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Resumen

En los últimos años, los avances en neurotecnología han permitido desarrollar 
sistemas de medida de la actividad cerebral portables y usables por no expertos. Se abre 
por tanto la oportunidad de realizar intervenciones de neurotecnología en el entorno 
doméstico, tales como Elevvo, cuyo objetivo es la mejora cognitiva. Su realización en 
casa permitiría reducir costes, favorecer la comodidad de los sujetos, y permitir 
intervenciones más largas. Esto sin embargo trae consigo retos en cuanto al 
aseguramiento de la correcta realización de las sesiones sin supervisión de un experto.

Como posible solución a estos problemas surge este trabajo. El objetivo principal 
del estudio es desarrollar y evaluar un sistema de visión por computador capaz de 
supervisar sesiones de terapia de neurotecnología en un entorno doméstico no 
controlado. Para ello, utilizando técnicas de detección de rostros, detección de puntos 
faciales y estimación de mirada se ha desarrollado una serie de algoritmos para 
monitorizar el movimiento de los usuarios, determinar si están hablando o tienen los 
ojos cerrados y hacer una estimación general de hacia dónde miran.

El proyecto se centra en varios componentes clave: el estudio del arte de las 
tecnologías relacionadas, el desarrollo e implementación de algoritmos de 
monitorización mediante visión por computador, el diseño y ejecución de un protocolo 
de recogida de datos, y su utilización para evaluar los algoritmos desarrollados. Por 
último se muestra la viabilidad del sistema propuesto mediante el desarrollo e 
integración de un sistema de monitorización en tiempo real completo en la plataforma 
de neurotecnología de Bitbrain.

Se discute la precisión de los distintos algoritmos utilizados y se proponen posibles 
mejoras en la eficacia del sistema. Los resultados obtenidos muestran que la visión por 
computador es una opción viable para identificar con precisión patrones de movimiento 
relevantes para la monitorización de terapias con neurotecnología. 



Visión por computador para monitorización de terapias con neurotecnología en casa - Juan Eizaguerri

Tabla de contenidos

Introducción..................................................................................................................... 1
1.1. Neurotecnología para la mejora cognitiva.......................................................... 1
1.2. Del laboratorio a casa.........................................................................................2
1.3. Alcance del proyecto.......................................................................................... 2

Visión por computador para monitorización.............................................................. 4
2.1. Requisitos........................................................................................................... 4
2.2. Bloques básicos..................................................................................................5

2.2.1. Detección de rostros..................................................................................5
2.2.2. Detección de puntos faciales.....................................................................8
2.2.3. Estimación de la mirada...........................................................................10

2.3. Algoritmos de monitorización............................................................................13
2.3.1. Movimiento de la cabeza......................................................................... 13
2.3.2. Estimación de postura............................................................................. 14
2.3.3. Movimiento de la boca.............................................................................16
2.3.4. Apertura de los ojos.................................................................................18
2.3.5. Comprobación de mirada fuera de pantalla.............................................19

Evaluación de los algoritmos.....................................................................................20
3.1. Metodología...................................................................................................... 20

3.1.1. Protocolo y grabación.............................................................................. 20
3.1.2. Entorno de grabación...............................................................................23
3.1.3. Datos recogidos.......................................................................................25
3.1.4. Medidas ground truth...............................................................................26

Integración de la rotación absoluta.............................................................. 27
Valoración de las señales del eye tracker como posibles medidas de ground 
truth..............................................................................................................28

3.1.5. Métodos de evaluación............................................................................29
3.2. Resultados........................................................................................................31

3.2.1. Detección de rostros................................................................................31
3.2.2. Detección de puntos faciales...................................................................33
3.2.3. Estimación de la mirada...........................................................................34
3.2.4. Movimiento de la cabeza......................................................................... 36
3.2.5. Estimación de postura............................................................................. 37
3.2.6. Movimiento de la boca.............................................................................39
3.2.7. Apertura de ojos.......................................................................................39
3.2.8. Comprobación de mirada fuera de pantalla.............................................41

Integración en la plataforma de neurotecnología.....................................................42
4.1. Diseño y desarrollo del sistema en C++........................................................... 42
4.2. Integración en la plataforma de Bitbrain........................................................... 43
4.3. Demostración del funcionamiento.................................................................... 44



Visión por computador para monitorización de terapias con neurotecnología en casa - Juan Eizaguerri

Conclusiones...................................................................................................................47
5.1. Líneas de trabajo futuras.................................................................................. 47

Bibliografía.....................................................................................................................49

Anexos.............................................................................................................................56
Anexo 1. Seguimiento del protocolo de grabación....................................................56
Anexo 2. Calibración de la cámara..........................................................................58
Anexo 3. Variedad de la muestra de sujetos........................................................... 60
Anexo 4. Herramientas utilizadas............................................................................ 61
Anexo 5. Etiquetado de datos..................................................................................62
Anexo 6. Evaluaciones realizadas...........................................................................63



Visión por computador para monitorización de terapias con neurotecnología en casa - Juan Eizaguerri

Lista de figuras

1.1 Funcionamiento en bucle cerrado de Elevvo [90].
1.2 Realización y monitorización de Elevvo [90, 92].

2.1 Tecnologías y detecciones del sistema propuesto.
2.2 Detección facial frontal mediante diferentes modelos de detección.
2.3 Modelos de detección facial ante distintas condiciones de posición e iluminación.
2.4 Topología de landmarks de los modelos utilizados.
2.5 Estimación de puntos faciales ante distintos ángulos de rotación de los modelos 

MediaPipe y Dlib (junto a detector facial Yunet).
2.6 Landmarks de la región de los ojos del modelo de Dlib.
2.7 (a): Esquema de los pasos para el cálculo del centroide del iris. (b): Cálculo del 

threshold óptimo.
2.8 Ejemplo de segmentación del iris utilizando distintos umbrales.
2.9  (a): Diagrama del mapeo del vector de ojo a coordenadas de pantalla. (b): 

Ejemplo de calibración de mirada.
2.10 Ejemplo de medidas de movimiento durante una grabación en la que se realizan 

series de movimientos.
2.11 Diagrama del problema de estimación de postura (PnP) [91].
2.12 (a): Puntos utilizados para el PnP. (b): Modelo 3D utilizado para los landmarks de 

Dlib. (c): Modelo 3D de MediaPipe.
2.13 Resultado de estimación de rotación (eje z) de una grabación mediante los 

modelos de landmarking de Dlib y MediaPipe frente a la rotación real calculada 
mediante IMU (ver sección 3.1.4).

2.14 Puntos utilizados para el cálculo de la apertura de la boca.
2.15 Ejemplo de movimiento de la boca a lo largo del tiempo en una ejecución.
2.16 Diagrama de los puntos del ojo utilizados para calcular el EAR.

3.1 Hardware principal utilizado para las grabaciones.
3.2 Puntos de calibración de mirada.
3.3 Entorno de grabación del conjunto de pruebas.
3.4 Escala Kelvin de la temperatura del color de la luz.
3.5 Sensores de la IMU durante una grabación de cuatro giros de 90º.
3.6 Integración de la rotación de la banda. (a): Sin corregir deriva en eje z, y (b): 

corrigiendo deriva. La línea discontinua muestra la rotación real.
3.7 Ejemplo de medidas del eye tracker durante una ejecución.
3.8 Matriz de confusión booleana.
3.9 Oclusión del iris por reflejos en las gafas del usuario.
3.10 Métricas de confusión de la detección de movimiento con distintos umbrales.
3.11 Estimaciones de posición de la cabeza frente a la real de una grabación.
3.12 Métricas de estimación de postura en función del umbral en umbrales entre 0º y 



Visión por computador para monitorización de terapias con neurotecnología en casa - Juan Eizaguerri

40º.
3.13 Métricas de confusión de detección de habla y bostezos en función del umbral.
3.14 Métricas de confusión de detección de apertura de ojos en función del umbral.

4.1 Bucle de ejecución del sistema de monitorización completo.
4.2 Visión general de la arquitectura de la plataforma.
4.3 Visión general de un módulo compuesto de varias unidades.
4.4 Realización de la tarea de neurofeedback.
4.5 Ejemplo de los eventos generados por la unidad de monitorización ante 

movimiento del usuario.
4.6 Imágen de la unidad de monitorización en modo de depuración.

A2.1 Transformación de coordenadas del mundo a coordenadas de imágen.
A2.2 Patrón de calibración utilizado.

A3.1 Distribución de color de piel y edad de los sujetos grabados.



Visión por computador para monitorización de terapias con neurotecnología en casa - Juan Eizaguerri

Lista de tablas

3.1 Señales de la plataforma almacenadas durante la recogida de datos.
3.2 Tiempos y giros de la tarea 3a del protocolo.
3.3 Tiempos y movimientos de la tarea 4b del protocolo.
3.4 Resumen de los datos recogidos.
3.5 Características de los sujetos del conjunto de datos.
3.6 Métricas de confusión de los modelos de detección facial.
3.7 Métricas de confusión de los modelos de detección facial en función de variables 

de iluminación y gafas.
3.8 Tiempo medio de ejecución de los modelos de detección facial.
3.9 Precisión de los modelos de detección de puntos faciales en función de la rotación 

de la cara.
3.10 Tiempo de ejecución medio de los detectores de puntos faciales.
3.11 Error medio de la estimación de mirada frente al eye tracker en los ejes x e y de la 

pantalla. Resultados en función de la tarea, iluminación y gafas.
3.12 Métricas de confusión de la detección de movimiento con distintos umbrales.
3.13 Métricas de error de la estimación de postura.
3.14 Métricas de confusión de detección de habla y bostezos en función del umbral.
3.15 Métricas de confusión de detección de ojos abiertos o cerrados.
3.16 Métricas de confusión de detección de ojos abiertos o cerrados para usuarios con 

y sin gafas. Umbral 0.25.
3.17 Métricas de confusión de detección de mirada fuera de la pantalla en función de la 

tarea, iluminancia y gafas.

A1.1 Tabla de seguimiento del protocolo de grabación.

A3.1 Perfil de los sujetos grabados.

A4.1 Licencias de las tecnologías utilizadas.

A5.1 Etiquetas aplicadas a las grabaciones.

A6.1 Resumen de las evaluaciones realizadas sobre el conjunto de datos adquirido.



Visión por computador para monitorización de terapias con neurotecnología en casa - Juan Eizaguerri

Capítulo 1

Introducción

1.1. Neurotecnología para la mejora cognitiva
Elevvo es una tecnología de mejora cognitiva desarrollada por Bitbrain, empresa en 

la que se desarrolla este TFG. Busca como objetivo la mejora cognitiva mediante la 
modificación de patrones de actividad cerebral relacionados con el rendimiento 
cognitivo. En concreto, Elevvo implementa un sistema de interfaz cerebro-computador 
en bucle cerrado en el cual:

1. Se registra la actividad eléctrica cerebral de una persona (electroencefalografía o 
EEG).

2. Se aplican algoritmos para la decodificación en tiempo real de los patrones 
cerebrales de interés.

3. Se muestran al usuario (en una pantalla de ordenador) los niveles de dichos 
patrones cerebrales en forma de un cuadrado que cambia de color con estos 
niveles.

Figura 1.1: Funcionamiento en bucle cerrado de Elevvo [90].

De esta forma, la persona puede modificar (hasta cierto punto) su propia actividad 
cerebral hacia patrones que están relacionados de forma positiva con el rendimiento 
cognitivo. Este tipo de procedimientos ha mostrado su potencial para la mejora de 
memoria de trabajo, velocidad de procesamiento y atención sostenida [94].
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1.2. Del laboratorio a casa
Este tipo de sesiones se realizan habitualmente en el contexto de investigación en 

laboratorio, en el que el usuario es asistido por un operador experto que se encarga tanto 
de la colocación del equipamiento como de guiar a la persona en la correcta realización 
de la sesión.

(a)        (b)

Figura 1.2: Realización y monitorización de Elevvo [90, 92].

Recientemente surgió la oportunidad en Bitbrain de llevar esta neurotecnología a la 
casa de los participantes. Esto presenta ventajas para los usuarios como la posibilidad de 
la realización de más sesiones, la reducción de costes de desplazamiento a los 
laboratorios y la comodidad de realizar las terapias desde casa. Sin embargo, este 
cambio de enfoque provoca también la problemática de guiar a la persona en la correcta 
realización de la intervención sin asistencia de un tercero.

Como solución a este problema surge la propuesta de utilizar tecnologías de visión 
por computador para desarrollar un sistema que a través de la cámara del dispositivo en 
el que se realizan las sesiones monitorice distintos aspectos del comportamiento de los 
usuarios.

1.3. Alcance del proyecto
El principal objetivo de este proyecto es el diseño y desarrollo de un sistema de 

visión por computador para la monitorización de los usuarios durante terapias de 
neurotecnología en casa. Para ello, se hace una valoración de los aspectos que puede ser 
beneficioso verificar para asegurar una correcta realización de las sesiones, los métodos 
de monitorización necesarios para hacerlo y las tecnologías sobre las que se apoyan 
dichos métodos.

Así pues, los objetivos específicos planteados para este proyecto son los siguientes:

● Identificación de los requisitos del sistema a desarrollar, elección de las 
tecnologías principales e implementación de los algoritmos de monitorización 
que las utilizan (capítulo 2).

2
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● Planificación y ejecución de una metodología de recogida de datos y su 
utilización para la evaluación offline de los distintos algoritmos desarrollados 
(capítulo 3).

● Desarrollo e integración en la plataforma de neurotecnología de un sistema de 
monitorización en tiempo real (capítulo 4).

● Conclusiones y discusión de posibles mejoras futuras (capítulo 5).

3
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Capítulo 2

Visión por computador para 
monitorización

El objetivo de este capítulo es en primer lugar reconocer las funcionalidades 
deseables del sistema de monitorización a desarrollar y las limitaciones existentes a la 
hora de su desarrollo. El segundo objetivo es el estudio del estado del arte de las 
tecnologías relacionadas con los bloques básicos sobre las que se construye dicho 
sistema. Por último, se explica el funcionamiento de los distintos algoritmos de 
monitorización implementados. Se realiza una implementación en Python de cada uno 
de estos algoritmos para su posterior evaluación.

