W Universidad
100 Zaragoza

Trabajo Fin de Grado

Soporte y estandarizacion de una arquitectura
tecnologica de referencia para el despliegue de
microservicios complejos mediante técnicas DevOps
y GitOps

Support and standarization of a reference technology
architecture for the deployment of complex
microservices using DevOps and GitOps techniques

Autor

Jorge Sanclemente Vilda

Director

David Roméan Esteban

Ponente

Francisco Javier Zarazaga Soria

ESCUELA DE INGENIERIA Y ARQUITECTURA
2024



AGRADECIMIENTOS

Quiero expresar mi gratitud a todas las personas que, de una manera u otra, han
contribuido a la realizacion de este Trabajo de Fin de Grado.

En primer lugar, quiero expresar mi profunda gratitud a mis padres, por su apoyo
incondicional y por creer en mi en todo momento. Su confianza, amor y apoyo emocional
han sido fundamentales para la realizacion de este Trabajo de Fin de Grado.

Agradezco también a mi tutor David Roman por su orientacién, sugerencias y
experiencia, pero sobre todo por darme la oportunidad de poder realizar este TFG en
este departamento, ha supuesto un gran aprendizaje para mi.

Extiendo mi agradecimiento a mi ponente, Francisco Javier Zarazaga Soria, por su
disposicién continua y la gran ayuda que me ha proporcionado en la estructuracion y
realizacion de la memoria de este trabajo de fin de grado. Su orientacién ha sido clave
para la culminacién de esta memoria.

Ademas, me gustaria agradecer también a todos los profesores que he tenido durante
todos estos anos de universidad por compartir sus conocimientos y por despertar el
interés en aprender continuamente cosas nuevas.

Por 1ltimo, agradecer a todos los companeros de “hiberus”por su paciencia y por

compartir su experiencia y conocimientos conmigo.



IT



Escuela de
Ingenieria y Arquitectura

dversicdadZaragoza

(Este documento debe remitirse a seceina@unizar.es dentro del plazo de depdsito)

D./Da. Jorge Sanclemente

en aplicacion de lo dispuesto en el art. 14 (Derechos de autor) del Acuerdo de
11 de septiembre de 2014, del Consejo de Gobierno, por el que se
aprueba el Reglamento de los TFGy TFM de la Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de Estudios de la titulacién de
Grado en Ingenieria Informatica (Titulo del Trabajo)

"Soporte y estandarizacién de una arquitectura
tecnolégica de referencia para el despliegue de

microservicios complejos mediante técnicas DevOps
y GitOps"

es de mi autoria y es original, no habiéndose utilizado fuente sin ser
citada debidamente.

Zaragoza, 14 de Junio de 2024

.

Fdo: Jofge  Sanclemente Vil



IV



RESUMEN

Este TFG realizado en la empresa “Hiberus Tecnologia”, tiene como objetivo
dos propédsitos fundamentales. Por un lado, y como objetivo principal, pretende
estandarizar el flujo de CI/CD del departamento para proyectos nuevos, estableciendo
un stack tecnoldgico de referencia en los proyectos promovidos desde hiberus.

Por otro lado, pretende ser una guia de referencia para aquellas personas que se
incorporan al departamento de DevOps dentro de la compania y nunca han trabajado
con esta metodologia, con el objetivo de que adquieran una visiéon general de como
estas practicas otorgan beneficios fundamentales a las empresas que las adoptan.

La elaboracion de este trabajo se ha dividido en tres fases bien diferenciadas. La
primera de ellas se corresponde con una fase de investigacién de las herramientas

actuales y como estas satisfacen o no las necesidades propias de la empresa.

Una vez concluyé este paso, se realizé una segunda fase de implementacion de
una arquitectura DevOps de referencia en un entorno local con méaquinas virtuales
simulando un entorno de desarrollo con el stack tecnolégico propuesto por mi director
del TFG. El objetivo de esta implementaciéon de la arquitectura es demostrar como se
acelera el ciclo de vida del desarrollo de software, acortando notablemente los periodos
de desarrollo y por tanto aumentando la frecuencia con la que se pone el nuevo software
en manos del cliente. Para ello se ha desarrollado y desplegado una simple aplicacién
(Hola Mundo) en Java.

Por 1ltimo, las herramientas estudiadas en esta segunda fase se llevan a un entorno
de produccién real, siendo esta la tercera fase, desplegando la misma aplicacién en una
infraestructura en el cloud de Azure, para observar cémo funciona el flujo de despliegue
en un entorno real con el objetivo de estudiar su comportamiento y hacer pruebas de

cara a estandarizar el flujo de CI/CD del departamento.



VI



Indice

1. Introduccién
1.1. Contexto del trabajo . . . . . . ... .. ... ... ..
1.2. Contexto tecnolégico . . . . . . . .. ..o
1.3. Motivacién y problema que se aborda . . . . . . .. .. ... ... ...
1.4. Herramientas de trabajo . . . . . . .. ... ... ... ... ...

1.5. Esquema general de la memoria . . . . . . . .. .. ... L.

2. Trabajo desarrollado
2.1. Fase 1: Investigacion de la literatura y herramientas . . . . . . . . . ..
2.2. Fase 2: Implementacion de la arquitectura DevOps de referencia
empleada en hiberus para la construcciéon de un entorno de desarrollo a
modo de prueba creado con maquinas virtuales Vagrant. . . . . . . ..
2.3. Fase 3: Implementaciéon de la arquitectura DevOps de referencia
empleada en hiberus simulando un entorno de produccién en la nube

de Azure. . . . .

3. Lecciones aprendidas y conclusiones
3.1. Aspectos mas complejos abordados . . . . ... ...
3.2. Conocimientos adquiridos . . . . . . . . ... ... L.
3.3. Ideas futuras . . . . . . . ...

3.4. Conclusiones . . . . . . . . . L
Anexos
A. ;Qué es DevOps?
B. Principios y practicas claves en DevOps
C. ;Qué es GitOps?

D. ;Qué es DevSecOps?

VII

DD =W NN ==

J

23
23
23
24
26

27

29

31

35

37



VIII



Capitulo 1

Introduccion

1.1. Contexto del trabajo

Este proyecto se ha realizado en la empresa Hiberus Tecnologia, una consultora
tecnolégica con sede central en Zaragoza, que se especializa en la prestacion de servicios
de consultoria de negocio, desarrollo tecnoldgico, transformacién digital y outsourcing.
En la actualidad, cuenta con mas de 3000 empleados en plantilla, y en el ano 2023
facturaron mas de 180M de euros, lo que la situa en el top 5 de las empresas del sector
tecnoldgico de capital espanol. Ademas de su sede central en Zaragoza, hiberus cuenta
con oficinas en territorio nacional como Barcelona, Madrid, Bilbao, Sevilla... asi como
con oficinas en Europa como Londres, Munich, Milan y en el resto del mundo como
Buenos Aires, Medellin, Bogota, Miami...

Dentro de la empresa, he trabajado en el drea denominada Hiberus Sistemas que
se dedica a ofrecer soluciones tecnoldgicas de calidad, proporcionando apoyo integral a
diversas empresas y negocios para alcanzar sus metas financieras. Su enfoque abarca
proyectos de infraestructura tecnoldgica, servicios en la nube y servicios gestionados,
lo que les permite ofrecer una amplia gama de servicios en el sector TT.

Hiberus Sistemas cuenta con diversos departamentos, entre los cuales se encuentra
el conocido como “DevOps”, que es donde he desarrollado este TFG. Este es un
departamento totalmente nuevo, creado el 1 de enero de este mismo ano (2024). El
motivo de la creacion del mismo es una apuesta total por las soluciones cloud aplicando
la filosoffa DevOps (ver Anexo A) en sus soluciones. Antes de la creacion de este
departamento, se trabajaba mas con soluciones on-premise utilizando tecnologias mas
tradicionales. La decisién de dar un paso hacia la innovacién surgié como respuesta a
la creciente demanda del mercado y la necesidad de adaptarse a un entorno tecnolégico
en constante evolucion con la llegada de los servicios cloud. Esta transicion hacia
soluciones en la nube no solo permite a Hiberus Sistemas mantenerse a la vanguardia

de la tecnologia, sino también satisfacer de manera mas efectiva las necesidades de sus



clientes, ofreciendo soluciones agiles, flexibles y escalables.

