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Abstract 

In this paper, we study the problem of computing periodic orbits of 
Hamiltonian systems providing large families of such orbits. Periodic orbits 
constitute one of the most important invariants of a system, and this paper 
provides a comprehensive analysis of two efficient computational approaches 
for Hamiltonian systems. First, a new version of the grid search method, 
applied to problems with three degrees of freedom, has been considered to 
find, systematically, symmetric periodic orbits. To obtain non-symmetric 
periodic orbits, we use a modification of an optimization method based on an 
evolutionary strategy. Both methods require a great computational effort to 
find a big number of periodic orbits, and we apply parallelization tools to 
reduce the CPU time. Finally, we present a strategy to provide initial 
conditions of the periodic orbits with arbitrary precision. We apply all these 
algorithms to the problem of the motion of the lunar orbiter referred to the 
rotating reference frame of the Moon. The periodic orbits of this problem are 
very useful from the space engineering point of view because they provide low-
cost orbits.
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1 Introduction

Periodic orbits (p.o.) are one of the most important objects in the study of dynamical systems.
Poincaré (1892) already points out that p.o. form the skeleton of any dynamical system. The
problem is that finding p.o. is not an easy task. Shooting, multiple shooting and collocation
methods have been applied to find p.o. as the solution of a two-point boundary value problem
(Farantos 1998; Tadi 2005). Other important methods are based on the continuation theory,
that is, varying a parameter of the dynamical system to find a family of p.o. from a particular
one already known (Doedel 1981; Lara and Pelaez 2002; Dhooge et al. 2003; Wulff and
Schebesch 2006). Grid search method (Markellos et al. 1974; Kazantzis and Goudas 1975;
Russell 2006; Tsirogiannis et al. 2009; Barrio and Blesa 2009) becomes a powerful method
when the dynamical system has two degrees of freedom if we restrain the problem to find
symmetric periodic orbits (s.p.o.) as it provides directly a large number of p.o. Also, when
we are interested in very unstable periodic orbits, the variational methods (Contopoulos and
Harsoula 2010) provide a powerful approach. And finally, another family of methods is based
on evolution strategies (Mauger et al. 2010).

The main objective of this paper is not to present a completely new method to compute
p.o., but to show how generalizations of previously existing ones permit to provide with
extremely powerful techniques to locate p.o. Moreover, we show how the combination of
several different techniques allows us to find a large number of p.o. satisfying different
requests, as symmetry conditions or not, or very high precision. Therefore, as a result, all
these techniques provide with useful methods to give a detailed study of Hamiltonian systems.

The motion of a lunar orbiter (a satellite in orbit around the Moon) constitutes a very
involved dynamical system. In fact, the Keplerian description of the motion is only a poor
approximation, to which we must add, among others, the effects of the Moon potential (Moon
is not a sphere) and the gravitational attraction of the Earth. Considering the Earth, the motion
of the lunar orbiter becomes a three-body problem that is one of the most useful examples
of the complexity of certain dynamical systems.

Periodic orbits for the lunar orbiter are not only a good way to explore this system, but they
are very useful themselves in order to design space missions to the Moon (Weilian 2004; Folte
and Quinn 2006). Space engineers need to know orbits that maintain their requirements for
a long period of time, and the p.o., obtained in the rotating reference frame of the Moon, are
very good examples of these kinds of orbits. The problem of searching p.o. for lunar orbiters
has been extensively considered (Elipe and Lara 2003; Weilian 2004; Folte and Quinn 2006;
Abad et al. 2009), but most of the efforts have been applied in finding frozen orbits. Frozen
orbits are orbits in which eccentricity and argument of perigee remain stationary on average.
Frozen orbits correspond to equilibria in an averaged form of the zonal problem of the satellite
and are almost periodic solutions of the full (non-averaged) problem.

In this paper, we analyze the problem from two different points of view. We explore the
possibility to obtain directly a massive number of p.o., not only frozen orbits. Firstly, we will
apply a grid search method to obtain s.p.o., and secondly we will use an evolution strategy
method to obtain non-symmetric p.o. In both cases, the computational effort to compute the
orbits and the characteristics of the developed algorithms make possible to parallelize the
code, which open the way to more detailed studies. The efficiency of the algorithms is also
studied.

The grid search method has been extensively used to compute s.p.o. in two degrees of

freedom (2DOF) Hamiltonian systems (Markellos et al. 1974; Tsirogiannis et al. 2009; Barrio
and Blesa 2009). Grid search method takes advantage of a mirror configuration (Roy and



Ovenden 1955) showed by these systems due to certain symmetry conditions (Barrio and
Blesa 2009). Computing s.p.o. in three degrees of freedom (3DOF) Hamiltonian systems
introduces new methodological and computational difficulties to the process. For instance,
in 2DOF the final search is just a one-dimensional root-finding process, but in 3DOF we will
have at least a two-dimensional root-finding process, which of course is much more involved
and needs a much more careful approach. In fact, there are only very few papers (Russell
2006; Tsirogiannis et al. 2009) applying the 3DOF version of the grid search method. In
particular, Russell (2006) studies the motion of an orbiter around Europa, satellite of Jupiter.
There are two important differences with our work, the first one is about the model, we
consider the effect of the non-sphericity of the Moon, the second one is about the algorithm
and the tools that we use to solve it.

To integrate the ordinary differential equations (ODEs) that appear in the problem, we use
a new free software (Abad et al. 2012) named tides1 (Taylor series Integrator for Differential
EquationS), which applies the Taylor series method to integrate ODEs. The use of Taylor
series method permits to reach a very large precision in integrations of ODEs. Moreover,
compared with other integrators, tides shows similar results for low precisions but better
behavior for high-precision calculations, and we may integrate ODEs with multiple precision
arithmetic with a minimum effort. But the precision is not the main characteristic when we
apply tides to compute p.o.; we have two more possibilities: the computation of partial
derivatives of the variables with respect to the initial conditions without the formulation of
the variational equations and an easy way to compute events, or points where the variable
reaches certain values (zeros, local extrema, etc.) along the integration. We remark that any
other good variable stepsize numerical method for ODEs, like the dopri853 Runge–Kutta
method (Hairer et al. 1993) or any similar RK or multi-step method, is suitable for our
purposes.

