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Resumen

En los ultimos afios, los avances en neurotecnologia han permitido desarrollar
sistemas de medida de la actividad cerebral portables y usables por no expertos. Se abre
por tanto la oportunidad de realizar intervenciones de neurotecnologia en el entorno
doméstico, tales como Elevvo, cuyo objetivo es la mejora cognitiva. Su realizacion en
casa permitiria reducir costes, favorecer la comodidad de los sujetos, y permitir
intervenciones mas largas. Esto sin embargo trae consigo retos en cuanto al
aseguramiento de la correcta realizacion de las sesiones sin supervision de un experto.

Como posible solucion a estos problemas surge este trabajo. El objetivo principal
del estudio es desarrollar y evaluar un sistema de vision por computador capaz de
supervisar sesiones de terapia de neurotecnologia en un entorno doméstico no
controlado. Para ello, utilizando técnicas de deteccion de rostros, deteccion de puntos
faciales y estimacion de mirada se ha desarrollado una serie de algoritmos para
monitorizar el movimiento de los usuarios, determinar si estan hablando o tienen los
ojos cerrados y hacer una estimacion general de hacia donde miran.

El proyecto se centra en varios componentes clave: el estudio del arte de las
tecnologias relacionadas, el desarrollo e implementacion de algoritmos de
monitorizacion mediante vision por computador, el disefio y ejecucion de un protocolo
de recogida de datos, y su utilizacion para evaluar los algoritmos desarrollados. Por
ultimo se muestra la viabilidad del sistema propuesto mediante el desarrollo e
integracion de un sistema de monitorizacion en tiempo real completo en la plataforma
de neurotecnologia de Bitbrain.

Se discute la precision de los distintos algoritmos utilizados y se proponen posibles
mejoras en la eficacia del sistema. Los resultados obtenidos muestran que la vision por
computador es una opcion viable para identificar con precision patrones de movimiento
relevantes para la monitorizacion de terapias con neurotecnologia.
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Capitulo 1

Introduccion

1.1. Neurotecnologia para la mejora cognitiva

Elevvo es una tecnologia de mejora cognitiva desarrollada por Bitbrain, empresa en
la que se desarrolla este TFG. Busca como objetivo la mejora cognitiva mediante la
modificaciéon de patrones de actividad cerebral relacionados con el rendimiento
cognitivo. En concreto, Elevvo implementa un sistema de interfaz cerebro-computador
en bucle cerrado en el cual:

1. Se registra la actividad eléctrica cerebral de una persona (electroencefalografia o
EEQG).

2. Se aplican algoritmos para la decodificacién en tiempo real de los patrones
cerebrales de interés.

3. Se muestran al usuario (en una pantalla de ordenador) los niveles de dichos
patrones cerebrales en forma de un cuadrado que cambia de color con estos
niveles.

CALIBRATION ONLINE
o e Wa M

FET

Figura 1.1: Funcionamiento en bucle cerrado de Elevvo [90].

De esta forma, la persona puede modificar (hasta cierto punto) su propia actividad
cerebral hacia patrones que estan relacionados de forma positiva con el rendimiento
cognitivo. Este tipo de procedimientos ha mostrado su potencial para la mejora de
memoria de trabajo, velocidad de procesamiento y atencion sostenida [94].
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1.2. Del laboratorio a casa

Este tipo de sesiones se realizan habitualmente en el contexto de investigacion en
laboratorio, en el que el usuario es asistido por un operador experto que se encarga tanto
de la colocacion del equipamiento como de guiar a la persona en la correcta realizacion
de la sesion.

Neuromodulation by neurofeedback for cognitive enhancement =Z Bitbrain

EEG online data collection

(b)

Figura 1.2: Realizacion y monitorizacion de Elevvo [90, 92].

Recientemente surgid la oportunidad en Bitbrain de llevar esta neurotecnologia a la
casa de los participantes. Esto presenta ventajas para los usuarios como la posibilidad de
la realizacion de mas sesiones, la reduccion de costes de desplazamiento a los
laboratorios y la comodidad de realizar las terapias desde casa. Sin embargo, este
cambio de enfoque provoca también la problematica de guiar a la persona en la correcta
realizacion de la intervencion sin asistencia de un tercero.

Como solucion a este problema surge la propuesta de utilizar tecnologias de vision
por computador para desarrollar un sistema que a través de la cdmara del dispositivo en
el que se realizan las sesiones monitorice distintos aspectos del comportamiento de los
usuarios.

1.3. Alcance del proyecto

El principal objetivo de este proyecto es el disefio y desarrollo de un sistema de
vision por computador para la monitorizaciéon de los usuarios durante terapias de
neurotecnologia en casa. Para ello, se hace una valoracion de los aspectos que puede ser
beneficioso verificar para asegurar una correcta realizacion de las sesiones, los métodos
de monitorizacion necesarios para hacerlo y las tecnologias sobre las que se apoyan
dichos métodos.

Asi pues, los objetivos especificos planteados para este proyecto son los siguientes:

e Identificacion de los requisitos del sistema a desarrollar, eleccion de las
tecnologias principales e implementacion de los algoritmos de monitorizacion
que las utilizan (capitulo 2).
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e Planificacion y ejecucion de una metodologia de recogida de datos y su
utilizacion para la evaluacion offline de los distintos algoritmos desarrollados
(capitulo 3).

e Desarrollo e integracion en la plataforma de neurotecnologia de un sistema de
monitorizacidn en tiempo real (capitulo 4).

e Conclusiones y discusion de posibles mejoras futuras (capitulo 5).

Zaragoza
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Capitulo 2

Vision por computador para
monitorizacion

El objetivo de este capitulo es en primer lugar reconocer las funcionalidades
deseables del sistema de monitorizacion a desarrollar y las limitaciones existentes a la
hora de su desarrollo. El segundo objetivo es el estudio del estado del arte de las
tecnologias relacionadas con los bloques basicos sobre las que se construye dicho
sistema. Por ultimo, se explica el funcionamiento de los distintos algoritmos de
monitorizacion implementados. Se realiza una implementacién en Python de cada uno
de estos algoritmos para su posterior evaluacion.

2.1. Requisitos

Aunque Elevvo cuenta con herramientas para filtrar artefactos en la sefial EEG, es
conveniente minimizar movimientos corporales y faciales durante las sesiones. Ademas,
diversas tareas requieren mantener los ojos cerrados (tarea de calibracién) o mirar a un
punto fijo de la pantalla (ejercicios de neurofeedback).

Para asegurar el cumplimiento de estas condiciones se propone un sistema capaz de
detectar la presencia del usuario y estimar los movimientos que realiza tanto de
traslacion como de rotacidon, los movimientos de la boca, la apertura de los ojos y a
donde estd mirando. Este sistema se construye sobre tres tecnologias principales: La
deteccion de rostros, la estimacion de puntos faciales y la estimacion de la mirada.

Deteccion de rostros Deteccion de puntos faciales Estimacion de la mirada

Postura de la Apertura de ovimiento de
cabeza los ojos la boca

Figura 2.1: Tecnologias y detecciones del sistema propuesto.

Usuario
ausente

Dadas las necesidades explicadas y el contexto en el que se desarrolla este trabajo
aparecen varias caracteristicas de funcionamiento deseadas que influyen en las
decisiones tomadas a lo largo del proyecto.

Zaragoza
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En primer lugar, para proporcionar informacion util durante las sesiones, el sistema
de monitorizacion debe funcionar en tiempo real en el dispositivo Microsoft Surface Go
3 en el que se llevan a cabo, que cuenta con un procesador Intel Core i13-10100Y y 8 GB
de memoria RAM.

El sistema planteado funcionara en segundo plano durante las sesiones, por lo que
no es permisible que su utilizacidon de recursos entre en conflicto con el funcionamiento
prioritario de la plataforma de neurotecnologia.

Adicionalmente, en la medida de lo posible se quiere limitar las tecnologias
utilizadas a aquellas de software libre.

Por ultimo, se debe asegurar el correcto funcionamiento del sistema desarrollado
para la variedad de usuarios mas amplia posible, y dado que va a ser utilizado en un
entorno doméstico, se comprobara también su rendimiento bajo distintas condiciones de
iluminacién no ideales.

2.2. Bloques basicos

2.2.1. Deteccion de rostros

El primer paso en la monitorizacion de los usuarios es la deteccion de rostros. Esta
técnica consiste en encontrar los rostros que existan en la imagen, y si los hay, buscar el
rectangulo que los delimita.

La deteccion de rostros es una de las técnicas fundamentales de la interaccion
persona-ordenador mediante la vision por computador [33, 61, 62, 63], por lo tanto,
existe una gran cantidad de estudios y métodos propuestos para la resolucion de este
problema. Con la limitacién de funcionamiento en tiempo real en mente, se van a
evaluar distintos detectores que se pueden agrupar en dos grupos principales, la
deteccion mediante algoritmos “tradicionales” de visiéon por computador y mediante
redes neuronales. Erik Hjelmds propone en [33] una agrupacion de las técnicas de
deteccion de rostros en dos grandes grupos que coinciden con los mencionados
anteriormente, métodos basados en caracteristicas o feature-based [67], y basados en
imagen o image-based [66].

e Deteccion mediante algoritmos “tradicionales” de vision por computador:

o Haar Cascade: Es un método de deteccion propuesto por Paul Viola y
Michael Jones en 2001 [44]. Durante la fase de entrenamiento se
calculan las caracteristicas de Haar de las imagenes y se seleccionan las
mejores mediante AdaBoost [46]. Utiliza clasificadores en cascada para
acelerar el proceso de clasificacion descartando regiones no faciales. Se
utilizara la implementacion del algoritmo de la libreria OpenCV.
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o Histogram of Oriented Gradients (HOG): El histograma de gradientes
orientados es un descriptor de caracteristicas que consiste en la division
de la imagen en bloques de tamafio fijo. Para cada uno se calcula la
direccion y magnitud del gradiente y se crea un histograma del mismo.
Cada uno de los valores del vector del histograma se considera una
caracteristica. El vector de caracteristicas de la imagen es la
concatenacion de los vectores de los histogramas de los bloques que la
conforman [47, 68]. Habitualmente se utilizan en conjunto con
algoritmos de aprendizaje automatico como maquinas de vectores de
soporte (SVM) [48, 49] para entrenar sistemas de deteccion y
clasificacion, como es el caso de la deteccion de rostros. Para la
evaluacién del algoritmo se utilizara la implementacion del detector
frontal de rostros de la libreria Dlib.

e Deteccion mediante redes neuronales:

o MTCNN: Es un modelo de deteccion facial propuesto por Kaipeng
Zhang en [50]. Utiliza redes neuronales convolucionales multitarea en
cascada para detectar rostros. El proceso de deteccion esta dividido en 3
etapas llevadas a cabo por tres redes neuronales de complejidad creciente
dedicadas a generar posibles candidatos, refinar los resultados y generar
el resultado final, respectivamente.

o DNN: Existen multitud de modelos de redes neuronales profundas pre
entrenadas capaces de detectar rostros en imagenes [52, 65]. Se va a
utilizar el modelo resl0 300x300 ssd iter 140000 ofrecido por
OpenCV, que utiliza una red neuronal residual o ResNet [51] que utiliza
Single Shot MultiBox Detector [54] para la deteccion de rostros.

o MediaPipe: Es un framework de cddigo abierto desarrollado por Google
dirigido al desarrollo de pipelines que utilizan algoritmos de aprendizaje
automatico, especialmente para procesamiento de video y audio [69].
Adicionalmente, MediaPipe ofrece modelos y soluciones ya preparadas
para ser utilizadas fuera de su framework. Una de ellas es la deteccion de
rostros que sera evaluada en esta seccion.

o Yunet: Es un detector de rostros mediante redes neuronales centrado en
la eficiencia, busca encontrar un equilibrio entre el namero de
parametros y capas de la red neuronal utilizada (y por tanto su tiempo de
ejecucion) y la precision de los resultados, para ser capaz de ser utilizado
en sistemas empotrados [55]. Se utilizard el modelo ONNX [70]
face_detection_yunet 2023mar.onnx ofrecido en el GitHub ligado a la
publicacion.

En el caso de uso especifico en el que se van a aplicar estas soluciones el usuario se
encuentra en frente de la camara a una distancia cercana. Por lo tanto, algunos de los
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aspectos que habitualmente se tienen en cuenta para la evaluacion de estos métodos,
como el funcionamiento ante caras parcialmente ocluidas o de distintos tamafios en la
imagen [22, 23], carecen de importancia significativa en este caso. Si tiene importancia
el funcionamiento de los modelos ante distintas condiciones de iluminacion, y con
usuarios que llevan puesta una banda y que puedan llevar gafas.

En primer lugar se prueban todos los algoritmos y se comprueba la calidad de sus
detecciones en condiciones ideales. En la Figura 2.2 se observa que todos los modelos
hacen una deteccion similar, con la Uinica diferencia de la forma del rectangulo estimado
de la cara.

|

(a) DNN ~ (b) Haar Cascade (c)HOG

(d) MediaPipe (e) MTCNN (f) Yunet

Figura 2.2: Deteccion facial frontal mediante diferentes modelos de deteccion.

Dado que uno de los objetivos del proyecto es estimar la rotacion de la cabeza del
usuario, es importante que la deteccion de rostros funcione en un rango amplio de
angulos de rotacion. Haciendo una comparacion cualitativa de las detecciones en
distintos rangos de rotacién e iluminacion (ver Figura 2.3) se aprecia que los detectores
DNN y MediaPipe son los més consistentes bajo las distintas condiciones probadas.
Haar Cascade falla al rotar la cabeza independientemente de la iluminacién. Los
resultados de HOG también son considerablemente malos, fallando en casi todos los
casos en los que la cabeza estd girada, y cuando funciona muestra un error notable,
como en el caso a 45° y buena iluminacion. MTCNN funciona independientemente del
nivel de luz, pero deja de detectar rostros entre los 45 y 90°. Finalmente, Yunet presenta
un buen desempeio a excepcion de en los casos limite probados de iluminacion y giro.
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Haar Cascade MediaPipe MTCNN Yunet

!.lﬂ!.%!.

