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1 Introduccion

En un mundo cada vez mas interconectado y con una gran cantidad de datos, es importante estudiar

sistemas macroscopicos formados por multiples agentes que interaccionan entre ellos.

La fisica estadistica, una rama de la fisica que estudia los comportamientos de sistemas con un gran
nimero de componentes, proporciona herramientas para el andlisis de estos fenémenos. Conceptos
como la distribucién de probabilidad, el equilibrio y las transiciones de fase pueden ser aplicados
para entender cémo cambios en las reglas de interaccién en sistemas de agentes econémicos pueden
llevar a grandes variaciones en los resultados macroscépicos. Esta disciplina recibe el nombre de
econofisica.

En este caso, se hace uso de modelos de gases. Cada agente se considera como una particula
de un gas. Asi como estas particulas interaccionan intercambiando energia; andlogamente, los
agentes econdmicos interaccionan intercambiando dinero. Dependiendo de las leyes de interaccion
son propuestos diferentes modelos.

Este trabajo se centra en el estudio de la distribucién de la riqueza en un sistema para distintas
situaciones. Por ello, se define la variable m; que representard la riqueza de un agente 7.

Es importante remarcar dos suposiciones que se tendran en cuenta en los distintos modelos. La
primera es que no se permite el endeudamiento, es decir, para todo agente ¢ se tiene siempre
m; > 0. La segunda suposicién afecta a la definiciéon aqui utilizada para la riqueza. La riqueza
de un individuo puede provenir, ademds del dinero que tenga, de sus bienes (casas, terrenos...),
inversiones (acciones) o activos tangibles no financieros (joyas, antigiiedades...). En este modelo
solo se considera el dinero.



2 Modelo de Dragulescu-Yakovenko

En su publicacién del ano 2000 Adrian Dragulescu y Victor Yakovenko encontraron computacional-
mente la ley de Boltzmann-Gibbs que describe la distribucién de riqueza de una sociedad con una

determinada ley de interaccién econémica [1].

La ley de Boltzamann-Gibbs describe la distribucién de energia de los atomos para un sistema
en equilibrio térmico. Establece que la probabilidad de encontrar una particula con una cierta
energia estd determinada por la temperatura del sistema y la relacién exponencial entre energia y

temperatura.

Para obtener esta relacién se puede considerar que la energia total del sistema se conserva. En
general, cualquier cantidad conservada en una gran sistema estadistico seguira la distribucién ex-
ponencial en el equilibrio. Dado que el dinero se conserva en un sistema econdmico cerrado la dis-
tribucién de riqueza seguird también esta forma, pero siendo la temperatura del sistema sustituida
por la riqueza media < m >. Esta estard dada por:

M
<m>= — 1
< 1)
siendo M la riqueza total del sistema y N el ntimero de agentes del sistema.

Se define la probabilidad p(m) como la cantidad de agentes con dinero m € (m,m+dm) y equivale
a N - p(m)dm. Entonces, la probabilidad de tener una cantidad de dinero m una vez alcanzado el
estado estacionario viene dada por:

p(m) = Ce=ns 2)

C es una constante de normalizacién que en este caso serd la inversa de la riqueza media (< m >71).

Para la ley de interaccién, se escogen dos agentes al azar (i y j) y ambos se redistribuyen su dinero
(mi y m;) de forma aleatoria. Uno de ellos se quedard con un cantidad de ese dinero epsilon que
vendra dado por un nimero random plano generado entre cero y uno. El otro agente tomara el
resto. De esta manera, en cada transaccién, el papel del ganador (quién se lleva la mayor parte del
dinero) y del perdedor son elegidos arbitrariamente; es decir, no hay preferencia entre los agentes,

el modelo es simétrico en el intercambio de agentes.

m; = €- (ml + mj) (3)

my = (1 —¢) - (m; +my)

Si bien esto no describe las transacciones y pagos convencionales donde estd bien definido a quién va

dirigido el dinero, si describe empresas que se unen para invertir en un proyecto (join — venture).

A continuacidn, en este primer capitulo, se desarrollan diferentes métodos con los que se comprueban



que la distribucién final de la riqueza sigue la ecuacién para el modelo en cuestién.

2.1 Simulacién computacional

En este apartado se desarrolla un programa para simular las transacciones que se dan en un sistema

econdémico.