2.1. Requisitos
Aunque Elevvo cuenta con herramientas para filtrar artefactos en la señal EEG, es 

conveniente minimizar movimientos corporales y faciales durante las sesiones. Además, 
diversas tareas requieren mantener los ojos cerrados (tarea de calibración) o mirar a un 
punto fijo de la pantalla (ejercicios de neurofeedback).

Para asegurar el cumplimiento de estas condiciones se propone un sistema capaz de 
detectar la presencia del usuario y estimar los movimientos que realiza tanto de 
traslación como de rotación, los movimientos de la boca, la apertura de los ojos y a 
dónde está mirando. Este sistema se construye sobre tres tecnologías principales: La 
detección de rostros, la estimación de puntos faciales y la estimación de la mirada.

Figura 2.1: Tecnologías y detecciones del sistema propuesto.

Dadas las necesidades explicadas y el contexto en el que se desarrolla este trabajo 
aparecen varias características de funcionamiento deseadas que influyen en las 
decisiones tomadas a lo largo del proyecto.
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En primer lugar, para proporcionar información útil durante las sesiones, el sistema 
de monitorización debe funcionar en tiempo real en el dispositivo Microsoft Surface Go 
3 en el que se llevan a cabo, que cuenta con un procesador Intel Core i3-10100Y y 8 GB 
de memoria RAM.

El sistema planteado funcionará en segundo plano durante las sesiones, por lo que 
no es permisible que su utilización de recursos entre en conflicto con el funcionamiento 
prioritario de la plataforma de neurotecnología.

Adicionalmente, en la medida de lo posible se quiere limitar las tecnologías 
utilizadas a aquellas de software libre.

Por último, se debe asegurar el correcto funcionamiento del sistema desarrollado 
para la variedad de usuarios más amplia posible, y dado que va a ser utilizado en un 
entorno doméstico, se comprobará también su rendimiento bajo distintas condiciones de 
iluminación no ideales.

2.2. Bloques básicos

2.2.1. Detección de rostros
El primer paso en la monitorización de los usuarios es la detección de rostros. Esta 

técnica consiste en encontrar los rostros que existan en la imagen, y si los hay, buscar el 
rectángulo que los delimita.

La detección de rostros es una de las técnicas fundamentales de la interacción 
persona-ordenador mediante la visión por computador [33, 61, 62, 63], por lo tanto, 
existe una gran cantidad de estudios y métodos propuestos para la resolución de este 
problema. Con la limitación de funcionamiento en tiempo real en mente, se van a 
evaluar distintos detectores que se pueden agrupar en dos grupos principales, la 
detección mediante algoritmos “tradicionales” de visión por computador y mediante 
redes neuronales. Erik Hjelmås propone en [33] una agrupación de las técnicas de 
detección de rostros en dos grandes grupos que coinciden con los mencionados 
anteriormente, métodos basados en características o feature-based [67], y basados en 
imagen o image-based [66].

● Detección mediante algoritmos “tradicionales” de visión por computador:

○ Haar Cascade: Es un método de detección propuesto por Paul Viola y 
Michael Jones en 2001 [44]. Durante la fase de entrenamiento se 
calculan las características de Haar de las imágenes y se seleccionan las 
mejores mediante AdaBoost [46]. Utiliza clasificadores en cascada para 
acelerar el proceso de clasificación descartando regiones no faciales. Se 
utilizará la implementación del algoritmo de la librería OpenCV.

5



Visión por computador para monitorización de terapias con neurotecnología en casa - Juan Eizaguerri

○ Histogram of Oriented Gradients (HOG): El histograma de gradientes 
orientados es un descriptor de características que consiste en la división 
de la imagen en bloques de tamaño fijo. Para cada uno se calcula la 
dirección y magnitud del gradiente y se crea un histograma del mismo. 
Cada uno de los valores del vector del histograma se considera una 
característica. El vector de características de la imagen es la 
concatenación de los vectores de los histogramas de los bloques que la 
conforman [47, 68]. Habitualmente se utilizan en conjunto con 
algoritmos de aprendizaje automático como máquinas de vectores de 
soporte (SVM) [48, 49] para entrenar sistemas de detección y 
clasificación, como es el caso de la detección de rostros. Para la 
evaluación del algoritmo se utilizará la implementación del detector 
frontal de rostros de la librería Dlib.

● Detección mediante redes neuronales:

○ MTCNN: Es un modelo de detección facial propuesto por Kaipeng 
Zhang en [50]. Utiliza redes neuronales convolucionales multitarea en 
cascada para detectar rostros. El proceso de detección está dividido en 3 
etapas llevadas a cabo por tres redes neuronales de complejidad creciente 
dedicadas a generar posibles candidatos, refinar los resultados y generar 
el resultado final, respectivamente.

○ DNN: Existen multitud de modelos de redes neuronales profundas pre 
entrenadas capaces de detectar rostros en imágenes [52, 65]. Se va a 
utilizar el modelo res10_300x300_ssd_iter_140000 ofrecido por 
OpenCV, que utiliza una red neuronal residual o ResNet [51] que utiliza 
Single Shot MultiBox Detector [54] para la detección de rostros.

○ MediaPipe: Es un framework de código abierto desarrollado por Google 
dirigido al desarrollo de pipelines que utilizan algoritmos de aprendizaje 
automático, especialmente para procesamiento de vídeo y audio [69]. 
Adicionalmente, MediaPipe ofrece modelos y soluciones ya preparadas 
para ser utilizadas fuera de su framework. Una de ellas es la detección de 
rostros que será evaluada en esta sección.

○ Yunet: Es un detector de rostros mediante redes neuronales centrado en 
la eficiencia, busca encontrar un equilibrio entre el número de 
parámetros y capas de la red neuronal utilizada (y por tanto su tiempo de 
ejecución) y la precisión de los resultados, para ser capaz de ser utilizado 
en sistemas empotrados [55]. Se utilizará el modelo ONNX [70] 
face_detection_yunet_2023mar.onnx ofrecido en el GitHub ligado a la 
publicación.

En el caso de uso específico en el que se van a aplicar estas soluciones el usuario se 
encuentra en frente de la cámara a una distancia cercana. Por lo tanto, algunos de los 
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aspectos que habitualmente se tienen en cuenta para la evaluación de estos métodos, 
como el funcionamiento ante caras parcialmente ocluidas o de distintos tamaños en la 
imagen [22, 23], carecen de importancia significativa en este caso. Sí tiene importancia 
el funcionamiento de los modelos ante distintas condiciones de iluminación, y con 
usuarios que llevan puesta una banda y que puedan llevar gafas.

En primer lugar se prueban todos los algoritmos y se comprueba la calidad de sus 
detecciones en condiciones ideales. En la Figura 2.2 se observa que todos los modelos 
hacen una detección similar, con la única diferencia de la forma del rectángulo estimado 
de la cara.

  (a) DNN         (b) Haar Cascade     (c)HOG

          (d) MediaPipe (e) MTCNN     (f) Yunet

Figura 2.2: Detección facial frontal mediante diferentes modelos de detección.

Dado que uno de los objetivos del proyecto es estimar la rotación de la cabeza del 
usuario, es importante que la detección de rostros funcione en un rango amplio de 
ángulos de rotación. Haciendo una comparación cualitativa de las detecciones en 
distintos rangos de rotación e iluminación (ver Figura 2.3) se aprecia que los detectores 
DNN y MediaPipe son los más consistentes bajo las distintas condiciones probadas. 
Haar Cascade falla al rotar la cabeza independientemente de la iluminación. Los 
resultados de HOG también son considerablemente malos, fallando en casi todos los 
casos en los que la cabeza está girada, y cuando funciona muestra un error notable, 
como en el caso a 45º y buena iluminación. MTCNN funciona independientemente del 
nivel de luz, pero deja de detectar rostros entre los 45 y 90º. Finalmente, Yunet presenta 
un buen desempeño a excepción de en los casos límite probados de iluminación y giro.
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Figura 2.3: Modelos de detección facial ante distintas condiciones de posición e 
iluminación.

2.2.2. Detección de puntos faciales

Al igual que la detección de rostros, la detección de puntos faciales o landmarks es 
uno de los pilares fundamentales relacionados con el análisis de características faciales 
mediante la visión por computador. Consiste en localizar puntos específicos de los 
rostros que aparecen en una imágen. La detección de puntos faciales tiene múltiples 
usos en distintos ámbitos, como por ejemplo segmentación de las facciones de la cara, 
reconocimiento facial, detección de expresiones faciales o estimación de la postura de la 
cabeza [31, 83, 84].

Se va a utilizar la detección de puntos faciales como base para varios de los 
sistemas de monitorización del usuario desarrollados en la sección 2.3. La calidad de los 
resultados obtenidos dependerá de la precisión de los puntos 2D y en el caso de la 
estimación de postura, de la adecuación del modelo 3D correspondiente al objeto real.

Se van a evaluar dos de las técnicas más populares para este problema, ambas 
basadas en el uso de redes neuronales y técnicas de regresión. En primer lugar, el 
predictor de 68 puntos faciales ofrecido por la librería Dlib, que es una implementación 
de [9], y en segundo lugar el predictor de puntos faciales de la solución Mediapipe de 
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Google, este devuelve una predicción de 468 puntos faciales en 2D y una estimación de 
sus correspondientes posiciones en el espacio tridimensional [29].

        (a) Dlib            (b) MediaPipe

Figura 2.4: Topología de landmarks de los modelos utilizados.

Un aspecto importante de estos sistemas es el rango máximo de posiciones en el que 
son capaces de alinear los landmarks al rostro de la imágen. El modelo de Dlib está 
entrenado sobre el dataset 300-W [17, 18], que contiene rostros en posiciones de entre 
-30º y 30º, siendo más del 85% entre -15º y 15º, por lo que no se espera que el 
alineamiento sea bueno una vez sobrepasado este límite. Sobre los datos de 
entrenamiento del modelo de MediaPipe, tan sólo se revela que contiene 30K imágenes 
tomadas con teléfonos móviles. Comprobando cualitativamente el funcionamiento de 
ambos detectores (ver Figura 2.5), ambos modelos hacen un buen trabajo ante rostros 
con una rotación pequeña. Al contrario que Dlib, MediaPipe sí llega a estimar una 
buena alineación a 45º, pero tiene un error muy grande en el caso extremo de 90º.

Figura 2.5: Estimación de puntos faciales ante distintos ángulos de rotación de los 
modelos MediaPipe y Dlib (junto a detector facial Yunet).
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Las redes neuronales de ambos modelos utilizan como entrada la imágen RGB 
recortada del rectángulo de la cara por lo que deben utilizarse en conjunto con un 
detector de rostros. El predictor de la librería Dlib toma estos valores como argumento 
por lo que puede ser ejecutado con el detector que se crea conveniente, mientras tanto, 
MediaPipe no permite esta opción, y utiliza el detector de la librería. Como se ha visto 
en la sección anterior, este detector tiene un gran rendimiento tanto en calidad de 
resultados como en coste de ejecución por lo que no supone un problema significativo.

2.2.3. Estimación de la mirada
A la hora de determinar el nivel de implicación de un usuario en un ejercicio 

propuesto, uno de los métodos más efectivos es saber hacia dónde está mirando. 
Habitualmente se utilizan para esta tarea técnicas que hacen uso de cámaras de 
profundidad (habitualmente mediante proyectores y sensores de infrarrojos), pero 
también existe una amplia variedad de técnicas basadas en imagen RGB que pretenden 
resolver el problema de la estimación de mirada con un coste computacional bajo y un 
hardware menos especializado [38, 72, 73] mientras se mantiene un error cercano al 
obtenido mediante cámaras RGBD [10, 39, 74]. Algunos de estos métodos, pese a 
utilizar una sóla cámara RGB, requieren otros componentes hardware para funcionar. 
Por ejemplo, en [38] se utilizan luces en posiciones específicas para reconocer su reflejo 
en el ojo y corregir las estimaciones calculadas. Este tipo de soluciones no son factibles 
para el caso de uso en el que se va a utilizar el sistema implementado.

Muchos de los algoritmos actuales calculan el vector de la mirada como la 
composición del vector del ojo y el de la postura de la cabeza. El sistema de 
monitorización completo considerará incorrectas las posiciones con la cabeza girada, 
por lo que conocer la mirada del usuario en este caso se considera innecesario. Por lo 
tanto, se puede simplificar el problema asumiendo que la cabeza siempre tiene una 
rotación hacia la pantalla.

Se llama vector del ojo a aquel que conecta el centro del iris a cierta referencia. Por 
ejemplo, en [38] se utiliza el extremo interno como referencia.

Figura 2.6: Landmarks de la región de los ojos del modelo de Dlib.

En el sistema implementado se cuenta con los landmarks de los ojos del usuario 
(ver Figura 2.6), lo que facilita el proceso de obtención del vector de ojo. Al conocer los 
puntos que delimitan el ojo se puede recortar el fragmento sobre el que realizar las 
operaciones, además, se puede obtener el rectángulo que delimita los puntos de los ojos 
a partir de estos puntos. El centro de este rectángulo será la referencia para el cálculo 
del vector de ojo e.
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Como se observa en la Figura 2.7 (a), el cálculo del centro del iris se realiza en 
varios pasos. En primer lugar se utilizan los landmarks de los ojos para crear una 
máscara que se aplica a la imagen invertida, después se aplica un umbralizado o 
thresholding binario que separa el iris del resto del ojo, junto con una operación de 
cerramiento utilizando un kernel de tamaño 3x3 para eliminar posibles irregularidades. 
Se busca el contorno más grande, que coincide con el iris y de él se extraen sus 
momentos M para calcular el centroide c del iris.

      
            (a)                          (b) 

Figura 2.7: (a): Esquema de los pasos para el cálculo del centroide del iris. (b): Cálculo 
del threshold óptimo.
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No es posible encontrar un umbral que funcione en todas las ocasiones debido a las 

posibles diferencias entre los usuarios y los entornos en los que se pruebe el sistema. En 
primer lugar, el color de ojos del usuario afecta en la luminosidad de los píxeles 
correspondientes al iris en la imagen al paso a escala de grises. Los ojos claros 
presentan un menor contraste entre el iris y la esclerótica, mientras que en ojos oscuros 
es más sencillo encontrar un umbral claro que separa los dos colores. Además, las 
condiciones de iluminación del entorno también afectan al color del iris que proyecta la 
imagen. Si se escoge un umbral demasiado bajo se seleccionará todo el área del ojo en 
lugar de únicamente el iris, por lo que calcular el centroide de esta área no aportará 
información sobre la mirada. Por el contrario, si el umbral es demasiado alto, se corre el 
riesgo de una desaparición parcial o total del iris en el área seleccionada (Ver Figura 
2.8).

