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1 Introducción

En un mundo cada vez más interconectado y con una gran cantidad de datos, es importante estudiar

sistemas macroscópicos formados por múltiples agentes que interaccionan entre ellos.

La f́ısica estad́ıstica, una rama de la f́ısica que estudia los comportamientos de sistemas con un gran

número de componentes, proporciona herramientas para el análisis de estos fenómenos. Conceptos

como la distribución de probabilidad, el equilibrio y las transiciones de fase pueden ser aplicados

para entender cómo cambios en las reglas de interacción en sistemas de agentes económicos pueden

llevar a grandes variaciones en los resultados macroscópicos. Esta disciplina recibe el nombre de

econof́ısica.

En este caso, se hace uso de modelos de gases. Cada agente se considera como una part́ıcula

de un gas. Aśı como estas part́ıculas interaccionan intercambiando enerǵıa; análogamente, los

agentes económicos interaccionan intercambiando dinero. Dependiendo de las leyes de interacción

son propuestos diferentes modelos.

Este trabajo se centra en el estudio de la distribución de la riqueza en un sistema para distintas

situaciones. Por ello, se define la variable mi que representará la riqueza de un agente i.

Es importante remarcar dos suposiciones que se tendrán en cuenta en los distintos modelos. La

primera es que no se permite el endeudamiento, es decir, para todo agente i se tiene siempre

mi ≥ 0. La segunda suposición afecta a la definición aqúı utilizada para la riqueza. La riqueza

de un individuo puede provenir, además del dinero que tenga, de sus bienes (casas, terrenos...),

inversiones (acciones) o activos tangibles no financieros (joyas, antigüedades...). En este modelo

solo se considera el dinero.
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2 Modelo de Dragulescu-Yakovenko

En su publicación del año 2000 Adrian Dragulescu y Victor Yakovenko encontraron computacional-

mente la ley de Boltzmann-Gibbs que describe la distribución de riqueza de una sociedad con una

determinada ley de interacción económica [1].

La ley de Boltzamann-Gibbs describe la distribución de enerǵıa de los átomos para un sistema

en equilibrio térmico. Establece que la probabilidad de encontrar una part́ıcula con una cierta

enerǵıa está determinada por la temperatura del sistema y la relación exponencial entre enerǵıa y

temperatura.

Para obtener esta relación se puede considerar que la enerǵıa total del sistema se conserva. En

general, cualquier cantidad conservada en una gran sistema estad́ıstico seguirá la distribución ex-

ponencial en el equilibrio. Dado que el dinero se conserva en un sistema económico cerrado la dis-

tribución de riqueza seguirá también esta forma, pero siendo la temperatura del sistema sustituida

por la riqueza media < m >. Esta estará dada por:

< m >=
M

N
(1)

siendo M la riqueza total del sistema y N el número de agentes del sistema.

Se define la probabilidad p(m) como la cantidad de agentes con dinero m ∈ (m,m+dm) y equivale

a N · p(m) dm. Entonces, la probabilidad de tener una cantidad de dinero m una vez alcanzado el

estado estacionario viene dada por:

p(m) = C e−
m

<m> (2)

C es una constante de normalización que en este caso será la inversa de la riqueza media (< m >−1).

Para la ley de interacción, se escogen dos agentes al azar (i y j) y ambos se redistribuyen su dinero

(mi y mj) de forma aleatoria. Uno de ellos se quedará con un cantidad de ese dinero epsilon que

vendrá dado por un número random plano generado entre cero y uno. El otro agente tomará el

resto. De esta manera, en cada transacción, el papel del ganador (quién se lleva la mayor parte del

dinero) y del perdedor son elegidos arbitrariamente; es decir, no hay preferencia entre los agentes,

el modelo es simétrico en el intercambio de agentes.

m′
i = ϵ · (mi +mj) (3)

m′
j = (1− ϵ) · (mi +mj)

Si bien esto no describe las transacciones y pagos convencionales donde está bien definido a quién va

dirigido el dinero, śı describe empresas que se unen para invertir en un proyecto (join− venture).

A continuación, en este primer caṕıtulo, se desarrollan diferentes métodos con los que se comprueban
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que la distribución final de la riqueza sigue la ecuación (2) para el modelo en cuestión.

2.1 Simulación computacional

En este apartado se desarrolla un programa para simular las transacciones que se dan en un sistema

económico.