The lunar orbiter problem presents the necessary symmetries to apply all the previous
methods, but sometimes, for instance, if we include tesseral harmonics in the potential of the
Moon, and for any other problems, those symmetries do not appear. To find p.o. in these cases,
we have to use a second method, introduced in Abad and Elipe (2014) to compute p.o. around
the gravitational influence of a solid circular ring. This method is an adaptation of an evolution
strategy (Beyer and Schwefel 2002) that belongs to the modern optimization methods: genetic
algorithms, evolution strategies, evolutionary programming, simulated annealing, Gaussian
adaptation, swarm intelligence, etc. Different problems require different techniques adapted
to it; for instance, the simulated annealing algorithm has been recently used with success in
Mauger et al. (2010) to find periodic orbits of multi-electron atomic systems, or the particle
swarm optimization method (Parsopoulos and Vrahatis 2004) used to compute periodic orbits
for three-dimensional galactic potentials (Skokos et al. 2005). In this paper, we continue in
this line by proposing a new method in order to increase the tools to handle the tricky task
of finding periodic orbits.

Both methods, the grid search and the evolution strategy methods, are easily parallelizable.
Therefore, due to the large computation effort we need for a detailed analysis of the problems,
we focus on the use of parallel versions of the algorithms. We remark that, obviously, these
methods are obtained as generalizations of previous ones but both of them, in spite of their
simpleness, provide with quite effective and powerful methods.

Another situation when an extra algorithm is needed is when we are interested in initial
conditions of a system with a very high precision, as occurs, by instance in case of orbits inside
a chaotic region or for very long-time simulations. Using the data obtained from the previous

1 http://sourceforge.net/projects/tidesodes/



algorithms, we show in this paper how to obtain (Abad et al. 2011) arbitrary precision initial
conditions based on a Newton method, an arbitrary precision ODE solver (tides) and the
singular value decomposition (SVD).

The present paper is organized as follows: Section 2 presents the formulation of the
differential equations of the lunar problem. Section 3 explains the algorithm used to apply
the 3DOF grid search method to locate families of periodic orbits. In Sect. 4, we present
the modification of the evolutionary strategy to compute generic p.o. Section 5 explains
how to refine the initial conditions of the periodic orbits to obtain arbitrary precision data.
Section 6 shows the way in which we parallelize the algorithms and their application to the
lunar problem. Some figures are presented to illustrate the results and the efficiency of the
parallelization. Finally, Sect. 7 presents the conclusions of this work.

2 Dynamical model of a lunar orbiter

We consider the motion of an orbiter about the Moon under the Hill hypothesis (Hill 1878;
Lara and Palacián 2009), that is the Moon is in circular orbit about the Earth, with radius
re, in the equatorial plane of the Earth, and the orbit is synchronized with the rotation of the
Moon.

To work with this hypothesis, instead of using the inertial reference frame, it is better to
consider a rotating reference frame Oxyz, centered on the Moon and such that the plane
Oxy coincides with the Moon’s equator and the Ox axis continuously points toward the
Earth. Let ω = (0, 0, ω) be the angular velocity vector of the rotation of the Moon; thus, the
Hamiltonian of the problem is

H(x, p) = 1

2
p2 − ω · (x × p) + V (x), (1)

where x = (x, y, z), p = (px , py, pz) represents the position and the absolute velocity of
the orbiter at the rotating reference frame, and V the potential function.

The potential V = Vk +Ve +Vm is the addition of the Keplerian potential Vk, that produce
Keplerian orbits, and the perturbations over the Keplerian motion due to several effects like
the gravitational attraction of the Earth over the lunar orbiter, Ve, and the non-spherical form
of the Moon, Vm. The next three paragraphs show the three terms expressed at the rotating
frame of the Moon.

The Keplerian potential is

Vk = −μm

r
= − μm√

x2 + y2 + z2
, (2)

where μm = G mm is the product of the gravitational constant and the mass of the Moon.
The gravitational potential created by the Earth is

Ve = −μe

(
1

‖ xe − x ‖ − xe · x
‖ xe ‖3

)
= −μe

(
1

√
(re − x)2 + y2 + z2

− x

r2
e

)

, (3)

where μe = Gme is the product of the gravitational constant by the mass of the Earth, and 
xe = (re, 0, 0) the position of the Earth with respect to the Moon expressed at the rotating 
frame.

In this problem, we take only into account the main problem of the satellite, i.e., the 
Moon potential produced by the J2 zonal harmonic, that consider the Moon an homogeneous



ellipsoid instead an sphere. Thus, the potential is

Vm = μm r2
m J2

2 r3

(
3 z2

r2 − 1

)
= μm r2

m J2

2 (x2 + y2 + z2)3/2

(
3 z2

(x2 + y2 + z2)
− 1

)
, (4)

with rm the equatorial radius of the Moon.
The evolution of the lunar orbiter is given by the ordinary differential equations obtained

by applying the Hamilton’s equations to the Hamiltonian (1)

ẋ = px + ωy, ṗx = ωpy − Vx ,

ẏ = py − ωx, ṗy = −ωpx − Vy,

ż = pz, ṗz = −Vz,
(5)

where Vx , Vy, Vz denote the partial derivatives of the potential with respect to the position
vector, and ẋ = (ẋ, ẏ, ż) = (px + ω y, py − ω y, pz) is the relative velocity. Then, the
equations (5) become

ẍ = ω2 x + 2ω ẏ − Vx ,

ÿ = ω2 y − 2ω ẋ − Vy,

z̈ = −Vz .
(6)

The motion admits a constant named Jacobi constant defined by the expression

J = ω2 (
x2 + y2) − 2V − x · x. (7)

that substitutes, in the rotating case, to the classical energy integral.

3 Locating families of periodic orbits: the grid search method

One of the main important applications of the location of a great number of p.o. is to describe
the different regions in the parametric phase space of a system. This is one of the most
powerful ways to give a global parametric description of a dynamical system.

When the differential system depends on a parameter P , we want to know whether a
periodic solution may be continued, that is, if the p.o. is isolated or not when the parameter
is changed. A theorem due to Meyer et al. (2009) permits to characterize such a situation: an
elementary periodic solution in a Hamiltonian system with a non-degenerate integral can be
continued.