Desde que el departamento se constituyé como departamento independiente, hace
6 meses, ha experimentado un crecimiento significativo, pasando de 10 a 40 personas
hasta la fecha. Ademads, se ha incrementado la facturacién total de la compania entre
un 10 y un 15 por ciento. Estos datos han generado una mayor satisfaccién entre los

clientes, quienes cada vez confian mas en las soluciones ofrecidas por hiberus.

1.2. Contexto tecnoldégico

Antes de la creacion del departamento DevOps, el proceso de desarrollo de nuevo
software, bien para el cliente, bien como producto propio, era muy diferente a lo que
se esta realizando actualmente. A la hora de desarrollar nuevo software, se operaba de

la siguiente manera:

= Por un lado, el equipo de desarrollo se encargaba de construir el software de
las aplicaciones y de encargarse de que ese cddigo funcionara a la perfeccion y
sin errores. Después de dias, semanas o tal vez meses, el equipo de desarrollo
finalizaba el proceso de creacién de codigo y pondria ese software en manos del
equipo de operaciones (en este caso, este serfa el equipo donde he realizado este

proyecto).

= Por otro lado, el equipo de operaciones se encargaba de proveer y configurar
la infraestructura necesaria (maquinas, firewalls, bases de datos, servidores,
redes...) para ejecutar esas aplicaciones, ademds de monitorizar ese software para

comprobar que todo funcionaba segun lo previsto.

En teoria, se creia que era un proceso bien calculado y libre de errores, pero en
la practica resulté que no era asi. Los ciclos de desarrollo de software eran largos, y
cuando habia algtun fallo en producciéon suponia devolver la aplicacién al equipo de
desarrollo para verificar y corregir esos errores, cuando el error podia venir por la falta
de alguna libreria o dependencia, o por alguna diferencia en las versiones del sistema
operativo, lo que prolongaba los tiempos de entrega de software al cliente.

Ahora que se ha explicado ligeramente el contexto tecnolégico de este proyecto, voy
a definir de manera breve qué es DevOps ya que aparecera en numerosas ocasiones
durante este documento para que el lector pueda comprender mejor lo que se esta
explicando.

El movimiento DevOps como tal, empezd a fraguarse entre el 2007 y el 2008
aproximadamente, cuando las comunidades de operaciones de TI y desarrollo de

software se pronunciaron sobre lo que consideraban una disfuncién gravisima del sector.



Se alzaron contra el modelo tradicional de desarrollo de software, que exigia que los que
escribian el cédigo se mantuvieran al margen, en términos de organizacién y operacién,
de los que implementaban y mantenian dicho cédigo. El término DevOps se corresponde
con la combinacion de las palabras inglesas Development y Operations. DevOps es un
marco de trabajo, una filosofia, un conjunto de practicas que agrupan el desarrollo de
software (Dev) y las operaciones de TI (Ops) cuyo objetivo es promover la colaboracién
y comunicacién entre estos dos equipos para reducir el ciclo de vida de desarrollo y
desplegar software de calidad de la forma ma&s automatizada y productiva posible.

Es una filosofia reciente, que estan adoptando muchas grandes empresas y que esta
ayudando enormemente en la transformacion digital de los clientes de hiberus, con

varios casos de éxito recientes en la compania.

1.3. Motivaciéon y problema que se aborda

Tal y como se ha explicado anteriormente, el equipo DevOps apenas lleva 6 meses
operando como un equipo independiente y, debido a su reciente creacion, tiene todavia
un gran numero de procesos por estandarizar y automatizar. Ademads, hiberus se
encuentra en constante expansion de su plantilla (actualmente en Junio de 2024, se
estd incorporando una media de noventa a cien personas al mes a la compania), por
lo que resulta crucial estandarizar los procesos para asegurar que este crecimiento se
desarrolle de la manera més organizada posible.

El objetivo ultimo de estas estandarizaciones es conseguir que, cuando se realizan
los flujos de despliegue de aplicaciones, se lleven a cabo, en la medida de lo posible, de
manera sistematica en el uso de las mismas tecnologias y practicas para cada cliente.

Ademas, no se cuenta con un on-boarding dentro del departamento para la gente
que viene nueva, ya sea de practicas o contratada. Por ello se pretende también que
este proyecto sirva como una primera toma de contacto con estas herramientas y con
el trabajo que desempena este departamento.

Para ello, el trabajo que se ha realizado es la implementacién de una arquitectura
tecnolégica de referencia para el despliegue de todo tipo de aplicaciones Java (la mayoria
de aplicaciones desarrolladas por hiberus utilizan este lenguaje de programacién) en
dos entornos: un entorno de desarrollo empleando méaquinas virtuales, y otro entorno
de produccién alojado en el cloud de Azure. Este ultimo pretende imitar un entorno
real que podria asemejarse a un entorno de cualquier cliente (staging, pre-produccién o
produccién) que Hiberus implementa para desplegar las aplicaciones de los clientes en
el cloud, pero utilizando un stack tecnolégico que sirva como prueba de concepto para

poder analizar estas herramientas y ver si satisfacen los requisitos de la compania. Asi



mismo, con la creacién de estos dos entornos, se pueden configurar otras herramientas
que se incorporen al flujo de desarrollo y despliegue para poder comprobar cémo se
integran unas con otras y de esta forma tener una base para poder estandarizar el
uso de estas herramientas teniendo dos entornos que se asemejan totalmente a las
infraestructuras construidas para los clientes.

En estas dos fases, que se explican con profundidad en la seccion 2, se detalla paso
a paso cémo se ha configurado y contruido la arquitectura, explicando el uso y funcién
de cada tecnologia, y profundizando en el detalle de cémo funciona el flujo de CI/CD
para este proyecto, que no deja de ser una demostracion de “prueba”de como se opera

de cara al cliente.

1.4. Herramientas de trabajo

Durante las fases del trabajo desarrollado que se explican en profundidad en el

capitulo 2, se ha hecho uso de una gran variedad de herramientas y tecnologias:

= Como repositorio de codigo y sistema de control de versiones se ha trabajado
con GitLab, para alojar los dos repositorios necesarios para la realizacion de este
proyecto. Uno para alojar el repositorio de cédigo fuente de la aplicacién y otro
para alojar el cédigo de configuracion de la aplicacién, en lo que se conoce como

repositorio GitOps (ver Anexo C).

= Para construir la primera infraestructura en un entorno local con méquinas

virtuales se ha empleado la herramienta Vagrant!.

= Como lenguaje de programacion para desarrollar la aplicacién de prueba se ha

empleado Java?.

= Como herramienta de gestién de dependencias y de construccién de cédigo se ha

empleado Maven?.

= Se ha empleado Docker para construir una imagen portable e independiente de

la aplicacién desarrollada?.

» Como servidor de automatizaciéon y operador de Continous Integration se ha

utilizado la herramienta Jenkins®.

'Documentacién oficial Vagrant: https://developer.hashicorp.com/vagrant/docs
2“Que es Java’: https://www.java.com/en/download/help/whatis_java.html
3Documentacién oficial Maven: https://maven.apache.org/what-is-maven.html
4Documentacién oficial Docker: https://www.docker . com/

SDocumentacién oficial Jenkins: https://www.jenkins.io/doc/

4


https://developer.hashicorp.com/vagrant/docs
https://www.java.com/en/download/help/whatis_java.html
https://maven.apache.org/what-is-maven.html
https://www.docker.com/
https://www.jenkins.io/doc/

» Para analizar el cédigo estatico de la aplicacién en busca de vulnerabilidades
o malas practicas y para conseguir lo que se conoce como “Clean code”’se ha

empleado la herramienta SonarQube®.

