

1 **Right parietal cortex and calculation processing. Intra-operative functional mapping of**
2 **multiplication and addition.**

3 Alessandro Della Puppa¹ MD, Serena De Pellegrin² ST, Elena d'Avella² MD, Giorgio Gioffrè² MD,
4 Marina Munari³ MD, Marina Saladini² MD, Elena Salillas⁴ PhD, Renato Scienza¹ MD, Carlo
5 Semenza² MD

6

7 ¹ Department of Neurosurgery, University Hospital of Padova, Italy

8 ² Department of Neuroscience, University Hospital of Padova, Italy

9 ³ Department of Anesthesiology and Intensive Care, University Hospital of Padova, Italy

10 ⁴ Basque Center on Cognition Brain and Language, Donostia, Spain

11

12

13

14 **Corresponding Author Information:**

15 Alessandro Della Puppa, M.D.

16 Department of Neurosurgery

17 University Hospital of Padova

18 Via Giustiniani 2, Azienda Ospedaliera di Padova, 35128, Padova, ITALY

19 Tel: +39.049.8213641 Fax. +39.0498213672

20 e.mail: alessandro.dellapuppa@sanita.padova.it

21

22

23

24

25 **| Key words:** awake surgery; right parietal lobe; electro-stimulation; functional mapping; addition;
26 multiplication;

27

28 *Running Title: Functional Mapping of Right Parietal Cortex*

29

30

31 The authors report **no conflict of interests** concerning the materials or methods used in this study
32 or the findings specified in this paper

33 No **funding was** received for this study

34 We certify that the contents are **original work** and are not under review at any other publication.

1

2

3 **Abstract**

4

5 **Object:** The role of parietal areas in number processing is well known. The significance of intra-
6 operative functional mapping of these areas has been only partially explored, however, and only a
7 few, discordant, data are available in surgical literature with regards to the right parietal lobe. The
8 purpose of this study was to evaluate the clinical impact of simple calculation in cortical electro-
9 stimulation of right-handed patients affected by a right parietal brain tumor.

10 **Methods:** A calculation mapping in awake surgery was performed in three right-handed patients
11 affected by high grade gliomas located in the right parietal lobe. Preoperatively, none of the patients
12 presented with calculation deficits. In all three cases, after sensory-motor and language mapping,
13 cortical and intra-parietal sulcus areas involved in single digit multiplications and additions were
14 mapped using bipolar electro-stimulation.

15 **Results:** In all patients different sites of the right parietal cortex, mainly in the inferior lobule, were
16 detected as being specifically related to calculation (multiplication or addition). In two patients the
17 Intra-Parietal Sulcus was functionally specific for multiplication. No functional sites for language
18 were detected. Tumor resectionAll sites functional for calculation were spared during tumor
19 resection that was complete in all cases, without postoperative neurological deficits.

Formatted: Font color: Custom
Color(RGB(35,31,32))

20 **Conclusions:** Our findings provide intra-operative data in support of an anatomo-functional
21 organization for multiplication and addition within the right parietal area. Furthermore, we show the
22 potential clinical relevance of intra-operative mapping of calculation in patients undergoing surgery

23 in the right parietal area. Further and larger studies are needed in order to confirm these our data and
24 to assess whether mapped areas are effectively essential for function.

Formatted: English (U.S.)

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

25

26

1

2

3 **Introduction**

4 Calculation is based on distinct neural networks, that can be reproducibly identified in different
5 subjects.^{2,3,24} A pivotal role is played by the parietal lobe. In the past two decades neuroimaging and
6 neuropsychological evidence was collected about the innermost mechanisms of calculation, and
7 three main parietal circuits⁴ have been proposed as the basis of calculation processing. According to
8 this model, intra-parietal areas are bilaterally associated with core quantity organization, the left
9 angular gyrus is associated with verbal processing of numbers, and the posterior superior parietal
10 system is associated with spatial and non spatial attention. In particular, a crucial role in quantity
11 processing has been proposed for the Horizontal segment of the Intra-Parietal Sulcus (HIPS). With
12 regard to electro-stimulation mapping of calculation, some experiences have been reported on left
13 parietal lobe mapping,^{8,13,14,15,21,23} while data on right parietal mapping are anecdotal and
14 discordant.^{20,25} This may be due to the much larger attention paid so far to language mapping.
15 Impairment of mathematical skills can be cause of serious personal and social difficulties, however.
16 For this reason, the ability to perform calculation tasks ought to be regarded as a fundamental
17 function. The parietal lobe is not only a frequent location of different neurosurgical conditions
18 (gliomas, AVMs, etc) but it is also a key area for the surgical approach of deeply seated lesions
19 such as intra- or peri-ventricular lesions.^{10,12,16} The potential clinical repercussions of new data
20 providing evidence of the right parietal lobe as an eloquent area for calculation are therefore
21 obvious in left dominant patients, in whom the right, non-dominant, side is generally considered a
22 reasonably safe surgical approach.