Recall that a periodic solution is called elementary if the monodromy matrix has just two
eigenvalues equal to one (in case of an autonomous Hamiltonian system). Therefore, for
autonomous Hamiltonian systems this is the case and the periodic orbits appear in families.
Note that if we have a non-elementary periodic solution the periodic orbit may appear or
disappear due to a saddle-node bifurcation. A family of periodic orbits is represented by
a smooth one-parameter continuous curve (the characteristic curve) in the space of initial
conditions or parameters. This is the basic principle of one of the most well-known methods
to locate families of periodic orbits, the continuation method. This method, once you have
the initial conditions of one p.o. of the family, tries to continue on the curve of the family
by changing the parameter values. This method has proved its power in numerous studies
(Krauskopf et al. 2007), and there are some well-known free software packages such as
AUTO (Doedel 1981) and MATCONT (Dhooge et al. 2003). The main problem is that you
need the initial data, i.e., some initial conditions of periodic orbits, and if you have no initial
conditions in all the parametric regions, the continuation method may ignore p.o. in important



regions. Therefore, in this paper we focus on a different method to locate families of periodic
orbits. This method is based on a “brute-force” approach, that combined with simplifying
assumptions based on symmetry conditions, permits to locate a large number of symmetric
periodic orbits in all parametric ranges of a system. Later, this approach may be combined
with a continuation method if desired, as there are a large number of p.o. Note that this method
is based on a very simple idea, just to take into account symmetry conditions to locate in a
grid of the parametric variables phase-space initial conditions of the p.o. This method was
initially proposed for 2DOF Hamiltonian systems (Markellos et al. 1974; Tsirogiannis et al.
2009; Barrio and Blesa 2009) and extended in just few cases to 3DOF. The extension to 3DOF
is in some sense “direct,” as the main concept is the same. What is much more involved is the
multi-dimensional root-finding process and needs a much more careful approach. Therefore,
although the method proposed is not, obviously, a scientific breakthrough, it gives a extremely
powerful technique to locate a very large number of symmetric p.o. on the parametric variable
phase space of a system. As shown at the examples presented below, very few methods in
the literature may provide in such a simple way a detailed “skeleton” of periodic orbits of a
system.

Let us suppose a 2DOF Hamiltonian system H(x, y, ẋ, ẏ) that presents some symmetry
conditions, for instance, a symmetry with respect to the x-axis. So, if we have a solution
{x(t), y(t), ẋ(t), ẏ(t)}, then the expression {x(−t),−y(−t),−ẋ(−t), ẏ(−t)} is also a solu-
tion. In that case, if an orbit starts at the x-axis perpendicular to it (x0, 0, 0, ẏ0) and crosses
the x-axis again perpendicular, then the orbit is closed and symmetric (s.p.o.). To find these
orbits, we check for the first perpendicular cross to the x-axis:

y (x0, 0, 0, ẏ0; T/2) = ẋ (x0, 0, 0, ẏ0; T/2) = 0. (8)

When these conditions are accomplished, (x0, 0, 0, ẏ0) represent the initial conditions of a
s.p.o. of period T .

The first step in the grid search method is to define a two-dimensional regular mesh that 
represents the energy level h (or any other parameter P) versus the initial coordinate x . 
Each point, (xi , hi ), i = 0, . . . ,  N , of the  N × N mesh, represents the initial conditions 
(xi , 0, 0, ẏi ), where  ẏi is obtained from the relation H(xi , 0, 0, ẏi ) = hi . To find p.o. of 
multiplicity m (number of loops in the orbit), we integrate the problem until the orbit cross m 
times the Ox  axis. If we just look for the first cross, we will only obtain the p.o. of multiplicity 
one, going further we also search for higher-order multiplicities. The second condition of (8) 
indicates that the s.p.o. are represented by the points of the curves ẋ(x, 0, 0, ẏ(x, h)) = 0 at  
the window (x, h). To locate such curves, we integrate consecutively from the points of the 
vertical line of the grid, i.e., the line with hk fixed (we do the same for horizontal lines). Then, 
we obtain ẋi (xi , 0, 0, ẏi (xi , hk )), i = 0, . . .  N . To find the roots of ẋ , we take the  intervals  
[xi , xi+1] where ẋi ẋi+1 < 0. Thus, a root-finding process is necessary, but now it has to be 
used in combination with a numerical integrator because we have to integrate the differential 
system for each iteration of the process. The Brent’s method (Brent 1971) is a good choice 
for this step of the grid search method. Once the convergence is reached, we have a set of 
initial conditions that satisfy the symmetric periodic conditions.

The 3DOF problem presents more kind of different symmetries. In particular, our problem 
shows two of those symmetries: the planar Oxz  symmetry and the axial Ox  one. Each 
symmetry must be handled in a different way. In this paper, we describe only how to handle 
the planar Oxz  symmetry. The axial symmetry, together with a detailed report of the results, 
is yet in progress.

The Oxz  symmetry implies that if {x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)} is a solution, then 
{x(−t), −y(−t), z(−t), −ẋ(−t), ẏ(−t), −ż(−t)} is also a solution. Thus, we start now the



Fig. 1 The intersection of the
curves inside the square of the
grid represents a s.p.o

s.p.o.

(xi, Jj)

(xi, Jj+1)

(xi+1, Jj)

(xi+1, Jj+1)ẋ(x, z, J) = 0

ż(x, z, J) = 0

orbit at the Oxz plane and perpendicular to it: (x0, 0, z0, 0, ẏ0, 0). The periodicity condi-
tion is accomplished when the orbit crosses again the plane perpendicularly. Therefore, the
conditions to find an s.p.o. are

y (x0, 0, z0, 0, ẏ0, 0; T/2) = ẋ (x0, 0, z0, 0, ẏ0, 0; T/2)

= ż (x0, 0, z0, 0, ẏ0, 0; T/2) = 0.
(9)

If we have a point (x0, z0, h0), then the coordinate ẏ0 of the initial point is obtained from the
equation H(x0, 0, z0, 0, ẏ0, 0) = h0. In our problem, we substitute the energy condition by a
condition based on the Jacobi constant, J (7), instead of the energy h. The two-dimensional
window (x, h) is sufficient to describe the s.p.o in the 2DOF problem; however, the 3DOF
problem requires a three-dimensional grid (x, z, J ). To look over the three-dimensional grid,
we reduce the problem to many two-dimensional grids by fixing one of the elements of
the grid. Fixing z we compute the window (x, J ) or fixing the Jacobi constant we compute
the window (x, z), and then we repeat the computations with different values of the fixed
parameter to obtain a three-dimensional study N × N × N as a set of N two-dimensional
N × N grids.

