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RESUMEN

En la era digital actual, la cantidad de informacién generada y disponible ha crecido
exponencialmente, lo que plantea un desafio significativo en términos de su recuperacion
y uso eficiente. Este desafio se intensifica cuando se trata de datos multimodales,
es decir, aquellos que combinan texto, imagenes, audio y otros tipos de datos. La
complejidad de estos datos multimodales requiere el desarrollo de técnicas avanzadas
para obtener representaciones latentes de forma que sean recuperables.

Para enfrentar estos desafios, se han desarrollado modelos y algoritmos especificos
que permiten la creacién de representaciones vectoriales de datos multimodales. En este
trabajo, se utiliza CLIP (Contrastive Language-Image Pre-training), un modelo de red
neuronal profunda que ha demostrado ser eficaz en la creaciéon de representaciones
vectoriales conjuntas para texto e imagenes. CLIP entrena simultaneamente sobre
grandes cantidades de datos textuales e imagenes para aprender una representacion
conjunta en un espacio latente comun.

Se analizan tres propiedades clave de las representaciones latentes obtenidas
mediante CLIP: brecha intermodal, desalineamiento y agrupacién. La brecha
intermodal se refiere a la distancia que puede existir entre las representaciones
de diferentes modalidades (por ejemplo, texto e imagen) para conceptos similares.
El desalineamiento ocurre cuando las representaciones de las mismas entidades o
conceptos no se superponen adecuadamente entre modalidades. La agrupacion describe
la tendencia de las representaciones a formar clisteres o agrupaciones en el espacio
latente, lo cual puede ser beneficioso o perjudicial dependiendo del contexto.

En este trabajo, se evalian diversos enfoques para mitigar el desajuste entre
representaciones multimodales. Se exploran adaptadores especificos diseniados para
mejorar la clasificacion, asi como modificaciones geométricas en la representacion
vectorial que buscan reducir las distancias intermodales. Estos métodos se analizan
detalladamente para comprender su impacto en la alineacion y eficacia de las
representaciones latentes.

Ademas, se implementan técnicas avanzadas de optimizaciéon del entrenamiento
para mejorar las representaciones latentes. Se desarrolla una herramienta de
visualizacién que permite observar de manera geométrica el proceso de optimizacion,
proporcionando una vision clara de como evolucionan las representaciones durante el
entrenamiento. Los modelos se entrenan utilizando diversas funciones de coste y se

trabaja con datos multilingilies para evaluar la robustez de las representaciones.
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Capitulo 1

Introduccion

1.1. Contexto

A lo largo de la historia hay una variable cuyo crecimiento es incuestionable: la
informacion, en todas sus formas, manuscritos, arte, diagramas, fotografias y todas sus
formas digitales. Mas alla de la buisqueda manual, los primeros intentos de modernizar
y automatizar la busqueda de los elementos de un catalogo se realizaron por parte
de Emanuel Goldberg, cuya colecciéon de patentes incluye una maquina mecéanica
de busqueda de patrones en un rollo de pelicula. Continuado con la aproximacién
mecanica, Calvin Mooers [!] propuso en 1950 el uso de tarjetas perforadas con el fin
de indexar los elementos de una coleccién. Fue en este momento cuando el término
information retrieval (IR), recuperaciéon de informacién en espafiol, fue creado y
empleado ampliamente desde entonces.

Con el avance de la digitalizacion y la miniaturizacion de la electronica, se comenzé
a construir en la década de los 60 y 70 los primeros sistemas de busqueda digital. Estos
sistemas eran capaces de buscar sobre elementos indexados tunicamente debido a las
restricciones de memoria presentes.

Desde los anos 80 hasta mediados de los 90 se popularizé una nueva aproximacion:
indexado a través de un modelo de espacio vectorial. La técnica mas popular es el
indexado semdntico latente [2], mediante esta aproximacion se determina en primer
lugar la matriz de ocurrencia de la base de datos (matriz con las ocurrencias de una
palabra en todos los documentos), posteriormente debido a su gran tamano se realiza
una aproximacién de bajo rango (SVD) y la busqueda se realiza en este espacio reducido
con el vector de ocurrencias comprimido.

En la actualidad la busqueda vectorial presenta una multitud de ventajas sobre
su alternativa clasica. Gracias a los avances en el campo de la inteligencia artificial y
técnicas de sensado comprimido, se permite la btisqueda rapida, eficiente y sobre todo

multimodal. Esto quiere decir que el vector que representa un elemento en la coleccion



de datos, puede provenir de diversas fuentes y estas se podran recuperar desde el resto
de modalidades; por ejemplo, la bisqueda de imagenes a través de texto o de imagenes
similares entre si.

Una vez establecidas las bases y la historia de los sistemas de busqueda y
recuperacion de informacion, se observa que presentan dos componentes principales:
un codificador que convierte los datos provenientes de cualquier modalidad en su
representacion vectorial y, por otro lado, un sistema de busqueda vectorial. En cuanto
a la implementacion de este ultimo, no resulta trivial, sobre todo para sistemas de
datos masivos. Este trabajo se centra en las propiedades deseadas en la representacion
vectorial para una correcta buisqueda y el efecto que tiene modificarlas. La aproximacion
que se lleva a cabo es la modificacion del sistema codificador, asi como la funcién de

pérdidas de este durante el entrenamiento.

1.2. Objetivos

Los objetivos de este trabajo se centran en abordar los desafios asociados con la
representacion eficiente y efectiva de datos multimodales utilizando el modelo CLIP
. En primer lugar, el objetivo es realizar un entrenamiento eficiente y optimizado del
sistema, aprovechando técnicas avanzadas para mejorar las representaciones vectoriales
conjuntas de texto e imagenes.

En segundo lugar, se pretende profundizar en la comprensién de métricas especificas
de desajuste multimodal como la brecha intermodal, el desalineamiento y la agrupacién.
Estas métricas son cruciales para evaluar la coherencia y la efectividad de las
representaciones latentes obtenidas por CLIP , permitiendo identificar areas de mejora.

Finalmente, se busca analizar y reducir el efecto del desajuste en las representaciones
multimodales, especialmente considerando datos multilingiies. Esto implica la
exploraciéon de adaptadores (sistemas adicionales de proyeccién), y modificaciones
geométricas en las representaciones vectoriales para mitigar las discrepancias entre
modalidades y mejorar la robustez de las representaciones frente a diferentes contextos
lingtiisticos.

En resumen, los objetivos principales incluyen el entrenamiento eficiente del modelo
CLIP , la comprension detallada de métricas de desajuste multimodal y la reduccion
del efecto del desajuste mediante técnicas avanzadas de optimizacién y adaptacién de
representaciones. Estos objetivos no solo contribuyen al avance teérico en el campo
de las representaciones multimodales, sino que también tienen aplicaciones practicas
significativas en la mejora de sistemas de recuperaciéon de informacién en entornos

digitales multimodales.



1.3. Planificacién y desarrollo

Se muestra en la figura 1.1, un diagrama de Gantt realizado a lo largo del proyecto.
A continuacién, se exponen brevemente las distintas fases del trabajo realizado. El
primer paso para un trabajo de investigaciéon es la revision de la literatura existente del
problema en cuestion. Para este trabajo ha sido el proceso con mayor dedicacion sin
duda alguna, esto se debe a dos motivos, el primero es la necesidad de documentarse
hasta ponerse al dia tanto con los sistemas como con las técnicas y aproximaciones
mencionadas. Por otro lado, teniendo en cuenta el gran ritmo que existe hoy en dia en
cuanto a creaciéon de articulos cientificos, sobre todo en un campo en auge como el de la
inteligencia artificial, se requiere de un esfuerzo continuo para mantenerse actualizado
con el campo o para transferir técnicas utilizadas para resolver problemas semejantes.

Una vez obtenida la informacién y determinado el sistema que se va a realizar, se
construye un entorno de desarrollo en el que se permiten hacer las pruebas pertinentes
para entrenar el sistema. Posteriormente, se deben de seleccionar las bases de datos
a utilizar y caracterizarlas. A posteriori, con el entorno de desarrollo construido se
realizan optimizaciones al sistema con el fin de minimizar los recursos necesarios
y finalmente se realizan diversos entrenamientos con las modificaciones propuestas.

Finalmente, se procede al andlisis de resultados y presentacion de los mismos.

SEP ocCT NOV DIC ENE FEB MAR ABR MAY JUN

SISTEMA CLIP
POR DEFECTO

BUSQUEDA DE
BBDD OCT]
OPTIMIZAR EL
ENTRENAMIENTO NOV
REPLICAR NoVMEES
RESULTADOS
IMPLEMENTAR
NUEVAS DIC - MAR
MODIFICAICONES
e o [ Fes-ABR
RESULTADOS FEB = A5R
REDACCION ABR - JUN

Figura 1.1: Diagrama de Gantt para el desarrollo del proyecto.



1.4. Guia de la memoria

Esta memoria se encuentra compuesta por cinco capitulos y cinco anexos, a

continuacion, se procede a enunciar brevemente el contenido de cada uno de ellos.

Capitulo 1. Introduccién: En este capitulo se presenta un breve resumen de la

memoria, la planificaciéon temporal y la presente guia.

Capitulo 2. Los embeddings, el entrenamiento contrastivo y el modelo CLIP:
Este capitulo presenta el concepto de embedding o representacion latente, el

modelo usado, CLIP y el entrenamiento no supervisado contrastivo.

Capitulo 3. El problema del desajuste multimodal: Una vez se conoce el
funcionamiento del sistema propuesto para biisqueda multimodal de informacion,
se presenta el problema de la brecha o desajuste multimodal. Se expone su
origen, como cuantificarlo y las técnicas que se han utilizado para solventarlo.
Adicionalmente, se muestran las técnicas implementadas para mejorar la

eficiencia de recursos durante el entrenamiento.

Capitulo 4. Bases de datos: En este capitulo se exponen y caracterizan las bases

de datos empleadas para validar los resultados.

Capitulo 5. Experimentacion y analisis de resultados: Una vez descrito el
problema y elegidas las bases de datos, se procede a la fase experimental. Primero,
se realiza un pequeno experimento en el que se visualizan las funciones de coste
para distintas distribuciones espaciales, con una finalidad de aumentar la intuicion
sobre el problema. Posteriormente, se replican resultados de otras aproximaciones,
pero haciendo uso de estas bases de datos y posteriormente se toma una nueva

vision al problema proponiendo funciones de coste alternativas.

Capitulo 6. Conclusiones y lineas futuras: Finalmente, en este capitulo se da un
paso atras y se intenta tomar un punto de vista lejano con el fin de extraer las
conclusiones del trabajo realizado y contextualizarlos en el marco de los resultados

existentes.



Capitulo 2

Los embeddings, el entrenamiento
contrastivo y el modelo CLIP

2.1. El concepto de embedding

El concepto de embedding o vector de representaciéon hace referencia a una
representacion vectorial asociada a un dato. Esta representacién requiere de forma
general un espacio vectorial cuya dimension es mucho menor a la del dato, un
codificador que permite la codificacion del dato y finalmente una medida de similitud
en este nuevo espacio vectorial latente o comprimido.

Los primeros sistemas de extraccion de caracteristicas comenzaron en la década
de los 50 para sistemas de indexado y busqueda en documentos de textos. Las
primeras aproximaciones se basan en el conteo de la frecuencia relativa de cada
palabra en un documento [3]. De esta forma, cada dimensién del vector representa
la frecuencia relativa de una palabra en el documento y por consecuencia, se tiene
que documentos con frecuencias relativas similares para un subconjunto de palabras se
encuentran agrupados entre si y distantes del resto. Esta aproximacion presenta una
gran desventaja: la frecuencia relativa de las palabras en un idioma no es constante.
Por ello se propone posteriormente la ponderacion de la frecuencia relativa en todo el
idioma [1].

El mayor salto en capacidad de modelado de lenguaje se produce en 2013 con
la aparicién del modelo Word2Vec [5], mediante el uso de redes neuronales. La idea
reside en predecir la siguiente palabra dado un texto de entrada. Se tiene una ventana
deslizante que recorre el texto, en cada paso se intenta predecir la palabra central
con las palabras cercanas a modo de contexto !. Estos vectores, pese a ser entrenados
con el esquema propuesto anteriormente, la representacién presenta dos propiedades

a destacar: la primera es la agrupacién semantica de palabras. En ningtiin momento,

'E]l método descrito se conoce como continuous bag of words, las palabras se predicen con una
ventana continua.



se entrena de forma directa la asociacién de palabras semanticamente similares en
regiones cercanas del espacio vectorial, pero explotando las cualidades estadisticas de
texto se consigue. Por otro lado, se tiene que los vectores responden a una cierta
aritmética vectorial lineal; p. ej. (E[rey] — E[hombre|) + E[mujer] =~ E|reinal, donde
E representa el vector de caracteristicas o embedding asociado a la palabra.