= Trivy se ha empleado para analizar las vulnerabilidades de las diferentes capas
de la imagen Docker de nuestra aplicacién. Gracias a Trivy y SonarQube
conseguimos aplicar una capa de seguridad en cada fase del ciclo de vida del

software, adoptando practicas que se conocen como “DevSecOps” (ver Anexo D).

= Como repositorio de imagenes de contenedor de Docker se ha empleado Nexus

Repository Server " y Azure Container Registry &

= Para automatizar el despliegue de las aplicaciones en los diferentes entornos se

utiliza la herramienta de Continous Deployment conocida como ArgoCD?.

= Para construir los entornos donde se ha desplegado la aplicacién, se ha empleado
Kubernetes!?, en concreto Minikube!! en la versién con maquinas locales y Azure

Kubernetes Service (AKS)'? en la tltima fase del proyecto.

Por 1ltimo, como proveedor de cloud para construir toda la infraestructura en la

ultima fase, se ha empleado Azure 3.

SDocumentacién SonarQube: https://docs.sonarsource.com/sonarqube/latest/
"Documentacién Nexus: https://www.sonatype.com/products/sonatype-nexus-repository
8https://azure.microsoft.com/es-es/products/container-registry
9Documentacién ArgoCD: https://argo-cd.readthedocs.io/en/stable/

10K ubernetes: https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/

" Minikube: https://minikube.sigs.k8s.io/docs/start/

12 Azure Kubernetes Service: https://learn.microsoft.com/en-us/azure/aks/what-is-aks

13 Azure: https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/

what-is-azure


https://docs.sonarsource.com/sonarqube/latest/
https://www.sonatype.com/products/sonatype-nexus-repository
https://azure.microsoft.com/es-es/products/container-registry
https://argo-cd.readthedocs.io/en/stable/
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://minikube.sigs.k8s.io/docs/start/
https://learn.microsoft.com/en-us/azure/aks/what-is-aks
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure

1.5. Esquema general de la memoria

En esta memoria se documenta el trabajo de fin de grado, el cual se divide en tres
capitulos principales. A continuacion, se describe de manera resumida el contenido de
cada seccion para ofrecer una vision general de la estructura del documento.

El Capitulo 1, Introducciéon: Se corresponde con la introducciéon y establece
el contexto y la motivacién del trabajo realizado. Aqui se presenta el ambito del
proyecto, su relevancia y la situacion actual en el campo de estudio. Se describen las
tecnologias y herramientas principales utilizadas, se expone la problematica especifica
que se pretende resolver y se detallan las herramientas empleadas durante el desarrollo
del proyecto. Ademas, se proporciona esta vision general de la estructura del documento
para ayudar al lector a entender la organizacion del contenido.

Capitulo 2, Trabajo Desarrollado: Detalla el trabajo realizado en tres fases
distintas. La primera fase se centra en la investigacion de la literatura y las herramientas
relevantes para el proyecto. La segunda fase describe la implementacion de una
arquitectura DevOps de referencia utilizada en hiberus para la construccién de un
entorno de desarrollo a modo de prueba, creado con méaquinas virtuales Vagrant.
La tercera fase se enfoca en la implementacién de la misma arquitectura DevOps,
simulando un entorno de produccién en el cloud de Azure.

Capitulo 3, Lecciones aprendidas y conclusiones: Este capitulo recopila los
conocimientos adquiridos y aspectos mas complejos enfrentados durante el desarrollo
del proyecto. Ademas, se discuten ideas futuras que podrian derivarse de este trabajo

y se presentan las conclusiones finales.



Capitulo 2

Trabajo desarrollado

2.1. Fase 1: Investigacion de la literatura y
herramientas

Durante esta primera fase, que abarcé aproximadamente dos semanas, se llevaron
a cabo las siguientes actividades y se procedié de la manera que se describe a
continuacion.

Inicialmente, me dediqué a comprender el funcionamiento del equipo del
departamento, lo cual incluy6 la lectura de documentacién sobre su organizacién
interna y la familiarizacién con diversos conceptos fundamentales. Entre estos conceptos
se encuentran DevOps, administracién de sistemas, redes (Networking) y computacién
en la nube (Cloud).

Después de haber obtenido una vision general de los conceptos mencionados
anteriormente, mi director de TFG me proporcioné un primer boceto de arquitectura de
referencia. Este diagrama representaba el stack tecnolégico utilizado en las soluciones
ofrecidas al cliente para agilizar, automatizar y estandarizar el ciclo de vida del
desarrollo de software y los despliegues de sus aplicaciones.

El diagrama propuesto fue el que se muestra en la figura 2.1. A partir del mismo,
mi primera tarea fue realmente entender el flujo de este diagrama y entender la funcién
de cada tecnologia. Tal y como se puede ver en la figura, los repositorios de cédigo
se encuentran alojados en GitLab y por cada aplicacién del cliente que se quiere
desplegar se cuenta con dos repositorios: El repositorio de cédigo fuente y el repositorio
de configuracion, que es donde se almacenan todos los ficheros yaml que definen los
objetos a desplegar en el clister de Kubernetes. Jenkins es el servidor de automatizacion
que se encarga de clonar ese repositorio de cédigo fuente para su compilacion, analisis
estatico del cédigo con la herramienta SonarQube y la ejecucion de los tests unitarios
y test de integracién. La herramienta Nexus Repository es un repositorio de artefactos

que se emplea para almacenar las imagenes de contenedor de las diferentes versiones

7



¥

,.ﬁ

F ~ argo

sonarqube\\\ ‘ Eﬂl O i‘ ]ﬂﬂﬁ]ﬂﬁ]i
C i _Juf ]

OPENSHIFT Amazon EKS

Azure Kubernetes Service (AKS)

Figura 2.1: Arquitecura tecnolégica de referencia

de las aplicaciones. La parte de Docker y Sonarqube refleja que en la mayoria de las
instalaciones, los diferentes componentes que componen Sonarqube se ejecutan como
contenedores de Docker. SonarQube es una herramienta que también se emplea de
forma estandarizada en los flujos CI/CD de hiberus y se encarga de mantener la
calidad del codigo asegurando que se construye software de manera eficiente, segura
y empleando buenas practicas. Ademads, tambien analiza posibles vulnerabilidades y
brechas de seguridad en el cédigo. Trivy es la herramienta que se encarga de escanear
vulnerabilidades dentro de las imagenes de contenedor de las aplicaciones. Por tltimo,
ArgoCD es el operador de Continous Deployment y se encarga de que el clister siempre
se mantenga en el mismo estado que reflejan los ficheros alojados en el repositorio de

configuracion en GitLab, encargandose de desplegar dichos cambios en el clister.

Es importante resaltar que, para implementar buenas practicas, los administradores
de los clisters de Kubernetes deben aprovechar al maximo la infraestructura como
cédigo (IaC, ver Anexo 4) que ofrece ArgoCD, y siempre se deberia cambiar la
configuracion del cluster mediante los ficheros del repositorio de Git, es decir, nos
beneficiamos de la filosofia GitOps. Esto evita cambios ad-hoc en el clister, reduciendo
asi la posibilidad de errores humanos, y mejorando la auditabilidad de los cambios,
pudiendo hacer un sencillo rollback en caso de errores, restaurando el estado previo
del sistema. Cuando ArgoCD detecta cambios en el repositorio de configuracién, se
encarga de desplegar esos cambios en el clister correspondiente que puede estar alojado

en Azure Kubernetes Service, OpenShift Kubernetes Engine, o Elastic Kubernetes

8



Service de Amazon. Como se puede observar, se intentan alojar esos clisters siempre
en entornos de cloud, lo que aporta escalabilidad, agilidad, tolerancia a fallos y menor
esfuerzo de mantenimiento, permitiendo responder de manera rapida a las necesidades
del cliente.