Figura 2.3: Modelos de deteccion facial ante distintas condiciones de posicion e
iluminacion.

2.2.2. Deteccion de puntos faciales

Al igual que la deteccion de rostros, la deteccion de puntos faciales o landmarks es
uno de los pilares fundamentales relacionados con el anélisis de caracteristicas faciales
mediante la vision por computador. Consiste en localizar puntos especificos de los
rostros que aparecen en una imagen. La deteccion de puntos faciales tiene multiples
usos en distintos &mbitos, como por ejemplo segmentacion de las facciones de la cara,
reconocimiento facial, deteccion de expresiones faciales o estimacion de la postura de la
cabeza [31, 83, 84].

Se va a utilizar la deteccion de puntos faciales como base para varios de los
sistemas de monitorizacion del usuario desarrollados en la seccion 2.3. La calidad de los
resultados obtenidos dependera de la precision de los puntos 2D y en el caso de la
estimacion de postura, de la adecuacion del modelo 3D correspondiente al objeto real.

Se van a evaluar dos de las técnicas mas populares para este problema, ambas
basadas en el uso de redes neuronales y técnicas de regresion. En primer lugar, el
predictor de 68 puntos faciales ofrecido por la libreria Dlib, que es una implementacion
de [9], y en segundo lugar el predictor de puntos faciales de la solucion Mediapipe de
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Google, este devuelve una prediccion de 468 puntos faciales en 2D y una estimacion de
sus correspondientes posiciones en el espacio tridimensional [29].
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(a) Dlib (b) MediaPipe

Figura 2.4: Topologia de landmarks de los modelos utilizados.

Un aspecto importante de estos sistemas es el rango maximo de posiciones en el que
son capaces de alinear los landmarks al rostro de la imagen. El modelo de Dlib esta
entrenado sobre el dataset 300-W [17, 18], que contiene rostros en posiciones de entre
-30° y 30° siendo mas del 85% entre -15° y 15° por lo que no se espera que el
alineamiento sea bueno una vez sobrepasado este limite. Sobre los datos de
entrenamiento del modelo de MediaPipe, tan sdlo se revela que contiene 30K imagenes
tomadas con teléfonos moviles. Comprobando cualitativamente el funcionamiento de
ambos detectores (ver Figura 2.5), ambos modelos hacen un buen trabajo ante rostros
con una rotacion pequena. Al contrario que Dlib, MediaPipe si llega a estimar una
buena alineacion a 45°, pero tiene un error muy grande en el caso extremo de 90°.

0° 45° 90°

Pib

| MediaPipe

Figura 2.5: Estimacion de puntos faciales ante distintos dngulos de rotacion de los
modelos MediaPipe y Dlib (junto a detector facial Yunet).
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Las redes neuronales de ambos modelos utilizan como entrada la imagen RGB
recortada del rectangulo de la cara por lo que deben utilizarse en conjunto con un
detector de rostros. El predictor de la libreria Dlib toma estos valores como argumento
por lo que puede ser ejecutado con el detector que se crea conveniente, mientras tanto,
MediaPipe no permite esta opcidn, y utiliza el detector de la libreria. Como se ha visto
en la seccion anterior, este detector tiene un gran rendimiento tanto en calidad de
resultados como en coste de ejecucion por lo que no supone un problema significativo.

2.2.3. Estimacion de la mirada

A la hora de determinar el nivel de implicacion de un usuario en un ejercicio
propuesto, uno de los métodos mas efectivos es saber hacia donde estd mirando.
Habitualmente se utilizan para esta tarea técnicas que hacen uso de cdmaras de
profundidad (habitualmente mediante proyectores y sensores de infrarrojos), pero
también existe una amplia variedad de técnicas basadas en imagen RGB que pretenden
resolver el problema de la estimacion de mirada con un coste computacional bajo y un
hardware menos especializado [38, 72, 73] mientras se mantiene un error cercano al
obtenido mediante camaras RGBD [10, 39, 74]. Algunos de estos métodos, pese a
utilizar una s6la cdmara RGB, requieren otros componentes hardware para funcionar.
Por ejemplo, en [38] se utilizan luces en posiciones especificas para reconocer su reflejo
en el ojo y corregir las estimaciones calculadas. Este tipo de soluciones no son factibles
para el caso de uso en el que se va a utilizar el sistema implementado.

Muchos de los algoritmos actuales calculan el vector de la mirada como la
composicion del vector del ojo y el de la postura de la cabeza. El sistema de
monitorizacion completo considerara incorrectas las posiciones con la cabeza girada,
por lo que conocer la mirada del usuario en este caso se considera innecesario. Por lo
tanto, se puede simplificar el problema asumiendo que la cabeza siempre tiene una
rotacion hacia la pantalla.

Se llama vector del ojo a aquel que conecta el centro del iris a cierta referencia. Por
ejemplo, en [38] se utiliza el extremo interno como referencia.

30 +39 +28 44 +45

*37 142 41 %40 43 45 47 %0

Figura 2.6: Landmarks de la region de los ojos del modelo de Dlib.

En el sistema implementado se cuenta con los landmarks de los ojos del usuario
(ver Figura 2.6), lo que facilita el proceso de obtencion del vector de ojo. Al conocer los
puntos que delimitan el ojo se puede recortar el fragmento sobre el que realizar las
operaciones, ademas, se puede obtener el rectangulo que delimita los puntos de los ojos
a partir de estos puntos. El centro de este rectangulo sera la referencia para el célculo
del vector de ojo e.
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Como se observa en la Figura 2.7 (a), el calculo del centro del iris se realiza en
varios pasos. En primer lugar se utilizan los landmarks de los ojos para crear una
mascara que se aplica a la imagen invertida, después se aplica un umbralizado o
thresholding binario que separa el iris del resto del ojo, junto con una operacioén de
cerramiento utilizando un kernel de tamafo 3x3 para eliminar posibles irregularidades.
Se busca el contorno mas grande, que coincide con el iris y de ¢l se extraen sus
momentos M para calcular el centroide ¢ del iris.

Threshold vs area de iris encontrado

Imagen invertida 200 A

Segmentacion del area
del ojo

150 +

Escala de grises y
umbralizado

100 +

Area de iris (px)

Contorneado 509
—— Area de iris

=== Threshold

04 === 0.4 del &rea maxima

Centroide | : . .
0 50 100 150
Threshold

(a) (b)
Figura 2.7: (a): Esquema de los pasos para el calculo del centroide del iris. (b): Calculo
del threshold 6ptimo.

M M - (Ci;;eCtleft' c:e—;ecttop )gx
width height

No es posible encontrar un umbral que funcione en todas las ocasiones debido a las
posibles diferencias entre los usuarios y los entornos en los que se pruebe el sistema. En
primer lugar, el color de ojos del usuario afecta en la luminosidad de los pixeles
correspondientes al iris en la imagen al paso a escala de grises. Los ojos claros
presentan un menor contraste entre el iris y la esclerdtica, mientras que en 0jos oscuros
es mas sencillo encontrar un umbral claro que separa los dos colores. Ademas, las
condiciones de iluminacidon del entorno también afectan al color del iris que proyecta la
imagen. Si se escoge un umbral demasiado bajo se seleccionara todo el area del ojo en
lugar de tnicamente el iris, por lo que calcular el centroide de esta area no aportara
informacion sobre la mirada. Por el contrario, si el umbral es demasiado alto, se corre el
riesgo de una desaparicion parcial o total del iris en el area seleccionada (Ver Figura
2.8).

(a) Bajo (b) Bueno (c) Alto

Figura 2.8: Ejemplo de segmentacion del iris utilizando distintos umbrales.

11
Zaragoza



Vision por computador para monitorizacion de terapias con neurotecnologia en casa - Juan Eizaguerri

Con el objetivo de resolver el problema recién planteado, se ha implementado un
método de umbralizado adaptativo basado en el analisis del drea del ojo en funcion del
umbral. Este area se calcula como la cantidad de pixeles blancos de la imagen tras
aplicar el umbralizado. El area del ojo pasa de su maximo a su minimo en un rango de
umbrales pequefio, el problema consiste en encontrar el umbral correspondiente dentro
de ese rango. De un estudio de Carlos Eduardo Palhares sobre el analisis de los ratios de
los rasgos faciales [41], se puede extraer que el iris supone aproximadamente un 40% de
la superficie visible del ojo. Por lo tanto, se puede calcular el 40% del area maxima del
ojo encontrada, y buscar el umbral que resulte en el drea mas cercana a ese valor (ver
Figura 2.7 (b)).

Si la iluminacién de la escena no es uniforme, es posible que la luminancia de los
pixeles de los dos ojos sea completamente distinta. Esto es especialmente notable
cuando el usuario se ve iluminado por una luz lateral. Debido a esto, se calcula y aplica
un umbral independiente para cada ojo.

Alternativamente a este calculo, el modelo de estimaciéon de puntos faciales de
MediaPipe tiene la posibilidad de estimar la posicion del iris mediante el uso de redes
neuronales [58].

Una vez calculado el vector de ojo, la estimacion de la mirada consiste en el mapeo
de los valores del vector de ojo a coordenadas de pantalla. Para llevar a cabo esta tarea
se realiza en primer lugar una calibracion donde se pide al usuario que mire a ciertos
puntos en pantalla de los que se conocen las coordenadas de pantalla y se calcula y
registra el vector de ojo para cada uno. Una vez terminado el proceso de calibracion,
para cada frame se realiza una interpolacion lineal del vector de ojo sobre los calculados
durante la calibracién para obtener las coordenadas de pantalla. La Figura 2.9 (b)
muestra la relacion entre la posicion del punto al que mira el usuario y el vector de ojo
para cada punto del proceso de calibracion. Se puede ver que la variacion es
significativamente mayor en el eje x que en el eje y, lo que puede significar una mayor
posibilidad de error al calcular el valor interpolado en el eje vertical.

Calibration results
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Figura 2.9: (a): Diagrama del mapeo del vector de ojo a coordenadas de pantalla.
(b): Ejemplo de calibracién de mirada.
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En la estimaciéon de mirada, se necesita una unidad de medida para la salida
independiente del tamafio y resolucion de la pantalla que se estd empleando. La solucion
comun a este problema es el uso de un sistema de coordenadas de pantalla normalizado
entre 0 y 1, en el que el punto (0,0) corresponde a la esquina superior izquierda de la
pantalla y el (1,1) a la inferior derecha (Ver Figura 2.9 (a)).

2.3. Algoritmos de monitorizacion

Una vez seleccionadas las tecnologias bésicas se puede utilizar su salida para
desarrollar distintos sistemas de monitorizacion que ofrecen informacion relevante
sobre la correcta realizacion de las tareas que se proponen al usuario.

A excepcion de la estimacion de la postura (ver seccion 2.3.2), estos sistemas tan
solo utilizan operaciones basicas sobre la salida de los algoritmos para generar algunas
medidas derivadas por lo que su coste computacional puede ser despreciado.

2.3.1. Movimiento de la cabeza

Durante las terapias, es deseable que los pacientes adopten una postura comoda al
inicio y permanezcan tranquilos y sin moverse durante el desarrollo de la misma. Para
detectar cuando se mueve el usuario a lo largo del tiempo se utiliza la informacion
proporcionada por la deteccion de rostros.

El usuario puede realizar movimientos de traslacion en los tres ejes de coordenadas.
Para detectar los movimientos arriba, abajo, izquierda y derecha basta por comprobar la
distancia euclidea del centro del rectangulo de la cara ¢ devuelto por el detector facial al
de la posicion inicial. Esta medida no es efectiva para detectar los movimientos hacia
delante y atrds. En su lugar, se utiliza el area a del rectangulo. Al ser una medida
compuesta fruto del producto de la altura y anchura del rectangulo, su crecimiento es
cuadratico con respecto al movimiento, por lo que se utiliza la raiz cuadrada del area,
que ademas tiene la ventaja de utilizar las mismas unidades de medida que para detectar
el resto de movimientos. Esto permite agregar las dos medidas en una sdla dando lugar
a la variable de movimiento m Para asegurar robustez ante distintas resoluciones de
imagen se utilizan coordenadas normalizadas entre 0 y 1 donde (0, 0) es la esquina
superior izquierda y (1, 1) la esquina inferior derecha.

2 2
dcz\/(cx(o)—cx) +(cy(0)—cy); da= a,— al; m:dc+da

La Figura 2.10 muestra la salida del sistema en una sesion en la que se realizan
series de movimientos cada vez mayores: a) Movimientos de cabeza en el sitio, b)
Movimientos laterales; y ¢) Salir de la imagen de la camara.
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Movimiento de la cabeza en funcion del tiempo
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Figura 2.10: Ejemplo de medidas de movimiento durante una grabacion en la que se
realizan series de movimientos.

2.3.2. Estimacion de postura

Existen multiples métodos para obtener la rotacion de la cabeza a partir de los
puntos faciales. Algunas técnicas tradicionales utilizan informacién general sobre las
proporciones y la geometria de la cabeza para estimar su plano y por tanto su vector
normal. [3] propone utilizar el plano del triangulo isésceles formado por los ojos y la
boca proyectado en el plano de iméagen. Sin embargo, la mayoria de los métodos
actuales utilizan el método de ajuste de modelo o model fitting para abordar este
problema.