Hasta este momento las técnicas descritas se centran en el modelado de lenguaje,
no se trata de una coincidencia que los primeros avances en la representacién o
busqueda de informacion, hayan sido en esta modalidad. El texto o lenguaje, por
su propia naturaleza discreta, facilita el proceso de incrustacién u obtencién de una
representacion vectorial. Se considera el texto como una modalidad de informacién
discreta debido a que su unidad elemental, el grafema, forma parte de un conjunto
discreto. A partir del grafema, la primera unidad que posee significado es la palabra,
esta a su vez se compone de una raiz o lexema y un morfema 2, de esta forma muchas
de las cualidades que se desea en la representacioén vectorial se obtienen por la propia
naturaleza del lenguaje. La modalidad de la imagen no tiene esta suerte. A su pesar
la informaciéon que contiene por lo general es mayor que una descripcién asociada a
ella, la extraccion de la semantica a partir de la imagen se convierte en una tarea mas
dura. Esto no implica que en alguna de las dos modalidades exista informaciéon que
no esté presente en el resto, en ese caso no carece de sentido considerar las distintas
modalidades debido a que en ese caso con una unica se tiene toda la informaciéon
necesaria.

Una vez expuesto el concepto de embedding o vector de representacion, es intuitivo
desear obtener una representacion vectorial del conocimiento a través de distintas
modalidades. En el marco de este trabajo se consideran las modalidades de texto
e imagen. Se desea una representaciéon conjunta de forma que ambos vectores se
encuentren cercanos en el espacio de representacion conjunto. Hasta ahora, se ha hecho
amplio uso de las palabras cercano y representacion conjunta, pero su interpretacion no
presenta una solucién trivial ni generalizada para cualquier problema de representacion
de informacion. En primer lugar, se debe de definir una distancia o norma en el
espacio vectorial, de esta forma se tienen distancias pequenas para representaciones
semanticamente similares y viceversa. Finalmente, queda por determinar el mecanismo
de obtenciéon de la representaciéon conjunta, este depende de diversos factores: la

disponibilidad de datos anotados, la funcién de coste, la dimension del vector, etc.

2Un ejemplo de la estructura elemental seméantica de las palabras se tiene al considerar como lexema
pequen- y anadiendo morfemas gramaticales como sufijos se forman las siguientes palabras -a; pequena
o -ito; pequenito.



2.2. Entrenamiento contrastivo

En el &mbito de aprendizaje automéatico existen tres paradigmas de aprendizaje: en
primer lugar, el aprendizaje supervisado, que tiene como objetivo predecir las etiquetas
proporcionadas durante el entrenamiento. Estas etiquetas pueden ser clases, en ese caso
se trata de un problema de clasificacion, por lo contrario, si se tiene etiquetas numéricas
se trata de un problema de regresion. El aprendizaje no supervisado, presenta como
caracteristica principal la innecesariedad de etiquetas para los datos del entrenamiento.
En este caso, el algoritmo busca explotar algin tipo de estructura presente en los datos,
identificando las similitudes entre diferentes caracteristicas de los datos. En este caso,
el resultado del modelo puede ser una agrupacion o bien un vector o embedding de
dimensién reducida con respecto a la entrada. Asi, se tiene que estas nuevas dimensiones
han condensado las diferencias entre ejemplos. Finalmente, se tiene el aprendizaje
reforzado, para aplicar este paradigma se tienen que dar las siguientes condiciones:
en primer lugar, poseer de un conjunto de estados de entorno S mediante el cual
interactia el agente, un conjunto de acciones A que puede tomar y finalmente las reglas
de recompensa 7(s), tanto asociadas a la transicién entre estados como a la recompensa
inmediata. De esta forma se trata de maximizar la recompensa asociada a un estado
y una accion. Este tipo de técnicas se utilizan ampliamente para resolver problemas
de optimizacion cuyos limites son extremadamente grandes, por ejemplo motores de
evaluacion o juego de ajedrez, optimizacion en problemas de logistica o automatizacion
de robots, entre otros. El gran problema que presenta esta aproximacion es la dificultad
de computo o la simulacién del entorno junto con el agente, por ejemplo si se desea
simular un robot interactuando en un escenario virtual, para una sola accién se deben
de simular todas las colisiones asociadas al motor de fisica del entorno ademas del

propio modelo del agente y la constante computacion de la funciéon de coste.

Para la aplicacion de las diversas técnicas de aprendizaje automatico es crucial el
conocimiento del problema que desea abordar. En la Figura 2.1 se detalla, a grandes
rasgos, un proceso de identificaciéon de la categoria de aprendizaje automatico a utilizar.
Para ello es necesario conocer el resultado que se quiere obtener junto a la disponibilidad

de los datos.

La supervisiéon en un sistema hace referencia a la capacidad o disposiciéon de las
etiquetas asociadas a cada dato. Hasta ahora se ha presentado como una cualidad
que existe o no, pero no es asi, de hecho existe un gran espectro de supervision
en diversos problemas. Con el fin de ilustrar los diversos grados de supervision, se
considera un problema de clasificacion de imagenes de animales. Suponiendo que se

posee un conjunto de imagenes en el que aparen tnicamente 10 especies distintas. Se
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Figura 2.1: Clasificacién de los paradigmas de aprendizaje automético.

tiene que se podra entrenar un modelo, que dada una nueva imagen, sea clasificada
entre las 10 especies con las que ha sido entrenado. Este es el ejemplo clasico de
aprendizaje completamente supervisado. En el otro extremo, se tiene uUnicamente
un conjunto de imagenes sin su correspondiente etiqueta. Mediante algoritmos de
agrupacion se consigue explotar atributos estadisticos de las imégenes y tras un proceso
de agrupacion, se observa que el algoritmo ha conseguido realizar la clasificacién® entre
animales terrestres y acuaticos. Este es un ejemplo de un paradigma de aprendizaje no
supervisado. Finalmente, a continuacion se considera que se tienen parejas de imagenes
junto con pies de foto, obtenidos a partir de un proceso de bisqueda en revistas de
naturaleza. En este caso no se tiene un problema de clasificacion dado que no existe un
nimero predeterminado de etiquetas. Por el contrario, si se trata como un problema no
supervisado, se estaria perdiendo la informacion que puede anadir las correspondientes
descripciones o pies de foto. En este caso la supervisiéon no es nula ni total, a este tipo
de problemas también se les conoce con el nombre de supervisiéon débil o propia.

El aprendizaje mediante supervisién propia (SSL?*), tal y como se expone en [0], se
puede realizar desde dos aproximaciones distintas: los métodos contrastivos y los no
contrastivos. A continuacion, se detallan exponiendo su principio de funcionamiento,

asi como diversos paradigmas existentes de cada uno.

3No debe considerarse como un problema de clasificacién como tal, dado que no se tienen etiquetas
explicitas y, por lo tanto, el modelo desconoce el objetivo deseado.
4Del inglés: Self Supervised Learning, traducido como aprendizaje mediante supervisién propia.



— SSL Contrastivo: Sea {x;} un conjunto de muestras de entrada de forma que
cada una de ellas posee su correspondiente etiqueta y; € {1,2,..., L}, entre las
L posibles clases. Se desea aprender una funcién f, : X — R? tal que codifica
x; en un vector de representacion d dimensional, de forma que se consigue que
ejemplos pertenecientes a la misma clase posean vectores similares y viceversa.
Por lo tanto, el entrenamiento contrastivo parte de una pareja de ejemplos (z;, z;)
y minimiza la distancia entre los embeddings cuando pertenecen a la misma clase
y en caso contrario la maximiza. En este caso se define la siguiente funcién de

pérdidas:

Leont (13, 25,0) =Lly; = y;]|| falwi) — fola;)|5+

2 (2.1)
1y; # y;] max{0, € — || fo(zi) — fo(x;) 5}

Donde 1[y; = y,| representa una matriz con unos en los elementos y; = y; y de
forma similar, 1[y; # y;] en los indices disjuntos. Adicionalmente, se introduce el
hiperparametro €, de forma que representa una cota inferior de la distancia entre

parejas no correspondientes.

La mayor dificultad de los métodos contrastivos reside en la busqueda de los
ejemplos negativos. Para ello habitualmente se hace uso de técnicas de aumento
de datos, por ejemplo con las imagenes se realizan rotaciones y recortes aleatorios.
En el caso de que se disponga de ejemplos negativos anotados manualmente, el
resultado serd mejor que mediante técnicas de aumentado de datos, en este caso
el nivel de supervision aumenta. Un ejemplo de este tipo de aproximacién se
tiene en [7], partiendo de fotografias de rostros se entrena de forma contrastiva
una red neuronal convolucional, de forma que los ejemplos pertenecientes a la
misma persona se encuentran cercanos en el espacio latente. A diferencia de
haberlo entrenado de una forma totalmente supervisada, como un problema de
clasificacion, se tiene que mediante el entrenamiento contrastivo la red neuronal
aprende una codificaciéon que maximiza la separabilidad entre rostros. Por lo
tanto, aunque no haya sido entrenado en un rostro en particular, se puede obtener
la representacion vectorial asociada a este. A posteriori, mediante una métrica,
determinar la similitud entre ejemplos sin necesidad de volver a entrenar el
modelo. A esta categoria pertenecen los algoritmos como InfoNCE [8] o SimCLR

[9], los cuales actualmente suponen las bases del entrenamiento contrastivo.



— SSL No-Contrastivo: A diferencia del entrenamiento contrastivo, las técnicas
no contrastivas inicamente hacen uso de los ejemplos positivos. Pese a que existen
muchas aproximaciones, todas ellas parten de la misma idea: dado una pareja de
ejemplos, estos se codifican a un espacio latente de forma similar a los métodos
contrastivos, a diferencia de estos no se calcula la similitud entre ellos, sino que
se realiza una proyeccién a un espacio dimensional de mayor dimensién® en el que
si que se calcula la métrica entre proyecciones. Este tipo de técnicas presentan
problemas de convergencia de forma que la representacion latente colapsa a cero,
de esta forma la funcion de coste (distancia entre vectores) se minimiza, por lo
que se requieren de técnicas de regularizacion que permitan la convergencia a un
minimo local y no el global trivial. A esta categoria pertenecen métodos como:

Barlow-Twins [10] o I-Jepa [11], en el &mbito multimodal.

2.3. El modelo CLIP

Antes de detallar el modelo CLIP, se procede a explicar atentamente el modelo
ConVIRT [12] dado que la mayoria de ideas de CLIP proceden de este. En el caso
de ConVIRT, se pretende obtener una representaciéon conjunta de imagenes médicas
junto con diagnosticos, de forma que los vectores densos puedan ser utilizados para
tareas posteriores como clasificacién o busqueda de imagenes a partir de descripciones
textuales. En primer lugar, la aproximacion utilizada es de tipo contrastivo, inspirado
en el reciente éxito de este tipo de métodos, tal y como se expone en Representation
learning with contrastive predictive coding [3] y SimCLR [9].

Partiendo de un conjunto de imagenes x, emparejadas con sus respectivas
descripciones x,, se pretende aprender una funciéon parametrizada f, de forma que
se asigna a cada imagen un vector h, € R, de la misma forma se define un codificador
de texto f, que transforma cada descripcién a un vector h, € R%. A cada una de estas
representaciones se les aplica finalmente una transformacion no lineal g, y g, de forma
que se tienen los vectores v y u, a estos se les aplica la funcién de coste contrastiva tal
que las parejas similares se encuentren cerca y viceversa.

Debido a la escasez de datos etiquetados de aplicacién médica, se propone el uso de
técnicas de aumento de datos o transformaciones que se aplican a los datos de entrada.
Para el caso de las imagenes, se tiene una distribucién de posibles transformaciones,
T de forma que la imagen de entrada al modelo es la transformacién de dicho dato

X, = t,(xy). La descripcién textual se obtiene muestreando de forma uniforme una

5Esta dimensién intermedia es mayor que la del vector denso llegando a ser en ocasiones la inicial,
en ese caso se tiene un proceso de compresion-reconstruccion.
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frase perteneciente al informe médico asociado a dicha imagen, de esta forma se tiene
Xy = tu(xy). Para el caso de las transformaciones de las imdgenes se muestrean de forma
secuencial y aleatoria imagenes resultantes de las siguientes modificaciones: recorte,
volteado horizontal, transformacion afin, ajuste de brillo y desenfoque gaussiano. En la
figura 2.2, se presenta el esquema de la arquitectura de Con VIRT con la nomenclatura
expuesta anteriormente.