23 In this report, we present the results of intra-operative mapping of right parietal cortex areas
24 involved in calculation processes in three patients affected by brain tumor located into the parietal
25 lobe. Our main aim was to evaluate the reliability of the technique in order to avoid permanent
26 postoperative calculation impairment; secondly, to investigate the different involvement in

1 calculation processes of right cortical and intra-parietal sulcus areas. Cortical mapping was focused
2 on multiplication and addition. Lastly, our findings were assessed against the relevant literature.

3

4 **Methods**

5 *Patient enrollment*

6 Between December 2011 and April 2012, functional mapping for numerical processing tasks was
7 offered to patients affected by brain tumor located in the right parietal area. Inclusion criteria were:
8 tumor located into the parietal lobe, right-handedness assessment through the Italian version of the
9 Edinburgh Handedness Inventory¹⁹ KPS of 100. Exclusion criteria were: preoperative impairment
10 of numeral processing performance, preoperative motor impairment. Informed consent was
11 obtained from all patients and their families.

12 | ▲-----

13 *Preoperative and postoperative assessment*

14 Preoperative clinical examination was normal in all cases. A neuropsychological assessment did not
15 show linguistic impairments in spontaneous speech, word generation, repetition, picture naming,
16 reading or writing. Linguistic tests included the following: the fluency task from the Aachener
17 Aphasia Test¹¹ consisting of a semantic test and a phonological test; the picture-naming test DO-80,
18 which consists of 80 black and white pictures selected according to variables such as frequency,
19 familiarity, age of acquisition, and level of education.¹⁷ Visual-spatial functions, executive
20 functions, memory, praxis as well as general cognitive functions, as assessed by specific tests¹⁸
21 were intact. Mood status was stable and no signs of depression or pathological anxiety were
22 detected, as evaluated with the EORTC QLQ-C30⁹ and HADS²⁶ tests respectively.

Formatted: Font: Italic, Font color: Auto, English (U.K.)

Formatted: Heading 1, Left, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

23 The assessment
24 of calculation skills according to the methods indicated by Delazer et al.⁵ showed a normal
25 performance. Patients were specifically able to flawlessly readin detail, the Battery of Number
26 Processing and write Arabic numerals, to correctly perform Calculation (NPC)⁵ included 35 tasks
assessing different counting ability, such number comparisoncomprehension, numerical

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

1 transcoding, calculation, arithmetic reasoning and to carry out conceptual knowledge. The
2 calculation abilities included tasks such as simple fact retrieval, rule based processing, mental and
3 complex writer calculation in all four operations. Over the 2 days prior to surgery, patients were
4 informed in detail about the intra-operative monitoring procedure of stimulation, were introduced to
5 the stimulus devices and trained to perform the naming and calculating tasks.

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Custom
Color(RGB(35,31,32)), English (U.S.)

7 *Intra-Operative Calculation tasks*

8 A speech therapist was always present in the operating room in order to administer the tests and to
9 detect the mistakes. Language and sensory-motor functions were mapped first. Marked paper tags
10 were placed on functional sites on the cortical surface.

11 For the language mapping, the patients were asked to perform counting (repeatedly, from 1
12 to 10) and picture naming (in which the patient was told to precede naming by reading a short
13 sentence “this is a...” in order to check that there were no seizures). Each individual stimulation
14 was separated by at least 1 picture administered without stimulation, and no site was stimulated
15 twice in succession, to avoid seizures.

16 Numerical stimuli were presented visually, in Arabic digits, using a computer system with a
17 display screen. Multiplication and addition were studied. Two different types of calculation tasks
18 were administered to the patient: single-digit addition with a single operand (for example 4+7; 8+6;
19 5+7....) and single-digit multiplication with a single operand (for example 8x4; 5x6; 9x7....). Each
20 operation had to be solved within the four seconds time of the stimulation and was presented in the
21 middle of the screen without the sign “=”; the patient’s response was oral. The patient was unaware
22 of when electrical stimulation was performed. The administration procedure was as follows: a block
23 of 14 additions was presented to the patient, in random order, using the electro-stimulation in an
24 alternate fashion, and repeated three times. A total of 21 trials with and 21 trials without stimulation
25 were administered. Afterwards, three blocks of 15 multiplications was administered with the same
26 procedure, for a total of 22 tests with and 23 without stimulation.