La estimacion de los angulos de rotacion y flexion de la cabeza del usuario
mediante model fitting es un caso del problema de estimacion de postura (PnP), en el
que dadas las coordenadas de n puntos 3D de un objeto modelo y su proyeccion en el
plano 2D de la imagen (n>3) se trata de encontrar la posicion y rotacion de dicho objeto
respecto al modelo (ver Figura 2.11). Existen multitud de enfoques para la resolucion de
este problema [11, 12, 25, 26, 28].
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Figura 2.11: Diagrama del problema de estimacion de postura (PnP) [91].
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Se ha utilizado la implementacion de OpenCV del método Infinitesimal
Plane-based Pose Estimation (IPPE) por su velocidad de calculo frente a otros métodos
como EPnP, RPnP o IPnP al utilizar un nimero reducido de puntos [58]. Segun las
pruebas realizadas en [25], utilizando una configuracion de puntos cuasiplanar, como es
el caso del modelo de un rostro, a medida que se aumenta el numero de puntos
disminuye el error de rotacion, aunque esta mejora es cada vez mas pequefia conforme
se afiaden mas puntos. Utilizando tan s6lo 5 puntos el angulo de error medio es menor a
1° para la mayoria de métodos.

Los puntos caracteristicos de la cara se obtienen mediante los métodos explicados
anteriormente en el apartado de deteccion de puntos faciales (seccion 2.2.2). El
siguiente paso es encontrar un modelo 3D que contenga vértices que encajen con el
modelo de landmarks utilizado. Para el modelo DIib se utiliza el modelo de la cabeza
humana obtenida mediante muestreo ladser de multiples individuos en [30], cuyos
vértices coinciden en gran medida con los del modelo de landmarking (ver Figura 2.12
(b)). Por su parte, MediaPipe incluye un modelo candnico con las coordenadas 3D de
468 puntos faciales (ver Figura 2.12 (¢)).
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Figura 2.12: (a): Puntos utilizados para el PnP. (b): Modelo 3D utilizado para los
landmarks de Dlib. (c): Modelo 3D de MediaPipe.

Se utilizan con ambos modelos los mismos puntos como referencia para resolver el
problema PnP que se pueden ver en la Figura 2.12 (a). Son los equivalentes a los
extremos de los ojos y las cejas, la base de la nariz a ambos lados, la punta de la nariz, y
los extremos izquierdo, derecho e inferior de la boca.

Para calcular la proyeccion de un punto de la imagen en las coordenadas 2D,
ademads de las matrices de rotacion y traslacion es necesario conocer la matriz de cdmara
con sus parametros intrinsecos. Estos parametros, por lo tanto, son necesarios para la
ejecucion de los algoritmos de resolucion del problema PnP, por lo que han tenido que
ser encontrados mediante una calibracion de la cdmara que se puede ver en el Anexo 2.

El uso de modelos de deteccion de landmarks a nivel de frame da lugar a
inconsistencias notables en la posicién de los mismos a lo largo del tiempo debido a
diferencias en la imagen entre frames provocadas por cambios en variables como la
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postura, la iluminacién o el ruido del sensor [31], lo que produce un ruido considerable
en la postura estimada. El algoritmo de MediaPipe tiene en cuenta este problema e
incorpora un filtro de ruido de baja latencia basado en el 1 Euro filter [29, 75]. Se puede
observar que la salida de la postura obtenida con los landmarks de MediaPipe es
visiblemente menos ruidosa que la obtenida con Dlib (ver Figura 2.13). Utilizando la
misma idea, se aplica un filtro de ruido de media moévil a la salida del estimador de
postura con Dlib.

Giro estimado frente al real

40 _— Re.al
Dlib

—— Dlib (smooth)
—— MediaPipe
20 4

Giro (9)

—20 1

Tiempo (s)

Figura 2.13: Resultado de estimacion de rotacion (eje z) de una grabacion mediante los
modelos de landmarking de Dlib y MediaPipe frente a la rotacion real calculada
mediante IMU (ver seccion 3.1.4).

Analizando el ejemplo de la Figura 2.13 se observa que el sistema de estimacion de
postura implementado con Dlib tiende a sobreestimar el angulo de rotacion de la cabeza,
mientras que el sistema que hace uso del estimador de landmarks de MediaPipe tiene
mas tendencia a subestimar dicho giro.

2.3.3. Movimiento de la boca

Segun la Encuesta Continua de Hogares del Instituto Nacional de Estadistica
(2020), el tamafio medio del hogar en Espana es de 2.5 personas [76]. Debido a esto, es
habitual que los usuarios sufran distracciones durante las terapias manteniendo
conversaciones con las personas con las que conviven. Por lo tanto, uno de los objetivos
del sistema de monitorizacidon por vision por computador desarrollado es la deteccion
del habla del usuario. Adicionalmente, la monitorizacidon del movimiento de la boca
también permite reconocer bostezos, uno de los principales indicadores utilizados para
medir el nivel de somnolencia de las personas [77, 78].

Para realizar esta deteccion se va a utilizar como base la apertura de la boca.
Utilizando los puntos caracteristicos extraidos del rostro del usuario, se calcula la
distancia euclidea en el plano de imagen entre el labio superior e inferior. Con el
objetivo de ser invariante a tamafio de la cara y distancia a la camara se normaliza esta
distancia por el alto total de la cara /. En otros trabajos se utiliza el ancho de la boca o
la altura del labio como factor de normalizacion en lugar de la altura de la cara. Sin
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embargo, se ha decidido utilizar esta medida por ser independiente del angulo de
rotacion del rostro y no so6lo del tamafio del mismo.

¥51 %52 %53
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Figura 2.14: Puntos utilizados para el céalculo de la apertura de la boca.

Otros trabajos previos utilizan esta medida para devolver un resultado positivo
cuando supera un umbral especificado, sin embargo, este método puede producir falsos
positivos ante movimientos lentos de la boca, ademads, aunque este método es efectivo
para detectar bostezos, tiene una probabilidad error mayor al detectar los movimientos
de boca de un usuario hablando que pueden ser mucho mas pequenos que los de un
bostezo. En su lugar, el detector utilizara la informacion de la imagen de varios frames a
lo largo del tiempo para detectar la velocidad de movimiento de la boca.

A @)=y
d = (%h)

- h

X,y = landmark63; X, Y, = landmark67

Durante el habla, los distintos fonemas utilizados requieren una apertura de la boca
distinta, incluyendo algunos, como las consonantes bilabiales sonoros (B, V), requieren
que los labios se toquen para pronunciarlos. Debido a esto, este sistema de deteccion no
puede procesar un resultado frame a frame, sino que debera tener en cuenta la velocidad
de movimiento de la boca m para determinar si el usuario esta hablando o no. Para ello
se calcula la diferencia entre la apertura de la boca en el frame actual y el anterior y se
divide por la variacion de tiempo entre la toma de las imagenes, dando lugar a la
variacion de la apertura de la boca en relacion al alto de la cara por unidad de tiempo
(segundos).

m ==L (%h/s)

La medida resultante toma valor positivo cuando la boca se esta abriendo y negativo
cuando se estd cerrando. Para el problema que se pretende resolver, no interesa saber
esto en cada momento, tan solo si se esta moviendo o no, por lo que se utiliza el valor
absoluto de la medida. Ademas, el movimiento de la boca durante el habla no es
uniforme, sino que ocurre a golpes con cada silaba, lo que produce que la medida
calculada tenga una gran cantidad de picos. Este problema se ha solucionado utilizando
una media movil de un tamafo determinado w, que puede ser el nimero de medidas
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tomadas en los ultimos s segundos. La velocidad de elocucion es de aproximadamente
5.83 silabas por segundo en Espafol y 4 en inglés [14, 15, 16]. Ademads, como se ha
comentado anteriormente, distintos fonemas requieren aperturas diferentes de la boca,
por lo que el tamafo de ventana elegido debe ser por lo menos suficientemente grande
para suavizar varias silabas completas. En base a las pruebas realizadas, se ha
determinado que un tamafio de ventana de entre 1 y 2 segundos es suficiente para
suavizar estas diferencias entre fonemas sin llegar a perder informacion relevante.

w
==Y m _|w=llltq (t —t <s)Viel) (%h./s)
i=0

mn (smooth) o
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Figura 2.15: Ejemplo de movimiento de la boca a lo largo del tiempo en una ejecucion.

Como se puede observar en la Figura 2.15, las medidas calculadas, especialmente el
movimiento de boca absoluto suavizado, reflejan claramente los fragmentos de video en
los que el usuario estd hablando (segundos 12-38), asi como los bostezos (segundos
46-55).

2.3.4. Apertura de los ojos

La deteccion de ojos abiertos es uno de los métodos mas utilizados para la
monitorizacion de somnolencia mediante vision por computador, especialmente
utilizado en sistemas de monitorizacion de conductores [6, 34, 81].

P1 P2

PO P3
P8 En u

Figura 2.16: Diagrama de los puntos del ojo utilizados para calcular el EAR.
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La medida por excelencia para la deteccion de ojos abiertos es la relacion de
aspecto de ojo o Eye Aspect Ratio (EAR), que denota la relacion entre la altura y
anchura del ojo [34]. A mayor EAR mas abierto esté el ojo. Utilizando las técnicas de
deteccion de rostros y landmarks desarrolladas en la seccion 2.2, es sencillo obtener las
medidas de los ojos del usuario en un frame y calcular el EAR. Por ultimo, se utiliza
una media movil para suavizar el resultado y eliminar cualquier pico en el EAR
calculado producto de inconsistencias de la deteccion de landmarks.

a=||P1L—P5||; b =||P2 — P4||; c = ||PO — P3|

__atb
EAR = 5o
EAR _+EAR
— left right
EARAVG - 2
1 w
EAR = 750 EAR,  |(w=|Iltq. (t —t <s)Viel)

El ojo se considera cerrado cuando el EAR estd por debajo de cierto umbral
establecido. Es importante tener en cuenta que las dimensiones del ojo varian en funcion
de distintas personas y etnias, por lo que este umbral debe ser escogido con precaucion.

2.3.5. Comprobacion de mirada fuera de pantalla

Por ultimo, se quiere tener en cuenta la posibilidad de que el usuario no se esté
moviendo ni hablando, mantenga una buena postura y tenga los ojos abiertos, pero no
est¢é mirando a la pantalla del dispositivo. Es el detector menos sofisticado de los
descritos en este trabajo, pues su funcionalidad se limita a la comprobacion de que los
datos de la estimacion de la mirada se encuentren dentro del limite establecido.

En primera instancia se podria pensar en comprobar que las coordenadas de mirada
calculadas por el estimador descrito en la seccion 2.2.3 se encuentren entre 0 y 1 en
ambos ejes. Sin embargo, dado que el célculo final de dichas coordenadas se realiza
mediante una interpolacion lineal con los datos de la calibracion, la salida siempre se
encuentra dentro de los limites de la pantalla. En su lugar, se utiliza el vector de ojo para
realizar esta comprobacion.

Durante la calibracion de la mirada se almacenan los valores maximos y minimos
medidos del vector de ojo en ambos ejes de la pantalla. Después, este sistema de
monitorizacion se encarga de comprobar que el vector de ojo calculado se encuentre
dentro de estos limites.
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Capitulo 3

Evaluacion de los algoritmos

El siguiente paso a la implementacion de los algoritmos es la evaluacion de los
mismos. Este capitulo aborda la metodologia seguida para la recogida de un conjunto de
datos sobre el que evaluar los algoritmos, la explicacion de las herramientas utilizadas
para esta tarea y el planteamiento de las pruebas a que se van a realizar.

3.1. Metodologia

3.1.1. Protocolo y grabacion

Con el fin de evaluar las distintas implementaciones de las partes que componen el
sistema monitorizacion, es necesario un conjunto de pruebas con datos conocidos. Para
ello se ha disefiado un protocolo de grabacién en el que se pide a los usuarios que
realicen ciertas tareas. Particularmente, el objetivo del protocolo es producir datos que
permitan probar los siguientes aspectos, poniendo especial atencion a los casos limite.

Existencia o no de rostros en la imagen.

Movimientos de giros de cabeza y traslacion del usuario.

Usuarios hablando.

Usuarios con los ojos abiertos y cerrados.

Usuarios mirando hacia distintos sitios dentro y fuera de la pantalla del
dispositivo.

(a) Equipo Ikon de Bitbrain (b) Tobii Pro Nano (c)Microsoft Surface Go 3

Figura 3.1: Hardware principal utilizado para las grabaciones.

La grabacion se realiza utilizando el equipo Ikon de Bitbrain, un dispositivo de EEG
en forma de banda que cuenta con 5 sensores secos textiles. Esto es con el fin de recoger
datos de la unidad de medicion inercial (IMU) incorporada en el equipo de EEG.
También se recogen datos del eye tracker Tobii Pro Nano durante la grabacion. Las
sefales de ambos dispositivos se utilizardn como ground truth en el proceso de
evaluacion de los algoritmos. Adicionalmente a estas medidas, también se almacena la
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sefal de los 5 canales de EEG del equipo, que puede resultar 1til en lineas de trabajo
futuras (ver Tabla 3.1).

Dispositivo de captura Medida
Angulos pitch, yaw y roll de la cabeza (%/s)
IMU Aceleracion en ejes X y z (m/s?)
Fuerza magnética en ejes x y z (mT)
Didmetro de la pupila (mm)

Posicion (X, y, z) del iris

Eye tracker
Coordenadas (x,y) en pantalla de la mirada
Deteccion de la pupila (bool)
EEG Actividad cerebral, 5 canales.

Tabla 3.1: Senales de la plataforma almacenadas durante la recogida de datos.

Para leer y registrar la informacion de los dispositivos conectados, ha sido necesario
implementar un médulo en C++ integrado en la plataforma de neurotecnologia. Dicho
moddulo se encarga de grabar en un video en formato .avi a una frecuencia lo mas
cercana posible a 30 FPS mientras registra el timestamp de cada frame grabado en un
fichero .csv. Ademas el programa también se encarga de mostrar en pantalla la imagen
del usuario, o las pantallas que especificas de las tareas 1a, 1b, 4c y 5a del protocolo.