(a) Bajo       (b) Bueno       (c) Alto 

Figura 2.8: Ejemplo de segmentación del iris utilizando distintos umbrales.
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Con el objetivo de resolver el problema recién planteado, se ha implementado un 
método de umbralizado adaptativo basado en el análisis del área del ojo en función del 
umbral. Este área se calcula como la cantidad de píxeles blancos de la imagen tras 
aplicar el umbralizado. El área del ojo pasa de su máximo a su mínimo en un rango de 
umbrales pequeño, el problema consiste en encontrar el umbral correspondiente dentro 
de ese rango. De un estudio de Carlos Eduardo Palhares sobre el análisis de los ratios de 
los rasgos faciales [41], se puede extraer que el iris supone aproximadamente un 40% de 
la superficie visible del ojo. Por lo tanto, se puede calcular el 40% del área máxima del 
ojo encontrada, y buscar el umbral que resulte en el área más cercana a ese valor (ver 
Figura 2.7 (b)).

Si la iluminación de la escena no es uniforme, es posible que la luminancia de los 
píxeles de los dos ojos sea completamente distinta. Esto es especialmente notable 
cuando el usuario se ve iluminado por una luz lateral. Debido a esto, se calcula y aplica 
un umbral independiente para cada ojo.

Alternativamente a este cálculo, el modelo de estimación de puntos faciales de 
MediaPipe tiene la posibilidad de estimar la posición del iris mediante el uso de redes 
neuronales [58].

Una vez calculado el vector de ojo, la estimación de la mirada consiste en el mapeo 
de los valores del vector de ojo a coordenadas de pantalla. Para llevar a cabo esta tarea 
se realiza en primer lugar una calibración donde se pide al usuario que mire a ciertos 
puntos en pantalla de los que se conocen las coordenadas de pantalla y se calcula y 
registra el vector de ojo para cada uno. Una vez terminado el proceso de calibración, 
para cada frame se realiza una interpolación lineal del vector de ojo sobre los calculados 
durante la calibración para obtener las coordenadas de pantalla. La Figura 2.9 (b) 
muestra la relación entre la posición del punto al que mira el usuario y el vector de ojo 
para cada punto del proceso de calibración. Se puede ver que la variación es 
significativamente mayor en el eje x que en el eje y, lo que puede significar una mayor 
posibilidad de error al calcular el valor interpolado en el eje vertical.

(a)     (b)

Figura 2.9: (a): Diagrama del mapeo del vector de ojo a coordenadas de pantalla.       
(b): Ejemplo de calibración de mirada.
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En la estimación de mirada, se necesita una unidad de medida para la salida 
independiente del tamaño y resolución de la pantalla que se está empleando. La solución 
común a este problema es el uso de un sistema de coordenadas de pantalla normalizado 
entre 0 y 1, en el que el punto (0,0) corresponde a la esquina superior izquierda de la 
pantalla y el (1,1) a la inferior derecha (Ver Figura 2.9 (a)).

2.3. Algoritmos de monitorización
Una vez seleccionadas las tecnologías básicas se puede utilizar su salida para 

desarrollar distintos sistemas de monitorización que ofrecen información relevante 
sobre la correcta realización de las tareas que se proponen al usuario.

A excepción de la estimación de la postura (ver sección 2.3.2), estos sistemas tan 
sólo utilizan operaciones básicas sobre la salida de los algoritmos para generar algunas 
medidas derivadas por lo que su coste computacional puede ser despreciado.

2.3.1. Movimiento de la cabeza
Durante las terapias, es deseable que los pacientes adopten una postura cómoda al 

inicio y permanezcan tranquilos y sin moverse durante el desarrollo de la misma. Para 
detectar cuándo se mueve el usuario a lo largo del tiempo se utiliza la información 
proporcionada por la detección de rostros.

El usuario puede realizar movimientos de traslación en los tres ejes de coordenadas. 
Para detectar los movimientos arriba, abajo, izquierda y derecha basta por comprobar la 
distancia euclídea del centro del rectángulo de la cara c devuelto por el detector facial al 
de la posición inicial. Esta medida no es efectiva para detectar los movimientos hacia 
delante y atrás. En su lugar, se utiliza el área a del rectángulo. Al ser una medida 
compuesta fruto del producto de la altura y anchura del rectángulo, su crecimiento es 
cuadrático con respecto al movimiento, por lo que se utiliza la raíz cuadrada del área, 
que además tiene la ventaja de utilizar las mismas unidades de medida que para detectar 
el resto de movimientos. Esto permite agregar las dos medidas en una sóla dando lugar 
a la variable de movimiento m Para asegurar robustez ante distintas resoluciones de 
imágen se utilizan coordenadas normalizadas entre 0 y 1 donde (0, 0) es la esquina 
superior izquierda y (1, 1) la esquina inferior derecha.
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La Figura 2.10 muestra la salida del sistema en una sesión en la que se realizan 
series de movimientos cada vez mayores: a) Movimientos de cabeza en el sitio, b) 
Movimientos laterales; y c) Salir de la imágen de la cámara.
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Figura 2.10: Ejemplo de medidas de movimiento durante una grabación en la que se 
realizan series de movimientos.

2.3.2. Estimación de postura

Existen múltiples métodos para obtener la rotación de la cabeza a partir de los 
puntos faciales. Algunas técnicas tradicionales utilizan información general sobre las 
proporciones y la geometría de la cabeza para estimar su plano y por tanto su vector 
normal. [3] propone utilizar el plano del triángulo isósceles formado por los ojos y la 
boca proyectado en el plano de imágen. Sin embargo, la mayoría de los métodos 
actuales utilizan el método de ajuste de modelo o model fitting para abordar este 
problema.

La estimación de los ángulos de rotación y flexión de la cabeza del usuario 
mediante model fitting es un caso del problema de estimación de postura (PnP), en el 
que dadas las coordenadas de n puntos 3D de un objeto modelo y su proyección en el 
plano 2D de la imagen (n≥3) se trata de encontrar la posición y rotación de dicho objeto 
respecto al modelo (ver Figura 2.11). Existen multitud de enfoques para la resolución de 
este problema [11, 12, 25, 26, 28].

Figura 2.11: Diagrama del problema de estimación de postura (PnP) [91].
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Se ha utilizado la implementación de OpenCV del método Infinitesimal 
Plane-based Pose Estimation (IPPE) por su velocidad de cálculo frente a otros métodos 
como EPnP, RPnP o IPnP al utilizar un número reducido de puntos [58]. Según las 
pruebas realizadas en [25], utilizando una configuración de puntos cuasiplanar, como es 
el caso del modelo de un rostro, a medida que se aumenta el número de puntos 
disminuye el error de rotación, aunque esta mejora es cada vez más pequeña conforme 
se añaden más puntos. Utilizando tan sólo 5 puntos el ángulo de error medio es menor a 
1º para la mayoría de métodos.

Los puntos característicos de la cara se obtienen mediante los métodos explicados 
anteriormente en el apartado de detección de puntos faciales (sección 2.2.2). El 
siguiente paso es encontrar un modelo 3D que contenga vértices que encajen con el 
modelo de landmarks utilizado. Para el modelo Dlib se utiliza el modelo de la cabeza 
humana obtenida mediante muestreo láser de múltiples individuos en [30], cuyos 
vértices coinciden en gran medida con los del modelo de landmarking (ver Figura 2.12 
(b)). Por su parte, MediaPipe incluye un modelo canónico con las coordenadas 3D de 
468 puntos faciales (ver Figura 2.12 (c)).

         
        (a)      (b)               (c)

Figura 2.12: (a): Puntos utilizados para el PnP. (b): Modelo 3D utilizado para los 
landmarks de Dlib. (c): Modelo 3D de MediaPipe.

Se utilizan con ambos modelos los mismos puntos como referencia para resolver el 
problema PnP que se pueden ver en la Figura 2.12 (a). Son los equivalentes a los 
extremos de los ojos y las cejas, la base de la nariz a ambos lados, la punta de la nariz, y 
los extremos izquierdo, derecho e inferior de la boca.

Para calcular la proyección de un punto de la imágen en las coordenadas 2D, 
además de las matrices de rotación y traslación es necesario conocer la matriz de cámara 
con sus parámetros intrínsecos. Estos parámetros, por lo tanto, son necesarios para la 
ejecución de los algoritmos de resolución del problema PnP, por lo que han tenido que 
ser encontrados mediante una calibración de la cámara que se puede ver en el Anexo 2.

El uso de modelos de detección de landmarks a nivel de frame da lugar a 
inconsistencias notables en la posición de los mismos a lo largo del tiempo debido a 
diferencias en la imagen entre frames provocadas por cambios en variables como la 
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postura, la iluminación o el ruido del sensor [31], lo que produce un ruido considerable 
en la postura estimada. El algoritmo de MediaPipe tiene en cuenta este problema e 
incorpora un filtro de ruido de baja latencia basado en el 1 Euro filter [29, 75]. Se puede 
observar que la salida de la postura obtenida con los landmarks de MediaPipe es 
visiblemente menos ruidosa que la obtenida con Dlib (ver Figura 2.13). Utilizando la 
misma idea, se aplica un filtro de ruido de media móvil a la salida del estimador de 
postura con Dlib.

Figura 2.13: Resultado de estimación de rotación (eje z) de una grabación mediante los 
modelos de landmarking de Dlib y MediaPipe frente a la rotación real calculada 
mediante IMU (ver sección 3.1.4).

Analizando el ejemplo de la Figura 2.13 se observa que el sistema de estimación de 
postura implementado con Dlib tiende a sobreestimar el ángulo de rotación de la cabeza, 
mientras que el sistema que hace uso del estimador de landmarks de MediaPipe tiene 
más tendencia a subestimar dicho giro.

2.3.3. Movimiento de la boca
Según la Encuesta Continua de Hogares del Instituto Nacional de Estadística 

(2020), el tamaño medio del hogar en España es de 2.5 personas [76]. Debido a esto, es 
habitual que los usuarios sufran distracciones durante las terapias manteniendo 
conversaciones con las personas con las que conviven. Por lo tanto, uno de los objetivos 
del sistema de monitorización por visión por computador desarrollado es la detección 
del habla del usuario. Adicionalmente, la monitorización del movimiento de la boca 
también permite reconocer bostezos, uno de los principales indicadores utilizados para 
medir el nivel de somnolencia de las personas [77, 78].

Para realizar esta detección se va a utilizar como base la apertura de la boca. 
Utilizando los puntos característicos extraídos del rostro del usuario, se calcula la 
distancia euclídea en el plano de imagen entre el labio superior e inferior. Con el 
objetivo de ser invariante a tamaño de la cara y distancia a la cámara se normaliza esta 
distancia por el alto total de la cara h. En otros trabajos se utiliza el ancho de la boca o 
la altura del labio como factor de normalización en lugar de la altura de la cara. Sin 
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embargo, se ha decidido utilizar esta medida por ser independiente del ángulo de 
rotación del rostro y no sólo del tamaño del mismo.

Figura 2.14: Puntos utilizados para el cálculo de la apertura de la boca.

Otros trabajos previos utilizan esta medida para devolver un resultado positivo 
cuando supera un umbral especificado, sin embargo, este método puede producir falsos 
positivos ante movimientos lentos de la boca, además, aunque este método es efectivo 
para detectar bostezos, tiene una probabilidad error mayor al detectar los movimientos 
de boca de un usuario hablando que pueden ser mucho más pequeños que los de un 
bostezo. En su lugar, el detector utilizará la información de la imagen de varios frames a 
lo largo del tiempo para detectar la velocidad de movimiento de la boca. 
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Durante el habla, los distintos fonemas utilizados requieren una apertura de la boca 
distinta, incluyendo algunos, como las consonantes bilabiales sonoros (B, V), requieren 
que los labios se toquen para pronunciarlos. Debido a esto, este sistema de detección no 
puede procesar un resultado frame a frame, sino que deberá tener en cuenta la velocidad 
de movimiento de la boca m para determinar si el usuario está hablando o no. Para ello 
se calcula la diferencia entre la apertura de la boca en el frame actual y el anterior y se 
divide por la variación de tiempo entre la toma de las imágenes, dando lugar a la 
variación de la apertura de la boca en relación al alto de la cara por unidad de tiempo 
(segundos).
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La medida resultante toma valor positivo cuando la boca se está abriendo y negativo 
cuando se está cerrando. Para el problema que se pretende resolver, no interesa saber 
esto en cada momento, tan sólo si se está moviendo o no, por lo que se utiliza el valor 
absoluto de la medida. Además, el movimiento de la boca durante el habla no es 
uniforme, sino que ocurre a golpes con cada sílaba, lo que produce que la medida 
calculada tenga una gran cantidad de picos. Este problema se ha solucionado utilizando 
una media móvil de un tamaño determinado w, que puede ser el número de medidas 
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tomadas en los últimos s segundos. La velocidad de elocución es de aproximadamente 
5.83 sílabas por segundo en Español y 4 en inglés [14, 15, 16]. Además, como se ha 
comentado anteriormente, distintos fonemas requieren aperturas diferentes de la boca, 
por lo que el tamaño de ventana elegido debe ser por lo menos suficientemente grande 
para suavizar varias sílabas completas. En base a las pruebas realizadas, se ha 
determinado que un tamaño de ventana de entre 1 y 2 segundos es suficiente para 
suavizar estas diferencias entre fonemas sin llegar a perder información relevante.
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Figura 2.15: Ejemplo de movimiento de la boca a lo largo del tiempo en una ejecución.

Como se puede observar en la Figura 2.15, las medidas calculadas, especialmente el 
movimiento de boca absoluto suavizado, reflejan claramente los fragmentos de vídeo en 
los que el usuario está hablando (segundos 12-38), así como los bostezos (segundos 
46-55).