Hasta ahora se ha hecho referencia a los codificadores de imagen y texto de una
forma genérica, en el caso de ConVIRT, se tratan de arquitecturas basadas en redes
neuronales profundas. Para la modalidad del texto, se hace uso de iinicamente la parte
codificadora de BERT|[13], una arquitectura de tipo transformer. Por otro lado, para
la modalidad de imagen, se hace uso de una red neuronal convolucional en concreto,
tipo ResNet50 [14]

; ol {‘H‘ t'U ~ Image v
XU [ . 4 - X’U Encoder fU h’U Voo ,é(u—)u)
%
[ Heat size is enlarged... J t g
f - T u
Xu [ Clear consolidation at... J —u> Xu Enceo):er hu u gE(U’_ﬂ))
[ No abnormality seen ... ]

Figura 2.2: Diagrama de la arquitectura ConVIRT. ©

La arquitectura de CLIP se encuentra ampliamente inspirada en la descrita
anteriormente, se simplifica ligeramente tanto la arquitectura como el proceso de
aumento de datos, gracias a la amplia disponibilidad de parejas de imagen y texto
de caracter general. Finalmente, aprovechando los ultimos desarrollos en modelos de
vision, se introduce una alternativa basada en transformer para el codificador de

imagen.

SFuente: Zhang, Y. et al. [12].
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2.3.1. Arquitectura

Tal y como se ha comentado anteriormente, en el caso de CLIP [15] se produce
una simplificacién de la arquitectura. En primer lugar, se elimina la ultima capa de
proyeccion no lineal, esta no tiene mucho sentido si se posee una red con suficientes
capas, de esta forma las tareas de proyecciéon se trasladan a la propia red. Por otro
lado, se simplifican las transformaciones a considerar inicamente recortes en la parte
de imagen. En la modalidad de texto se introduce directamente la descripcion asociada
a la imagen gracias a que estas son mucho mas cortas, aun asi, se limita la longitud
del texto a 77 tokens. Finalmente, se entrena adicionalmente el valor de temperatura
7 asociado a la capa softmax de cada modalidad, esto se puede interpretar como una

pseudo-calibracion entre modalidades.

1. Contrastive pre-training

pepp'er the Text
aussie pup Encoder 1 1 1 1

n ) T3 Tn
— 5 L LT, IrpTs I; Ty
— I Iy IpT, IpTy - Iy
Image
Encoder - I Iz IgT, Izl - Igdy
— Iy IyTy InT, InTs = IyTy

Figura 2.3: Diagrama de la arquitectura de CLIP.”

8 de esta forma,

Para CLIP se define la similitud como el producto coseno
considerando que los vectores densos se encuentran normalizados mediante la norma
euclidea (]| - ||2), este es equivalente a realizar el producto escalar entre los vectores. El
resultado de aplicar el producto coseno a todos los elementos de un lote es una matriz
cuadrada simétrica, de forma que los elementos de la diagonal contienen la similitud
coseno entre las parejas correctas y el resto entre los pares cruzados. En la figura 2.3
se observa la creacién de esta matriz a partir de imagenes y textos. De esta forma,
se pretende maximizar el valor de la diagonal y a su vez alejar el resto, para ello se
hace uso de la entropia cruzada de cada fila (bisqueda mediante texto) y columna

(busqueda mediante imagen), utilizando como etiquetas los indices de la diagonal.

"Fuente: OpenAl [15]
8Se define el producto coseno como el producto escalar normalizado: {u,v) =
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2.3.2. Proceso de entrenamiento

De forma general, a continuacion, se presenta el algoritmo de entrenamiento para un
sistema como CLIP. En primer lugar, se obtienen los vectores densos a partir de cada
modelo, estos vectores se ven normalizados mediante la norma euclidea para encontrarse
en una esfera d-dimensional (d = 768 para el modelo de CLIP en cuestién), de esta
forma el producto escalar presentara valores contenidos entre -1 y 1. A partir de los
logits, definidos en el paso 5 del algoritmo 1, se obtienen las probabilidades predichas
mediante la funciéon softmax. Estos logits hacen de valores predichos en la funcién de
coste, de esta forma se desea que el producto a maximizar sea la pareja asociada a la
diagonal. En este caso, se definen dos términos en la funciéon de pérdidas, cada uno
de ellos asociado a la comparacién entre el ejemplo correcto de la modalidad de texto
con todas las imagenes de la tirada y viceversa, esto se traduce a considerar la matriz
transpuesta de logits.

La eleccion de la entropia cruzada como funcién de coste no se realiza de una forma
arbitraria, esta se deriva de la expresiéon 6ptima para un criterio de maximizacion de
verosimilitud en un clasificador bayesiano. En el caso que se estudia, no se trata de un
problema de clasificacion clasico; sin embargo, dado que se considera una tnica pareja
como la correcta en una tirada se puede ver como un problema con un numero de
clases igual al tamano del lote y cuyo tinico ejemplo positivo es la pareja de imagen y
texto correspondiente. De esta forma, se tiene CE = — SN, y;log p(y = i|x) con y; la
etiqueta real y softmax(logits) la predicha por el modelo. A continuacién, se muestra

un algoritmo que contiene la implementaciéon de CLIP en pseudocodigo.

Algoritmo 1 Implementacion en pseudocéddigo de CLIP

1: Iy + codificador_imagen(imagen)
2: Ty < codificador_texto(texto)

3 Tnorm ||]f||2
4 Thorm < ||Tf||2

5: Logits < (Inorm, Thorm) - €7 > (u,v) denota el producto escalar entre u y v

Etiquetas < [1,2,3, ..., N]

L; + CFE [Logits, Etiquetas]
L+ CE [Logz’tsT, Etz’quetas]
L+ (Li+Ly))2

Actualmente, la mayoria de modelos se entrenan mediante el uso de procesadores
graficos, debido a la necesidad de realizar operaciones vectoriales de una forma eficiente.

Dicho esto, existen limitaciones tanto con la memoria disponible como la velocidad
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de procesado. El mecanismo de entrenamiento descrito en el algoritmo 1, presenta el
mayor cuello de botella en la memoria requerida para calcular los vectores densos. Los
modelos una vez cargados en memoria no requieren mas de 2 GB, considerando que
todos sus pesos y gradientes se encuentran en el tipo de dato float32. La mayor parte
de la memoria se requiere para cargar las imagenes y los gradientes asociados a ellas,
el aumento del niimero de datos en una iteracién es practicamente lineal por lo que
con los recursos disponibles (24 GB), adicionalmente, mediante el uso de técnicas de
optimizacién descritas en el capitulo 3.3, se logra tener un tamano de lote maximo de
90 iméagenes y descripciones.

Para tareas clasicas como el entrenamiento de un modelo para clasificacion mediante
aprendizaje supervisado, la limitacién del tamafio de lote no supone un gran problema,
en el caso del entrenamiento contrastivo, es un parametro crucial. Dado que el
entrenamiento contrastivo se basa en la diferencia entre ejemplos, el calculo del

gradiente entre ellos se realiza inicamente si pertenecen al mismo lote.

2.3.3. Aplicacién a la clasificacion y busqueda

La gran ventaja de este tipo de modelo es la capacidad de generalizacién a través
de un entrenamiento previo, para ello CLIP ha sido entrenado con una variedad
de conjuntos de datos entre los que se incluyen MS-COCO [16]. La capacidad de
aprovechar el conocimiento previo junto con pocos ejemplos o ningunos de la nueva
tarea recibe el nombre de few-shot o zero-shot respectivamente, en este aspecto CLIP
representa un gran salto debido a la versatilidad que ofrece en un amplio abanico de
tareas.

Ahora bien, si se desea hacer uso de CLIP como un clasificador, se han de calcular
e”i

ZN %3’

j=1i
de esta forma se logra transformar un vector de puntajes a un vector de probabilidades

los logits descritos anteriormente y aplicar la transformacién softmax: o(z;) =

para cada clase. En la figura 2.4 se muestra un ejemplo de la clasificacion de imagen,

asi como la prediccién de texto a partir de la imagen (clasificacién de texto).
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2. Create dataset classifier from label text

a photo of Text
a {object}. Encoder ) ) R )

3. Use for zero-shot prediction

N T T3 TN
Image
Encoder - 5 Lm Ll LTy - Iy
a photo of
adog.

Figura 2.4: Diagrama de clasificacién mediante CLIP.°

Por otro lado, se tiene la tarea de recuperacion o busqueda de informacion, para
ello, en lugar de aplicar la transformacién softmax, se trabaja con el valor del producto
coseno directamente, el escalado por temperatura es una constante que a la hora
ordenar los resultados resulta irrelevante. Para esta tarea, se definen las métricas de
retrieval RQk, con k un entero positivo, esta métrica mide el porcentaje de veces
que el resultado relevante se encuentra entre los k primeros elementos. Un factor
crucial para esta métrica es el tamafio de la muestra, para muestras con un nimero
reducido de elementos, se tienen valores elevados con mayor facilidad porque los k
primeros elementos suponen una parte significativa de la muestra. Por el contrario, un
tamano de muestra elevado dificulta el valor de RQk, sobre todo si se tienen ejemplos
similares. Finalmente, para comparar distintos valores de RQk es crucial compararlos
con el mismo tamano de muestra y esta practica se asegura durante todo el trabajo

estandarizandolo al mismo valor que el tamano de lote: 90 muestras.

9Fuente: OpenAl [15]
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A continuacién, se presenta un esquema de diseno para una aplicacién de busqueda
vectorial en la figura 2.5. El principio de funcionamiento es sencillo: se obtienen las
representaciones vectoriales para todas las entradas de la base de datos y para realizar el
proceso de biisqueda simplemente se devuelve los elementos mas cercanos a la btisqueda,
en este caso, se considera como métrica el producto coseno definido en el punto 2.3.1.
La principal limitacién de estos sistemas es la escalabilidad con esta aproximacion
simple, requiere el calculo y almacenamiento de la distancia entre todas las posibles
parejas de datos de la base de datos. Tanto el computo como la memoria requerida
crecen mediante la norma O(n), totalmente insostenible para BBDD masivas. Para
solucionarlo, se recurren a busquedas subdptimas, normalmente basadas en algoritmos

de agrupaciéon o grafos.

Codificador
_ texto ﬁ

am
~ J

) Codificador )
L aal imagen

=
X7

Figura 2.5: Diagrama de un sistema de busqueda vectorial CLIP.
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Capitulo 3

El desajuste multimodal

3.1. La brecha intermodal

Dado que por defecto se opera en un espacio altamente dimensional (768 para
la versién utilizada de CLIP), la visualizacion de los vectores no se puede realizar
directamente. Con el fin de aumentar la interpretabilidad en problemas con vectores
con un numero de dimensiones elevado, a lo largo de los afos se han desarrollado
una multitud de técnicas de proyeccion. La finalidad de este tipo de técnicas es
la representacion en un espacio con una dimensionalidad menor, pero preservando
cualidades o atributos de la distribuciéon en el espacio original, de forma que permitan
la interpretacion. Las técnicas mas populares son el analisis de componentes principales
o PCA en el ambito lineal y si se consideran proyecciones no lineales, las técnicas mas
populares son t-SNE [17] y UMAP [18].

Al realizar la proyeccién a un espacio bidimensional mediante todas estas técnicas,
se tiene que existe una brecha entre la posicion de los vectores de una modalidad con
respecto a los de la otra. Este fenomeno, tal y como se puede apreciar en la figura
3.1 persiste en diversas arquitecturas o modelos entrenados mediante el entrenamiento

contrastivo autosupervisado.

CLIP % [ ] VideoCLIP % ConVIRT 5 § CLASP %
Natural Image - Text Natural Video - Text Medical Image - Text Amino-acid Sequence - Text
&

12 A 10 10 :
10 7 ¢
/ 8 8 LY
8
7 6 Y
6 Z 6 b Y
, 4 [ / s
4 °
i & 2
. 2 &
2 g %

UMAP 1

Figura 3.1: Proyeccién mediante UMAP de los vectores densos intermodales para
diversos modelos representacién vectorial.!
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El anélisis realizado por Liang, W. et al. [19] interpreta la brecha intermodal como
la distribucién de los vectores densos de cada modalidad en un cono de la hiperesfera.
A modo ilustrativo, se muestra en la figura 3.2 el efecto cono ilustrado en una esfera,
cabe destacar que los vectores inicamente se encuentran en la corteza esférica debido
a que se encuentran normalizados, ademas se trata de una gran simplificaciéon debido

a la incapacidad del ser humano a comprender espacios de mayor dimensiéon que tres.

Figura 3.2: Tlustracion del efecto cono.

A continuacién, se resumen las tres causas de la existencia de la brecha intermodal

expuestas por Liang, W. et al. [19].

— Sesgo en las arquitecturas: adjudica a las propias arquitecturas la preferencia de
proyeccion a un cono del espacio global de representacion. Para ello, se obtienen
los vectores densos de 5.000 imagnenes del conjunto de datos MSCOCO con
3 modelos distintos (ResNet, ViT y Transformer de texto), posteriormente se
calculan las medias de los productos coseno (0.56, 0.47, 0.51) respectivamente y
el minimo valor de este (0.23, 0.05, 0.01). Esto indica que la distribucién de los

vectores se encuentra en un cono y no a lo largo de toda la corteza.

— Cada inicializacion aleatoria genera su propio cono: se muestrean 25
inicializaciones aleatorias para diversas arquitecturas, se obtienen los vectores
resultantes de cada una y se proyectan mediante UMAP. Se observa en la figura
3.3 que cada una de las inicializaciones aleatorias proyecta los vectores en un
cono distinto de la hiperesfera, ademas este fenémeno esta presente en todas las

arquitecturas analizadas tanto texto como imagen.