Se toman distintas situaciones iniciales. En el primer caso, todo el dinero se reparte equitativamente

entre los agentes. Disponiendo de una cantidad total M = 1000 y N = 1000, queda que la media

es < m >= 1, por lo que la distribución de la riqueza decaerá a p(m) = e−m.

La figura 1 muestra su evolución a lo largo del tiempo, es decir, en las sucesivas interacciones. La

distribución parte de una delta de Dirac centrada en la unidad y va evolucionando acercándose a la

distribución exponencial esperada.

(a) t=100 (b) t=1000

(c) t=1500 (d) t=2500

Figure 1: Evolución de la distribución de la riqueza para 1000 agentes económicos y una riqueza
total de 1000 con un reparto inicial equitativo. El tiempo t hace referencia a las interacciones
realizadas.

.
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Para acabar con este primer caso se realizan 500 simulaciones en un sistema con N = 5000 (M =

5000 para conservar la media) y N2 transacciones en cada una de ellas. La distribución final,

representada en la figura 2 , es obtenida calculando la media de esas 500 simulaciones.

Figure 2: Distribución de la riqueza tras 500 simulaciones con N2 transacciones en cada iteración
para < m >= 1.

En un segundo caso, la riqueza inicial de los 1000 agentes se divide en cinco valores. Los doscientos

primeros empiezan con una riqueza de 0.5, otros tantos con 1.0 y tres grupos más con 1.5, 2.0 y

2.5 también cada uno con doscientos agentes. En este caso, la riqueza total del sistema es de 1500,

por lo que la riqueza media queda < m >= 1.5. Aśı, como se puede ver en las figuras 3 y 4, la

distribución final tiende a:

p(m) =
2

3
· e−m· 2

3 (4)

(a) t=100 (b) t=1000

Figure 3: Distribución de la riqueza en t = 100 y t = 1000 para 1000 agentes económicos y una
riqueza total de 1500 donde el reparto inicial se distribuye en cinco valores.
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(a) t=1500 (b) t=2500

Figure 4: Distribución de la riqueza en t = 1500 y t = 2500 para 1000 agentes económicos y una
riqueza total de 1500 donde el reparto inicial se distribuye en cinco valores.

De la misma manera que en el caso anterior, se vuelve a presentar en la fig. 5 la distribución media

tras 500 simulaciones con N2 transacciones (con N = 5000). En este caso, para obtener la misma

media < m >, la cantidad total de la riqueza es M = 7500.

Figure 5: Distribución de la riqueza tras 500 simulaciones N2 transacciones en cada iteración para
< m >= 3/2.

Aśı pues, se verifica computacionalmente que independientemente de la distribución inicial de la

riqueza el sistema acaba decayendo a la distribución exponencial.1

2.2 Explicación geométrica

A continuación, se llega a la función de Boltzmann-Gibbs en dos situaciones con diferentes condi-

ciones de contorno económicas: sistemas con cantidad variable de dinero (sistemas abiertos) y con

cantidad fija de dinero (sistemas cerrados).

1En el anexo A viene simulado un caso más
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2.2.1 Sistemas abiertos

Este caso fue desarrollado por R. López-Ruiz y colaboradores [2].

Se parte de un sistema con N agentes donde cada uno posee con una cantidad de dinero mi y no

se admiten deudas, por lo que mi ≥ 0. El sistema de agentes dispone de una cantidad máxima de

dinero total M :

m1 +m2 + ...+mN ≤ M (5)

Geométricamente, con cada agente en una coordenada, se supone que el sistema desarrolla su

dinámica en el interior de una pirámide N-dimensional; donde cada uno de sus puntos es equiprobable.

El volumen de esta pirámide está dado por:

VN (M) =
MN

N !
(6)

La probabilidad de encontrar al agente i con dinero mi es f(mi) dmi, donde la condición de nor-

malización es:

∫ M

0
f(mi)dmi = 1 (7)

Si el agente i tiene coordenada mi -tiene una cantidad de dinero mi- los N − 1 agentes restantes

tendrán, como mucho, M −mi:

m1 +m2 + ...+mN−1 +mN+1 + ...+mN ≤ M −mi (8)

En este caso, el volumen será VN−1(M −mi).