Antes de comenzar la grabacion se hace una introduccion al usuario de las tareas
que se van a realizar y se le prepara para la grabacion colocando el equipo de EEG y
calibrando el eye tracker (desarrollado en el Anexo 1). Tras realizar las calibraciones
necesarias comienza la grabacion, tomando medidas de las unidades de adquisicion a
sus respectivas frecuencias de muestreo. En concreto, se pide realizar las siguientes
tareas:

1) Tareas para la comprobaciéon de la mirada (100s). El primer paso esta
dirigido a la calibracion de los algoritmos de estimacién de mirada evaluados,
los otros dos tienen como objetivo comprobar su rendimiento recién calibrados,
sin que el usuario se haya movido todavia.

a) Realizar la calibracién de ojos siguiendo las instrucciones de pantalla
(30s). Apareceran puntos en pantalla uno a uno y de manera ordenada,
situados en las posiciones 10%, 30%, 50%, 70% y 90% del ancho de
pantalla en el eje X, y en las posiciones 25%, 50% y 75% del alto de la
pantalla en el eje y. Para cada punto, se da un segundo para que el
usuario fije su mirada en dicho punto y después se toman 5 fotografias a
lo largo de otro segundo. Esto servird como informacion para la
calibracion de los distintos sistemas de estimacion de mirada evaluados.
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Figura 3.2: Puntos de calibracion de mirada.

b) Repetir el proceso del punto anterior (30s). Es en este paso en el que
comienza el registro de informacién en el video y los ficheros de
medidas. Se repite el proceso del apartado anterior en el que el usuario
tiene que mirar a los puntos uno a uno, pero no se toman fotografias. En
su lugar, la imagen se incluye en el video grabado.

c¢) Mirar fuera de la pantalla (40s). Sin mover la cabeza, mirar a la
izquierda, derecha, arriba y abajo de la pantalla, en ese orden, durante 10
segundos en cada posicion. El usuario es libre de mirar a distintos puntos
siempre que sean en la direccion requerida y fuera de la pantalla.

2) Tareas para la comprobacion de ojos abiertos (20 s).
a) Sin pestafiear, mantener la posicion mirando a la pantalla (10 s).
b) Cerrar los 0jos manteniendo la posicion (10 s).

3) Tareas para la evaluacion de la estimacion de postura (80 s).

a) Sin girar el resto del cuerpo, girar la cabeza lentamente hacia la posicion
pedida. Una vez alcanzado el limite, mantener la posicion hasta que pase
el tiempo propuesto.

Posicion L C R C U C D C
Tiempo (s) 10 10 10 10 10 10 10 10

Tabla 3.2: Tiempos y giros de la tarea 3a del protocolo. Los simbolos L,
R, U, D, y C se corresponden con las posiciones izquierda, derecha,
arriba, abajo, y centro, respectivamente.

4) Tareas para la evaluacién de la deteccién de rostros y movimiento del
usuario (110 s).
a) Permanecer en la posicion central (30s).
b) Sin dejar de mirar hacia la pantalla, Moverse a las posiciones deseadas y
permanecer en esa posicion durante el tiempo de la tarea (40s).

22



Vision por computador para monitorizacion de terapias con neurotecnologia en casa - Juan Eizaguerri

Posicion L R F B
Tiempo (s) 10 10 10 10

Tabla 3.3: Tiempos y movimientos de la tarea 4b del protocolo. Los
simbolos L, R, F y B se corresponden con las posiciones izquierda,
derecha, adelante y atras, respectivamente.

c) Hablar manteniendo la posicion central (30s). Para este paso, se mostrara
al usuario un texto que leer hasta que termine el tiempo.
d) Salir del cuadro de imagen de la camara (10s).

5) Tareas para la comprobacion de la mirada con usuario movido (70 s). En
este paso se van a repetir las tareas del paso 2 (exceptuando la de calibracion)
con el objetivo de evaluar si los sistemas de estimacion de mirada pierden
eficacia tras la acumulacién de movimientos del usuario desde el momento de la
calibracion.

Antes de comenzar cada tarea se dara el tiempo necesario para la explicacion de la
misma antes de comenzar su realizacion. Con el fin de agilizar la grabacion y facilitar el
posterior etiquetado de datos, se ha preparado una tabla que se puede seguir y rellenar
durante la grabacion, junto a algunas notas que recordar a los sujetos antes de comenzar
para facilitar el entendimiento de los ejercicios (Ver Anexo 1).

La sefial del EEG se registra a 256 Hz, mientras que la de la IMU y el eye tracker lo
hace a 32 Hz. Este registro se hace en un tipo de fichero propietario .bbt que debera ser
decodificado mediante la herramienta proporcionada por la empresa para su posterior
analisis.

Dado que la recogida de los fotogramas no se hace a una frecuencia perfectamente
constante, el video generado presenta alteraciones en las que la imagen avanza a una
velocidad ligeramente distinta a la real. Para facilitar el analisis visual y el etiquetado de
las partes del video se ha disefiado e implementado en Python un algoritmo que utiliza
el video y el fichero de timestamps como entrada, y dado un framerate objetivo duplica
o elimina frames para que el paso del tiempo del video se corresponda con el verdadero.

3.1.2. Entorno de grabacion

Las grabaciones se realizan en un entorno controlado sin distracciones y preparado
para facilitar la recogida de datos sin errores.

El sujeto se sienta en una silla con ruedas que facilitard el movimiento en las tareas
de desplazamiento, frente a una mesa con una Surface apoyada sobre ella, desde la que
se realiza la grabacion. Durante el proceso de experimentacion, a excepcion de las fases
de comprobacion de la mirada y del habla, donde se muestra una pantalla especifica en
pantalla, el sujeto verd la imagen de la camara, a modo de espejo. El dispositivo tiene
conectado teclado, raton y eye tracker. Sobre la mesa, también se encuentran la banda
de EEG y un paquete de toallitas himedas, necesario para la colocacion de la misma.
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Figura 3.3: Entorno de grabacion del conjunto de pruebas.

Se quiere probar el funcionamiento de los sistemas evaluados tanto en condiciones
ideales de iluminacion como en el caso realista en el que el sujeto realiza el tratamiento
en el salon de su casa. En la condicion ideal, se utiliza una luz blanca uniforme que
proyecta una luz blanca sobre el usuario de unos 1500 lux. Varios estudios sugieren que
los salones tienen habitualmente una iluminancia de entre 150 y 300 Ix, de colores
calidos de unos 2700 K [35, 36]. Para la grabacion en condiciones de luz de salon se
utiliza una lampara de intensidad y temperatura regulable para iluminar la habitacion
con una luz calida de aproximadamente 150 Ix. Esto se hace mediante una lampara
regulable colocada lateralmente al usuario para que su rostro no esté uniformemente
iluminado.

1000 K 2000K 3000K 4000K 5000K 6000K 7000K 8O000K 9000K 10000K
|

WARM LIGHT COLD LIGHT

Figura 3.4: Escala Kelvin de la temperatura del color de la luz.

Las medidas de la iluminancia se han realizado con un luxémetro calibrado con
error £ 15%. Adicionalmente, se han comprobado estas mediciones con las obtenidas
mediante el sensor de un teléfono movil, obteniendo resultados casi idénticos como se
expresa en [37].

Se realiza una grabacion del protocolo para cada usuario por cada condicion de
iluminacion. Con el objetivo de asegurar que la diferencia entre los resultados obtenidos
de las distintas grabaciones de un mismo usuario se deben al cambio de las condiciones
y no de otros factores como el aprendizaje del protocolo, se realiza un balanceo del
orden de forma que cada sujeto realiza la primera grabacion en las condiciones de luz en
las que el ultimo sujeto realizd la segunda. Como resultado, el 50% de los sujetos
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realizan primero la grabacidon en condiciones ideales y después la de condiciones de
salon, y el otro 50% procede en orden inverso.

3.1.3. Datos recogidos

El conjunto de datos recogido estd formado por los datos de 12 sujetos distintos
sometidos a 2 sesiones cada uno bajo distintas condiciones de iluminacion. Estos datos
son la grabacion del video en formato .avi a resolucion 640x480 pixeles, los timestamps
de cada frame en un fichero .csv, la salida recogida de los sensores de la plataforma (eye
tracking, IMU, EEG) en un fichero .hbt y un directorio con las 75 imagenes tomadas
durante la tarea la del protocolo (seccion 3.1.1). Por ultimo, a cada grabacion le
acompana un fichero .json de elaboracion manual que contiene etiquetas de los
fragmentos de tiempo en los que se realizan las distintas tareas del protocolo. La
descripcion de estas etiquetas estan disponibles en el Anexo 5.

En la Tabla 3.4 se observa la duracion, frames y fotogramas por segundo (FPS)
medios de cada una de las grabaciones. Sumando todas las grabaciones, se cuenta con
un total de casi 300K imagenes.

Sujeto Nivel de luz Duracioén (s) Frames FPS medios
P01 Alta 436 12809 29,38
Baja 436 12772 29,29
P02 Alta 453 13294 29,35
Baja 418 12261 29,33
P03 Alta 413 12110 29,32
Baja 441 12913 29,28
P04 Alta 437 12859 29,43
Baja 388 11413 29,41
P05 Alta 423 12420 29,36
Baja 422 12403 29,39
P06 Alta 416 12221 29,38
Baja 421 12378 29,40
P07 Alta 422 12409 29,41
Baja 408 12010 29,44
P08 Alta 422 12397 29,38
Baja 415 11894 28,66
P09 Alta 418 12281 29,38
Baja 423 12451 29,43
P10 Alta 423 12444 29,42
Baja 423 12028 28,43
P11 Alta 412 12137 29,46
Baja 411 10731 26,11
P12 Alta 399 11743 29,43
Baja 408 10686 26,19

Tabla 3.4: Resumen de los datos recogidos.
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La duracion media de las grabaciones es de 420 segundos con una desviacion
estandar de 13.78 s, una variabilidad baja dada por el seguimiento del protocolo.
Ademas, cada una de las tareas tiene una duracion muy similar en las distintas
grabaciones. Esta uniformidad en el conjunto de datos facilita en gran medida su uso.
No parece que haya habido ningin problema de rendimiento del dispositivo de
grabacion durante la recogida de datos, a excepcion de pequefias variaciones, la mayoria
de los videos tienen una frecuencia de grabacion media de entre 28 y 29 FPS.

Durante la recogida de datos se ha mantenido en mente la posibilidad de que el
conjunto de datos generado pueda ser utilizado en estudios futuros, de ahi que se
decidiese almacenar la sefial EEG de la banda y se haya pedido la realizacion de ciertas
tareas que no forman parte del protocolo, como quitarse la banda, en algunas de las
grabaciones.

Con el objetivo de comprobar la variedad de la muestra, para cada uno de los
sujetos se ha apuntado su edad, sexo, tipo de piel segun la escala Fitzpatrick [93] y otras
caracteristicas, en especial si el usuario lleva gafas o no, que puedan ser relevantes para
este u otros estudios. La Tabla 3.5 muestra la informacion general de la variedad de la
muestra en cuanto a sexo y gafas. Por otro lado, todos los sujetos de la muestra tienen
entre 24 y 49 afios (media 35 y desviacion estandar 9.14), y estan entre los tipos 1 y 4 en
cuanto a tipo de piel. La informacidon desglosada por sujeto esta disponible en el Anexo
3.

Segun un estudio del Consejo Europeo de Optica y Optometria, aproximadamente
un 55% de la poblacion espaiola utiliza gafas en su dia a dia [71]. Por lo tanto, la
muestra recogida no es perfectamente representativa de la poblacidon en este aspecto
pero es suficientemente grande como para realizar evaluaciones especificas para este

grupo.

Caracteristica Muestra Porcentaje (%)
Hombre 6 50
Sexo
Mujer 6 50
Si 4 333
Gafas
No 8 66.6

Tabla 3.5: Caracteristicas de los sujetos del conjunto de datos.

3.1.4. Medidas ground truth

Para realizar evaluaciones cuantitativas de los algoritmos se necesita saber en cada
momento el resultado ideal esperado que dichos algoritmos tratan de calcular, es decir,
una verdad fundamental o ground truth. Este ground truth puede ser un dato escalar
para calcular métricas de error, o un booleano para dar lugar a métricas de confusion. En
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esta seccion se va a profundizar en las fuentes de ground truths que se utilizaran durante
las evaluaciones.

En primer lugar, adicionalmente a los datos obtenidos de los dispositivos utilizados
durante la grabacion, se utiliza informacion etiquetada manualmente como ground truth
para las evaluaciones (ver Anexo 5).

Integracion de la rotacion absoluta

Para la evaluacion de la estimacidon de postura se va a utilizar la informacién de la
IMU para obtener la rotacion real del usuario. Para probar la precision de los sensores se
prueba en una grabacion controlada en la que se realizan cuatro giros consecutivos a 90,
180, 270 y 360 grados desde el origen (ver Figura 3.5).
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Figura 3.5: Sensores de la IMU durante una grabacion de cuatro giros de 90°.