To find orbits of multiplicity m, we integrate the ODE until the orbit cross m times the
Oxz plane (this procedure ensures the first condition of periodicity y = 0). If a point fulfills
simultaneously both conditions ẋ(x, 0, z, 0, ẏ(x, z, J ), 0) = ż(x, 0, z, 0, ẏ(x, z, J ), 0) = 0,
it represents the initial condition of a the s.p.o. The 2DOF case locates the s.p.o. obtain-
ing the cut points of a curve with each line of the grid; however, it is not possible in the
3DOF case because now the solution is not represented by a curve but for the intersection
of two curves; then, the algorithm in this case must be completely different. Instead, to
explore vertical and horizontal lines of grid points we explore consecutive squares of ver-
tices (xi , J j ), (xi+1, J j ), (xi , J j+1), (xi+1, J j+1), i = 0, . . . N − 1, j = 0, . . . N − 1 (see
Fig. 1). In fact, the exploration is done by horizontal lines of squares ( j fixed). Taking into
account the changes of sign of the functions ẋ, ż at the vertices of the square, we may deter-
mine how many times the curves cut the sides of the square. The necessary (not sufficient)
condition to have a s.p.o. inside the square is to have at least two cuts of each curve along
the perimeter of the square. This condition only assures that both curves cross the square
but the intersection of the curves, and, as a consequence, the existence of a s.p.o. inside the
square is not guaranteed. When a possible s.p.o. are inside a square, we take the center of
the square as the initial condition of an orbit close to a s.p.o. An alternative way to com-
pute s.p.o is the characteristic bisection method (Vrahatis 1988a, b) based on the concept
of characteristic polyhedron (CP). This method has been successfully used to locate peri-
odic orbits in two-dimensional mappings (Polymilis et al. 2003). Inside a CP, under suitable



assumptions, there exists, at least, one solution of a n-dimensional function because the topo-
logical degree of the function relative to the CP takes the value ±1. In our problem, if the
square is a CP, the existence of a root is guaranteed, if not the method gives a procedure
to compute a CP inside the square. Obviously, this CP can not be found if no s.p.o exists
into the square. Once we have the CP, the bisection method may be used to approximate the
s.p.o.

Note that this method can be extended to systems with more than 3DOF, but a 
detailed analysis of symmetries has to be done. Also, the computational effort grows 
significatively.

Once we have a list of approximate p.o., we must apply a corrector method to obtain the 
precise initial condition of the s.p.o. This method, described in Sect. 5, is based on a modified 
Newton method. The method does not converge in the cases in which the two previous curves 
have no intersection. To find the list of approximate s.p.o., we need a numerical integrator 
to integrate the differential equations (6), but to correct the s.p.o. the corrector method needs 
also the integration of the variational equations, and the process is quite different. For this 
reason, we separate both processes, and we present here results about the parallelization of 
the first part of the method.

To compute s.p.o. in the lunar problem, we take the ODEs (6), where we consider the 
Keplerian part, the Earth perturbation and the non-sphericity of the Moon, then the potential 
is V = Vk + Ve + Vm. We choose the Moon radius as the length unit, and the minute 
as the time unit. Then, the value of the parameters needful to evaluate the potential is: 
rm = 1, J2 = 0.0002033, μm = 0.0033614734061376, ω = 0.000159702433409084, 
re = 221.161037914965, μe = 0.273285127671081.

To illustrate the results, we take the planar Oxz  symmetry, and we compute the approxi-
mate s.p.o. in two cases: a window (x, J ) taking the fixed value z = 0, and a window (x, z) 
taking the fixed value J = 0.00255. In both cases, we made a 1000 × 1000 grid window. 
Figure 2 presents these windows. On the top of the figure, we have the families of s.p.o. for 
a wide range of values of J in the window (x, J ) with z = 0. We see on this figure a clear 
evolution of the families of s.p.o except for a small range of values of J ∈ [0.002, 0.003]. 
To see more clearly this region, we made a zoom that is presented in the middle of picture. 
Finally, the bottom picture presents a window perpendicular to the previous one representing 
the window (x, z) with a fixed value J = 0.00255.

In order to study the need of using a fine grid in the method, we present again the plot 
2.2, but now with two different sizes of the grid 1000 × 1000 on the left and 100 × 100 
on the right (see Fig. 3). From the plots, we observe that a detailed analysis of the problem 
really needs such a fine grid (1000 × 1000), and thus, it requires a large computational 
effort.

In Fig. 4, we illustrate the results by showing some Keplerian periodic orbits in the 
rotating frame of the Moon whose initial conditions, given in the Table 1, correspond with 
intersections of the horizontal lines x = 2, x = −2 with the curves of s.p.o. in the top and 
middle of Fig. 2 after improving the orbits with the method explained in Sect. 5. They are  
planar orbits because we take the window z = 0 that represents the planar case of the satellite 
lunar problem. The orbital plane is the equator of the Moon, which is placed at the origin. 
We show orbits with different multiplicities. We include, in the last column of Table 1, the  
stability index k = Tr(M) − 2, of each orbit, where M is the monodromy matrix (Henon 
1965, 1969; Skokos 2001). The periodic orbit is linearly stable if |k| < 2, unstable if |k| > 2 
and critical if |k| =  2. Therefore, as shown in the few examples of Table 1, the method 
locates without any problem all kinds of s.p.o. In fact, highly unstable s.p.o., for instance 
with k ≈ 105, are located with this method.



Fig. 2 Three bi-dimensional
plots of the three-dimensional
grid (x, z, J ). On the top a
window (x, J ), x ∈ [−5, 5], J ∈
[0.002, 0.012], z = 0. In the
middle a zoom of the left part of
the top window, with
J ∈ [0.002, 0.003]. On the
bottom a window
(x, z), x ∈ [−5, 5], z ∈ [−5, 5]
that is perpendicular to the
previous windows at J = 0.0026 2 3 4 5 6 7 8 9 10 11 12
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Fig. 3 A window (x, J ) obtained with two different grids: 1000 × 1000 on the left and 100 × 100 on the
right



Fig. 4 Evolution of some planar
s.p.o extracted from the
intersection of the horizontal
lines x = 2, x = −2 with the
curves of s.p.o. in the top and
middle of Fig. 2
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Table 1 Initial conditions, Jacobi constant, period and stability of the orbits as shown in Fig. 4

