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RESUMEN

En la era digital actual, la cantidad de información generada y disponible ha crecido
exponencialmente, lo que plantea un desaf́ıo significativo en términos de su recuperación
y uso eficiente. Este desaf́ıo se intensifica cuando se trata de datos multimodales,
es decir, aquellos que combinan texto, imágenes, audio y otros tipos de datos. La
complejidad de estos datos multimodales requiere el desarrollo de técnicas avanzadas
para obtener representaciones latentes de forma que sean recuperables.

Para enfrentar estos desaf́ıos, se han desarrollado modelos y algoritmos espećıficos
que permiten la creación de representaciones vectoriales de datos multimodales. En este
trabajo, se utiliza CLIP (Contrastive Language-Image Pre-training), un modelo de red
neuronal profunda que ha demostrado ser eficaz en la creación de representaciones
vectoriales conjuntas para texto e imágenes. CLIP entrena simultáneamente sobre
grandes cantidades de datos textuales e imágenes para aprender una representación
conjunta en un espacio latente común.

Se analizan tres propiedades clave de las representaciones latentes obtenidas
mediante CLIP: brecha intermodal, desalineamiento y agrupación. La brecha
intermodal se refiere a la distancia que puede existir entre las representaciones
de diferentes modalidades (por ejemplo, texto e imagen) para conceptos similares.
El desalineamiento ocurre cuando las representaciones de las mismas entidades o
conceptos no se superponen adecuadamente entre modalidades. La agrupación describe
la tendencia de las representaciones a formar clústeres o agrupaciones en el espacio
latente, lo cual puede ser beneficioso o perjudicial dependiendo del contexto.

En este trabajo, se evalúan diversos enfoques para mitigar el desajuste entre
representaciones multimodales. Se exploran adaptadores espećıficos diseñados para
mejorar la clasificación, aśı como modificaciones geométricas en la representación
vectorial que buscan reducir las distancias intermodales. Estos métodos se analizan
detalladamente para comprender su impacto en la alineación y eficacia de las
representaciones latentes.

Además, se implementan técnicas avanzadas de optimización del entrenamiento
para mejorar las representaciones latentes. Se desarrolla una herramienta de
visualización que permite observar de manera geométrica el proceso de optimización,
proporcionando una visión clara de cómo evolucionan las representaciones durante el
entrenamiento. Los modelos se entrenan utilizando diversas funciones de coste y se
trabaja con datos multilingües para evaluar la robustez de las representaciones.
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Caṕıtulo 1

Introducción

1.1. Contexto

A lo largo de la historia hay una variable cuyo crecimiento es incuestionable: la
información, en todas sus formas, manuscritos, arte, diagramas, fotograf́ıas y todas sus
formas digitales. Más allá de la búsqueda manual, los primeros intentos de modernizar
y automatizar la búsqueda de los elementos de un catálogo se realizaron por parte
de Emanuel Goldberg, cuya colección de patentes incluye una máquina mecánica
de búsqueda de patrones en un rollo de peĺıcula. Continuado con la aproximación
mecánica, Calvin Mooers [1] propuso en 1950 el uso de tarjetas perforadas con el fin
de indexar los elementos de una colección. Fue en este momento cuando el término
information retrieval (IR), recuperación de información en español, fue creado y
empleado ampliamente desde entonces.

Con el avance de la digitalización y la miniaturización de la electrónica, se comenzó
a construir en la década de los 60 y 70 los primeros sistemas de búsqueda digital. Estos
sistemas eran capaces de buscar sobre elementos indexados únicamente debido a las
restricciones de memoria presentes.

Desde los años 80 hasta mediados de los 90 se popularizó una nueva aproximación:
indexado a través de un modelo de espacio vectorial. La técnica más popular es el
indexado semántico latente [2], mediante esta aproximación se determina en primer
lugar la matriz de ocurrencia de la base de datos (matriz con las ocurrencias de una
palabra en todos los documentos), posteriormente debido a su gran tamaño se realiza
una aproximación de bajo rango (SVD) y la búsqueda se realiza en este espacio reducido
con el vector de ocurrencias comprimido.

En la actualidad la búsqueda vectorial presenta una multitud de ventajas sobre
su alternativa clásica. Gracias a los avances en el campo de la inteligencia artificial y
técnicas de sensado comprimido, se permite la búsqueda rápida, eficiente y sobre todo
multimodal. Esto quiere decir que el vector que representa un elemento en la colección
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de datos, puede provenir de diversas fuentes y estas se podrán recuperar desde el resto
de modalidades; por ejemplo, la búsqueda de imágenes a través de texto o de imágenes
similares entre śı.

Una vez establecidas las bases y la historia de los sistemas de búsqueda y
recuperación de información, se observa que presentan dos componentes principales:
un codificador que convierte los datos provenientes de cualquier modalidad en su
representación vectorial y, por otro lado, un sistema de búsqueda vectorial. En cuanto
a la implementación de este último, no resulta trivial, sobre todo para sistemas de
datos masivos. Este trabajo se centra en las propiedades deseadas en la representación
vectorial para una correcta búsqueda y el efecto que tiene modificarlas. La aproximación
que se lleva a cabo es la modificación del sistema codificador, aśı como la función de
pérdidas de este durante el entrenamiento.

1.2. Objetivos

Los objetivos de este trabajo se centran en abordar los desaf́ıos asociados con la
representación eficiente y efectiva de datos multimodales utilizando el modelo CLIP
. En primer lugar, el objetivo es realizar un entrenamiento eficiente y optimizado del
sistema, aprovechando técnicas avanzadas para mejorar las representaciones vectoriales
conjuntas de texto e imágenes.

En segundo lugar, se pretende profundizar en la comprensión de métricas espećıficas
de desajuste multimodal como la brecha intermodal, el desalineamiento y la agrupación.
Estas métricas son cruciales para evaluar la coherencia y la efectividad de las
representaciones latentes obtenidas por CLIP , permitiendo identificar áreas de mejora.

Finalmente, se busca analizar y reducir el efecto del desajuste en las representaciones
multimodales, especialmente considerando datos multilingües. Esto implica la
exploración de adaptadores (sistemas adicionales de proyección), y modificaciones
geométricas en las representaciones vectoriales para mitigar las discrepancias entre
modalidades y mejorar la robustez de las representaciones frente a diferentes contextos
lingǘısticos.

En resumen, los objetivos principales incluyen el entrenamiento eficiente del modelo
CLIP , la comprensión detallada de métricas de desajuste multimodal y la reducción
del efecto del desajuste mediante técnicas avanzadas de optimización y adaptación de
representaciones. Estos objetivos no solo contribuyen al avance teórico en el campo
de las representaciones multimodales, sino que también tienen aplicaciones prácticas
significativas en la mejora de sistemas de recuperación de información en entornos
digitales multimodales.
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1.3. Planificación y desarrollo

Se muestra en la figura 1.1, un diagrama de Gantt realizado a lo largo del proyecto.
A continuación, se exponen brevemente las distintas fases del trabajo realizado. El
primer paso para un trabajo de investigación es la revisión de la literatura existente del
problema en cuestión. Para este trabajo ha sido el proceso con mayor dedicación sin
duda alguna, esto se debe a dos motivos, el primero es la necesidad de documentarse
hasta ponerse al d́ıa tanto con los sistemas como con las técnicas y aproximaciones
mencionadas. Por otro lado, teniendo en cuenta el gran ritmo que existe hoy en d́ıa en
cuanto a creación de art́ıculos cient́ıficos, sobre todo en un campo en auge como el de la
inteligencia artificial, se requiere de un esfuerzo continuo para mantenerse actualizado
con el campo o para transferir técnicas utilizadas para resolver problemas semejantes.

Una vez obtenida la información y determinado el sistema que se va a realizar, se
construye un entorno de desarrollo en el que se permiten hacer las pruebas pertinentes
para entrenar el sistema. Posteriormente, se deben de seleccionar las bases de datos
a utilizar y caracterizarlas. A posteriori, con el entorno de desarrollo construido se
realizan optimizaciones al sistema con el fin de minimizar los recursos necesarios
y finalmente se realizan diversos entrenamientos con las modificaciones propuestas.
Finalmente, se procede al análisis de resultados y presentación de los mismos.

Figura 1.1: Diagrama de Gantt para el desarrollo del proyecto.
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1.4. Gúıa de la memoria

Esta memoria se encuentra compuesta por cinco caṕıtulos y cinco anexos, a
continuación, se procede a enunciar brevemente el contenido de cada uno de ellos.

Caṕıtulo 1. Introducción: En este caṕıtulo se presenta un breve resumen de la
memoria, la planificación temporal y la presente gúıa.

Caṕıtulo 2. Los embeddings, el entrenamiento contrastivo y el modelo CLIP:
Este caṕıtulo presenta el concepto de embedding o representación latente, el
modelo usado, CLIP y el entrenamiento no supervisado contrastivo.

Caṕıtulo 3. El problema del desajuste multimodal: Una vez se conoce el
funcionamiento del sistema propuesto para búsqueda multimodal de información,
se presenta el problema de la brecha o desajuste multimodal. Se expone su
origen, cómo cuantificarlo y las técnicas que se han utilizado para solventarlo.
Adicionalmente, se muestran las técnicas implementadas para mejorar la
eficiencia de recursos durante el entrenamiento.

Caṕıtulo 4. Bases de datos: En este caṕıtulo se exponen y caracterizan las bases
de datos empleadas para validar los resultados.

Caṕıtulo 5. Experimentación y análisis de resultados: Una vez descrito el
problema y elegidas las bases de datos, se procede a la fase experimental. Primero,
se realiza un pequeño experimento en el que se visualizan las funciones de coste
para distintas distribuciones espaciales, con una finalidad de aumentar la intuición
sobre el problema. Posteriormente, se replican resultados de otras aproximaciones,
pero haciendo uso de estas bases de datos y posteriormente se toma una nueva
visión al problema proponiendo funciones de coste alternativas.

Caṕıtulo 6. Conclusiones y ĺıneas futuras: Finalmente, en este caṕıtulo se da un
paso atrás y se intenta tomar un punto de vista lejano con el fin de extraer las
conclusiones del trabajo realizado y contextualizarlos en el marco de los resultados
existentes.
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Caṕıtulo 2

Los embeddings, el entrenamiento
contrastivo y el modelo CLIP

2.1. El concepto de embedding

El concepto de embedding o vector de representación hace referencia a una
representación vectorial asociada a un dato. Esta representación requiere de forma
general un espacio vectorial cuya dimensión es mucho menor a la del dato, un
codificador que permite la codificación del dato y finalmente una medida de similitud
en este nuevo espacio vectorial latente o comprimido.

Los primeros sistemas de extracción de caracteŕısticas comenzaron en la década
de los 50 para sistemas de indexado y búsqueda en documentos de textos. Las
primeras aproximaciones se basan en el conteo de la frecuencia relativa de cada
palabra en un documento [3]. De esta forma, cada dimensión del vector representa
la frecuencia relativa de una palabra en el documento y por consecuencia, se tiene
que documentos con frecuencias relativas similares para un subconjunto de palabras se
encuentran agrupados entre śı y distantes del resto. Esta aproximación presenta una
gran desventaja: la frecuencia relativa de las palabras en un idioma no es constante.
Por ello se propone posteriormente la ponderación de la frecuencia relativa en todo el
idioma [4].

El mayor salto en capacidad de modelado de lenguaje se produce en 2013 con
la aparición del modelo Word2Vec [5], mediante el uso de redes neuronales. La idea
reside en predecir la siguiente palabra dado un texto de entrada. Se tiene una ventana
deslizante que recorre el texto, en cada paso se intenta predecir la palabra central
con las palabras cercanas a modo de contexto 1. Estos vectores, pese a ser entrenados
con el esquema propuesto anteriormente, la representación presenta dos propiedades
a destacar: la primera es la agrupación semántica de palabras. En ningún momento,

1El método descrito se conoce como continuous bag of words, las palabras se predicen con una
ventana continua.
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se entrena de forma directa la asociación de palabras semánticamente similares en
regiones cercanas del espacio vectorial, pero explotando las cualidades estad́ısticas de
texto se consigue. Por otro lado, se tiene que los vectores responden a una cierta
aritmética vectorial lineal; p. ej. (E[rey]−E[hombre]) + E[mujer] ≈ E[reina], donde
E representa el vector de caracteŕısticas o embedding asociado a la palabra.