En los resultados de la prueba realizada se observa que tanto el giréscopo como el
acelerometro devuelven medidas de variacion en lugar de absolutas. Por lo tanto, para
obtener la rotacion total en cada momento es necesario integrar las medidas del
giréscopo. Esta integracion tiene el problema de generar un error acumulativo causado
por el error de medida de los sensores. Para resolver este problema se ha utilizado un
filtro de Madgwick [7, 8] que utiliza la informacion del aceleroémetro para medir la
gravedad de la tierra y utilizar este vector de aceleracion como referencia absoluta en la
orientacion.
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Cabe destacar que este filtro tiene también la posibilidad de utilizar el campo
magnético de la Tierra como una segunda referencia, sin embargo, la salida del
magnetémetro esta sujeta a distorsiones causadas por el entorno cercano que podria
empeorar los resultados si no se hace una calibracion anterior. Esta calibracion es un
proceso lento y deberia hacerse en un entorno controlado con un campo magnético
constante para cada grabacion [85, 86, 87], lo que dificultaria en gran medida la
recogida de datos. Por este motivo se ha decidido no utilizar las medidas del
magnetometro en el filtro de Madgwick. Debido a esto, el eje de rotacion horizontal
(izquierda-derecha) de la cabeza es paralelo a la tnica referencia utilizada, por lo que
sigue existiendo un error acumulativo en este eje de rotacion incluso después de aplicar
el filtro. Utilizando la rotacion inicial como origen y una escala entre -180° y 180° se
obtiene el resultado de la Figura 3.6 (a). Para eliminar el error, dados dos puntos en el
tiempo conocidos que tienen la misma rotacion se calcula la funcion de la recta que
modela la deriva y se resta al resultado.

Giréscopo en funcion del tiempo Giréscopo en funcion del tiempo
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Figura 3.6: Integracion de la rotacion de la banda. (a): Sin corregir deriva en eje z, y (b):
corrigiendo deriva. La linea discontinua muestra la rotacion real.

En la Figura 3.6 (b) se observa que la aproximacidén propuesta soluciona el
problema de la deriva. Los intervalos de tiempo en el que dispositivo no se ha movido
quedan correctamente reflejados en la grafica y la rotacion absoluta calculada encaja
con la real con un error menor a 2° en todo momento.

Valoracion de las seiiales del eye tracker como posibles medidas de ground truth

Durante las grabaciones, se registran del eye tracker varias seiales que pueden ser
utilizadas como ground truth para determinar si el ojo esta realmente abierto o no. En
primer lugar, se dispone de la informacion del EEG. Como se expone en [42, 43], el
EEG muestra diferentes caracteristicas con los ojos cerrados y ojos abiertos. Sin
embargo, se descarta esta opcion por la dificultad y el coste de interpretacion de los
datos, especialmente cuando se dispone también de la informacion grabada por el eye
tracker. Entre sus salidas, existen varias que pueden resultar ttiles en este caso: El
diametro medido de la pupila (mm) y el codigo de validez (bool), independientes para
cada ojo.
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Didametro de ojo y cddigo de validez (Ojo izquierdo)
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Figura 3.7: Ejemplo de medidas del eye tracker durante una ejecucion.

Como se observa en la Figura 3.7, ambas medidas aportan una informacion similar
sobre la apertura del ojo, con la ligera diferencia de que el codigo de validez es 0
durante parpadeos y periodos con los ojos cerrados, mientras que el didmetro del ojo
solo es nulo en estos periodos mantenidos y no durante los parpadeos (aunque si se
puede ver una disminuciéon del didmetro considerable). Dadas las similitudes entre las
dos medidas se ha decidido utilizar el cédigo de validez como medida ground truth para
la evaluacion de los algoritmos de deteccion de apertura de ojos por tener valores
booleanos ttiles para el calculo de métricas de confusion.

Por otro lado, el eye tracker también proporciona la mirada del usuario en
coordenadas normales de pantalla, informacion que puede ser utilizada como ground
truth para la estimacion de la mirada.

3.1.5. Métodos de evaluacion

Los videos almacenados durante la grabaciéon pueden ser procesados de forma
offline de manera que para cada frame se calculen una serie de medidas mediante las
técnicas de vision por computador que se quieren evaluar. Dichas medidas quedan
registradas en el fichero .csv junto al timestamp del frame correspondiente.

Los datos del fichero .bbt tienen una frecuencia constante, pero los del fichero de
medidas no siempre cumpliran dicha condicion. Debido a esto, el primer paso en el
proceso de evaluacion es el emparejamiento de datos de la plataforma de
neurotecnologia con los de los algoritmos. Para esto, se ha implementado en Python una
herramienta que convierte toda la informacion a frecuencia de muestreo constante
emparejando la informacion de los dos ficheros de medidas.

A partir de este fichero se pueden realizar analisis cuantitativos sobre la calidad de
los resultados de las técnicas utilizadas para generar las medidas.

Se pueden dividir las métricas que se van a realizar en dos grandes grupos:
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e Para las medidas booleanas se utilizan métricas de confusion, calculando los
True Positives (TP), True Negatives (TN), False Positives (FP) y False
Negatives (FN). A partir de esas medidas se calculan métricas como la precision
(P), la exhaustividad o recall (R), el F-score balanceado (F,) y la exactitud o
accuracy (ACC). La precision denota qué proporcion de los valores predichos
como positivos lo son realmente, mientras que el recall expresa cuantos de los
valores realmente positivos se han clasificado correctamente. La medida F,
combina estas dos medidas mediante una media armonica. El accuracy muestra
la proporcion de datos etiquetados correctamente.

Real

Positivo  Negativo

Prediccion
Positivo

Negativo

Figura 3.8: Matriz de confusion booleana.

TP R = TP F =2 P-R ACC = TP+TN

P = TP+FP’ TP+FN’ 1 P+R’ TP+FP+TN+FN

e Para las medidas de valor numérico en las que se cuenta con un ground truth
escalar como los angulos de rotacion de la cabeza o la mirada, se utilizaran
métricas de error. Generalmente, se van a utilizar las medidas Mean Average
Error (MAE), Mean Squared Error (MSE) y Root Mean Square Error (RMSE).
MAE es la medida més basica, que muestra simplemente el error medio, aunque
tiene el problema de que errores positivos y negativos puedan cancelarse entre
si. MSE es la media de los cuadrados de los errores, que penaliza errores
grandes, pero puede ser dificil de interpretar. Por ultimo, RMSE tiene las
mismas ventajas que el MSE, pero es mas interpretable al estar en las mismas
unidades que la variable de salida.

n ~ n N2
MAE = -3, (yl. - yi): MSE = —3%. (yl. - yi) ; RMSE = MSE
i=1 i=1
Adicionalmente, se hara uso de las graficas que se crean necesarias para una mejor

visualizacion de los resultados.

El analisis de rendimiento en tiempo de ejecucion se realiza midiendo y
almacenando en memoria para cada frame el tiempo de procesamiento de los distintos
algoritmos utilizados durante las pruebas realizadas.. Al final de la ejecucion se calcula
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el tiempo medio de los algoritmos como la media aritmética de las medidas tomadas
durante el procesamiento de los distintos videos.

Una vez definido el conjunto de datos se disefian las pruebas a las que se somete
cada uno de los algoritmos. En el Anexo 6 se muestran las pruebas propuestas para cada
algoritmo, junto con los datos que se utilizan como ground truth y la parte de las
grabaciones que se utiliza para cada una de ellas.

Algunos de los tests descritos se realizan a modo de andlisis de rendimiento que
permita realizar una seleccion informada de las tecnologias utilizadas en la integracion
final. Otros sin embargo se utilizan con el objetivo de encontrar la configuracion 6ptima
de los pardmetros de los algoritmos.

Otra porcion de las pruebas consiste en separar y comparar los resultados de los
algoritmos en funcion del nivel de iluminacion de la grabacidon para comprobar el
impacto de esta variable.

Por ultimo, la utilizacion de accesorios puede afectar a la capacidad de los
detectores de rostros de generar resultados [56, 57], por lo que es importante asegurarse
de que los algoritmos de monitorizaciéon funcionan correctamente con usuarios con
gafas. Para estas pruebas se separan los sujetos 4, 6, 8 y 11 del resto de la muestra para
evaluar los resultados.

3.2. Resultados

Este apartado recoge los resultados y el andlisis de las pruebas propuestas para
probar los distintos algoritmos desarrollados en el capitulo 2. Los analisis de tiempo de
ejecucion de esta seccion se han realizado en un sistema con un procesador Intel Core
17-10710U y 32 GB de RAM.

3.2.1. Deteccion de rostros

Utilizando la salida booleana de los algoritmos de deteccion de rostros junto con la
informacion etiquetada del conjunto de datos (Tabla 3.6), se calculan métricas de
confusion de los distintos modelos evaluados. Se analiza también el accuracy en
funcioén de las variables de iluminacion y gafas (Tabla 3.7).

Notese que el detector MTCNN ha quedado excluido de las evaluaciones de esta
seccion debido a su lenta velocidad de ejecucion, de aproximadamente 1178 ms por
frame.

Uno de los posibles criterios por los que se podria decidir utilizar un modelo u otro
es su tiempo de ejecucion, especialmente importante en sistemas en tiempo real como el
que se esta tratando de desarrollar en este trabajo. La Tabla 3.8 muestra los tiempos de
ejecucion medios de los distintos detectores al evaluarlos con el dataset.
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DNN Haar HOG MediaPipe Yunet
P 1.00 1.00 1.00 1.00 1.00

0.99 0.67 0.89 0.99 0.99
F, 0.99 0.80 0.99 0.97 0.99
ACC 0.99 0.67 0.89 0.99 0.97

Tabla 3.6: Métricas de confusion de los modelos de deteccion facial.

Accuracy (ACC)

DNN Haar HOG MediaPipe | Yunet

Tluminacién 150 0.99 0.60 0.87 0.99 0.97
(x) 2000 0.98 0.76 0.92 0.99 0.98

Sin gafas 0.99 0.73 0.91 0.98 0.98

Gafas?

Con gafas 0.98 0.57 0.86 1.00 0.95

Total 0.99 0.67 0.89 0.99 0.97

Tabla 3.7: Métricas de confusion de los modelos de deteccion facial en funcion de
variables de iluminacion y gafas.

Modelo DNN Haar HOG |MediaPipe| Yunet
Ttrame (MS) 39.9 11.5 46.3 3.5 28.5

Tabla 3.8: Tiempo medio de ejecucion de los modelos de deteccion facial.

Se observa que los detectores MediaPipe, DNN y Yunet reportan los mejores
resultados con accuracies de entre 97 y 99%. Haar Cascade y HOG mantienen parecen
tener mas falsos negativos que el resto de detectores dando lugar a un recall inferior al
del resto de modelos.

Ademas, los modelos basados en redes neuronales apenas sufren ninguna
disminucién en su eficacia ante iluminacion baja o usuarios con gafas, mientras que los
métodos tradicionales (Haar Cascade y HOG) muestran un empeoramiento considerable
de sus resultados.

Sobre el tiempo de ejecucion, todos los detectores evaluados tienen la velocidad
suficiente para formar parte de un sistema en tiempo real, permitiendo mas de 20
detecciones por segundo, siendo el detector de MediaPipe casi 10 veces mas rapido que
la mayoria de los demas modelos con un tiempo de ejecucion menor a 4 ms. Aunque
Haar Cascade también es muy rdpido, la mala calidad de sus resultados lo descarta
como una posible opcion. Entre las opciones con mejores resultados, MediaPipe y
Yunet son sin duda las dos mejores.
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3.2.2. Deteccion de puntos faciales

Los modelos de deteccion de puntos explicados en la seccion 2.2.2 generan para
cada frame una serie de coordenadas correspondientes a ciertos puntos faciales. En
dicha seccion se ha hecho una valoracion cualitativa de la calidad de las estimaciones de
puntos en funcién de la rotacion de la cabeza.

Para llevar a cabo una valoracion mas en profundidad se toman para cada grabacion
4 imagenes extraidas de la tarea 3 del protocolo a aproximadamente 0°, 30°, 45° y max”
de rotacion de la cabeza, siendo max el angulo maximo de giro de la cabeza del sujeto.
Un estudio realizado sobre 97 sujetos en [13] sugiere que este valor se encuentra en
torno a los 73 = 7°. Cada imagen es procesada por ambos algoritmos de deteccion y se
valora subjetivamente si los puntos estimados coinciden con los reales. La Tabla 3.9
muestra el resumen de los resultados de dicha evaluacion.

0° 30° 45° max Total

Alta 0,92 1,00 0,67 0,00 0,65

Dlib Baja 1,00 1,00 0,00 0,00 0,50
Total 0,96 1,00 0,33 0,00 0,57

Alta 0,92 0,75 0.50 0,25 0,60

MediaPipe Baja 0,75 0,83 0,58 0,25 0,63
Total 0.87 0,79 0,54 0,25 0,61

Tabla 3.9: Precision de los modelos de deteccion de puntos faciales en funcion de la
rotacion de la cara.

En general MediaPipe tiene una mejor precision que Dlib en la estimacion de los
puntos. Esto es especialmente notable alrededor de los 45° de rotacion. Ninguno de los
dos modelos es capaz de realizar detecciones consistentemente en el angulo maximo de
rotacion.

Dado que el sistema que va a utilizar la deteccion de puntos faciales debe ser
ejecutado en tiempo real, también es importante conocer el tiempo de ejecucion de las
tecnologias utilizadas.

Yunet + Dlib MediaPipe MediaPipe + Dlib
T deteccion 28.5 3.50 3.50
T landmarking 4.44 14.6 4.44
T total 32.94 18.1 7.94

Tabla 3.10: Tiempo de ejecucion medio de los detectores de puntos faciales.

El tiempo medio de procesamiento del modelo de Dlib es de 4.44 ms en y el de
MediaPipe 18.1 ms. Hay que tener en cuenta que como se ha comentado anteriormente,
el estimador de DIib necesita realizar una deteccion facial previa, por lo que en la
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evaluacion realizada el tiempo completo de procesamiento de cada frame es de 32.94
ms. Sin embargo, la ejecucion de la parte especifica al landmarking es
significativamente mas rapida utilizando Dlib que MediaPipe, incluso restando a esta el
coste de la deteccion facial. Por lo tanto, la opcién mas rapida encontrada es la de
utilizar el detector facial de MediaPipe junto con el detector de puntos faciales de Dlib,
con un tiempo total menor a 8§ ms (ver Tabla 3.10).