Orbit x0 ẏ0 J T k

1 −2 0.04132147930839 0.004125767891651 0.3041990889564e3 2.0000e0

2 2 0.01596131869958 0.005578465193585 0.1225802452123e3 1.6387e1

3 2 0.05543117487286 0.002760613740429 0.1527185667592e5 3.1587e1

4 2 0.05542269739227 0.002761553501979 0.2654505725994e5 1.0647e2

5 2 0.05823241870866 0.002442214299554 0.4167704148789e5 1.8394e5

6 2 0.05791398623192 0.002479199086943 0.4994764023415e5 3.8702e3

7 2 0.05786840604544 0.002484476469974 0.5124331522961e5 4.9442e2

8 2 0.05804033684499 0.002464548187134 0.5642304534070e5 1.9949e0

9 2 0.00580297347601 0.005799554387051 0.3306316548630e3 1.9983e0

10 −2 0.00664663331505 0.005789054809460 0.4413344680935e3 2.0000e0

11 −2 0.00735109772330 0.005779193906147 0.8863977345908e3 1.9999e0

12 2 0.00729868580715 0.005779958073703 0.1446000252549e4 3.3883e2

13 −2 0.05641710515721 0.002650342789565 0.6064465139200e5 3.2810e1

14 −2 0.05634004703846 0.002659031643588 0.3126199761735e5 3.5923e5

15 −2 0.05634378858107 0.002658610032216 0.5091698079331e5 1.1130e4

16 −2 0.05627751606207 0.002666073729768 0.5654664194648e5 1.3568e0

17 −2 0.05604076078647 0.002692665674357 0.3585532767686e5 2.3674e0

18 2 0.05527574012685 0.002777821441642 0.4973391231648e5 1.9999e0

19 2 0.05475188453984 0.002835460027550 0.4270822814253e5 2.0000e0

20 2 0.05380498282430 0.002938252711491 0.4115460996020e5 2.0000e0

Numbers of the left column correspond with the number of the orbits in the figure

4 Locating generic periodic orbits: an evolutionary strategy

Symmetric periodic orbits form a very important set of invariants of the system but sometimes 
we are also interested in general periodic orbits. To reach that goal, we need a different method 
than the grid search one.



An autonomous dynamical system, ẋ = F(x), has a periodic orbit if there is a vector x0

and a scalar T such that ||x(T ; x0) − x0|| = 0. Therefore, the problem of finding periodic
orbits is equivalent to find the zeros of a nonnegative f : D ∈ R

n → R
+, or, since the

function is nonnegative function, to find the absolute minima of the function f in the domain
D. Therefore, the problem becomes an optimization problem where modern techniques, like
the evolution strategy (ES), inspired on biological processes, can be applied (note that other
optimization methods can be applied, like in Mauger et al. 2010) and Skokos et al. (2005). We
want to remark that there are more possible options as choosing the periodicity conditions or
the cost function in the literature, like the one used in variational methods where the condition
is imposed along all the orbit. For instance, in Contopoulos and Harsoula (2010) a variational
principle is proposed where an initial loop approximating a p.o. is evolved toward a true p.o.
by minimization techniques of local errors along all the loop. This technique is extremely
powerful once we have an initial approximated periodic orbit as we need the data along a
loop. Our approach is different as we try to find a large number of p.o. without any previous
information.

A classical (μ/ρ+λ)-ES (Beyer and Schwefel 2002) begins with a population of μ random
items y = (x, σ ) where x ∈ D ⊂ R

n is a point of the n-dimensional domain and σ ∈ R
m is

an m-dimensional strategy parameter vector, which controls the evolution of each point (the
most usual dimension of vector σ is either 1 or n). By evaluating the objective function f at
each given point, we may define the first generation asG0 = (xi , σ i , f (xi )); i = 1, . . . , μ,
therefore, a generation is a matrix G ∈ M(n + m + 1, μ).

Each point x may suffer a mutation. A typical mutation consists of adding a vector z to
the point we want to mutate in the form x̃ = x + z, with z = (σ1y1, . . . , σn yn), where
the parameters σk are elements (repeated or not) of the parameter σ , and yk are random
numbers obtained from a normal distribution Nk(0, 1), that is, z = (σ1y1, . . . , σn yn) ∈
(σ1N1(0, 1), . . . , σnNn(0, 1)). The mutated elements obtained from this expression belong
to an n-dimensional hypercube, but the properties of the normal distribution concentrate the
mutated elements in an n-dimensional ellipsoid centered at x with more density of points
near the center. If we use a one-dimensional vector parameter, then σk = σ , ∀k, and the
ellipsoid is just an n-dimensional sphere of radius σ .

To build a new generation, we need to create the offsprings, and there are several ways of
doing so. Essentially, an offspring is a mutation of a recombination of ρ parents (chosen at
random), with ρ a predetermined fixed number between one and n. The recombination is a
function of the ρ parents that gives a new point x∗, for instance the average. When ρ = 1,
there is only one parent, and the recombination is a clone of the parent. In our work, we shall
take ρ = 1; hence, we do not mention other strategies.

Let us assume that from a population of μ points we have obtained λ offsprings; thus, we
get a population of μ + λ points. Next, we evaluate the objective function, f , at each one of
the above μ + λ points, and we select those μ points at which the objective function takes
lower values. These last μ points, complemented with a new parameter vector σ (mutated
from the previous one), will form the next generation G1 = (xi , σ i , f (xi )); i = 1, . . . , μ.

The basic idea of the evolution strategy just described is to let the population evolve
generation after generation, choosing for the next generation Gk+1 the μ better adapted
items among the μ items of the previous population plus the λ offsprings. The process will
finish when we reach a convergence criteria or we exceed a maximum number of iterations
or CPU time.

Sometimes, the objective function has many minima in the domain, and the classical
evolution strategies tend to find a cluster of neighboring solutions around a peak, while the
remaining solutions are not detected. To circumvent this, we use a variant of an evolution



strategy named restricted evolution strategy (RES) (Im et al. 2004; Qing et al. 2005). Like
in ES algorithm, the first step of a RES algorithm is to create at random the first-generation
G0. To create the next generation, we apply a (1/1 + λ)-ES method to each point of the
previous generation, i.e., for each point, and inside its sphere of influence, we create λ clones
and mutate them. Among the λ offsprings, we pick up the best, and in this way, the sphere
of influence is moving. Sometimes, it happens that two spheres of influence have a common
part; in that case, the sphere with worse behavior is abandoned and a new point is chosen
at random; thus, we are always dealing with the same number of points. By doing so, we
avoid the concentration of solutions, while we continue searching for new ones. To avoid
the convergence of the method to previously computed solutions, a point of the population
is deleted when a previous solution is inside of its sphere of influence. This technique is
completely different than the deflection technique used in particle swarm optimization method
(Parsopoulos and Vrahatis 2004) that changes the objective function each time that a solution
is found. Note that the RES method, as other similar methods, does not guarantee to find all
the most important s.p.o.