Para poder afrontar las siguientes fases del proyecto, me dediqué a entender
qué papel jugaba cada una de las tecnologias de esta arquitectura, gracias a leer
documentacién y reunirme con companeros del departamento. Cabe destacar que las
tecnologias de este diagrama no son un estandar, y uno de los objetivos de este TFG
era probar los entornos construidos para ver cémo se integran las tecnologias entre
ellas y proponer otras alternativas. Una vez se comprendido el uso y posibles beneficios
de estas herramientas construi un diagrama de flujo del despliegue automatizado para
entender mejor la infraestructura a implementar y no perder de vista el conjunto de
tareas que se querian automatizar. El diagrama presentado en la figura 2.2 me sirvié de
gran ayuda y guia en las siguientes fases. Ademas, ha servido también de modelo en el
departamento para el propédsito de estandarizar el flujo de despliegue de las aplicaciones.

El proceso de despliegue creado en la figura 2.2 es continuo y se ejecuta cada vez que
se aceptan nuevos cambios en el repositorio de codigo fuente, acortando los periodos
de ciclo de vida del desarrollo del software, haciendo la vida mucho mas facil a los
desarrolladores, permitiéndoles dedicarse exclusivamente a escribir codigo de calidad

abstrayéndose de la infraestructura subyacente. Este flujo se explica a continuacién:

1. Una vez el desarollador anade nuevas features o funcionalidades a la aplicacion,
este sube esos cambios al repositorio de cédigo mediante una pull request. Cuando

la PR se acepta, se desencadena el proceso automatico de despliegue del software.

2. A continuacion, se ejecuta el andlisis estatico del codigo con SonarQube y se
compila el cédigo fuente. Si, el andlisis falla, hay que volver a revisar el cédigo y

corregir los errores. Si el andlisis es exitoso, se contintia con la siguiente fase.
3. En esta fase se ejecutan los tests correspondientes escritos por los desarrolladores.

4. Si el resultado de la fase de testing es el esperado, se crea una imagen de Docker

con las dependencias requeridas por la aplicacion.

5. A continuacién, se ejecuta un escaner de la imagen de Docker construida en la
fase anterior en busca de vulnerabilidades. Este escaner lo realiza la herramienta

Trivy.
6. Si la imagen es segura, se sube la imagen al repositorio de artefactos.

9



7. En este paso comienza el flujo de CD. Una vez se ha subido la imagen de
la aplicacién al repositorio de imégenes, Jenkins clona el repositorio Git de
configuraciéon (también llamado repositorio GitOps), modifica el fichero donde
se especifica la version de la imagen y se suben los cambios en el repositorio

GitOps.

8. En el dltimo paso, la herramienta ArgoCD detecta que ha habido cambios en el
repositorio de GitLab y que no coincide el estado actual del clister con el estado
reflejado en los ficheros de configuracion. Es en este paso, cuando Argo despliega
los nuevos cambios en el clister para asegurarse que el estado actual coincide con

el deseado.

Los procesos que estan en azul mas claro en la figura 2.2 se corresponden con
el proceso de Continous Integration. Todos estos procesos los ejecuta el servidor de
Jenkins.

Los que estan en azul mas oscuro se corresponden con el Continous Deployment.

Como primera aproximacién, el director de este TFG me pidé que implementara
la arquitectura de la figura 2.1 con maquinas virtuales utilizando la herramienta

“Vagrant”. Esta fase se explica con detalle en la siguiente seccion.

10



CI/CD starts

Developer pushes
code to repository

SonarQube Code
Analysis

Check code and fix
errors

Analysis passed?

Image build

Trivy Scan

Fix image
vulnerabilities

Passed?

Push image to
artifact repository

Update yaml file on
GitOps Repo

ArgoCD detects
changes

Deploy to
Kuberenetes Claster

Figura 2.2: Flujo de despliegue estandarizado en hiberus

11



2.2. Fase 2: Implementacion de la arquitectura
DevOps de referencia empleada en hiberus
para la construcciobn de un entorno de
desarrollo a modo de prueba creado con
maquinas virtuales Vagrant.

Este periodo duré aproximadamente un mes y fue sin duda la fase mas intensa
de trabajo y ha supuesto un reto para mi ya que nunca me habia enfrentado a estas
herramientas y tecnologias. El director de este TFG me habia pedido construir una
infraestructura con méquinas virtuales de Vagrant para implementar la arquitectura de
referencia. Vagrant es una herramienta que utiliza VirtualBox (también puede trabajar
con otros software de virtualizacién como VMware) y emplea su API para construir
maquinas virtuales de manera declarativa, con ficheros de configuracion.

El objetivo de esta fase era desarrollar una simple aplicacién en Java que escribiera
“hola mundo”por pantalla (esta decision se toma porque la mayoria de aplicaciones
que utilizan microservicios en hiberus se construyen en Java) y comprobar cémo una
vez construida la infraestructura y los scripts de automatizacién, con hacer un cambio
en el cédigo fuente, se lanza autométicamente todo el proceso de CI/CD y se despliega
la aplicacion en el cliuster de Kubernetes con esos cambios. Para ejecutar el proceso de
despliegue de aplicaciones, primero fue necesario crear la infraestructura que se detalla
a continuacion.

Decidi que utilizar cuatro méaquinas era la opciéon mas 6ptima y eficiente:

» Una méquina como servidor de GitLab donde se alojan los repositorios (en
hiberus tambien emplean un servidor dedicado para alojar los repositorios

necesarios).

» Un servidor de Jenkins que se encarga de ejecutar todas las tareas del proceso de

Continous Integration, donde ademas se ejecuta SonarQube y Trivy.
= Otra méaquina para el repositorio de imagenes Nexus.

= La ultima maquina se ha empleado para alojar el clister de Kubernetes, en este

caso Minikube y la herramienta ArgoCD.

12



El diagrama con la infraestructura construida seria el que se muestra en la figura
2.3

Vagrant VMs Environment N
Jenkins Server VM

” Gitlab Server VM
6 Trivy image scan

3 . Y

3 SonarQube 4 Tests ;d build 5 Image build ﬁlvg

O ) \ 2 Webhook
N v

1. push

Developer Source code repo

/

>

Config repo i—o— 7 Image push

8 Update k8s manifests

9 ArgoCD detect changes

ArgoCD and K8S VM

( 11 Deploy
> % Nexus Repository Server VM

Minikube Cluster D
D

192.158.50.40:8082
N

10 ArgoCD pulls the container image

Figura 2.3: Entorno creado con maquinas virtuales Vagrant

Este proceso de construccién del entorno se ha automatizado con varios scripts
gracias a las opciones de aprovisionamiento que ofrece Vagrant para que ejecutando
un solo comando se levante la infraestructura (instalacion de Jenkins, Docker, levantar
SonarQube con Docker Compose, ArgoCD, Trivy en la maquina correspondiente y
configuracién de la red privada y reenvio de puertos).

Una vez finalizada la construccién automatizada del entorno se procedio6 a configurar

la creacién y comunicacién de las tecnologias del proyecto en el siguiente orden:

= Creacién de cuenta gitlab y configuracién de los dos repositorios. Creacion del

cédigo fuente y los tests de la aplicacion.
= Creacién del Dockerfile de la aplicacion.

» Integraciéon de Jenkins con GitLab para que una vez se suban los cambios al

repositorio, se envie un webhook a Jenkins para que comience el proceso de CI.

» Integracion de Jenkins y SonarQube para que este avise si el andlisis del cédigo

ha sido exitoso.
s Integracion de Nexus Repository con el pipeline de Jenkins.

= Escribir los ficheros de yaml de Kubernetes necesarios para crear el despliegue de

los pods que corren la app y subirlos al repositorio de configuracion.

13



= Configuracién de la aplicacion de ArgoCD para que escuche el repositorio de

configuracion.

» Por ultimo, la creacién del Jenkinsfile que es el fichero que contiene el script que

se encarga de ejecutar la légica del proceso de desliegue.

En este punto, tenfamos creada toda la infraestructura necesaria para poder ejecutar
el flujo de despliegue. Por tltimo, faltaba escribir el script de automatizacion que
ejecuta Jenkins y se encarga de realizar todos los pasos necesarios del proceso de
despliegue. Este fichero, por convencién se crea en el repositorio de cédigo y contiene
un script en el lenguaje ruby.