Hasta este momento las técnicas descritas se centran en el modelado de lenguaje,
no se trata de una coincidencia que los primeros avances en la representación o
búsqueda de información, hayan sido en esta modalidad. El texto o lenguaje, por
su propia naturaleza discreta, facilita el proceso de incrustación u obtención de una
representación vectorial. Se considera el texto como una modalidad de información
discreta debido a que su unidad elemental, el grafema, forma parte de un conjunto
discreto. A partir del grafema, la primera unidad que posee significado es la palabra,
esta a su vez se compone de una ráız o lexema y un morfema 2, de esta forma muchas
de las cualidades que se desea en la representación vectorial se obtienen por la propia
naturaleza del lenguaje. La modalidad de la imagen no tiene esta suerte. A su pesar
la información que contiene por lo general es mayor que una descripción asociada a
ella, la extracción de la semántica a partir de la imagen se convierte en una tarea más
dura. Esto no implica que en alguna de las dos modalidades exista información que
no esté presente en el resto, en ese caso no carece de sentido considerar las distintas
modalidades debido a que en ese caso con una única se tiene toda la información
necesaria.

Una vez expuesto el concepto de embedding o vector de representación, es intuitivo
desear obtener una representación vectorial del conocimiento a través de distintas
modalidades. En el marco de este trabajo se consideran las modalidades de texto
e imagen. Se desea una representación conjunta de forma que ambos vectores se
encuentren cercanos en el espacio de representación conjunto. Hasta ahora, se ha hecho
amplio uso de las palabras cercano y representación conjunta, pero su interpretación no
presenta una solución trivial ni generalizada para cualquier problema de representación
de información. En primer lugar, se debe de definir una distancia o norma en el
espacio vectorial, de esta forma se tienen distancias pequeñas para representaciones
semánticamente similares y viceversa. Finalmente, queda por determinar el mecanismo
de obtención de la representación conjunta, este depende de diversos factores: la
disponibilidad de datos anotados, la función de coste, la dimensión del vector, etc.

2Un ejemplo de la estructura elemental semántica de las palabras se tiene al considerar como lexema
pequeñ- y añadiendo morfemas gramaticales como sufijos se forman las siguientes palabras -a; pequeña
o -ito; pequeñito.
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2.2. Entrenamiento contrastivo

En el ámbito de aprendizaje automático existen tres paradigmas de aprendizaje: en
primer lugar, el aprendizaje supervisado, que tiene como objetivo predecir las etiquetas
proporcionadas durante el entrenamiento. Estas etiquetas pueden ser clases, en ese caso
se trata de un problema de clasificación, por lo contrario, si se tiene etiquetas numéricas
se trata de un problema de regresión. El aprendizaje no supervisado, presenta como
caracteŕıstica principal la innecesariedad de etiquetas para los datos del entrenamiento.
En este caso, el algoritmo busca explotar algún tipo de estructura presente en los datos,
identificando las similitudes entre diferentes caracteŕısticas de los datos. En este caso,
el resultado del modelo puede ser una agrupación o bien un vector o embedding de
dimensión reducida con respecto a la entrada. Aśı, se tiene que estas nuevas dimensiones
han condensado las diferencias entre ejemplos. Finalmente, se tiene el aprendizaje
reforzado, para aplicar este paradigma se tienen que dar las siguientes condiciones:
en primer lugar, poseer de un conjunto de estados de entorno S mediante el cual
interactúa el agente, un conjunto de acciones A que puede tomar y finalmente las reglas
de recompensa π(s), tanto asociadas a la transición entre estados como a la recompensa
inmediata. De esta forma se trata de maximizar la recompensa asociada a un estado
y una acción. Este tipo de técnicas se utilizan ampliamente para resolver problemas
de optimización cuyos ĺımites son extremadamente grandes, por ejemplo motores de
evaluación o juego de ajedrez, optimización en problemas de loǵıstica o automatización
de robots, entre otros. El gran problema que presenta esta aproximación es la dificultad
de cómputo o la simulación del entorno junto con el agente, por ejemplo si se desea
simular un robot interactuando en un escenario virtual, para una sola acción se deben
de simular todas las colisiones asociadas al motor de f́ısica del entorno además del
propio modelo del agente y la constante computación de la función de coste.

Para la aplicación de las diversas técnicas de aprendizaje automático es crucial el
conocimiento del problema que desea abordar. En la Figura 2.1 se detalla, a grandes
rasgos, un proceso de identificación de la categoŕıa de aprendizaje automático a utilizar.
Para ello es necesario conocer el resultado que se quiere obtener junto a la disponibilidad
de los datos.

La supervisión en un sistema hace referencia a la capacidad o disposición de las
etiquetas asociadas a cada dato. Hasta ahora se ha presentado como una cualidad
que existe o no, pero no es aśı, de hecho existe un gran espectro de supervisión
en diversos problemas. Con el fin de ilustrar los diversos grados de supervisión, se
considera un problema de clasificación de imágenes de animales. Suponiendo que se
posee un conjunto de imágenes en el que aparen únicamente 10 especies distintas. Se
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Figura 2.1: Clasificación de los paradigmas de aprendizaje automático.

tiene que se podrá entrenar un modelo, que dada una nueva imagen, sea clasificada
entre las 10 especies con las que ha sido entrenado. Este es el ejemplo clásico de
aprendizaje completamente supervisado. En el otro extremo, se tiene únicamente
un conjunto de imágenes sin su correspondiente etiqueta. Mediante algoritmos de
agrupación se consigue explotar atributos estad́ısticos de las imágenes y tras un proceso
de agrupación, se observa que el algoritmo ha conseguido realizar la clasificación3 entre
animales terrestres y acuáticos. Este es un ejemplo de un paradigma de aprendizaje no
supervisado. Finalmente, a continuación se considera que se tienen parejas de imágenes
junto con pies de foto, obtenidos a partir de un proceso de búsqueda en revistas de
naturaleza. En este caso no se tiene un problema de clasificación dado que no existe un
número predeterminado de etiquetas. Por el contrario, si se trata como un problema no
supervisado, se estaŕıa perdiendo la información que puede añadir las correspondientes
descripciones o pies de foto. En este caso la supervisión no es nula ni total, a este tipo
de problemas también se les conoce con el nombre de supervisión débil o propia.

El aprendizaje mediante supervisión propia (SSL4), tal y como se expone en [6], se
puede realizar desde dos aproximaciones distintas: los métodos contrastivos y los no
contrastivos. A continuación, se detallan exponiendo su principio de funcionamiento,
aśı como diversos paradigmas existentes de cada uno.

3No debe considerarse como un problema de clasificación como tal, dado que no se tienen etiquetas
expĺıcitas y, por lo tanto, el modelo desconoce el objetivo deseado.

4Del inglés: Self Supervised Learning, traducido como aprendizaje mediante supervisión propia.
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− SSL Contrastivo: Sea {xi} un conjunto de muestras de entrada de forma que
cada una de ellas posee su correspondiente etiqueta yi ∈ {1, 2, ..., L}, entre las
L posibles clases. Se desea aprender una función fθ : X → Rd tal que codifica
xi en un vector de representación d dimensional, de forma que se consigue que
ejemplos pertenecientes a la misma clase posean vectores similares y viceversa.
Por lo tanto, el entrenamiento contrastivo parte de una pareja de ejemplos (xi, xj)
y minimiza la distancia entre los embeddings cuando pertenecen a la misma clase
y en caso contrario la maximiza. En este caso se define la siguiente función de
pérdidas:

Lcont(xi, xj, θ) =1[yi = yj]∥fθ(xi)− fθ(xj)∥2
2+

1[yi ̸= yj] máx{0, ϵ− ∥fθ(xi)− fθ(xj)∥2
2}

(2.1)

Donde 1[yi = yj] representa una matriz con unos en los elementos yi = yj y de
forma similar, 1[yi ̸= yj] en los ı́ndices disjuntos. Adicionalmente, se introduce el
hiperparámetro ε, de forma que representa una cota inferior de la distancia entre
parejas no correspondientes.

La mayor dificultad de los métodos contrastivos reside en la búsqueda de los
ejemplos negativos. Para ello habitualmente se hace uso de técnicas de aumento
de datos, por ejemplo con las imágenes se realizan rotaciones y recortes aleatorios.
En el caso de que se disponga de ejemplos negativos anotados manualmente, el
resultado será mejor que mediante técnicas de aumentado de datos, en este caso
el nivel de supervisión aumenta. Un ejemplo de este tipo de aproximación se
tiene en [7], partiendo de fotograf́ıas de rostros se entrena de forma contrastiva
una red neuronal convolucional, de forma que los ejemplos pertenecientes a la
misma persona se encuentran cercanos en el espacio latente. A diferencia de
haberlo entrenado de una forma totalmente supervisada, como un problema de
clasificación, se tiene que mediante el entrenamiento contrastivo la red neuronal
aprende una codificación que maximiza la separabilidad entre rostros. Por lo
tanto, aunque no haya sido entrenado en un rostro en particular, se puede obtener
la representación vectorial asociada a este. A posteriori, mediante una métrica,
determinar la similitud entre ejemplos sin necesidad de volver a entrenar el
modelo. A esta categoŕıa pertenecen los algoritmos como InfoNCE [8] o SimCLR
[9], los cuales actualmente suponen las bases del entrenamiento contrastivo.
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− SSL No-Contrastivo: A diferencia del entrenamiento contrastivo, las técnicas
no contrastivas únicamente hacen uso de los ejemplos positivos. Pese a que existen
muchas aproximaciones, todas ellas parten de la misma idea: dado una pareja de
ejemplos, estos se codifican a un espacio latente de forma similar a los métodos
contrastivos, a diferencia de estos no se calcula la similitud entre ellos, sino que
se realiza una proyección a un espacio dimensional de mayor dimensión5 en el que
śı que se calcula la métrica entre proyecciones. Este tipo de técnicas presentan
problemas de convergencia de forma que la representación latente colapsa a cero,
de esta forma la función de coste (distancia entre vectores) se minimiza, por lo
que se requieren de técnicas de regularización que permitan la convergencia a un
mı́nimo local y no el global trivial. A esta categoŕıa pertenecen métodos como:
Barlow-Twins [10] o I-Jepa [11], en el ámbito multimodal.

2.3. El modelo CLIP

Antes de detallar el modelo CLIP, se procede a explicar atentamente el modelo
ConVIRT [12] dado que la mayoŕıa de ideas de CLIP proceden de este. En el caso
de ConVIRT, se pretende obtener una representación conjunta de imágenes médicas
junto con diagnósticos, de forma que los vectores densos puedan ser utilizados para
tareas posteriores como clasificación o búsqueda de imágenes a partir de descripciones
textuales. En primer lugar, la aproximación utilizada es de tipo contrastivo, inspirado
en el reciente éxito de este tipo de métodos, tal y como se expone en Representation
learning with contrastive predictive coding [8] y SimCLR [9].

Partiendo de un conjunto de imágenes xv emparejadas con sus respectivas
descripciones xu, se pretende aprender una función parametrizada fv de forma que
se asigna a cada imagen un vector hv ∈ Rd, de la misma forma se define un codificador
de texto fu que transforma cada descripción a un vector hu ∈ Rd. A cada una de estas
representaciones se les aplica finalmente una transformación no lineal gu y gv de forma
que se tienen los vectores v y u, a estos se les aplica la función de coste contrastiva tal
que las parejas similares se encuentren cerca y viceversa.

Debido a la escasez de datos etiquetados de aplicación médica, se propone el uso de
técnicas de aumento de datos o transformaciones que se aplican a los datos de entrada.
Para el caso de las imágenes, se tiene una distribución de posibles transformaciones,
T de forma que la imagen de entrada al modelo es la transformación de dicho dato
x̃v = tv(xv). La descripción textual se obtiene muestreando de forma uniforme una

5Esta dimensión intermedia es mayor que la del vector denso llegando a ser en ocasiones la inicial,
en ese caso se tiene un proceso de compresión-reconstrucción.
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frase perteneciente al informe médico asociado a dicha imagen, de esta forma se tiene
x̃u = tu(xu). Para el caso de las transformaciones de las imágenes se muestrean de forma
secuencial y aleatoria imágenes resultantes de las siguientes modificaciones: recorte,
volteado horizontal, transformación af́ın, ajuste de brillo y desenfoque gaussiano. En la
figura 2.2, se presenta el esquema de la arquitectura de ConVIRT con la nomenclatura
expuesta anteriormente.

Hasta ahora se ha hecho referencia a los codificadores de imagen y texto de una
forma genérica, en el caso de ConVIRT, se tratan de arquitecturas basadas en redes
neuronales profundas. Para la modalidad del texto, se hace uso de únicamente la parte
codificadora de BERT [13], una arquitectura de tipo transformer. Por otro lado, para
la modalidad de imagen, se hace uso de una red neuronal convolucional en concreto,
tipo ResNet50 [14]

Figura 2.2: Diagrama de la arquitectura ConVIRT. 6

La arquitectura de CLIP se encuentra ampliamente inspirada en la descrita
anteriormente, se simplifica ligeramente tanto la arquitectura como el proceso de
aumento de datos, gracias a la amplia disponibilidad de parejas de imagen y texto
de carácter general. Finalmente, aprovechando los últimos desarrollos en modelos de
visión, se introduce una alternativa basada en transformer para el codificador de
imagen.

