
Trabajo Fin de Grado

Soporte y estandarización de una arquitectura
tecnológica de referencia para el despliegue de

microservicios complejos mediante técnicas DevOps
y GitOps

Support and standarization of a reference technology
architecture for the deployment of complex

microservices using DevOps and GitOps techniques

Autor

Jorge Sanclemente Vilda

Director

David Román Esteban

Ponente

Francisco Javier Zarazaga Soria

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2024

AGRADECIMIENTOS

Quiero expresar mi gratitud a todas las personas que, de una manera u otra, han

contribuido a la realización de este Trabajo de Fin de Grado.

En primer lugar, quiero expresar mi profunda gratitud a mis padres, por su apoyo

incondicional y por creer en mı́ en todo momento. Su confianza, amor y apoyo emocional

han sido fundamentales para la realización de este Trabajo de Fin de Grado.

Agradezco también a mi tutor David Román por su orientación, sugerencias y

experiencia, pero sobre todo por darme la oportunidad de poder realizar este TFG en

este departamento, ha supuesto un gran aprendizaje para mı́.

Extiendo mi agradecimiento a mi ponente, Francisco Javier Zarazaga Soria, por su

disposición continua y la gran ayuda que me ha proporcionado en la estructuración y

realización de la memoria de este trabajo de fin de grado. Su orientación ha sido clave

para la culminación de esta memoria.

Además, me gustaŕıa agradecer también a todos los profesores que he tenido durante

todos estos años de universidad por compartir sus conocimientos y por despertar el

interés en aprender continuamente cosas nuevas.

Por último, agradecer a todos los compañeros de “hiberus”por su paciencia y por

compartir su experiencia y conocimientos conmigo.

I

II

IV

RESUMEN

Este TFG realizado en la empresa “Hiberus Tecnoloǵıa”, tiene como objetivo

dos propósitos fundamentales. Por un lado, y como objetivo principal, pretende

estandarizar el flujo de CI/CD del departamento para proyectos nuevos, estableciendo

un stack tecnológico de referencia en los proyectos promovidos desde hiberus.

Por otro lado, pretende ser una gúıa de referencia para aquellas personas que se

incorporan al departamento de DevOps dentro de la compañ́ıa y nunca han trabajado

con esta metodoloǵıa, con el objetivo de que adquieran una visión general de cómo

estas prácticas otorgan beneficios fundamentales a las empresas que las adoptan.

La elaboración de este trabajo se ha dividido en tres fases bien diferenciadas. La

primera de ellas se corresponde con una fase de investigación de las herramientas

actuales y cómo estas satisfacen o no las necesidades propias de la empresa.

Una vez concluyó este paso, se realizó una segunda fase de implementación de

una arquitectura DevOps de referencia en un entorno local con máquinas virtuales

simulando un entorno de desarrollo con el stack tecnológico propuesto por mi director

del TFG. El objetivo de esta implementación de la arquitectura es demostrar cómo se

acelera el ciclo de vida del desarrollo de software, acortando notablemente los periodos

de desarrollo y por tanto aumentando la frecuencia con la que se pone el nuevo software

en manos del cliente. Para ello se ha desarrollado y desplegado una simple aplicación

(Hola Mundo) en Java.

Por último, las herramientas estudiadas en esta segunda fase se llevan a un entorno

de producción real, siendo esta la tercera fase, desplegando la misma aplicación en una

infraestructura en el cloud de Azure, para observar cómo funciona el flujo de despliegue

en un entorno real con el objetivo de estudiar su comportamiento y hacer pruebas de

cara a estandarizar el flujo de CI/CD del departamento.

V

VI

Índice

1. Introducción 1

1.1. Contexto del trabajo . 1

1.2. Contexto tecnológico . 2

1.3. Motivación y problema que se aborda 3

1.4. Herramientas de trabajo . 4

1.5. Esquema general de la memoria . 6

2. Trabajo desarrollado 7

2.1. Fase 1: Investigación de la literatura y herramientas 7

2.2. Fase 2: Implementación de la arquitectura DevOps de referencia

empleada en hiberus para la construcción de un entorno de desarrollo a

modo de prueba creado con máquinas virtuales Vagrant. 12

2.3. Fase 3: Implementación de la arquitectura DevOps de referencia

empleada en hiberus simulando un entorno de producción en la nube

de Azure. 20

3. Lecciones aprendidas y conclusiones 23

3.1. Aspectos más complejos abordados . 23

3.2. Conocimientos adquiridos . 23

3.3. Ideas futuras . 24

3.4. Conclusiones . 26

Anexos 27

A. ¿Qué es DevOps? 29

B. Principios y prácticas claves en DevOps 31

C. ¿Qué es GitOps? 35

D. ¿Qué es DevSecOps? 37

VII

VIII

Caṕıtulo 1

Introducción

1.1. Contexto del trabajo

Este proyecto se ha realizado en la empresa Hiberus Tecnoloǵıa, una consultora

tecnológica con sede central en Zaragoza, que se especializa en la prestación de servicios

de consultoŕıa de negocio, desarrollo tecnológico, transformación digital y outsourcing.

En la actualidad, cuenta con más de 3000 empleados en plantilla, y en el año 2023

facturaron más de 180M de euros, lo que la situa en el top 5 de las empresas del sector

tecnológico de capital español. Además de su sede central en Zaragoza, hiberus cuenta

con oficinas en territorio nacional como Barcelona, Madrid, Bilbao, Sevilla... aśı como

con oficinas en Europa como Londres, Munich, Milán y en el resto del mundo como

Buenos Aires, Medelĺın, Bogotá, Miami...

Dentro de la empresa, he trabajado en el área denominada Hiberus Sistemas que

se dedica a ofrecer soluciones tecnológicas de calidad, proporcionando apoyo integral a

diversas empresas y negocios para alcanzar sus metas financieras. Su enfoque abarca

proyectos de infraestructura tecnológica, servicios en la nube y servicios gestionados,

lo que les permite ofrecer una amplia gama de servicios en el sector TI.

Hiberus Sistemas cuenta con diversos departamentos, entre los cuales se encuentra

el conocido como “DevOps”, que es donde he desarrollado este TFG. Este es un

departamento totalmente nuevo, creado el 1 de enero de este mismo año (2024). El

motivo de la creación del mismo es una apuesta total por las soluciones cloud aplicando

la filosof́ıa DevOps (ver Anexo A) en sus soluciones. Antes de la creación de este

departamento, se trabajaba más con soluciones on-premise utilizando tecnoloǵıas más

tradicionales. La decisión de dar un paso hacia la innovación surgió como respuesta a

la creciente demanda del mercado y la necesidad de adaptarse a un entorno tecnológico

en constante evolución con la llegada de los servicios cloud. Esta transición hacia

soluciones en la nube no solo permite a Hiberus Sistemas mantenerse a la vanguardia

de la tecnoloǵıa, sino también satisfacer de manera más efectiva las necesidades de sus

1

clientes, ofreciendo soluciones ágiles, flexibles y escalables.