'Fuente: Liang, W. et al. [19].
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— El objetivo final del entrenamiento contrastivo mantiene la brecha intermodal:
para demostrar este lema, se entrena CLIP de forma que se compensa la
brecha intermodal mediante el proceso descrito en B.1, se observa que pese a
la compensacion se vuelve a generar la brecha y de hecho, tiende al valor que

presentaba esta originalmente.

20 ; »  Vision 20 Text
ResNet
" w» Transformer »» Transformer =

-10 -5 0 H 10 15 -10 -5 0 H 10 15 20 -10 -5 4 5 10 15 20

Figura 3.3: Visualizacion UMAP de vectores obtenidos mediante inicializaciones
aleatorias.?

3.2. Meétricas: desalineamiento y la agrupacion

Con el objetivo de cuantificar la brecha intermodal, se propone como métrica la
distancia entre la media de los vectores de cada modalidad. Considerando z;,vy; € R?
como los vectores correspondientes a cada modalidad, la BRECHA INTERMODAL
cuantifica la distancia entre la media de los vectores asociados a cada una de las
modalidades, véase la ecuaciéon 3.1. Volviendo al ejemplo de los conos en la hiperesfera,
serfa andlogo a considerar el centro de los conos, no tiene en cuenta la elongacién o

anchura ocupada en la superficie.

BRECHA INTERMODAL £ ||E[z;] — E[y]||2 (3.1)

Las métricas que se proponen continuacién se describen en el trabajo presentado
por Wang, T. e Isola, P. en [20], en él se presenta un andlisis de las propiedades de
alineamiento y uniformidad en un proceso de optimizacion mediante un entrenamiento
contrastivo. Se hace referencia al alineamiento y la uniformidad, de forma que se
consideran como funciones de pérdidas, por lo que se desean minimizar. En este trabajo
se hara referencia a estas métricas como DESALINEAMIENTO y AGRUPAMIENTO, de
forma que se facilite la comprension de los resultados.

El desalineamiento se define como el error cuadratico medio entre los vectores
correspondientes a un mismo ejemplo, pero entre ambas modalidades, su expresion

queda detallada en la ecuacién 3.2. Este error se minimiza cuando ambos codificadores

2Fuente: Liang, W. et al. [19].
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proyectan al mismo punto de la hiperesfera tanto la descripcién como la imagen

correspondiente a esta.

DESALINEAMIENTO 2 E[||z; — ;|3] (3.2)

La medida del agrupamiento o de la uniformidad, como se presenta en [20], no
es una tarea trivial. En primer lugar, se exige que la métrica de agrupamiento sea
asintéticamente correcta, es decir, que el valor esperado sea 0 cuando se trata de
distribuciéon uniforme y ademas, se requiere que sea razonable con un numero finito
de puntos. Por lo tanto, se consideran las funciones base radiales (RBF'), en concreto
potencial gaussiano Gy : 5% x S — R, con Gy(u,v) & etlivls = g2tuTo-2t 4
esta funciéon presenta una intima relacion con la distribucién 6ptima de puntos en
una esfera [21]. Dado que en [20] se propone hacer uso de esta métrica como una
funcién de pérdidas, se le aplica una transformacion logaritmica al valor esperado del
potencial gaussiano. El agrupamiento, véase la ecuacion 3.3, mide la concentracion en
la distribucién de las diferencias entre vectores pertenecientes a la misma modalidad,

se realiza este calculo en ambas modalidades y se promedia.
1 1
AGRUPAMIENTO £ 3 log(E[e~2l#i—3l3)) 4 3 log (E[e~2lwi=uill3]) (3.3)

3.3. Técnicas de optimizacion del entrenamiento

Tal y como se ha comentado con anterioridad, el entrenamiento de este tipo de
modelos es intensivo en cuanto al uso de memoria se refiere. Los equipos usados por
OPEN-AI para el entrenamiento original constan de 256 tarjetas graficas Nvidia V100,
cada una de 32 GB. Nuestro equipo es un poco més modesto, constando en su totalidad
de una tunica tarjeta grafica de 24 GB. De esta forma es evidente la necesidad de
optimizar este proceso de entrenamiento. Para agravar la situacion, se debe de tener en
cuenta que en el entrenamiento contrastivo, el tamafio de lote juega un papel crucial.
Dado que las etiquetas o la supervision se obtiene entre los propios ejemplos, un mayor
tamano de lote permite una mayor extraccion de la informacion de los ejemplos. A
continuacion se detallan tres técnicas con el fin de optimizar al maximo los recursos

disponibles, en concreto la limitacion de memoria.

3.3.1. Puntos de control de gradientes

Una técnica ampliamente utilizada para reducir memoria durante el entrenamiento
de modelos consta en descartar gradientes para liberar memoria y calcularlos en

el momento. A la hora de entrenar un modelo de redes neuronales profundas
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mediante backpropagation o propagacion hacia atras de los gradientes, se computa
un grafo que posteriormente se diferencia. Este grafo contiene la informacion sobre las
transformaciones aplicadas a los datos y, por lo tanto, mediante autodiferenciacion se
puede obtener el gradiente a la salida con respecto a cualquier nodo. Para computar
el gradiente con respecto a cada nodo, se requiere almacenar los valores de los nodos
intermedios. Mediante el uso de puntos de control de gradientes, se descartan estos
valores en todos los nodos no designados puntos de control. De esta forma, se consigue
liberar memoria, pero sacrificando un tiempo de ejecucion mayor, dado que ahora se
deben de calcular los valores de los gradientes en los nodos que se han descartado
durante la pasada hacia atras.

Adicionalmente, se ha estudiado otra técnica comin para entrenar con mayor
memoria de la que seria posible, llamado acumulacién de gradientes. Se basa en
calcular de forma independiente los gradientes de distintos lotes, almacenarlos y hacer
la optimizaciéon con el conjunto de los gradientes. De esta forma, tedricamente se
permite una convergencia mas uniforme y libre de ruido propia de un tamano de tirada
mayor. Esta técnica no es conveniente para el aprendizaje contrastivo, dado que este
se basa en la relacion entre los distintos ejemplos de una tirada. Esta es una de las
grandes limitaciones del aprendizaje contrastivo, su gran demanda de memoria durante

el entrenamiento y la necesidad de un tamano de lote elevado.

3.3.2. Entrenamiento de las ultimas capas

Una aproximaciéon comin para realizar un ajuste fino en los modelos grandes es
el entrenamiento selectivo de las ultimas capas. De esta forma se congelan los pesos
de todas las capas con excepcion de algunas proximas a la salida del modelo. Dado
que el problema de la brecha intermodal es un problema de representacion, son estas
ultimas capas las que mayor influencia tienen en este problema. Normalmente, las
arquitecturas de redes neuronales profundas presentan un sesgo de diseno, de forma
que la informacion se organiza de forma jerarquica conforme se atraviesan las capas. De
esta forma, por ejemplo, para el caso de la imagen, se ha demostrado que las primeras
capas responden a la deteccion de patrones y texturas, mientras que las ultimas realizan
tareas de representacion de la informacién. De esta forma, se puede interpretar como
un proceso de destilacién de la informacién mientras se va atravesando la red.

En nuestro caso, se ha probado al entrenamiento de la red mediante este tipo de
técnicas, pero al final se ha optado por la descomposiciéon de bajo rango. Entrenado
unicamente las dos ultimas capas de ambos modelos y mediante el uso de puntos
de control de gradientes, se logra tener un tamano de lote de 128 ejemplos. Si bien

se obtiene un ahorro considerable de memoria, se concluye que los resultados son
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altamente dependientes en cuanto al nimero de capas congeladas. Ademas de esto,
los resultados obtenidos en MS-COCO empeoran en la gran parte de los casos con
respecto al punto de partida. Esto se debe a que CLIP se encuentra en un maximo
local desde un punto de vista de la optimizacion. Este punto es altamente sensible a
los parametros de entrenamiento, por lo que ante la imposibilidad de optimizar todo
el conjunto de pesos, los resultados que se obtienen empeoran. Desde un punto de
vista forma, se puede interpretar como al congelar gran parte del modelo, se tiene
que el subconjunto de tareas que presentan soluciéon se ha reducido considerablemente.
De hecho, es probable que la nueva tarea no presente una solucién de forma tedrica,
partiendo de aquellas representaciones intermedias y teniendo en cuenta el ntmero

reducido de parametros entrenables.

3.3.3. Adaptacion de bajo rango mediante descomposicion de
pesos (DoRA)

Gracias a la creciente popularizacion en los tltimos anos de los modelos de lenguaje
de gran tamafio, se ha desarrollado diversas técnicas que permiten el ajuste fino de
estos sin la necesidad de entrenar por completo todo el modelo. Una de las técnicas
méas populares, LoRA fue introducida por Hu, E. et al. [22] en 2021, se presenta la
adaptacion de bajo rango como solucion a los requisitos exuberantes de memoria y
recursos requeridos para entrenar el modelo por completo. La adaptacion de bajo rango
consiste en congelar cada una de las capas de los pesos correspondientes al modelo y
entrenar, de forma paralela, matrices de descomposicion de rango. Se puede observar en
la figura 3.4 como estas matrices proyectan a una dimensién inferior, adicionalmente,
contienen un ntmero de pardmetros mucho menor que cada capa de pesos. De esta
forma se combina a la salida de los pesos el resultado del modelo original y el resultado
de la descomposicion y recomposicion de bajo rango.

De forma semejante, DoRA [23] se basa en la descomposicién de bajo rango, pero
ademads se realiza una descomposicion adicional del vector en magnitud y fase. Se ha
demostrado empiricamente que se mejoran los resultados mediante el entrenamiento
separado del vector de magnitudes y la matriz de fases. En otras palabras, se aplica
el mismo procedimiento que LoRA a la matriz de fases, y las magnitudes se entrenan
directamente mediante el optimizador elegido. En la figura 3.4, se observa de forma

visual la descomposiciéon adicional en fase y magnitud.

22



Y Y
| W =Wy + AW V =Vy+ AV
- m = | Wol .
r T
P N V = ZWy ——
A A

X T
Figura 3.4: Esquema de los métodos de descomposicién de bajo rango, DoRA y LoRA.
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Capitulo 4

Bases de datos

4.1. Microsoft COCO: common objects in text

COCO (Common Objects in Context) es una coleccion de datos para tareas de
deteccion, segmentacion y descripcion de imagenes con el fin de mejorar los sistemas
para esas tareas. Fue desarrollado por Microsoft para superar las limitaciones existentes
en conjuntos de datos de deteccién de clases en los que el nimero de clases es reducido
y ademas no se ofrece informacion adicional de contexto. De esta forma, en MS-COCO
se tiene tanto una segmentacion multiclase como diversas descripciones de la escena.
En el caso en cuestién, se hace uso de las descripciones como frases de busqueda y el
objetivo es recuperar la imagen que se describe.

La coleccion total consta de unas 120.000 imagenes para entrenar, en muchos casos
con méas de una descripcién para cada una y 20.000 imagenes para la evaluacién. A
continuacion, en la figura 4.1, se presentan 3 imagenes pertenecientes a MS-COCO

junto a sus descripciones.

A woman talking on cell phone with four motorcycles outside
This woman is talking on her cell phone near several motorcycles.
A woman standing near parked motorcycles while using a cell phone.
A woman on a cell phone next to some scooters and motor cycles.
A lady standing in front of a few scooters trying to hear her phone.

A group of people are skiing with young children
People are downhill skiing on a snowy mountain.
i i*\ A person in a red jacket standing in the middle of a group of skiiers
A bunch of kids are learning how to ski.
A group of people on a kil slope skiing.

A bunch of goats are eating out of a box

Many goats and other animals eat from a bucket.

Several sheep are eating out of the same food container.

Several goats and sheep eat from a small trough next to a fence.
A group of sheep gather around a bin to eat food.

Figura 4.1: Ejemplos de MS-COCO junto a sus descripciones.
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4.2. Pictogramas ARASAAC

Los sistemas aumentativos y alternativos de comunicacién (SAAC) son formas
de expresion diferentes al lenguaje hablado. Mediante el uso de este tipo de
sistemas posibilitan la comunicacién de individuos que, debido a una discapacidad o
analfabetismo, seria imposible. Entre las causas de uso de un SAAC, se encuentran la
discapacidad intelectual, la paralisis cerebral, diversas enfermedades neurolégicas como
la esclerosis lateral amiotréfica (ELA), el parkinson o simplemente el desconocimiento

del idioma, esto ultimo es frecuente en centros de acogida de refugiados.

En este caso, se hace uso de una base de datos de un sistema pictografico
desarrollado por el Portal Aragonés de Comunicacién Alternativa y Aumentativa
(CAA). Junto al Sistema Pictogréafico de Comunicaciéon (SPC), componen los sistemas

de CAA con mayor difusion del pais.