Se toman distintas situaciones iniciales. En el primer caso, todo el dinero se reparte equitativamente

entre los agentes. Disponiendo de una cantidad total M = 1000 y N = 1000, queda que la media

es < m >= 1, por lo que la distribucién de la riqueza decaerd a p(m) = e~

m

La figura [I| muestra su evolucién a lo largo del tiempo, es decir, en las sucesivas interacciones. La

distribucién parte de una delta de Dirac centrada en la unidad y va evolucionando acercandose a la

distribucién exponencial esperada.
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Figure 1: Evolucién de la distribuciéon de la riqueza para 1000 agentes econémicos y una riqueza
total de 1000 con un reparto inicial equitativo.
realizadas.

El tiempo ¢ hace referencia a las interacciones



Para acabar con este primer caso se realizan 500 simulaciones en un sistema con N = 5000 (M =
5000 para conservar la media) y N? transacciones en cada una de ellas. La distribucién final,
representada en la figura 2], es obtenida calculando la media de esas 500 simulaciones.
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Figure 2: Distribucién de la riqueza tras 500 simulaciones con N? transacciones en cada iteracién
para < m >= 1.

En un segundo caso, la riqueza inicial de los 1000 agentes se divide en cinco valores. Los doscientos
primeros empiezan con una riqueza de 0.5, otros tantos con 1.0 y tres grupos més con 1.5, 2.0 y
2.5 también cada uno con doscientos agentes. En este caso, la riqueza total del sistema es de 1500,
por lo que la riqueza media queda < m >= 1.5. Asi, como se puede ver en las figuras [3| y [4], la
distribucién final tiende a:

2
o —m-2
p(m) = 3¢ 3 (4)
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Figure 3: Distribucion de la riqueza en ¢t = 100 y ¢ = 1000 para 1000 agentes econémicos y una
riqueza total de 1500 donde el reparto inicial se distribuye en cinco valores.
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Figure 4: Distribucién de la riqueza en ¢t = 1500 y ¢t = 2500 para 1000 agentes econdémicos y una
riqueza total de 1500 donde el reparto inicial se distribuye en cinco valores.

De la misma manera que en el caso anterior, se vuelve a presentar en la fig. [5|la distribuciéon media
tras 500 simulaciones con N? transacciones (con N = 5000). En este caso, para obtener la misma

media < m >, la cantidad total de la riqueza es M = 7500.
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Figure 5: Distribucién de la riqueza tras 500 simulaciones N? transacciones en cada iteracién para
<m >=3/2.

Asi pues, se verifica computacionalmente que independientemente de la distribucién inicial de la

riqueza el sistema acaba decayendo a la distribucion exponencialﬂ

2.2 Explicacion geométrica

A continuacién, se llega a la funcién de Boltzmann-Gibbs en dos situaciones con diferentes condi-
ciones de contorno econémicas: sistemas con cantidad variable de dinero (sistemas abiertos) y con

cantidad fija de dinero (sistemas cerrados).

'En el anexo A viene simulado un caso més



2.2.1 Sistemas abiertos
Este caso fue desarrollado por R. Lépez-Ruiz y colaboradores [2].

Se parte de un sistema con N agentes donde cada uno posee con una cantidad de dinero m; y no
se admiten deudas, por lo que m; > 0. El sistema de agentes dispone de una cantidad maxima de
dinero total M:

mi+mo+...+my <M (5)

Geométricamente, con cada agente en una coordenada, se supone que el sistema desarrolla su
dinamica en el interior de una piramide N-dimensional; donde cada uno de sus puntos es equiprobable.

El volumen de esta piramide estd dado por:

MN

VN (M) = =& (6)

La probabilidad de encontrar al agente i con dinero m; es f(m;)dm;, donde la condicién de nor-

malizacién es:

M
/o f(mi)dm; =1 (7)

Si el agente ¢ tiene coordenada m; -tiene una cantidad de dinero m;- los N — 1 agentes restantes

tendran, como mucho, M — m;:

mi+me+..+my_1+myt1+...+my < M-—my (8)

En este caso, el volumen serd Vy_1(M —m;).