1

2 *Surgical Strategy*

Formatted: Justified

3 The surgical strategy was preoperatively planned on the basis of T1-weighted MRI images after
4 gadolinium administration. Tumor removal was carried out using these functional landmarks as
5 boundaries of the resection. A tailored craniotomy was carried out on the basis of neuro-navigation
6 data through a linear incision. As a consequence of this, the parietal cortex was never completely
7 exposed. Conversely, in all cases, sensory-motor areas were partially exposed to determine the
8 intensity of stimulation. Since located in the right side, we did not have the usual chance to assess
9 threshold of stimulation on the language function through the speech arrest. Even though the fact
10 that motor threshold is widely variable depending on the location of stimulation is undeniable, the
11 stimulation threshold we decided to choose was the minimal intensity able to evoke a sensory-
12 motor response (i.e. arm movement or paresthesia). The occurrence of EEG changes (known as
13 "after-discharges") that might have contributed to disruption of mathematical function was
14 continuously monitored.

Formatted: Font color: Red

15 The cortical incision procedure was customized according to neuro-navigation and cortical
16 mapping data.

Formatted: Right: 0.02", Adjust space
between Latin and Asian text, Adjust space
between Asian text and numbers

17

18 *Intraoperative mapping*

19 The study entailed continuous electro-encephalography, electro-corticography and multi-channel
20 electro-myography recordings. ("Eclipse 16 channels", Axon, U.S.A.). Cortical and sub-cortical
21 mapping was performed by means of a bipolar stimulator. (Spes Medica, Italy). A multi-pulse
22 stimulation technique was adopted. The operating surgeon performed both cortical anatomical
23 mapping (sulci/gyri identification) and tumour site assessment with the aid of MRI neuro-
24 navigation. Lettered tags were positioned on the cortical surface to draw the sub-cortical location of
25 tumor. Then, a functional cortical map was obtained using the method described by Duffau et al.^{6,7}

Formatted: Font color: Red

26 A 5 mm-spaced tips bipolar probe continuously delivering a biphasic low intensity, bifasic current

Formatted: Superscript

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

1 was applied on the cortex for a period with trains of four seconds (pulse 120 stimuli (Pulse frequency
2 of 60 Hz, single pulse phase duration of 0.3 ms), 500 ms) was applied to the cortex.” The current
3 intensity was determined with progressive increases by 0.5-mA (from a baseline of 1 mA) until a
4 sensory-motor response was obtained. A sensory-motor mapping was performed and numbered tags
5 were positioned on the cortical surface. In a second stage patients were asked to perform counting
6 and picture naming. In this case also, all functional sites were marked with numbered tags. In a
7 third stage, calculation task tests were administered. All sites functional for calculation were
8 marked with tags (“+” for addition and “x” for multiplication). Each cortical site (5 × 5 mm) of the
9 whole cortex exposed by the bone flap was tested 3 times. A site was marked as functional for
10 calculation only if 3 repeat stimulations provoked disruption of the tested function. Both the
11 superior and the inferior parietal gyri were stimulated in all three patients. Then, Intra-Parietal
12 Sulcus (IPS) was mapped in its part exposed on the basis of neuro-navigation data, as needed to
13 approach the tumour (Figure 1). In all cases the HIPS was exposed and stimulated.

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

15 *Postoperative Assessment*

16 The extent of resection was postoperatively evaluated with MRI within 72 hours from the surgical
17 procedure. Neurological and specific neuropsychological assessment was performed at the 1st, 7th
18 and 30th day after surgery.

19

20

21 **Results**

22 Three patients (2 females, 1 male) underwent awake surgery with cortical stimulation for number
23 processing (Table 1). Electro-stimulation mapping was straightforward and well tolerated in all
24 patients. No focal seizures occurred. The maximal current intensity of electro-stimulation ranged
25 from 2 to 3 mA. This was the actual peak to peak level of delivered current intensity, which was
26 intra-operatively used in the presented setting.

Formatted: Font color: Red

Formatted: Font color: Red, English (U.K.)

1 |

2 |

2 *Functional mapping*

3 All three patients were mapped during the cortical stimulation for sensory-motor function first, then

4 for language, and finally for calculation tasks. Mapping data are summarized in (Table 2). In all

5 three patients, a total of 12 different specific sensory-motor sites were detected, whilst no functional

6 sites for language were identified. A total of nine sites functional for calculation were detected:

7 eight mapped for multiplication and one for addition. The results are summarized in Table 2 .

8 Overall, numerical processing interferences were found in all 4 parietal regions explored by electro-

9 stimulation: 3 interferences (3 multiplication) in the angular gyrus, 3 interferences (2 multiplication

10 and 1 addition) in the supramarginal gyrus, 2 interferences (2 multiplication) in the horizontal

11 segment of the IPS, 1 interference (1 multiplication) in the Superior lobule. All sites functional for

12 calculation were spared during tumor resection. Numerical processing stimulation was not used in

13 the subcorticalsub-cortical white matter. No intra-operative seizures occurred, and no after-

14 discharges were detected.