Haciendo uso de la relación VN (M) =
∫M
0 VN−1(M −mi) dmi y de la normalización:

f(mi) =
VN−1(M −mi)

VN (M)
=

(M −mi)
N−1/(N − 1)!

MN/N !
=

N

M
·
(
M −mi

M

)N−1

=
1

< m >
·
(
1− mi

M

)N−1

(9)

Definiendo < m > como la riqueza media < m >= M/N .

Ahora, haciendo tender N al infinito:

lim
N→∞

(
1− mi

M

)N−1
= lim

N→∞
e(N−1)·log(1−mi/M) (10)

Calculando el ĺımite del exponente:
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(N − 1) lim
N→∞

log
(
1− mi

M

)
= lim

N→∞
N
(
−mi

M

)
= − mi

< m >
(11)

=⇒ lim
N→∞

(
1− mi

M

)N−1
= e−

mi
<m> (12)

Finalmente, se acaba obteniendo la distribución de Boltzmann-Gibbs:

f(m) =
1

< m >
e−

m
<m> (13)

El ı́ndice i se ha retirado dado que la distribución es la misma para cada agente.

2.2.2 Sistemas cerrados

Este segundo caso fue explicado por R. López-Ruiz y colaboradores [3].

Trabajando en un sistema cerrado, la cantidad total de dinero se conserva. Teniendo N agentes con

cada uno una riqueza mi, con mi ≥ 0:

m1 +m2 + ...+mN = M (14)

En este caso el sistema evoluciona en la parte positiva de un N-hiperplano equilateral, siendo cada

punto de este un estado del sistema y todos ellos accesibles de manera equiprobable.

El área de este N-hiperplano viene dado por:

SN (M) =

√
N

(N − 1)!
MN−1 (15)

La probabilidad de encontrar al agente i con una cantidad mi viene dada por f(mi) dmi que cumple

la condición de normalización:

∫ M

0
f(mi)dmi = 1 (16)

Si el agente i tiene una cantidad mi, los N − 1 agentes tendrán una cantidad M −mi;

m1 +m2 + ...+mN−1 +mN+1 + ...+mN = M −mi (17)

con una superficie SN−1(M −mi).

Introduciendo el parámetro geométrico θN , que cumple la relación senθN =
√

N−1
N , se puede obtener

la superficie de un N-hiperplano a partir de uno de dimensión inferior N − 1:
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SN (M) =

∫ M

0

SN−1(M −mi)

senθN
dmi (18)

Con esta relación y teniendo en cuenta la condición de normalización:

f(mi) =
SN−1(M −mi)

SN

1

senθN
=

√
N − 1(M −mi)

N−2(N − 1)!

(N − 2)!
√
NMN−1

(√
N − 1

N

)−1

(19)

=
(N − 1)

M

(
1− mi

M

)N−2

Introduciendo la definición de riqueza media < m >= M
N , se calcula el ĺımite cuando N tiende al

infinito:

lim
N→∞

(
1− mi

M

)N−2
= lim

N→∞
e(N−2)·log(1−mi/M) (20)

Haciendo uso de equivalencias:

(N − 2) lim
N→∞

log
(
1− mi

M

)
= lim

N→∞
N
(
−mi

M

)
= − mi

< m >
(21)

Por lo tanto, finalmente se tiene:

=⇒ lim
N→∞

(
1− mi

M

)N−2
= e−mi/<m> (22)

Aśı, se llega a la distribución de Boltzmann-Gibbs:

f(m) =
1

< m >
e−

m
<m> (23)

Se excluye el ı́ndice i, pues la distribución es la misma para cada agente.

2.3 Modelo continuo: Z-model

En su art́ıculo [4] R. López-Ruiz et al. obtuvieron con un operador Γ la distribución de Boltzmann-

Gibbs.