Haciendo uso de la relacién V(M) = fOM VN_1(M —m;)dmi y de la normalizacién:

Flms) = VoM —m)  (M-m)¥YN-1)! N/ M-m\"" 1 (1 - @>N71
Yo (M) MN /N M M C<m> M
(9)
Definiendo < m > como la riqueza media < m >= M/N.
Ahora, haciendo tender N al infinito:
mi\N-1
i _ - 1 (N—1)-log(1—m; /M)
o ()= e 00)

Calculando el limite del exponente:



(N —1) lim_log (1 - %) — lim N (fﬁ) - ‘ (11)

N—oo

e T e = (12)

Finalmente, se acaba obteniendo la distribuciéon de Boltzmann-Gibbs:

B 1
<m>

£(m) e (13)

El indice i se ha retirado dado que la distribucion es la misma para cada agente.

2.2.2 Sistemas cerrados
Este segundo caso fue explicado por R. Lépez-Ruiz y colaboradores [3].

Trabajando en un sistema cerrado, la cantidad total de dinero se conserva. Teniendo N agentes con

cada uno una riqueza m;, con m; > 0:

mi+mo+..+my=M (14)

En este caso el sistema evoluciona en la parte positiva de un N-hiperplano equilateral, siendo cada
punto de este un estado del sistema y todos ellos accesibles de manera equiprobable.

El area de este N-hiperplano viene dado por:

VN

Sn(M) = (N —1)!

MmN~ (15)

La probabilidad de encontrar al agente i con una cantidad m; viene dada por f(m;) dm; que cumple

la condicién de normalizacién:

M
/0 f(ml)dmz =1 (16)

Si el agente i tiene una cantidad m;, los IV — 1 agentes tendran una cantidad M — my;

m1+m2+...+mN_1+mN+1+---+mN:M—mi (17)

con una superficie Sy_1(M —m;).

Introduciendo el parametro geométrico 6, que cumple la relacién senfy = 4/ %, se puede obtener
la superficie de un N-hiperplano a partir de uno de dimensién inferior N — 1:



M
o SNfl(M — ml) )
S (M) = /O L, (18)

Con esta relacién y teniendo en cuenta la condicién de normalizacién:

f(mi) =

Sn-1(M —m;) 1 . \/ﬁ(M - mi)N_Q(N —1)! N —1 -1 "
SN senfy (N — 2)lWV/NMN-1 (19)

:<NM—1>(1_W)N2

Introduciendo la definicién de riqueza media < m >= %, se calcula el limite cuando IV tiende al

infinito:

: m;\N=2 : N—2)-log(1—m;/M
lim (1-75)7 =l (VD lesimAn i
N1—1>noo M Ngnooe ( 0)
Haciendo uso de equivalencias:
N —2) lim I (1——2):1' N(——Z):— 2 21
( )Ngnoo o9 M Ngnoo M <m > ( )
Por lo tanto, finalmente se tiene:
mi\ N—2
i (1 B 71) _ —mi/<m> 29
— Ngnoo M € ( )
Asi, se llega a la distribucién de Boltzmann-Gibbs:
fm) = ———e = (23
m) = e <m
<m >

Se excluye el indice ¢, pues la distribucion es la misma para cada agente.

2.3 Modelo continuo: Z-model

En su articulo [4] R. Lépez-Ruiz et al. obtuvieron con un operador I' la distribucién de Boltzmann-
Gibbs.

En la analogia de sistemas econémicos, partiendo de una distribucién de riqueza inicial po(m) con
media < m >, el modelo continuo consiste en suponer que esta distribucién evoluciona bajo un
operador I, alcanzando asintéticamente la distribucién de equilibrio py(m)

lim I"[po(m)] = py(m) (24)

n—oo



Para obtener el operador I' para la ley de interaccion del modelo Dragulescu-Yakovenko, se parte
de que la probabilidad de que dos agentes con dinero u y v interactien en un tiempo n es
Pn(u) pp(v) dudv. Sus intercambios pueden dar lugar a cualquier valor en el intervalo (0,u + v)
con la misma probabilidad. Entonces, la probabilidad de obtener una cantidad de dinero z (siendo
r < u+v) es pp(u)pn(v)dudv/(u+ v). Finalmente, la probabilidad de obtener una cantidad de
dinero x en el tiempo n + 1 serd la suma de probabilidades de todas las parejas con dinero u,v
capaces de generar la suma z, verificando = < u + v:

Pus(2) = Tpa(a //MH Pl nl2) g, (25)

Se puede pensar que en cada iteracién se han producido del orden de N? transacciones.
A modo de prueba, se aplica este operador a diferentes condiciones inciales.