15 |

16 |

17 *Postoperative Course*

18 The postoperative MRI showed complete tumor removal in all 3 patients. Discharge from hospital

19 was within 7 days from surgery in all cases. Neurological and specific neuropsychological

20 assessments at the 1st, 7th, and 30th day after surgery were normal. In particular, all 3 patients had

21 no postoperative numerical processing difficulties. The histo-pathological report was astrocytoma

22 grade IV (sec. WHO) in all cases. All three patients underwent radiotherapy and chemotherapy with

23 temozolamide afterwards.

24

25

26 **DISCUSSION**

1 Our findings provide new data in support of the role played by the parietal right cortex in
2 calculation processing and of the usefulness of functional mapping in this area. Our main intra-
3 operative results were three.

4 First, multiple sites over the surface of the right parietal cortex were detected to be
5 functional for multiplication. The Inferior Parietal Lobule was most frequently involved. So far, no
6 intra-operative data on the involvement of right cortex in multiplication have been reported in
7 literature. Two reports have been published on this specific issue.^{20,25} In one case²⁵ the authors
8 reported their experience on a patient affected by a right temporal glioma. However, multiplication
9 was not impaired when the right parietal cortex was stimulated. In the other case²⁰ the authors
10 described a series of five patients affected by parietal astrocytoma, four with a left and one with a
11 right-sided tumour. In left parietal tumour cases, three out of four patients presented functional sites
12 for multiplication. Conversely, in the patient with a right parietal tumour, multiplication was
13 investigated but no functional sites were detected.

14 Second, our findings may prove the involvement in multiplication of the right IPs. Indeed,
15 multiplication was impaired in 2 cases out of 3 when the bottom of the HIPS was stimulated.
16 However, it must be borne in mind that the Intra-Parietal sulcus was never entirely stimulated and
17 mapped intra-operatively because of its partial exposure on the basis of planned approach guided by
18 neuro-navigation data. In both of the two cases in which multiplication was impaired, the electro-
19 stimulation was carried out on the bottom of the HIPS. The Intra-Parietal Sulcus has been
20 previously reported as important in number processing and calculation.^{3,4} However, only one report
21 on functional mapping of such sulcus has been published, focused on the left hemisphere.²⁰ In that
22 case multiplication was impaired with electro-stimulation. Intra-operative data on the right IPS have
23 not been reported in literature so far, to the best of our knowledge.

24 Third, in our series one patient presented a site functional for addition in the angular gyrus
25 of the inferior parietal lobule (IFL). To our knowledge, addition was never explored before by intra-

1 operative mapping of the right parietal cortex. This intra-operative finding would confirm recent
2 data acquired in neuropsychological settings or with TMS.^{1,22}

3 In the right parietal lobe, no cortical or sub-cortical areas were found to be functional for
4 language. These data need to be investigated more in depth. However, they might be useful insofar
5 they suggest to prefer mapping of other functions when awake surgery in right parietal areas of left
6 dominant patients must be performed.

7 Two final considerations emerge by the present results. First, intra-operative data confirmed both
8 preoperative neuropsychological, radiological and TMS data previously reported in literature. In
9 particular, the right parietal cortex is involved in calculation, mainly in the Inferior Lobule and
10 Intra-Parietal Sulcus areas. Second, we reckon that our findings cannot change the current
11 neurosurgical practice. Indeed, the small number of patients and the lack of sub-cortical mapping
12 data are obvious limits of the study. In addition, the present study does not clarify whether
13 mapping findings could predict mathematical processing impairment when functional areas are
14 removed or otherwise damaged. However, we documented how parietal areas can be highly
15 eloquent for calculation and how they may be easily mapped and thus spared in awake patient.

16

17 **Illustrations**

18 Figure 1: Patient#1-Pre-operative (Panel A) and post-operative (Panel B) sagittal GdT1-weighted
19 MRI (a and b) scan.

20 Panel C: Intra-operative images (image taken during functional mapping of the right parietal area.
21 Lettered tags were positioned over the tumor, identified with MRI neuron-navigation; Tag 1=
22 functional site for hand motor response (subsequently driving the intensity threshold of stimulation -
23 3mA); X Tags= functional sites for multiplication (on the superior, inferior and intraparietal sulcus).

Formatted: Indent: First line: 0", Don't adjust
space between Latin and Asian text, Don't
adjust space between Asian text and numbers

Formatted: Font color: Red
Formatted: Font color: Red
Formatted: Font color: Red
Formatted: Font color: Red
Formatted: Font color: Red

1 Panel D: Final view. Tags 2 and 4. (See text for details) lie over the motor area in front of
2 corticectomy chosen for tumor removal

Formatted: Font color: Red

Formatted: Font color: Red

3 **Table 1:** Clinical characteristics and functional mapping data of patients (R=Right; L=Left;
4 HGG:High Grade Glioma; Multipl = Multiplication; Add = Addition). See text for details.

5 **Table 2:** Localization of numerical processing sites (HIPS= Horizontal Intra-Parietal Sulcus; M=
6 Multiplication; A= Addition). See text for details.