Desde que el departamento se constituyó como departamento independiente, hace

6 meses, ha experimentado un crecimiento significativo, pasando de 10 a 40 personas

hasta la fecha. Además, se ha incrementado la facturación total de la compañ́ıa entre

un 10 y un 15 por ciento. Estos datos han generado una mayor satisfacción entre los

clientes, quienes cada vez conf́ıan más en las soluciones ofrecidas por hiberus.

1.2. Contexto tecnológico

Antes de la creación del departamento DevOps, el proceso de desarrollo de nuevo

software, bien para el cliente, bien como producto propio, era muy diferente a lo que

se está realizando actualmente. A la hora de desarrollar nuevo software, se operaba de

la siguiente manera:

Por un lado, el equipo de desarrollo se encargaba de construir el software de

las aplicaciones y de encargarse de que ese código funcionara a la perfección y

sin errores. Después de d́ıas, semanas o tal vez meses, el equipo de desarrollo

finalizaba el proceso de creación de código y pondŕıa ese software en manos del

equipo de operaciones (en este caso, este seŕıa el equipo donde he realizado este

proyecto).

Por otro lado, el equipo de operaciones se encargaba de proveer y configurar

la infraestructura necesaria (máquinas, firewalls, bases de datos, servidores,

redes...) para ejecutar esas aplicaciones, además de monitorizar ese software para

comprobar que todo funcionaba según lo previsto.

En teoŕıa, se créıa que era un proceso bien calculado y libre de errores, pero en

la práctica resultó que no era aśı. Los ciclos de desarrollo de software eran largos, y

cuando hab́ıa algún fallo en producción supońıa devolver la aplicación al equipo de

desarrollo para verificar y corregir esos errores, cuando el error pod́ıa venir por la falta

de alguna libreŕıa o dependencia, o por alguna diferencia en las versiones del sistema

operativo, lo que prolongaba los tiempos de entrega de software al cliente.

Ahora que se ha explicado ligeramente el contexto tecnológico de este proyecto, voy

a definir de manera breve qué es DevOps ya que aparecerá en numerosas ocasiones

durante este documento para que el lector pueda comprender mejor lo que se está

explicando.

El movimiento DevOps como tal, empezó a fraguarse entre el 2007 y el 2008

aproximadamente, cuando las comunidades de operaciones de TI y desarrollo de

software se pronunciaron sobre lo que consideraban una disfunción grav́ısima del sector.

2

Se alzaron contra el modelo tradicional de desarrollo de software, que exiǵıa que los que

escrib́ıan el código se mantuvieran al margen, en términos de organización y operación,

de los que implementaban y manteńıan dicho código. El término DevOps se corresponde

con la combinación de las palabras inglesas Development y Operations. DevOps es un

marco de trabajo, una filosof́ıa, un conjunto de prácticas que agrupan el desarrollo de

software (Dev) y las operaciones de TI (Ops) cuyo objetivo es promover la colaboración

y comunicación entre estos dos equipos para reducir el ciclo de vida de desarrollo y

desplegar software de calidad de la forma más automatizada y productiva posible.

Es una filosof́ıa reciente, que están adoptando muchas grandes empresas y que está

ayudando enormemente en la transformación digital de los clientes de hiberus, con

varios casos de éxito recientes en la compañ́ıa.

1.3. Motivación y problema que se aborda

Tal y como se ha explicado anteriormente, el equipo DevOps apenas lleva 6 meses

operando como un equipo independiente y, debido a su reciente creación, tiene todav́ıa

un gran número de procesos por estandarizar y automatizar. Además, hiberus se

encuentra en constante expansión de su plantilla (actualmente en Junio de 2024, se

está incorporando una media de noventa a cien personas al mes a la compañ́ıa), por

lo que resulta crucial estandarizar los procesos para asegurar que este crecimiento se

desarrolle de la manera más organizada posible.

El objetivo último de estas estandarizaciones es conseguir que, cuando se realizan

los flujos de despliegue de aplicaciones, se lleven a cabo, en la medida de lo posible, de

manera sistemática en el uso de las mismas tecnoloǵıas y prácticas para cada cliente.

Además, no se cuenta con un on-boarding dentro del departamento para la gente

que viene nueva, ya sea de prácticas o contratada. Por ello se pretende también que

este proyecto sirva como una primera toma de contacto con estas herramientas y con

el trabajo que desempeña este departamento.

Para ello, el trabajo que se ha realizado es la implementación de una arquitectura

tecnológica de referencia para el despliegue de todo tipo de aplicaciones Java (la mayoŕıa

de aplicaciones desarrolladas por hiberus utilizan este lenguaje de programación) en

dos entornos: un entorno de desarrollo empleando máquinas virtuales, y otro entorno

de producción alojado en el cloud de Azure. Este último pretende imitar un entorno

real que podŕıa asemejarse a un entorno de cualquier cliente (staging, pre-producción o

producción) que Hiberus implementa para desplegar las aplicaciones de los clientes en

el cloud, pero utilizando un stack tecnológico que sirva como prueba de concepto para

poder analizar estas herramientas y ver si satisfacen los requisitos de la compañ́ıa. Aśı

3

mismo, con la creación de estos dos entornos, se pueden configurar otras herramientas

que se incorporen al flujo de desarrollo y despliegue para poder comprobar cómo se

integran unas con otras y de esta forma tener una base para poder estandarizar el

uso de estas herramientas teniendo dos entornos que se asemejan totalmente a las

infraestructuras construidas para los clientes.

En estas dos fases, que se explican con profundidad en la sección 2, se detalla paso

a paso cómo se ha configurado y contruido la arquitectura, explicando el uso y función

de cada tecnoloǵıa, y profundizando en el detalle de cómo funciona el flujo de CI/CD

para este proyecto, que no deja de ser una demostración de “prueba”de cómo se opera

de cara al cliente.

1.4. Herramientas de trabajo

Durante las fases del trabajo desarrollado que se explican en profundidad en el

caṕıtulo 2, se ha hecho uso de una gran variedad de herramientas y tecnoloǵıas:

Como repositorio de código y sistema de control de versiones se ha trabajado

con GitLab, para alojar los dos repositorios necesarios para la realización de este

proyecto. Uno para alojar el repositorio de código fuente de la aplicación y otro

para alojar el código de configuración de la aplicación, en lo que se conoce como

repositorio GitOps (ver Anexo C).

Para construir la primera infraestructura en un entorno local con máquinas

virtuales se ha empleado la herramienta Vagrant1.

Como lenguaje de programación para desarrollar la aplicación de prueba se ha

empleado Java2.

Como herramienta de gestión de dependencias y de construcción de código se ha

empleado Maven3.

Se ha empleado Docker para construir una imagen portable e independiente de

la aplicación desarrollada4.

Como servidor de automatización y operador de Continous Integration se ha

utilizado la herramienta Jenkins5.

1Documentación oficial Vagrant: https://developer.hashicorp.com/vagrant/docs
2“Que es Java”: https://www.java.com/en/download/help/whatis_java.html
3Documentación oficial Maven: https://maven.apache.org/what-is-maven.html
4Documentación oficial Docker: https://www.docker.com/
5Documentación oficial Jenkins: https://www.jenkins.io/doc/

4

https://developer.hashicorp.com/vagrant/docs
https://www.java.com/en/download/help/whatis_java.html
https://maven.apache.org/what-is-maven.html
https://www.docker.com/
https://www.jenkins.io/doc/

Para analizar el código estático de la aplicación en busca de vulnerabilidades

o malas prácticas y para conseguir lo que se conoce como “Clean code”se ha

empleado la herramienta SonarQube6.