El sistema se compone de 12260 pictogramas ampliamente etiquetados. A
continuacion, en la figura 4.2 se muestran un par de pictogramas a modo de ejemplo.
Adicionalmente, en el anexo A, se encuentran los archivos .json correspondientes a
este par de ejemplos junto a una tabla explicativa de todos los campos. En estos, se
disponen de las etiquetas de los pictogramas tanto en inglés como en espaifiol, esto

permitira la evaluacion del modelo en un escenario multilingiie.

Figura 4.2: Pictogramas de ejemplo correspondientes a abuela y antena.

Dado que CLIP ha sido entrenado con frases o descripciones en lugar de etiquetas,
se ha demostrado que se mejora el resultado de la buisqueda considerablemente si se le
introduce un prefijo introductorio o prompt. Por lo tanto, para las etiquetas en espafiol
se busca mediante la frase: Una imagen de {keywordl}, {keyword2}, ... De forma
andloga, para el caso de las etiquetas en inglés se tiene: A picture of {keywordl},
{keyword2}, ...
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4.3. Preprocesado de datos

Ambas bases de datos, estan formadas mediante imagenes en una carpeta y un
archivo json con los diversos campos. Como se estéd trabajando con la libreria PyTorch,
es necesario convertir tanto las imagenes como los textos a un formato compatible con
PyTorch. Se define una estructura de datos propia de Pytorch, llamada Dataset. En
esta se deben de implementar los métodos de carga inicial de datos y la indexacion
de un subconjunto de estos. Al hacer uso de esta estructura, mediante el uso de
un Dataloader permite agilizar la carga de datos, relegando a este las funciones de
concurrencia y manejo de lotes.

En la figura 4.3, se muestra el preprocesado de datos de una forma visual. A

continuacion, se detallan cada una de las partes.

E‘Q {:}
.
i‘_:

224x224

A 4

A picture of {keyword1}, {keyword2}, ...
Unaimagen de {keyword1}, {keyword2}, ...

Y

>_© .
"1

npy JSON

Figura 4.3: Esquema de ingesta de datos.

En cuanto a las iméagenes, dado que la lectura a muchos ficheros es mas lenta
que a un unico fichero con todos los datos, se pretende agrupar las imagenes en un
unico fichero. Se elige el formato .npy gracias a la posibilidad de almacenar los datos
con un entero de 8 bits (uint8) en lugar de un valor en coma flotante de 32 bits
(float32). Este paso es crucial dado que es la tinica forma de contener todo el conjunto
de datos en memoria RAM. En caso de no haber sido asi, se produciria una ralentizacion
considerable, llegandose a pasar la mayor parte del tiempo cargando datos. Ademas
del cambio de formato, es crucial escalar las imagenes al tamano indicado (224x224).

Para no realizar esta tarea con cada imagen entrante al modelo, se escala una tunica
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vez antes de guardarlos en el formato .npy.

Por otro lado, el procesado de los textos es mucho mas sencillo. En el caso de
MS-COCO, tnicamente es necesario extraer el texto relacionado con la descripcion y
almacenarlo junto al prefijo en otro archivo json. Para el caso de los pictogramas, se
deben de extraer de los campos jerarquicos todos los keywords asociados al ejemplo
en cuestion. Posteriormente, se anade el prefijo y también se almacena en un archivo

json.

27



Capitulo 5

Experimentacién y analisis de
resultados

En el anexo B, se realiza una revision bibliografica de los métodos existentes para
mitigar la brecha intermodal. A continuacién, se resume a grandes rasgos los objetivos

de cada método.

— Desplazamiento de vectores: Liang, W. et al. [19] proponen una primera
aproximacion basada en realizar un desplazamiento a los vectores de cada
modalidad. De esta forma, se pretende tener el cono de ambas representaciones

alineado.

— Adaptadores para clasificacion: se detalla la evolucién de los adaptadores de CLIP
usados para tareas de clasificacién. En particular, cabe destacar Tip-X [24], donde

se tiene en cuenta la inconsistencia del espacio vectorial de imagen.

— CyCLIP: se presenta una funciéon de coste con el objetivo de solventar la
inconsistencia intramodal. A breves rasgos, se pretende incluir la calibracién de
los espacios intramodales en la funcién de coste del model, de esta forma se tienen

que todos los productos son consistentes entre si.

La aproximacién que se toma para analizar el efecto de la brecha intermodal es
partir del modelo CLIP ya entrenado y realizar un ajuste fino mediante cambios en
la funcion de coste. Por ello, se han propuesto un total de 2 funciones de coste, cada
una de ellas intentando remediar diversas propiedades de la representacion. Ambas
funciones de coste, se deben de implementar como términos adicionales a la entropia
cruzada descrita en 1.

Inspirados en trabajos como la funcién de coste propuesta por Kanchana, R. et al.
[25], se pretende modificar la funcion de pérdidas de forma que se optimiza directamente
la ortogonalidad entre los vectores densos. De esta forma definimos la siguiente funcion

de coste ortogonal L,.
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Siguiendo con la idea de inter/intra modalidad, se define la funcién de coste
ortogonal para los productos inter e intra modales. Se tienen para representaciones
latentes de vectores pertenecientes a la misma modalidad (| (x;, x;) |), tanto como para
el producto cruzado (| (z;,y;) |). Ademas, se proporciona un parametro ajustable a, de
forma que modula el efecto en la representacion, asociado a las parejas correctas.

Inspirado por la idea de la representacion en un cono, se puede interpretar de
una forma sencilla que la apertura de este cono es proporcional a la varianza de los
productos de las representaciones. Dado que se desea optimizar la separabilidad entre
representaciones latentes, una forma de forzar esto es mediante la optimizacion de la
varianza.

Asi, se tiene que para representaciones ortogonales entre si, todos los elementos
seran perpendiculares, por lo que el producto coseno asociado a esto es 0. De esta
forma se puede ver la minimizacién de la varianza como una extension de la funcion de
coste presentada en las ecuaciones 5.2 y 5.1, pero con un momento de segundo orden.
Se debe de matizar que optimizando tnicamente la varianza en la representacion, se
llega a una solucién 6ptima en la que todos los vectores se proyectan en el mismo punto.
Para evitar esto, se requiere de tener presenta en la funcién de coste el optimizador de
primer orden que condicione la ortogonalidad.

A diferencia del caso anterior, no se va a implementar para los escenarios inter e
intra modales, se calcula inicamente para la matriz de productos coseno intermodales.
El razonamiento detras de esta decision es no agravar el efecto cono ya presente por la
arquitectura, como se ha expuesto anteriormente en 3.1.

Para empezar, se define el vector de varianzas S?, asociada a la matriz de productos
coseno intermodales de un lote, mediante el estimador sesgado de varianza. Es necesario
calcular de forma separada la varianza asociada a las parejas cruzadas (elementos
fuera de la diagonal) con la de las parejas correctas. Esta tltima es nula para el caso
intramodal, su producto coseno es 1 dado que son el mismo vector. De esta forma, se
define 312 como el vector de N elementos que contiene la varianza de los elementos no
pertenecientes a la diagonal. Para los elementos de la diagonal se tiene que la varianza
es directamente un niimero, S7.

Ambas varianzas se logran mediante el estimador sesgado de varianza, definido de
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forma general en la ecuacion 5.3. El argumento que minimiza el estimador sesgado y
no sesgado de varianza es el mismo en ambos casos. Por tanto, a efectos practicos, la

funcién de pérdidas de cara a la optimizacién es equivalente.
s 1T 2
§* =5 2.(di = d) (5.3)

L, =—pB(S?+ s7) (5.4)

De esta forma, se pretende que al optimizar la ortogonalidad entre parejas
intermodales y no correspondientes, se llegue a una matriz de productos coseno
intermodales con elementos cercanos a cero fuera de la diagonal y proximos a 1 en
esta. Se puede ver como la minimizacién de la varianza en ese caso es ventajosa, de
forma que implementa una restriccion de uniformidad entre parejas cruzadas. Puede
resultar similar a la idea de la consistencia intramodal de CyCLIP, pero en este caso
se implementa mediante la varianza de los productos coseno.

Tanto la optimizacion de la ortogonalidad como la de la varianza, se incorporan
junto a la entropia cruzada, de forma que se tienen las combinaciones en las ecuaciones
5.5, 5.6 y 5.7. Este paso es crucial, dado que si no se incorpora la entropia cruzada, no

se optimiza directamente la tarea de recuperaciéon de informacion.

£0E+o = ECE + ﬁo (55)
Lopyo =Ler+ Lo (5.6)
LcoBtoro = Lop + Lo+ Ly (5.7)
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5.1. Visualizacién de la funcién de coste para un
caso tedrico

Una buena forma de entender el objetivo de cada funciéon de coste, resulta por
visualizar el valor asociado a una configuracion geométrica en el espacio vectorial. Para
ello, se propone generar vectores en un espacio tridimensional esférico (norma unidad)
de forma que se asemeje al problema original. La distribuciéon que se usa para esta
finalidad es la Power Spherical Distribution [20]. Se trata de una distribucién que
permite generar puntos de forma uniforme en una hiperesfera, variando el centro de la
distribucion, asi como un parametro de concentricidad . Se muestra en el anexo C la
interfaz junto a los resultados que muestra.

Modificando el valor de la concentricidad se pueden simular el efecto que tendria
un cono con una mayor o menor abertura. A continuacién, en la figura 5.1 se muestra

el efecto de variar el parametro de concentricidad.

Figura 5.1: Efecto de la concentricidad x en la distribucion.

En cuanto a las métricas de interés, cabe destacar que la medida de desalineamiento
no es posible con esta configuraciéon. Debido al proceso generativo, no se realiza
una asignacion de parejas proximas, de forma que simulen vectores correspondientes
al mismo ejemplo. Esto significa que tUnicamente se miden las estadisticas de las
representaciones, cualquier asociaciéon de pares correctos no queda representada en
este modelo. Por tanto, cabe esperar que la entropia cruzada sea elevada y sobre todo
significativa al modificar la representacion.

Con este modelo se pretende obtener una intuicion para los parametros de brecha
intermodal y agrupacion. En cuanto a la agrupacion, se observa que es proporcional al
factor de concentricidad encargado de generar la distribucién. Ademas, dado que son
distribuciones en un espacio esférico, se tiene que tienen simetria radial (contenida en
la corteza esférica), con respecto al punto centra o media. Expresada en la ecuacién

3.3, la funcién de base radial presenta una medida simétrica con respecto al centro de
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la distribucién de los vectores. Se observa en la tabla 5.1 como, en efecto, la agrupacion

se encuentra totalmente correlada con el valor de concentricidad .

k  AGRUPACION

200 -0.07
50 -0.265
10 -0.842

Tabla 5.1: Medida de agrupacion en funcién de la concentricidad.

En cuanto a la brecha intermodal, tal y como se describié en la ecuaciéon 3.1, se
mide el producto coseno de los centros de los conos generados por cada modalidad.
Se propone realizar un barrido para la variable esférica 6, de forma que se aumenta la
brecha intermodal. En la figura 5.2, se observan los vectores correspondientes a la media
de cada una de las modalidades. Junto con los valores de la tabla 5.2, se observa como

el valor de la brecha intermodal es proporcional al dngulo entre ambas modalidades.

0=0° , 6 = 45° 6 =90° ) 0 = 180°

Figura 5.2: Simulacion de la brecha intermodal inducida.

0 BRECHA INTERMODAL

0° ~ 0
45° 0.77
90° 1.40
180° 1.98

Tabla 5.2: Brecha intermodal en funcién de 6.

Para evaluar el efecto de las funciones de coste, obtienen los valores de las funciones
de coste para diferentes configuraciones. Para el caso que nos concierne, tinicamente
se evalian los términos adicionales, dado que cémo se ha descrito anteriormente, las
parejas no se generan siguiendo un criterio de proximidad. De esta forma, se tiene
que la entropia cruzada entre parejas es la equivalente de una eleccion aleatoria. Por
lo tanto, esta es invariante a la configuracion geométrica tanto en angulo como en

concentricidad.
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En la tabla 5.3 se presentan los resultados en funciéon del angulo 6 entre
distribuciones generadoras. Dado que se mantiene un valor de concentricidad constante
(k = 500), se tiene que las pérdidas intramodales no varian. Se observa como, en efecto,
la funcién de pérdidas ortogonal intermodal presenta un minimo en la configuracién

ortogonal.

6 Eointra 'Cointe'r ECyCLIP EO’

0° 1.94 1.94 3.91 ~0
45° 1.94 1.37 3.92 -8.13:1073
90° 1.94 0.00 3.93 -1.63-1072
180°  1.94 1.94 3.91 ~0

Tabla 5.3: Valor de las funciones de pérdidas para distintos angulos 6.