7
8
9

10 We state that no ethics committee approval was required for our study, since it has been a purely
11 observational work concerning an intraoperative technique which is routinely used in our
12 Institution. Furthermore, informed consent was obtained in all cases from patients, according to the
13 Hospital ethics guidelines.

14

15 All authors were equally involved in:
16 Conception and design, acquisition of data or analysis and interpretation of data.
17 Drafting the article or revising it critically for important intellectual content.
18 Final approval of the version published of the paper.

19
20

21 **References**

22

23 1. Benn Y, Zheng Y, Wilkinson ID, Siegal M, Varley R.: Language in calculation: a core
24 mechanism? *Neuropsychologia*. **50** (1): 1-10. Epub 2011 Oct 6, 2012 Jan
25 2. Butterworth, B.: **The Mathematical Brain**. London : Macmillan. 1999

1 3. Dehaene S., Cohen L., Changeux J.P.: Neuronal network models of acalculia and prefrontal
2 deficits, in R. W. Parks and D. S. Levine (ed): **Fundamentals of neural network modeling**
3 **for neuropsychology**. MIT Press, 1998, pp 233-256

4 4. Dehaene S., Piazza M., Pinel P., Laurent Cohen.: Three parietal circuits for number
5 processing. **Cognitive Neuropsychology**, **20**: 487–506, 2003

6 5. Delazer M, Girelli L, Granà A, Domahs F.: Number processing and calculation-normative
7 data from healthy adults. **Clinical Neuropsychology** **17**:331-350, 2003

8 6. Duffau H, Capelle L, Sichez J, Faillot T, Abdennour L, Law Koune JD, et al. :
9 Intraoperative direct electrical stimulations of the central nervous system : the Salpêtrière
10 experience with 60 patients. **Acta Neurochirurg (Wien)** **141**:1157–67, 1999

11 7. Duffau H, Sichez JP, Lehéricy S.: Intraoperative unmasking of brain redundant motor sites
12 during resection of a precentral angioma. Evidence using direct cortical stimulations. **Ann**
13 **Neurol** **47**:132–35, 2000

14 8. Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L.: New
15 insights into the anatomo-functional connectivity of the semantic system: a study using
16 cortico-subcortical electrostimulations. **Brain**. **128**(Pt 4):797-810. Epub 2005 Feb 10, 2005

17 Apr

18 9. Fayers P, Aaronson NK, Bjordal K, Curran D, Groenvold M, on behalf of the EORTC
19 Quality of Life Group, **QLQ EORTC-C30, The EORTC QLQ-C30 Scoring Manual (3rd**
20 **ed.)**. Brussels: European Organisation for Research and Treatment of Cancer. 2001

21 10. Konovalov AN, Kadyrov ShU.: [Surgical approaches to thalamic tumors]. **Zh Vopr**
22 **Neirokhir Im N N Burdenko** **75**(1):4-11, discussion 11, 2011

23 11. Luzzatti C, Willmes K, De Blaser R . **Aachener Aphasie test (AAT)**, italian version ,
24 Firenze, Organizzazioni Speciali.1994

1 12. Lyngdoh BT, Giri PJ, Behari S, Banerji D, Chhabra DK, Jain VK.: Intraventricular
2 menigiomas: a surgical challenge. **J Clin Neurosci.** **14**(5):442-8. Epub 2007 Mar 12, 2007
3 May

4 13. Maldonado IL, Moritz-Gasser S, Duffau H.: Does the left superior longitudinal fascicle
5 subserve language semantics? A brain electrostimulation study. **Brain Struct
6 Funct.** **216**(3):263-74. Epub 2011 Mar 16, 2011 Sep

7 14. Maldonado IL, Moritz-Gasser S, de Champfleur NM, Bertram L, Moulinié G, Duffau H.:
8 Surgery for gliomas involving the left inferior parietal lobule: new insights into the
9 functional anatomy provided by stimulation mapping in awake patients. **J Neurosurg.**
10 **115**(4):770-9. Epub 2011 Jun 24, 2011 Oct

11 15. Mandonnet E, Nouet A, Gatignol P, Capelle L, Duffau H.: Does the left inferior longitudinal
12 fasciculus play a role in language? A brain stimulation study. **Brain.** **130**(Pt 3):623-9. Epub
13 2007 Jan 29, 2007 Mar

14 16. Menon G, Nair S, Sudhir J, Rao R, Easwer HV, Krishnakumar K.: Meningiomas of the
15 lateral ventricle - a report of 15 cases. **Br J Neurosurg.** **23**(3):297-303, 2009 Jun

16 17. Metz-Lutz M, Kremin H, Deloche G. : Standardisation d'un test de dénomination orale.
17 Contrôle des effets de l'âge, du sexe et du niveau de scolarité chez les sujets adultes nor
18 maux. **Rev Neuropsychol** **1**:73-95, 1991