2.3.4. Apertura de los ojos
La detección de ojos abiertos es uno de los métodos más utilizados para la 

monitorización de somnolencia mediante visión por computador, especialmente 
utilizado en sistemas de monitorización de conductores [6, 34, 81].

Figura 2.16: Diagrama de los puntos del ojo utilizados para calcular el EAR.
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La medida por excelencia para la detección de ojos abiertos es la relación de 
aspecto de ojo o Eye Aspect Ratio (EAR), que denota la relación entre la altura y 
anchura del ojo [34]. A mayor EAR más abierto está el ojo. Utilizando las técnicas de 
detección de rostros y landmarks desarrolladas en la sección 2.2, es sencillo obtener las 
medidas de los ojos del usuario en un frame y calcular el EAR. Por último, se utiliza 
una media móvil para suavizar el resultado y eliminar cualquier pico en el EAR 
calculado producto de inconsistencias de la detección de landmarks.
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El ojo se considera cerrado cuando el EAR está por debajo de cierto umbral 
establecido. Es importante tener en cuenta que las dimensiones del ojo varían en función 
de distintas personas y etnias, por lo que este umbral debe ser escogido con precaución.

2.3.5. Comprobación de mirada fuera de pantalla
Por último, se quiere tener en cuenta la posibilidad de que el usuario no se esté 

moviendo ni hablando, mantenga una buena postura y tenga los ojos abiertos, pero no 
esté mirando a la pantalla del dispositivo. Es el detector menos sofisticado de los 
descritos en este trabajo, pues su funcionalidad se limita a la comprobación de que los 
datos de la estimación de la mirada se encuentren dentro del límite establecido.

En primera instancia se podría pensar en comprobar que las coordenadas de mirada 
calculadas por el estimador descrito en la sección 2.2.3 se encuentren entre 0 y 1 en 
ambos ejes. Sin embargo, dado que el cálculo final de dichas coordenadas se realiza 
mediante una interpolación lineal con los datos de la calibración, la salida siempre se 
encuentra dentro de los límites de la pantalla. En su lugar, se utiliza el vector de ojo para 
realizar esta comprobación.

Durante la calibración de la mirada se almacenan los valores máximos y mínimos 
medidos del vector de ojo en ambos ejes de la pantalla. Después, este sistema de 
monitorización se encarga de comprobar que el vector de ojo calculado se encuentre 
dentro de estos límites.
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Capítulo 3

Evaluación de los algoritmos

El siguiente paso a la implementación de los algoritmos es la evaluación de los 
mismos. Este capítulo aborda la metodología seguida para la recogida de un conjunto de 
datos sobre el que evaluar los algoritmos, la explicación de las herramientas utilizadas 
para esta tarea y el planteamiento de las pruebas a que se van a realizar.

3.1. Metodología

3.1.1. Protocolo y grabación
Con el fin de evaluar las distintas implementaciones de las partes que componen el 

sistema monitorización, es necesario un conjunto de pruebas con datos conocidos. Para 
ello se ha diseñado un protocolo de grabación en el que se pide a los usuarios que 
realicen ciertas tareas. Particularmente, el objetivo del protocolo es producir datos que 
permitan probar los siguientes aspectos, poniendo especial atención a los casos límite.

● Existencia o no de rostros en la imágen.
● Movimientos de giros de cabeza y traslación del usuario.
● Usuarios hablando.
● Usuarios con los ojos abiertos y cerrados.
● Usuarios mirando hacia distintos sitios dentro y fuera de la pantalla del 

dispositivo.

(a) Equipo Ikon de Bitbrain              (b) Tobii Pro Nano          (c)Microsoft Surface Go 3

Figura 3.1: Hardware principal utilizado para las grabaciones.

La grabación se realiza utilizando el equipo Ikon de Bitbrain, un dispositivo de EEG 
en forma de banda que cuenta con 5 sensores secos textiles. Esto es con el fin de recoger 
datos de la unidad de medición inercial (IMU) incorporada en el equipo de EEG. 
También se recogen datos del eye tracker Tobii Pro Nano durante la grabación. Las 
señales de ambos dispositivos se utilizarán como ground truth en el proceso de 
evaluación de los algoritmos. Adicionalmente a estas medidas, también se almacena la 
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señal de los 5 canales de EEG del equipo, que puede resultar útil en líneas de trabajo 
futuras (ver Tabla 3.1).

Dispositivo de captura Medida

IMU

Ángulos pitch, yaw y roll de la cabeza (º/s)

Aceleración en ejes x y z (m/s2)

Fuerza magnética en ejes x y z (mT)

Eye tracker

Diámetro de la pupila (mm)

Posición (x, y, z) del iris

Coordenadas (x,y) en pantalla de la mirada

Detección de la pupila (bool)

EEG Actividad cerebral, 5 canales.

Tabla 3.1: Señales de la plataforma almacenadas durante la recogida de datos.

Para leer y registrar la información de los dispositivos conectados, ha sido necesario 
implementar un módulo en C++ integrado en la plataforma de neurotecnología. Dicho 
módulo se encarga de grabar en un vídeo en formato .avi a una frecuencia lo más 
cercana posible a 30 FPS mientras registra el timestamp de cada frame grabado en un 
fichero .csv. Además el programa también se encarga de mostrar en pantalla la imágen 
del usuario, o las pantallas que específicas de las tareas 1a, 1b, 4c y 5a del protocolo.

Antes de comenzar la grabación se hace una introducción al usuario de las tareas 
que se van a realizar y se le prepara para la grabación colocando el equipo de EEG y 
calibrando el eye tracker (desarrollado en el Anexo 1). Tras realizar las calibraciones 
necesarias comienza la grabación, tomando medidas de las unidades de adquisición a 
sus respectivas frecuencias de muestreo. En concreto, se pide realizar las siguientes 
tareas:

1) Tareas para la comprobación de la mirada (100s). El primer paso está 
dirigido a la calibración de los algoritmos de estimación de mirada evaluados, 
los otros dos tienen como objetivo comprobar su rendimiento recién calibrados, 
sin que el usuario se haya movido todavía. 

a) Realizar la calibración de ojos siguiendo las instrucciones de pantalla 
(30s). Aparecerán puntos en pantalla uno a uno y de manera ordenada, 
situados en las posiciones 10%, 30%, 50%, 70% y 90% del ancho de 
pantalla en el eje x, y en las posiciones 25%, 50% y 75% del alto de la 
pantalla en el eje y. Para cada punto, se da un segundo para que el 
usuario fije su mirada en dicho punto y después se toman 5 fotografías a 
lo largo de otro segundo. Esto servirá como información para la 
calibración de los distintos sistemas de estimación de mirada evaluados.
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Figura 3.2: Puntos de calibración de mirada.

b) Repetir el proceso del punto anterior (30s). Es en este paso en el que 
comienza el registro de información en el vídeo y los ficheros de 
medidas. Se repite el proceso del apartado anterior en el que el usuario 
tiene que mirar a los puntos uno a uno, pero no se toman fotografías. En 
su lugar, la imagen se incluye en el vídeo grabado.

c) Mirar fuera de la pantalla (40s). Sin mover la cabeza, mirar a la 
izquierda, derecha, arriba y abajo de la pantalla, en ese orden, durante 10 
segundos en cada posición. El usuario es libre de mirar a distintos puntos 
siempre que sean en la dirección requerida y fuera de la pantalla.

2) Tareas para la comprobación de ojos abiertos (20 s).
a) Sin pestañear, mantener la posición mirando a la pantalla (10 s).
b) Cerrar los ojos manteniendo la posición (10 s).

3) Tareas para la evaluación de la estimación de postura (80 s).
a) Sin girar el resto del cuerpo, girar la cabeza lentamente hacia la posición 

pedida. Una vez alcanzado el límite, mantener la posición hasta que pase 
el tiempo propuesto.

Posición L C R C U C D C

Tiempo (s) 10 10 10 10 10 10 10 10

Tabla 3.2: Tiempos y giros de la tarea 3a del protocolo. Los símbolos L, 
R, U, D, y C se corresponden con las posiciones izquierda, derecha, 
arriba, abajo, y centro, respectivamente.

4) Tareas para la evaluación de la detección de rostros y movimiento del 
usuario (110 s).

a) Permanecer en la posición central (30s).
b) Sin dejar de mirar hacia la pantalla, Moverse a las posiciones deseadas y 

permanecer en esa posición durante el tiempo de la tarea (40s).
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Posición L R F B

Tiempo (s) 10 10 10 10

Tabla 3.3: Tiempos y movimientos de la tarea 4b del protocolo. Los 
símbolos L, R, F y B se corresponden con las posiciones izquierda, 
derecha, adelante y atrás, respectivamente.

c) Hablar manteniendo la posición central (30s). Para este paso, se mostrará 
al usuario un texto que leer hasta que termine el tiempo.

d) Salir del cuadro de imagen de la cámara (10s).
5) Tareas para la comprobación de la mirada con usuario movido (70 s). En 

este paso se van a repetir las tareas del paso 2 (exceptuando la de calibración) 
con el objetivo de evaluar si los sistemas de estimación de mirada pierden 
eficacia tras la acumulación de movimientos del usuario desde el momento de la 
calibración.

Antes de comenzar cada tarea se dará el tiempo necesario para la explicación de la 
misma antes de comenzar su realización. Con el fin de agilizar la grabación y facilitar el 
posterior etiquetado de datos, se ha preparado una tabla que se puede seguir y rellenar 
durante la grabación, junto a algunas notas que recordar a los sujetos antes de comenzar 
para facilitar el entendimiento de los ejercicios (Ver Anexo 1).

La señal del EEG se registra a 256 Hz, mientras que la de la IMU y el eye tracker lo 
hace a 32 Hz. Este registro se hace en un tipo de fichero propietario .bbt que deberá ser 
decodificado mediante la herramienta proporcionada por la empresa para su posterior 
análisis.

Dado que la recogida de los fotogramas no se hace a una frecuencia perfectamente 
constante, el vídeo generado presenta alteraciones en las que la imagen avanza a una 
velocidad ligeramente distinta a la real. Para facilitar el análisis visual y el etiquetado de 
las partes del vídeo se ha diseñado e implementado en Python un algoritmo que utiliza 
el vídeo y el fichero de timestamps como entrada, y dado un framerate objetivo duplica 
o elimina frames para que el paso del tiempo del vídeo se corresponda con el verdadero.

3.1.2. Entorno de grabación
Las grabaciones se realizan en un entorno controlado sin distracciones y preparado 

para facilitar la recogida de datos sin errores.

El sujeto se sienta en una silla con ruedas que facilitará el movimiento en las tareas 
de desplazamiento, frente a una mesa con una Surface apoyada sobre ella, desde la que 
se realiza la grabación. Durante el proceso de experimentación, a excepción de las fases 
de comprobación de la mirada y del habla, donde se muestra una pantalla específica en 
pantalla, el sujeto verá la imagen de la cámara, a modo de espejo. El dispositivo tiene 
conectado teclado, ratón y eye tracker. Sobre la mesa, también se encuentran la banda 
de EEG y un paquete de toallitas húmedas, necesario para la colocación de la misma.
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Figura 3.3: Entorno de grabación del conjunto de pruebas.

Se quiere probar el funcionamiento de los sistemas evaluados tanto en condiciones 
ideales de iluminación como en el caso realista en el que el sujeto realiza el tratamiento 
en el salón de su casa. En la condición ideal, se utiliza una luz blanca uniforme que 
proyecta una luz blanca sobre el usuario de unos 1500 lux. Varios estudios sugieren que 
los salones tienen habitualmente una iluminancia de entre 150 y 300 lx, de colores 
cálidos de unos 2700 K [35, 36]. Para la grabación en condiciones de luz de salón se 
utiliza una lámpara de intensidad y temperatura regulable para iluminar la habitación 
con una luz cálida de aproximadamente 150 lx. Esto se hace mediante una lámpara 
regulable colocada lateralmente al usuario para que su rostro no esté uniformemente 
iluminado.

Figura 3.4: Escala Kelvin de la temperatura del color de la luz.

Las medidas de la iluminancia se han realizado con un luxómetro calibrado con 
error ± 15%. Adicionalmente, se han comprobado estas mediciones con las obtenidas 
mediante el sensor de un teléfono móvil, obteniendo resultados casi idénticos como se 
expresa en [37].

Se realiza una grabación del protocolo para cada usuario por cada condición de 
iluminación. Con el objetivo de asegurar que la diferencia entre los resultados obtenidos 
de las distintas grabaciones de un mismo usuario se deben al cambio de las condiciones 
y no de otros factores como el aprendizaje del protocolo, se realiza un balanceo del 
órden de forma que cada sujeto realiza la primera grabación en las condiciones de luz en 
las que el último sujeto realizó la segunda. Como resultado, el 50% de los sujetos 
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realizan primero la grabación en condiciones ideales y después la de condiciones de 
salón, y el otro 50% procede en orden inverso.

3.1.3. Datos recogidos
El conjunto de datos recogido está formado por los datos de 12 sujetos distintos 

sometidos a 2 sesiones cada uno bajo distintas condiciones de iluminación. Estos datos 
son la grabación del vídeo en formato .avi a resolución 640x480 píxeles, los timestamps 
de cada frame en un fichero .csv, la salida recogida de los sensores de la plataforma (eye 
tracking, IMU, EEG) en un fichero .bbt y un directorio con las 75 imágenes tomadas 
durante la tarea 1a del protocolo (sección 3.1.1). Por último, a cada grabación le 
acompaña un fichero .json de elaboración manual que contiene etiquetas de los 
fragmentos de tiempo en los que se realizan las distintas tareas del protocolo. La 
descripción de estas etiquetas están disponibles en el Anexo 5.

En la Tabla 3.4 se observa la duración, frames y fotogramas por segundo (FPS) 
medios de cada una de las grabaciones. Sumando todas las grabaciones, se cuenta con 
un total de casi 300K imágenes.