3.2.3. Estimacion de la mirada

En este apartado se comprueban las diferencias entre los métodos ad hoc y
MediaPipe para el calculo del centroide del ojo, seguido de evaluacion de la estimacion
de la mirada. Las evaluaciones de este apartado se llevan a cabo utilizando las partes del
conjunto de datos correspondientes a las tareas 1 y 5 del protocolo.

En la seccion 2.2.3 se han explicado dos posibles métodos de la estimacion del
centroide del iris. De acuerdo a las pruebas realizadas, la distancia euclidea media entre
el centroide calculado mediante el algoritmo ad hoc y MediaPipe es de tan solo 1.65
pixeles, una diferencia que no resultaria en cambios notables en la estimacion final de la
mirada, por lo tanto, se utilizar4 Gnicamente el método ad hoc en las evaluaciones de la
estimacion de la mirada de esta seccion.

Pasando a la evaluacion de las coordenadas de la mirada devueltas por el algoritmo
de estimacion, al no haber incluido el vector de posicion de la cabeza en el calculo de la
estimacion de la mirada, el sistema es potencialmente susceptible a los movimientos que
realice el usuario tras la calibracion. Se evalia en qué medida afectan los movimientos
realizados a lo largo de una sesion comparando los resultados de los datos recogidos en
las tareas 2 y 5 del protocolo de grabacion. Como se explica en la seccion 3.1.1, estas
tareas son la comprobacion de la mirada dentro y fuera de la pantalla recién realizada la
calibracion (tarea 2) y tras unos minutos realizando distintos ejercicios (tarea 5).

h
Figura 3.9: Oclusion del iris por reflejos en las gafas del usuario.
En ultimo lugar, se estudia la eficacia del detector bajo distintas circunstancias que

pueden dificultar el calculo de la posicion del iris. La primera de estas condiciones es la
iluminacion baja. En una imagen mal iluminada todos los colores de la imagen se
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acercan al negro por lo que la umbralizacion del iris tiene que ser precisa para que la
estimacion de la mirada sea correcta.

Se estudia también el impacto de que el usuario lleve gafas, las cuales pueden
producir reflejos que ocluyen parcialmente el iris dificultando el calculo de la posicion
del iris y con esto la estimacion de la mirada (ver Figura 3.9). Los resultados de ambas
evaluaciones se encuentran en la Tabla 3.11.

Eje x Ejey
MAE RMSE MAE RMSE
Tarea 1 0.23 0.30 0.31 0.40
Tarea
Tarea 5 0.24 0.32 0.31 0.41
imtheasian 150 0.23 0.31 0.31 0.41
(Ix) 2000 0.24 0.31 0.29 0.39
Sin gafas | 0.18 0.23 0.29 0.39
Gafas?
Con gafas| 0.34 0.41 0.33 0.43
Total 0.23 0.31 0.30 0.40

Tabla 3.11: Error medio de la estimacion de mirada frente al eye tracker en los ejes x e y
de la pantalla. Resultados en funcion de la tarea, iluminacion y gafas.

Atendiendo al MAE de la Tabla 3.11, se ve que el error medio en la estimacion de la
mirada es del 23% del ancho de la pantalla y 30% en altura. Esto significa que las
coordenadas estimadas se pueden considerar una aproximacion general de la zona de la
pantalla a la que estd mirando el usuario pero no un punto preciso.

De los resultados obtenidos en funcion de las distintas variables se pueden extraer
varias conclusiones. En primer lugar, se aprecia un deterioro en la calidad de las
estimaciones de la mirada en el eje x tras la acumulacion de movimientos durante la
grabacion, aunque los resultados en el eje y permanecen similares. Ademas, el sistema
es robusto ante diferencias en la iluminacion de la escena, aunque la utilizacion de gafas
si influye negativamente en la precision del sistema.

El estimador de puntos faciales de MediaPipe, que incluye la deteccion del iris,
tiene un tiempo medio de ejecucion de 18.7 ms. Mientras tanto, el calculo del centroide
mediante el método ad hoc se realiza en un tiempo medio de 4.1 ms, que sumado al
tiempo de la estimacion de puntos faciales de DIib resulta en un tiempo de tan sélo 8.54
ms al que se se le suma el coste de la deteccion de rostros. En caso de utilizar la
deteccion de MediaPipe, el coste tedrico de la ejecucion de las tres tecnologias
principales que componen el sistema de monitorizacion seria menor a 12 ms.

El calculo del vector de ojo requiere un tiempo de ejecucion medio de 4.3 ms, de los
cuales 4.1 se dedican al calculo del centro del iris. La estimacion de mirada mediante la
interpolacion de dicho vector con los datos de calibracion tiene un coste de tan solo 0.1
ms.
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3.2.4. Movimiento de la cabeza

El algoritmo desarrollado en la seccion 2.3.1 calcula una medida de movimiento m
que determina la distancia del usuario desde la posicion inicial a la actual.

Para determinar si el usuario se ha movido demasiado desde el inicio del ejercicio
se somete la m a un umbral que debe ser predeterminado. Utilizando la informacion
etiquetada de las grabaciones donde se indica si el usuario estd o no movido, se pone a
prueba el sistema utilizando distintos umbrales y calculando las métricas de confusion
visibles en la Tabla 3.12. Para evaluar con datos lo mas balanceados posibles, se utiliza
la informaciéon de la tarea 4 del protocolo (ver secciéon 3.1.1) que consta de
aproximadamente 30 segundos en buena posicion y 40 segundos en mala posicion por
cada grabacion.

Threshold 0.00 0.5 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

P 0.44 0.77 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00
R 1.00 0.97 0.94 0.92 0.89 0.87 0.54 0.41 0.20 0.01
F, 0.61 0.86 0.95 0.95 0.94 0.93 0.70 0.58 0.34 0.02
ACC 0.44 0.86 0.96 0.96 0.95 0.94 0.80 0.74 0.65 0.57

Tabla 3.12: Meétricas de confusion de la deteccion de movimiento con distintos
umbrales.

Métricas para la deteccién de movimiento en funcién del umbral

0.8 4

0.6

0.4
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Recall
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0.0 4 — Accuracy

T T T T T
0.0 01 0.2 0.3 0.4
Threshold

Figura 3.10: Métricas de confusion de la deteccion de movimiento con distintos
umbrales.

De la Tabla 3.12 y la Figura 3.10 se puede extraer que existe un rango amplio de
umbrales entre 0.10 y 0.25 que pueden ser utilizados manteniendo un buen accuracy.
Dentro de este rango se puede utilizar uno mas alto o mas bajo dependiendo del balance
deseado entre precision y recall. Teniendo en cuenta ambas métricas mediante la F,, se
puede decir que los umbrales entre 0.10 y 0.15 dan lugar a los mejores resultados,
acertando el 96% de las ocasiones.
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3.2.5. Estimacion de postura

Las evaluaciones realizadas en esta seccion estan destinadas principalmente a
comprobar el error del angulo de rotacion de la cabeza calculado por el algoritmo de
estimacion de mirada utilizando los dos modelos de deteccion de puntos faciales
evaluados en este trabajo. Las evaluaciones se realizan utilizando los datos
correspondientes a la tarea 3 del conjunto de datos grabado.

MAE RMSE
) Dlib 8.53 9.88
Rotacion
MediaPipe 3.96 4.06
Dlib 6.43 7.16
Flexion
MediaPipe 10.52 10.92

Tabla 3.13: Métricas de error de la estimaciéon de postura.

Rotacion estimada de la cabeza en funcién de la real Flexidn estimada de la cabeza en funcién de la real

e Real 15.0
Diib "'M
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g £
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Figura 3.11: Estimaciones de posicion de la cabeza frente a la real de una grabacion.

Analizando la Tabla 3.13 se observa que el modelo MediaPipe tiene un error medio
menor en el eje de movimientos de rotacién mientras que el de DIib tiene mas precision
ante movimientos de flexion. E1 MAE y el RMSE toman valores muy similares, lo que
significa que no hay residuos con errores muy grandes. Generalmente, ambos modelos
permiten generar resultados suficientemente fiables para estimar la direccion general de
la cabeza.

La Figura 3.11 muestra las estimaciones de la postura de la cabeza en relacion a la
real. El resultado obtenido concuerda con la observacion de la seccion 2.2.2 respecto a
los angulos limite de estimacion de los modelos.

El estimador de DIlib tiene su limite alrededor de los 30° de rotacion. También es
pertinente comentar que este estimador tiende a sobreestimar el giro para angulos
pequefios y subestimar el de dngulos grandes. Por el contrario, la distribucion de las
predicciones utilizando el estimador de MediaPipe mantienen una distribucion mucho
mas lineal y alcanzan un limite mayor, aunque siempre subestimando ligeramente la
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rotacion. Por la uniformidad de los datos, este error podria modelarse y ser corregido
multiplicando por un factor. En cuanto al angulo de flexion, ambos métodos generan
resultados muy similares con un pequefia diferencia fija entre los dos, probablemente
generada por las diferencias entre los modelos 3D utilizados para resolver el problema
PnP.

La salida de los angulos de giro de la cabeza puede ser umbralizada para decidir si
la posicidon se considera inadecuada o no. Las graficas de la Figura 3.12 muestran las
métricas de confusion en funcidon del umbral utilizado para los dos modelos de
estimacion de puntos faciales utilizados.

Dlib error metrics for horizontal head pose estimation iapipe error metrics for horizontal head pose estimation Precision-recall curve for horizontal head pose estimation
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Dlib error metrics for vertical head pose estimation iapipe error metrics for vertical head pose estimation Precision-recall curve for vertical head pose estimation
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Figura 3.12: Métricas de estimacion de postura en funcion del umbral en umbrales entre
0°y 40°.

Centrando el foco en el eje de rotacion, el sistema que utiliza el estimador de Dlib
requiere elegir entre una mayor precision o un mayor recall. Por el contrario, utilizando
el estimador de MediaPipe existe un amplio umbral en el que ambas métricas mantienen
un valor considerablemente bueno. En el eje de flexion tan s6lo se consigue un F,
maximo de 0.4 para ambos modelos, unos resultados mejorables en comparacion con
los del eje de rotacion.

El tiempo de resolucion medio del algoritmo PnP con los puntos 14 puntos
utilizados es de 1.4 ms.

3.2.6. Movimiento de la boca

En la seccion 2.3.3 se han descrito los calculos del algoritmo implementado para
medir la velocidad de movimiento de la boca. A esta salida se le puede aplicar el
umbralizado que se crea necesario para determinar si el usuario estd hablando o no.
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Probando distintos valores de umbral entre 0 y 0.45 en incrementos de 0.05 se
obtiene la informacion de la Tabla 3.14 y la Figura 3.13.

Threshold 0.00 0.5 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

P 0.48 0.48 0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R 1.00 1.00 1.00 1.00 0.62 0.05 0.00 0.00 0.00 0.00
F, 0.65 0.65 0.89 1.00 0.76 0.10 0.00 0.00 0.00 0.00
ACC 0.48 0.48 0.88 1.00 0.81 0.54 0.52 0.52 0.52 0.52

Tabla 3.14: Métricas de confusion de deteccion de habla y bostezos en funcion del
umbral.

Metrics for talking detection
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Figura 3.13: Métricas de confusion de deteccion de habla y bostezos en funcion del
umbral.

En la Figura 3.13 se visualiza graficamente esta informacion, donde se puede ver
que a medida que aumenta el umbral se realizan menos precisiones pero con mayor
confianza, por lo que la precision del sistema aumenta y el recall disminuye, sin
embargo, en el umbral seleccionado se mantiene un valor alto de ambas dando
resultados muy acertados.

Utilizando un umbral de 0.15 se obtiene un accuracy cercano a 1 para los datos con
los que se ha evaluado el algoritmo.

3.2.7. Apertura de ojos

El EAR calculado como salida del algoritmo de deteccion de la apertura de los ojos
desarrollado en la seccion 3.2.7 puede ser sometido a un umbralizado para determinar si
el ojo estd abierto o no. Para evaluar este algoritmo se utiliza codigo de validez de ojos
del eye tracker como ground truth usando el fragmento de las grabaciones
correspondiente a la tarea 2 del protocolo que consta de una particion balanceada de 10
segundos de ojos abiertos y 10 segundos de ojos cerrados.

En primer lugar se busca encontrar el umbral 6ptimo para el algoritmo probando
distintos valores entre 0.15 y 0.45 en incrementos de 0.05, dando lugar a la informacion
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de la Tabla 3.15 y la Figura 3.14. Una vez seleccionado este valor, se estudia el impacto
que tiene que el usuario lleve gafas en el funcionamiento de este algoritmo separando el

conjunto de datos segun este criterio.

Threshold 0.15 0.20 0.25 0.3 0.35 0.4 0.45
P 0.53 0.57 0.74 0.85 0.98 1.00 1.00
R 1.00 1.00 0.94 0.53 0.20 0.00 0.00
F, 0.69 0.73 0.82 0.65 0.33 0.00 0.00
ACC 0.55 0.62 0.80 0.71 0.59 0.49 0.49
Tabla 3.15: Métricas de confusion de deteccion de ojos abiertos o cerrados. Los valores

booleanos positivo y negativo se corresponden con ojos cerrados y ojos abiertos,

respectivamente.

Métricas para la deteccion de ojos abiertos en funcién del umbral

1.0 1

0.8 -

0.6 q

0.4 4

0.2 4 —— Precission
—— Recall
— F1
0.0 4 —— Accuracy

T T T T T T T
0.15 0.20 0.25 0.30 0.35 0.40 0.45
Threshold

Figura 3.14: Métricas de confusion de deteccion de apertura de ojos en funcion del

umbral.

Sin gafas Con gafas
0.70 0.81
R 0.98 0.87
F, 0.82 0.84
ACC 0.78 0.83

Tabla 3.16: Métricas de confusion de deteccion de ojos abiertos o cerrados para usuarios

con y sin gafas. Umbral 0.25.