Con una distribucién inicial dada por la funcién po(z) = f(z) = 5 - e=e/V?2 (fig. @) se realiza la
integral de la expresién y asi observar como evoluciona la distribucién de riquezaﬂ
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Figure 6: Distribucion inicial de la riqueza.

El valor medio de esta de la funcién estd dado por:

/Oo:c-f(x)dx:2-\/§ (26)
0

Por lo tanto, esta distribucién decaera a la expresién:

(x>_i e2v3

S
—~
[\
-’

A continuacién, la figura [7| recoge la evolucién en el primer paso, pi(x) = I" (po(z))

2El método aproximado computacional que se utiliza para calcular las iteraciones viene explicado en el anexo B.
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Figure 7: Iteracion 1

Como se puede observar, tras una primera iteracion, la distribucion abandona su forma inicial. En
las figuras [§] se muestra la aplicacién del operador I" hasta la quinta iteracion.
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Figure 8: Distribucién de la riqueza en las

sucesivas aplicaciones del operador I' para el modelo
Dragulescu-Yakovenko.

La distribucion de la riqueza se va acercando cada vez mas a la distribucion de equilibrio dada por

10



la expresién . El error realizado por la aproximacién se puede calcular mediante la operacién
lpf(x) — pn(x)||, donde pg(x) representa la distribucién teérica final y p,(x) la distribucién en el
paso n calculada por el método recogido en el anexo B. Al calcular esta expresion para cada una de
las iteraciones, se observa en la figura [9] cémo la distancia va decreciendo a medida que se suceden

las iteraciones.

0.15 - -

01r- B

Distancia

Iteracion

Figure 9: Valor de la distancia al equilibrio p¢(x) para las distintas iteraciones

En un segundo caso, se toma una distribucién inicial a trozos:

% st O<zx<l1l
Tosi l<z<2
3 si 2<x<3
po(z) L osi 3<a<4 (28)
2 s 4<z<5b
2 si <z <6
0 enelresto

\

El valor medio en este caso es < z >= %. Enla ﬁguraviene representada tanto esta distribucién

inicial como la distribucién tedrica final py(z) = & - e75%/2L,

11
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Figure 10: Distribucién inicial y distribucion final tedrica para la distribucién a trozos.

A continuacién, vienen recogidas en las figuras [11] y [12] las sucesivas iteraciones.
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Figure 11: Distribucién de la riqueza en las sucesivas aplicaciones del operador I' para una dis-

tribucién inicial a trozos.
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Figure 12: Distribuciéon de la riqueza tras la quinta aplicacién del operador I' para una distribucion
inicial a trozos.

Se puede observar, de nuevo, cémo la distribucién de la riqueza evoluciona decayendo rapidamente
del caso inicial hacia el punto de equilibrio.

2.4 Niveles socieconémicos y parejas

Alcanzada la expresion de Boltzmann-Gibbs que describe como se distribuye la riqueza de un sistema
econdmico, se puede dividir la poblacion en niveles socioeconémicos o clases sociales. Tradicional-
mente se distinguen tres clases: la clase alta, la clase media y la clase baja. Haciendo uso de la
riqueza media < m >, se define la clase baja aquella que tenga una riqueza entre 0 y < m > /2; la
clase media entre < m > /2y 2 < m > y la alta con méas de 2 < m >.

En la figura se muestra el caso para < m >= 1.

1 T T T 0.4 T T T T
0.9 Clase baja i Clase baja ==
) Clase media === 0.35 Clase media === |
0.8 Clase alta B 03 Clase alta
0.7 : '
0.6 | 0.25 |- -
E o5 B E o02f R
[=1% [=1%
0.4 B 0.15 - i
0.3 B
0.1 B
0.2 B
0.1 i 0.05 B
0 L L 0 I
0 1 2 3 4 5 0 1 2 3 4 5 6 7
m m
(a) Individuos (b) Parejas

Figure 13: Distribucién de la riqueza para poblaciones formadas por individuos y parejas.

Calculando la integral de la ecuacién entre los valores que separan las diferentes clases sociales
se halla el porcentaje de la poblacién que conforma cada una de ellas:

13



e (Clase baja

2 2
/<m>/ 1 ‘ e—m/<m> dm = 1 /<m>/ e_m/<m> dim —
0 0

(- <m>) (72— el =1—¢1/2=10.3935
m
e Clase media
2<m> 1
/ e e/ dm = . =7V — ¢72 = 0.4712 (30)
<m>/2 m
e (Clase alta o 1
/ - e dm = . =2 —0=0.1353 (31)
2<m> m

Se puede observar que los valores de los porcentajes son independientes de la riqueza media < m >
del sistema.