Trivy se ha empleado para analizar las vulnerabilidades de las diferentes capas

de la imagen Docker de nuestra aplicación. Gracias a Trivy y SonarQube

conseguimos aplicar una capa de seguridad en cada fase del ciclo de vida del

software, adoptando prácticas que se conocen como “DevSecOps”(ver Anexo D).

Como repositorio de imágenes de contenedor de Docker se ha empleado Nexus

Repository Server 7 y Azure Container Registry 8

Para automatizar el despliegue de las aplicaciones en los diferentes entornos se

utiliza la herramienta de Continous Deployment conocida como ArgoCD9.

Para construir los entornos donde se ha desplegado la aplicación, se ha empleado

Kubernetes10, en concreto Minikube11 en la versión con máquinas locales y Azure

Kubernetes Service (AKS)12 en la última fase del proyecto.

Por último, como proveedor de cloud para construir toda la infraestructura en la

última fase, se ha empleado Azure 13.

6Documentación SonarQube: https://docs.sonarsource.com/sonarqube/latest/
7Documentación Nexus: https://www.sonatype.com/products/sonatype-nexus-repository
8https://azure.microsoft.com/es-es/products/container-registry
9Documentación ArgoCD: https://argo-cd.readthedocs.io/en/stable/

10Kubernetes: https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
11Minikube: https://minikube.sigs.k8s.io/docs/start/
12Azure Kubernetes Service: https://learn.microsoft.com/en-us/azure/aks/what-is-aks
13Azure: https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/

what-is-azure

5

https://docs.sonarsource.com/sonarqube/latest/
https://www.sonatype.com/products/sonatype-nexus-repository
https://azure.microsoft.com/es-es/products/container-registry
https://argo-cd.readthedocs.io/en/stable/
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://minikube.sigs.k8s.io/docs/start/
https://learn.microsoft.com/en-us/azure/aks/what-is-aks
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure

1.5. Esquema general de la memoria

En esta memoria se documenta el trabajo de fin de grado, el cual se divide en tres

caṕıtulos principales. A continuación, se describe de manera resumida el contenido de

cada sección para ofrecer una visión general de la estructura del documento.

El Caṕıtulo 1, Introducción: Se corresponde con la introducción y establece

el contexto y la motivación del trabajo realizado. Aqúı se presenta el ámbito del

proyecto, su relevancia y la situación actual en el campo de estudio. Se describen las

tecnoloǵıas y herramientas principales utilizadas, se expone la problemática espećıfica

que se pretende resolver y se detallan las herramientas empleadas durante el desarrollo

del proyecto. Además, se proporciona esta visión general de la estructura del documento

para ayudar al lector a entender la organización del contenido.

Caṕıtulo 2, Trabajo Desarrollado: Detalla el trabajo realizado en tres fases

distintas. La primera fase se centra en la investigación de la literatura y las herramientas

relevantes para el proyecto. La segunda fase describe la implementación de una

arquitectura DevOps de referencia utilizada en hiberus para la construcción de un

entorno de desarrollo a modo de prueba, creado con máquinas virtuales Vagrant.

La tercera fase se enfoca en la implementación de la misma arquitectura DevOps,

simulando un entorno de producción en el cloud de Azure.

Caṕıtulo 3, Lecciones aprendidas y conclusiones: Este caṕıtulo recopila los

conocimientos adquiridos y aspectos más complejos enfrentados durante el desarrollo

del proyecto. Además, se discuten ideas futuras que podŕıan derivarse de este trabajo

y se presentan las conclusiones finales.

6

Caṕıtulo 2

Trabajo desarrollado

2.1. Fase 1: Investigación de la literatura y

herramientas

Durante esta primera fase, que abarcó aproximadamente dos semanas, se llevaron

a cabo las siguientes actividades y se procedió de la manera que se describe a

continuación.

Inicialmente, me dediqué a comprender el funcionamiento del equipo del

departamento, lo cual incluyó la lectura de documentación sobre su organización

interna y la familiarización con diversos conceptos fundamentales. Entre estos conceptos

se encuentran DevOps, administración de sistemas, redes (Networking) y computación

en la nube (Cloud).

Después de haber obtenido una visión general de los conceptos mencionados

anteriormente, mi director de TFG me proporcionó un primer boceto de arquitectura de

referencia. Este diagrama representaba el stack tecnológico utilizado en las soluciones

ofrecidas al cliente para agilizar, automatizar y estandarizar el ciclo de vida del

desarrollo de software y los despliegues de sus aplicaciones.

El diagrama propuesto fue el que se muestra en la figura 2.1. A partir del mismo,

mi primera tarea fue realmente entender el flujo de este diagrama y entender la función

de cada tecnoloǵıa. Tal y como se puede ver en la figura, los repositorios de código

se encuentran alojados en GitLab y por cada aplicación del cliente que se quiere

desplegar se cuenta con dos repositorios: El repositorio de código fuente y el repositorio

de configuración, que es donde se almacenan todos los ficheros yaml que definen los

objetos a desplegar en el clúster de Kubernetes. Jenkins es el servidor de automatización

que se encarga de clonar ese repositorio de código fuente para su compilación, análisis

estático del código con la herramienta SonarQube y la ejecución de los tests unitarios

y test de integración. La herramienta Nexus Repository es un repositorio de artefactos

que se emplea para almacenar las imágenes de contenedor de las diferentes versiones

7

Figura 2.1: Arquitecura tecnológica de referencia

de las aplicaciones. La parte de Docker y Sonarqube refleja que en la mayoŕıa de las

instalaciones, los diferentes componentes que componen Sonarqube se ejecutan como

contenedores de Docker. SonarQube es una herramienta que también se emplea de

forma estandarizada en los flujos CI/CD de hiberus y se encarga de mantener la

cálidad del código asegurando que se construye software de manera eficiente, segura

y empleando buenas prácticas. Además, tambien analiza posibles vulnerabilidades y

brechas de seguridad en el código. Trivy es la herramienta que se encarga de escanear

vulnerabilidades dentro de las imágenes de contenedor de las aplicaciones. Por último,

ArgoCD es el operador de Continous Deployment y se encarga de que el clúster siempre

se mantenga en el mismo estado que reflejan los ficheros alojados en el repositorio de

configuración en GitLab, encargándose de desplegar dichos cambios en el clúster.