6Fuente: Zhang, Y. et al. [12].
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2.3.1. Arquitectura

Tal y como se ha comentado anteriormente, en el caso de CLIP [15] se produce
una simplificación de la arquitectura. En primer lugar, se elimina la última capa de
proyección no lineal, esta no tiene mucho sentido si se posee una red con suficientes
capas, de esta forma las tareas de proyección se trasladan a la propia red. Por otro
lado, se simplifican las transformaciones a considerar únicamente recortes en la parte
de imagen. En la modalidad de texto se introduce directamente la descripción asociada
a la imagen gracias a que estas son mucho más cortas, aun aśı, se limita la longitud
del texto a 77 tokens. Finalmente, se entrena adicionalmente el valor de temperatura
τ asociado a la capa softmax de cada modalidad, esto se puede interpretar como una
pseudo-calibración entre modalidades.

Figura 2.3: Diagrama de la arquitectura de CLIP.7

Para CLIP se define la similitud como el producto coseno8, de esta forma,
considerando que los vectores densos se encuentran normalizados mediante la norma
eucĺıdea (∥ · ∥2), este es equivalente a realizar el producto escalar entre los vectores. El
resultado de aplicar el producto coseno a todos los elementos de un lote es una matriz
cuadrada simétrica, de forma que los elementos de la diagonal contienen la similitud
coseno entre las parejas correctas y el resto entre los pares cruzados. En la figura 2.3
se observa la creación de esta matriz a partir de imágenes y textos. De esta forma,
se pretende maximizar el valor de la diagonal y a su vez alejar el resto, para ello se
hace uso de la entroṕıa cruzada de cada fila (búsqueda mediante texto) y columna
(búsqueda mediante imagen), utilizando como etiquetas los ı́ndices de la diagonal.

7Fuente: OpenAI [15]
8Se define el producto coseno como el producto escalar normalizado: ⟨u, v⟩ = u·v

∥u∥·∥v∥
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2.3.2. Proceso de entrenamiento

De forma general, a continuación, se presenta el algoritmo de entrenamiento para un
sistema como CLIP. En primer lugar, se obtienen los vectores densos a partir de cada
modelo, estos vectores se ven normalizados mediante la norma eucĺıdea para encontrarse
en una esfera d-dimensional (d = 768 para el modelo de CLIP en cuestión), de esta
forma el producto escalar presentará valores contenidos entre -1 y 1. A partir de los
logits, definidos en el paso 5 del algoritmo 1, se obtienen las probabilidades predichas
mediante la función softmax. Estos logits hacen de valores predichos en la función de
coste, de esta forma se desea que el producto a maximizar sea la pareja asociada a la
diagonal. En este caso, se definen dos términos en la función de pérdidas, cada uno
de ellos asociado a la comparación entre el ejemplo correcto de la modalidad de texto
con todas las imágenes de la tirada y viceversa, esto se traduce a considerar la matriz
transpuesta de logits.

La elección de la entroṕıa cruzada como función de coste no se realiza de una forma
arbitraria, esta se deriva de la expresión óptima para un criterio de maximización de
verosimilitud en un clasificador bayesiano. En el caso que se estudia, no se trata de un
problema de clasificación clásico; sin embargo, dado que se considera una única pareja
como la correcta en una tirada se puede ver como un problema con un número de
clases igual al tamaño del lote y cuyo único ejemplo positivo es la pareja de imagen y
texto correspondiente. De esta forma, se tiene CE = −∑N

i=1 yi log p(y = i|x) con yi la
etiqueta real y softmax(logits) la predicha por el modelo. A continuación, se muestra
un algoritmo que contiene la implementación de CLIP en pseudocódigo.

Algoritmo 1 Implementación en pseudocódigo de CLIP
1: If ← codificador imagen(imagen)
2: Tf ← codificador texto(texto)

3: Inorm ← ∥If∥2
4: Tnorm ← ∥Tf∥2

5: Logits ← ⟨Inorm, Tnorm⟩ · eτ ▷ ⟨u, v⟩ denota el producto escalar entre u y v

6: Etiquetas← [1, 2, 3, ..., N ]
7: Li ← CE [Logits, Etiquetas]
8: Lt ← CE

[
LogitsT , Etiquetas

]
9: L ← (Li + Lt)/2

Actualmente, la mayoŕıa de modelos se entrenan mediante el uso de procesadores
gráficos, debido a la necesidad de realizar operaciones vectoriales de una forma eficiente.
Dicho esto, existen limitaciones tanto con la memoria disponible como la velocidad
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de procesado. El mecanismo de entrenamiento descrito en el algoritmo 1, presenta el
mayor cuello de botella en la memoria requerida para calcular los vectores densos. Los
modelos una vez cargados en memoria no requieren más de 2 GB, considerando que
todos sus pesos y gradientes se encuentran en el tipo de dato float32. La mayor parte
de la memoria se requiere para cargar las imágenes y los gradientes asociados a ellas,
el aumento del número de datos en una iteración es prácticamente lineal por lo que
con los recursos disponibles (24 GB), adicionalmente, mediante el uso de técnicas de
optimización descritas en el caṕıtulo 3.3, se logra tener un tamaño de lote máximo de
90 imágenes y descripciones.

Para tareas clásicas como el entrenamiento de un modelo para clasificación mediante
aprendizaje supervisado, la limitación del tamaño de lote no supone un gran problema,
en el caso del entrenamiento contrastivo, es un parámetro crucial. Dado que el
entrenamiento contrastivo se basa en la diferencia entre ejemplos, el cálculo del
gradiente entre ellos se realiza únicamente si pertenecen al mismo lote.

2.3.3. Aplicación a la clasificación y búsqueda

La gran ventaja de este tipo de modelo es la capacidad de generalización a través
de un entrenamiento previo, para ello CLIP ha sido entrenado con una variedad
de conjuntos de datos entre los que se incluyen MS-COCO [16]. La capacidad de
aprovechar el conocimiento previo junto con pocos ejemplos o ningunos de la nueva
tarea recibe el nombre de few-shot o zero-shot respectivamente, en este aspecto CLIP
representa un gran salto debido a la versatilidad que ofrece en un amplio abanico de
tareas.

Ahora bien, si se desea hacer uso de CLIP como un clasificador, se han de calcular
los logits descritos anteriormente y aplicar la transformación softmax: σ(xi) = exi∑N

j=i
exj

,
de esta forma se logra transformar un vector de puntajes a un vector de probabilidades
para cada clase. En la figura 2.4 se muestra un ejemplo de la clasificación de imagen,
aśı como la predicción de texto a partir de la imagen (clasificación de texto).
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Figura 2.4: Diagrama de clasificación mediante CLIP.9

Por otro lado, se tiene la tarea de recuperación o búsqueda de información, para
ello, en lugar de aplicar la transformación softmax, se trabaja con el valor del producto
coseno directamente, el escalado por temperatura es una constante que a la hora
ordenar los resultados resulta irrelevante. Para esta tarea, se definen las métricas de
retrieval R@k, con k un entero positivo, esta métrica mide el porcentaje de veces
que el resultado relevante se encuentra entre los k primeros elementos. Un factor
crucial para esta métrica es el tamaño de la muestra, para muestras con un número
reducido de elementos, se tienen valores elevados con mayor facilidad porque los k

primeros elementos suponen una parte significativa de la muestra. Por el contrario, un
tamaño de muestra elevado dificulta el valor de R@k, sobre todo si se tienen ejemplos
similares. Finalmente, para comparar distintos valores de R@k es crucial compararlos
con el mismo tamaño de muestra y esta práctica se asegura durante todo el trabajo
estandarizándolo al mismo valor que el tamaño de lote: 90 muestras.

9Fuente: OpenAI [15]
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A continuación, se presenta un esquema de diseño para una aplicación de búsqueda
vectorial en la figura 2.5. El principio de funcionamiento es sencillo: se obtienen las
representaciones vectoriales para todas las entradas de la base de datos y para realizar el
proceso de búsqueda simplemente se devuelve los elementos más cercanos a la búsqueda,
en este caso, se considera como métrica el producto coseno definido en el punto 2.3.1.
La principal limitación de estos sistemas es la escalabilidad con esta aproximación
simple, requiere el cálculo y almacenamiento de la distancia entre todas las posibles
parejas de datos de la base de datos. Tanto el cómputo como la memoria requerida
crecen mediante la norma O(n), totalmente insostenible para BBDD masivas. Para
solucionarlo, se recurren a búsquedas subóptimas, normalmente basadas en algoritmos
de agrupación o grafos.

Figura 2.5: Diagrama de un sistema de búsqueda vectorial CLIP.
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Caṕıtulo 3

El desajuste multimodal

3.1. La brecha intermodal

Dado que por defecto se opera en un espacio altamente dimensional (768 para
la versión utilizada de CLIP), la visualización de los vectores no se puede realizar
directamente. Con el fin de aumentar la interpretabilidad en problemas con vectores
con un número de dimensiones elevado, a lo largo de los años se han desarrollado
una multitud de técnicas de proyección. La finalidad de este tipo de técnicas es
la representación en un espacio con una dimensionalidad menor, pero preservando
cualidades o atributos de la distribución en el espacio original, de forma que permitan
la interpretación. Las técnicas más populares son el análisis de componentes principales
o PCA en el ámbito lineal y si se consideran proyecciones no lineales, las técnicas más
populares son t-SNE [17] y UMAP [18].

Al realizar la proyección a un espacio bidimensional mediante todas estas técnicas,
se tiene que existe una brecha entre la posición de los vectores de una modalidad con
respecto a los de la otra. Este fenómeno, tal y como se puede apreciar en la figura
3.1 persiste en diversas arquitecturas o modelos entrenados mediante el entrenamiento
contrastivo autosupervisado.

Figura 3.1: Proyección mediante UMAP de los vectores densos intermodales para
diversos modelos representación vectorial.1
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El análisis realizado por Liang, W. et al. [19] interpreta la brecha intermodal como
la distribución de los vectores densos de cada modalidad en un cono de la hiperesfera.
A modo ilustrativo, se muestra en la figura 3.2 el efecto cono ilustrado en una esfera,
cabe destacar que los vectores únicamente se encuentran en la corteza esférica debido
a que se encuentran normalizados, además se trata de una gran simplificación debido
a la incapacidad del ser humano a comprender espacios de mayor dimensión que tres.

Figura 3.2: Ilustración del efecto cono.

A continuación, se resumen las tres causas de la existencia de la brecha intermodal
expuestas por Liang, W. et al. [19].

− Sesgo en las arquitecturas: adjudica a las propias arquitecturas la preferencia de
proyección a un cono del espacio global de representación. Para ello, se obtienen
los vectores densos de 5.000 imágnenes del conjunto de datos MSCOCO con
3 modelos distintos (ResNet, ViT y Transformer de texto), posteriormente se
calculan las medias de los productos coseno (0.56, 0.47, 0.51) respectivamente y
el mı́nimo valor de este (0.23, 0.05, 0.01). Esto indica que la distribución de los
vectores se encuentra en un cono y no a lo largo de toda la corteza.

− Cada inicialización aleatoria genera su propio cono: se muestrean 25
inicializaciones aleatorias para diversas arquitecturas, se obtienen los vectores
resultantes de cada una y se proyectan mediante UMAP. Se observa en la figura
3.3 que cada una de las inicializaciones aleatorias proyecta los vectores en un
cono distinto de la hiperesfera, además este fenómeno está presente en todas las
arquitecturas analizadas tanto texto como imagen.

1Fuente: Liang, W. et al. [19].
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− El objetivo final del entrenamiento contrastivo mantiene la brecha intermodal:
para demostrar este lema, se entrena CLIP de forma que se compensa la
brecha intermodal mediante el proceso descrito en B.1, se observa que pese a
la compensación se vuelve a generar la brecha y de hecho, tiende al valor que
presentaba esta originalmente.

Figura 3.3: Visualización UMAP de vectores obtenidos mediante inicializaciones
aleatorias.2

3.2. Métricas: desalineamiento y la agrupación

Con el objetivo de cuantificar la brecha intermodal, se propone como métrica la
distancia entre la media de los vectores de cada modalidad. Considerando xi, yi ∈ Rd

como los vectores correspondientes a cada modalidad, la Brecha Intermodal
cuantifica la distancia entre la media de los vectores asociados a cada una de las
modalidades, véase la ecuación 3.1. Volviendo al ejemplo de los conos en la hiperesfera,
seŕıa análogo a considerar el centro de los conos, no tiene en cuenta la elongación o
anchura ocupada en la superficie.