Sin embargo, en la sociedad los individuos tienden a formar parejas y crear familias. Entonces,
suponiendo una aproximacién sencilla en la que un individuo tiene la misma probabilidad de rela-
cionarse con cualquier otro individuo sin importar su clase social, la expresion que mejor describe
la distribucién de la riqueza es la convolucién de la expresion . Por lo que la probabilidad de que

dos individuos se junten para alcanzar una riqueza x sera:

P(x) = /0 p(”)p(aj—u) du = /0 W . efu/<m> . 67<x7u)/<m> du = W - e <m> (32)

Esta expresion es la que se representa en la figura[13] (con < m >=1).
En este caso, se tiene una nueva riqueza media:

o

1

< P(x) >:/ 72.7)2 e dr =2 < m > (33)
0 <m >

Se obtiene que la riqueza media de los entes activos del sistema, que en este caso seran las parejas, se
duplica respecto al modelo que considera el sistema formado por individuos. Con el mismo criterio
utilizado para dividir la poblacion, se tienen nuevos porcentajes para las clases sociales.

En la siguiente tabla se comparan los valores obtenidos en ambos casos.

Agentes individuales (%) | Agentes por parejas (%)
Clase baja 39.35 26.42
Clase media 47.12 64.42
Clase alta 13.53 9.16

Ahora, considerando el sistema por parejas, la probabilidad de pobreza extrema se ha reducido

14



drasticamente, siendo practicamente nula. Otro resultado importante es el significativo aumento de

la clase media, mientras que la alta disminuye.

3 Modelo Dirigido

En este segundo modelo, se tiene una nueva ley de interaccién de modo que se realiza una descripcion
méas realista. En este caso, estd determinado el papel del perdedor- el que entrega el dinero- y el
papel del ganador- el que recibe el dinero. La realizacién de una compra de un cliente en un
supermercado o el pago de un sueldo a un empleado por parte del jefe de una empresa son ejemplos
que se ajustan a esta interaccién. Evidentemente, el concepto de perder/ganar se refiere al dinero
porque en las interacciones se producen intercambios de mercancias, servicios, etc. que el modelo

no recoge.

Ahora, un agente elegido al azar se queda con una parte de su dinero. El resto se lo entrega a un

segundo agente, también elegido al azar:
m;=e€-m; (34)
my =mj+ (1 —¢€)-my

Donde € vuelve a ser un nuimero random plano generado entre cero y uno.

Con esta nueva ley de intercambio, G. Katriel demostré que la distribucion de la riqueza pasa a
seguir la siguiente expresién [5]:

1 1
P = s i ©

Esta funcién diverge para m = 0, por lo que la cantidad de agentes pobres, en especial de extrema

—m/2<m> (35)

pobreza, se dispara; mientras que la alta riqueza es mas improbable.

Aqui, la ley de interaccidon no es simétrica, en contraste con el caso anterior. Esto provoca la
aparicién de agentes definidos como perdedores y ganadores.

3.1 Simulacién computacional

Para este caso, se toma una situacién en la que una quinta parte de la poblacién tiene riqueza 0.2
y el resto 2. Teniendo N = 1000, la riqueza media es < m >= 41/25. Entonces, la funcién a la que
decae la distribucién de la riqueza es:

p(m) _ \/8527\/1%6—25711/82 (36)

En la figura [14] se puede observar como a medida que pasa el tiempo, la distribucién de la riqueza
se acerca a la expresién esperada.

15
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Figure 14: Evolucion de la distribucién de la riqueza para 1000 agentes econémicos y una riqueza
total de 1000 con un reparto inicial desigual.

Como en el modelo anterior, se realizan N? transacciones (con N = 5000) 500 veces. El resultado

se muestra en la figura

T T T T T T T T
10 - Distibucion final tedrica 10 Distibucion final tedrica _
Simulacion e Simulacion e
8| . sl i
6| . sl i
E E
T 4r 1 = 4t .
2+ - 2L i
0~ - B Qe -
-2 1 1 1 1 -2 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1 1.5 2 2.5 3 3.5 4 4.5 5
m m
(a) (b)

Figure 15: Distribucién de la riqueza tras 500 iteraciones con N? transacciones en cada iteracion.
Se representa en dos graficas para mejor visibilidad.
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Se puede observar como la simulacién sigue la distribucion teérica. En el anexo C se recogen dos
casos mas para mostrar que, independientemente de la situacién inicial, la distribucion decae a la
expresion ([35)).