Es importante resaltar que, para implementar buenas prácticas, los administradores

de los clústers de Kubernetes deben aprovechar al máximo la infraestructura como

código (IaC, ver Anexo 4) que ofrece ArgoCD, y siempre se debeŕıa cambiar la

configuración del clúster mediante los ficheros del repositorio de Git, es decir, nos

beneficiamos de la filosof́ıa GitOps. Esto evita cambios ad-hoc en el clúster, reduciendo

aśı la posibilidad de errores humanos, y mejorando la auditabilidad de los cambios,

pudiendo hacer un sencillo rollback en caso de errores, restaurando el estado previo

del sistema. Cuando ArgoCD detecta cambios en el repositorio de configuración, se

encarga de desplegar esos cambios en el clúster correspondiente que puede estar alojado

en Azure Kubernetes Service, OpenShift Kubernetes Engine, o Elastic Kubernetes

8

Service de Amazon. Como se puede observar, se intentan alojar esos clústers siempre

en entornos de cloud, lo que aporta escalabilidad, agilidad, tolerancia a fallos y menor

esfuerzo de mantenimiento, permitiendo responder de manera rápida a las necesidades

del cliente.

Para poder afrontar las siguientes fases del proyecto, me dediqué a entender

qué papel jugaba cada una de las tecnoloǵıas de esta arquitectura, gracias a leer

documentación y reunirme con compañeros del departamento. Cabe destacar que las

tecnoloǵıas de este diagrama no son un estándar, y uno de los objetivos de este TFG

era probar los entornos construidos para ver cómo se integran las tecnoloǵıas entre

ellas y proponer otras alternativas. Una vez se comprendidó el uso y posibles beneficios

de estas herramientas constrúı un diagrama de flujo del despliegue automatizado para

entender mejor la infraestructura a implementar y no perder de vista el conjunto de

tareas que se queŕıan automatizar. El diagrama presentado en la figura 2.2 me sirvió de

gran ayuda y gúıa en las siguientes fases. Además, ha servido también de modelo en el

departamento para el propósito de estandarizar el flujo de despliegue de las aplicaciones.

El proceso de despliegue creado en la figura 2.2 es continuo y se ejecuta cada vez que

se aceptan nuevos cambios en el repositorio de código fuente, acortando los periodos

de ciclo de vida del desarrollo del software, haciendo la vida mucho más fácil a los

desarrolladores, permitiéndoles dedicarse exclusivamente a escribir código de calidad

abstrayéndose de la infraestructura subyacente. Este flujo se explica a continuación:

1. Una vez el desarollador añade nuevas features o funcionalidades a la aplicación,

este sube esos cambios al repositorio de código mediante una pull request. Cuando

la PR se acepta, se desencadena el proceso automático de despliegue del software.

2. A continuación, se ejecuta el análisis estático del código con SonarQube y se

compila el código fuente. Si, el análisis falla, hay que volver a revisar el código y

corregir los errores. Si el análisis es exitoso, se continúa con la siguiente fase.

3. En esta fase se ejecutan los tests correspondientes escritos por los desarrolladores.

4. Si el resultado de la fase de testing es el esperado, se crea una imagen de Docker

con las dependencias requeridas por la aplicación.

5. A continuación, se ejecuta un escaner de la imágen de Docker construida en la

fase anterior en busca de vulnerabilidades. Este escáner lo realiza la herramienta

Trivy.

6. Si la imagen es segura, se sube la imagen al repositorio de artefactos.

9

7. En este paso comienza el flujo de CD. Una vez se ha subido la imagen de

la aplicación al repositorio de imágenes, Jenkins clona el repositorio Git de

configuración (también llamado repositorio GitOps), modifica el fichero donde

se especifica la versión de la imagen y se suben los cambios en el repositorio

GitOps.

8. En el último paso, la herramienta ArgoCD detecta que ha habido cambios en el

repositorio de GitLab y que no coincide el estado actual del clúster con el estado

reflejado en los ficheros de configuración. Es en este paso, cuando Argo despliega

los nuevos cambios en el clúster para asegurarse que el estado actual coincide con

el deseado.

Los procesos que estan en azul más claro en la figura 2.2 se corresponden con

el proceso de Continous Integration. Todos estos procesos los ejecuta el servidor de

Jenkins.

Los que estan en azul más oscuro se corresponden con el Continous Deployment.

Como primera aproximación, el director de este TFG me pidó que implementara

la arquitectura de la figura 2.1 con máquinas virtuales utilizando la herramienta

“Vagrant”. Esta fase se explica con detalle en la siguiente sección.

10

Figura 2.2: Flujo de despliegue estandarizado en hiberus

11

2.2. Fase 2: Implementación de la arquitectura

DevOps de referencia empleada en hiberus

para la construcción de un entorno de

desarrollo a modo de prueba creado con

máquinas virtuales Vagrant.

Este periodo duró aproximadamente un mes y fue sin duda la fase más intensa

de trabajo y ha supuesto un reto para mı́ ya que nunca me hab́ıa enfrentado a estas

herramientas y tecnoloǵıas. El director de este TFG me hab́ıa pedido construir una

infraestructura con máquinas virtuales de Vagrant para implementar la arquitectura de

referencia. Vagrant es una herramienta que utiliza VirtualBox (también puede trabajar

con otros software de virtualización como VMware) y emplea su API para construir

máquinas virtuales de manera declarativa, con ficheros de configuración.

El objetivo de esta fase era desarrollar una simple aplicación en Java que escribiera

“hola mundo”por pantalla (esta decisión se toma porque la mayoŕıa de aplicaciones

que utilizan microservicios en hiberus se construyen en Java) y comprobar cómo una

vez construida la infraestructura y los scripts de automatización, con hacer un cambio

en el código fuente, se lanza automáticamente todo el proceso de CI/CD y se despliega

la aplicación en el clúster de Kubernetes con esos cambios. Para ejecutar el proceso de

despliegue de aplicaciones, primero fue necesario crear la infraestructura que se detalla

a continuación.

Decid́ı que utilizar cuatro máquinas era la opción más óptima y eficiente:

Una máquina como servidor de GitLab donde se alojan los repositorios (en

hiberus tambien emplean un servidor dedicado para alojar los repositorios

necesarios).

Un servidor de Jenkins que se encarga de ejecutar todas las tareas del proceso de

Continous Integration, donde además se ejecuta SonarQube y Trivy.

Otra máquina para el repositorio de imágenes Nexus.

La última máquina se ha empleado para alojar el clúster de Kubernetes, en este

caso Minikube y la herramienta ArgoCD.

12

El diagrama con la infraestructura construida seŕıa el que se muestra en la figura

2.3

Figura 2.3: Entorno creado con máquinas virtuales Vagrant

Este proceso de construcción del entorno se ha automatizado con varios scripts

gracias a las opciones de aprovisionamiento que ofrece Vagrant para que ejecutando

un solo comando se levante la infraestructura (instalación de Jenkins, Docker, levantar

SonarQube con Docker Compose, ArgoCD, Trivy en la máquina correspondiente y

configuración de la red privada y reenv́ıo de puertos).

Una vez finalizada la construcción automatizada del entorno se procedió a configurar

la creación y comunicación de las tecnoloǵıas del proyecto en el siguiente orden:

Creación de cuenta gitlab y configuración de los dos repositorios. Creación del

código fuente y los tests de la aplicación.

Creación del Dockerfile de la aplicación.

Integración de Jenkins con GitLab para que una vez se suban los cambios al

repositorio, se envie un webhook a Jenkins para que comience el proceso de CI.