El script de Jenkins se presenta a continuacion. Se divide en varios snippets de
cédigo en este documento por simplicidad, pero todos los fragmentos forman parte del

mismo fichero denominado Jenkinsfile.

stage('SCM") {
steps {
checkout scm

Figura 2.4: Primera parte del Jenkinsfile

stage('Building jar and SonarQube Analysis') {
steps {
script {
mvn = tool 'jenkins-maven'
withSonarQubeEnv() {

sh "${mvn}/bin/mvn clean package sonar:sonar -Dsonar.projectKey=analisis_tfg_code
-Dsonar.projectName="analisis_tfg_code""

Figura 2.5: Compilacion del cédigo fuente, ejecucion de tests y andlisis con SonarQube

14



En la figura 2.4 y 2.5 se ven dos fases del script que recordemos se encarga de
desplegar la aplicacion en el entorno correspondiente. En la figura 2.4, Jenkins clona el
repositorio de cédigo que habiamos alojado en la primera maquina virtual. En nuestro
caso es el repositorio de codigo fuente. En la figura 2.5 con un solo comando se compila
el codigo fuente, se ejecutan los tests y se analiza el codigo estatico con SonarQube.

En la figura 2.6 se ve el codigo necesario para que el pipeline espere a que la
aplicacion de SonarQube finalice el andlisis del cédigo de la aplicacién y aborte el

script en caso de que el andlisis no sea exitoso.

stage ('Quality gate SonarQube Analysis') {
steps {
timeout(time: 2, unit: 'MINUTES') {
waitForQualityGate abortPipeline:

}

Figura 2.6: Quality Gate de SonarQube

En la figura 2.7 se construye la imagen de contenedor que contiene nuestra
aplicacion. Las variables en maytscula son variables de entorno que se definen al
principio del script.

La variable BUILD-ID contiene el nimero de ejecuciéon del pipeline, por tanto, si
es la décima vez que se ejecuta, la variable contendra el valor “10”. Se utiliza esta
convencién para que el nombre de la imagen tenga un valor tinico que se corresponde
con las distintas versiones de la aplicacion.

En los entornos reales, se suele utilizar el hash del commit de Git que identifica esos
cambios, seguidos de la fecha de construccion de la imagen.

En la figura 2.8 se realiza el analisis de las vulnerabilidades de la imagen construida.
En este pipeline se analizan las vulnerabilidades que son altas y criticas, siendo bastante
estrictos en la seguridad del entorno.

A continuacion, en la figura 2.9 nos logeamos con el registro de Nexus que hemos
desplegado, etiquetamos la imagen y hacemos el push de esa imagen al repositorio.

Por tltimo, queda hacer un checkout del repositorio de configuracién, modificar en

15



stage('Image build') {
steps {
script {

sh "docker build -t DOCKER_IMAGE } : ${BUILD_ID

Figura 2.7: Construccién de la imagen de docker

stage('Tr can') {
steps {
script {

sh "trivy image --no-progress --exit-code 1 --severity HIGH,CRITICAL DOCKER_IMAGE}:${BUILD_ID}"

Figura 2.8: Escaner de la imagen con Trivy

el fichero del despliegue de Kubernetes el nuevo tag de la imagen y subir los cambios
al repositorio. Todas estas acciones se ejecutan en la Figura 2.10

Es a partir de este paso, cuando de manera automatizada, ArgoCD detecta los
cambios que ha habido en este repositorio y re-despliega la nueva version de la aplicacién

en el cliuster sin la necesidad de intervencién humana.

16



stage('Push to Nexus') {
environment {
NEXUS_CREDS = credentials( 'nexus-c entials"')
}
steps {
script {

sh CREDS_PSW | docker login -u $NEXUS_CREDS_USR --password-stdin $REPO_HOST:$REPO_PORT'
sh 3 DOCKER_IMAGE} : ${BUILD_ID} ${REPO_HOST}:${REPO_PORT}/${DOCKER_IMAGE}:${BUILD_ID}"
sh "docke REPO_HOST} : ${REPO_PORT}/${DOCKER_IMAGE} : $ {BUILD_ID}"

Figura 2.9: Push de la imagen al repositorio

stage('Update GitOps Repository’){
steps {
sh "sed -i 's|\\([[:space:]]*image:\\).*|\\1
NEXUS_HOST}:${REPO_PORT}/my-app:${IMAGE_TAG}|' Deployment.yml"

sh "git add Deployment.yml™
sh 'git commit -m "Updated build tag"
sh "git push git@192.158.50.10:jsanclementev/tfg_configuration.git HEAD:master"

'

Figura 2.10: Modificacion del repositorio GitOps

Demostracion de caso de uso de prueba
Para comprobar que toda la infraestructura construida despliega las aplicaciones
correctamente, debemos hacer cambios en el repositorio de cédigo fuente. Por ejemplo,

cambiaremos el mensaje que escribe la aplicaciéon Java por pantalla:

= En este punto, nuestra aplicacién escribe “hola mundo’por pantalla.

Cambiaremos el mensaje a Hola hiberus! y subimos los cambios al repositorio.

17



Bl App.java 306 Bytes

package com.mycompany.app;

public class App {
private static final String MESSAGE = "Hola mundo!™;

public App() {}

public static void main(String[] args) {

public String getMessage() {

return MESSAGE;

Figura 2.11: Fichero App.java de la apliacion

= Cuando se suben los cambios al repositorio, se ejecuta el pipeline de Jenkins
automaticamente, gracias al webhook enviado por GitLab. El script de Jenkins
ejecuta todos los stages explicados anteriormente que coinciden ademés con las
fases explicadas en el diagrama de flujo de la Figura 2.2, estos stages aparecen
en verde indicando que se han ejecutado correctamente. Si hubiera un error en el
c6digo, o vulnerabilidades en las iméagenes de contenedor construidas, el pipeline
apareceria en rojo en ese punto y se detendria su ejecucion, indicando en los logs el
motivo del error. Cabe destacar que no sélo se implementa un flujo de despliegue
automatizado si no que ademas se anaden capas adicionales de seguridad con

SonarQube y Trivy para que las aplicaciones sean lo mas seguras posibles.

Stage View
Building j;
Declarative: - ";915' Quality gate call
ecarative: SCM =n SonarQube Image build Trivy scan Push to Nexus update_gitops_repo
Checkout SCM SonarQube N N
Analysis job

Analysis

Average stage times: 1s 636ms 36s 688ms 13s 56s bs 3

(Average full run time: ~2min 53s)

may 23 15Ems 50e 352ms 3 435 40s
1239

Figura 2.12: Informacién en tiempo real de los stages del pipeline en Jenkins

= En una media de tiempo de 2 minutos y medio, si no hay errores, los cambios

hechos en el codigo se reflejan en el clister. Para comprobar esto, en la maquina

18



virtual en la que se aloja el cluster de Minikube podemos observar que hay tres

pods corriendo nuestra aplicacién (ver Figura 2.13).

vagrant@argocd:~$ k get po
NAME READY  STATUS RESTARTS
my-app-765b786759-1vgqz2 1/1 Running ©

my-app-765b786759-pfett 1/1 Running ©
my-app-765b786759-x5mdw  1/1 Running ©

Figura 2.13: Informacién de los pods que estan ejecutando nuestra aplicacion

= Para ver si se ha desplegado la nueva version, es decir, la versién en la que nuestra
aplicacion escribe hola hiberus por pantalla, podemos obtener los logs de los pods.
Como podemos observar en la figura 2.14, el flujo de despliegue funciona segin
lo previsto. Se han aplicado los cambios que hemos hecho en el repositorio de

cédigo fuente de manera totalmente automatizada.

vagrant@argocd:~$% k logs my-app-765b786759-1vqz2
Hola hiberus!

Figura 2.14: Logs de los pods

19



2.3. Fase 3: Implementacion de la arquitectura
DevOps de referencia empleada en hiberus
simulando un entorno de produccién en la
nube de Azure.

Una vez terminada la fase anterior, el director del tfg me propuso implementar la
misma infraestructura pero en la nube de Azure.