Brecha Intermodal ≜ ∥E[xi]− E[yi]∥2 (3.1)

Las métricas que se proponen continuación se describen en el trabajo presentado
por Wang, T. e Isola, P. en [20], en él se presenta un análisis de las propiedades de
alineamiento y uniformidad en un proceso de optimización mediante un entrenamiento
contrastivo. Se hace referencia al alineamiento y la uniformidad, de forma que se
consideran como funciones de pérdidas, por lo que se desean minimizar. En este trabajo
se hará referencia a estas métricas como desalineamiento y agrupamiento, de
forma que se facilite la comprensión de los resultados.

El desalineamiento se define como el error cuadrático medio entre los vectores
correspondientes a un mismo ejemplo, pero entre ambas modalidades, su expresión
queda detallada en la ecuación 3.2. Este error se minimiza cuando ambos codificadores

2Fuente: Liang, W. et al. [19].
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proyectan al mismo punto de la hiperesfera tanto la descripción como la imagen
correspondiente a esta.

Desalineamiento ≜ E[∥xi − yi∥2
2] (3.2)

La medida del agrupamiento o de la uniformidad, como se presenta en [20], no
es una tarea trivial. En primer lugar, se exige que la métrica de agrupamiento sea
asintóticamente correcta, es decir, que el valor esperado sea 0 cuando se trata de
distribución uniforme y además, se requiere que sea razonable con un número finito
de puntos. Por lo tanto, se consideran las funciones base radiales (RBF), en concreto
potencial gaussiano Gt : Sd × Sd → R+ con Gt(u, v) ≜ e−t∥u−v∥2

2 = e2t·uT v−2t, t > 0,
esta función presenta una ı́ntima relación con la distribución óptima de puntos en
una esfera [21]. Dado que en [20] se propone hacer uso de esta métrica como una
función de pérdidas, se le aplica una transformación logaŕıtmica al valor esperado del
potencial gaussiano. El agrupamiento, véase la ecuación 3.3, mide la concentración en
la distribución de las diferencias entre vectores pertenecientes a la misma modalidad,
se realiza este cálculo en ambas modalidades y se promedia.

Agrupamiento ≜
1
2 log(E[e−2∥xi−xj∥2

2 ]) + 1
2 log(E[e−2∥yi−yj∥2

2 ]) (3.3)

3.3. Técnicas de optimización del entrenamiento

Tal y como se ha comentado con anterioridad, el entrenamiento de este tipo de
modelos es intensivo en cuanto al uso de memoria se refiere. Los equipos usados por
OPEN-AI para el entrenamiento original constan de 256 tarjetas gráficas Nvidia V100,
cada una de 32 GB. Nuestro equipo es un poco más modesto, constando en su totalidad
de una única tarjeta gráfica de 24 GB. De esta forma es evidente la necesidad de
optimizar este proceso de entrenamiento. Para agravar la situación, se debe de tener en
cuenta que en el entrenamiento contrastivo, el tamaño de lote juega un papel crucial.
Dado que las etiquetas o la supervisión se obtiene entre los propios ejemplos, un mayor
tamaño de lote permite una mayor extracción de la información de los ejemplos. A
continuación se detallan tres técnicas con el fin de optimizar al máximo los recursos
disponibles, en concreto la limitación de memoria.

3.3.1. Puntos de control de gradientes

Una técnica ampliamente utilizada para reducir memoria durante el entrenamiento
de modelos consta en descartar gradientes para liberar memoria y calcularlos en
el momento. A la hora de entrenar un modelo de redes neuronales profundas
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mediante backpropagation o propagación hacia atrás de los gradientes, se computa
un grafo que posteriormente se diferencia. Este grafo contiene la información sobre las
transformaciones aplicadas a los datos y, por lo tanto, mediante autodiferenciación se
puede obtener el gradiente a la salida con respecto a cualquier nodo. Para computar
el gradiente con respecto a cada nodo, se requiere almacenar los valores de los nodos
intermedios. Mediante el uso de puntos de control de gradientes, se descartan estos
valores en todos los nodos no designados puntos de control. De esta forma, se consigue
liberar memoria, pero sacrificando un tiempo de ejecución mayor, dado que ahora se
deben de calcular los valores de los gradientes en los nodos que se han descartado
durante la pasada hacia atrás.

Adicionalmente, se ha estudiado otra técnica común para entrenar con mayor
memoria de la que seŕıa posible, llamado acumulación de gradientes. Se basa en
calcular de forma independiente los gradientes de distintos lotes, almacenarlos y hacer
la optimización con el conjunto de los gradientes. De esta forma, teóricamente se
permite una convergencia más uniforme y libre de ruido propia de un tamaño de tirada
mayor. Esta técnica no es conveniente para el aprendizaje contrastivo, dado que este
se basa en la relación entre los distintos ejemplos de una tirada. Esta es una de las
grandes limitaciones del aprendizaje contrastivo, su gran demanda de memoria durante
el entrenamiento y la necesidad de un tamaño de lote elevado.

3.3.2. Entrenamiento de las últimas capas

Una aproximación común para realizar un ajuste fino en los modelos grandes es
el entrenamiento selectivo de las últimas capas. De esta forma se congelan los pesos
de todas las capas con excepción de algunas próximas a la salida del modelo. Dado
que el problema de la brecha intermodal es un problema de representación, son estas
últimas capas las que mayor influencia tienen en este problema. Normalmente, las
arquitecturas de redes neuronales profundas presentan un sesgo de diseño, de forma
que la información se organiza de forma jerárquica conforme se atraviesan las capas. De
esta forma, por ejemplo, para el caso de la imagen, se ha demostrado que las primeras
capas responden a la detección de patrones y texturas, mientras que las últimas realizan
tareas de representación de la información. De esta forma, se puede interpretar como
un proceso de destilación de la información mientras se va atravesando la red.

En nuestro caso, se ha probado al entrenamiento de la red mediante este tipo de
técnicas, pero al final se ha optado por la descomposición de bajo rango. Entrenado
únicamente las dos últimas capas de ambos modelos y mediante el uso de puntos
de control de gradientes, se logra tener un tamaño de lote de 128 ejemplos. Si bien
se obtiene un ahorro considerable de memoria, se concluye que los resultados son
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altamente dependientes en cuanto al número de capas congeladas. Además de esto,
los resultados obtenidos en MS-COCO empeoran en la gran parte de los casos con
respecto al punto de partida. Esto se debe a que CLIP se encuentra en un máximo
local desde un punto de vista de la optimización. Este punto es altamente sensible a
los parámetros de entrenamiento, por lo que ante la imposibilidad de optimizar todo
el conjunto de pesos, los resultados que se obtienen empeoran. Desde un punto de
vista forma, se puede interpretar como al congelar gran parte del modelo, se tiene
que el subconjunto de tareas que presentan solución se ha reducido considerablemente.
De hecho, es probable que la nueva tarea no presente una solución de forma teórica,
partiendo de aquellas representaciones intermedias y teniendo en cuenta el número
reducido de parámetros entrenables.

3.3.3. Adaptación de bajo rango mediante descomposición de
pesos (DoRA)

Gracias a la creciente popularización en los últimos años de los modelos de lenguaje
de gran tamaño, se ha desarrollado diversas técnicas que permiten el ajuste fino de
estos sin la necesidad de entrenar por completo todo el modelo. Una de las técnicas
más populares, LoRA fue introducida por Hu, E. et al. [22] en 2021, se presenta la
adaptación de bajo rango como solución a los requisitos exuberantes de memoria y
recursos requeridos para entrenar el modelo por completo. La adaptación de bajo rango
consiste en congelar cada una de las capas de los pesos correspondientes al modelo y
entrenar, de forma paralela, matrices de descomposición de rango. Se puede observar en
la figura 3.4 como estas matrices proyectan a una dimensión inferior, adicionalmente,
contienen un número de parámetros mucho menor que cada capa de pesos. De esta
forma se combina a la salida de los pesos el resultado del modelo original y el resultado
de la descomposición y recomposición de bajo rango.

De forma semejante, DoRA [23] se basa en la descomposición de bajo rango, pero
además se realiza una descomposición adicional del vector en magnitud y fase. Se ha
demostrado emṕıricamente que se mejoran los resultados mediante el entrenamiento
separado del vector de magnitudes y la matriz de fases. En otras palabras, se aplica
el mismo procedimiento que LoRA a la matriz de fases, y las magnitudes se entrenan
directamente mediante el optimizador elegido. En la figura 3.4, se observa de forma
visual la descomposición adicional en fase y magnitud.
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Figura 3.4: Esquema de los métodos de descomposición de bajo rango, DoRA y LoRA.

23



Caṕıtulo 4

Bases de datos

4.1. Microsoft COCO: common objects in text

COCO (Common Objects in Context) es una colección de datos para tareas de
detección, segmentación y descripción de imágenes con el fin de mejorar los sistemas
para esas tareas. Fue desarrollado por Microsoft para superar las limitaciones existentes
en conjuntos de datos de detección de clases en los que el número de clases es reducido
y además no se ofrece información adicional de contexto. De esta forma, en MS-COCO
se tiene tanto una segmentación multiclase como diversas descripciones de la escena.
En el caso en cuestión, se hace uso de las descripciones como frases de búsqueda y el
objetivo es recuperar la imagen que se describe.

La colección total consta de unas 120.000 imágenes para entrenar, en muchos casos
con más de una descripción para cada una y 20.000 imágenes para la evaluación. A
continuación, en la figura 4.1, se presentan 3 imágenes pertenecientes a MS-COCO
junto a sus descripciones.

Figura 4.1: Ejemplos de MS-COCO junto a sus descripciones.
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4.2. Pictogramas ARASAAC

Los sistemas aumentativos y alternativos de comunicación (SAAC) son formas
de expresión diferentes al lenguaje hablado. Mediante el uso de este tipo de
sistemas posibilitan la comunicación de individuos que, debido a una discapacidad o
analfabetismo, seŕıa imposible. Entre las causas de uso de un SAAC, se encuentran la
discapacidad intelectual, la parálisis cerebral, diversas enfermedades neurológicas como
la esclerosis lateral amiotrófica (ELA), el párkinson o simplemente el desconocimiento
del idioma, esto último es frecuente en centros de acogida de refugiados.

En este caso, se hace uso de una base de datos de un sistema pictográfico
desarrollado por el Portal Aragonés de Comunicación Alternativa y Aumentativa
(CAA). Junto al Sistema Pictográfico de Comunicación (SPC), componen los sistemas
de CAA con mayor difusión del páıs.

El sistema se compone de 12260 pictogramas ampliamente etiquetados. A
continuación, en la figura 4.2 se muestran un par de pictogramas a modo de ejemplo.
Adicionalmente, en el anexo A, se encuentran los archivos .json correspondientes a
este par de ejemplos junto a una tabla explicativa de todos los campos. En estos, se
disponen de las etiquetas de los pictogramas tanto en inglés como en español, esto
permitirá la evaluación del modelo en un escenario multilingüe.

Figura 4.2: Pictogramas de ejemplo correspondientes a abuela y antena.

Dado que CLIP ha sido entrenado con frases o descripciones en lugar de etiquetas,
se ha demostrado que se mejora el resultado de la búsqueda considerablemente si se le
introduce un prefijo introductorio o prompt. Por lo tanto, para las etiquetas en español
se busca mediante la frase: Una imagen de {keyword1}, {keyword2}, ... De forma
análoga, para el caso de las etiquetas en inglés se tiene: A picture of {keyword1},

{keyword2}, ...
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4.3. Preprocesado de datos

Ambas bases de datos, están formadas mediante imágenes en una carpeta y un
archivo json con los diversos campos. Como se está trabajando con la libreŕıa PyTorch,
es necesario convertir tanto las imágenes como los textos a un formato compatible con
PyTorch. Se define una estructura de datos propia de Pytorch, llamada Dataset. En
esta se deben de implementar los métodos de carga inicial de datos y la indexación
de un subconjunto de estos. Al hacer uso de esta estructura, mediante el uso de
un DataLoader permite agilizar la carga de datos, relegando a este las funciones de
concurrencia y manejo de lotes.

En la figura 4.3, se muestra el preprocesado de datos de una forma visual. A
continuación, se detallan cada una de las partes.

Figura 4.3: Esquema de ingesta de datos.