Sujeto Nivel de luz Duración (s) Frames FPS medios

P01
Alta 436 12809 29,38
Baja 436 12772 29,29

P02
Alta 453 13294 29,35
Baja 418 12261 29,33

P03
Alta 413 12110 29,32
Baja 441 12913 29,28

P04
Alta 437 12859 29,43
Baja 388 11413 29,41

P05
Alta 423 12420 29,36
Baja 422 12403 29,39

P06
Alta 416 12221 29,38
Baja 421 12378 29,40

P07
Alta 422 12409 29,41
Baja 408 12010 29,44

P08
Alta 422 12397 29,38
Baja 415 11894 28,66

P09
Alta 418 12281 29,38
Baja 423 12451 29,43

P10
Alta 423 12444 29,42
Baja 423 12028 28,43

P11
Alta 412 12137 29,46
Baja 411 10731 26,11

P12
Alta 399 11743 29,43
Baja 408 10686 26,19

Tabla 3.4: Resumen de los datos recogidos.
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La duración media de las grabaciones es de 420 segundos con una desviación 
estándar de 13.78 s, una variabilidad baja dada por el seguimiento del protocolo. 
Además, cada una de las tareas tiene una duración muy similar en las distintas 
grabaciones. Esta uniformidad en el conjunto de datos facilita en gran medida su uso. 
No parece que haya habido ningún problema de rendimiento del dispositivo de 
grabación durante la recogida de datos, a excepción de pequeñas variaciones, la mayoría 
de los vídeos tienen una frecuencia de grabación media de entre 28 y 29 FPS.

Durante la recogida de datos se ha mantenido en mente la posibilidad de que el 
conjunto de datos generado pueda ser utilizado en estudios futuros, de ahí que se 
decidiese almacenar la señal EEG de la banda y se haya pedido la realización de ciertas 
tareas que no forman parte del protocolo, como quitarse la banda, en algunas de las 
grabaciones. 

Con el objetivo de comprobar la variedad de la muestra, para cada uno de los 
sujetos se ha apuntado su edad, sexo, tipo de piel según la escala Fitzpatrick [93] y otras 
características, en especial si el usuario lleva gafas o no, que puedan ser relevantes para 
este u otros estudios. La Tabla 3.5 muestra la información general de la variedad de la 
muestra en cuanto a sexo y gafas. Por otro lado, todos los sujetos de la muestra tienen 
entre 24 y 49 años (media 35 y desviación estándar 9.14), y están entre los tipos 1 y 4 en 
cuanto a tipo de piel. La información desglosada por sujeto está disponible en el Anexo 
3.

Según un estudio del Consejo Europeo de Óptica y Optometría, aproximadamente 
un 55% de la población española utiliza gafas en su día a día [71]. Por lo tanto, la 
muestra recogida no es perfectamente representativa de la población en este aspecto 
pero es suficientemente grande como para realizar evaluaciones específicas para este 
grupo.

Característica Muestra Porcentaje (%)

Sexo
Hombre 6 50

Mujer 6 50

Gafas
Sí 4 33.3

No 8 66.6

Tabla 3.5: Características de los sujetos del conjunto de datos.

3.1.4. Medidas ground truth
Para realizar evaluaciones cuantitativas de los algoritmos se necesita saber en cada 

momento el resultado ideal esperado que dichos algoritmos tratan de calcular, es decir, 
una verdad fundamental o ground truth. Este ground truth puede ser un dato escalar 
para calcular métricas de error, o un booleano para dar lugar a métricas de confusión. En 
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esta sección se va a profundizar en las fuentes de ground truths que se utilizarán durante 
las evaluaciones.

En primer lugar, adicionalmente a los datos obtenidos de los dispositivos utilizados 
durante la grabación, se utiliza información etiquetada manualmente como ground truth 
para las evaluaciones (ver Anexo 5).

Integración de la rotación absoluta

Para la evaluación de la estimación de postura se va a utilizar la información de la 
IMU para obtener la rotación real del usuario. Para probar la precisión de los sensores se 
prueba en una grabación controlada en la que se realizan cuatro giros consecutivos a 90, 
180, 270 y 360 grados desde el origen (ver Figura 3.5).

Figura 3.5: Sensores de la IMU durante una grabación de cuatro giros de 90º.

En los resultados de la prueba realizada se observa que tanto el giróscopo como el 
acelerómetro devuelven medidas de variación en lugar de absolutas. Por lo tanto, para 
obtener la rotación total en cada momento es necesario integrar las medidas del 
giróscopo. Esta integración tiene el problema de generar un error acumulativo causado 
por el error de medida de los sensores. Para resolver este problema se ha utilizado un 
filtro de Madgwick [7, 8] que utiliza la información del acelerómetro para medir la 
gravedad de la tierra y utilizar este vector de aceleración como referencia absoluta en la 
orientación.
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Cabe destacar que este filtro tiene también la posibilidad de utilizar el campo 
magnético de la Tierra como una segunda referencia, sin embargo, la salida del 
magnetómetro está sujeta a distorsiones causadas por el entorno cercano que podría 
empeorar los resultados si no se hace una calibración anterior. Esta calibración es un 
proceso lento y debería hacerse en un entorno controlado con un campo magnético 
constante para cada grabación [85, 86, 87], lo que dificultaría en gran medida la 
recogida de datos. Por este motivo se ha decidido no utilizar las medidas del 
magnetómetro en el filtro de Madgwick. Debido a esto, el eje de rotación horizontal 
(izquierda-derecha) de la cabeza es paralelo a la única referencia utilizada, por lo que 
sigue existiendo un error acumulativo en este eje de rotación incluso después de aplicar 
el filtro. Utilizando la rotación inicial como origen y una escala entre -180º y 180º se 
obtiene el resultado de la Figura 3.6 (a). Para eliminar el error, dados dos puntos en el 
tiempo conocidos que tienen la misma rotación se calcula la función de la recta que 
modela la deriva y se resta al resultado.

(a)     (b)

Figura 3.6: Integración de la rotación de la banda. (a): Sin corregir deriva en eje z, y (b): 
corrigiendo deriva. La línea discontinua muestra la rotación real.

En la Figura 3.6 (b) se observa que la aproximación propuesta soluciona el 
problema de la deriva. Los intervalos de tiempo en el que dispositivo no se ha movido 
quedan correctamente reflejados en la gráfica y la rotación absoluta calculada encaja 
con la real con un error menor a 2º en todo momento.

Valoración de las señales del eye tracker como posibles medidas de ground truth

Durante las grabaciones, se registran del eye tracker varias señales que pueden ser 
utilizadas como ground truth para determinar si el ojo está realmente abierto o no. En 
primer lugar, se dispone de la información del EEG. Como se expone en [42, 43], el 
EEG muestra diferentes características con los ojos cerrados y ojos abiertos. Sin 
embargo, se descarta esta opción por la dificultad y el coste de interpretación de los 
datos, especialmente cuando se dispone también de la información grabada por el eye 
tracker. Entre sus salidas, existen varias que pueden resultar útiles en este caso: El 
diámetro medido de la pupila (mm) y el código de validez (bool), independientes para 
cada ojo.
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Figura 3.7: Ejemplo de medidas del eye tracker durante una ejecución.

Como se observa en la Figura 3.7, ambas medidas aportan una información similar 
sobre la apertura del ojo, con la ligera diferencia de que el código de validez es 0 
durante parpadeos y periodos con los ojos cerrados, mientras que el diámetro del ojo 
sólo es nulo en estos periodos mantenidos y no durante los parpadeos (aunque sí se 
puede ver una disminución del diámetro considerable). Dadas las similitudes entre las 
dos medidas se ha decidido utilizar el código de validez como medida ground truth para 
la evaluación de los algoritmos de detección de apertura de ojos por tener valores 
booleanos útiles para el cálculo de métricas de confusión.

Por otro lado, el eye tracker también proporciona la mirada del usuario en 
coordenadas normales de pantalla, información que puede ser utilizada como ground 
truth para la estimación de la mirada.

3.1.5. Métodos de evaluación

Los vídeos almacenados durante la grabación pueden ser procesados de forma 
offline de manera que para cada frame se calculen una serie de medidas mediante las 
técnicas de visión por computador que se quieren evaluar. Dichas medidas quedan 
registradas en el fichero .csv junto al timestamp del frame correspondiente.

Los datos del fichero .bbt tienen una frecuencia constante, pero los del fichero de 
medidas no siempre cumplirán dicha condición. Debido a esto, el primer paso en el 
proceso de evaluación es el emparejamiento de datos de la plataforma de 
neurotecnología con los de los algoritmos. Para esto, se ha implementado en Python una 
herramienta que convierte toda la información a frecuencia de muestreo constante 
emparejando la información de los dos ficheros de medidas.

A partir de este fichero se pueden realizar análisis cuantitativos sobre la calidad de 
los resultados de las técnicas utilizadas para generar las medidas.

Se pueden dividir las métricas que se van a realizar en dos grandes grupos:
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● Para las medidas booleanas se utilizan métricas de confusión, calculando los 
True Positives (TP), True Negatives (TN), False Positives (FP) y False 
Negatives (FN). A partir de esas medidas se calculan métricas como la precisión 
(P), la exhaustividad o recall (R), el F-score balanceado (F1) y la exactitud o 
accuracy (ACC). La precisión denota qué proporción de los valores predichos 
como positivos lo son realmente, mientras que el recall expresa cuántos de los 
valores realmente positivos se han clasificado correctamente. La medida F1 
combina estas dos medidas mediante una media armónica. El accuracy muestra 
la proporción de datos etiquetados correctamente.

Figura 3.8: Matriz de confusión booleana.

𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 ;  𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 ;   𝐹
1

= 2 𝑃·𝑅
𝑃+𝑅 ;  𝐴𝐶𝐶 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

● Para las medidas de valor numérico en las que se cuenta con un ground truth 
escalar como los ángulos de rotación de la cabeza o la mirada, se utilizarán 
métricas de error. Generalmente, se van a utilizar las medidas Mean Average 
Error (MAE), Mean Squared Error (MSE) y Root Mean Square Error (RMSE). 
MAE es la medida más básica, que muestra simplemente el error medio, aunque 
tiene el problema de que errores positivos y negativos puedan cancelarse entre 
sí. MSE es la media de los cuadrados de los errores, que penaliza errores 
grandes, pero puede ser difícil de interpretar. Por último, RMSE tiene las 
mismas ventajas que el MSE, pero es más interpretable al estar en las mismas 
unidades que la variable de salida.
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;  𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸

Adicionalmente, se hará uso de las gráficas que se crean necesarias para una mejor 
visualización de los resultados.

El análisis de rendimiento en tiempo de ejecución se realiza midiendo y 
almacenando en memoria para cada frame el tiempo de procesamiento de los distintos 
algoritmos utilizados durante las pruebas realizadas.. Al final de la ejecución se calcula 
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el tiempo medio de los algoritmos como la media aritmética de las medidas tomadas 
durante el procesamiento de los distintos vídeos.

Una vez definido el conjunto de datos se diseñan las pruebas a las que se somete 
cada uno de los algoritmos. En el Anexo 6 se muestran las pruebas propuestas para cada 
algoritmo, junto con los datos que se utilizan como ground truth y la parte de las 
grabaciones que se utiliza para cada una de ellas.

Algunos de los tests descritos se realizan a modo de análisis de rendimiento que 
permita realizar una selección informada de las tecnologías utilizadas en la integración 
final. Otros sin embargo se utilizan con el objetivo de encontrar la configuración óptima 
de los parámetros de los algoritmos.

Otra porción de las pruebas consiste en separar y comparar los resultados de los 
algoritmos en función del nivel de iluminación de la grabación para comprobar el 
impacto de esta variable.

Por último, la utilización de accesorios puede afectar a la capacidad de los 
detectores de rostros de generar resultados [56, 57], por lo que es importante asegurarse 
de que los algoritmos de monitorización funcionan correctamente con usuarios con 
gafas. Para estas pruebas se separan los sujetos 4, 6, 8 y 11 del resto de la muestra para 
evaluar los resultados.

3.2. Resultados
Este apartado recoge los resultados y el análisis de las pruebas propuestas para 

probar los distintos algoritmos desarrollados en el capítulo 2. Los análisis de tiempo de 
ejecución de esta sección se han realizado en un sistema con un procesador Intel Core 
i7-10710U y 32 GB de RAM.

3.2.1. Detección de rostros
Utilizando la salida booleana de los algoritmos de detección de rostros junto con la 

información etiquetada del conjunto de datos (Tabla 3.6), se calculan métricas de 
confusión de los distintos modelos evaluados. Se analiza también el accuracy en 
función de las variables de iluminación y gafas (Tabla 3.7).

Nótese que el detector MTCNN ha quedado excluido de las evaluaciones de esta 
sección debido a su lenta velocidad de ejecución, de aproximadamente 1178 ms por 
frame.

Uno de los posibles criterios por los que se podría decidir utilizar un modelo u otro 
es su tiempo de ejecución, especialmente importante en sistemas en tiempo real como el 
que se está tratando de desarrollar en este trabajo. La Tabla 3.8 muestra los tiempos de 
ejecución medios de los distintos detectores al evaluarlos con el dataset.
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DNN Haar HOG MediaPipe Yunet

P 1.00 1.00 1.00 1.00 1.00

R 0.99 0.67 0.89 0.99 0.99

F1 0.99 0.80 0.99 0.97 0.99

ACC 0.99 0.67 0.89 0.99 0.97

Tabla 3.6: Métricas de confusión de los modelos de detección facial.

Accuracy (ACC)

DNN Haar HOG MediaPipe Yunet

Iluminación 
(lx)

150 0.99 0.60 0.87 0.99 0.97

2000 0.98 0.76 0.92 0.99 0.98

Gafas?
Sin gafas 0.99 0.73 0.91 0.98 0.98

Con gafas 0.98 0.57 0.86 1.00 0.95

Total 0.99 0.67 0.89 0.99 0.97

Tabla 3.7: Métricas de confusión de los modelos de detección facial en función de 
variables de iluminación y gafas.

Modelo DNN Haar HOG MediaPipe Yunet

Tframe (ms) 39.9 11.5 46.3 3.5 28.5

Tabla 3.8: Tiempo medio de ejecución de los modelos de detección facial.

Se observa que los detectores MediaPipe, DNN y Yunet reportan los mejores 
resultados con accuracies de entre 97 y 99%. Haar Cascade y HOG mantienen parecen 
tener más falsos negativos que el resto de detectores dando lugar a un recall inferior al 
del resto de modelos. 