El rango de umbrales cercano a 0.25 es el de mayor accuracy y F,. En este rango se

obtiene un recall perfecto manteniendo una precision del 74%.

Los resultados para usuarios con gafas son incluso mejores que para aquellos con

gafas.

Esto se da probablemente por el desbalance de los datos. Conforme crece el

nimero de usuarios aumenta la probabilidad de que el umbral no se acomode

aAn
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perfectamente a las dimensiones de los ojos de todos ellos. Pese a eso, sin necesitar
adecuar los parametros del algoritmo a cada usuario especifico se consiguen resultados
que cumplen con los objetivos del proyecto, detectando casi la totalidad de ocasiones en
las que el usuario cierra los 0jos a cambio de algunos falsos positivos.

3.2.8. Comprobacion de mirada fuera de pantalla

De forma similar a la evaluacion de la estimacion de la mirada (seccion 3.2.3), se
evallan las métricas de confusion del detector de mirada fuera de pantalla recién
calibrado el sistema y unos minutos después (tareas 1 y 5), en las distintas condiciones
de iluminacion grabadas y para usuarios con y sin gafas.

P R I ACC
Tarea 1 0.76 0.44 0.56 0.67

Tarea
Tarea 5 0.80 0.32 0.46 0.64
Iluminancia 150 0.74 0.37 0.50 0.64
(Ix) 2000 0.82 0.39 0.53 0.66
Sin gafas 0.77 0.40 0.52 0.64

Gafas?
Con gafas 0.79 0.35 0.49 0.67
Total 0.78 0.38 0.46 0.65

Tabla 3.17: Meétricas de confusion de deteccion de mirada fuera de la pantalla en
funcion de la tarea, iluminancia y gafas.

En general, aunque la precision del sistema es buena, el recall obtenido tiene un
amplio rango de mejora. Toma un valor del 44% recién calibrado (tarea 1), que
desciende hasta el 32% cuando el usuario se ha movido (tarea 5). Una buena
iluminacién mejora levemente los resultados aunque no es estrictamente necesaria y no
se han encontrado diferencias significativas de rendimiento entre usuarios con y sin
gafas.
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Capitulo 4

Integracion en la plataforma de
neurotecnologia

A lo largo de este trabajo se han desarrollado algoritmos de monitorizacion
independientes que han sido evaluados por separado de forma offline. Como forma de
comprobar la viabilidad y el funcionamiento combinado de todos ellos se desarrolla un
sistema en C++ que los integra en la plataforma de neurotecnologia de Bitbrain,
discutiendo los algoritmos seleccionados y comprobando el funcionamiento del sistema
en una Surface Go 3.

4.1. Diseno y desarrollo del sistema en C++

De acuerdo con los resultados obtenidos durante la evaluacion offline de los
algoritmos, se ha hecho una valoracion con Bitbrain de las tecnologias escogidas para
formar parte del sistema final.

En primer lugar, aunque el framework de MediaPipe estd disponible en C++, no se
ofrece una API de soluciones equivalente a la de Python utilizada a lo largo de este
trabajo, por lo que un port no seria sencillo. Por lo tanto, aunque se ha podido ver su
buen rendimiento, se ha descartado esta opcion como tecnologia utilizada para la
deteccion de rostros y puntos faciales.

El sistema final incorpora el modelo de deteccion de rostros Yunet, deteccion de
puntos faciales mediante DIib y el calculo del centro del ojo mediante el método ad hoc
para la estimacion de la mirada (ver seccion 2,2). Los algoritmos de monitorizacion se
configuran con los mejores umbrales encontrados durante la evaluacion (ver seccion
3.2).

Dado que todos los sistemas de monitorizacion desarrollados independientemente
utilizan y comparten las mismas tres tecnologias base, se combinan todas ellas en un
unico sistema de monitorizacion. El bucle de ejecucion principal puede separarse en tres
etapas (ver Figura 4.1):

1. La primera es la deteccion de rostros en la imagen. Si no hay, ninguno de los
detectores es capaz de generar informacion por lo que no se procede a la
siguiente fase.

2. En caso de encontrar un rostro, se lanza el detector de movimiento y se ejecuta
la deteccion de puntos faciales, cuyo resultado es utilizado para efectuar la
estimacion de la postura, el movimiento de la boca y la apertura de los ojos.
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3. Por ultimo, si el usuario no estd movido ni girado y tiene los ojos abiertos, se
realiza la estimacion de la mirada y la consiguiente comprobacion de mirada
dentro de los limites de la pantalla.

Cuando cualquiera de los algoritmos detecta un comportamiento incorrecto en el 50%
de las ultimas w comprobaciones realizadas genera un evento en la plataforma con el
codigo correspondiente al problema detectado. A mayor w mas fiables son los eventos
generados porque se sabe que perduran en el tiempo, aunque también aumenta el retraso
de envio de los eventos.

M Deteccion de
XN rostros
e Deteccion de \ Cara
. detectada
faciales
Detegcl_on de Postura Movimiento Apertura ojos
movimiento boca
\ / No movido
Ve \ No girado
Ojos abiertos
@ omprobacion
de mirada a
pantalla

Figura 4.1: Bucle de ejecucion del sistema de monitorizacion completo.

4.2. Integracion en la plataforma de Bitbrain

La plataforma de desarrollo es un sistema multiproceso implementado en C++
basado en el patron publicacion/suscripcion en el que los distintos procesos se
comunican entre si utilizando sockets TCP/IP (ver Figura 4.1).

| Data acquisition | [Protocol+processing | [Communication

Acquisition o] Processing _| Application
Module t Module » Module External app.
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' A '
] h 4 :
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] ]
(] ]
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I
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Figura 4.2: Vision general de la arquitectura de la plataforma.
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La plataforma utiliza un bucle de funcionamiento a frecuencia constante en el que el
moddulo de adquisicion toma las sefiales de los sensores, el modulo de procesamiento
opera con ellas generando sefiales y eventos que son utilizados por el médulo de
aplicacion para proporcionar informacion al usuario o a una aplicacion externa.

La plataforma sigue una estructura jerarquica en la que cada modulo se compone de
una o mas unidades que se ejecutan secuencialmente utilizando los sefiales y eventos de
las unidades anteriores (ver Figura 4.3).

Module

nit {n)

input

A 4

A A
C. unit (1)

—» = He P output

c. unit {2)

(

[
Ty
00

Figura 4.3: Vision general de un médulo compuesto de varias unidades.

La integracion del sistema de monitorizacién en la plataforma de neurotecnologia
consiste en el desarrollo de una unidad que toma la informacién de la cdmara como si se
tratara de cualquier otro sensor y la utiliza para generar eventos relevantes que pueden
utilizar las capas de mads alto nivel. Para cumplir con los objetivos de rendimiento
propuestos, esta unidad ejecuta el sistema de monitorizacidén en un proceso concurrente
con una frecuencia de ejecucion independiente a la del resto de la plataforma que puede
ser configurada.

4.3. Demostracion del funcionamiento

El objetivo de esta seccion es determinar qué informacion producida por la unidad
desarrollada es relevante para asegurar la correcta realizacion de cada una de las fases
de una sesion y verificar por medio de un pequefio demostrador que se puede alertar al
usuario cuando no esta realizando correctamente la tarea.

A lo largo del capitulo 3 se ha demostrado la posibilidad de detectar ciertos
comportamientos del usuario mediante técnicas de vision por computador. Algunos de
dichos comportamientos coinciden con las condiciones de realizacion de varias etapas
de las sesiones de Elevvo. En cada una de estas sesiones se pide al usuario que realice
una serie de ejercicios repartidos entre las fases de calibracion y ejecucion. Las tareas de
calibracion sirven al sistema para aprender y adaptarse a los patrones de actividad de la
persona (su frecuencia alfa individualizada) y el nivel de alfa en el momento de
realizacion de la sesion. Estas tareas son dos:

1. Estado de reposo con ojos cerrados.

2. Tarea de conteo con ojos abiertos, donde la persona tiene que contar
mentalmente los cambios de color-saturacion de un cuadrado que aparece en la
pantalla.
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Después de estas dos tareas de calibracion, se realizan los ensayos de neurofeedback. En
estos ensayos las personas ven el mismo cuadrado de la tarea de conteo (tarea 2 de
calibracion), pero ahora el color de ese cuadrado cambia en tiempo real con el nivel de
su ritmo alfa. De esta forma la persona puede buscar estrategias mentales para conseguir
que el cuadrado se ponga de color rojo, lo que significa que esta modificando su ritmo
alfa, aumentandolo, lo que esta relacionado en la literatura con rendimiento cognitivo.

Figura 4.4: Realizacion de la tarea de neurofeedback.

A efectos practicos, se pueden dividir los ejercicios descritos en dos grandes grupos:
aquellos en los que el usuario debe permanecer relajado con los ojos cerrados, y en los
que debe mirar al cuadrado de la pantalla.

e Durante los ejercicios de ojos cerrados: Se comprueba que los ojos estan
efectivamente cerrados. Si a lo largo de los ultimos segundos prevalecen las
detecciones de ojos abiertos sobre cerrados la tarea se advierte al usuario y se
reinicia la tarea.

e Durante los ejercicios mirando al cuadrado de la pantalla: Se comprueba
que los ojos estén abiertos, mirando al centro de la pantalla y sin girar la cara.
De forma similar al ejercicio de ojos cerrados, si se incumple cualquiera de estas
condiciones de manera continuada a lo largo de los ultimos segundos la tarea se
considera invalida, advirtiendo al usuario y reiniciando la tarea.

Independientemente del tipo de tarea, si se detecta una actividad alta de movimientos de
la cabeza o de la boca, también se genera una advertencia y se reinicia la tarea.

A modo de ejemplo, la Figura 4.5 muestra las sefiales del EEG y la IMU del dispositivo
durante una sesion. Se puede observar que tras un movimiento (visible en la IMU) el
sistema de vision genera un evento con codigo 1, que corresponde a “usuario movido™.
Tras otro movimiento en el que el usuario vuelve a la posicion inicial el sistema de
vision envia otro evento, esta vez con cddigo 0 que indica que todas las comprobaciones
son correctas.
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Adicionalmente, la unidad ofrece un modo de depuracion en el que se muestra la
imagen captada por la cdmara junto a informacion adicional calculada por los distintos
algoritmos del sistema (ver Figura 4.6).

0 El 1 i Ev_2nto C Eltisuario se vuelve 4 _Evento: 5 6
usuario se muev Usuario movido Posicién correcta

a colocar adecuadamente

=2

£ = 5
> >
(= [
= =
(o] (&)
= =

0 1 2 3 4 5 6

Figura 4.5: Ejemplo de los eventos generados por la unidad de monitorizacion ante
movimiento del usuario.

0.39268570.311136

Alejese de la camar

Figura 4.6: Iméagen de la unidad de monitorizacion en modo de depuracion.

La unidad puede ser configurada para funcionar a una frecuencia de muestreo
determinada de forma que se pueda reducir su consumo de recursos si se considera
necesario. El tiempo medio de frame medido en la Surface Go 3 es de 64.34 ms, por lo
que se puede alcanzar una frecuencia de hasta 16 fotogramas por segundo.
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Capitulo 5

Conclusiones

El resultado del trabajo desarrollado es generalmente satisfactorio de acuerdo a los
objetivos previamente establecidos.

Se ha desarrollado un conjunto de algoritmos para monitorizar el movimiento y giro
de la cara, el movimiento de la boca, la apertura de la boca y la mirada de los usuarios,
construidos sobre los bloques basicos de deteccion facial, deteccion de puntos faciales y
estimacion de mirada.

En cuanto a los bloques basicos, queda més que comprobado el rendimiento y la
fiabilidad de los detectores faciales actuales y se ha observado la variedad de posibles
aplicaciones de las tecnologias de estimacion de puntos faciales. Sobre la estimacion de
la mirada, sorprende la calidad de los resultados del método ad hoc para el calculo del
centroide del iris mediante técnicas tradicionales de vision por computador frente a una
solucion basada en redes neuronales, con una diferencia media entre ambos resultados
menor a 2 pixeles. Sin embargo, la evaluacion del algoritmo de estimacion de la mirada
muestra que tan solo es suficiente para realizar aproximaciones generales y esta lejos de
ser una sustitucion de los eye tracker con hardware especializado.

Se ha disefnado y llevado a cabo un método experimental para la recogida de datos
implementando las herramientas necesarias para llevar a cabo esta tarea. Los datos
recogidos de 12 usuarios distintos han permitido llevar a cabo una evaluacion offline de
los algoritmos implementados.

Configurados correctamente, la mayoria de los algoritmos de monitorizacion
desarrollados presentan un grado de precision que cumple los objetivos del proyecto,
detectando con un 95% de accuracy la presencia de los usuarios y su movimiento, asi
como cudndo estan hablando. La deteccion de ojos abiertos y de cara girada también
alcanza un grado de exactitud cercano al 80%. La comprobacion de mirada fuera de
pantalla tiene una buena precision, aunque un recall inferior al 50% producido por una
alta cantidad de falsos negativos.

Por ultimo, se ha realizado una demostracion del funcionamiento de todos los
algoritmos de monitorizacion integrados en un sélo sistema funcionando en conjunto
con la plataforma de neurotecnologia de Bitbrain, probando que el sistema puede ser
ejecutado en tiempo real en dispositivos con pocos recursos computacionales.

5.1. Lineas de trabajo futuras

Analizando los resultados obtenidos durante la evaluacion del sistema desarrollado
aparecen varias posibles lineas de trabajo. En primer lugar, tras la evaluacion offline de
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los algoritmos realizada en este trabajo, seria interesante una segunda evaluacion del
sistema completo que se ha integrado en la plataforma de neurotecnologia realizando las
grabaciones en casa de la poblacion objetivo.