19 18. Mondini S, Mapelli D, Vestri A. **Esame Neuropsicologico Breve (ENB)**. Raffaello Cortina
20 Editore.2003

21 19. Olfield RC: The assessment and analysis of handedness: the Edinburgh inventory.
22 **Neuropsychologia**, **9**: 97-113, 1971

23 20. Pu S, Li YN, Wu CX, Wang YZ, Zhou XL, Jiang T. Cortical areas involved in numerical
24 processing: an intraoperative electrostimulation study. **Stereotact Funct Neurosurg.**
25 **89**(1):42-7. Epub 2010 Dec 23, 2011 Feb

1 21. Roux FE, Boukhatem L, Draper L, Sacko O, Démonet JF.: Cortical calculation localization
2 using electrostimulation. **J Neurosurg.** **110**(6):1291-9, 2009 Jun

3 22. Salillas E, Semenza C, Basso D, Vecchi T, Siegal M: Single pulse TMS induced disruption
4 to right and left parietal cortex on addiction and multiplication. **NeuroImage** **59**, 3159-
5 3165, 2012

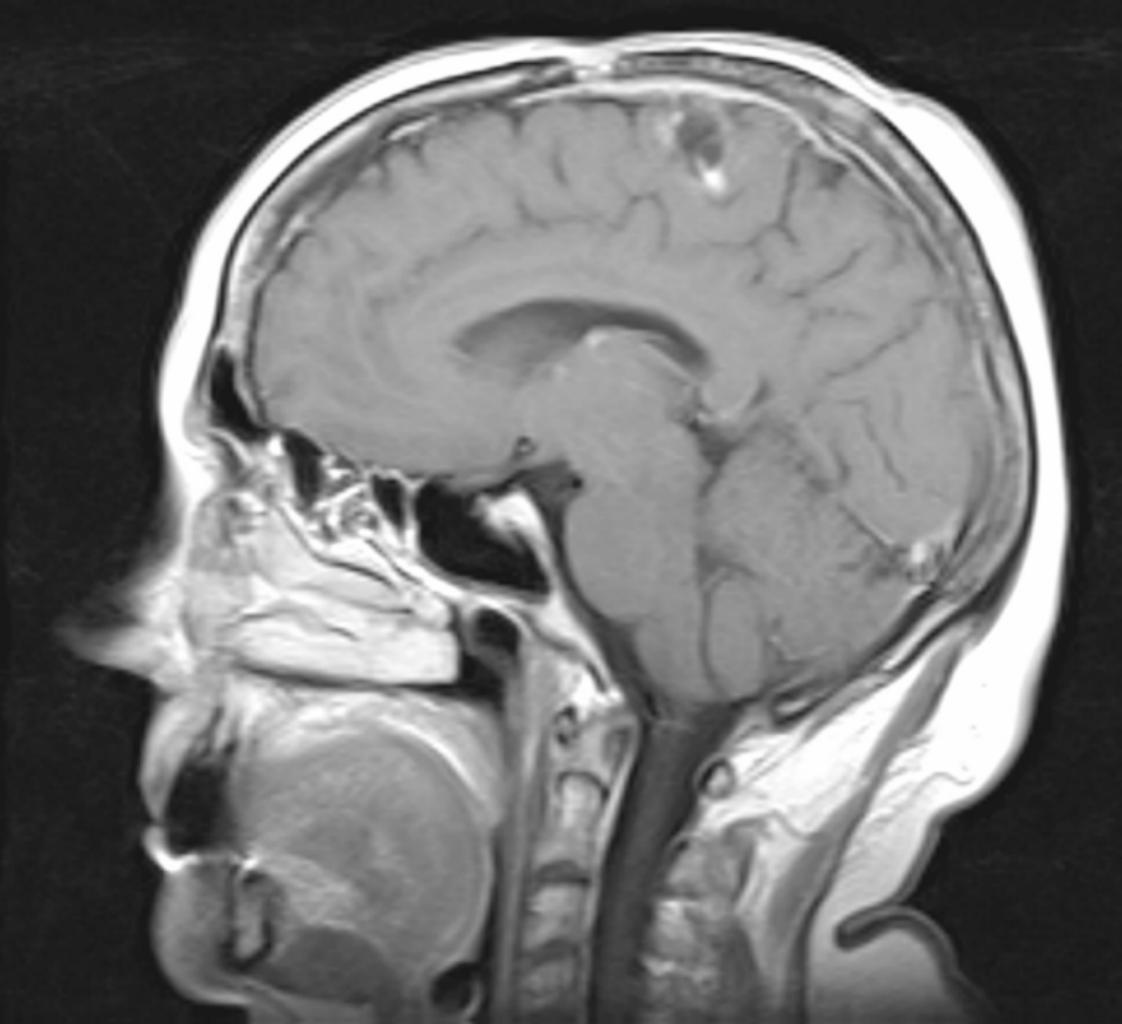
6 23. Sallard E, Duffau H, Bonnetblanc F.: Ultra-fast recovery from right neglect after 'awake
7 surgery' for slow-growing tumor invading the left parietal area. **Neurocase** **18**(1):80-90.
8 Epub 2011 Jul 13, 2012 Feb