En la analoǵıa de sistemas económicos, partiendo de una distribución de riqueza inicial p0(m) con

media < m >, el modelo continuo consiste en suponer que esta distribución evoluciona bajo un

operador Γ, alcanzando asintóticamente la distribución de equilibrio pf (m)

lim
n→∞

Γn[p0(m)] = pf (m) (24)
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Para obtener el operador Γ para la ley de interacción del modelo Dragulescu-Yakovenko, se parte

de que la probabilidad de que dos agentes con dinero u y v interactúen en un tiempo n es

pn(u) pn(v) du dv. Sus intercambios pueden dar lugar a cualquier valor en el intervalo (0, u + v)

con la misma probabilidad. Entonces, la probabilidad de obtener una cantidad de dinero x (siendo

x < u + v) es pn(u) pn(v) du dv/(u + v). Finalmente, la probabilidad de obtener una cantidad de

dinero x en el tiempo n + 1 será la suma de probabilidades de todas las parejas con dinero u, v

capaces de generar la suma x, verificando x < u+ v:

pn+1(x) = Γpn(x) =

∫∫
x<u+v

pn(u) pn(v)

u+ v
dudv (25)

Se puede pensar que en cada iteración se han producido del orden de N2 transacciones.

A modo de prueba, se aplica este operador a diferentes condiciones inciales.

Con una distribución inicial dada por la función p0(x) = f(x) = x
2 · e−x/

√
2 (fig. 6) se realiza la

integral de la expresión (25) y aśı observar como evoluciona la distribución de riqueza.2

Figure 6: Distribución inicial de la riqueza.

El valor medio de esta de la función está dado por:

∫ ∞

0
x · f(x) dx = 2 ·

√
2 (26)

Por lo tanto, esta distribución decaerá a la expresión:

pf (x) =
1

2
√
2
· e

−x
2
√
2 (27)

A continuación, la figura 7 recoge la evolución en el primer paso, p1(x) = Γ (p0(x))

2El método aproximado computacional que se utiliza para calcular las iteraciones viene explicado en el anexo B.
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Figure 7: Iteración 1

Como se puede observar, tras una primera iteración, la distribución abandona su forma inicial. En

las figuras 8 se muestra la aplicación del operador Γ hasta la quinta iteración.

(a) Iteración 2 (b) Iteración 3

(c) Iteración 4 (d) Iteración 5

Figure 8: Distribución de la riqueza en las sucesivas aplicaciones del operador Γ para el modelo
Dragulescu-Yakovenko.

La distribución de la riqueza se va acercando cada vez más a la distribución de equilibrio dada por
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la expresión (27). El error realizado por la aproximación se puede calcular mediante la operación

||pf (x) − pn(x)||, donde pf (x) representa la distribución teórica final y pn(x) la distribución en el

paso n calculada por el método recogido en el anexo B. Al calcular esta expresión para cada una de

las iteraciones, se observa en la figura 9 cómo la distancia va decreciendo a medida que se suceden

las iteraciones.

Figure 9: Valor de la distancia al equilibrio pf (x) para las distintas iteraciones

En un segundo caso, se toma una distribución inicial a trozos:

p0(x) =



2
10 si 0 < x < 1

1
4 si 1 < x < 2

3
20 si 2 < x < 3

1
10 si 3 < x < 4

9
40 si 4 < x < 5

3
40 si 5 < x < 6

0 en el resto

(28)

El valor medio en este caso es < x >= 21
8 . En la figura 10 viene representada tanto esta distribución

inicial como la distribución teórica final pf (x) =
8
21 · e−8x/21.
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Figure 10: Distribución inicial y distribución final teórica para la distribución a trozos.

A continuación, vienen recogidas en las figuras 11 y 12 las sucesivas iteraciones.

(a) Iteración 1 (b) Iteración 2

(c) Iteración 3 (d) Iteración 4

Figure 11: Distribución de la riqueza en las sucesivas aplicaciones del operador Γ para una dis-
tribución inicial a trozos.
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(a) Iteración 5

Figure 12: Distribución de la riqueza tras la quinta aplicación del operador Γ para una distribución
inicial a trozos.

Se puede observar, de nuevo, cómo la distribución de la riqueza evoluciona decayendo rápidamente

del caso inicial hacia el punto de equilibrio.

2.4 Niveles socieconómicos y parejas

Alcanzada la expresión de Boltzmann-Gibbs que describe cómo se distribuye la riqueza de un sistema

económico, se puede dividir la población en niveles socioeconómicos o clases sociales. Tradicional-

mente se distinguen tres clases: la clase alta, la clase media y la clase baja. Haciendo uso de la

riqueza media < m >, se define la clase baja aquella que tenga una riqueza entre 0 y < m > /2; la

clase media entre < m > /2 y 2 < m > y la alta con más de 2 < m >.

En la figura 13a se muestra el caso para < m >= 1.