3.2 Modelo continuo
Este modelo fue estudiado por I. Martinez-Martinez y R. Lopez-Ruiz [6].

En el modelo continuo se tiene un nuevo operador I' que describe la evolucién de la distribucion
de riqueza. En esta explicacién se separa la distribucion inicial del dinero en dos distribuciones en
principio idénticas. La primera da la probabilidad de tener un agente perdedor con dinero inicial
u y la segunda la de obtener un agente ganador que empezaréd con dinero v. Por lo tanto, siendo
P(z) la probabilidad de tener un agente con dinero x y p; y p2 la probabilidad de tener un agente
perdedor y uno ganador con una cantidad x respectivamente, la distribuciéon de la riqueza viene

dada por:

P() = gpi(a) + 5pal) (37)

En cada iteracion se tiene una serie de transacciones entre los agentes de las dos poblaciones, p; y

p2, llegando entonces a una nueva distribucién:

P/(a) = 50} () + 5b(x) (3)

Se considera p} como la probabilidad de que un agente tenga una cantidad x después de la iteracién.
Dado que se trata del agente perdedor, se tiene que u > z. La cantidad de dinero resultante esta
distribuida uniformemente en [0,u], por lo que la probabilidad de obtener una cantidad = es 1/u.

// LOVIC /OOO p(v)do - /M p(uu)du = /m p(uu)du (39)

Para la segunda probabilidad py(z) su cantidad final es un valor entre su dinero inicial v y la

Entonces:

cantidad méaxima posible, que corresponde a que el agente perdedor entregue todo su dinero: u + v.
El intervalo [v,u + v] vuelve a tener una longitud u. Por lo tanto, la probabilidad de la cantidad z,

que estd distribuida uniformemente en ese segmento, es 1/u. Asi la probabilidad es:

//v<m<u+v u o )du o 40

Finalmente el operador I' queda:

P’(:U):FP(QL'):;/> p(uwdu+;//< . p(u)up(v)dudv (41)
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Este operador cumple la condicién de normalizacién y posee un valor medioﬁ

La distribucion inicial escogida para este caso consiste en una distribucién triangular dada por la

siguiente funcién:

% si 0<z<1
po(x) = % st z=1 (42)

4779” st 1l<zx<4

En la figura [16] se representa esta funcion.

1.2 T T T 1 T T
Distibucion final tedrica
1k Distribucion inicial i
0.8 - -
E o6} E
o
0.4 4
0.2 - B
0

Figure 16: Distribucién inicial triangular

Su valor medio es 5/3, por lo que la funcién a la decae es py(z) = 1‘0/% % e 0.3

A continuacién, en las figuras [I7] y [I§] vienen representadas las sucesivas iteraciones tras aplicar el

operador.
T T T T T T T T T T T
1 Distibucion final tedrica 4 12 Distibucion final tedrica

Iteracion 1 —— [teracion 2 ——
1+
0.8 -
5 T os|

= =

0.4 -
0.2 -
U -

| | | | | | | | | | | | | | |

0 1 2 3 5 6 7 8 0 1 2 3 4 5 6 7

m m
(a) Iteracién 1 (b) Iteracién 2

Figure 17: Distribucion de la riqueza tras la primera y segunda aplicacién del operador I' para una
distribucién inicial triangular.

3Esta demostracién se tiene desarrollada en el anexo D
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Figure 18: Distribucién de la riqueza desde la tercera hasta la quinta aplicacién del operador I" para
una distribucién inicial triangular.

3.3 Niveles socioeconémicos y parejas

Ahora se vuelve a dividir la poblaciéon por su nivel econémico. Retomando el criterio utilizado
previamente, se llega a la misma situacién en la que el porcentaje de cada clase no depende de la

riqueza media.

e Clase baja

(43)
e (Clase media
/2<m> 1 1 o m/2<m> g0 erf(1) —erf <1> = 0.3222 (44)
cmsjz VE<m S 7 m 2

4Donde erf se refiere a la funcién error
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e (Clase alta

> 1 1 —m/2<m>
e dnmn=..=1—erf(l) =0.1573 45
/2<m> —— 1) (15)

En la figura se observa la divisién en clases sociales para < m >= 1.