Además, los modelos basados en redes neuronales apenas sufren ninguna 
disminución en su eficacia ante iluminación baja o usuarios con gafas, mientras que los 
métodos tradicionales (Haar Cascade y HOG) muestran un empeoramiento considerable 
de sus resultados.

Sobre el tiempo de ejecución, todos los detectores evaluados tienen la velocidad 
suficiente para formar parte de un sistema en tiempo real, permitiendo más de 20 
detecciones por segundo, siendo el detector de MediaPipe casi 10 veces más rápido que 
la mayoría de los demás modelos con un tiempo de ejecución menor a 4 ms. Aunque 
Haar Cascade también es muy rápido, la mala calidad de sus resultados lo descarta 
como una posible opción. Entre las opciones con mejores resultados, MediaPipe y 
Yunet son sin duda las dos mejores.
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3.2.2. Detección de puntos faciales
Los modelos de detección de puntos explicados en la sección 2.2.2 generan para 

cada frame una serie de coordenadas correspondientes a ciertos puntos faciales. En 
dicha sección se ha hecho una valoración cualitativa de la calidad de las estimaciones de 
puntos en función de la rotación de la cabeza.

Para llevar a cabo una valoración más en profundidad se toman para cada grabación 
4 imágenes extraídas de la tarea 3 del protocolo a aproximadamente 0º, 30º, 45º y maxº 
de rotación de la cabeza, siendo max el ángulo máximo de giro de la cabeza del sujeto. 
Un estudio realizado sobre 97 sujetos en [13] sugiere que este valor se encuentra en 
torno a los 73 ± 7º. Cada imágen es procesada por ambos algoritmos de detección y se 
valora subjetivamente si los puntos estimados coinciden con los reales. La Tabla 3.9 
muestra el resumen de los resultados de dicha evaluación.

0º 30º 45º max Total

Dlib

Alta 0,92 1,00 0,67 0,00 0,65

Baja 1,00 1,00 0,00 0,00 0,50

Total 0,96 1,00 0,33 0,00 0,57

MediaPipe

Alta 0,92 0,75 0.50 0,25 0,60

Baja 0,75 0,83 0,58 0,25 0,63

Total 0.87 0,79 0,54 0,25 0,61

Tabla 3.9: Precisión de los modelos de detección de puntos faciales en función de la 
rotación de la cara.

En general MediaPipe tiene una mejor precisión que Dlib en la estimación de los 
puntos. Esto es especialmente notable alrededor de los 45° de rotación. Ninguno de los 
dos modelos es capaz de realizar detecciones consistentemente en el ángulo máximo de 
rotación.

Dado que el sistema que va a utilizar la detección de puntos faciales debe ser 
ejecutado en tiempo real, también es importante conocer el tiempo de ejecución de las 
tecnologías utilizadas.

Yunet + Dlib MediaPipe MediaPipe + Dlib

T detección 28.5 3.50 3.50

T landmarking 4.44 14.6 4.44

T total 32.94 18.1 7.94

Tabla 3.10: Tiempo de ejecución medio de los detectores de puntos faciales.

El tiempo medio de procesamiento del modelo de Dlib es de 4.44 ms en y el de 
MediaPipe 18.1 ms. Hay que tener en cuenta que como se ha comentado anteriormente, 
el estimador de Dlib necesita realizar una detección facial previa, por lo que en la 
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evaluación realizada el tiempo completo de procesamiento de cada frame es de 32.94 
ms. Sin embargo, la ejecución de la parte específica al landmarking es 
significativamente más rápida utilizando Dlib que MediaPipe, incluso restando a esta el 
coste de la detección facial. Por lo tanto, la opción más rápida encontrada es la de 
utilizar el detector facial de MediaPipe junto con el detector de puntos faciales de Dlib, 
con un tiempo total menor a 8 ms (ver Tabla 3.10).

3.2.3. Estimación de la mirada
En este apartado se comprueban las diferencias entre los métodos ad hoc y 

MediaPipe para el cálculo del centroide del ojo, seguido de evaluación de la estimación 
de la mirada. Las evaluaciones de este apartado se llevan a cabo utilizando las partes del 
conjunto de datos correspondientes a las tareas 1 y 5 del protocolo.

En la sección 2.2.3 se han explicado dos posibles métodos de la estimación del 
centroide del iris. De acuerdo a las pruebas realizadas, la distancia euclídea media entre 
el centroide calculado mediante el algoritmo ad hoc y MediaPipe es de tan sólo 1.65 
píxeles, una diferencia que no resultaría en cambios notables en la estimación final de la 
mirada, por lo tanto, se utilizará únicamente el método ad hoc en las evaluaciones de la 
estimación de la mirada de esta sección.

Pasando a la evaluación de las coordenadas de la mirada devueltas por el algoritmo 
de estimación, al no haber incluido el vector de posición de la cabeza en el cálculo de la 
estimación de la mirada, el sistema es potencialmente susceptible a los movimientos que 
realice el usuario tras la calibración. Se evalúa en qué medida afectan los movimientos 
realizados a lo largo de una sesión comparando los resultados de los datos recogidos en 
las tareas 2 y 5 del protocolo de grabación. Como se explica en la sección 3.1.1, estas 
tareas son la comprobación de la mirada dentro y fuera de la pantalla recién realizada la 
calibración (tarea 2) y tras unos minutos realizando distintos ejercicios (tarea 5).

Figura 3.9: Oclusión del iris por reflejos en las gafas del usuario.

En último lugar, se estudia la eficacia del detector bajo distintas circunstancias que 
pueden dificultar el cálculo de la posición del iris. La primera de estas condiciones es la 
iluminación baja. En una imágen mal iluminada todos los colores de la imágen se 
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acercan al negro por lo que la umbralización del iris tiene que ser precisa para que la 
estimación de la mirada sea correcta.

Se estudia también el impacto de que el usuario lleve gafas, las cuales pueden 
producir reflejos que ocluyen parcialmente el iris dificultando el cálculo de la posición 
del iris y con esto la estimación de la mirada (ver Figura 3.9). Los resultados de ambas 
evaluaciones se encuentran en la Tabla 3.11.

Eje x Eje y

MAE RMSE MAE RMSE

Tarea
Tarea 1 0.23 0.30 0.31 0.40

Tarea 5 0.24 0.32 0.31 0.41

Iluminación 
(lx)

150 0.23 0.31 0.31 0.41

2000 0.24 0.31 0.29 0.39

Gafas?
Sin gafas 0.18 0.23 0.29 0.39

Con gafas 0.34 0.41 0.33 0.43

Total 0.23 0.31 0.30 0.40

Tabla 3.11: Error medio de la estimación de mirada frente al eye tracker en los ejes x e y 
de la pantalla. Resultados en función de la tarea, iluminación y gafas.

Atendiendo al MAE de la Tabla 3.11, se ve que el error medio en la estimación de la 
mirada es del 23% del ancho de la pantalla y 30% en altura. Esto significa que las 
coordenadas estimadas se pueden considerar una aproximación general de la zona de la 
pantalla a la que está mirando el usuario pero no un punto preciso.

De los resultados obtenidos en función de las distintas variables se pueden extraer 
varias conclusiones. En primer lugar, se aprecia un deterioro en la calidad de las 
estimaciones de la mirada en el eje x tras la acumulación de movimientos durante la 
grabación, aunque los resultados en el eje y permanecen similares. Además, el sistema 
es robusto ante diferencias en la iluminación de la escena, aunque la utilización de gafas 
sí influye negativamente en la precisión del sistema.

El estimador de puntos faciales de MediaPipe, que incluye la detección del iris, 
tiene un tiempo medio de ejecución de 18.7 ms. Mientras tanto, el cálculo del centroide 
mediante el método ad hoc se realiza en un tiempo medio de 4.1 ms, que sumado al 
tiempo de la estimación de puntos faciales de Dlib resulta en un tiempo de tan sólo 8.54 
ms al que se se le suma el coste de la detección de rostros. En caso de utilizar la 
detección de MediaPipe, el coste teórico de la ejecución de las tres tecnologías 
principales que componen el sistema de monitorización sería menor a 12 ms.

El cálculo del vector de ojo requiere un tiempo de ejecución medio de 4.3 ms, de los 
cuales 4.1 se dedican al cálculo del centro del iris. La estimación de mirada mediante la 
interpolación de dicho vector con los datos de calibración tiene un coste de tan sólo 0.1 
ms.
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3.2.4. Movimiento de la cabeza
El algoritmo desarrollado en la sección 2.3.1 calcula una medida de movimiento m 

que determina la distancia del usuario desde la posición inicial a la actual.

Para determinar si el usuario se ha movido demasiado desde el inicio del ejercicio 
se somete la m a un umbral que debe ser predeterminado. Utilizando la información 
etiquetada de las grabaciones donde se indica si el usuario está o no movido, se pone a 
prueba el sistema utilizando distintos umbrales y calculando las métricas de confusión 
visibles en la Tabla 3.12. Para evaluar con datos lo más balanceados posibles, se utiliza 
la información de la tarea 4 del protocolo (ver sección 3.1.1) que consta de 
aproximadamente 30 segundos en buena posición y 40 segundos en mala posición por 
cada grabación.

Threshold 0.00 0.5 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

P 0.44 0.77 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00

R 1.00 0.97 0.94 0.92 0.89 0.87 0.54 0.41 0.20 0.01

F1 0.61 0.86 0.95 0.95 0.94 0.93 0.70 0.58 0.34 0.02

ACC 0.44 0.86 0.96 0.96 0.95 0.94 0.80 0.74 0.65 0.57

Tabla 3.12: Métricas de confusión de la detección de movimiento con distintos 
umbrales.

Figura 3.10: Métricas de confusión de la detección de movimiento con distintos 
umbrales.

De la Tabla 3.12 y la Figura 3.10 se puede extraer que existe un rango amplio de 
umbrales entre 0.10 y 0.25 que pueden ser utilizados manteniendo un buen accuracy. 
Dentro de este rango se puede utilizar uno más alto o más bajo dependiendo del balance 
deseado entre precisión y recall. Teniendo en cuenta ambas métricas mediante la F1, se 
puede decir que los umbrales entre 0.10 y 0.15 dan lugar a los mejores resultados, 
acertando el 96% de las ocasiones.
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3.2.5. Estimación de postura
Las evaluaciones realizadas en esta sección están destinadas principalmente a 

comprobar el error del ángulo de rotación de la cabeza calculado por el algoritmo de 
estimación de mirada utilizando los dos modelos de detección de puntos faciales 
evaluados en este trabajo. Las evaluaciones se realizan utilizando los datos 
correspondientes a la tarea 3 del conjunto de datos grabado.

MAE RMSE

Rotación
Dlib 8.53 9.88

MediaPipe 3.96 4.06

Flexión
Dlib 6.43 7.16

MediaPipe 10.52 10.92

Tabla 3.13: Métricas de error de la estimación de postura.

(a) Rotación               (b) Flexión

Figura 3.11: Estimaciones de posición de la cabeza frente a la real de una grabación.

Analizando la Tabla 3.13 se observa que el modelo MediaPipe tiene un error medio 
menor en el eje de movimientos de rotación mientras que el de Dlib tiene más precisión 
ante movimientos de flexión. El MAE y el RMSE toman valores muy similares, lo que 
significa que no hay residuos con errores muy grandes. Generalmente, ambos modelos 
permiten generar resultados suficientemente fiables para estimar la dirección general de 
la cabeza.

La Figura 3.11 muestra las estimaciones de la postura de la cabeza en relación a la 
real. El resultado obtenido concuerda con la observación de la sección 2.2.2 respecto a 
los ángulos límite de estimación de los modelos.

El estimador de Dlib tiene su límite alrededor de los 30º de rotación. También es 
pertinente comentar que este estimador tiende a sobreestimar el giro para ángulos 
pequeños y subestimar el de ángulos grandes. Por el contrario, la distribución de las 
predicciones utilizando el estimador de MediaPipe mantienen una distribución mucho 
más lineal y alcanzan un límite mayor, aunque siempre subestimando ligeramente la 
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rotación. Por la uniformidad de los datos, este error podría modelarse y ser corregido 
multiplicando por un factor. En cuanto al ángulo de flexión, ambos métodos generan 
resultados muy similares con un pequeña diferencia fija entre los dos, probablemente 
generada por las diferencias entre los modelos 3D utilizados para resolver el problema 
PnP.

La salida de los ángulos de giro de la cabeza puede ser umbralizada para decidir si 
la posición se considera inadecuada o no. Las gráficas de la Figura 3.12 muestran las 
métricas de confusión en función del umbral utilizado para los dos modelos de 
estimación de puntos faciales utilizados.

Figura 3.12: Métricas de estimación de postura en función del umbral en umbrales entre 
0º y 40º.

Centrando el foco en el eje de rotación, el sistema que utiliza el estimador de Dlib 
requiere elegir entre una mayor precisión o un mayor recall. Por el contrario, utilizando 
el estimador de MediaPipe existe un amplio umbral en el que ambas métricas mantienen 
un valor considerablemente bueno. En el eje de flexión tan sólo se consigue un F1 
máximo de 0.4 para ambos modelos, unos resultados mejorables en comparación con 
los del eje de rotación.

El tiempo de resolución medio del algoritmo PnP con los puntos 14 puntos 
utilizados es de 1.4 ms.

3.2.6. Movimiento de la boca
En la sección 2.3.3 se han descrito los cálculos del algoritmo implementado para 

medir la velocidad de movimiento de la boca. A esta salida se le puede aplicar el 
umbralizado que se crea necesario para determinar si el usuario está hablando o no.
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Probando distintos valores de umbral entre 0 y 0.45 en incrementos de 0.05 se 
obtiene la información de la Tabla 3.14 y la Figura 3.13.

Threshold 0.00 0.5 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

P 0.48 0.48 0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00

R 1.00 1.00 1.00 1.00 0.62 0.05 0.00 0.00 0.00 0.00

F1 0.65 0.65 0.89 1.00 0.76 0.10 0.00 0.00 0.00 0.00

ACC 0.48 0.48 0.88 1.00 0.81 0.54 0.52 0.52 0.52 0.52

Tabla 3.14: Métricas de confusión de detección de habla y bostezos en función del 
umbral.