Esta fase se realizé en aproximadamente dos semanas y fue el ultimo periodo de
trabajo técnico de este TFG. Para ello se me proporcioné una cuenta en el directorio
de Azure del departamento para poder alojar los recursos necesarios.

Antes de ponerme a implementar la arquitectura, tuve que familiarizarme con los
conceptos basicos del cloud para que los gastos no estuvieran por encima de lo previsto.
Entender los conceptos basicos de azure como regién, zona de disponibilidad, red
virtual, maquinas virtuales, interfaces de red virtuales, security groups de las maquinas
virtuales, etcétera.

Una vez entendidos estos conceptos, al igual que en el Capitulo 2 se disené un

diagrama de la infraestructura a construir.

-

4o Azure Virtual Network —
Jenkins server

(e E— N

CI/CD Pipeline
2 webhook
Gitlab server @

J J/ 6 Trivy image scan

1 git push
O
sonarqube \ ;{_{; Luzf. S
Devel = ‘ 0
eveioper Source code repo g
3 Code Analysis 4 Tests and build 5 Image build frivy

<

- \j L—?\o 7 Image push

8 Update k8s manifests

GitOps Repository
R S B

9 ArgoCD detects changes

AKS Cluster

uEli b
o 11 Deploy l." m
M

| Azure Container Registry

@

L 10 Each pod pulls container image

Figura 2.15: Arquitectura construida en Azure

Esta infraestuctura realmente no deja de ser una analogia de la arquitectura

construida en la fase anterior, pero, al tratarse de un entorno de cloud, cambian algunos

20



componentes con respecto a la infraestructura de maquinas virtuales de la fase 2.

A continuacién se expican los distintos elementos que componen esta arquitectura:

= Una maquina virtual de Azure como servidor de GitLab para alojar los

repositorios necesarios.

= Una maquina virtual de Azure como servidor de Jenkins que se encarga de
ejecutar todas las tareas del proceso de Continous Integration, donde ademés

se ejecuta SonarQube y Trivy.
» Elservicio de Azure Container Registry para el repositorio de imagenes de Docker.

» En vez de una maquina virtual donde instalar Minukube, se crea el servicio
gestionado Azure Kubernetes Service para ejecutar la aplicacion desarrollada y

donde ademas se ejecuta la aplicacién de ArgoCD.

Esta infraestructura no se construye de manera automatizada como era el caso de
Vagrant, si no que este aspecto se comentard brevemente en la seccién 3.3 de ideas
futuras. En cambio, la instalacion de herramientas como por ejemplo GitLab no fue
necesaria ya que Azure proporciona imédgenes de maquina virtual que ya contienen
GitLab instalado. A continuacion, una vez se finalizo la instalacion de todos los paquetes
necesarios (SonarQube, Docker, Trivy...) en cada maquina virtual, tuve que configurar
los credenciales del registro de imagenes y configurar el servicio de Kubernetes de Azure
donde habia que indicar cuantos nodos crear en el clister, la imagen de maquina virtual
que iba a utilizar cada nodo (Linux, Debian...) y otras configuraciones del cluster.

Una vez instalados los paquetes, al igual que en la fase anterior habia que configurar
la comunicacion entre herramientas. Este paso simplemente fue replicar lo que ya habia
hecho en la fase 2 de este proyecto. Tenia todo documentado y simplemente fue seguir
los pasos que ya habia seguido. En cuanto al script que se encargaba de ejecutar todos
los pasos del proceso de despliegue (Jenkinsfile), utilicé de plantilla el mismo que se
explica en la fase anterior pero empleando los endpoints de Azure Container Registry
en vez de emplear el repositorio de imagenes Nexus.

Esta arquitectura implementada ha servido como prueba de concepto en el
departamento para tener una infraestructura en la que poder realizar pruebas con
los compafieros para presentar una propuesta firme sobre la estandarizacién del flujo

de CI/CD y presentarla a los responsables del departamento. (Ver Seccion 3.3).

21



22



Capitulo 3

Lecciones aprendidas y conclusiones

3.1. Aspectos mas complejos abordados

Mencionar aqui que nunca habia trabajado con la parte de sistemas, exceptuando la
asignatura de Administracién de Sistemas en segundo de carrera. Ademas, no conocia
préacticas y filosofias nuevas en el desarrollo de software como DevOps, CI/CD ni su
proposito.

Conocia pocas herramientas tecnolégicas utilizadas. Habia trabajado con Docker
en la asignatura de Ingenieria Web y durante la asignatura Cloud Computing en el
Erasmus, pero de manera bésica. Ademads, nunca habia trabajado con Kubernetes,
Vagrant, ArgoCD, SonarQube o Trivy. He de decir que la curva de aprendizaje fue
muy alta en las primeras semanas del proyecto.

Cuando ya llevaba unas cuantas semanas trabajando en en el proyecto y habia
finalizado la fase 2, tuve que enfrentarme al aprendizaje y configuraciéon de entornos
en proveedores de servicios en la nube, en este caso Azure. Nunca habia trabajado con
proveedores de servicios en la nube como (AWS, Azure o Google Cloud).

Por dltimo, me gustaria destacar el volumen de trabajo auténomo que he tenido
que desarrollar. Como ya he mencionado, este TFG pretende ser el primer paso para
una aproximacion novedosa dentro de la empresa, lo que ha hecho que no haya podido

contar con conocimientos ya asentados en la misma.

3.2. Conocimientos adquiridos

Durante el desarrollo de este proyecto, he aprendido varias habilidades o conceptos

que me pueden servir de mucho para mi desarrollo profesional:

= Cémo funciona un departamento de una consultora tecnoldgica:
Trabajar en este proyecto me ha permitido entender mejor el funcionamiento de

un departamento en una empresa como hiberus. He visto como se gestionan los

23



proyectos, se coordinan los equipos y se implementan las soluciones tecnoldgicas

para los clientes.

= Ser mas productivo: He aprendido a ser mas productivo al gestionar mejor mi
tiempo y optimizar mis tareas. La necesidad de cumplir con los plazos fijados
por mi director del proyecto para cada una de las tres fases, me ha obligado a

desarrollar técnicas para mantenerme enfocado y eficiente en mi trabajo diario.

= Mejorar mi capacidad de organizacién y planificacién: Este proyecto me
ha ensenado la importancia de la organizacion y la planificacion detallada. He
mejorado significativamente en la estructuracion de mis tareas y en la elaboracion

de planes que aseguren el cumplimiento de los objetivos establecidos.

= La importancia de agilizar la frecuencia con la que se pone software en
manos del cliente y responder rapidamente a sus necesidades: Trabajar
en una consultora tecnoldgica que ofrece servicios y soporte a otras companias
me ha ensenado la importancia de entregar software de manera rapida y eficiente.
Responder rapidamente a las necesidades del cliente es esencial para mantener

su satisfaccién y confianza en los servicios ofrecidos.

= Mejorar mis capacidades de comunicacién: Al tener que interactuar con
distintos companeros para pedir accesos a cuentas y otros recursos, he mejorado
mis habilidades de comunicacion. Este aspecto ha sido crucial para garantizar
que todos los elementos necesarios para el proyecto estuvieran disponibles y en

orden.

Estas lecciones no solo han mejorado mis habilidades técnicas y profesionales, sino
que también me han proporcionado una perspectiva mas amplia sobre la gestion de
proyectos y la importancia de la colaboracion y la comunicacion efectiva en un entorno

profesional.

3.3. Ideas futuras

En esta seccion se va a comentar brevemente cudl va a ser el devenir de este proyecto
en el futuro y como va a ayudar en el departamento de DevOps.

Como se menciono en el resumen de este trabajo, el objetivo principal de este TFG
era poder estandarizar el flujo de CI/CD del departamento.