(a) Individuos (b) Parejas

Figure 13: Distribución de la riqueza para poblaciones formadas por individuos y parejas.

Calculando la integral de la ecuación (2) entre los valores que separan las diferentes clases sociales

se halla el porcentaje de la población que conforma cada una de ellas:

13



• Clase baja ∫ <m>/2

0

1

< m >
· e−m/<m> dm =

1

< m >

∫ <m>/2

0
e−m/<m> dm =

1

< m >
(− < m >) · (e−1/2 − e0) = 1− e−1/2 = 0.3935

(29)

• Clase media ∫ 2<m>

<m>/2

1

< m >
· e−m/<m> dm = ... = e−1/2 − e−2 = 0.4712 (30)

• Clase alta ∫ ∞

2<m>

1

< m >
· e−m/<m> dm = ... = e−2 − 0 = 0.1353 (31)

Se puede observar que los valores de los porcentajes son independientes de la riqueza media < m >

del sistema.

Sin embargo, en la sociedad los individuos tienden a formar parejas y crear familias. Entonces,

suponiendo una aproximación sencilla en la que un individuo tiene la misma probabilidad de rela-

cionarse con cualquier otro individuo sin importar su clase social, la expresión que mejor describe

la distribución de la riqueza es la convolución de la expresión (2). Por lo que la probabilidad de que

dos individuos se junten para alcanzar una riqueza x será:

P (x) =

∫ x

0
p(u)p(x−u) du =

∫ x

0

1

< m >2
· e−u/<m> · e−(x−u)/<m> du =

1

< m >2
· x · e−

x
<m> (32)

Esta expresión es la que se representa en la figura 13b (con < m >= 1).

En este caso, se tiene una nueva riqueza media:

< P (x) >=

∫ ∞

0

1

< m >2
x2 e−x/<m> dx = 2 < m > (33)

Se obtiene que la riqueza media de los entes activos del sistema, que en este caso serán las parejas, se

duplica respecto al modelo que considera el sistema formado por individuos. Con el mismo criterio

utilizado para dividir la población, se tienen nuevos porcentajes para las clases sociales.

En la siguiente tabla se comparan los valores obtenidos en ambos casos.

Agentes individuales (%) Agentes por parejas (%)

Clase baja 39.35 26.42

Clase media 47.12 64.42

Clase alta 13.53 9.16

Ahora, considerando el sistema por parejas, la probabilidad de pobreza extrema se ha reducido
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drásticamente, siendo prácticamente nula. Otro resultado importante es el significativo aumento de

la clase media, mientras que la alta disminuye.

3 Modelo Dirigido

En este segundo modelo, se tiene una nueva ley de interacción de modo que se realiza una descripción

más realista. En este caso, está determinado el papel del perdedor- el que entrega el dinero- y el

papel del ganador- el que recibe el dinero. La realización de una compra de un cliente en un

supermercado o el pago de un sueldo a un empleado por parte del jefe de una empresa son ejemplos

que se ajustan a esta interacción. Evidentemente, el concepto de perder/ganar se refiere al dinero

porque en las interacciones se producen intercambios de mercanćıas, servicios, etc. que el modelo

no recoge.

Ahora, un agente elegido al azar se queda con una parte de su dinero. El resto se lo entrega a un

segundo agente, también elegido al azar:

m′
i = ϵ ·mi (34)

m′
j = mj + (1− ϵ) ·mi

Donde ϵ vuelve a ser un número random plano generado entre cero y uno.

Con esta nueva ley de intercambio, G. Katriel demostró que la distribución de la riqueza pasa a

seguir la siguiente expresión [5]:

p(m) =
1√

2 < m > π
· 1√

m
· e−m/2<m> (35)

Esta función diverge para m = 0, por lo que la cantidad de agentes pobres, en especial de extrema

pobreza, se dispara; mientras que la alta riqueza es más improbable.

Aqúı, la ley de interacción no es simétrica, en contraste con el caso anterior. Esto provoca la

aparición de agentes definidos como perdedores y ganadores.

