000149792 001__ 149792
000149792 005__ 20251017144638.0
000149792 0247_ $$2doi$$a10.1016/j.jnt.2013.04.018
000149792 0248_ $$2sideral$$a142198
000149792 037__ $$aART-2013-142198
000149792 041__ $$aeng
000149792 100__ $$0(orcid)0000-0003-3673-3620$$ade Vera-Piquero, Carlos
000149792 245__ $$aThe Shimura covering of a Shimura curve: automorphisms and étale subcoverings
000149792 260__ $$c2013
000149792 5060_ $$aAccess copy available to the general public$$fUnrestricted
000149792 5203_ $$aLet X be the Shimura curve associated with an indefinite rational quaternion algebra of discriminant D, and let p be a prime dividing D. In their investigations on the arithmetic of X, Jordan and Skorobogatov introduced a covering Xp of X whose maximal étale quotient is referred to as the Shimura covering of X at p. The goal of this note is to describe the group of modular automorphisms of the curve Xp and its quotients. As an application, we construct cyclic étale Galois coverings of Atkin-Lehner quotients of X.
000149792 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000149792 590__ $$a0.524$$b2013
000149792 591__ $$aMATHEMATICS$$b176 / 301 = 0.585$$c2013$$dQ3$$eT2
000149792 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000149792 773__ $$g133, 10 (2013), 3500-3516$$pJ. number theory$$tJOURNAL OF NUMBER THEORY$$x0022-314X
000149792 8564_ $$s407411$$uhttps://zaguan.unizar.es/record/149792/files/texto_completo.pdf$$yPostprint
000149792 8564_ $$s1821879$$uhttps://zaguan.unizar.es/record/149792/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000149792 909CO $$ooai:zaguan.unizar.es:149792$$particulos$$pdriver
000149792 951__ $$a2025-10-17-14:30:19
000149792 980__ $$aARTICLE