05 T T T T OS T T T

Clase baja === 0.45 Clase baja = |
Clase media == : Clase media ==
0.4 Clase alta B 0.4 Clase alta N
0.35 B
0.3 - 0.3 -
E E 025 -
(=% (=%
0.2 B 0.2 B
0.15 B
0.1 B 0.1 B
0.05 -
0 L L 0 L
0 2 4 6 8 10 0 2 4 6 8 10
m m
(a) Individuos (b) Parejas

Figure 19: Distribucion de la riqueza para poblaciones formadas por individuos y parejas para el
modelo dirigido.

De nuevo, la distribucién de la riqueza si se consideran parejas vendra dada por la convolucion de

la expresion :

—m/2<m> 1

2<m>7r/ f\/x—u To2<m>

P(x) = /0 " p)p(z — u)du = ems/2<m> (4)

El valor medio para esta funcién es 2 < m >. Es decir, como en el anterior caso la riqueza media

se duplica.

El resultado viene representado en la figura En la siguiente grafica se recoge el porcentaje de
poblacion de cada clase social en los dos casos.

Agentes individuales (%) | Agentes por parejas (%)
Clase baja 52.05 39.35
Clase media 32.22 47.12
Clase alta 15.73 13.53

Como ocurria en el anterior modelo, tanto la poblacién de la clase baja como la de la alta disminuyen,
mientras que la clase media aumenta. Es especialmente llamativo que al considerar parejas en este
modelo, se obtiene la exponencial que describia el anterior modelo para individuos aunque con la
probabilidad maxima reducida a la mitad.
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4 Redes de agentes econémicos

En este ultimo modelo, estudiado también en el articulo de I. Martinez-Martinez y R. Lépez-Ruiz [6],
se introduce una red de agentes. Ahora las transacciones se daran entre aquellos agentes que tengan
algin tipo de relacién y no entre cualesquiera. Un ejemplo serfan las tiendas de alimentacién.
Las personas no compran en cualquier establecimiento, sino que acuden a unos en concreto por su
ubicacién, su calidad o sus precios. Hay que resaltar que en este caso los dos agentes implicados
no son escogidos al azar, pues esto no tendria en cuenta la topologia de la red. Por ello, un primer
agente si es tomado al azar, pero el segundo se elige aleatoriamente entre los agentes a los que esta

conectado.

Se trabaja con diez redes distintas construidas mediante el modelo de Erdos — Renyi. Teniendo N
nodos (o agentes econémicos), se cogen dos de ellos y se establece una conexién entre ellos segin una
probabilidad p. Esta probabilidad viene dada por p =< k > /N, donde < k > es la conectividad
media. En este caso se ha tomado N = 1000 y una conectividad media < k >= 40 para todas las

redes. En la figura 20| se tiene el histograma de los grados.

0.07 T T T T T T

0.06 — r M B

0.05 - = B

0.04 -

p(k)

0.03 -

0 1 I 1 I I 1 1
20 25 30 35 40 45 50 55 60

k

Figure 20: Histograma de los grados de las diez redes Erdos — Renyi.

Al introducir la red, se espera que la riqueza de un agente dependa de la cantidad de agentes con
los que pueda interaccionar; esto es, de su grado. Para estudiar esta dependencia, se introduce la

riqueza media de un agente en funcién de su grado k:

1 S Ng
<m> (k)= T DY mils) (47)
s=1 1=1

Ny, indica cudntos nodos tienen grado k y .S son las cantidades de simulaciones llevadas a cabo. Es
decir, después de cada simulacién, en la que se han realizado N? transacciones, se suma la riqueza
de aquellos agentes que tengan un grado en concreto y se divide entre la cantidad de agentes con
ese grado. Una vez realizadas todas las simulaciones, se calcula la media para todas ellas. Este
proceso se realiza para las diez redes, calculando a su vez la media de todas ellas. También se define

la desviacion tipica:
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S Ng

o) = S;fk S5 [a(s)— < m > (k)2 (48)

s=1 i=1

En este caso, la desviacién que se toma para cada grado es el mayor valor hallado de entre todas
las redes.

Inicialmente, se entrega la misma cantidad a cada uno de los agentes: 1.0. Después, se aplica las
leyes de interaccién del modelo de Dragulescu-Yakovenko y del modelo dirigido ([34)).

