjuntos

194 I = [1 for i in range (0,20)]

195 J [j for j in range(0,10)]

197 # Parametros

98 d = {i: demanda_i[i] for i in I}
199 #lambda_i={i: 0.1 for i in I}

200 #lambda_i={i: 0.5 for i in I}

201 lambda_i={i: 0.9 for i in I}

202 #lambda_i

203 £ = f_values

204 g = 1 #se puede asumir g_j=g

205

200 # Variables

207 x = mrelajado.addVars(J, vtype=GRB.BINARY, name="x"

206 z = mrelajado.addVars(J, vtype=GRB.CONTINUOUS, name="z"
200y = mrelajado.addVars(I, J, vtype=GRB.CONTINUQOUS, name="y")

211 # Funcion objetivo
212 mrelajado.setObjective (gp.quicksum(£[j] * x[j] + g * z[j] for j in J),GRB.
MINIMIZE)

214 # Restricciones

215 mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J) >= lambda_i[i] *d[i] for i
in I))

216 mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J) <= d[i] for i in I))

217 mrelajado.addConstrs ((gp.quicksum(y[i, j] for i in I) <= z[j] for j in J))

218 mrelajado.addConstrs ((y[i, jl <= d[i] * x[j] for i in I for j in J))

20 # Optimize the model
21 mrelajado.optimize ()

23 ## Problema primal para el nivel inferior (empresa) con los valores de z_j
obtenidos en el problema relajado

24 mprimal = gp.Model("mip", env = env)

225

26 # Conjuntos
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I = [i for i in range (0,20)]
[j for j in range(0,10)]

[
I

# Parametros
d=demanda_i
z=[0,0,0,543.7,0,0,0,0,0,0]

;3 pi = 50- matriz_distancias

# Variables
y = mprimal.addVars(I, J, vtype=GRB.CONTINUOUS, name="y")

mprimal .update ()

#Funcion Objetivo
objective = gp.quicksum(pil[il[j] * y[i, j]l for i in I for j in J)
mprimal.setObjective (objective, GRB.MAXIMIZE)

mprimal .update ()

# Restricciones
for i in I:
mprimal.addConstr (gp.quicksum(y[i, j] for j in J) <= d[i])

for j in J:
mprimal.addConstr (gp.quicksum (y[i, j] for i in I) <= z[j])

# Optimizar
mprimal.optimize ()

## Problema lineal para los escenarios propuestos con 20 clientes y 10
instalaciones

def modelo_lineal(instalaciones, clientes, distancias, demandas, precios, pi,
lambdaa, costes_fijos, costes_variables, M1, M2, M3, M4, M5,

M6 ) :
290
instalaciones: conjunto de las instalaciones de las que se dispone
clientes: conjunto de clientes que tienen demanda
distancias: distancia desde el cliente i a 1la instalacion j. Se asume que
el coste es igual a la distancia
demandas: demanda del cliente i
precios: precio que paga el cliente 1 por que se le atienda su demanda
pi: ganancia unitaria por atender la demanda, es el precio-distancias
lambdaa: porcentaje minimo de demanda que se esta obligado a satisfacer
costes_fijos: costes que tiene el lider por abrir una instalacion j
costes_variables: costes que tiene el lider por cada unidad de capacidad de
la instalacion j
M1, M2, M3, M4, M5, M6é: cotas validas para sus correspondientes
restricciones

23

mlineal = gp.Model("mip", env = env)

#mlineal.setParam (" OutputFlag", 0)

# Variables

x = mlineal.addVars(instalaciones, vtype=GRB.BINARY, name="x"

z = mlineal.addVars(instalaciones, vtype=GRB.CONTINUOUS, name="z"

y = mlineal.addVars(clientes, instalaciones, vtype=GRB.CONTINUOUS, name="y")

w = mlineal.addVars(clientes, vtype=GRB.CONTINUQOUS, name="u"
u = mlineal.addVars(instalaciones, vtype=GRB.CONTINUQOUS, name="u"

alpha = mlineal.addVars(clientes, vtype=GRB.BINARY, name="alpha")
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beta = mlineal.addVars(instalaciones, vtype=GRB.BINARY, name="beta")
gamma = mlineal.addVars(clientes, instalaciones, vtype=GRB.BINARY, name="
gamma")