En cuanto a las imágenes, dado que la lectura a muchos ficheros es más lenta
que a un único fichero con todos los datos, se pretende agrupar las imágenes en un
único fichero. Se elige el formato .npy gracias a la posibilidad de almacenar los datos
con un entero de 8 bits (uint8) en lugar de un valor en coma flotante de 32 bits
(float32). Este paso es crucial dado que es la única forma de contener todo el conjunto
de datos en memoria RAM. En caso de no haber sido aśı, se produciŕıa una ralentización
considerable, llegándose a pasar la mayor parte del tiempo cargando datos. Además
del cambio de formato, es crucial escalar las imágenes al tamaño indicado (224x224).
Para no realizar esta tarea con cada imagen entrante al modelo, se escala una única
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vez antes de guardarlos en el formato .npy.
Por otro lado, el procesado de los textos es mucho más sencillo. En el caso de

MS-COCO, únicamente es necesario extraer el texto relacionado con la descripción y
almacenarlo junto al prefijo en otro archivo json. Para el caso de los pictogramas, se
deben de extraer de los campos jerárquicos todos los keywords asociados al ejemplo
en cuestión. Posteriormente, se añade el prefijo y también se almacena en un archivo
json.
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Caṕıtulo 5

Experimentación y análisis de
resultados

En el anexo B, se realiza una revisión bibliográfica de los métodos existentes para
mitigar la brecha intermodal. A continuación, se resume a grandes rasgos los objetivos
de cada método.

− Desplazamiento de vectores: Liang, W. et al. [19] proponen una primera
aproximación basada en realizar un desplazamiento a los vectores de cada
modalidad. De esta forma, se pretende tener el cono de ambas representaciones
alineado.

− Adaptadores para clasificación: se detalla la evolución de los adaptadores de CLIP
usados para tareas de clasificación. En particular, cabe destacar Tip-X [24], donde
se tiene en cuenta la inconsistencia del espacio vectorial de imagen.

− CyCLIP: se presenta una función de coste con el objetivo de solventar la
inconsistencia intramodal. A breves rasgos, se pretende incluir la calibración de
los espacios intramodales en la función de coste del model, de esta forma se tienen
que todos los productos son consistentes entre śı.

La aproximación que se toma para analizar el efecto de la brecha intermodal es
partir del modelo CLIP ya entrenado y realizar un ajuste fino mediante cambios en
la función de coste. Por ello, se han propuesto un total de 2 funciones de coste, cada
una de ellas intentando remediar diversas propiedades de la representación. Ambas
funciones de coste, se deben de implementar como términos adicionales a la entroṕıa
cruzada descrita en 1.

Inspirados en trabajos como la función de coste propuesta por Kanchana, R. et al.
[25], se pretende modificar la función de pérdidas de forma que se optimiza directamente
la ortogonalidad entre los vectores densos. De esta forma definimos la siguiente función
de coste ortogonal Lo.
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Lointra
= −α

N∑
i=1
| ⟨xi, xi⟩ |+

N∑
i=1

N∑
j=1
j ̸=i

| ⟨xi, xj⟩ | (5.1)

Lointer
= −α

N∑
i=1
| ⟨xi, yi⟩ |+

N∑
i=1

N∑
j=1
j ̸=i

| ⟨xi, yj⟩ | (5.2)

Siguiendo con la idea de inter/intra modalidad, se define la función de coste
ortogonal para los productos inter e intra modales. Se tienen para representaciones
latentes de vectores pertenecientes a la misma modalidad (| ⟨xi, xj⟩ |), tanto como para
el producto cruzado (| ⟨xi, yj⟩ |). Además, se proporciona un parámetro ajustable α, de
forma que modula el efecto en la representación, asociado a las parejas correctas.

Inspirado por la idea de la representación en un cono, se puede interpretar de
una forma sencilla que la apertura de este cono es proporcional a la varianza de los
productos de las representaciones. Dado que se desea optimizar la separabilidad entre
representaciones latentes, una forma de forzar esto es mediante la optimización de la
varianza.

Aśı, se tiene que para representaciones ortogonales entre śı, todos los elementos
serán perpendiculares, por lo que el producto coseno asociado a esto es 0. De esta
forma se puede ver la minimización de la varianza como una extensión de la función de
coste presentada en las ecuaciones 5.2 y 5.1, pero con un momento de segundo orden.
Se debe de matizar que optimizando únicamente la varianza en la representación, se
llega a una solución óptima en la que todos los vectores se proyectan en el mismo punto.
Para evitar esto, se requiere de tener presenta en la función de coste el optimizador de
primer orden que condicione la ortogonalidad.

A diferencia del caso anterior, no se va a implementar para los escenarios inter e
intra modales, se calcula únicamente para la matriz de productos coseno intermodales.
El razonamiento detrás de esta decisión es no agravar el efecto cono ya presente por la
arquitectura, como se ha expuesto anteriormente en 3.1.

Para empezar, se define el vector de varianzas S2, asociada a la matriz de productos
coseno intermodales de un lote, mediante el estimador sesgado de varianza. Es necesario
calcular de forma separada la varianza asociada a las parejas cruzadas (elementos
fuera de la diagonal) con la de las parejas correctas. Esta última es nula para el caso
intramodal, su producto coseno es 1 dado que son el mismo vector. De esta forma, se
define S2

�I
como el vector de N elementos que contiene la varianza de los elementos no

pertenecientes a la diagonal. Para los elementos de la diagonal se tiene que la varianza
es directamente un número, S2

I .
Ambas varianzas se logran mediante el estimador sesgado de varianza, definido de
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forma general en la ecuación 5.3. El argumento que minimiza el estimador sesgado y
no sesgado de varianza es el mismo en ambos casos. Por tanto, a efectos prácticos, la
función de pérdidas de cara a la optimización es equivalente.

S2 = 1
N

N∑
i=1

(di − d̄i)2 (5.3)

Lσ = −β(S̄2
I + S2

�I
) (5.4)

De esta forma, se pretende que al optimizar la ortogonalidad entre parejas
intermodales y no correspondientes, se llegue a una matriz de productos coseno
intermodales con elementos cercanos a cero fuera de la diagonal y próximos a 1 en
esta. Se puede ver como la minimización de la varianza en ese caso es ventajosa, de
forma que implementa una restricción de uniformidad entre parejas cruzadas. Puede
resultar similar a la idea de la consistencia intramodal de CyCLIP, pero en este caso
se implementa mediante la varianza de los productos coseno.

Tanto la optimización de la ortogonalidad como la de la varianza, se incorporan
junto a la entroṕıa cruzada, de forma que se tienen las combinaciones en las ecuaciones
5.5, 5.6 y 5.7. Este paso es crucial, dado que si no se incorpora la entroṕıa cruzada, no
se optimiza directamente la tarea de recuperación de información.

LCE+o = LCE + Lo (5.5)

LCE+σ = LCE + Lσ (5.6)

LCE+o+σ = LCE + Lo + Lσ (5.7)
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5.1. Visualización de la función de coste para un
caso teórico

Una buena forma de entender el objetivo de cada función de coste, resulta por
visualizar el valor asociado a una configuración geométrica en el espacio vectorial. Para
ello, se propone generar vectores en un espacio tridimensional esférico (norma unidad)
de forma que se asemeje al problema original. La distribución que se usa para esta
finalidad es la Power Spherical Distribution [26]. Se trata de una distribución que
permite generar puntos de forma uniforme en una hiperesfera, variando el centro de la
distribución, aśı como un parámetro de concentricidad κ. Se muestra en el anexo C la
interfaz junto a los resultados que muestra.

Modificando el valor de la concentricidad se pueden simular el efecto que tendŕıa
un cono con una mayor o menor abertura. A continuación, en la figura 5.1 se muestra
el efecto de variar el parámetro de concentricidad.

Figura 5.1: Efecto de la concentricidad κ en la distribución.

En cuanto a las métricas de interés, cabe destacar que la medida de desalineamiento
no es posible con esta configuración. Debido al proceso generativo, no se realiza
una asignación de parejas próximas, de forma que simulen vectores correspondientes
al mismo ejemplo. Esto significa que únicamente se miden las estad́ısticas de las
representaciones, cualquier asociación de pares correctos no queda representada en
este modelo. Por tanto, cabe esperar que la entroṕıa cruzada sea elevada y sobre todo
significativa al modificar la representación.

Con este modelo se pretende obtener una intuición para los parámetros de brecha
intermodal y agrupación. En cuanto a la agrupación, se observa que es proporcional al
factor de concentricidad encargado de generar la distribución. Además, dado que son
distribuciones en un espacio esférico, se tiene que tienen simetŕıa radial (contenida en
la corteza esférica), con respecto al punto centra o media. Expresada en la ecuación
3.3, la función de base radial presenta una medida simétrica con respecto al centro de
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la distribución de los vectores. Se observa en la tabla 5.1 cómo, en efecto, la agrupación
se encuentra totalmente correlada con el valor de concentricidad κ.

κ Agrupación
200 -0.07
50 -0.265
10 -0.842

Tabla 5.1: Medida de agrupación en función de la concentricidad.

En cuanto a la brecha intermodal, tal y como se describió en la ecuación 3.1, se
mide el producto coseno de los centros de los conos generados por cada modalidad.
Se propone realizar un barrido para la variable esférica θ, de forma que se aumenta la
brecha intermodal. En la figura 5.2, se observan los vectores correspondientes a la media
de cada una de las modalidades. Junto con los valores de la tabla 5.2, se observa cómo
el valor de la brecha intermodal es proporcional al ángulo entre ambas modalidades.

Figura 5.2: Simulación de la brecha intermodal inducida.

θ Brecha intermodal
0◦ ≈ 0
45◦ 0.77
90◦ 1.40
180◦ 1.98

Tabla 5.2: Brecha intermodal en función de θ.

Para evaluar el efecto de las funciones de coste, obtienen los valores de las funciones
de coste para diferentes configuraciones. Para el caso que nos concierne, únicamente
se evalúan los términos adicionales, dado que cómo se ha descrito anteriormente, las
parejas no se generan siguiendo un criterio de proximidad. De esta forma, se tiene
que la entroṕıa cruzada entre parejas es la equivalente de una elección aleatoria. Por
lo tanto, esta es invariante a la configuración geométrica tanto en ángulo como en
concentricidad.
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En la tabla 5.3 se presentan los resultados en función del ángulo θ entre
distribuciones generadoras. Dado que se mantiene un valor de concentricidad constante
(κ = 500), se tiene que las pérdidas intramodales no vaŕıan. Se observa cómo, en efecto,
la función de pérdidas ortogonal intermodal presenta un mı́nimo en la configuración
ortogonal.

θ Lointra
Lointer

LCyCLIP Lσ

0◦ 1.94 1.94 3.91 ≈0
45◦ 1.94 1.37 3.92 -8.13·10−3

90◦ 1.94 0.00 3.93 -1.63·10−2

180◦ 1.94 1.94 3.91 ≈0

Tabla 5.3: Valor de las funciones de pérdidas para distintos ángulos θ.

Adicionalmente, en la tabla 5.4, se presentan los valores de las funciones de pérdidas
en función de la concentricidad κ. Se ve que CyCLIP, tiene un valor de alto para
configuraciones muy uniformes, a diferencia del resto de términos analizados. El término
asociado a la varianza presenta una magnitud considerable en el menor caso de las
concentricidades, queriendo realizar la configuración aún más uniforme. Finalmente,
en cuanto a los términos ortogonales, se tiene que la función de pérdidas disminuye
inversamente proporcional a la agrupación. Esto se debe al simple hecho de requerir
un grado de apertura de cono para que comience a poder ser ortogonal.

κ Lointra
Lointer

LCyCLIP Lσ

10 1.38 1.38 11.28 -0.15
50 1.85 1.85 6.58 -1.03 ·10−2

200 1.96 1.96 6.24 ≈ 0
500 1.98 1.98 6.21 ≈0

Tabla 5.4: Valor de las funciones de pérdidas en función de la concentricidad κ.
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5.2. Discusión de resultados

En primer lugar, se estandariza un tamaño de lote de 90 para todos los
experimentos. Este parámetro es muy relevante dado que la recuperación de
información o retrieval (R@k), depende el número de elementos que hay presentes
entre los que se pueda elegir. Para todos los experimentos se ha entrenado el adaptador
de bajo rango correspondiente al modelo CLIP , implementado mediante DoRA. La
duración del entrenamiento ha sido de 10 épocas, y para todos los casos se ha usado una
tasa de aprendizaje de 1·10−5. En el anexo D se muestran los efectos en los histogramas
de productos coseno, del entrenamiento con distintas funciones de coste.