Adicionalmente, en la tabla 5.4, se presentan los valores de las funciones de pérdidas
en funcién de la concentricidad k. Se ve que CyCLIP, tiene un valor de alto para
configuraciones muy uniformes, a diferencia del resto de términos analizados. El término
asociado a la varianza presenta una magnitud considerable en el menor caso de las
concentricidades, queriendo realizar la configuracion ain mas uniforme. Finalmente,
en cuanto a los términos ortogonales, se tiene que la funciéon de pérdidas disminuye
inversamente proporcional a la agrupacién. Esto se debe al simple hecho de requerir

un grado de apertura de cono para que comience a poder ser ortogonal.

£ Lopia Loimer LoyoLip Lo

10 138 1.38  11.28 -0.15
50 1.85 1.85 6.58 -1.03 -1072
200 1.96 1.96 6.24 ~ 0
500 1.98 1.98 6.21 ~0

Tabla 5.4: Valor de las funciones de pérdidas en funciéon de la concentricidad .
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5.2. Discusion de resultados

En primer lugar, se estandariza un tamaifio de lote de 90 para todos los
experimentos. Este pardmetro es muy relevante dado que la recuperacion de
informacién o retrieval (RQk), depende el nimero de elementos que hay presentes
entre los que se pueda elegir. Para todos los experimentos se ha entrenado el adaptador
de bajo rango correspondiente al modelo CLIP , implementado mediante DoRA. La
duracion del entrenamiento ha sido de 10 épocas, y para todos los casos se ha usado una
tasa de aprendizaje de 1-107°. En el anexo D se muestran los efectos en los histogramas

de productos coseno, del entrenamiento con distintas funciones de coste.

5.2.1. MS-COCO

Comenzando por MS-COCO, existe un problema inmediato: CLIP ha sido
entrenado con MS-COCO. Teniendo en cuenta esto, se espera que se produzca el
fendmeno de sobreajuste u overfitting, de forma que no se mejora. Se obtiene una gran
mejora en el subconjunto de entrenamiento, R@Q1 del 61.62 % al 99.23 %; sin embargo,
en el subconjunto de evaluacion el rendimiento mejora en menor medida, pasando del
65.13 % % al 76.82 %. Esta gran diferencia de prestaciones entre subconjuntos se debe a
que en el punto en el que se encuentra la red, inicamente puede mejorar su rendimiento,
memorizando ejemplos. Estar en esta situacién abre la puerta a la comparacién entre
rendimiento y representacion. De esta forma, se podra determinar si las funciones de

coste propuestas actiian sobre la representacion con el resultado deseado.

BRECHA INTER. DESAL. AGRUP. Test R@1 Train R@1

Inicial 0.92 1.40 -1.47 65.13 61.62
Log 0.50 1.37  -3.27 76.82 98.64
Log+ Lo, 0.20 147  -3.74 74.35 99.23

Tabla 5.5: Parametros caracteristicos de MS-COCO

Pese a que no una diferencia considerable en el rendimiento, se tiene que la inclusion
del término ortogonal lleva a una solucion con un valor de brecha intermodal y
agrupamiento notablemente menor. En el caso de la brecha intermodal, se consigue
reducir esta 0.2 frente a 0.5 para el resto. Este fenémeno tnicamente se encuentra
presente en el caso de contener la funciéon de coste tinicamente los términos ortogonales
intramodales. Adicionalmente, el agrupamiento también se minimiza mediante esta
configuracion, de esta forma se tiene un valor de -3.7 frente a los -3.3 del resto. En
cuanto al alineamiento, se tiene el caso contrario, es el que mayor desalineamiento

presenta, 1.47 frente a 1.37 del resto. La inclusion tanto del término de minimizacién
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de varianzas como del intermodal de ortogonalidad, rompe tanto con la minimizacién
de la brecha intermodal como con la de la uniformidad.

En primer lugar, en la figura 5.3, se observa el efecto cono descrito en el capitulo 3. Se
tiene que las modalidades de imagen y texto individualmente (I y T en el histograma),
presentan una media alta. Esto se interpreta como una distribucién en cono, pero no
quiere decir que se encuentren alineados. Para analizar el alineamiento entre ambas
modalidades, se requiere analizar la matriz de productos intermodales (IT). En este

caso, se separa esta matriz en los términos correspondientes a las parejas y los cruzados!.

16 ITintra

14

12 H

10 4

T T T T T T T
—1.00 -0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Producto coseno

Figura 5.3: Histogramas de productos coseno para MS-COCO antes del entrenamiento.

Dado que no se pueden visualizar los vectores directamente y las técnicas de
reduccion dimensional no aportan la informacién requerida, se muestra la evolucion
de los histogramas correspondientes a los productos coseno. Para ello, se separan entre
parejas correspondientes (elementos de la diagonal) y el resto. Este proceso se realiza
tanto con las matrices de productos coseno intramodales como intermodales.

En la figura 5.4 se observa el efecto que tiene el término ortogonal en la
representacion vectorial. Se analiza esta representacion debido a que el caso de
MS-COCO, es particular. Con este experimento se pretende demostrar que es posible
la optimizacion directa del objetivo ortogonal. Se ve reflejado cémo el incluir el término
ortogonal en la funcién de pérdidas implica una convergencia mucho més rapida a una

solucién de este tipo. Pese a que la optimizacién de la entropia cruzada parece tender

!Para el caso de la imagen y del texto, los términos asociados a las parejas correctas tienen un
producto coseno de 1, por lo que no se incluyen.
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a la solucion ortogonal también, se ha visto que se puede reducir la brecha intermodal
a la mitad mediante la inclusion de este término, a costa de una ligera pérdida de

prestaciones.

Lok Lop+ ﬁomtm,

IMAGEN-TEXTO

Producto coseno

IMAGEN VI —— ' H TR TP SRS ———

TEXTO G0 I o N N

Figura 5.4: Evolucion de los histogramas de productos coseno durante el entrenamiento.
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5.2.2. Pictogramas ARASAAC en inglés

Habitualmente, para modelos como CLIP , se observa que la generalizacion de
conocimiento en iméagenes formadas por ilustraciones en lugar de imagenes naturales,
es una tarea muy complicada. Brevemente, esto se debe a que es necesario una mayor
abstraccion para la interpretacion del esbozo y de forma que no se puede ayudar de
la textura, inicamente de la forma. Dicho esto, se espera que sea posible una mejora
significativa en el rendimiento tras el entrenamiento. En la figura 5.5, se observan los
histogramas asociados a los productos coseno obtenidos mediante CLIP sin entrenar. Se
remarca como la media de los productos entre vectores de imagen, es significativamente
mas elevada que en el caso de MS-COCO. Presuntamente, se puede deber a que todos
los elementos son esbozos, esto corresponde un subconjunto de los datos con los que
ha sido entrenado CLIP . De esta forma, dado que presenta un grado de similitud

implicito, se proyectan en una regién cercana en el espacio latente.
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Figura 5.5: Histogramas de productos coseno para los pictogramas en inglés antes del
entrenamiento.

La tabla 5.6 muestra los resultados obtenidos al entrenar con las diversas funciones
de pérdidas, para los pictogramas en inglés. Para este caso en concreto, se ha dado que
la funcion de pérdidas ortogonal no consigue un entrenamiento favorable en cuanto a
rendimiento se refiere. Pese a que se logra un valor de RQ1 de 54.5 %, peor que el de
partida, el valor de la brecha intermodal desciende hasta 0.32. Para ponerlo en contexto,
entrenando Unicamente mediante la entropia cruzada, se logra un descenso de la brecha

a 0.68. Con el fin de solventar esto, se atribuye el problema a la configuracion particular
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del espacio vectorial y la ambigiiedad resultante de establecer el valor absoluto en la
funcion de coste ortogonal. Si se elimina el valor absoluto se tiene la ecuaciéon mostrada
en 5.8, de esta forma se optimiza la antipodalidad. Pese a que la configuracién éptima
se obtiene en la configuracion antipodal, se muestra en el anexo D como sigue tendiendo

a ortogonal.

N N N

Lopira = =D {xi ) + D (w3, 25) (5.8)

i=1 i=1j=1
J#i

Mediante esta nueva funciéon de coste, se observa en la tabla 5.6 un descenso de
la brecha intermodal a 0.26. Ademads, se consigue un valor de recall RQ1 de 79.6 %
frente al 82.2% , obtenido tinicamente mediante la entropia cruzada. En cuanto al
desalineamiento, se tiene el mismo caso que con MS-COCO, dado que empeora el
rendimiento, el desalineamiento aumenta. Finalmente, en cuanto a la agrupacion, se
tiene que disminuye, por lo tanto, la distribucién optimizada resulta mas uniforme que
la inicial y que la obtenida mediante la entropia cruzada. Finalmente, se tiene el mismo
resultado de pérdida considerable de prestaciones, al incluir el término intermodal en
la ortogonalizacion. En este caso, RQ1 desciende hasta un minimo del 18.7 % .

La optimizacion, concretamente disminucion, de la varianza se tiene que por si
sola no presenta ningun efecto. Esto era de esperar, dado que se ha disenado como
un término de segundo orden para funciéon de pérdidas ortogonal. Al combinar la
minimizacion de la varianza junto con el término de la ecuacién 5.8, se pierden la
gran disminucion en brecha intermodal. Parece ser que optimiza una representacion

similar a la obtenida inicamente mediante el término de entropia cruzada

BRECHA INTER. DESAL. AGRuUP. R@1 R@5 R@10

Inicial 1.00 1.40 1.1 558 780 846

Ler 0.68 142 275 822 954 97.4

Log+ Loy 0.32 1.69  -3.88 545 746 809
Lop+ Loypn + Loy, 0.32 187  -3.92 187 319 402
Log+ L, 0.67 140 281 822 95.6 973
Lop+ L5, 0.26 156  -3.82 796 953 96.9
Lop+ L+ L, 0.64 1.38 283 818 950 97.1

Ointra

Tabla 5.6: Resultados del entrenamiento de los pictogramas en inglés.

De partida, se tiene que tanto la brecha intermodal como el desalineamiento, son
similares para MS-COCO y los pictogramas en inglés. Cabe destacar un valor de
agrupamiento mayor para los pictogramas en inglés, -1.1 frente a -1.47 en MS-COCO.
Tal y como se ha expuesto, este valor esta directamente correlado con una mayor media

en los productos coseno entre imagenes.
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5.2.3. Pictogramas ARASAAC en espaiol

Para los pictogramas en espanol, se tiene un caso muy similar al inglés. Al estar
en espanol y CLIP haber sido entrenado principalmente en inglés, se esperan que los
resultados sean peores. Asi, se mejora la recuperacion RQ1, desde un 33.2 % por defecto
hasta un méaximo de 58.4 % .

En cuanto a la distribucién de productos coseno, sucede el fenémeno analogo al
descrito en el apartado anterior, pero en la modalidad textual. Al tener las etiquetas
en espanol, un subconjunto de los datos de entrenamiento, las representaciones de estas
también se encuentran més agrupadas en el espacio latente. Esto se traduce en la figura
5.6 como una mayor media en los productos coseno asociados a los vectores de texto.
Adicionalmente, se observa como la distribucion de productos coseno intermodales de
las parejas correctas, se asimila a las incorrectas. Esto se puede interpretar como una

pérdida de separabilidad significativa, lo que se traduce en una pérdida de prestaciones.
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Figura 5.6: Histogramas de productos coseno para los pictogramas en espanol antes del
entrenamiento.

En cuanto a los parametros de la representacion se refiere, se observan diferencias
significativas en el desalineamiento y agrupamiento. El desalineamiento, correlado con
las prestaciones del sistema, como era de esperar, aumenta. En cuanto al agrupamiento,
tal y como se ha descrito, este también se vera incrementado por el efecto cono atribuido

al subespacio.
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La tabla 5.7 muestra los resultados obtenidos al entrenar con las diversas funciones
de pérdidas, para los pictogramas en espanol. El mejor rendimiento aparece en la tabla
cuando se incorpora el término de varianza, logrado un valor de R@Q1 de 58.4 %. Este
resultado se debe a la pura aleatoriedad del proceso de optimizacién. Realizando varias
tiradas, es habitual encontrar una diferencia de un 0.5 %, como se tiene con el término
de entropia cruzada tUnicamente. Se debe de considerar que el resto de valores de RQ5
y R@10, R@5 presenta una diferencia del 0.5 % mientras que las prestaciones con R@Q10
son iguales.

Sorprendentemente, en segundo lugar se encuentra la funcién de coste antipodal
descrita en la ecuacion 5.8, logrando un valor de RQ1 de 56.3% . Ademas del
rendimiento, se tiene que logra minimizar la brecha intermodal, hasta 0.27, mucho
menor que el 0.52 optimizado mediante la entropia cruzada.

En cuanto al término de varianza, se observa el mismo fenémeno que en el caso
anterior. Si se incorpora junto con el término antipodal, la solucion a la que se converge
es la misma que la ortogonal. De esta forma se consigue una ganancia de un RQ1 de
0.9% a costa de aumentar la brecha intermodal a 0.51.