Para el primer caso, la figura 21 muestra que la riqueza es independiente de la conectividad de los
agentes. Entonces, para este modelo, la distribucién socioeconémica no depende de la conectividad
social de los agentes. Resaltar, ademés que la desviaciéon es mayor para la conectividad de la que
se tienen pocos agentes. Estos es obvio, pues para estos casos se tienen menos muestras para hacer

estadistica.
2.5 T T T T T T 11 T T
2 i
15+ i 1.05 - B
S il S I
A A 1 0 O A } ST S N -
g osk - g
0 7 0.95 | 4
0.5 - J
_1 1 1 1 1 1 1 09 1 | 1
10 20 30 40 50 60 70 80 30 35 40 5 50

Figure 21: Distribucién de la riqueza para poblaciones formadas por individuos y parejas para el
modelo Dragulescu-Yakovenko. En la imagen de la derecha se enfoca la parte central de la gréfica,
donde hay més cantidad de nodos con esas conectividades.

Sin embargo, para el segundo modelo la riqueza si depende de la conectividad. La figura [22| muestra
cémo la riqueza aumenta conforme la conectividad del agente crece siendo esta una dependencia
lineal. Este caso describe mejor la realidad: una tienda de alimentacién venderd méas y acumulara

mas dinero cudantos mas clientes acudan a ella.
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Figure 22: Distribucién de la riqueza para poblaciones formadas por individuos y parejas para el
modelo dirigido. En la imagen de la derecha se enfoca la parte central de la grafica, donde hay mas
cantidad de nodos con esas conectividades.

5 Conclusiones

Este trabajo se ha centrado en la modelizaciéon de dos modelos de mercado segin su ley de
interaccion. A través de la simulacién computacional se ha comprobado la distribucién asintética

de la riqueza a la que llega un sistema econdémico.

Primero, para el modelo Dragulescu-Yakovenko se ha verificado computacionalmente que la riqueza
de los agentes econémicos (tomados como individuos) se distribuye siguiendo una exponencial decre-
ciente independientemente de la situacién inicial. Luego, se ha obtenido la misma expresiéon de dos
maneras distintas: mediante una explicacion geométrica y con un operador. Este capitulo se cierra
con una divisién de la poblacién en clases sociales; siendo esta divisién independiente de la riqueza
media de la poblacién. Por tltimo, se ha realizado la convolucion de la exponencial para conseguir
la distribucién de la riqueza en un sistema formado por parejas, lo que reduce drasticamente la

pobreza.

El segundo capitulo ha seguido un guién similar. En este caso la ley de interacciéon cambia y se
pasa a estudiar el modelo dirigido, donde el papel de quién entrega el dinero y quién lo recibe
estd claramente definido. Computacionalmente se encuentra que la distribucién sigue una funcién
gamma con pardmetro de forma 1/2. Esto provoca un aumento pronunciado de la extrema pobreza.
Después, con un nuevo operador definido, se ha hallado la misma distribucién en el modelo continuo.
De la misma manera que en el primer capitulo, se ha llevado a cabo una divisién de la poblacion
que vuelve a ser independiente de la riqueza media. Considerando de nuevo la formacién de parejas
de agentes econémicos se ha calculado la convolucion de la expresion. Casualmente, se ha llegado

a la misma funcién que describe el modelo anterior para individuos.

Por dltimo, se ha introducido una red de agentes. De esta manera, las transacciones solamente se
podran dar entre aquellos agentes que tengan algiin tipo de relacién. Aplicando los dos modelos, se
ha encontrado que para el modelo de Dragulescu-Yakovenko, la riqueza no depende de la conectivi-
dad de un agente; es decir, no depende de con cudnta gente puede tener interacciones. Sin embargo,

en el modelo dirigido esto no es asi: en este caso, la riqueza si depende de la conectividad. Esto se
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debe a que el modelo de Dragulescu-Yakovenko es no dirigido y la interacciones son simétricas para

ambas partes. En el segundo modelo, al ser dirigido, las interacciones ya no son simétricas.

Se puede concluir, a la vista de los resultados aqui expuestos, que los agentes con mas vecinos en
el modelo dirigido tenderan a acumular mas dinero de forma proporcional a su conectividad. Este
resultado puede estar mas de acuerdo a la realidad observada a nivel de micro-economia que los
resultados observados en el modelo no dirigido.
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