# Funcion Objetivo

objective=gp.quicksum(costes_fijos[j] * x[j] for j in instalaciones) + gp.
quicksum(costes_variables * z[j] for j in instalaciones)
mlineal.setObjective (objective, GRB.MINIMIZE)

# Restricciones

mlineal.addConstrs ((gp.quicksum(y[i, j] for j in instalaciones) >= lambdaali

] *demandas[i] for i in clientes))

mlineal.addConstrs ((gp.quicksum(y[i, j] for j in instalaciones) <= demandas[

i] for i in clientes))

mlineal.addConstrs ((gp.quicksum(y[i, j] for i in clientes) <= z[j] for j in
instalaciones))

mlineal.addConstrs ((wl[i]l + ulj]l >= pili, jl * x[j] for i in clientes for j

in instalaciones))

mlineal.addConstrs ((y[i, j] <= demandas[i] * x[j] for i in clientes for j in
instalaciones))

mlineal.addConstrs ((y[i, jl <= M1[i] * (1 - gammal[i, j]) for i in clientes

for j in instalaciones))

mlineal.addConstrs ((demandas[i] - gp.quicksum(y[i, j] for j in instalaciones

) <= M2[i] * (1 - alphal[i]) for i in clientes))

mlineal.addConstrs((z[j] - gp.quicksum(y[i, j] for i in clientes) <= M3[j] *
(1 - betaljl) for j in instalaciones))

mlineal.addConstrs ((w[i] <= M4[i] * alphal[i] for i in clientes))
mlineal.addConstrs((ul[j] <= M5[j] * betal[j]l] for j in instalaciones))
mlineal.addConstrs ((ul[j] <= M5[j] * x[j] for j in instalaciones))
mlineal.addConstrs ((w[i] + ul[j]l - pili, j] <= M6 * gammal[i, j] for i in

clientes for j in instalaciones))

# Optimizar
mlineal.optimize ()

if mlineal.status == GRB.INFEASIBLE:

print (’E1 modelo es infactible?’)

return None, None, None, None, None, None, None
else:

#Instalaciones abiertas
decision_instalaciones=pd.DataFrame ()
for j in instalaciones:
decision_instalaciones.loc[j,’x’]1=x[j].X
decision_instalaciones.loc[j,’z’]=2z[j].X
# decision_instalaciones.loc[j,’Capacidad_utilizada’]=sum(y[i,j].X
for i in clientes)

#Valores funciones objetivo

#lider

vifo_lider=mlineal.0ObjVal

#seguidor

vfo_seguidor=sum(pil[i,jl*y[i, j].X for i in clientes for j in
instalaciones)

#demanda satisfecha
demanda_satisfecha=pd.DataFrame ()
for i in clientes:
demanda_satisfecha.loc[i,’Demanda_satisfecha’]=(sum(y[i,j]l.X for j
in instalaciones)/demandas[i]) *100

#numero de clientes con demanda satisfecha al 1007%
clientes_demanda_satisfecha=len(demanda_satisfecha[demanda_satisfecha.
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Demanda_satisfecha==100] . index)
#numero de clientes con demanda satisfecha al min
clientes_min_demanda_satisfecha=len(demanda_satisfechal

demanda_satisfecha.Demanda_satisfecha==1lambdaa*100]. index)

#variables y_{ij}

variables_y_ij = pd.DataFrame (index=clientes, columns=instalaciones)

for i in clientes:
for j in instalaciones:
variables_y_ij.loc[i, jl = y[i, jl.X

return decision_instalaciones, vfo_lider, vfo_seguidor,
demanda_satisfecha, clientes_demanda_satisfecha,
clientes_min_demanda_satisfecha, variables_y_1ij

escenarios=range(0,6)
resultados=dict ()

for e in escenarios:
resultados [e]=dict ()