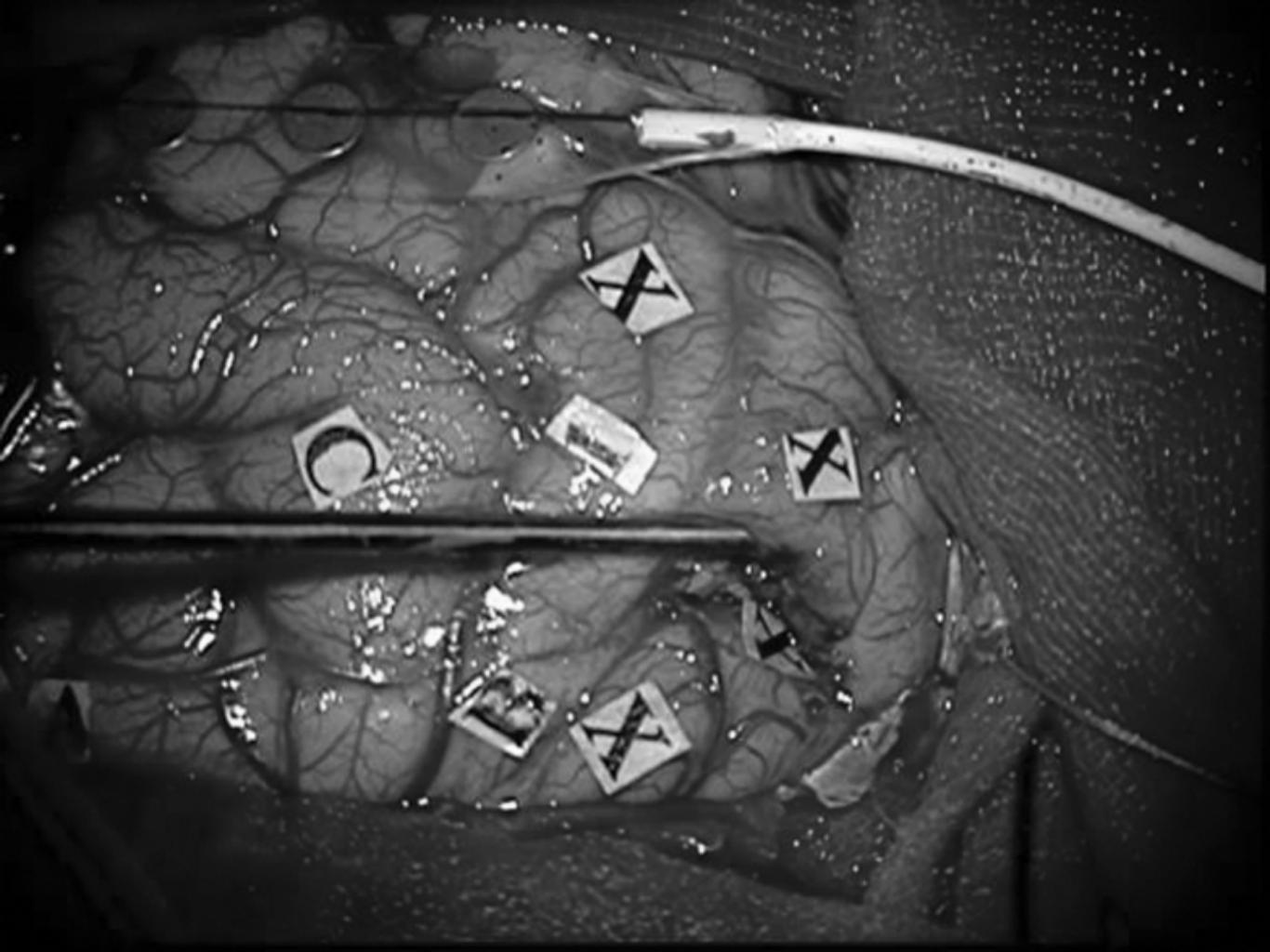
9 24. Semenza C.: Number processing, in B Stemmer & H Whitaker (Eds) **Handbook of the**
10 **Neuroscience of Language**. Elsevier, Oxford, UK. 2008, pp 219-227