El objetivo a medio-largo plazo de este proyecto, es poder hacer pruebas de
despliegues con la infraestructura creada en Azure durante la fase 3 y poder presentarlo

a los responsables del departamento como prueba de concepto. Una vez aprobada

24



la propuesta de las herramientas presentadas, la idea es poder crear un proyecto
con los companeros del departamento para poder automatizar la construccién de la
infraestructura con Terraform. Terraform es una herramienta de infraestructura como
cédigo (ver Anexo 4) que permite definir la infraestructura de un sistema a través
de codigo, lo que hace posible versionar, reutilizar y compartir configuraciones, de
manera similar al cédigo de software. Ademas, Terraform es compatible con miltiples
proveedores de nube y servicios, incluyendo AWS, Azure, Google Cloud Platform que
son los proveedores de cloud con los que trabaja hiberus.

Automatizar la construccién de la infraestructura que soporta el despliegue de
software utilizando Terraform ! y la filosoffa DevOps serfa extremadamente beneficioso
para el departamento y para la compania. Esta automatizacién agilizaria el tiempo
necesario para replicar la arquitectura para cada cliente, permitiendo parametrizar el
codigo segun la propuesta especifica de cada uno. Como resultado, el tiempo desde que
un cliente contrata el servicio hasta que recibe una primera version de la infraestructura
se reducirfa al minimo, lo que aumentaria la satisfaccién del cliente y, en consecuencia,

traeria beneficios significativos para la compania.

1P4gina oficial Terraform: https://www.terraform.io/

25


https://www.terraform.io/

3.4. Conclusiones

Durante estos anos en la carrera, he aprendido gran cantidad de aspectos técnicas
sobre redes, administracion de sistemas, algoritmia y programacion, gestion de
proyectos software, sistemas operativos, y mas. Pero, si soy sincero, lo més valioso
que me llevo de la universidad es la forma en la que nos han ensenado a pensar y a
trabajar.

Trabajo en equipo: He trabajado en muchos proyectos con mis companeros en
la universidad y ahi aprendi la importancia de una comunicacién efectiva, repartir las
tareas de manera justa y resolver problemas de manera conjunta. Esta habilidad no
solo es clave en la universidad, sino también en el trabajo, donde la colaboracion y el
trabajo en equipo son esenciales para sacar adelante cualquier proyecto.

Capacidad de analisis: Durante mi formaciéon, me he enfrentado a problemas
complejos y he aprendido a analizarlos y encontrar soluciones efectivas. Descomponer
problemas grandes en partes mas pequenas y manejables, evaluar diferentes enfoques
y elegir el mejor es algo que he practicado mucho. Esta habilidad me ha sido de gran
ayuda en la elaboracién de este trabajo de fin de grado.

Capacidad de comunicacién: Comunicar ideas y soluciones de manera clara y
efectiva es otra habilidad que he desarrollado. Esto es crucial no solo en presentaciones
académicas, sino también en el dia a dia laboral.

Ademas, la informatica es un campo en el que siempre debes seguir formandote y
aprendiendo cosas nuevas. Los conocimientos técnicos que adquiri en la universidad son
una buena base, pero lo mas importante es haber desarrollado la capacidad de seguir
aprendiendo y la predisposicion al cambio y a nuevas metodologias.

Después de terminar el TFG, he seguido trabajando en hiberus, formando parte
de equipos de trabajo en proyectos para el cliente. Gracias a lo que aprendi en la
universidad, me siento preparado para enfrentar las tareas diarias y confio en poder
llevarlas a cabo con éxito. Todo lo que se me ha ensenado durante estos anos de
universidad me ha dado una muy buena base para comenzar mi carrera profesional y

afrontarla con confianza en mis capacidades y conocimientos.

26



Anexos

27






Anexos A

. Qué es DevOps?

El término DevOps se corresponde con la combinacién de las palabras inglesas
Development y Operations. DevOps es un marco de trabajo, una filosofia, un conjunto
de précticas que agrupan el desarrollo de software (Dev) y las operaciones de TT (Ops)
cuyo objetivo es promover la colaboracién y comunicacién entre estos dos equipos para
reducir el ciclo de vida de desarrollo y desplegar software de calidad de la forma mas

automatizada y productiva posible.

DevOps

objective

Operations
Development p
This includes provisioning,
configuration management,
monitoring and
troubleshooting

The process of creating,
testing, and deploying
software.

Figura A.1: La convergencia de estos dos equipos es el propésito central de DevOps.

La principal caracteristica del movimiento DevOps es defender activamente la
automatizacién y el monitoreo en todos los pasos de la construccion del software, desde
la integracién, las pruebas, el despliegue, hasta la implementacion y la administracién
de la infraestructura. DevOps apunta a ciclos de desarrollo més cortos, mayor frecuencia
de implementacion, lanzamientos mas efectivos, en estrecha alineacion con los objetivos

comerciales.

Tmagen  tomada  de:  https://www.manageengine.com/latam/applications_manager/
tech-topics/que-es-devops.html (dltima visita: Junio 2024)

29


https://www.manageengine.com/latam/applications_manager/tech-topics/que-es-devops.html
https://www.manageengine.com/latam/applications_manager/tech-topics/que-es-devops.html

30



Anexos B

Principios y practicas claves en
DevOps

En esta seccion se analizaran y estudiaran las practicas claves que se realizan en la
filosofia DevOps y que cualquier empresa que quiera adpotar esta filosofia o que ya la
haya adoptado pero quiera aprovecharse al maximo de sus ventajas deberian incorporar
en sus flujos de trabajo.

Cémo ya se ha ido comentando a lo largo del texto, DevOps parte de la idea de
la automatizacion y la mejora continua del producto que se esta desarrollando. Las

préacticas por las que aboga la filosofia DevOps son las siguientes:

1. Continous Development

Esta practica se centra en la idea de que el cdédigo debe ser desarrollado en
pequenas y frecuentes iteraciones en lugar de hacerlo todo de una sola vez. El
desarrollo continuo es esencial en DevOps porque optimiza la eficiencia cada vez
que se crea, prueba, construye y despliega un fragmento de cédigo en produccion.
Este enfoque de desarrollo continuo mejora la calidad del coédigo y acelera
la identificaciéon y correccién de errores, vulnerabilidades y defectos. Ademas,

permite que los desarrolladores se enfoquen en producir cédigo de alta calidad.

2. Continous Integration / CI
Esta es una de las practicas mas conocidas y mundialmente aceptadas por
toda la comunidad del sector tecnoldgico. La integracién continua sostiene que
los desarrolladores deben fusionar con regularidad los cambios en el codigo
en un repositorio central, tras lo cual se ejecutan compilaciones y pruebas
automatizadas. Los objetivos clave de la integracién continua consisten en
encontrar y arreglar errores con mayor rapidez, mejorar la calidez del software y

reducir el tiempo que se tarda en validar y publicar nuevas actualizaciones

Tmagen tomada de: https://www.geeksforgeeks.org/devops-lifecycle/ (dltima visita: Junio
2024)

31


https://www.geeksforgeeks.org/devops-lifecycle/

Commit/Push

>
<
Pull/Clone
Source Code
Management
(E.g. GitHub,
GitLab,
Developer 3 Bit BUCket)

Figura B.1: El c6digo se publica en un repositorio de manera frecuente y continual
Anteriormente, era comun que los desarrolladores de un equipo trabajasen
aislados durante un largo periodo de tiempo y solo intentasen combinar los

cambios en la version de produccién una vez que habian acabado el trabajo.

Como consecuencia, la combinacién de los cambios en el cddigo resultaba dificil
y ardua, ademés de dar lugar a la acumulacion de errores durante mucho tiempo
que no se corregian. Estos factores hacian que resultase més dificil proporcionar

las actualizaciones a los clientes con rapidez.

Con la llegada de la integracion continua (CI), los desarrolladores envian los
cambios de forma periédica a un repositorio compartido utilizando un sistema
de control de versiones como Git. Un servidor de integracién continua como
Jenkins, compila el codigo y ejecuta los test de manera automatica una vez
se detectan cambios en ese repositorio compartido, lo que permite identificar

y corregir inmediatamente cualquier error.