3.1 Simulación computacional

Para este caso, se toma una situación en la que una quinta parte de la población tiene riqueza 0.2

y el resto 2. Teniendo N = 1000, la riqueza media es < m >= 41/25. Entonces, la función a la que

decae la distribución de la riqueza es:

p(m) =
5√
82π

1√
m
e−25m/82 (36)

En la figura 14 se puede observar como a medida que pasa el tiempo, la distribución de la riqueza

se acerca a la expresión esperada.
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(a) t=100 (b) t=1000

(a) t=2500 (b) t=5000

Figure 14: Evolución de la distribución de la riqueza para 1000 agentes económicos y una riqueza
total de 1000 con un reparto inicial desigual.

Como en el modelo anterior, se realizan N2 transacciones (con N = 5000) 500 veces. El resultado

se muestra en la figura 15.

(a) (b)

Figure 15: Distribución de la riqueza tras 500 iteraciones con N2 transacciones en cada iteración.
Se representa en dos gráficas para mejor visibilidad.
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Se puede observar cómo la simulación sigue la distribución teórica. En el anexo C se recogen dos

casos más para mostrar que, independientemente de la situación inicial, la distribución decae a la

expresión (35).

3.2 Modelo continuo

Este modelo fue estudiado por I. Mart́ınez-Mart́ınez y R. López-Ruiz [6].

En el modelo continuo se tiene un nuevo operador Γ que describe la evolución de la distribución

de riqueza. En esta explicación se separa la distribución inicial del dinero en dos distribuciones en

principio idénticas. La primera da la probabilidad de tener un agente perdedor con dinero inicial

u y la segunda la de obtener un agente ganador que empezará con dinero v. Por lo tanto, siendo

P (x) la probabilidad de tener un agente con dinero x y p1 y p2 la probabilidad de tener un agente

perdedor y uno ganador con una cantidad x respectivamente, la distribución de la riqueza viene

dada por:

P (x) =
1

2
p1(x) +

1

2
p2(x) (37)

En cada iteración se tiene una serie de transacciones entre los agentes de las dos poblaciones, p1 y

p2, llegando entonces a una nueva distribución:

P ′(x) =
1

2
p′1(x) +

1

2
p′2(x) (38)

Se considera p′1 como la probabilidad de que un agente tenga una cantidad x después de la iteración.

Dado que se trata del agente perdedor, se tiene que u > x. La cantidad de dinero resultante está

distribuida uniformemente en [0,u], por lo que la probabilidad de obtener una cantidad x es 1/u.

Entonces:

p′1(x) =

∫∫
u>x

p(u) p(v)

u
du dv =

∫ ∞

0
p(v)dv ·

∫
u>x

p(u)

u
du =

∫
u>x

p(u)

u
du (39)

Para la segunda probabilidad p2(x) su cantidad final es un valor entre su dinero inicial v y la

cantidad máxima posible, que corresponde a que el agente perdedor entregue todo su dinero: u+ v.

El intervalo [v,u+ v] vuelve a tener una longitud u. Por lo tanto, la probabilidad de la cantidad x,

que está distribuida uniformemente en ese segmento, es 1/u. Aśı la probabilidad es:

p′2(x) =

∫∫
v<x<u+v

p(u) p(v)

u
du dv (40)

Finalmente el operador Γ queda:

P ′(x) = ΓP (x) =
1

2

∫
u>x

p(u)

u
du+

1

2

∫∫
v<x<u+v

p(u) p(v)

u
du dv (41)
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Este operador cumple la condición de normalización y posee un valor medio.3

La distribución inicial escogida para este caso consiste en una distribución triangular dada por la

siguiente función:

p0(x) =



x
2 si 0 ≤ x < 1

1
2 si x = 1

4−x
6 si 1 < x ≤ 4

(42)

En la figura 16 se representa esta función.

Figure 16: Distribución inicial triangular

Su valor medio es 5/3, por lo que la función a la decae es pf (x) =
√
30

10
√
π

1√
x
e−0.3·x

A continuación, en las figuras 17 y 18 vienen representadas las sucesivas iteraciones tras aplicar el

operador.

(a) Iteración 1 (b) Iteración 2

Figure 17: Distribución de la riqueza tras la primera y segunda aplicación del operador Γ para una
distribución inicial triangular.

3Esta demostración se tiene desarrollada en el anexo D
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(a) Iteración 3 (b) Iteración 4

(c) Iteración 5

Figure 18: Distribución de la riqueza desde la tercera hasta la quinta aplicación del operador Γ para
una distribución inicial triangular.