# Conjuntos
= [i for i in range (0,20)]
J = [j for j in range(0,10)]

H

# Parametros
d=demanda_i
p_i = np.array ([

[74 for _ in I],
[119 for _ in I],
[96.5 for _ in I,
[min(matriz_distancias[i, :]) for i in I],
[max (matriz_distancias[i, :]) for i in I],
[(max(matriz_distancias[i, :]) + min(matriz_distancias/[i,
in I]
1.T
pi = p_il:,e:e+1] - matriz_distancias

#lambda_i=np.array([0.1 for i in I])
#lambda_i=np.array([0.5 for i in I])
#lambda_i=np.array([0.9 for i in I])

£

f_values
1 #se puede asumir g_j=g

# Valores M_n

M1 = {i: d[i] for i in I}

M2 = {i: (1 - lambda_if[i]) * d[i] for i in I}

M3 = {j: sum(d[i] for i in I) for j in J}

M4 = {i: max(0,max([pili, j] for j in J])) for i in I}
M5 = {j: max(0,max([pi[i, j] for i in I])) for j in J}
M6 = max(0, max([pil[i,j] for i in I for j in J] ))

45

:1)) / 2 for i

result=modelo_lineal(J,I,matriz_distancias ,demanda_i,p_i,pi,lambda_i,f,g,M1,M2

,M3,M4 , M5, M6)
resultados[e] [’decision_instalaciones’]=result [0]
resultados[e][’vfo_lider’]=result[1]
resultados[e][’vfo_seguidor’]=result [2]
resultados[e] [’demanda_satisfecha’]=result [3]
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391 resultados[e][’clientes_demanda_satisfecha’]=result [4]
392 resultados[e][’clientes_min_demanda_satisfecha’]=result [5]
393 resultados [e] [’variables_y_ij’]=result [6]

395 resultados

397 ## Generar 100 clientes
308 random.seed (1)
399 num_clientes = 100

401 # Posiciones aleatorias para los clientes

42 posiciones_clientes = [(random.randint (0, ancho_plano-1), random.randint (0,
alto_plano-1)) for _ in range(num_clientes)]

403 print ("Posiciones de los clientes:", posiciones_clientes)

405 ## Matriz distancias c_{ij} de cada cliente, a cada instalacion
406 import math

407 matriz_distancias = []

408

409 for cliente in posiciones_clientes:

410 fila_distancias = []

411 for instalacion in posiciones_instalaciones:

412 distancia = math.ceil (math.sqrt((cliente[0] - instalacion[0])**2 + (
cliente[1] - instalacion[1]) *%*2))

413 fila_distancias.append(distancia)

414 matriz_distancias.append(fila_distancias)

415 matriz_distancias=np.array(matriz_distancias)
116 matriz_distancias

418 ##Generar demanda 100 clientes
419
40 np.random.seed (0)

422 #Numero de clientes
43 num_clientes = 100

205 # Generar demanda con distribucion uniforme en el intervalo [20, 100]
46 demanda_i = np.round(np.random.uniform(20, 100, num_clientes))
47 lambda_i = np.round(np.random.uniform(0.2, 0.8, num_clientes) ,1)

49 print ("Demanda de los clientes:")
430 print (demanda_1i)

432 print ("Proporcion minima de demanda a satisfacer de los clientes:")
433 print (lambda_i)

435 ##Problema relajado para 100 clientes
436

437 mrelajado =gp.Model("mip", env = env)
438 # Conjuntos

49 I = [i for i in range(0,100)]

440 J [j for j in range(0,10)]

441

442 # Parametros

443 d = {i: demanda_i[i] for i im I}
444

445 #lambda_i={i: 0.1 for i in I}

446 #lambda_i={i: 0.5 for i in I}

447 #lambda_i={i: 0.9 for i in I}

448 #lambda_i

49 £ = f_values

450 g = 1 #se puede asumir g_j=g

451
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Variables

mrelajado.addVars(J, vtype=GRB.BINARY, name="x"
mrelajado.addVars (J, vtype=GRB.CONTINUOUS, name="z"
mrelajado.addVars (I, J, vtype=GRB.CONTINUOUS, name="y")

< N M OH
]

# Funcion objetivo

s mrelajado.setObjective (gp.quicksum(£f[j] * x[j] + g * z[j] for j in J),GRB.