The zeros of a function f : D ∈ R
n → R, as a matter of fact, are the absolute minima

of the nonnegative function || f || : D ∈ R
n → R

+. To that goal, we may use an evolution
strategy as above explained, to find zeros of a function, and consequently, to get initial
conditions for p.o. As it is well known, in Hamiltonian systems, p.o. usually appear grouped
in families associated with a parameter; hence, our function presents a massive number of
zeros. Therefore, we use an adaptation of the RES algorithm modified to search multiple
zeros of n-dimensional functions. With a RES, we obtain approximate values of the minima;
however, we cannot guarantee neither the exact value of it, nor a value within a certain margin
of error. As a matter of fact, we usually do not know how far is the value reached from the
exact solution, which makes it difficult to fix a stop criterion of a RES. In our case, the
minima are zeros; thus, it is sufficient to fix a simple criterion by stopping the algorithm
when we reach a point x such that ‖ f (x)‖ ≤ ε for a pre-fixed value of ε. By doing so, the
RES algorithm is improved in two aspects:

– We detect exactly the zeros with the desired precision.
– When we detect a zero, we extract it from the population and store it in a separate file 

containing the zeros; then, we add to the population another point chosen randomly and 
continue the process. With this small change, we are not restricted to obtain only μ zeros 
(the size of the population), and we may continue the process until we have the desired 
number of zeros.
To check the method, we consider the lunar problem with the Keplerian potential V=Vk .

The p.o. are characterized by the initial conditions x0, and  the period  T , such that ||
x(T ; x0) − x0|| = 0. Then, to find p.o. we need to find zeros of a function of dimension 7 (6 
variables and period). In order to find periodic orbits with repeating ground traces (as usually 
demanded by the Space Agencies), we take the period of the orbit equal to the rotation 
period of the Moon; then, we search zeros of a six-dimensional function, and consequently 
the CPU time decreases considerably. Figure 5 shows some Keplerian periodic orbits in the 
rotating frame of the Moon whose initial conditions are given in the Table 2. The analytical 
expression of the state transition matrix of the Keplerian motion, given in Goodyear (1965) 
and Shepperd (1985), evaluated at the period by the help of an algebraic manipulator, allows 
to compute analytically the monodromy matrix and consequently the expression of the two 
stability indexes k1, k2 (Bray and Goudas 1967; Brouke 1969; Skokos 2001) for any Keplerian 
orbit, giving k1 = k2 = −2 in all cases; then, these indexes are not shown in Table 2. These  
are non-planar and non-symmetric periodic orbits. We remark that fixing the period is not
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Fig. 5 Some generic Keplerian periodic orbits in the rotating frame of the Moon

necessary in the algorithm (it can be used for the variable T ); however, any condition to
reduce the number of variables of the cost function is welcome because it reduces drastically
the CPU time.

5 Locating periodic orbits with arbitrary precision: a corrector algorithm

Another situation when an extra algorithm is needed is when we are interested in initial
conditions of a system with a very high precision. This requirements may appear when we
are interested to follow orbits inside a chaotic region or for very long-time simulations or for
periodic orbits in a sticky-chaos region (Contopoulos and Harsoula 2010). Using the p.o. data



Table 2 Initial conditions of the orbits as shown in Fig. 5

Orbit x0 y0 z0

1 3.300540091234878e1 2.108099265187861e1 3.417438892149968e1

2 −1.816869796500198e1 −1.976809363691883e1 2.875553802353993e1

3 9.112731970696395e0 2.669153580213064e1 −1.140788896382731e1

4 1.213831775993075e0 4.750665453936941e1 2.759102029434862e1

5 −3.159366030357849e1 −1.724903548116221e1 −3.550521442901420e1

6 4.895980398203288e1 7.203791557902568e0 −8.168972302663168e0

7 1.068588086559215e1 −8.115378001711470e0 3.078070062321854e0

8 5.300852679036238e1 −6.392769858981069e0 −1.312512669725957e1

9 −6.903541987027292e0 −2.661201720905471e1 −8.341046175694927e0

10 −7.531902718343555e0 −8.937095166787440e0 −1.569402849285869e0

11 3.001531465714566e1 −3.633224107344410e0 2.078747939466323e1

12 3.430616652873464e1 1.279815766268968e1 4.673296782804202e0

13 1.200231885945300e1 4.714389198877880e0 2.148052669154326e1

14 −3.020928962441515e0 9.974725381119498e0 −1.345897284566149e1

15 −4.986812156309238e0 −1.008232288481315e1 −2.551161512618732e0

16 4.338127665712836e0 −1.168486935257796e0 −1.266167832140468e0

17 1.757945300435834e0 3.342701435656420e0 −3.290020081054985e0

18 −2.532302273386746e0 −3.153190677288939e0 1.525068788284411e1

19 −5.237836639006277e0 1.655467965802949e0 5.497079791245928e1

20 −1.785593134175071e0 4.067931768573944e0 1.400822997391712e0

Orbit ẋ0 ẏ0 ż0

1 3.303384050334531e−3 −1.318366571980379e−2 8.226295912745999e−4

2 4.722861864923698e−3 7.097106575800928e−3 −5.013828401409188e−3

3 −4.081184075788002e−3 −4.664028509626036e−3 −6.017132249243100e−3

4 1.120750709250688e−2 −2.184626789255233e−3 6.476713716229274e−4

5 4.585889364650893e−4 8.597499378965763e−3 2.274951473329514e−3

6 3.246730218755892e−3 −5.745978303591500e−3 4.527058855458678e−3

7 1.547171792563295e−2 −2.980216851668819e−3 1.003571217185862e−2

8 −3.987613954779899e−3 −1.064801951680535e−2 −1.964148094690957e−3

9 −4.372602207680582e−3 3.507958438683189e−3 −7.858552589295834e−3

10 1.578811571896955e−3 −7.970904891788288e−3 −1.842580501623897e−2

11 −6.314275655114385e−3 −5.967625285084249e−3 3.402474594700446e−3

12 3.676049436653138e−3 −1.330653824696322e−2 3.652448840791945e−3

13 5.372188625680729e−3 2.330577729782557e−3 −5.985084494490858e−3

14 −3.665248943736108e−3 −4.267161503278209e−3 7.677328047076539e−3

15 −1.233298112899599e−2 −2.667469749349587e−3 −1.047347922239669e−2

16 −1.911744623256852e−3 −1.847603603984891e−2 2.518716493843953e−2

17 −1.167065164527244e−2 −4.529347064052614e−3 2.440314622970590e−2

18 1.242504667321969e−3 −6.864845718686833e−3 −4.898374627181791e−3

19 6.314958288053613e−3 −1.878713357141473e−2 −4.849729414436984e−3

20 2.043718853728191e−2 6.661521171427789e−3 −1.585610998818093e−2

Numbers of the left column correspond with the number of the orbits in the figure