Integración de Jenkins y SonarQube para que este avise si el análisis del código

ha sido exitoso.

Integración de Nexus Repository con el pipeline de Jenkins.

Escribir los ficheros de yaml de Kubernetes necesarios para crear el despliegue de

los pods que corren la app y subirlos al repositorio de configuración.

13

Configuración de la aplicación de ArgoCD para que escuche el repositorio de

configuración.

Por último, la creación del Jenkinsfile que es el fichero que contiene el script que

se encarga de ejecutar la lógica del proceso de desliegue.

En este punto, teńıamos creada toda la infraestructura necesaria para poder ejecutar

el flujo de despliegue. Por último, faltaba escribir el script de automatización que

ejecuta Jenkins y se encarga de realizar todos los pasos necesarios del proceso de

despliegue. Este fichero, por convención se crea en el repositorio de código y contiene

un script en el lenguaje ruby.

El script de Jenkins se presenta a continuación. Se divide en varios snippets de

código en este documento por simplicidad, pero todos los fragmentos forman parte del

mismo fichero denominado Jenkinsfile.

Figura 2.4: Primera parte del Jenkinsfile

Figura 2.5: Compilación del código fuente, ejecución de tests y análisis con SonarQube

14

En la figura 2.4 y 2.5 se ven dos fases del script que recordemos se encarga de

desplegar la aplicación en el entorno correspondiente. En la figura 2.4, Jenkins clona el

repositorio de código que hab́ıamos alojado en la primera máquina virtual. En nuestro

caso es el repositorio de codigo fuente. En la figura 2.5 con un solo comando se compila

el código fuente, se ejecutan los tests y se analiza el código estático con SonarQube.

En la figura 2.6 se ve el código necesario para que el pipeline espere a que la

aplicación de SonarQube finalice el análisis del código de la aplicación y aborte el

script en caso de que el análisis no sea exitoso.

Figura 2.6: Quality Gate de SonarQube

En la figura 2.7 se construye la imagen de contenedor que contiene nuestra

aplicación. Las variables en mayúscula son variables de entorno que se definen al

principio del script.

La variable BUILD-ID contiene el número de ejecución del pipeline, por tanto, si

es la décima vez que se ejecuta, la variable contendrá el valor “10”. Se utiliza esta

convención para que el nombre de la imagen tenga un valor único que se corresponde

con las distintas versiones de la aplicación.

En los entornos reales, se suele utilizar el hash del commit de Git que identifica esos

cambios, seguidos de la fecha de construcción de la imagen.

En la figura 2.8 se realiza el análisis de las vulnerabilidades de la imagen construida.

En este pipeline se analizan las vulnerabilidades que son altas y cŕıticas, siendo bastante

estrictos en la seguridad del entorno.

A continuación, en la figura 2.9 nos logeamos con el registro de Nexus que hemos

desplegado, etiquetamos la imagen y hacemos el push de esa imagen al repositorio.

Por último, queda hacer un checkout del repositorio de configuración, modificar en

15

Figura 2.7: Construcción de la imagen de docker

Figura 2.8: Escáner de la imagen con Trivy

el fichero del despliegue de Kubernetes el nuevo tag de la imagen y subir los cambios

al repositorio. Todas estas acciones se ejecutan en la Figura 2.10

Es a partir de este paso, cuando de manera automatizada, ArgoCD detecta los

cambios que ha habido en este repositorio y re-despliega la nueva versión de la aplicación

en el clúster sin la necesidad de intervención humana.

16

Figura 2.9: Push de la imagen al repositorio

Figura 2.10: Modificación del repositorio GitOps

Demostración de caso de uso de prueba

Para comprobar que toda la infraestructura construida despliega las aplicaciones

correctamente, debemos hacer cambios en el repositorio de código fuente. Por ejemplo,

cambiaremos el mensaje que escribe la aplicación Java por pantalla:

En este punto, nuestra aplicación escribe “hola mundo”por pantalla.

Cambiaremos el mensaje a Hola hiberus! y subimos los cambios al repositorio.

17

Figura 2.11: Fichero App.java de la apliación

Cuando se suben los cambios al repositorio, se ejecuta el pipeline de Jenkins

automáticamente, gracias al webhook enviado por GitLab. El script de Jenkins

ejecuta todos los stages explicados anteriormente que coinciden además con las

fases explicadas en el diagrama de flujo de la Figura 2.2, estos stages aparecen

en verde indicando que se han ejecutado correctamente. Si hubiera un error en el

código, o vulnerabilidades en las imágenes de contenedor construidas, el pipeline

apareceŕıa en rojo en ese punto y se detendŕıa su ejecución, indicando en los logs el

motivo del error. Cabe destacar que no sólo se implementa un flujo de despliegue

automatizado si no que además se añaden capas adicionales de seguridad con

SonarQube y Trivy para que las aplicaciones sean lo más seguras posibles.

Figura 2.12: Información en tiempo real de los stages del pipeline en Jenkins

En una media de tiempo de 2 minutos y medio, si no hay errores, los cambios

hechos en el código se reflejan en el clúster. Para comprobar esto, en la máquina

18

virtual en la que se aloja el clúster de Minikube podemos observar que hay tres

pods corriendo nuestra aplicación (ver Figura 2.13).

Figura 2.13: Información de los pods que están ejecutando nuestra aplicación

Para ver si se ha desplegado la nueva versión, es decir, la versión en la que nuestra

aplicación escribe hola hiberus por pantalla, podemos obtener los logs de los pods.

Como podemos observar en la figura 2.14, el flujo de despliegue funciona según

lo previsto. Se han aplicado los cambios que hemos hecho en el repositorio de

código fuente de manera totalmente automatizada.

Figura 2.14: Logs de los pods

19

2.3. Fase 3: Implementación de la arquitectura

DevOps de referencia empleada en hiberus

simulando un entorno de producción en la

nube de Azure.

Una vez terminada la fase anterior, el director del tfg me propuso implementar la

misma infraestructura pero en la nube de Azure.

Esta fase se realizó en aproximadamente dos semanas y fue el último periodo de

trabajo técnico de este TFG. Para ello se me proporcionó una cuenta en el directorio

de Azure del departamento para poder alojar los recursos necesarios.

Antes de ponerme a implementar la arquitectura, tuve que familiarizarme con los

conceptos básicos del cloud para que los gastos no estuvieran por encima de lo previsto.

Entender los conceptos básicos de azure como región, zona de disponibilidad, red

virtual, máquinas virtuales, interfaces de red virtuales, security groups de las máquinas

virtuales, etcétera.

Una vez entendidos estos conceptos, al igual que en el Caṕıtulo 2 se diseñó un

diagrama de la infraestructura a construir.

Figura 2.15: Arquitectura construida en Azure

Esta infraestuctura realmente no deja de ser una analoǵıa de la arquitectura

construida en la fase anterior, pero, al tratarse de un entorno de cloud, cambian algunos

20

componentes con respecto a la infraestructura de máquinas virtuales de la fase 2.

A continuación se expican los distintos elementos que componen esta arquitectura:

Una máquina virtual de Azure como servidor de GitLab para alojar los

repositorios necesarios.