MINIMIZE)

# Restricciones

47

mrelajado.addConstrs ((gp.quicksum(y[i, j] for j in J) >= lambda_i[i] *d[i] for i

in I))
mrelajado.addConstrs ((gp.quicksum(y[i, jl for j in J) <= d[i] for i in I))
mrelajado.addConstrs ((gp.quicksum(y[i, jl for i in I) <= z[j] for j in J))
mrelajado.addConstrs ((y[i, jl <= d[i] * x[j] for i in I for j in J))

# Optimize the model
mrelajado.optimize ()

## Problema lineal para los seis escenarios propuestos
def modelo_lineal(instalaciones, clientes, distancias, demandas, precios, pi,

lambdaa, costes_fijos, costes_variables, M1, M2, M3, M4, M5,

instalaciones: conjunto de las instalaciones de las que se dispone
clientes: conjunto de clientes que tienen demanda

distancias: distancia desde el cliente i a 1la instalacion j. Se asume que

el coste es igual a la distancia

demandas: demanda del cliente i

precios: precio que paga el cliente 1 por que se le atienda su demanda
pi: ganancia unitaria por atender la demanda, es el precio-distancias
lambdaa: porcentaje minimo de demanda que se esta obligado a satisfacer
costes_fijos: costes que tiene el lider por abrir una instalacion j
costes_variables: costes que tiene el lider por cada unidad de capacidad
la instalacion j

M1, M2, M3, M4, M5, M6: cotas validas para sus correspondientes

restricciones

290

mlineal = gp.Model("mip", env = env)
#mlineal .setParam (" OutputFlag", 0)
# Variables

x = mlineal.addVars(instalaciones, vtype=GRB.BINARY, name="x"
z = mlineal.addVars(instalaciones, vtype=GRB.CONTINUQOUS, name="z"

de

y = mlineal.addVars(clientes, instalaciones, vtype=GRB.CONTINUOUS, name="y")

w = mlineal.addVars(clientes, vtype=GRB.CONTINUOUS, name="w"
u = mlineal.addVars(instalaciones, vtype=GRB.CONTINUOUS, name="u"

alpha = mlineal.addVars(clientes, vtype=GRB.BINARY, name="alpha')

beta = mlineal.addVars(instalaciones, vtype=GRB.BINARY, name="beta")
gamma = mlineal.addVars(clientes, instalaciones, vtype=GRB.BINARY, name="
gamma")

# Funcion Objetivo

objective=gp.quicksum(costes_fijos[j] * x[j] for j in instalaciones) + gp.
quicksum(costes_variables * z[j] for j in instalaciones)
mlineal.setObjective (objective, GRB.MINIMIZE)

# Restricciones

mlineal.addConstrs ((gp.quicksum(y[i, j] for j in instalaciones) >= lambdaali
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] *demandas[i] for i in clientes))

mlineal.addConstrs ((gp.quicksum(y[i, j] for j in instalaciones) <= demandas[

i] for i in clientes))

mlineal.addConstrs ((gp.quicksum(y[i, j] for i in clientes) <= z[j] for j in

instalaciones))

mlineal.addConstrs ((w[i] + ulj] >= pili, j]l * x[j] for i in clientes for j

in instalaciones))

mlineal.addConstrs ((y[i, j] <= demandas[i] * x[j] for i in clientes for j in
instalaciones))

mlineal.addConstrs ((y[i, jl <= M1[i] * (1 - gammal[i, j]) for i in clientes

for j in instalaciones))

mlineal.addConstrs ((demandas[i] - gp.quicksum(y[i, j] for j in instalaciones

) <= M2[i] * (1 - alphal[i]) for i in clientes))

mlineal.addConstrs((z[j] - gp.quicksum(y[i, j] for i in clientes) <= M3[j] =
(1 - betaljl) for j in instalaciones))

mlineal.addConstrs ((w[i] <= M4[i] * alphal[i] for i in clientes))
mlineal.addConstrs ((ulj] <= M5[j] * betalj] for j in instalaciones))
mlineal.addConstrs ((ul[j]l <= M5[j] * x[j] for j in instalaciones))
mlineal.addConstrs ((w[i] + wul[j] - pili, j] <= M6 * gammal[i, j] for i in

clientes for j in instalaciones))