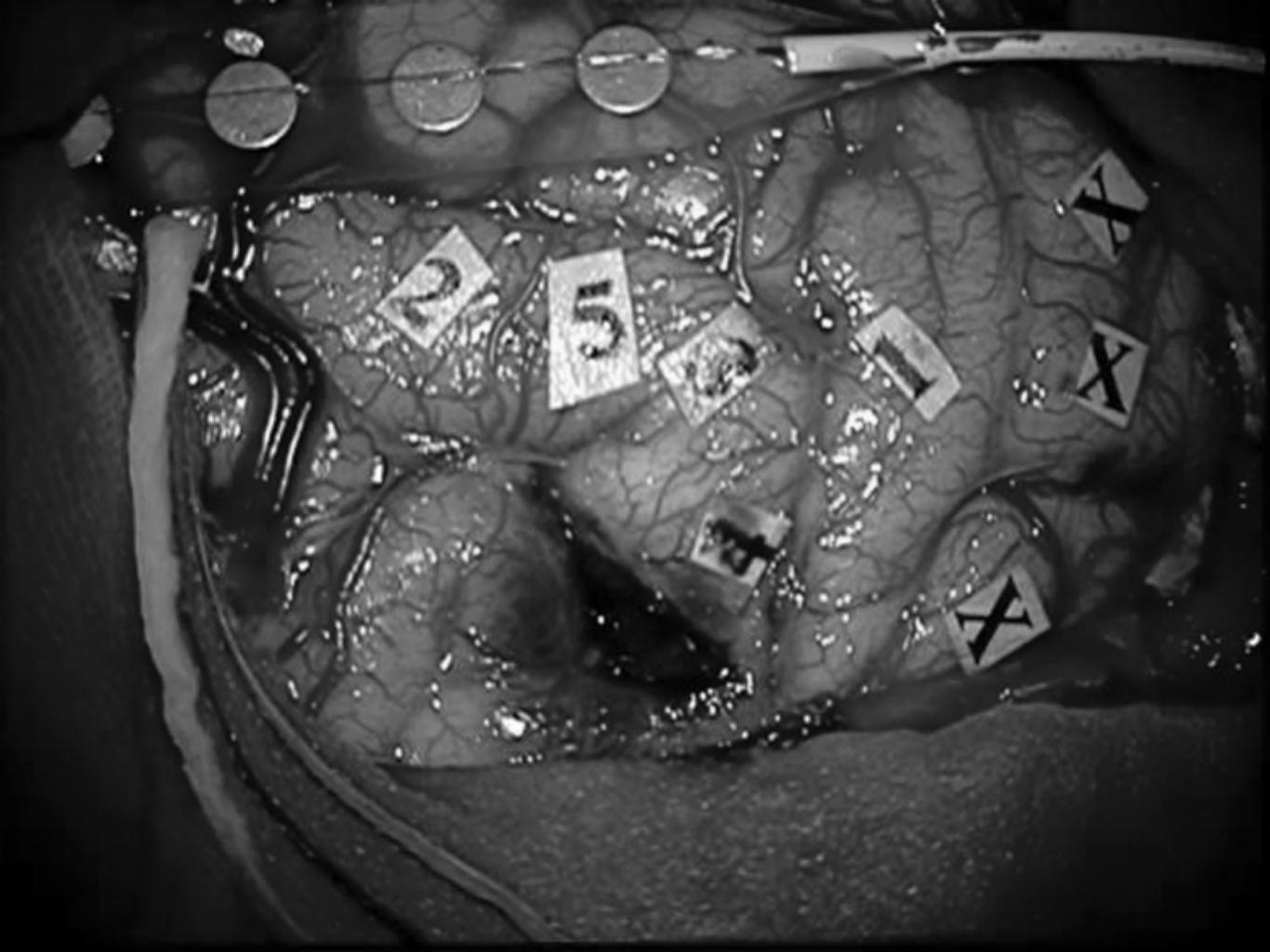
11 25. Yu X, Chen C, Pu S, Wu C, Li Y, Jiang T, Zhou X. Dissociation of subtraction and
12 multiplication in the right parietal cortex: evidence from intraoperative cortical
13 electrostimulation. **Neuropsychologia**. **49**(10):2889-95. Epub 2011 Jun 28, 2011 Aug

14 26. Zigmond AS, Snaith RP. Questionary HADS, The Hospital Anxiety and Depression Scale.
15 **Acta Psychiatr Scand.** **67**:361-70, 1983

16


17


18 .


19

20

Patient#	Age/sex	R/L	Site	Pathology	Calculation		Language	Sensimotor
					Multipl	Add		
1	62/F	R	Parietal	HGG	4	0	0	5
2	68/F	R	Parietal	HGG	2	1	0	4
3	50/M	R	Parietal	HGG	2	0	0	3
Total					8	1	0	12

Patient #	Angular Gyrus	Supramarginal Gyrus	HIPS	Superior Lobule
1	1M	1M	1M	1M
2	1M	1A	1M	No
3	1M	1M	No	No
Total	3 (3M)	3 (2M; 1A)	2 (2M)	1 (M)