obtained from the previous sections, we enter in a correction algorithm to obtain the initial
conditions with the required precision level. This algorithm, presented in Abad et al. (2011),
is based simply on applying the Newton method but with the use of an arbitrary precision
ODE solver (tides is one of the few numerical ODE techniques able to solve an ODE system
with arbitrary precision) and the SVD decomposition. For completeness, we describe briefly
the algorithm used.

In order to find accurate initial conditions of a periodic orbit, that is, to find the roots of the
periodicity condition equation x(T ; x0)− x0 = 0 with x ∈ R

n , we use an iterative algorithm
based on the n-dimensional Newton method. We start from approximate initial conditions x0
of a periodic orbit with estimated period T0, x(T0; x0) ≈ x0, of a dynamical problem given
by the ordinary differential equation ẋ = f (x). Let us suppose that at the step i we have a
set of corrected initial conditions (xi , Ti ). To improve these initial conditions and, therefore,
to obtain the approximate corrections (Δxi ,ΔTi ), we expand the periodicity condition

x(Ti + ΔTi ; xi + Δxi ) = xi + Δxi , (10)

in a multivariable Taylor series up to the first order. As a result, we have the next linear system
of n equations with n + 1 unknowns

(
(M − I ) f ( yTi )

)
(

Δxi
ΔTi

)
= (

xi − x(Ti ; xi )
)
, (11)

where I ∈ R
n×n is the identity matrix, and the monodromy matrix M is the n × n matrix

∂x/∂x0, solution of the variational equations evaluated at (xi , Ti ), and yTi = x(Ti , yi ).
Note that the free software tides allows us to compute simultaneously the solution of an
ODE and its partial derivatives automatically up to any precision level. Moreover, we add
the condition

(
f T ( yi ) 0

) (
Δxi
ΔTi

)
= 0, (12)

to have a correction (Δxi ,ΔTi ) orthogonal to the vector field and to optimize each iteration
of the method.

In the lunar orbiter problem, we have the Jacobi integral J (x) = h. Thus, in order to
maintain this constant along each iteration the constrain condition has the form

(∇x J )|(Ti ;xi ) Δxi = h − hTi . (13)

We add it to the conditions (11) and (12), and therefore, the (i + 1)-step is defined by the
(n + 2) × (n + 1) linear system

⎛

⎝
M − I f ( yTi )
f T ( yi ) 0

(∇x J )|(Ti ;xi ) 0

⎞

⎠
(

Δxi
ΔTi

)
=

⎛

⎝
xi − xTi

0
h − hTi

⎞

⎠ , (14)

where h is the desired value of the Jacobi integral and xTi = x(Ti ; xi ).
Note that the linear system (14) is not squared due to the introduction of the integrals of

the system, and so, instead of solving the system we use the least-norm method. Thus, we
have chosen the singular value decomposition (SVD) method (Demmel 1997; Trefethen and
Bau 1997) since we want to develop a general algorithm that is specially well adapted for
rank-deficient problems. Therefore, this method leads to a robust solver, which allows us to
find a solution that minimizes the residual error.

As test example, we have selected a symmetric p.o. (orbit number 1 in Table 1) which
approximate initial conditions are obtained in the previous sections. In Fig. 6, we present



Fig. 6 Computational relative
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the CPU time of the correction algorithm for the p.o. just to show that with this simple
algorithm and techniques we are able to compute in a reasonable time p.o. with 1000 precision
digits. The method is quadratically convergent, and the complexity is polynomial in the
number of digits (Abad et al. 2012): the computational complexity behaves like O(d4) being
d = − log10(TOL) (see Fig. 6). To help the reader to check his/her own routines, we provide
the initial conditions of the p.o. (y = z = ẋ = ż = 0) with 100 precision digits (the CPU
time in a personal computer PC Intel quad-core i7, CPU 860, 2.80 GHz with 100 digits is
7.48 s and with 1000 digits is 5204.28 s and using multiple precision libraries MPFR and
GMP

x = −0.1999999999999966829270967239587202346539810580936781

121346904190539479349691227542887541183313694505e + 1

ẏ = 0.4132147930839713912686441213395409434513876194201050

670127812483433837733859377230179507888210977187e − 1

T = 0.3041990889564870032346101366033245391456746155483856

340773159908834963129264753081145009541100959078e + 3

6 Parallelization and application to the lunar problem

One of the main objectives of this work is to explore the use of parallelization tools to 
find both kinds of p.o., symmetric or not. Finding p.o. for the lunar problem requires a big 
computational effort, and it gives us a good example to check the advantages of parallelization 
techniques. In both cases, symmetric and non-symmetric p.o., we use the software openMP 
(Chandra et al. 2001) as the parallelization tool. Note that both methods commented in this 
paper are easily parallelizable as the work may be distributed in an homogeneous way to a 
large number of computer cores. Therefore, in this section we show the effectivity of parallel 
strategies that increase the computer performance of the proposed methods.

The 3DOF grid search algorithm studies consecutively each of the N × N squares of each 
bi-dimensional window. We use the information of the two right vertexes of each square to 
initialize the information of the contiguous right square; then, we parallelize the algorithm 
by computing each horizontal line of squares on each processor. A previous task to make 
possible an efficient parallelization of the code was a modification of the software tides (the 
core of our computing methods), in order to distribute the trajectory integrations over several 
cores without communications between them.