3.3 Niveles socioeconómicos y parejas

Ahora se vuelve a dividir la población por su nivel económico. Retomando el criterio utilizado

previamente, se llega a la misma situación en la que el porcentaje de cada clase no depende de la

riqueza media.

• Clase baja∫ <m>/2

0

1√
2 < m > π

1√
m
e−m/2<m> dm = ... = erf

(√
< m > /2√
2
√
< m >

)
−0 = 4erf

(
1

2

)
= 0.5205

(43)

• Clase media∫ 2<m>

<m>/2

1√
2 < m > π

1√
m
e−m/2<m> dm = ... = erf(1)− erf

(
1

2

)
= 0.3222 (44)

4Donde erf se refiere a la función error
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• Clase alta ∫ ∞

2<m>

1√
2 < m > π

1√
m
e−m/2<m> dm = ... = 1− erf(1) = 0.1573 (45)

En la figura 19a se observa la división en clases sociales para < m >= 1.

(a) Individuos (b) Parejas

Figure 19: Distribución de la riqueza para poblaciones formadas por individuos y parejas para el
modelo dirigido.

De nuevo, la distribución de la riqueza si se consideran parejas vendrá dada por la convolución de

la expresión (35):

P (x) =

∫ x

0
p(u)p(x− u)du =

e−x/2<m>

2 < m > π

∫ x

0

1√
u

1√
x− u

du =
1

2 < m >
· e−x/2<m> (46)

El valor medio para esta función es 2 < m >. Es decir, como en el anterior caso la riqueza media

se duplica.

El resultado viene representado en la figura 19b. En la siguiente gráfica se recoge el porcentaje de

población de cada clase social en los dos casos.

Agentes individuales (%) Agentes por parejas (%)

Clase baja 52.05 39.35

Clase media 32.22 47.12

Clase alta 15.73 13.53

Como ocurŕıa en el anterior modelo, tanto la población de la clase baja como la de la alta disminuyen,

mientras que la clase media aumenta. Es especialmente llamativo que al considerar parejas en este

modelo, se obtiene la exponencial que describ́ıa el anterior modelo para individuos aunque con la

probabilidad máxima reducida a la mitad.
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4 Redes de agentes económicos

En este último modelo, estudiado también en el art́ıculo de I. Mart́ınez-Mart́ınez y R. López-Ruiz [6],

se introduce una red de agentes. Ahora las transacciones se darán entre aquellos agentes que tengan

algún tipo de relación y no entre cualesquiera. Un ejemplo seŕıan las tiendas de alimentación.

Las personas no compran en cualquier establecimiento, sino que acuden a unos en concreto por su

ubicación, su calidad o sus precios. Hay que resaltar que en este caso los dos agentes implicados

no son escogidos al azar, pues esto no tendŕıa en cuenta la topoloǵıa de la red. Por ello, un primer

agente śı es tomado al azar, pero el segundo se elige aleatoriamente entre los agentes a los que está

conectado.

Se trabaja con diez redes distintas construidas mediante el modelo de Erdös−Renyi. Teniendo N

nodos (o agentes económicos), se cogen dos de ellos y se establece una conexión entre ellos según una

probabilidad p. Esta probabilidad viene dada por p =< k > /N , donde < k > es la conectividad

media. En este caso se ha tomado N = 1000 y una conectividad media < k >= 40 para todas las

redes. En la figura 20 se tiene el histograma de los grados.

Figure 20: Histograma de los grados de las diez redes Erdös−Renyi.

Al introducir la red, se espera que la riqueza de un agente dependa de la cantidad de agentes con

los que pueda interaccionar; esto es, de su grado. Para estudiar esta dependencia, se introduce la

riqueza media de un agente en función de su grado k:

< m > (k) =
1

S Nk

S∑
s=1

Nk∑
i=1

mi(s) (47)

Nk indica cuántos nodos tienen grado k y S son las cantidades de simulaciones llevadas a cabo. Es

decir, después de cada simulación, en la que se han realizado N2 transacciones, se suma la riqueza

de aquellos agentes que tengan un grado en concreto y se divide entre la cantidad de agentes con

ese grado. Una vez realizadas todas las simulaciones, se calcula la media para todas ellas. Este

proceso se realiza para las diez redes, calculando a su vez la media de todas ellas. También se define

la desviación t́ıpica:
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σm(k) =

√√√√ 1

S Nk

S∑
s=1

Nk∑
i=1

[mi(s)− < m > (k)]2 (48)

En este caso, la desviación que se toma para cada grado es el mayor valor hallado de entre todas

las redes.