Figura 3.13: Métricas de confusión de detección de habla y bostezos en función del 
umbral.

En la Figura 3.13 se visualiza gráficamente esta información, donde se puede ver 
que a medida que aumenta el umbral se realizan menos precisiones pero con mayor 
confianza, por lo que la precisión del sistema aumenta y el recall disminuye, sin 
embargo, en el umbral seleccionado se mantiene un valor alto de ambas dando 
resultados muy acertados.

Utilizando un umbral de 0.15 se obtiene un accuracy cercano a 1 para los datos con 
los que se ha evaluado el algoritmo.

3.2.7. Apertura de ojos
El EAR calculado como salida del algoritmo de detección de la apertura de los ojos 

desarrollado en la sección 3.2.7 puede ser sometido a un umbralizado para determinar si 
el ojo está abierto o no. Para evaluar este algoritmo se utiliza código de validez de ojos 
del eye tracker como ground truth usando el fragmento de las grabaciones 
correspondiente a la tarea 2 del protocolo que consta de una partición balanceada de 10 
segundos de ojos abiertos y 10 segundos de ojos cerrados.

En primer lugar se busca encontrar el umbral óptimo para el algoritmo probando 
distintos valores entre 0.15 y 0.45 en incrementos de 0.05, dando lugar a la información 
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de la Tabla 3.15 y la Figura 3.14. Una vez seleccionado este valor, se estudia el impacto 
que tiene que el usuario lleve gafas en el funcionamiento de este algoritmo separando el 
conjunto de datos según este criterio.

Threshold 0.15 0.20 0.25 0.3 0.35 0.4 0.45

P 0.53 0.57 0.74 0.85 0.98 1.00 1.00

R 1.00 1.00 0.94 0.53 0.20 0.00 0.00

F1 0.69 0.73 0.82 0.65 0.33 0.00 0.00

ACC 0.55 0.62 0.80 0.71 0.59 0.49 0.49

Tabla 3.15: Métricas de confusión de detección de ojos abiertos o cerrados. Los valores 
booleanos positivo y negativo se corresponden con ojos cerrados y ojos abiertos, 
respectivamente.

Figura 3.14: Métricas de confusión de detección de apertura de ojos en función del 
umbral.

Sin gafas Con gafas

P 0.70 0.81

R 0.98 0.87

F1 0.82 0.84

ACC 0.78 0.83

Tabla 3.16: Métricas de confusión de detección de ojos abiertos o cerrados para usuarios 
con y sin gafas. Umbral 0.25.

El rango de umbrales cercano a 0.25 es el de mayor accuracy y F1. En este rango se 
obtiene un recall perfecto manteniendo una precisión del 74%.

Los resultados para usuarios con gafas son incluso mejores que para aquellos con 
gafas. Esto se da probablemente por el desbalance de los datos. Conforme crece el 
número de usuarios aumenta la probabilidad de que el umbral no se acomode 
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perfectamente a las dimensiones de los ojos de todos ellos. Pese a eso, sin necesitar 
adecuar los parámetros del algoritmo a cada usuario específico se consiguen resultados 
que cumplen con los objetivos del proyecto, detectando casi la totalidad de ocasiones en 
las que el usuario cierra los ojos a cambio de algunos falsos positivos.

3.2.8. Comprobación de mirada fuera de pantalla
De forma similar a la evaluación de la estimación de la mirada (sección 3.2.3), se 

evalúan las métricas de confusión del detector de mirada fuera de pantalla recién 
calibrado el sistema y unos minutos después (tareas 1 y 5), en las distintas condiciones 
de iluminación grabadas y para usuarios con y sin gafas.

P R F1 ACC

Tarea
Tarea 1 0.76 0.44 0.56 0.67

Tarea 5 0.80 0.32 0.46 0.64

Iluminancia 
(lx)

150 0.74 0.37 0.50 0.64

2000 0.82 0.39 0.53 0.66

Gafas?
Sin gafas 0.77 0.40 0.52 0.64

Con gafas 0.79 0.35 0.49 0.67

Total 0.78 0.38 0.46 0.65

Tabla 3.17: Métricas de confusión de detección de mirada fuera de la pantalla en 
función de la tarea, iluminancia y gafas.

En general, aunque la precisión del sistema es buena, el recall obtenido tiene un 
amplio rango de mejora. Toma un valor del 44% recién calibrado (tarea 1), que 
desciende hasta el 32% cuando el usuario se ha movido (tarea 5). Una buena 
iluminación mejora levemente los resultados aunque no es estrictamente necesaria y no 
se han encontrado diferencias significativas de rendimiento entre usuarios con y sin 
gafas.
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Capítulo 4

Integración en la plataforma de 
neurotecnología

A lo largo de este trabajo se han desarrollado algoritmos de monitorización 
independientes que han sido evaluados por separado de forma offline. Como forma de 
comprobar la viabilidad y el funcionamiento combinado de todos ellos se desarrolla un 
sistema en C++ que los integra en la plataforma de neurotecnología de Bitbrain, 
discutiendo los algoritmos seleccionados y comprobando el funcionamiento del sistema 
en una Surface Go 3.

4.1. Diseño y desarrollo del sistema en C++
De acuerdo con los resultados obtenidos durante la evaluación offline de los 

algoritmos, se ha hecho una valoración con Bitbrain de las tecnologías escogidas para 
formar parte del sistema final.

En primer lugar, aunque el framework de MediaPipe está disponible en C++, no se 
ofrece una API de soluciones equivalente a la de Python utilizada a lo largo de este 
trabajo, por lo que un port no sería sencillo. Por lo tanto, aunque se ha podido ver su 
buen rendimiento, se ha descartado esta opción como tecnología utilizada para la 
detección de rostros y puntos faciales.

El sistema final incorpora el modelo de detección de rostros Yunet, detección de 
puntos faciales mediante Dlib y el cálculo del centro del ojo mediante el método ad hoc 
para la estimación de la mirada (ver sección 2,2). Los algoritmos de monitorización se 
configuran con los mejores umbrales encontrados durante la evaluación (ver sección 
3.2).

Dado que todos los sistemas de monitorización desarrollados independientemente 
utilizan y comparten las mismas tres tecnologías base, se combinan todas ellas en un 
único sistema de monitorización. El bucle de ejecución principal puede separarse en tres 
etapas (ver Figura 4.1):

1. La primera es la detección de rostros en la imágen. Si no hay, ninguno de los 
detectores es capaz de generar información por lo que no se procede a la 
siguiente fase.

2. En caso de encontrar un rostro, se lanza el detector de movimiento y se ejecuta 
la detección de puntos faciales, cuyo resultado es utilizado para efectuar la 
estimación de la postura, el movimiento de la boca y la apertura de los ojos.
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3. Por último, si el usuario no está movido ni girado y tiene los ojos abiertos, se 
realiza la estimación de la mirada y la consiguiente comprobación de mirada 
dentro de los límites de la pantalla.

Cuando cualquiera de los algoritmos detecta un comportamiento incorrecto en el 50% 
de las últimas w comprobaciones realizadas genera un evento en la plataforma con el 
código correspondiente al problema detectado. A mayor w más fiables son los eventos 
generados porque se sabe que perduran en el tiempo, aunque también aumenta el retraso 
de envío de los eventos.

Figura 4.1: Bucle de ejecución del sistema de monitorización completo.

4.2. Integración en la plataforma de Bitbrain
La plataforma de desarrollo es un sistema multiproceso implementado en C++ 

basado en el patrón publicación/suscripción en el que los distintos procesos se 
comunican entre sí utilizando sockets TCP/IP (ver Figura 4.1).

Figura 4.2: Visión general de la arquitectura de la plataforma.
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La plataforma utiliza un bucle de funcionamiento a frecuencia constante en el que el 
módulo de adquisición toma las señales de los sensores, el módulo de procesamiento 
opera con ellas generando señales y eventos que son utilizados por el módulo de 
aplicación para proporcionar información al usuario o a una aplicación externa.

La plataforma sigue una estructura jerárquica en la que cada módulo se compone de 
una o más unidades que se ejecutan secuencialmente utilizando los señales y eventos de 
las unidades anteriores (ver Figura 4.3).

Figura 4.3: Visión general de un módulo compuesto de varias unidades.

La integración del sistema de monitorización en la plataforma de neurotecnología 
consiste en el desarrollo de una unidad que toma la información de la cámara como si se 
tratara de cualquier otro sensor y la utiliza para generar eventos relevantes que pueden 
utilizar las capas de más alto nivel. Para cumplir con los objetivos de rendimiento 
propuestos, esta unidad ejecuta el sistema de monitorización en un proceso concurrente 
con una frecuencia de ejecución independiente a la del resto de la plataforma que puede 
ser configurada.

4.3. Demostración del funcionamiento
El objetivo de esta sección es determinar qué información producida por la unidad 

desarrollada es relevante para asegurar la correcta realización de cada una de las fases 
de una sesión y verificar por medio de un pequeño demostrador que se puede alertar al 
usuario cuando no está realizando correctamente la tarea.

A lo largo del capítulo 3 se ha demostrado la posibilidad de detectar ciertos 
comportamientos del usuario mediante técnicas de visión por computador. Algunos de 
dichos comportamientos coinciden con las condiciones de realización de varias etapas 
de las sesiones de Elevvo. En cada una de estas sesiones se pide al usuario que realice 
una serie de ejercicios repartidos entre las fases de calibración y ejecución. Las tareas de 
calibración sirven al sistema para aprender y adaptarse a los patrones de actividad de la 
persona (su frecuencia alfa individualizada) y el nivel de alfa en el momento de 
realización de la sesión. Estas tareas son dos:

1. Estado de reposo con ojos cerrados.
2. Tarea de conteo con ojos abiertos, donde la persona tiene que contar 

mentalmente los cambios de color-saturación de un cuadrado que aparece en la 
pantalla.
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Después de estas dos tareas de calibración, se realizan los ensayos de neurofeedback. En 
estos ensayos las personas ven el mismo cuadrado de la tarea de conteo (tarea 2 de 
calibración), pero ahora el color de ese cuadrado cambia en tiempo real con el nivel de 
su ritmo alfa. De esta forma la persona puede buscar estrategias mentales para conseguir 
que el cuadrado se ponga de color rojo, lo que significa que está modificando su ritmo 
alfa, aumentándolo, lo que está relacionado en la literatura con rendimiento cognitivo.

Figura 4.4: Realización de la tarea de neurofeedback.

A efectos prácticos, se pueden dividir los ejercicios descritos en dos grandes grupos: 
aquellos en los que el usuario debe permanecer relajado con los ojos cerrados, y en los 
que debe mirar al cuadrado de la pantalla.

● Durante los ejercicios de ojos cerrados: Se comprueba que los ojos están 
efectivamente cerrados. Si a lo largo de los últimos segundos prevalecen las 
detecciones de ojos abiertos sobre cerrados la tarea se advierte al usuario y se 
reinicia la tarea.

● Durante los ejercicios mirando al cuadrado de la pantalla: Se comprueba 
que los ojos estén abiertos, mirando al centro de la pantalla y sin girar la cara. 
De forma similar al ejercicio de ojos cerrados, si se incumple cualquiera de estas 
condiciones de manera continuada a lo largo de los últimos segundos la tarea se 
considera inválida, advirtiendo al usuario y reiniciando la tarea.

Independientemente del tipo de tarea, si se detecta una actividad alta de movimientos de 
la cabeza o de la boca, también se genera una advertencia y se reinicia la tarea.

A modo de ejemplo, la Figura 4.5 muestra las señales del EEG y la IMU del dispositivo 
durante una sesión. Se puede observar que tras un movimiento (visible en la IMU) el 
sistema de visión genera un evento con código 1, que corresponde a “usuario movido”. 
Tras otro movimiento en el que el usuario vuelve a la posición inicial el sistema de 
visión envía otro evento, esta vez con código 0 que indica que todas las comprobaciones 
son correctas.
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Adicionalmente, la unidad ofrece un modo de depuración en el que se muestra la 
imágen captada por la cámara junto a información adicional calculada por los distintos 
algoritmos del sistema (ver Figura 4.6).

Figura 4.5: Ejemplo de los eventos generados por la unidad de monitorización ante 
movimiento del usuario.

Figura 4.6: Imágen de la unidad de monitorización en modo de depuración.

La unidad puede ser configurada para funcionar a una frecuencia de muestreo 
determinada de forma que se pueda reducir su consumo de recursos si se considera 
necesario. El tiempo medio de frame medido en la Surface Go 3 es de 64.34 ms, por lo 
que se puede alcanzar una frecuencia de hasta 16 fotogramas por segundo.
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Capítulo 5

Conclusiones

El resultado del trabajo desarrollado es generalmente satisfactorio de acuerdo a los 
objetivos previamente establecidos.

Se ha desarrollado un conjunto de algoritmos para monitorizar el movimiento y giro 
de la cara, el movimiento de la boca, la apertura de la boca y la mirada de los usuarios, 
construidos sobre los bloques básicos de detección facial, detección de puntos faciales y 
estimación de mirada.

En cuanto a los bloques básicos, queda más que comprobado el rendimiento y la 
fiabilidad de los detectores faciales actuales y se ha observado la variedad de posibles 
aplicaciones de las tecnologías de estimación de puntos faciales. Sobre la estimación de 
la mirada, sorprende la calidad de los resultados del método ad hoc para el cálculo del 
centroide del iris mediante técnicas tradicionales de visión por computador frente a una 
solución basada en redes neuronales, con una diferencia media entre ambos resultados 
menor a 2 píxeles. Sin embargo, la evaluación del algoritmo de estimación de la mirada 
muestra que tan sólo es suficiente para realizar aproximaciones generales y está lejos de 
ser una sustitución de los eye tracker con hardware especializado.

Se ha diseñado y llevado a cabo un método experimental para la recogida de datos 
implementando las herramientas necesarias para llevar a cabo esta tarea. Los datos 
recogidos de 12 usuarios distintos han permitido llevar a cabo una evaluación offline de 
los algoritmos implementados.