5.2.1. MS-COCO

Comenzando por MS-COCO, existe un problema inmediato: CLIP ha sido
entrenado con MS-COCO. Teniendo en cuenta esto, se espera que se produzca el
fenómeno de sobreajuste u overfitting, de forma que no se mejora. Se obtiene una gran
mejora en el subconjunto de entrenamiento, R@1 del 61.62 % al 99.23 %; sin embargo,
en el subconjunto de evaluación el rendimiento mejora en menor medida, pasando del
65.13 % % al 76.82 %. Esta gran diferencia de prestaciones entre subconjuntos se debe a
que en el punto en el que se encuentra la red, únicamente puede mejorar su rendimiento,
memorizando ejemplos. Estar en esta situación abre la puerta a la comparación entre
rendimiento y representación. De esta forma, se podrá determinar si las funciones de
coste propuestas actúan sobre la representación con el resultado deseado.

Brecha inter. Desal. Agrup. Test R@1 Train R@1
Inicial 0.92 1.40 -1.47 65.13 61.62
LCE 0.50 1.37 -3.27 76.82 98.64

LCE + Lointra
0.20 1.47 -3.74 74.35 99.23

Tabla 5.5: Parámetros caracteŕısticos de MS-COCO

Pese a que no una diferencia considerable en el rendimiento, se tiene que la inclusión
del término ortogonal lleva a una solución con un valor de brecha intermodal y
agrupamiento notablemente menor. En el caso de la brecha intermodal, se consigue
reducir esta 0.2 frente a 0.5 para el resto. Este fenómeno únicamente se encuentra
presente en el caso de contener la función de coste únicamente los términos ortogonales
intramodales. Adicionalmente, el agrupamiento también se minimiza mediante esta
configuración, de esta forma se tiene un valor de -3.7 frente a los -3.3 del resto. En
cuanto al alineamiento, se tiene el caso contrario, es el que mayor desalineamiento
presenta, 1.47 frente a 1.37 del resto. La inclusión tanto del término de minimización
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de varianzas como del intermodal de ortogonalidad, rompe tanto con la minimización
de la brecha intermodal como con la de la uniformidad.

En primer lugar, en la figura 5.3, se observa el efecto cono descrito en el caṕıtulo 3. Se
tiene que las modalidades de imagen y texto individualmente (I y T en el histograma),
presentan una media alta. Esto se interpreta como una distribución en cono, pero no
quiere decir que se encuentren alineados. Para analizar el alineamiento entre ambas
modalidades, se requiere analizar la matriz de productos intermodales (IT). En este
caso, se separa esta matriz en los términos correspondientes a las parejas y los cruzados1.

Figura 5.3: Histogramas de productos coseno para MS-COCO antes del entrenamiento.

Dado que no se pueden visualizar los vectores directamente y las técnicas de
reducción dimensional no aportan la información requerida, se muestra la evolución
de los histogramas correspondientes a los productos coseno. Para ello, se separan entre
parejas correspondientes (elementos de la diagonal) y el resto. Este proceso se realiza
tanto con las matrices de productos coseno intramodales como intermodales.

En la figura 5.4 se observa el efecto que tiene el término ortogonal en la
representación vectorial. Se analiza esta representación debido a que el caso de
MS-COCO, es particular. Con este experimento se pretende demostrar que es posible
la optimización directa del objetivo ortogonal. Se ve reflejado cómo el incluir el término
ortogonal en la función de pérdidas implica una convergencia mucho más rápida a una
solución de este tipo. Pese a que la optimización de la entroṕıa cruzada parece tender

1Para el caso de la imagen y del texto, los términos asociados a las parejas correctas tienen un
producto coseno de 1, por lo que no se incluyen.
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a la solución ortogonal también, se ha visto que se puede reducir la brecha intermodal
a la mitad mediante la inclusión de este término, a costa de una ligera pérdida de
prestaciones.

Figura 5.4: Evolución de los histogramas de productos coseno durante el entrenamiento.
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5.2.2. Pictogramas ARASAAC en inglés

Habitualmente, para modelos como CLIP , se observa que la generalización de
conocimiento en imágenes formadas por ilustraciones en lugar de imágenes naturales,
es una tarea muy complicada. Brevemente, esto se debe a que es necesario una mayor
abstracción para la interpretación del esbozo y de forma que no se puede ayudar de
la textura, únicamente de la forma. Dicho esto, se espera que sea posible una mejora
significativa en el rendimiento tras el entrenamiento. En la figura 5.5, se observan los
histogramas asociados a los productos coseno obtenidos mediante CLIP sin entrenar. Se
remarca cómo la media de los productos entre vectores de imagen, es significativamente
más elevada que en el caso de MS-COCO. Presuntamente, se puede deber a que todos
los elementos son esbozos, esto corresponde un subconjunto de los datos con los que
ha sido entrenado CLIP . De esta forma, dado que presenta un grado de similitud
impĺıcito, se proyectan en una región cercana en el espacio latente.

Figura 5.5: Histogramas de productos coseno para los pictogramas en inglés antes del
entrenamiento.

La tabla 5.6 muestra los resultados obtenidos al entrenar con las diversas funciones
de pérdidas, para los pictogramas en inglés. Para este caso en concreto, se ha dado que
la función de pérdidas ortogonal no consigue un entrenamiento favorable en cuanto a
rendimiento se refiere. Pese a que se logra un valor de R@1 de 54.5 %, peor que el de
partida, el valor de la brecha intermodal desciende hasta 0.32. Para ponerlo en contexto,
entrenando únicamente mediante la entroṕıa cruzada, se logra un descenso de la brecha
a 0.68. Con el fin de solventar esto, se atribuye el problema a la configuración particular
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del espacio vectorial y la ambigüedad resultante de establecer el valor absoluto en la
función de coste ortogonal. Si se elimina el valor absoluto se tiene la ecuación mostrada
en 5.8, de esta forma se optimiza la antipodalidad. Pese a que la configuración óptima
se obtiene en la configuración antipodal, se muestra en el anexo D como sigue tendiendo
a ortogonal.

Lointra
= −α

N∑
i=1
⟨xi, xi⟩+

N∑
i=1

N∑
j=1
j ̸=i

⟨xi, xj⟩ (5.8)

Mediante esta nueva función de coste, se observa en la tabla 5.6 un descenso de
la brecha intermodal a 0.26. Además, se consigue un valor de recall R@1 de 79.6 %
frente al 82.2 % , obtenido únicamente mediante la entroṕıa cruzada. En cuanto al
desalineamiento, se tiene el mismo caso que con MS-COCO, dado que empeora el
rendimiento, el desalineamiento aumenta. Finalmente, en cuanto a la agrupación, se
tiene que disminuye, por lo tanto, la distribución optimizada resulta más uniforme que
la inicial y que la obtenida mediante la entroṕıa cruzada. Finalmente, se tiene el mismo
resultado de pérdida considerable de prestaciones, al incluir el término intermodal en
la ortogonalización. En este caso, R@1 desciende hasta un mı́nimo del 18.7 % .

La optimización, concretamente disminución, de la varianza se tiene que por śı
sola no presenta ningún efecto. Esto era de esperar, dado que se ha diseñado como
un término de segundo orden para función de pérdidas ortogonal. Al combinar la
minimización de la varianza junto con el término de la ecuación 5.8, se pierden la
gran disminución en brecha intermodal. Parece ser que optimiza una representación
similar a la obtenida únicamente mediante el término de entroṕıa cruzada

Brecha inter. Desal. Agrup. R@1 R@5 R@10
Inicial 1.00 1.40 -1.1 55.8 78.0 84.6
LCE 0.68 1.42 -2.75 82.2 95.4 97.4

LCE + Lointra
0.32 1.69 -3.88 54.5 74.6 80.9

LCE + Lointra
+ Lointer

0.32 1.87 -3.92 18.7 31.9 40.2
LCE + Lσ 0.67 1.40 -2.81 82.2 95.6 97.3
LCE + L∗

ointra
0.26 1.56 -3.82 79.6 95.3 96.9

LCE + L∗
ointra

+ Lσ 0.64 1.38 -2.83 81.8 95.0 97.1

Tabla 5.6: Resultados del entrenamiento de los pictogramas en inglés.

De partida, se tiene que tanto la brecha intermodal como el desalineamiento, son
similares para MS-COCO y los pictogramas en inglés. Cabe destacar un valor de
agrupamiento mayor para los pictogramas en inglés, -1.1 frente a -1.47 en MS-COCO.
Tal y como se ha expuesto, este valor está directamente correlado con una mayor media
en los productos coseno entre imágenes.
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5.2.3. Pictogramas ARASAAC en español

Para los pictogramas en español, se tiene un caso muy similar al inglés. Al estar
en español y CLIP haber sido entrenado principalmente en inglés, se esperan que los
resultados sean peores. Aśı, se mejora la recuperación R@1, desde un 33.2 % por defecto
hasta un máximo de 58.4 % .

En cuanto a la distribución de productos coseno, sucede el fenómeno análogo al
descrito en el apartado anterior, pero en la modalidad textual. Al tener las etiquetas
en español, un subconjunto de los datos de entrenamiento, las representaciones de estas
también se encuentran más agrupadas en el espacio latente. Esto se traduce en la figura
5.6 como una mayor media en los productos coseno asociados a los vectores de texto.
Adicionalmente, se observa cómo la distribución de productos coseno intermodales de
las parejas correctas, se asimila a las incorrectas. Esto se puede interpretar como una
pérdida de separabilidad significativa, lo que se traduce en una pérdida de prestaciones.

Figura 5.6: Histogramas de productos coseno para los pictogramas en español antes del
entrenamiento.

En cuanto a los parámetros de la representación se refiere, se observan diferencias
significativas en el desalineamiento y agrupamiento. El desalineamiento, correlado con
las prestaciones del sistema, como era de esperar, aumenta. En cuanto al agrupamiento,
tal y como se ha descrito, este también se verá incrementado por el efecto cono atribuido
al subespacio.
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La tabla 5.7 muestra los resultados obtenidos al entrenar con las diversas funciones
de pérdidas, para los pictogramas en español. El mejor rendimiento aparece en la tabla
cuando se incorpora el término de varianza, logrado un valor de R@1 de 58.4 %. Este
resultado se debe a la pura aleatoriedad del proceso de optimización. Realizando varias
tiradas, es habitual encontrar una diferencia de un 0.5 %, como se tiene con el término
de entroṕıa cruzada únicamente. Se debe de considerar que el resto de valores de R@5
y R@10, R@5 presenta una diferencia del 0.5 % mientras que las prestaciones con R@10
son iguales.

Sorprendentemente, en segundo lugar se encuentra la función de coste antipodal
descrita en la ecuación 5.8, logrando un valor de R@1 de 56.3 % . Además del
rendimiento, se tiene que logra minimizar la brecha intermodal, hasta 0.27, mucho
menor que el 0.52 optimizado mediante la entroṕıa cruzada.

En cuanto al término de varianza, se observa el mismo fenómeno que en el caso
anterior. Si se incorpora junto con el término antipodal, la solución a la que se converge
es la misma que la ortogonal. De esta forma se consigue una ganancia de un R@1 de
0.9 % a costa de aumentar la brecha intermodal a 0.51.

Pese a que la incorporación de término ortogonal no presenta ventajas frente a la
entroṕıa cruzada, si se introduce el término intermodal, se tienen novedades. No solo no
se degenera la representación, sino que mejora considerablemente la brecha intermodal,
esta se reduce a 0.32. Parece ser que la particularidad de la representación multilingüe
permite explorar escenarios que en inglés ya quedan muy definidos. Cabe destacar en
todas estas configuraciones la capacidad de minimizar el agrupamiento, partiendo de
-0.78 y llegando a -3.88. Este valor mı́nimo de agrupamiento se consigue con el término
antipodal y además con el término ortogonal tanto intramodal como intermodal.

Brecha inter. Desal. Agrup. R@1 R@5 R@10
Inicial 1.00 1.52 -0.78 33.2 48.5 56.3
LCE 0.52 1.50 -3.18 57.1 77.7 84.0

LCE + Lointra
0.57 1.69 -3.31 54.6 74.5 81.0

LCE + Lointra
+ Lointer

0.32 1.91 -3.88 54.0 74.5 80.0
LCE + Lσ 0.50 1.50 -3.23 58.4 77.2 84.0
LCE + L∗

ointra
0.27 1.70 -3.88 56.3 76.9 82.6

LCE + L∗
ointra

+ Lσ 0.51 1.50 -3.14 57.2 77.5 83.6

Tabla 5.7: Resultados del entrenamiento de los pictogramas en español.
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Caṕıtulo 6

Conclusiones y ĺıneas futuras

6.1. Conclusiones

Las conclusiones que se presentan a continuación son resultados de una extensa
revisión bibliográfica junto con una interpretación de los resultados. Pese a que no se
ha mejorado el rendimiento añadiendo términos a la función de coste, se pueden extraer
conclusiones sobre la representación optimizada. De hecho, los métodos propuestos
consiguen manipular efectivamente la representación vectorial. Adicionalmente, se ha
demostrado la viabilidad de la optimización mediante una aproximación de bajo rango,
como DoRA. Una novedad es el análisis de las propiedades de la representación vectorial
para un caso multilingüe. Tal y como se expuso en 5.2, existen diferencias en la
representación vectorial entre idiomas, principalmente asociadas al entrenamiento por
defecto de CLIP .