Developers

>

o> 4
—
CTED
l Jenkins Cl Pipeline
® St::;;:s?:e H Build H Unit Tests H Integration Tests CD pipeline
Git repository

Figura B.2: Flujo de trabajo tipico de Continous Integration con Jenkins

La integracion continua mejora notablemente la productividad en el desarrollo
de software, permite encontrar y arreglar los errores con mayor rapidez y permite

entregar el software al cliente con mayor rapidez.

32



3. Continous Delivery / Continous Deployment Estos dos conceptos,
frecuentemente referidos como “CD”, son comunmente confundidos en la

industria debido a su notable similitud.

A continuacién, detallaré la diferencia principal entre ellos y la importancia de
integrar estas préacticas en nuestro proceso de desarrollo de software bajo la

filosofia DevOps.

Por un lado, Continous Delivery es el proceso de desplegar una aplicacién en
produccion manualmente, cuando esta ha completado el proceso de build y test.
Con esta préctica se consigue automatizar el proceso un paso mas alld de CI,
sin embargo, se requiere la accién manual de un ingeniero para hacer las ultimas

comprobaciones antes de desplegar en produccién. Por otro lado, Continous

Continuous Delivery
[Code Done]m[ Unit Tests }m[ Integrate }m’[Am:g;:nce]_,[pl?gg!i{it:n]

Figura B.3: El despliegue en produccién requiere la accién manual de un profesional 2

Deployment va atin un paso més alld que Continous Delivery. Es el proceso
de automaticamente desplegar una aplicaciéon en algin entorno de desarrollo,
staging, pre-produccién o produccién cuando se han completado las fases de build
y test. En este caso se automatiza absolutamente todo el proceso (ver figura B.4),
desde la obtencién del coédigo fuente hasta el despliegue de la aplicacion en algiin
entorno. No se requiere ninguna accion manual en el proceso. La herramienta

mas utilizada para CD y que es la que mas se utiliza en hiberus es ArgoCD.

Continuous Deployment
[Code Done]m[ Unit Tests }m[ Integrate }m’&:ﬁggi‘n[ﬁgs!ﬁii?n]

Figura B.4: El despliegue en produccién se realiza de forma automética 3

En la practica, en hiberus emplean el Continous Delivery para desplegar una

aplicacion en produccion debido a que es un entorno critico y hay que asegurar

2Imagen tomada de: https://www.geeksforgeeks.org/devops-lifecycle/ (tiltima visita: Junio
2024

3Imagen tomada de: https://www.geeksforgeeks.org/devops-lifecycle/ (tiltima visita: Junio
2024

33


https://www.geeksforgeeks.org/devops-lifecycle/
https://www.geeksforgeeks.org/devops-lifecycle/

que no haya fallos y todo funcione a la perfeccion. El Continous Deployment es
muy util para levantar entornos de desarrollo o pre-produccién en los que si que
conviene que el proceso esté lo mas automatizado posible para poder verificar

que la aplicacion desplegada funciona segun lo esperado.

4. Infraestructura como cédigo (IaC)

La infraestructura como cdédigo es el proceso de gestionar y provisionar
infraestructura tecnolégica a través de codigo en vez de realizarla en un
proceso manual. Con [aC, se crean archivos de configuraciéon que contienen las
especificaciones de la infraestructura tecnoldgica, lo que facilita la edicién y
distribucién de las configuraciones. También garantiza que siempre se aprovisione
el mismo entorno. Al codificar y documentar sus especificaciones de configuracion,
[aC facilita la gestion de la configuracion y ayuda a evitar cambios de

configuracion no documentados y ad hoc.

| g
mE m
J:LJ:L

y
y

|

Figura B.5: Se crea la infraestructura necesaria a partir del IaC Fuente.*

‘Tmagen tomada de: https://learn.microsoft.com/es-es/devops/deliver/what-is-in
(dltima visita: Junio 2024)

34


https://learn.microsoft.com/es-es/devops/deliver/what-is-in

Anexos C

.Qué es GitOps?

GitOps es una metodologia que utiliza los flujos de trabajo de Git para administrar
la infraestructura y la configuracion de las aplicaciones.

Al emplear los repositorios de Git como tnica fuente de verdad, GitOps permite a
los equipos DevOps almacenar y gestionar el estado completo de la configuracién de la
infraestructura en Git. Esto garantiza que cualquier cambio en la infraestructura sea
transparente y verificable.

GitOps radica en su capacidad para garantizar la consistencia, la trazabilidad y
la automatizacion en la gestion de la infraestructura y las aplicaciones, permitiendo
a los equipos de desarrollo y operaciones mantener un control preciso de los recursos,
realizar despliegues confiables y fomentar la colaboracion al utilizar repositorios de Git

como fuente tnica de verdad.

Q—S—C

Desired State GitOps Controller Target state

Figura C.1: El controlador gitops lleva la aplicacién al estado deseado

El proceso de despliegue de una aplicacion utilizando GitOps se describe a
continuacion:

Como Ingeniero DevOps o desarrollador, es necesario definir la infraestructura
de la aplicacién a desplegar, como la creacion de los manifiestos de Kubernetes
requeridos. Posteriormente, se deben subir estos cambios al repositorio de Git
designado, cominmente conocido como “Repositorio de Configuracion”.

Una vez que los cambios se han subido al repositorio, un operador de GitOps se
encarga de monitorear dicho repositorio de configuracién. Detecta cualquier cambio
realizado y, al identificar una modificacién, procede a implementar automaticamente la

infraestructura necesaria segin la configuracion reflejada en los archivos del repositorio.

35



36



Anexos D

. Qué es DevSecOps?

DevSecOps es la practica de integrar las pruebas de seguridad en cada etapa del
proceso de desarrollo de software. Incluye herramientas y procesos que fomentan la
colaboracién entre los desarrolladores, los especialistas en seguridad y los equipos de
operaciones para crear un software que sea eficiente y seguro. DevSecOps aporta una
transformacién cultural que hace de la seguridad una responsabilidad compartida para
todos los que crean el software. !

i Qué significa DevSecOps?

DevSecOps significa desarrollo, seguridad y operaciones. Es una extensién de la préactica
de DevOps. Cada término define diferentes funciones y responsabilidades de los equipos
de software a la hora de crear aplicaciones de software.

Desarrollo

El desarrollo es el proceso de planificacion, codificacion, creacion y prueba de la
aplicacién.

Seguridad La seguridad significa introducir la seguridad en una etapa temprana
del ciclo de desarrollo de software. Por ejemplo, los programadores se aseguran de que
el codigo esté libre de vulnerabilidades de seguridad y los profesionales de la seguridad
prueban el software méas a fondo antes de que la empresa lo publique.

Operaciones El equipo de operaciones publica, supervisa y corrige cualquier

problema que surja del software.

https://aws.amazon.com/es/what-is/devsecops/#: ~:text=DevSecOps%20es%201a%20pr’
C3%Alctica)%20de, que’,20sea’,20eficiente20y%20seguro.

37


https://aws.amazon.com/es/what-is/devsecops/#:~:text=DevSecOps%20es%20la%20pr%C3%A1ctica%20de,que%20sea%20eficiente%20y%20seguro.
https://aws.amazon.com/es/what-is/devsecops/#:~:text=DevSecOps%20es%20la%20pr%C3%A1ctica%20de,que%20sea%20eficiente%20y%20seguro.

	Introducción
	Contexto del trabajo
	Contexto tecnológico
	Motivación y problema que se aborda
	Herramientas de trabajo
	Esquema general de la memoria

	Trabajo desarrollado
	Fase 1: Investigación de la literatura y herramientas
	Fase 2: Implementación de la arquitectura DevOps de referencia empleada en hiberus para la construcción de un entorno de desarrollo a modo de prueba creado con máquinas virtuales Vagrant.
	Fase 3: Implementación de la arquitectura DevOps de referencia empleada en hiberus simulando un entorno de producción en la nube de Azure.

	Lecciones aprendidas y conclusiones
	Aspectos más complejos abordados
	Conocimientos adquiridos
	Ideas futuras
	Conclusiones

	Anexos
	¿Qué es DevOps?
	Principios y prácticas claves en DevOps
	¿Qué es GitOps?
	¿Qué es DevSecOps?