Pese a que la incorporacion de término ortogonal no presenta ventajas frente a la
entropia cruzada, si se introduce el término intermodal, se tienen novedades. No solo no
se degenera la representacion, sino que mejora considerablemente la brecha intermodal,
esta se reduce a 0.32. Parece ser que la particularidad de la representacién multilingiie
permite explorar escenarios que en inglés ya quedan muy definidos. Cabe destacar en
todas estas configuraciones la capacidad de minimizar el agrupamiento, partiendo de
-0.78 y llegando a -3.88. Este valor minimo de agrupamiento se consigue con el término

antipodal y ademas con el término ortogonal tanto intramodal como intermodal.

BRECHA INTER. DESAL. Acrupr. R@l1 R@5 R@10

Inicial 1.00 152 -078 332 485 56.3
Lok 0.52 1.50  -318 571 77.7 84.0

Log + Lo, 0.57 1.69  -331 546 745 810
Lo+ Loy + Lop 0.32 1.91  -3.88 540 745 80.0
Lop + L, 0.50 150  -323 584 77.2 84.0
Lop+ L5 0.27 170  -3.88 563 769 826
Lop+ L5+ L, 0.51 1.50  -314 572 775 836

Ointra

Tabla 5.7: Resultados del entrenamiento de los pictogramas en espanol.
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Capitulo 6

Conclusiones y lineas futuras

6.1. Conclusiones

Las conclusiones que se presentan a continuacién son resultados de una extensa
revision bibliografica junto con una interpretacion de los resultados. Pese a que no se
ha mejorado el rendimiento anadiendo términos a la funcién de coste, se pueden extraer
conclusiones sobre la representaciéon optimizada. De hecho, los métodos propuestos
consiguen manipular efectivamente la representaciéon vectorial. Adicionalmente, se ha
demostrado la viabilidad de la optimizacién mediante una aproximaciéon de bajo rango,
como DoRA. Una novedad es el analisis de las propiedades de la representacion vectorial
para un caso multilingiie. Tal y como se expuso en 5.2, existen diferencias en la
representacion vectorial entre idiomas, principalmente asociadas al entrenamiento por

defecto de CLIP .

Se observa la existencia de un sesgo en cuanto a brecha intermodal se refiere,
en la representacion vectorial. Esto implica que no es necesario mitigar la brecha
intermodal por completo para que la representacién presente su configuracion éptima.
En cuanto al agrupamiento, se observa que disminuye gracias a la incorporacion del
término ortogonal. Pese a que parezca una cualidad deseable de la representacion,
se tiene el mismo resultado que con la brecha intermodal. No se requiere de una
representacion completamente uniforme para maximizar el rendimiento del sistema.
El desalineamiento, tal y como se introdujo, representa el error cuadratico medio entre
los vectores intermodales. A groso, modo, el argumento que minimiza la funcién de
coste es equivalente para la entropia cruzada y MSE bajo las condiciones de tener
distribuciones gaussianas. Se observa un grado de correlacion entre el rendimiento y el

desalineamiento, resultante de ser los casos con entropia cruzada los que mejor rinden.
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6.1.1. Los espacios altamente dimensionales no se comportan
de forma intuitiva

Pese a que en el apartado 5.1, se presenta una herramienta de visualizacion de los
parametros para vectores tridimensionales, se tiene que la geometria en hiperespacios
euclideos no es intuitiva. Para ilustrar esta afirmacién, se tiene que en un espacio
euclideo de un nimero elevado de dimensiones, el volumen ocupado por un hipercubo
de lado 2, es de érdenes de magnitud mayor que el de la hiperesfera de radio unidad. De
hecho, el ratio entre volumen del hipercubo y de la hiperesfera tiende a infinito conforme
crece la dimensién. Se proporciona en el anexo E la demostraciéon correspondiente,
asi como una explicacion mas detallada de algunas propiedades contra intuitivas en

espacios euclideos altamente dimensionales.

Toda esta problemética se ve agravada por el hecho de tener un espacio vectorial
cuyas representaciones son altamente no lineales. Si bien la funcién de pérdidas
puede favorecer ciertas propiedades de la representacion, la no linealidad existente,
imposibilita la extrapolacion lineal de estas. Si una reducciéon dimensional pierde
propiedades, es evidente que condensar toda la representaciéon a un nimero, no

representa adecuadamente la casuistica presente.

6.1.2. Una funcién de coste mas separable lleva a una
representacion menos transferible

En este trabajo se atribuye la disminucién en rendimiento a la exigencia de un mayor
numero de propiedades a la representacién vectorial. Al imponer un mayor niimero de
requerimiento sobre este espacio, el subconjunto de posibles soluciones se estrecha. Este
hecho complica la optimizacion, llegando a que no se puedan cumplir en el mismo nivel

la asociacién entre vectores correctos.

La mayor separabilidad interclase implica una mayor precision de clasificacién, todo
ello a coste de una menor variabilidad en la representacion intraclase. Esto lleva a tener

representaciones de mejor calidad.

Este trabajo afirma los resultados de [27], teniendo en cuenta que la tarea de
recuperacion de informacion es muy similar las evaluadas por ellos. Dado que con
CLIP se valora la generalidad de las representaciones, el empeoramiento visto en estos
resultados concuerda con lo expuesto anteriormente. Viendo que optimizado diversas
métricas, las diferencias se encuentran en las tltimas capas, se tiene que la decision de
entrenar todas las capas mediante una aproximacion de bajo rango es mas acerada que

entrenar unicamente las altimas.
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6.2. Lineas futuras

Si bien se ha explorado el efecto de la ortogonalidad como mecanismo de
separabilidad y reduccién de la brecha intermodal, existe una infinidad de métodos
posibles. Se proponen dos lineas principales para trabajos futuros, la primera se basa
en el andlisis de los codificadores desde un punto de vista de la teoria de la informacion.
Se deberia de analizar las propiedades de la representacion vectorial teniendo en cuenta
que la informacién mutua entre los datos de distintas modalidades no es la misma. Asi se
podria incorporar la informacion contenida por cada una de las modalidades, explicando
el efecto de representar varias imagenes mediante una tnica descripcion. Finalmente,
queda abierto el andlisis de la arquitectura sobre el efecto de la representacion. Mediante
el uso de técnicas comparacién como en [27], junto a diversas arquitecturas, se puede

determinar si existe un sesgo en ellas.
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Anexos A

Ejemplo de la base de datos de
pictogramas de ARASAAC

Con el fin de ilustrar los campos disponibles en la base de datos, se muestran tanto
una tabla como los archivos json correspondientes a los pictogramas de abuela y

antena, descritos en la secciéon 4.2.

Campos de la BBDD de pictogramas ARASAAC

shematic > Se trata de un diagrama
sex > Indica si el pictograma representa contenido sexual
violence > Indica si el pictograma representa contenido violento
aac > AAC presente
aacColor > Color AAC, si procede
skin > Color de piel, si procede
hair > Color del pelo, si procede
downloads > Nimero de descargas (inoperativo)
categories > Categlas a las que pertenece
synsets > Identificador del conjunto de palabras con misma semantica
tags > Etiquetas asociadas a la palabra
created > Fecha de creaciéon
lastUpdated > Ultima fecha de actualizacién
keywords > Subconjunto de palabras clave que desciben el pictograma

keyword > Palabra clave o accion principal representada en el pictograma

type > Identificador de tipo de palabra

meaning > Definiciéon en espanol

plural > Plural de la palabra clave, si procede

hasLocution > Indica si esta disponible la locuciéon
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Datos del pictograma de antena.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

"2253": {

"schematic": false,
"sex": false,
"violence": false,
"aac": false,
"aacColor": false,
"skin": false,
"hair": false,
"downloads": O,
"categories": [

],

"mass media device"

"synsets": [

1,

"03212026-n"

"tags": [

1,

"object",
"appliance",

"mass media device",
"mass media"

id": 2253,

"created": "2007-12-12T10:27:32.000Z",
"lastUpdated": "2020-06-23T14:45:46.217Z",

"keywords": [
{
"keyword": '"antena",
"type": 2,
"meaning": "Dispositivo de los aparatos emisores o

— Treceptores que, con formas muy diversas, sirve para
— emitir o recibir ondas electromagnéticas.",
"plural": "antenas",

"hasLocution": true

"keyword": "parabdlica",

"type": 2,

"meaning": " U. t. c. s. f. Se dice de la antena

— radioeléctrica con forma de pardbola, y especialmente
— de la televisidn, que permite captar emisoras

— situadas a gran distancia.",

"plural": "parabdlicas",

"hasLocution": true
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Datos del pictograma de abuela.

1 "10194": {

2 "schematic": false,

3 "sex": false,

4 "violence": false,

5 "aac": false,

6 "aacColor": false,

7 "skin": true,

8 "hair": true,

9 "downloads": O,

10 "categories": [

11 "elderly",

12 "family"

13 1,

14 "synsets": [

15 "10162267-n",

16 "10068026-n",

17 "01648667-s"

18 1,

19 "tags": [

20 "person",

21 "elderly",

22 "family"

23 1,

24 " id": 10194,

25 "created": "2009-11-11T19:39:37.000Z",

26 "lastUpdated": "2020-11-26T10:23:10.335Z",

27 "keywords": [

28 {

29 "keyword": '"abuela",

30 "type": 2,

31 "meaning": "f. Respecto de una persona, madre de su padre
< o0 de su madre.",

32 "plural": "abuelas",

33 "hasLocution": true

34 } ,

35 {

36 "keyword": "yaya",

37 "type": 2,

38 "meaning": "f. abuela",

39 "plural": "yayas",

40 "hasLocution": true

41 }

42 ]

43 }

44
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Anexos B

Revision de soluciones

Kornbilth, S.; et al. analizan, en [27], el efecto de distintas funciones de coste sobre
las representaciones densas obtenidas en un problema de clasificacién. A diferencia de
este trabajo, la tarea que se evalta es la clasificacién, sin embargo, se pretende hacer
uso de las representaciones vectoriales para diversas tareas. Para evaluar la calidad de
estas representaciones, se propone el uso de un clasificador lineal con estas o mediante
el algoritmo de agrupacion K-NN. De esta forma, se tienen funciones de coste, un
mejor resultado de precision que la entropia cruzada. Sin embargo, cuando se hace
uso de las representaciones vectoriales, siempre se obtiene el mejor rendimiento con
la entropia cruzada. Adicionalmente, analizan el efecto de cada capa en las distintas
representaciones, para ello se utiliza un método conocido como Linear Centered Kernel
Alignment (CKA). Se observa que la mayorfa de representaciones intermedias son
similares para las distintas funciones de coste, a excepcion de las obtenidas en las
dos tultimas capas. De ahi que se pueda interpretar como un sobreajustse en la

representacion final.

Boudiaf, M. et al. [33] presentan un analisis tedrico destinado a relacionar la entropia
cruzada con diversas funciones de coste, entre ellas la optimizacién directa de los
productos coseno. En primer lugar, establecen una relacién entre algunas funciones de
coste y el punto de vista generativo de la expresion de informacién mutua. Se demuestra
que minimizar la entropia cruzada, es equivalente a maximizar la informacién mutua
entre las representaciones y las etiquetas, desde un punto de vista discriminativo.
De esta forma, se concluye que pese a existir funciones de pérdidas con mejores
propiedades, desde un punto de vista de la optimizacién, empiricamente se demuestra

que la entropia cruzada consigue resultados de estado del arte.
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B.1. Desplazamiento de vectores

Una primera aproximacién propuesta por Liang, W. et al. [19] para mitigar la
brecha intermodal, se basa en calcular el vector entre la media de cada uno de los
conos y trasladar los vectores en esa direccion. Se define el vector diferencia como
A = E[z;] — E[y;], de esta forma se pueden desplazar los vectores correspondientes a
cada una de las modalidades: #; = ||lz; — AA|2 y 7 = |lyi — AA|2.

Para evaluar el efecto de variar la brecha intermodal mediante la aproximaciéon
detallada anteriormente, se hace uso del esquema de clasificacién descrito en la seccién
2.3.3 en los siguientes conjuntos de evaluacion. En primer lugar, para tareas de
clasificacion CIFAR10 [31] y CIFAR100 [31], para una clasificacién especifica como
imagenes satélite FuroSAT [30]. Los resultados presentados por Liang, W. et al. [19]
son cuestionables, si bien se presentan un p-valor del orden de 107® para las pruebas
de CIFAR10 y EuroSat y del orden de 1073 para CIFAR100', en cualquier caso la
diferencia la tasa de acierto en la clasificacién no sufre cambios mayores al 1%. Por
ende, se concluye que este método de modificacion de la brecha intermodal no presenta
ventajas significativas, ain maés teniendo en cuenta que se trata de una traslacién
lineal en un espacio vectorial altamente no lineal, debido a los modelos utilizados para

codificar los datos.