# Optimizar
mlineal.optimize ()

if mlineal.status == GRB.INFEASIBLE:

print (’El modelo es infactible’)

return None, None, None, None, None, None, None
else:

#Instalaciones abiertas
decision_instalaciones=pd.DataFrame ()
for j in instalaciones:
decision_instalaciones.loc[j,’x’]=x[j].X
decision_instalaciones.loc[j,’z’]=2[j].X
# decision_instalaciones.loc[j,’Capacidad_utilizada’]=sum(y[i,j].X
for i in clientes)

#Valores funciones objetivo

#lider

vfo_lider=mlineal.0ObjVal

#seguidor

vio_seguidor=sum(pil[i,jl*y[i, j].X for i in clientes for j in
instalaciones)

#demandad satisfecha
demanda_satisfecha=pd.DataFrame ()
for i in clientes:
demanda_satisfecha.loc[i,’Demanda_satisfecha’]=(sum(y[i,j].X for j
in instalaciones)/demandas[i])*100

#numero de clientes con demanda satisfecha al 1007%
clientes_demanda_satisfecha=len(demanda_satisfecha[demanda_satisfecha.
Demanda_satisfecha==100]. index)

#numero de clientes con demanda satisfecha al min
clientes_min_demanda_satisfecha=len(demanda_satisfechal[
demanda_satisfecha.Demanda_satisfecha==lambdaa*100]. index)

#variables y_{ij}
variables_y_ij = pd.DataFrame(index=clientes, columns=instalaciones)
for i in clientes:
for j in instalaciones:
variables_y_ij.loc[i, jl = y[i, jl.X
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demanda_satisfecha,

return decision_instalaciones, vfo_lider, vfo_seguidor,

clientes_demanda_satisfecha,

clientes_min_demanda_satisfecha, variables_y_ij

560 escenarios=range (0,2)

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

579

580

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

599

600
601
602

603

606

resultados=dict ()

for e in escenarios:
resultados[e]l=dict ()

# Conjuntos

J =

—

[
[

i for i in range(0,100)]
j for j in range(0,10)]

# Parametros
d=demanda_i

p_i

np.array ([
[74 for
[119 for in I],

[96.5 for _ in IJ,
[min(matriz_distancias[i,
[max (matriz_distancias[i,

in IJ,

[(max(matriz_distancias[i,

in I]
1.7

pi =

#lambda_i=np.
#lambda_i=np.
#lambda_i=np.

f

£
1

:1) for i in I,
:1) for i in I],
:]) + min(matriz_distancias/[i,

p_il:,e:e+1] - matriz_distancias

_values
#se puede asumir g_j=g

# Valores M_n

M1 =
M2 =
M3 =
M4 =
M6 =
M6 =

{i: d[i] for i in I}

array ([0.1 for i imn I])
array ([0.5 for i in I])
array ([0.5 for i in I])

{i: (1 - lambda_i[i]) * d[i] for i im I}

{j: sum(d[i] for i in I) for j in J}

{i: max(0,max([pili, j] for j imn J])) for i in I}
{j: max(0,max([pili, j] for i imn I])) for j in J}
max (0, max ([pili,j] for i in I for j in J] ))

49

:1)) / 2 for i

result=modelo_lineal(J,I,matriz_distancias ,demanda_i,p_i,pi,lambda_i,f,g,M1,6M2
,M3,M4,M5,M6)
resultados[e][’decision_instalaciones’]=result [0]
resultados[e] [’vfo_lider’]=result [1]
resultados[e] [’vfo_seguidor’]=result [2]
resultados[e][’demanda_satisfecha’]=result [3]
resultados[e]l[’clientes_demanda_satisfecha’]=result [4]
resultados[e][’clientes_min_demanda_satisfecha’]=result [5]
resultados[e] [’variables_y_ij’]=result [6]
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