Configurados correctamente, la mayoría de los algoritmos de monitorización 
desarrollados presentan un grado de precisión que cumple los objetivos del proyecto, 
detectando con un 95% de accuracy la presencia de los usuarios y su movimiento, así 
como cuándo están hablando. La detección de ojos abiertos y de cara girada también 
alcanza un grado de exactitud cercano al 80%. La comprobación de mirada fuera de 
pantalla tiene una buena precisión, aunque un recall inferior al 50% producido por una 
alta cantidad de falsos negativos.

Por último, se ha realizado una demostración del funcionamiento de todos los 
algoritmos de monitorización integrados en un sólo sistema funcionando en conjunto 
con la plataforma de neurotecnología de Bitbrain, probando que el sistema puede ser 
ejecutado en tiempo real en dispositivos con pocos recursos computacionales.

5.1. Líneas de trabajo futuras
Analizando los resultados obtenidos durante la evaluación del sistema desarrollado 

aparecen varias posibles líneas de trabajo. En primer lugar, tras la evaluación offline de 

47



Visión por computador para monitorización de terapias con neurotecnología en casa - Juan Eizaguerri

los algoritmos realizada en este trabajo, sería interesante una segunda evaluación del 
sistema completo que se ha integrado en la plataforma de neurotecnología realizando las 
grabaciones en casa de la población objetivo.

En cuanto a posibles mejoras, pese a que los modelos de estimación de puntos 
faciales utilizados presentan resultados razonablemente buenos, su ángulo máximo de 
detección de entre 30º y 45º resulta un factor que limita su funcionalidad. Existen 
datasets 2D y 3D recientes con rangos de posturas más amplios que podrían ser 
utilizados para el entrenamiento de un modelo propio de estimación de landmarking.

Adicionalmente, aprovechando el hecho de que los usuarios llevan puesta la 
tecnología de EEG durante las sesiones, se plantea la posibilidad de contrastar la 
información de la actividad cerebral con la visual para hacer estimaciones más precisas. 
Esto podría ser evaluado con el mismo dataset recogido para la evaluación del sistema 
desarrollado en este trabajo.

Por último, aunque el sistema de monitorización desarrollado hace un trabajo 
destacable en el seguimiento del comportamiento, la comprobación de la correcta 
colocación de la banda sigue siendo una tarea completamente a criterio del usuario 
cuando no está acompañado un experto. Por ello sería de gran interés el desarrollo de un 
sistema (o ampliación del desarrollado en este trabajo) para la detección de la banda y la 
comprobación de su correcta colocación.
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Anexos

Anexo 1. Seguimiento del protocolo de grabación

Sujeto Edad

Condición de luz Sexo

Tipo de piel (Escala fitzpatrick )  

Otras características

Tarea T (s) Tini (s) Comentarios

Calibración mirada 30

Comprobación mirada en pantalla 30
Comprobación mirada fuera de 
pantalla: L, R, U, D. 40

Mirar al frente,
ojos abiertos 10

Ojos cerrados 10

Giro izquierda 10

Giro centro 10

Giro derecha 10

Giro centro 10

Giro arriba 10

Giro centro 10

Giro abajo 10

Giro centro 10

Posición central 30

Desplazamiento a la izquierda 10

Desplazamiento a la derecha 10

Desplazamiento adelante 10

Desplazamiento atrás 10

Hablar 30

Comprobación mirada en pantalla 30
Comprobación mirada fuera de 
pantalla: L, R, U, D 40

Quitar la banda 10

Salir del cuadro de imagen 10

Tabla A1.1: Tabla de seguimiento del protocolo de grabación.
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Comentarios antes de comenzar la sesión

Para evitar confusiones durante la grabación del protocolo se hacen algunos apuntes 
y aclaraciones al sujeto antes de comenzar:

● Puesta en contexto general del estudio que se está realizando, las tareas que se 
van a realizar y el tiempo total de la grabación.

● Diferencias entre los verbos mirar, mover y girar.
○ Mirar: Quieto, moviendo los ojos.
○ Mover: Mirando a la pantalla, moverse en la dirección indicada sin salir 

del cuadro de imagen.. Se puede utilizar la silla con ruedas para realizar 
los movimientos.

○ Girar: Rotar el cuello sin mover el cuerpo. Los giros se realizan 
lentamente y hasta el límite (cómodo) de movimiento. Una vez 
alcanzado el límite, permanecer en esa hasta ser notificados.

● Se pueden hacer preguntas si hay alguna duda durante la realización de las tareas 
pero se pide no hablar en la medida de lo posible.

● Aviso de que la primera comprobación de ojos se realiza nada más empezar la 
grabación.

Pasos previos a la grabación.

1. En primer lugar se muestra la cámara para que adopten una posición cómoda y 
adecuada, centrando el rostro en la pantalla.

2. Se pide que sigan los pasos necesarios para la colocación de la banda.
a. Retirar el pelo de la frente y las orejas.
b. Limpiar las zonas de la piel que entrarán en contacto con los sensores de 

la banda con una toallita húmeda que se proporciona.
c. Colocar la banda correctamente, centrando en el eje vertical la marca 

central de la banda con la nariz, con los sensores en contacto con la piel, 
apoyada sobre las orejas.

3. Calibración del eye tracker. Realizar el proceso de calibración, consistentes en 
seguir con la mirada una serie de puntos que aparecen uno a uno en el centro y 
esquinas de la pantalla, y después comprobar la calidad de la calibración. Si la 
calibración es mala, mover ligeramente al sujeto y repetir este paso.

4. Comprobación de la señal de EEG. Una vez conectada la banda, se comprueba 
la calidad de las señales de los 5 canales de la banda, si la señal es mala, corregir 
o recolocar completamente la banda.

5. Comenzar la grabación mirando al centro de la pantalla. La posición inicial se 
toma como referencia para el cálculo del giro absoluto mediante la integración 
de las señales de la IMU.
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Anexo 2. Calibración de la cámara
La calibración de cámara es un proceso fundamental en el ámbito de la visión por 

computador cuyo objetivo es determinar los parámetros internos o intrínsecos y los 
externos o extrínsecos de la cámara. Estos parámetros permiten corregir distorsiones de 
cámara así como la reconstrucción de escenas 3D a partir de las imágenes 2D captadas.

● Los parámetros intrínsecos describen las propiedades de la cámara, como la 
distancia focal, el centro óptico y los coeficientes de distorsión radial y 
tangencial.

● Los parámetros extrínsecos definen la posición y orientación de la cámara en el 
sistema de coordenadas del mundo real, habitualmente utilizando el tablero de 
calibración como origen de coordenadas.

Figura A2.1: Transformación de coordenadas del mundo a coordenadas de imágen.

Los parámetros extrínsecos se definen en forma de matrices rotación R y traslación 
T. Se pueden combinar en una sóla matriz extrínseca Me=[R|T]. Los extrínsecos son el 
vector de cuatro componentes de distorsiones radial y tangencial en los dos ejes, y la 
matriz de la cámara conteniendo el centro óptico c y la distancia focal f en una misma 
matriz Mi.

Habitualmente, la calibración se realiza reconociendo en imágenes tomadas por la 
cámara patrones conocidos en forma de tablero, siendo los más conocidos los métodos 
de Tsai [89] y Zhang [88]. Se toman 15 imágenes del patrón de la Figura A2.2 con la 
cámara interior de la Surface, a la misma resolución que se toman en el sistema final.
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Figura A2.2: Patrón de calibración utilizado.

Dado que todos los dispositivos utilizados incorporan la misma webcam, se asume 
que comparten los mismos parámetros ya que el pequeño rango de error individual no 
resulta crítico en las aplicaciones en los que se están usando los parámetros de la 
cámara,
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Anexo 3. Variedad de la muestra de sujetos
Este anexo está dedicado al estudio de la muestra de sujetos participantes en el 

conjunto de datos recogido en este trabajo. Todos los sujetos utilizados para las 
grabaciones han sido voluntarios de Bitbrain.

En la tabla A3.1 se muestra la desglosada de cada uno de los sujetos.

Sujeto P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12

Edad 39 43 24 46 29 25 26 28 28 41 42 49

Sexo (H/M) H M M H M H M H M M H H

Tipo de piel (1-7) 2 2 3 2 4 3 2 2 1 2 3 3

Gafas (S/N) N N N S N S N S N N S N

Tabla A3.1: Perfil de los sujetos grabados.

(a) Color de piel           (b) Edad

Figura A3.1: Distribución de color de piel y edad de los sujetos grabados.

De los 12 sujetos utilizados, 4 de ellos llevaban gafas durante la grabación. En 
especial, el sujeto 4 utiliza gafas con filtro de azules que provocan reflejos más notables. 
Todos los sujetos están entre el valor 1 y el 4 en la escala Fitzpatrick, faltando muestra 
de la mitad más oscura de la escala, no es una muestra suficiente para hacer estudios 
significativos. Algo similar ocurre con el rango de edades de la muestra, todos los 
sujetos tienen entre 24 y 49 años. En cuanto a sexo, la muestra está perfectamente 
balanceada entre hombres y mujeres, con 6 sujetos en cada grupo.

60



Visión por computador para monitorización de terapias con neurotecnología en casa - Juan Eizaguerri

Anexo 4. Herramientas utilizadas
La implementación de los distintos algoritmos desarrollados Python 3.11, utilizando 

como librerías principales OpenCV 4.9 para las tareas de visión por computador, 
NumPy 1.26, Pandas 2.2.1 para las operaciones y el manejo de datos y matplotlib 3.8.3 
para la visualización de resultados.

Se ha utilizado Python también para las herramientas auxiliares desarrolladas como 
postprocesado de los vídeos para ponerlos a tiempo real, la sincronización de las 
medidas de los algoritmos con las de la plataforma y la evaluación de los algoritmos.

El programa de grabación está implementado en C++ como un módulo integrado en 
la plataforma de neurotecnología, al igual que el sistema final de monitorización.

Se ha utilizado un repositorio de Gitlab para el control de versiones y la 
compartición de código con Bitbrain.

Uno de los requisitos definidos en la sección 2.1 es el de limitar las tecnologías 
utilizadas a aquellas de software libre en la medida de lo posible. En la Tabla A4.1 se 
muestra un resumen de las librerías y modelos utilizados junto con las licencias a las 
que están sujetas.

Tecnología SPDX ID

OpenCV Apache-2.0

Numpy BSD-3-Clause

Pandas BSD-3-Clause

Matplotlib PSF-2.0

Dlib BSL-1.0

MediaPipe Apache-2.0

MTCNN MIT

AHRS Apache-2.0

face_detecion_yunet_2023mar.onnx Apache-2.0

res10_300x300_ssd_iter_140000 MIT

shape_predictor_68_face_landmarks.dat El dataset 300-W en el que está entrenado prohíbe 
uso comercial [95].

Tabla A4.1: Licencias de las tecnologías utilizadas.

Todos las las tecnologías a excepción del modelo utilizado para detección de puntos 
faciales son software libre que permiten uso comercial. Más información de cada una en 
[96].
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Anexo 5. Etiquetado de datos
En la evaluación de los algoritmos de monitorización es necesario conocer los 

fragmentos de tiempo en los que se sabe con certeza que el usuario está realizando cada 
tarea. Para esto se revisan los vídeos mientras se etiqueta manualmente cada una de las 
tareas del protocolo, apuntando su tiempo de inicio y final, la etiqueta y su valor en un 
fichero .json que acompañará a los datos grabados.

En ocasiones, además de la tarea, se apunta la subtarea que se está realizando u otra 
información relevante. En la Tabla A5.1 se muestran las etiquetas aplicadas a cada 
vídeo.

Etiqueta Valores

task 1, 2, 3, 4, 5

sub_task 1_points_screen, 1_look_away, 4_center, 4_moving, 4_talking, 5_points_screen, 
5_look_away, out_of_screen

bad_horizontal 0, 1

bad_vertical 0,1

in_screen 0,1

talking 0,1

Tabla A5.1: Etiquetas aplicadas a las grabaciones. Nota: Aunque la información de las 
etiquetas in_screen y talking es redundante se mantiene por motivos de comodidad 
durante las evaluaciones.
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Anexo 6. Evaluaciones realizadas

A modo de resumen, la Tabla A6.1 muestra una lista de las pruebas realizadas para 
la evaluación de los algoritmos implementados, las razones de su realización y los datos 
utilizados para ello (ground truth y tareas del protocolo).

Descripción Motivación Ground truth Tareas

Detección facial

Métricas de confusión de los modelos 
utilizados

Selección del modelo

Etiquetado

*Accuracy en función de la iluminación. Etiquetado

Accuracy en función de accesorios. Etiquetado

Tiempo de ejecución medio. -

Detección de puntos faciales

Precisión de la estimación en función del 
ángulo de rotación.

Selección del modelo.
- -

Tiempo de ejecución medio. - *

Estimación de mirada

Diferencia entre centro del iris calculado por 
método ad-hoc y MediaPipe. Selección del modelo. Eye tracker

1, 5
Métricas de error tareas 1 y 5.

Comprobar efecto del movimiento 
en la estimación Eye tracker

Métricas de error en función de la 
iluminación.. Comprobar robustez a oclusiones

Eye tracker

Métricas de error en función de accesorios. Eye tracker

Tiempo de ejecución medio. Selección del modelo. -

Detección de movimiento

Métricas de confusión en función del 
threshold. Selección del threshold. Etiquetado 4

Estimación de postura

Métricas de error de los modelos Dlib y 
MediaPipe. Selección de modelo. IMU

3Rotación estimada frente a real.
Comprobar ángulos límite de ajuste 
de los modelos. IMU

Métricas de confusión en función del 
threshold. Selección del threshold. Etiquetado

Tiempo de ejecución medio. -

Movimiento de boca

Métricas de confusión en función del 
threshold. Selección del threshold. Etiquetado 4

Apertura de ojos

Métricas de confusión en función del 
threshold. Selección del threshold.

Etiquetado 2
Métricas de confusión en función de 
accesorios. Comprobar robustez a oclusiones.

Comprobación de mirada fuera de pantalla

Métricas de confusión tareas 1 y 5.
Comprobar el efecto del 
movimiento en la estimación. Etiquetado 1, 5
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Métricas de confusión en función de la 
iluminación.

Comprobar robustez a oclusiones. Etiquetado

Métricas de confusión en función de 
accesorios. Etiquetado

Tabla A6.1: Resumen de las evaluaciones realizadas sobre el conjunto de datos 
adquirido.
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