To parallelize the evolutionary strategy, we take advantage of the main difference between 
the classical ES and the modified RES. Instead, the classical (μ/ρ + λ)-ES, a restricted 
evolutionary strategy, is the combination of μ families described by a (1/1 + λ)-ES. We 
parallelize the code by sending each family to a different processor. With this simple scheme, 
we pay a penalty over the sequential algorithm because now it is difficult to compare two



Fig. 7 CPU time versus the
number of cores in obtaining a
window of s.p.o. until multiplicity
m with the grid search method
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Table 3 CPU time (seconds) and efficiency for each number of cores in a grid 500 × 500 and m = 6, with
Intel i7 (quad-core), Ness and HECToR computers

Intel i7 (quad-core)

Cores p = 1 2 3 4

CPU 4717 2461 1889 1420

E(p) − 0.958 0.832 0.830

Ness computer

Cores p = 1 2 4 8 12 16

CPU 9848 5264 2568 1406 859 705

E(p) − 0.935 0.958 0.875 0.954 0.873

HECToR computer

Cores p = 1 2 4 8 12 16 20 24

CPU 10153 5087 2658 1350 904 685 560 470

E(p) − 0.998 0.954 0.940 0.935 0.926 0.905 0.899

families in order to delete one of them when they approach to the same periodic orbit. But
in fact this penalty is very small compared with the benefits of parallelization.

In this work, we have used three different computers. A personal computer PC Intel quad-
core i7, CPU 860, 2.80 GHz under a 2.6.32-29-generic SMP x86 64 GNU/Linux system. The
Ness computer, that is a high-performance computing resource of The Edinburgh Parallel
Computing Centre (EPCC), has sixteen processors of 2.6 GHz AMD Opteron (AMD64e)
with 2 GB of memory, and the supercomputer HECToR (High-End Computing Terascale
Resources) that is located at the University of Edinburgh in Scotland. HECToR’s hardware
configuration (2011, phase 2b (XE6)) contains a large number of compute nodes, each one
with two 12-core AMD Opteron 2.1 GHz Magny Cours processors. Each 12-core processor
shares 16Gb of memory, giving a system total of 59.4 Tb. We just use one of these compute
nodes.

One standard metric to measure the performance of a parallel algorithm is just the CPU
time. Other standard metric to measure the performance of a parallel algorithm is the Effi-
ciency, E(p), defined as

E(p) = T (1)

p · T (p)
,



Table 4 Number of orbits computed with different multiplicities that span from one to twelve, for grids of
500 × 500 and 1000 × 1000, respectively

Grid 500 × 500

Multiplicity m = 1 2 3 4 5 6

No. of orbits 10 1070 3368 7878 8243 10927

Multiplicity 7 8 9 10 11 12 TOTAL

No. of orbits 13447 15295 16405 15390 15062 13901 120996

Grid 1000 × 1000

Multiplicity m = 1 2 3 4 5 6

No. of orbits 22 2092 6322 18666 21820 31790

Multiplicity 7 8 9 10 11 12 TOTAL

No. of orbits 40190 50870 55108 53723 56256 51355 388214

Table 5 CPU time (seconds) and efficiency for each number of cores of the evolution strategy algorithm for
computing 1000 p.o., with Intel i7 (quad-core), Ness and HECToR computers

Intel i7 (quad-core)

Cores p = 1 2 3 4

CPU 6543 2702 2444 1516

E(p) − 1.2 0.892 1.078

Ness computer

Cores p = 1 4 8 16

CPU 9693 1767 1335 797

E(p) − 1.37 0.907 0.760

HECToR computer

Cores p = 1 2 4 8 12 16 20 24

CPU 10215 5422 2925 1225 765 651 477 429

E(p) − 0.942 0.873 1.042 1.112 0.981 1.071 0.992

where T (1) is the CPU time of the sequential algorithm, and T ( p) is the CPU time of the 
parallel algorithm executed on p processors.

Figure 7 shows the CPU time, in seconds, versus the number of cores when we use the 
grid search method to compute a particular window (x, z), J = 0.0026 searching s.p.o. until 
multiplicity m (m = 6, 12), with a 500 × 500 or 1000 × 1000 grid. Tables 3 and 4 show the 
results of different tests for this problem. Table 3 contains the CPU time and efficiency for 
different cases, and Table 4 shows the number of s.p.o. of a given multiplicity found for each 
grid. Note that the total number of s.p.o. we have been able to compute is very large, which 
will permit to perform detailed analysis of the problems. In the benchmarking tests, we have 
obtained very good results and a relative efficiency around the 90 % with 24 cores at HECToR 
computer. This means that this algorithm is perfectly adapted to massive parallel computing 
because it distributes the trajectory integration over several cores without communications 
between them, and thus, the expected efficiency of the parallel methods is close to 1.



Table 6 Averaged efficiency of
the evolution strategy to compute
100 p.o. 50 times in an Intel i7
(quad-core)

Cores p = 1 2 3 4

CPU 561.98 302.13 206.67 146.93

E(p) − 0.930 0.906 0.956

Finally, in Table 5 we show the CPU time and efficiency of the parallelization of the
evolution strategy algorithm to compute p.o. in the lunar problem. The results correspond to
run the algorithm until we find 1000 p.o. Note that in the efficiency results we may have values
greater than one, because the algorithm has a random part and the CPU time changes on each
application of the algorithm. In order to obtain a more realistic result about efficiency, we run
the algorithm 50 times to find, each time, 100 p.o. We summarize the results in Table 6, where
the time represents the averaged CPU time of each test, and E(p) is the averaged efficiency.
Note that now, as the time for one core is an averaged time, we obtain a more realistic table
with efficiency values over 90 %.

7 Conclusions

In this paper, we study the problem of locating families of symmetric periodic orbits by
means of the grid search method and generic periodic orbits (symmetric or not) using an
evolutionary strategy. Both methods have been parallelized, and in spite of their simpleness,
they permit to locate a very large number of initial conditions of periodic orbits, and therefore,
they are quite useful in the global study of a Hamiltonian system.

To show the applicability of the methods, we have applied them to find periodic orbits
in a 3-DOF system, the motion of a lunar problem. These orbits may serve as preliminary
orbits for a detailed study in a Space Agency. The 3DOF grid search method is used to find
symmetric periodic orbits. By using this method, we obtain several families of symmetric
periodic orbits of the lunar problem. A modification of an evolutionary strategy method has
been used to find non-symmetric periodic orbits in a simplified version of the lunar orbiter
problem. The method has been applied to obtain 1000 general periodic orbits.

A parallel version of both algorithms has been developed and checked. The results of
efficiency of the parallel algorithms prove that the methods admit a simple and good par-
allelization strategy, that is very useful when we try to find a massive number of periodic
orbits.
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