Una máquina virtual de Azure como servidor de Jenkins que se encarga de

ejecutar todas las tareas del proceso de Continous Integration, donde además

se ejecuta SonarQube y Trivy.

El servicio de Azure Container Registry para el repositorio de imágenes de Docker.

En vez de una máquina virtual donde instalar Minukube, se crea el servicio

gestionado Azure Kubernetes Service para ejecutar la aplicación desarrollada y

donde además se ejecuta la aplicación de ArgoCD.

Esta infraestructura no se construye de manera automatizada como era el caso de

Vagrant, si no que este aspecto se comentará brevemente en la sección 3.3 de ideas

futuras. En cambio, la instalación de herramientas como por ejemplo GitLab no fue

necesaria ya que Azure proporciona imágenes de máquina virtual que ya contienen

GitLab instalado. A continuación, una vez se finalizó la instalación de todos los paquetes

necesarios (SonarQube, Docker, Trivy...) en cada máquina virtual, tuve que configurar

los credenciales del registro de imágenes y configurar el servicio de Kubernetes de Azure

donde hab́ıa que indicar cuantos nodos crear en el clúster, la imagen de máquina virtual

que iba a utilizar cada nodo (Linux, Debian...) y otras configuraciones del clúster.

Una vez instalados los paquetes, al igual que en la fase anterior habia que configurar

la comunicación entre herramientas. Este paso simplemente fue replicar lo que ya hab́ıa

hecho en la fase 2 de este proyecto. Teńıa todo documentado y simplemente fue seguir

los pasos que ya hab́ıa seguido. En cuanto al script que se encargaba de ejecutar todos

los pasos del proceso de despliegue (Jenkinsfile), utilicé de plantilla el mismo que se

explica en la fase anterior pero empleando los endpoints de Azure Container Registry

en vez de emplear el repositorio de imágenes Nexus.

Esta arquitectura implementada ha servido como prueba de concepto en el

departamento para tener una infraestructura en la que poder realizar pruebas con

los compañeros para presentar una propuesta firme sobre la estandarización del flujo

de CI/CD y presentarla a los responsables del departamento. (Ver Sección 3.3).

21

22

Caṕıtulo 3

Lecciones aprendidas y conclusiones

3.1. Aspectos más complejos abordados

Mencionar aqúı que nunca hab́ıa trabajado con la parte de sistemas, exceptuando la

asignatura de Administración de Sistemas en segundo de carrera. Además, no conoćıa

prácticas y filosof́ıas nuevas en el desarrollo de software como DevOps, CI/CD ni su

propósito.

Conoćıa pocas herramientas tecnológicas utilizadas. Hab́ıa trabajado con Docker

en la asignatura de Ingenieŕıa Web y durante la asignatura Cloud Computing en el

Erasmus, pero de manera básica. Además, nunca hab́ıa trabajado con Kubernetes,

Vagrant, ArgoCD, SonarQube o Trivy. He de decir que la curva de aprendizaje fue

muy alta en las primeras semanas del proyecto.

Cuando ya llevaba unas cuantas semanas trabajando en en el proyecto y hab́ıa

finalizado la fase 2, tuve que enfrentarme al aprendizaje y configuración de entornos

en proveedores de servicios en la nube, en este caso Azure. Nunca hab́ıa trabajado con

proveedores de servicios en la nube como (AWS, Azure o Google Cloud).

Por último, me gustaŕıa destacar el volumen de trabajo autónomo que he tenido

que desarrollar. Como ya he mencionado, este TFG pretende ser el primer paso para

una aproximación novedosa dentro de la empresa, lo que ha hecho que no haya podido

contar con conocimientos ya asentados en la misma.

3.2. Conocimientos adquiridos

Durante el desarrollo de este proyecto, he aprendido varias habilidades o conceptos

que me pueden servir de mucho para mi desarrollo profesional:

Cómo funciona un departamento de una consultora tecnológica:

Trabajar en este proyecto me ha permitido entender mejor el funcionamiento de

un departamento en una empresa como hiberus. He visto cómo se gestionan los

23

proyectos, se coordinan los equipos y se implementan las soluciones tecnológicas

para los clientes.

Ser más productivo: He aprendido a ser más productivo al gestionar mejor mi

tiempo y optimizar mis tareas. La necesidad de cumplir con los plazos fijados

por mi director del proyecto para cada una de las tres fases, me ha obligado a

desarrollar técnicas para mantenerme enfocado y eficiente en mi trabajo diario.

Mejorar mi capacidad de organización y planificación: Este proyecto me

ha enseñado la importancia de la organización y la planificación detallada. He

mejorado significativamente en la estructuración de mis tareas y en la elaboración

de planes que aseguren el cumplimiento de los objetivos establecidos.

La importancia de agilizar la frecuencia con la que se pone software en

manos del cliente y responder rápidamente a sus necesidades: Trabajar

en una consultora tecnológica que ofrece servicios y soporte a otras compañ́ıas

me ha enseñado la importancia de entregar software de manera rápida y eficiente.

Responder rápidamente a las necesidades del cliente es esencial para mantener

su satisfacción y confianza en los servicios ofrecidos.

Mejorar mis capacidades de comunicación: Al tener que interactuar con

distintos compañeros para pedir accesos a cuentas y otros recursos, he mejorado

mis habilidades de comunicación. Este aspecto ha sido crucial para garantizar

que todos los elementos necesarios para el proyecto estuvieran disponibles y en

orden.

Estas lecciones no solo han mejorado mis habilidades técnicas y profesionales, sino

que también me han proporcionado una perspectiva más amplia sobre la gestión de

proyectos y la importancia de la colaboración y la comunicación efectiva en un entorno

profesional.

3.3. Ideas futuras

En esta sección se va a comentar brevemente cuál va a ser el devenir de este proyecto

en el futuro y como va a ayudar en el departamento de DevOps.

Como se mencionó en el resumen de este trabajo, el objetivo principal de este TFG

era poder estandarizar el flujo de CI/CD del departamento.

El objetivo a medio-largo plazo de este proyecto, es poder hacer pruebas de

despliegues con la infraestructura creada en Azure durante la fase 3 y poder presentarlo

a los responsables del departamento como prueba de concepto. Una vez aprobada

24

la propuesta de las herramientas presentadas, la idea es poder crear un proyecto

con los compañeros del departamento para poder automatizar la construcción de la

infraestructura con Terraform. Terraform es una herramienta de infraestructura como

código (ver Anexo 4) que permite definir la infraestructura de un sistema a través

de código, lo que hace posible versionar, reutilizar y compartir configuraciones, de

manera similar al código de software. Además, Terraform es compatible con múltiples

proveedores de nube y servicios, incluyendo AWS, Azure, Google Cloud Platform que

son los proveedores de cloud con los que trabaja hiberus.