B.2. La consistencia intermodal e intramodal

B.2.1. Adaptadores para clasificaciéon

La representacion vectorial obtenida mediante CLIP, gracias al entrenamiento
generalista, consigue capturar una gran variedad de caracteristicas de los datos,
de ahi su facilidad de uso para problemas de clasificacion. Normalmente en estos
casos se parte de un modelo generalista ya entrenado y se realiza un ajuste fino
con datos pertenecientes tnicamente de la tarea que se pretende optimizar. Este
proceso requiere del entrenamiento de todos los pesos del modelo, pese a que CLIP
no se considera un modelo grande mediante los estdndares actuales, su entrenamiento
requiere de un sistema con una gran memoria por el tamano inevitable de las imagenes.
Adicionalmente, el ajuste fino de un modelo requiere de una busqueda exhaustiva de
parametros, ademas no se garantiza obtener una gran mejora. Esto se debe a que se
tiene un modelo altamente sobreparametrizado para una tarea, lo que conlleva una

convergencia mas lenta, si esta existe.

INoétese la disminucién del p-valor para la tarea de clasificacién de CIFAR100, esta presenta 100
clases frente a las 10 de los anteriores.

56



Los adaptadores clasicos se basan en esquemas de proyeccién tanto lineal como
no lineal, de esta forma se aprovecha directamente la representacién latente en lugar
de entrenar desde cero el modelo completo. Una forma de implementar este tipo de
sistemas es mediante el uso de un perceptron multicapa, en los ejemplos descritos a
continuacion se utilizan concretamente 2 capas. La entrada y salida, presentan las
mismas dimensiones que el vector de la representacion latente. Sin embargo, la capa
intermedia se elige con una dimensién menor?, de forma que se exige una destilacién
de la informacion en el entrenamiento. Adicionalmente, para mitigar el sobreajuste, se
incorpora una conexion residual en cada uno de los perceptrones multicapa. Entonces,
se combina suavemente el aprendizaje de CLIP con el entrenado en la red, véase la
figura B.1.

Lo o
Figura B.1: Perceptréon multicapa con conexién residual.

Mediante el uso de un adaptador en cada modalidad, Gao, P. et al. [32] proponen el
método CLIP-Adapter, de esta manera se entrenan los adaptadores mediante descenso
de gradiente con un banco de imagenes [.. Se logran mejorar los resultados respecto a
CLIP preentrenado en una diversidad de pruebas de clasificacién de imagen, para un
mayor detalle y comparativa entre los diversos métodos, véase la figura B.2.

Zhang, R. et al. [29] proponen el uso de un adaptador, de forma que no requiere
entrenamiento. La salida a la red del adaptador descrito anteriormente presenta la
siguiente ecuacion: o f (xT Wi +by)Wo+by+x, los pardmetros entrenables son Wy, W, by
y by, f es una funcién de activacion no lineal, f = ReLU. En lugar de entrenar estos
pardametros, Zhang, R. et al. [29] proponen las siguientes modificaciones: los pesos de
la primera capa se sustituyen por la matriz transpuesta de la caché, de esta forma
se tienen las similitudes entre los ejemplos proporcionados y la imagen a clasificar.
Posteriormente, la funcion de activacion se sustituye por una funcién exponencial de
la forma g(z) = €%17®), Teniendo en cuenta que las similitudes no pueden tener un
valor mayor a 1, esta funcién exponencial convierte valores negativos en positivos y
mediante el parametro S permite modular la brusquedad del valor. Finalmente, este
resultado se multiplica por la matriz de unos y ceros, de forma que cada componente
del vector resultante contiene la suma de todos los productos correspondientes a una

misma clase. De forma similar que en CLIP-Adapter, este valor se ve escalado con otro

2La dimensién oculta es de 256 en los sistemas propuestos.
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pardametro («) sin embargo, la conexién residual no es del vector, sino de los productos

con los puntajes entre la imagen de entrada y las distintas clases.

Imagen a clasificar Im&genes de caché Representacién de clase Etiquetas one-hot

Cdgpisa

& | ﬂ@;hru% 33 |
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Figura B.2: Representaciéon de los diversos métodos de adaptacion.

Finalmente, este tltimo método de adaptacion se basa en la premisa de no
tener calibrado el espacio vectorial entre imagenes, Vishaal Udandarao explica
detalladamente en el capitulo 5.2 de [21] las causas y consecuencias de este hecho. A
continuacion se procede a resumir este efecto sin entrar en gran detalle. Se dice que el
espacio de representacion de las imagenes no se encuentra calibrado para comparativas
intermodales debido a que nunca ha sido entrenado de forma explicita para realizar
dicha tarea. C'LIP unicamente optimiza explicitamente la proyeccién préxima entre las
representaciones entre imagen y texto, ademas el espacio de texto presenta ciertas
ventajas ya descritas como la jerarquia o que la probabilidad de tener la misma
descripcién de texto® es mucho mayor que la probabilidad de tener dos imagenes iguales.
De esta forma, se tiene que el espacio vectorial asociado a la imagen presenta relaciones

entre representaciones intermodales mucho mas débiles que el del texto y sobre todo que

3Muchas de las descripciones con las que se entrena CLIP se generan de forma automatica a partir
de conjuntos de datos para clasificacién en los que se cambia el texto introductorio.
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el conjunto. Para respaldar esta hipdtesis, se analizan los histogramas asociados a los
productos entre representaciones vectoriales tanto intramodales como intermodales.
La distribucion de las similitudes coseno entre vectores intermodales, presenta una
varianza y media bajas (una media baja es indicativo de separabilidad). Por otro lado,
se tiene que la distribucién de las similitudes coseno entre representaciones latentes
intramodales presenta, todo lo contrario, una varianza y media altas. Adicionalmente,
para respaldar las afirmaciones anteriores se observa como la media en el espacio de
texto es mucho mayor que en el de la imagen. Este hecho directamente concuerda con
la probabilidad de ocurrencia de un mismo elemento, mucho mas probable en el caso

de un texto que una imagen.

Como solucién se propone el adaptador Tip-X [21], de forma que este hace uso
de las distancias intramodales de una forma calibrada. En primer lugar, de forma
analoga al resto de métodos, se obtienen los productos escalares entre: el vector de
la imagen a buscar y los vectores que representan cada clase F, = 27 - C' y luego
entre los vectores que representan cada clase con los ejemplos disponibles en la caché
F, = C7.1,, dado que se desea calibrar los puntajes se obtienen las denominadas firmas
que caracterizan a cada ejemplo mediante el uso de la funciéon softmax, de esta forma
se tienen las firmas s, = o(F,) y s. = o(F.). Dado que ahora se tratan de pseudo
distribuciones de probabilidad, se mide la similitud entre estas muestras mediante el
uso de la divergencia KL. Concretamente, se tiene que modificar el signo dado que
una medida de similitud es inversamente proporcional al producto escalar y ademas, se
realiza un escalado para que se encuentre en el mismo rango. Ademas de este término
novedoso, se incorpora en el resultado final un término asociado a la similitud entre
la btisqueda con el banco de imdgenes, al igual que en Tip-Adapter [29], ag(xT1.)Op,

con g(x) = e A=)

. Finalmente, se incorpora el término de bisqueda entre la imagen
y los vectores asociados al texto cada clase, asi se tiene que la busqueda presenta la
siguiente expresion: x7 - C' + ag(xT1,)Og +yV(—K L(s,||s.))Ox con v otro pardmetro

a ajustar indicando la fuerza de la componente de la divergencia KL.

B.2.2. CyCLIP y la consistencia intermodal

Tal y como se ha mostrado anteriormente, no se optimiza directamente la relacion
entre los vectores de una misma modalidad, lo que conlleva la necesidad de calibrar
un espacio si se desean usar los puntajes intramodales. En lugar de hacer uso de los
adaptadores, Shashank, G. et al. [28], proponen afiadir términos a la funcién de coste
de forma que se calibren las distancias intramodales. Se definen dos términos asociados

a aumentar la consistencia inter-intra modals:
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— La consistencia intermodal: se reduce la diferencia entre el valor de los
productos coseno asociados a las representaciones no emparejadas entre imagen
y texto. De esta forma se optimiza que las representaciones vectoriales de textos

e imagenes se reduzcan tanto correctas como incorrectas.

1NN

£Inter = N Z Z Ty, yk l’k’ yj>>2 (Bl)

j=1k=1

— La consistencia intramodal: se reduce la diferencia entre el valor de los
productos coseno asociados a las representaciones no emparejadas entre la
misma modalidad, tanto imagenes como textos. Esto fuerza a compactar una

modalidad de forma que se regularizan las distancias intramodales.
1 N N
['Intra: NZZ x]yxk tkut >> (B2)

Finalmente, estos términos se incorporan a la funcién de coste original de CLIP ,

descrita en el algoritmo 1, mediante un par de pardametros de ajuste (A1 y Ag):

'CCyCLIP = ECLIP + )\lﬁfnter + )\2£Int7’a (B3)

Ademas de esto, Shashank, G. et al., definen una métrica de consistencia asociada a
la sincronia entre las etiquetas predichas entre la btisqueda intermodal con las predichas

mediante los vectores intramodales.

Consistenciay = ]1[2 [P]k([j> = PT(Ij)} (B.4)

Entendiendo por Pr(I;) la etiqueta asociada a la imagen j y a PF como la etiqueta
predicha a partir de la mayoria entre las k£ imagenes mas cercanas. En nuestro analisis
no incorporaremos este tipo de métrica debido a que el problema que se analiza en
mayor profundidad es el de recuperacién de informacion, no clasificacion. Sin embargo,
si se analiza el efecto de la funcién de coste propuesta en CyCLIP [28] y el posible

beneficio para mejorar esta tarea.
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Anexos C

Diseno de la interfaz de pruebas

Se trata de una interfaz desarrollada integramente con Plotly y Python.
Mediante componentes HT'ML, se generan los vectores con las propiedades deseadas.
Posteriormente, se realizan las llamadas a funciones que calculan tanto los parametros

intermodales como el valor de las funciones de pérdidas.

— A: nimero de muestras a simular.
— B: mantener la semilla de generacion fija.
— (" ponderacion de los hiperparametros o y f3.

— D: selectores del angulo y concentricidad para las distribuciones generadoras de

texto e imagen.
— E: valor de la funciéon de pérdidas asociado a la configuracién actual.
— F: visualizacién de los vectores de texto e imagen.

— G- valores de brecha intermodal, desalineamiento y agrupamiento asociados a la

configuracion actual.
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Anexos D

Resultados de los entrenamientos

D.1. Pictogramas ARASAAC en inglés

Lo LoE+ Lojptra

IMAGEN-TEXTO

IMAGEN-TEXTO[NTRA

TEXTO

IMAGEN

Figura D.1: Evoluciéon de los histogramas distancias.
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Figura D.2: Histogramas de distancias tras el entrenamiento con Log.
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Figura D.4: Evolucién de los histogramas distancias.
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68



T T T T T T T
—1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Producto coseno

Figura D.8: Histogramas de distancias tras el entrenamiento con Lop + L

Ointra "

74 IT
ITintra
|

6 T

T T T T T T T
—1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Producto coseno

Figura D.9: Histogramas de distancias tras el entrenamiento con Lo + L + L.

Ointra

69



D.2. Pictogramas ARASAAC en espanol
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Figura D.10: Evolucion de los histogramas distancias.
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Figura D.11: Histogramas de distancias tras el entrenamiento con Log.

IT
[Tintra
|

T

T T T T
-1.00 -0.75 -0.50 -0.25 0.00
Producto coseno
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Anexos E

Los espacios altamente
dimensionales no son intuitivos

A continuacién se presentan las ecuaciones del volumen contenido tanto para una
hiperesfera como para un cubo d dimensional. Para el hipercubo de lado 2r, y la

hiperesfera! de radio r se tiene:

Vhipercubo = (QT)d (El)
i/

iperesfera — a7 7 7o\ E.2

Visgereas dr(d/2) (E2)

Si se expresa el cociente entre volimenes y se hace crecer la dimension, d se tiene:

, Vhipercubo d2d_lr(d/2)
lim = (E.3)
d—o0 Vhiperesfera /2

Con la ecuacion E.3, se tiene que el volumen comprendido por la hiperesfera
resulta insignificante respecto al del cubo, hecho contra intuitivo a lo observado en
tres dimensiones.

Siguiendo en esta linea, si se desea interpretar el volumen de un espacio con
un nuamero elevado de dimensiones, es conveniente pensar en distribuciones de
probabilidad. Se elige un punto aleatorio en el hipercubo con lado 2, mediante una
distribuciéon uniforme d dimensional, es decir, de -1 a 1 en cada dimensiéon. Encontrarse
cerca de una esquina requiere que todas las variables aleatorias sean proximas a 1 o
-1, hecho poco probable. Sin embargo, encontrarse cerca de una cara responde a que
unicamente una de todas estas variables aleatorias, se encuentre préoxima a 1 o -1. Se
puede observar como este tultimo hecho resulta mucho mas probable que el anterior.
De esta forma, se tiene que la mayor parte del volumen de un hipercubo se encuentra

en su frontera.

!Siendo T la funcién gamma de Euler.
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