En cuanto a posibles mejoras, pese a que los modelos de estimacion de puntos
faciales utilizados presentan resultados razonablemente buenos, su angulo maximo de
deteccion de entre 30° y 45° resulta un factor que limita su funcionalidad. Existen
datasets 2D y 3D recientes con rangos de posturas mdas amplios que podrian ser
utilizados para el entrenamiento de un modelo propio de estimacion de landmarking.

Adicionalmente, aprovechando el hecho de que los usuarios llevan puesta la
tecnologia de EEG durante las sesiones, se plantea la posibilidad de contrastar la
informacion de la actividad cerebral con la visual para hacer estimaciones mas precisas.
Esto podria ser evaluado con el mismo dataset recogido para la evaluacion del sistema
desarrollado en este trabajo.

Por ultimo, aunque el sistema de monitorizacion desarrollado hace un trabajo
destacable en el seguimiento del comportamiento, la comprobacion de la correcta
colocacion de la banda sigue siendo una tarea completamente a criterio del usuario
cuando no esta acompaniado un experto. Por ello seria de gran interés el desarrollo de un
sistema (o ampliacion del desarrollado en este trabajo) para la deteccion de la banda y la
comprobacion de su correcta colocacion.
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Anexos

Anexo 1. Seguimiento del protocolo de grabacion

Sujeto Edad
Condicion de luz Sexo
Tipo de piel (Escala fitzpatrick ) ‘ . .
Otras caracteristicas

Tarea T (s) Tini (s) Comentarios
Calibracion mirada 30
Comprobacion mirada en pantalla 30
Comprobacion mirada fuera de 40
pantalla: L, R, U, D.
Mirar a} frente, 10
0jos abiertos
Ojos cerrados 10
Giro izquierda 10
Giro centro 10
Giro derecha 10
Giro centro 10
Giro arriba 10
Giro centro 10
Giro abajo 10
Giro centro 10
Posicion central 30
Desplazamiento a la izquierda 10
Desplazamiento a la derecha 10
Desplazamiento adelante 10
Desplazamiento atras 10
Hablar 30
Comprobacion mirada en pantalla 30
Comprobacion mirada fuera de 40
pantalla: L, R, U, D
Quitar la banda 10
Salir del cuadro de imagen 10

Tabla A1.1: Tabla de seguimiento del protocolo de grabacion.
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Comentarios antes de comenzar la sesion

Para evitar confusiones durante la grabacion del protocolo se hacen algunos apuntes
y aclaraciones al sujeto antes de comenzar:

e Puesta en contexto general del estudio que se esta realizando, las tareas que se
van a realizar y el tiempo total de la grabacion.
e Diferencias entre los verbos mirar, mover y girar.

o Mirar: Quieto, moviendo los ojos.

o Mover: Mirando a la pantalla, moverse en la direccion indicada sin salir
del cuadro de imagen.. Se puede utilizar la silla con ruedas para realizar
los movimientos.

o Girar: Rotar el cuello sin mover el cuerpo. Los giros se realizan
lentamente y hasta el limite (coémodo) de movimiento. Una vez
alcanzado el limite, permanecer en esa hasta ser notificados.

e Se pueden hacer preguntas si hay alguna duda durante la realizacion de las tareas
pero se pide no hablar en la medida de lo posible.

e Aviso de que la primera comprobacion de ojos se realiza nada més empezar la
grabacion.

Pasos previos a la grabacion.

1. En primer lugar se muestra la cdmara para que adopten una posiciéon cémoda y
adecuada, centrando el rostro en la pantalla.

2. Se pide que sigan los pasos necesarios para la colocacion de la banda.

a. Retirar el pelo de la frente y las orejas.

b. Limpiar las zonas de la piel que entraran en contacto con los sensores de
la banda con una toallita himeda que se proporciona.

c. Colocar la banda correctamente, centrando en el eje vertical la marca
central de la banda con la nariz, con los sensores en contacto con la piel,
apoyada sobre las orejas.

3. Calibracion del eye tracker. Realizar el proceso de calibracion, consistentes en
seguir con la mirada una serie de puntos que aparecen uno a uno en el centro y
esquinas de la pantalla, y después comprobar la calidad de la calibracion. Si la
calibracion es mala, mover ligeramente al sujeto y repetir este paso.

4. Comprobacion de la senal de EEG. Una vez conectada la banda, se comprueba
la calidad de las sefales de los 5 canales de la banda, si la sefial es mala, corregir
o recolocar completamente la banda.

5. Comenzar la grabacion mirando al centro de la pantalla. La posicién inicial se
toma como referencia para el calculo del giro absoluto mediante la integracioén
de las sefiales de la IMU.
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Anexo 2. Calibracion de la camara

La calibracion de camara es un proceso fundamental en el &mbito de la vision por
computador cuyo objetivo es determinar los pardmetros internos o intrinsecos y los
externos o extrinsecos de la camara. Estos pardmetros permiten corregir distorsiones de
camara asi como la reconstruccion de escenas 3D a partir de las imagenes 2D captadas.

e Los parametros intrinsecos describen las propiedades de la camara, como la
distancia focal, el centro Optico y los coeficientes de distorsion radial y
tangencial.

e [ os parametros extrinsecos definen la posicion y orientacion de la camara en el
sistema de coordenadas del mundo real, habitualmente utilizando el tablero de
calibracion como origen de coordenadas.

Coordenadas de X
imagen y

Coordenadas del Coordenadas de

mundo camara

N <

Figura A2.1: Transformacion de coordenadas del mundo a coordenadas de imagen.

Los parametros extrinsecos se definen en forma de matrices rotacion R y traslacion
T. Se pueden combinar en una sola matriz extrinseca M,=/R|T]. Los extrinsecos son el
vector de cuatro componentes de distorsiones radial y tangencial en los dos ejes, y la
matriz de la cdmara conteniendo el centro Optico ¢ y la distancia focal /' en una misma
matriz M,.

0 ¢

R_x T_-r fx X

M, = 3x3 13x1 M. =|0 y ¢
01,3 1

0 0 1

Habitualmente, la calibracion se realiza reconociendo en iméagenes tomadas por la
camara patrones conocidos en forma de tablero, siendo los mas conocidos los métodos
de Tsai [89] y Zhang [88]. Se toman 15 imagenes del patrén de la Figura A2.2 con la
camara interior de la Surface, a la misma resolucioén que se toman en el sistema final.
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Figura A2.2: Patron de calibracion utilizado.

Dado que todos los dispositivos utilizados incorporan la misma webcam, se asume
que comparten los mismos parametros ya que el pequefio rango de error individual no
resulta critico en las aplicaciones en los que se estan usando los pardmetros de la
camara,
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Anexo 3. Variedad de la muestra de sujetos

Este anexo esta dedicado al estudio de la muestra de sujetos participantes en el
conjunto de datos recogido en este trabajo. Todos los sujetos utilizados para las
grabaciones han sido voluntarios de Bitbrain.

En la tabla A3.1 se muestra la desglosada de cada uno de los sujetos.

Sujeto POI | P02 | PO3 | P04 | PO5S | PO6 | PO7 | POS | P09 | P10 | P11 | P12
Edad 39 | 43 | 24 | 46 | 29 | 25 | 26 | 28 | 28 | 41 | 42 | 49
Sexo (H/M) H M M | H | M|H|M|H M| M| H|H
Tipo de piel (1-7) 2 2 13 24| 3|22 ) 3
Gafas (S/N) N| N/ N|S|N|S |  N|S|N|N/|S | N

Tabla A3.1: Perfil de los sujetos grabados.

Intervalos de edad

Distribucion de colores de piel .

4 e
8,3% 8,3% 4

33.3% 2

<25 25-30 30-35 3540 40-45 >45

(a) Color de piel (b) Edad
Figura A3.1: Distribucion de color de piel y edad de los sujetos grabados.

De los 12 sujetos utilizados, 4 de ellos llevaban gafas durante la grabacion. En
especial, el sujeto 4 utiliza gafas con filtro de azules que provocan reflejos mas notables.
Todos los sujetos estan entre el valor 1 y el 4 en la escala Fitzpatrick, faltando muestra
de la mitad mas oscura de la escala, no es una muestra suficiente para hacer estudios
significativos. Algo similar ocurre con el rango de edades de la muestra, todos los
sujetos tienen entre 24 y 49 afios. En cuanto a sexo, la muestra estd perfectamente
balanceada entre hombres y mujeres, con 6 sujetos en cada grupo.
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Anexo 4. Herramientas utilizadas

La implementacion de los distintos algoritmos desarrollados Python 3.11, utilizando
como librerias principales OpenCV 4.9 para las tareas de vision por computador,
NumPy 1.26, Pandas 2.2.1 para las operaciones y el manejo de datos y matplotlib 3.8.3
para la visualizacion de resultados.

Se ha utilizado Python también para las herramientas auxiliares desarrolladas como
postprocesado de los videos para ponerlos a tiempo real, la sincronizacion de las
medidas de los algoritmos con las de la plataforma y la evaluacién de los algoritmos.

El programa de grabacion estd implementado en C++ como un modulo integrado en
la plataforma de neurotecnologia, al igual que el sistema final de monitorizacion.

Se ha utilizado un repositorio de Gitlab para el control de versiones y la
comparticion de codigo con Bitbrain.

Uno de los requisitos definidos en la seccion 2.1 es el de limitar las tecnologias
utilizadas a aquellas de software libre en la medida de lo posible. En la Tabla A4.1 se
muestra un resumen de las librerias y modelos utilizados junto con las licencias a las
que estan sujetas.

Tecnologia SPDX ID
OpenCV Apache-2.0
Numpy BSD-3-Clause
Pandas BSD-3-Clause
Matplotlib PSF-2.0
Dlib BSL-1.0
MediaPipe Apache-2.0
MTCNN MIT
AHRS Apache-2.0
face_detecion_yunet_2023mar.onnx Apache-2.0
res10_300x300 _ssd_iter 140000 MIT
shape_predictor_68 face landmarks.dat El dataset 300-W en el que est4 entrenado prohibe

uso comercial [95].

Tabla A4.1: Licencias de las tecnologias utilizadas.

Todos las las tecnologias a excepcidon del modelo utilizado para deteccion de puntos
faciales son software libre que permiten uso comercial. Mas informaciéon de cada una en

[96].
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Anexo 5. Etiquetado de datos

En la evaluacion de los algoritmos de monitorizacidon es necesario conocer los
fragmentos de tiempo en los que se sabe con certeza que el usuario esté realizando cada
tarea. Para esto se revisan los videos mientras se etiqueta manualmente cada una de las
tareas del protocolo, apuntando su tiempo de inicio y final, la etiqueta y su valor en un
fichero .json que acompafiara a los datos grabados.

En ocasiones, ademas de la tarea, se apunta la subtarea que se esta realizando u otra
informacion relevante. En la Tabla AS5.1 se muestran las etiquetas aplicadas a cada

video.

Etiqueta Valores
task 1,2,3,4,5

sub_task 1 _points_screen, 1 _look away, 4 center, 4 moving, 4 talking, 5 points screen,
5 look away, out of screen

bad horizontal |0, 1
bad_vertical 0,1

in_screen 0,1

talking 0,1

Tabla AS5.1: Etiquetas aplicadas a las grabaciones. Nota: Aunque la informacion de las
etiquetas in_screen y talking es redundante se mantiene por motivos de comodidad

durante las evaluaciones.
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Anexo 6. Evaluaciones real

izadas

A modo de resumen, la Tabla A6.1 muestra una lista de las pruebas realizadas para
la evaluacion de los algoritmos implementados, las razones de su realizacion y los datos

utilizados para ello (ground truth y tar

eas del protocolo).

Descripcion

Motivacion

gGround truth Tareas

Deteccion facial

Métricas de confusion de los modelos

utilizados

Accuracy en funcién de la iluminacion.

Seleccion del modelo

Accuracy en funcién de accesorios.

Tiempo de ejecucion medio.

Etiquetado

Etiquetado

Etiquetado

Detecc

i6n de puntos faciales

Precision de la estimacion en funcion del
angulo de rotacion.

Tiempo de ejecucion medio.

Seleccion del modelo.

Estimaciéon de mirada

Diferencia entre centro del iris calculado por
método ad-hoc y MediaPipe.

Seleccion del modelo.

Eye tracker

Métricas de error tareas 1y 5.

Comprobar efecto del movimiento
en la estimacién

Eye tracker

Métricas de confusion tareas 1y 5.

movimiento en la estimacion.

Métricas de error en funcién de la 1.5
iluminacion i Eye tracker
. - Comprobar robustez a oclusiones
Métricas de error en funcion de accesorios. Eye tracker
Tiempo de ejecucion medio. Seleccién del modelo. -
Deteccién de movimiento
hehitzs el coilslan @ ey G Seleccion del threshold. Etiquetado 4
threshold.
Estimacion de postura
Métricas de error de los modelos Dlib y L
MediaPipe. Seleccion de modelo. IMU
Comprobar angulos limite de ajuste IMU
Rotacién estimada frente a real. de los modelos. 3
Métricas de confusién en funcion del Etiquetado
threshold. Seleccion del threshold. q
Tiempo de ejecucion medio. -
Movimiento de boca
MEnES @D Eemisln C MWeD G0 gy i el Etiquetado 4
threshold.
Apertura de ojos

Métricas de confusiéon en funcion del Seleccion del threshold.
threshold.

o - - Etiquetado 2
Metrlcas_ de confusién en funcion de Comprobar robustez a oclusiones.
accesorios.

Comprobacion de mirada fuera de pantalla
Comprobar el efecto del Etiquetado 1.5

Universidad
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Métri nfusién en funcién | mprobar robustez a oclusiones. .
_ et_cas”de confusion en funcion de la:Comp Etiquetado
iluminacion.
Métri nfusién en funcion .

ét cas de confusiobn en funcion de Etiquetado
accesorios.

Tabla A6.1: Resumen de las evaluaciones realizadas sobre el conjunto de datos

adquirido.
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