Automatizar la construcción de la infraestructura que soporta el despliegue de

software utilizando Terraform 1 y la filosof́ıa DevOps seŕıa extremadamente beneficioso

para el departamento y para la compañ́ıa. Esta automatización agilizaŕıa el tiempo

necesario para replicar la arquitectura para cada cliente, permitiendo parametrizar el

código según la propuesta espećıfica de cada uno. Como resultado, el tiempo desde que

un cliente contrata el servicio hasta que recibe una primera versión de la infraestructura

se reduciŕıa al mı́nimo, lo que aumentaŕıa la satisfacción del cliente y, en consecuencia,

traeŕıa beneficios significativos para la compañ́ıa.

1Página oficial Terraform: https://www.terraform.io/

25

https://www.terraform.io/

3.4. Conclusiones

Durante estos años en la carrera, he aprendido gran cantidad de aspectos técnicas

sobre redes, administración de sistemas, algoritmia y programación, gestión de

proyectos software, sistemas operativos, y más. Pero, si soy sincero, lo más valioso

que me llevo de la universidad es la forma en la que nos han enseñado a pensar y a

trabajar.

Trabajo en equipo: He trabajado en muchos proyectos con mis compañeros en

la universidad y ah́ı aprend́ı la importancia de una comunicación efectiva, repartir las

tareas de manera justa y resolver problemas de manera conjunta. Esta habilidad no

solo es clave en la universidad, sino también en el trabajo, donde la colaboración y el

trabajo en equipo son esenciales para sacar adelante cualquier proyecto.

Capacidad de análisis: Durante mi formación, me he enfrentado a problemas

complejos y he aprendido a analizarlos y encontrar soluciones efectivas. Descomponer

problemas grandes en partes más pequeñas y manejables, evaluar diferentes enfoques

y elegir el mejor es algo que he practicado mucho. Esta habilidad me ha sido de gran

ayuda en la elaboración de este trabajo de fin de grado.

Capacidad de comunicación: Comunicar ideas y soluciones de manera clara y

efectiva es otra habilidad que he desarrollado. Esto es crucial no solo en presentaciones

académicas, sino también en el d́ıa a d́ıa laboral.

Además, la informática es un campo en el que siempre debes seguir formándote y

aprendiendo cosas nuevas. Los conocimientos técnicos que adquiŕı en la universidad son

una buena base, pero lo más importante es haber desarrollado la capacidad de seguir

aprendiendo y la predisposición al cambio y a nuevas metodoloǵıas.

Después de terminar el TFG, he seguido trabajando en hiberus, formando parte

de equipos de trabajo en proyectos para el cliente. Gracias a lo que aprend́ı en la

universidad, me siento preparado para enfrentar las tareas diarias y conf́ıo en poder

llevarlas a cabo con éxito. Todo lo que se me ha enseñado durante estos años de

universidad me ha dado una muy buena base para comenzar mi carrera profesional y

afrontarla con confianza en mis capacidades y conocimientos.

26

Anexos

27

Anexos A

¿Qué es DevOps?

El término DevOps se corresponde con la combinación de las palabras inglesas

Development y Operations. DevOps es un marco de trabajo, una filosof́ıa, un conjunto

de prácticas que agrupan el desarrollo de software (Dev) y las operaciones de TI (Ops)

cuyo objetivo es promover la colaboración y comunicación entre estos dos equipos para

reducir el ciclo de vida de desarrollo y desplegar software de calidad de la forma más

automatizada y productiva posible.

Figura A.1: La convergencia de estos dos equipos es el propósito central de DevOps.1

La principal caracteŕıstica del movimiento DevOps es defender activamente la

automatización y el monitoreo en todos los pasos de la construcción del software, desde

la integración, las pruebas, el despliegue, hasta la implementación y la administración

de la infraestructura. DevOps apunta a ciclos de desarrollo más cortos, mayor frecuencia

de implementación, lanzamientos más efectivos, en estrecha alineación con los objetivos

comerciales.

1Imagen tomada de: https://www.manageengine.com/latam/applications_manager/

tech-topics/que-es-devops.html (última visita: Junio 2024)

29

https://www.manageengine.com/latam/applications_manager/tech-topics/que-es-devops.html
https://www.manageengine.com/latam/applications_manager/tech-topics/que-es-devops.html

30

Anexos B

Principios y prácticas claves en
DevOps

En esta sección se analizarán y estudiaran las prácticas claves que se realizan en la

filosof́ıa DevOps y que cualquier empresa que quiera adpotar esta filosof́ıa o que ya la

haya adoptado pero quiera aprovecharse al máximo de sus ventajas debeŕıan incorporar

en sus flujos de trabajo.

Cómo ya se ha ido comentando a lo largo del texto, DevOps parte de la idea de

la automatización y la mejora continua del producto que se está desarrollando. Las

prácticas por las que aboga la filosof́ıa DevOps son las siguientes:

1. Continous Development

Esta práctica se centra en la idea de que el código debe ser desarrollado en

pequeñas y frecuentes iteraciones en lugar de hacerlo todo de una sola vez. El

desarrollo continuo es esencial en DevOps porque optimiza la eficiencia cada vez

que se crea, prueba, construye y despliega un fragmento de código en producción.

Este enfoque de desarrollo continuo mejora la calidad del código y acelera

la identificación y corrección de errores, vulnerabilidades y defectos. Además,

permite que los desarrolladores se enfoquen en producir código de alta calidad.

2. Continous Integration / CI

Esta es una de las prácticas más conocidas y mundialmente aceptadas por

toda la comunidad del sector tecnológico. La integración continua sostiene que

los desarrolladores deben fusionar con regularidad los cambios en el código

en un repositorio central, tras lo cual se ejecutan compilaciones y pruebas

automatizadas. Los objetivos clave de la integración continua consisten en

encontrar y arreglar errores con mayor rapidez, mejorar la calidez del software y

reducir el tiempo que se tarda en validar y publicar nuevas actualizaciones

1Imagen tomada de: https://www.geeksforgeeks.org/devops-lifecycle/ (última visita: Junio
2024)

31

https://www.geeksforgeeks.org/devops-lifecycle/

Figura B.1: El código se publica en un repositorio de manera frecuente y continua1

Anteriormente, era común que los desarrolladores de un equipo trabajasen

aislados durante un largo periodo de tiempo y solo intentasen combinar los

cambios en la versión de producción una vez que hab́ıan acabado el trabajo.

Como consecuencia, la combinación de los cambios en el código resultaba dif́ıcil

y ardua, además de dar lugar a la acumulación de errores durante mucho tiempo

que no se correǵıan. Estos factores haćıan que resultase más dif́ıcil proporcionar

las actualizaciones a los clientes con rapidez.

Con la llegada de la integración continua (CI), los desarrolladores env́ıan los

cambios de forma periódica a un repositorio compartido utilizando un sistema

de control de versiones como Git. Un servidor de integración continua como

Jenkins, compila el código y ejecuta los test de manera automática una vez

se detectan cambios en ese repositorio compartido, lo que permite identificar

y corregir inmediatamente cualquier error.

Figura B.2: Flujo de trabajo t́ıpico de Continous Integration con Jenkins

La integración continua mejora notablemente la productividad en el desarrollo

de software, permite encontrar y arreglar los errores con mayor rapidez y permite

entregar el software al cliente con mayor rapidez.

32

3. Continous Delivery / Continous Deployment Estos dos conceptos,

frecuentemente referidos como “CD”, son comúnmente confundidos en la

industria debido a su notable similitud.