Inicialmente, se entrega la misma cantidad a cada uno de los agentes: 1.0. Después, se aplica las

leyes de interacción del modelo de Dragulescu-Yakovenko (3) y del modelo dirigido (34).

Para el primer caso, la figura 21 muestra que la riqueza es independiente de la conectividad de los

agentes. Entonces, para este modelo, la distribución socioeconómica no depende de la conectividad

social de los agentes. Resaltar, además que la desviación es mayor para la conectividad de la que

se tienen pocos agentes. Estos es obvio, pues para estos casos se tienen menos muestras para hacer

estad́ıstica.

Figure 21: Distribución de la riqueza para poblaciones formadas por individuos y parejas para el
modelo Dragulescu-Yakovenko. En la imagen de la derecha se enfoca la parte central de la gráfica,
donde hay más cantidad de nodos con esas conectividades.

Sin embargo, para el segundo modelo la riqueza śı depende de la conectividad. La figura 22 muestra

cómo la riqueza aumenta conforme la conectividad del agente crece siendo esta una dependencia

lineal. Este caso describe mejor la realidad: una tienda de alimentación venderá más y acumulará

más dinero cuántos más clientes acudan a ella.
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Figure 22: Distribución de la riqueza para poblaciones formadas por individuos y parejas para el
modelo dirigido. En la imagen de la derecha se enfoca la parte central de la gráfica, donde hay más
cantidad de nodos con esas conectividades.

5 Conclusiones

Este trabajo se ha centrado en la modelización de dos modelos de mercado según su ley de

interacción. A través de la simulación computacional se ha comprobado la distribución asintótica

de la riqueza a la que llega un sistema económico.

Primero, para el modelo Dragulescu-Yakovenko se ha verificado computacionalmente que la riqueza

de los agentes económicos (tomados como individuos) se distribuye siguiendo una exponencial decre-

ciente independientemente de la situación inicial. Luego, se ha obtenido la misma expresión de dos

maneras distintas: mediante una explicación geométrica y con un operador. Este caṕıtulo se cierra

con una división de la población en clases sociales; siendo esta división independiente de la riqueza

media de la población. Por último, se ha realizado la convolución de la exponencial para conseguir

la distribución de la riqueza en un sistema formado por parejas, lo que reduce drásticamente la

pobreza.

El segundo caṕıtulo ha seguido un guión similar. En este caso la ley de interacción cambia y se

pasa a estudiar el modelo dirigido, donde el papel de quién entrega el dinero y quién lo recibe

está claramente definido. Computacionalmente se encuentra que la distribución sigue una función

gamma con parámetro de forma 1/2. Esto provoca un aumento pronunciado de la extrema pobreza.

Después, con un nuevo operador definido, se ha hallado la misma distribución en el modelo continuo.

De la misma manera que en el primer caṕıtulo, se ha llevado a cabo una división de la población

que vuelve a ser independiente de la riqueza media. Considerando de nuevo la formación de parejas

de agentes económicos se ha calculado la convolución de la expresión. Casualmente, se ha llegado

a la misma función que describe el modelo anterior para individuos.

Por último, se ha introducido una red de agentes. De esta manera, las transacciones solamente se

podrán dar entre aquellos agentes que tengan algún tipo de relación. Aplicando los dos modelos, se

ha encontrado que para el modelo de Dragulescu-Yakovenko, la riqueza no depende de la conectivi-

dad de un agente; es decir, no depende de con cuánta gente puede tener interacciones. Sin embargo,

en el modelo dirigido esto no es aśı: en este caso, la riqueza śı depende de la conectividad. Esto se
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debe a que el modelo de Dragulescu-Yakovenko es no dirigido y la interacciones son simétricas para

ambas partes. En el segundo modelo, al ser dirigido, las interacciones ya no son simétricas.

Se puede concluir, a la vista de los resultados aqúı expuestos, que los agentes con más vecinos en

el modelo dirigido tenderán a acumular más dinero de forma proporcional a su conectividad. Este

resultado puede estar más de acuerdo a la realidad observada a nivel de micro-economı́a que los

resultados observados en el modelo no dirigido.
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