Se observa la existencia de un sesgo en cuanto a brecha intermodal se refiere,
en la representación vectorial. Esto implica que no es necesario mitigar la brecha
intermodal por completo para que la representación presente su configuración óptima.
En cuanto al agrupamiento, se observa que disminuye gracias a la incorporación del
término ortogonal. Pese a que parezca una cualidad deseable de la representación,
se tiene el mismo resultado que con la brecha intermodal. No se requiere de una
representación completamente uniforme para maximizar el rendimiento del sistema.
El desalineamiento, tal y como se introdujo, representa el error cuadrático medio entre
los vectores intermodales. A groso, modo, el argumento que minimiza la función de
coste es equivalente para la entroṕıa cruzada y MSE bajo las condiciones de tener
distribuciones gaussianas. Se observa un grado de correlación entre el rendimiento y el
desalineamiento, resultante de ser los casos con entroṕıa cruzada los que mejor rinden.
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6.1.1. Los espacios altamente dimensionales no se comportan
de forma intuitiva

Pese a que en el apartado 5.1, se presenta una herramienta de visualización de los
parámetros para vectores tridimensionales, se tiene que la geometŕıa en hiperespacios
eucĺıdeos no es intuitiva. Para ilustrar esta afirmación, se tiene que en un espacio
eucĺıdeo de un número elevado de dimensiones, el volumen ocupado por un hipercubo
de lado 2, es de órdenes de magnitud mayor que el de la hiperesfera de radio unidad. De
hecho, el ratio entre volumen del hipercubo y de la hiperesfera tiende a infinito conforme
crece la dimensión. Se proporciona en el anexo E la demostración correspondiente,
aśı como una explicación más detallada de algunas propiedades contra intuitivas en
espacios eucĺıdeos altamente dimensionales.

Toda esta problemática se ve agravada por el hecho de tener un espacio vectorial
cuyas representaciones son altamente no lineales. Si bien la función de pérdidas
puede favorecer ciertas propiedades de la representación, la no linealidad existente,
imposibilita la extrapolación lineal de estas. Si una reducción dimensional pierde
propiedades, es evidente que condensar toda la representación a un número, no
representa adecuadamente la casúıstica presente.

6.1.2. Una función de coste más separable lleva a una
representación menos transferible

En este trabajo se atribuye la disminución en rendimiento a la exigencia de un mayor
número de propiedades a la representación vectorial. Al imponer un mayor número de
requerimiento sobre este espacio, el subconjunto de posibles soluciones se estrecha. Este
hecho complica la optimización, llegando a que no se puedan cumplir en el mismo nivel
la asociación entre vectores correctos.

La mayor separabilidad interclase implica una mayor precisión de clasificación, todo
ello a coste de una menor variabilidad en la representación intraclase. Esto lleva a tener
representaciones de mejor calidad.

Este trabajo afirma los resultados de [27], teniendo en cuenta que la tarea de
recuperación de información es muy similar las evaluadas por ellos. Dado que con
CLIP se valora la generalidad de las representaciones, el empeoramiento visto en estos
resultados concuerda con lo expuesto anteriormente. Viendo que optimizado diversas
métricas, las diferencias se encuentran en las últimas capas, se tiene que la decisión de
entrenar todas las capas mediante una aproximación de bajo rango es más acerada que
entrenar únicamente las últimas.
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6.2. Ĺıneas futuras

Si bien se ha explorado el efecto de la ortogonalidad como mecanismo de
separabilidad y reducción de la brecha intermodal, existe una infinidad de métodos
posibles. Se proponen dos ĺıneas principales para trabajos futuros, la primera se basa
en el análisis de los codificadores desde un punto de vista de la teoŕıa de la información.
Se debeŕıa de analizar las propiedades de la representación vectorial teniendo en cuenta
que la información mutua entre los datos de distintas modalidades no es la misma. Aśı se
podŕıa incorporar la información contenida por cada una de las modalidades, explicando
el efecto de representar varias imágenes mediante una única descripción. Finalmente,
queda abierto el análisis de la arquitectura sobre el efecto de la representación. Mediante
el uso de técnicas comparación como en [27], junto a diversas arquitecturas, se puede
determinar si existe un sesgo en ellas.
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5.4. Valor de las funciones de pérdidas en función de la concentricidad κ. . . 33
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Anexos A

Ejemplo de la base de datos de
pictogramas de ARASAAC

Con el fin de ilustrar los campos disponibles en la base de datos, se muestran tanto
una tabla como los archivos json correspondientes a los pictogramas de abuela y
antena, descritos en la sección 4.2.

Campos de la BBDD de pictogramas ARASAAC
shematic ▷ Se trata de un diagrama
sex ▷ Indica si el pictograma representa contenido sexual
violence ▷ Indica si el pictograma representa contenido violento
aac ▷ AAC presente
aacColor ▷ Color AAC, si procede
skin ▷ Color de piel, si procede
hair ▷ Color del pelo, si procede
downloads ▷ Número de descargas (inoperativo)
categories ▷ Cateǵıas a las que pertenece
synsets ▷ Identificador del conjunto de palabras con misma semántica
tags ▷ Etiquetas asociadas a la palabra
created ▷ Fecha de creación
lastUpdated ▷ Última fecha de actualización
keywords ▷ Subconjunto de palabras clave que desciben el pictograma

keyword ▷ Palabra clave o acción principal representada en el pictograma
type ▷ Identificador de tipo de palabra
meaning ▷ Definición en español
plural ▷ Plural de la palabra clave, si procede
hasLocution ▷ Indica si está disponible la locución
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Datos del pictograma de antena.

1

2 "2253": {
3 "schematic": false,
4 "sex": false,
5 "violence": false,
6 "aac": false,
7 "aacColor": false,
8 "skin": false,
9 "hair": false,

10 "downloads": 0,
11 "categories": [
12 "mass media device"
13 ],
14 "synsets": [
15 "03212026-n"
16 ],
17 "tags": [
18 "object",
19 "appliance",
20 "mass media device",
21 "mass media"
22 ],
23 "_id": 2253,
24 "created": "2007-12-12T10:27:32.000Z",
25 "lastUpdated": "2020-06-23T14:45:46.217Z",
26 "keywords": [
27 {
28 "keyword": "antena",
29 "type": 2,
30 "meaning": "Dispositivo de los aparatos emisores o

receptores que, con formas muy diversas, sirve para
emitir o recibir ondas electromagnéticas.",

↪→

↪→

31 "plural": "antenas",
32 "hasLocution": true
33 },
34 {
35 "keyword": "parabólica",
36 "type": 2,
37 "meaning": " U. t. c. s. f. Se dice de la antena

radioeléctrica con forma de parábola, y especialmente
de la televisión, que permite captar emisoras
situadas a gran distancia.",

↪→

↪→

↪→

38 "plural": "parabólicas",
39 "hasLocution": true
40 }
41 ]
42 }
43
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Datos del pictograma de abuela.

1 "10194": {
2 "schematic": false,
3 "sex": false,
4 "violence": false,
5 "aac": false,
6 "aacColor": false,
7 "skin": true,
8 "hair": true,
9 "downloads": 0,

10 "categories": [
11 "elderly",
12 "family"
13 ],
14 "synsets": [
15 "10162267-n",
16 "10068026-n",
17 "01648667-s"
18 ],
19 "tags": [
20 "person",
21 "elderly",
22 "family"
23 ],
24 "_id": 10194,
25 "created": "2009-11-11T19:39:37.000Z",
26 "lastUpdated": "2020-11-26T10:23:10.335Z",
27 "keywords": [
28 {
29 "keyword": "abuela",
30 "type": 2,
31 "meaning": "f. Respecto de una persona, madre de su padre

o de su madre.",↪→

32 "plural": "abuelas",
33 "hasLocution": true
34 },
35 {
36 "keyword": "yaya",
37 "type": 2,
38 "meaning": "f. abuela",
39 "plural": "yayas",
40 "hasLocution": true
41 }
42 ]
43 }
44
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Anexos B

Revisión de soluciones

Kornbilth, S., et al. analizan, en [27], el efecto de distintas funciones de coste sobre
las representaciones densas obtenidas en un problema de clasificación. A diferencia de
este trabajo, la tarea que se evalúa es la clasificación, sin embargo, se pretende hacer
uso de las representaciones vectoriales para diversas tareas. Para evaluar la calidad de
estas representaciones, se propone el uso de un clasificador lineal con estas o mediante
el algoritmo de agrupación K-NN. De esta forma, se tienen funciones de coste, un
mejor resultado de precisión que la entroṕıa cruzada. Sin embargo, cuando se hace
uso de las representaciones vectoriales, siempre se obtiene el mejor rendimiento con
la entroṕıa cruzada. Adicionalmente, analizan el efecto de cada capa en las distintas
representaciones, para ello se utiliza un método conocido como Linear Centered Kernel
Alignment (CKA). Se observa que la mayoŕıa de representaciones intermedias son
similares para las distintas funciones de coste, a excepción de las obtenidas en las
dos últimas capas. De ah́ı que se pueda interpretar como un sobreajustse en la
representación final.

Boudiaf, M. et al. [33] presentan un análisis teórico destinado a relacionar la entroṕıa
cruzada con diversas funciones de coste, entre ellas la optimización directa de los
productos coseno. En primer lugar, establecen una relación entre algunas funciones de
coste y el punto de vista generativo de la expresión de información mutua. Se demuestra
que minimizar la entroṕıa cruzada, es equivalente a maximizar la información mutua
entre las representaciones y las etiquetas, desde un punto de vista discriminativo.
De esta forma, se concluye que pese a existir funciones de pérdidas con mejores
propiedades, desde un punto de vista de la optimización, emṕıricamente se demuestra
que la entroṕıa cruzada consigue resultados de estado del arte.
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B.1. Desplazamiento de vectores

Una primera aproximación propuesta por Liang, W. et al. [19] para mitigar la
brecha intermodal, se basa en calcular el vector entre la media de cada uno de los
conos y trasladar los vectores en esa dirección. Se define el vector diferencia como
∆⃗ = E[xi] − E[yi], de esta forma se pueden desplazar los vectores correspondientes a
cada una de las modalidades: x̃i = ∥xi − λ∆⃗∥2

2 y ỹi = ∥yi − λ∆⃗∥2
2.

Para evaluar el efecto de variar la brecha intermodal mediante la aproximación
detallada anteriormente, se hace uso del esquema de clasificación descrito en la sección
2.3.3 en los siguientes conjuntos de evaluación. En primer lugar, para tareas de
clasificación CIFAR10 [31] y CIFAR100 [31], para una clasificación espećıfica como
imágenes satélite EuroSAT [30]. Los resultados presentados por Liang, W. et al. [19]
son cuestionables, si bien se presentan un p-valor del orden de 10−6 para las pruebas
de CIFAR10 y EuroSat y del orden de 10−3 para CIFAR100 1, en cualquier caso la
diferencia la tasa de acierto en la clasificación no sufre cambios mayores al 1 %. Por
ende, se concluye que este método de modificación de la brecha intermodal no presenta
ventajas significativas, aún más teniendo en cuenta que se trata de una traslación
lineal en un espacio vectorial altamente no lineal, debido a los modelos utilizados para
codificar los datos.

B.2. La consistencia intermodal e intramodal

B.2.1. Adaptadores para clasificación

La representación vectorial obtenida mediante CLIP, gracias al entrenamiento
generalista, consigue capturar una gran variedad de caracteŕısticas de los datos,
de ah́ı su facilidad de uso para problemas de clasificación. Normalmente en estos
casos se parte de un modelo generalista ya entrenado y se realiza un ajuste fino
con datos pertenecientes únicamente de la tarea que se pretende optimizar. Este
proceso requiere del entrenamiento de todos los pesos del modelo, pese a que CLIP
no se considera un modelo grande mediante los estándares actuales, su entrenamiento
requiere de un sistema con una gran memoria por el tamaño inevitable de las imágenes.
Adicionalmente, el ajuste fino de un modelo requiere de una búsqueda exhaustiva de
parámetros, además no se garantiza obtener una gran mejora. Esto se debe a que se
tiene un modelo altamente sobreparametrizado para una tarea, lo que conlleva una
convergencia más lenta, si esta existe.