A continuación, detallaré la diferencia principal entre ellos y la importancia de

integrar estas prácticas en nuestro proceso de desarrollo de software bajo la

filosof́ıa DevOps.

Por un lado, Continous Delivery es el proceso de desplegar una aplicación en

producción manualmente, cuando esta ha completado el proceso de build y test.

Con esta práctica se consigue automatizar el proceso un paso más allá de CI,

sin embargo, se requiere la acción manual de un ingeniero para hacer las últimas

comprobaciones antes de desplegar en producción. Por otro lado, Continous

Figura B.3: El despliegue en producción requiere la acción manual de un profesional 2

Deployment va aún un paso más allá que Continous Delivery. Es el proceso

de automáticamente desplegar una aplicación en algún entorno de desarrollo,

staging, pre-producción o producción cuando se han completado las fases de build

y test. En este caso se automatiza absolutamente todo el proceso (ver figura B.4),

desde la obtención del código fuente hasta el despliegue de la aplicación en algún

entorno. No se requiere ninguna acción manual en el proceso. La herramienta

más utilizada para CD y que es la que más se utiliza en hiberus es ArgoCD.

Figura B.4: El despliegue en producción se realiza de forma automática 3

En la práctica, en hiberus emplean el Continous Delivery para desplegar una

aplicación en producción debido a que es un entorno cŕıtico y hay que asegurar

2Imagen tomada de: https://www.geeksforgeeks.org/devops-lifecycle/ (última visita: Junio
2024

3Imagen tomada de: https://www.geeksforgeeks.org/devops-lifecycle/ (última visita: Junio
2024

33

https://www.geeksforgeeks.org/devops-lifecycle/
https://www.geeksforgeeks.org/devops-lifecycle/

que no haya fallos y todo funcione a la perfección. El Continous Deployment es

muy útil para levantar entornos de desarrollo o pre-producción en los que si que

conviene que el proceso esté lo más automatizado posible para poder verificar

que la aplicación desplegada funciona según lo esperado.

4. Infraestructura como código (IaC)

La infraestructura como código es el proceso de gestionar y provisionar

infraestructura tecnológica a través de código en vez de realizarla en un

proceso manual. Con IaC, se crean archivos de configuración que contienen las

especificaciones de la infraestructura tecnológica, lo que facilita la edición y

distribución de las configuraciones. También garantiza que siempre se aprovisione

el mismo entorno. Al codificar y documentar sus especificaciones de configuración,

IaC facilita la gestión de la configuración y ayuda a evitar cambios de

configuración no documentados y ad hoc.

Figura B.5: Se crea la infraestructura necesaria a partir del IaC Fuente.4

4Imagen tomada de: https://learn.microsoft.com/es-es/devops/deliver/what-is-in

(última visita: Junio 2024)

34

https://learn.microsoft.com/es-es/devops/deliver/what-is-in

Anexos C

¿Qué es GitOps?

GitOps es una metodoloǵıa que utiliza los flujos de trabajo de Git para administrar

la infraestructura y la configuración de las aplicaciones.

Al emplear los repositorios de Git como única fuente de verdad, GitOps permite a

los equipos DevOps almacenar y gestionar el estado completo de la configuración de la

infraestructura en Git. Esto garantiza que cualquier cambio en la infraestructura sea

transparente y verificable.

GitOps radica en su capacidad para garantizar la consistencia, la trazabilidad y

la automatización en la gestión de la infraestructura y las aplicaciones, permitiendo

a los equipos de desarrollo y operaciones mantener un control preciso de los recursos,

realizar despliegues confiables y fomentar la colaboración al utilizar repositorios de Git

como fuente única de verdad.

Figura C.1: El controlador gitops lleva la aplicación al estado deseado

El proceso de despliegue de una aplicación utilizando GitOps se describe a

continuación:

Como Ingeniero DevOps o desarrollador, es necesario definir la infraestructura

de la aplicación a desplegar, como la creación de los manifiestos de Kubernetes

requeridos. Posteriormente, se deben subir estos cambios al repositorio de Git

designado, comúnmente conocido como “Repositorio de Configuración”.

Una vez que los cambios se han subido al repositorio, un operador de GitOps se

encarga de monitorear dicho repositorio de configuración. Detecta cualquier cambio

realizado y, al identificar una modificación, procede a implementar automáticamente la

infraestructura necesaria según la configuración reflejada en los archivos del repositorio.

35

36

Anexos D

¿Qué es DevSecOps?

DevSecOps es la práctica de integrar las pruebas de seguridad en cada etapa del

proceso de desarrollo de software. Incluye herramientas y procesos que fomentan la

colaboración entre los desarrolladores, los especialistas en seguridad y los equipos de

operaciones para crear un software que sea eficiente y seguro. DevSecOps aporta una

transformación cultural que hace de la seguridad una responsabilidad compartida para

todos los que crean el software. 1

¿Qué significa DevSecOps?

DevSecOps significa desarrollo, seguridad y operaciones. Es una extensión de la práctica

de DevOps. Cada término define diferentes funciones y responsabilidades de los equipos

de software a la hora de crear aplicaciones de software.

Desarrollo

El desarrollo es el proceso de planificación, codificación, creación y prueba de la

aplicación.

Seguridad La seguridad significa introducir la seguridad en una etapa temprana

del ciclo de desarrollo de software. Por ejemplo, los programadores se aseguran de que

el código esté libre de vulnerabilidades de seguridad y los profesionales de la seguridad

prueban el software más a fondo antes de que la empresa lo publique.

Operaciones El equipo de operaciones publica, supervisa y corrige cualquier

problema que surja del software.

1https://aws.amazon.com/es/what-is/devsecops/#:~:text=DevSecOps%20es%20la%20pr%

C3%A1ctica%20de,que%20sea%20eficiente%20y%20seguro.

37

https://aws.amazon.com/es/what-is/devsecops/#:~:text=DevSecOps%20es%20la%20pr%C3%A1ctica%20de,que%20sea%20eficiente%20y%20seguro.
https://aws.amazon.com/es/what-is/devsecops/#:~:text=DevSecOps%20es%20la%20pr%C3%A1ctica%20de,que%20sea%20eficiente%20y%20seguro.

	Introducción
	Contexto del trabajo
	Contexto tecnológico
	Motivación y problema que se aborda
	Herramientas de trabajo
	Esquema general de la memoria

	Trabajo desarrollado
	Fase 1: Investigación de la literatura y herramientas
	Fase 2: Implementación de la arquitectura DevOps de referencia empleada en hiberus para la construcción de un entorno de desarrollo a modo de prueba creado con máquinas virtuales Vagrant.
	Fase 3: Implementación de la arquitectura DevOps de referencia empleada en hiberus simulando un entorno de producción en la nube de Azure.

	Lecciones aprendidas y conclusiones
	Aspectos más complejos abordados
	Conocimientos adquiridos
	Ideas futuras
	Conclusiones

	Anexos
	¿Qué es DevOps?
	Principios y prácticas claves en DevOps
	¿Qué es GitOps?
	¿Qué es DevSecOps?