1Nótese la disminución del p-valor para la tarea de clasificación de CIFAR100, esta presenta 100
clases frente a las 10 de los anteriores.
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Los adaptadores clásicos se basan en esquemas de proyección tanto lineal como
no lineal, de esta forma se aprovecha directamente la representación latente en lugar
de entrenar desde cero el modelo completo. Una forma de implementar este tipo de
sistemas es mediante el uso de un perceptrón multicapa, en los ejemplos descritos a
continuación se utilizan concretamente 2 capas. La entrada y salida, presentan las
mismas dimensiones que el vector de la representación latente. Sin embargo, la capa
intermedia se elige con una dimensión menor2, de forma que se exige una destilación
de la información en el entrenamiento. Adicionalmente, para mitigar el sobreajuste, se
incorpora una conexión residual en cada uno de los perceptrones multicapa. Entonces,
se combina suavemente el aprendizaje de CLIP con el entrenado en la red, véase la
figura B.1.

Figura B.1: Perceptrón multicapa con conexión residual.

Mediante el uso de un adaptador en cada modalidad, Gao, P. et al. [32] proponen el
método CLIP-Adapter, de esta manera se entrenan los adaptadores mediante descenso
de gradiente con un banco de imágenes Ic. Se logran mejorar los resultados respecto a
CLIP preentrenado en una diversidad de pruebas de clasificación de imagen, para un
mayor detalle y comparativa entre los diversos métodos, véase la figura B.2.

Zhang, R. et al. [29] proponen el uso de un adaptador, de forma que no requiere
entrenamiento. La salida a la red del adaptador descrito anteriormente presenta la
siguiente ecuación: αf(xT W1+b1)W2+b2+x, los parámetros entrenables son W1, W2, b1

y b2, f es una función de activación no lineal, f = ReLU. En lugar de entrenar estos
parámetros, Zhang, R. et al. [29] proponen las siguientes modificaciones: los pesos de
la primera capa se sustituyen por la matriz transpuesta de la caché, de esta forma
se tienen las similitudes entre los ejemplos proporcionados y la imagen a clasificar.
Posteriormente, la función de activación se sustituye por una función exponencial de
la forma g(x) = eβ(1−x). Teniendo en cuenta que las similitudes no pueden tener un
valor mayor a 1, esta función exponencial convierte valores negativos en positivos y
mediante el parámetro β permite modular la brusquedad del valor. Finalmente, este
resultado se multiplica por la matriz de unos y ceros, de forma que cada componente
del vector resultante contiene la suma de todos los productos correspondientes a una
misma clase. De forma similar que en CLIP-Adapter, este valor se ve escalado con otro

2La dimensión oculta es de 256 en los sistemas propuestos.
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parámetro (α) sin embargo, la conexión residual no es del vector, sino de los productos
con los puntajes entre la imagen de entrada y las distintas clases.

Figura B.2: Representación de los diversos métodos de adaptación.

Finalmente, este último método de adaptación se basa en la premisa de no
tener calibrado el espacio vectorial entre imágenes, Vishaal Udandarao explica
detalladamente en el caṕıtulo 5.2 de [24] las causas y consecuencias de este hecho. A
continuación se procede a resumir este efecto sin entrar en gran detalle. Se dice que el
espacio de representación de las imágenes no se encuentra calibrado para comparativas
intermodales debido a que nunca ha sido entrenado de forma expĺıcita para realizar
dicha tarea. CLIP únicamente optimiza expĺıcitamente la proyección próxima entre las
representaciones entre imagen y texto, además el espacio de texto presenta ciertas
ventajas ya descritas como la jerarqúıa o que la probabilidad de tener la misma
descripción de texto3 es mucho mayor que la probabilidad de tener dos imágenes iguales.
De esta forma, se tiene que el espacio vectorial asociado a la imagen presenta relaciones
entre representaciones intermodales mucho más débiles que el del texto y sobre todo que

3Muchas de las descripciones con las que se entrena CLIP se generan de forma automática a partir
de conjuntos de datos para clasificación en los que se cambia el texto introductorio.
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el conjunto. Para respaldar esta hipótesis, se analizan los histogramas asociados a los
productos entre representaciones vectoriales tanto intramodales como intermodales.
La distribución de las similitudes coseno entre vectores intermodales, presenta una
varianza y media bajas (una media baja es indicativo de separabilidad). Por otro lado,
se tiene que la distribución de las similitudes coseno entre representaciones latentes
intramodales presenta, todo lo contrario, una varianza y media altas. Adicionalmente,
para respaldar las afirmaciones anteriores se observa como la media en el espacio de
texto es mucho mayor que en el de la imagen. Este hecho directamente concuerda con
la probabilidad de ocurrencia de un mismo elemento, mucho más probable en el caso
de un texto que una imagen.

Como solución se propone el adaptador Tip-X [24], de forma que este hace uso
de las distancias intramodales de una forma calibrada. En primer lugar, de forma
análoga al resto de métodos, se obtienen los productos escalares entre: el vector de
la imagen a buscar y los vectores que representan cada clase Fx = xT · C y luego
entre los vectores que representan cada clase con los ejemplos disponibles en la caché
Fc = CT ·Ic, dado que se desea calibrar los puntajes se obtienen las denominadas firmas
que caracterizan a cada ejemplo mediante el uso de la función softmax, de esta forma
se tienen las firmas sx = σ(Fx) y sc = σ(Fc). Dado que ahora se tratan de pseudo
distribuciones de probabilidad, se mide la similitud entre estas muestras mediante el
uso de la divergencia KL. Concretamente, se tiene que modificar el signo dado que
una medida de similitud es inversamente proporcional al producto escalar y además, se
realiza un escalado para que se encuentre en el mismo rango. Además de este término
novedoso, se incorpora en el resultado final un término asociado a la similitud entre
la búsqueda con el banco de imágenes, al igual que en Tip-Adapter [29], αg(xT Ic)OH ,
con g(x) = e−β(1−x). Finalmente, se incorpora el término de búsqueda entre la imagen
y los vectores asociados al texto cada clase, aśı se tiene que la búsqueda presenta la
siguiente expresión: xT ·C + αg(xT Ic)OH + γΨ(−KL(sx||sc))OH con γ otro parámetro
a ajustar indicando la fuerza de la componente de la divergencia KL.

B.2.2. CyCLIP y la consistencia intermodal

Tal y como se ha mostrado anteriormente, no se optimiza directamente la relación
entre los vectores de una misma modalidad, lo que conlleva la necesidad de calibrar
un espacio si se desean usar los puntajes intramodales. En lugar de hacer uso de los
adaptadores, Shashank, G. et al. [28], proponen añadir términos a la función de coste
de forma que se calibren las distancias intramodales. Se definen dos términos asociados
a aumentar la consistencia inter-intra modal:
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− La consistencia intermodal: se reduce la diferencia entre el valor de los
productos coseno asociados a las representaciones no emparejadas entre imagen
y texto. De esta forma se optimiza que las representaciones vectoriales de textos
e imágenes se reduzcan tanto correctas como incorrectas.

LInter = 1
N

N∑
j=1

N∑
k=1

(⟨xj, yk⟩ − ⟨xk, yj⟩)2 (B.1)

− La consistencia intramodal: se reduce la diferencia entre el valor de los
productos coseno asociados a las representaciones no emparejadas entre la
misma modalidad, tanto imágenes como textos. Esto fuerza a compactar una
modalidad de forma que se regularizan las distancias intramodales.

LIntra = 1
N

N∑
j=1

N∑
k=1

(⟨xj, xk⟩ − ⟨tk, tj⟩)2 (B.2)

Finalmente, estos términos se incorporan a la función de coste original de CLIP ,
descrita en el algoritmo 1, mediante un par de parámetros de ajuste (λ1 y λ2):

LCyCLIP = LCLIP + λ1LInter + λ2LIntra (B.3)

Además de esto, Shashank, G. et al., definen una métrica de consistencia asociada a
la sincrońıa entre las etiquetas predichas entre la búsqueda intermodal con las predichas
mediante los vectores intramodales.

Consistenciak = 1
N

N∑
j=1

[
P k

I (Ij) = PT (Ij)
]

(B.4)

Entendiendo por PT (Ij) la etiqueta asociada a la imagen j y a P k
I como la etiqueta

predicha a partir de la mayoŕıa entre las k imágenes más cercanas. En nuestro análisis
no incorporaremos este tipo de métrica debido a que el problema que se analiza en
mayor profundidad es el de recuperación de información, no clasificación. Sin embargo,
si se analiza el efecto de la función de coste propuesta en CyCLIP [28] y el posible
beneficio para mejorar esta tarea.
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Anexos C

Diseño de la interfaz de pruebas

Se trata de una interfaz desarrollada ı́ntegramente con Plotly y Python.
Mediante componentes HTML, se generan los vectores con las propiedades deseadas.
Posteriormente, se realizan las llamadas a funciones que calculan tanto los parámetros
intermodales como el valor de las funciones de pérdidas.

− A: número de muestras a simular.

− B: mantener la semilla de generación fija.

− C: ponderación de los hiperparámetros α y β.

− D: selectores del ángulo y concentricidad para las distribuciones generadoras de
texto e imagen.

− E: valor de la función de pérdidas asociado a la configuración actual.

− F : visualización de los vectores de texto e imagen.

− G: valores de brecha intermodal, desalineamiento y agrupamiento asociados a la
configuración actual.

61



Figura C.1: Interfaz para la visualización de las funciones de pérdidas con distintas
configuraciones espaciales.
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Anexos D

Resultados de los entrenamientos

D.1. Pictogramas ARASAAC en inglés

Figura D.1: Evolución de los histogramas distancias.
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Figura D.2: Histogramas de distancias tras el entrenamiento con LCE.

Figura D.3: Histogramas de distancias tras el entrenamiento con LCE + Lointra
.
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Figura D.4: Evolución de los histogramas distancias.

66



Figura D.5: Histogramas de distancias tras el entrenamiento con LCE +Lointra
+Lointer

.

Figura D.6: Histogramas de distancias tras el entrenamiento con LCE + Lσ.
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Figura D.7: Evolución de los histogramas distancias.
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Figura D.8: Histogramas de distancias tras el entrenamiento con LCE + L∗
ointra

.

Figura D.9: Histogramas de distancias tras el entrenamiento con LCE + L∗
ointra

+ Lσ.
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D.2. Pictogramas ARASAAC en español

Figura D.10: Evolución de los histogramas distancias.
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Figura D.11: Histogramas de distancias tras el entrenamiento con LCE.

Figura D.12: Histogramas de distancias tras el entrenamiento con LCE + Lointra
.
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Figura D.13: Evolución de los histogramas distancias.
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Figura D.14: Histogramas de distancias tras el entrenamiento con LCE +Lointra
+Lointer

.

Figura D.15: Histogramas de distancias tras el entrenamiento con LCE + Lσ.
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Figura D.16: Evolución de los histogramas distancias.
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Figura D.17: Histogramas de distancias tras el entrenamiento con LCE + L∗
ointra

.

Figura D.18: Histogramas de distancias tras el entrenamiento con LCE + L∗
ointra

+ Lσ.
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Anexos E

Los espacios altamente
dimensionales no son intuitivos

A continuación se presentan las ecuaciones del volumen contenido tanto para una
hiperesfera como para un cubo d dimensional. Para el hipercubo de lado 2r, y la
hiperesfera1 de radio r se tiene:

Vhipercubo = (2r)d (E.1)

Vhiperesfera = 2rdπd/2

dΓ(d/2) (E.2)

Si se expresa el cociente entre volúmenes y se hace crecer la dimensión, d se tiene:

ĺım
d→∞

Vhipercubo

Vhiperesfera

= d2d−1Γ(d/2)
πd/2 →∞ (E.3)

Con la ecuación E.3, se tiene que el volumen comprendido por la hiperesfera
resulta insignificante respecto al del cubo, hecho contra intuitivo a lo observado en
tres dimensiones.

Siguiendo en esta ĺınea, si se desea interpretar el volumen de un espacio con
un número elevado de dimensiones, es conveniente pensar en distribuciones de
probabilidad. Se elige un punto aleatorio en el hipercubo con lado 2, mediante una
distribución uniforme d dimensional, es decir, de -1 a 1 en cada dimensión. Encontrarse
cerca de una esquina requiere que todas las variables aleatorias sean próximas a 1 o
-1, hecho poco probable. Sin embargo, encontrarse cerca de una cara responde a que
únicamente una de todas estas variables aleatorias, se encuentre próxima a 1 o -1. Se
puede observar como este último hecho resulta mucho más probable que el anterior.
De esta forma, se tiene que la mayor parte del volumen de un hipercubo se encuentra
en su frontera.

1Siendo Γ la función gamma de Euler.
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