CM cycles on Kuga—Sato varieties over Shimura curves and
Selmer groups

June 2017

Yara Elias and Carlos de Vera-Piquero
Max-Planck Institute for Mathematics, Bonn, Germany
elias@mpim-bonn.mpg.de
Universitdit Duisburg-Essen, Essen, Germany
carlos.de-vera-piquero@uni-due.de

Abstract

Given a modular form f of even weight larger than two and an imaginary quadratic field K
satisfying a relaxed Heegner hypothesis, we construct a collection of CM cycles on a Kuga—Sato
variety over a suitable Shimura curve which gives rise to a system of Galois cohomology classes
attached to f enjoying the compatibility properties of an Euler system. Then we use Kolyvagin’s
method [21]], as adapted by Nekovar [28] to higher weight modular forms, to bound the size of the
relevant Selmer group associated to f and K and prove the finiteness of the (primary part) of the
Shafarevich-Tate group, provided that a suitable cohomology class does not vanish.
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1 Introduction

Given a modular form f of even weight, one strives to relate certain algebraic and analytic invariants
associated with f. The classical expected relations correspond to conjectures formulated by Beilinson,
Bloch and Kato, while their p-adic analogues were predicted by Perrin-Riou. Several results provide
nowadays evidence towards these conjectures, and in most of them the theory of complex multiplication,
giving rise to Heegner points or cycles, plays a prominent role.

The algebraic invariants alluded to above are usually related to bounds for the Selmer group associ-
ated with (the Galois representation attached to) f, while the analytic ones are concerned with the order



of vanishing of the (complex or p-adic) L-series associated with f, or with its special values or its deriva-
tives. Contributions to conjectures of this flavour frequently use appropriate special cycles as a bridge
between the algebraic and analytic invariants.

In this note, we extend Kolyvagin’s method of Euler systems [21] adapted by Nekovat for modular
forms of higher even weight [28] to the setting where the Heegner hypothesis is relaxed. We exploit
Kuga-Sato varieties over Shimura curves in order to construct an Euler system, that is, a collection of
algebraic cycles satisfying certain local and global norm compatibility properties, from which one can
extract arithmetic information about the Selmer group.

In order to fit our contribution into the framework above, let us first recall briefly some previous
results that have a clear influence in the present work. The simplest scenario in which the conjectures
above have been explored is of course the most down-to-earth setting of elliptic curves, or more generally
of modular forms of weight 2. In this case, Kolyvagin [21}[16] showed how to bound the Selmer group by
exploiting the properties of a system of cohomology classes arising from Heegner points on the relevant
modular curve (today commonly referred to as an Euler system of Kolyvagin type). Combined with the
Gross—Zagier formula [[17], relating the first derivative of the classical L-function associated with f to the
height of an appropriate Heegner point, and together with analytic non-vanishing results of Murty—Murty
[27], the Birch and Swinnerton-Dyer conjecture over QQ for elliptic curves of analytic rank at most 1 was
established. On the p-adic side, an analogue of the Gross—Zagier formula was established by Perrin-Riou
[31].

For modular forms of higher (even) weight, Kolyvagin’s method was carefully extended by Nekovar
in [28]], by replacing the usual Selmer group of an elliptic curve with its cohomological higher weight
analogue and the use of Heegner points on modular curves by the so-called Heegner cycles on suit-
able Kuga—Sato varieties, whose middle cohomology contain the Galois representations associated with
higher weight modular forms. A Gross—Zagier formula, due to Zhang [39], holds also in this setting,
and Nekovar [29]] proved a p-adic avatar of this result. Combined with results of Bump, Friedberg and
Hoffstein [8], this provides further grounds for the conjectures for analytic rank less than or equal to
1. Still in the higher weight case, but in a different direction, Shnidman [36] has recently developed
classical and p-adic Gross—Zagier formulas for twists of modular forms by algebraic Hecke characters,
while the first author [15]] has explored Kolyvagin’s method to bound the size of the Selmer group also
in this twisted situation.

A key element in all the works above is the Heegner hypothesis that allows for the existence of
Heegner points on the relevant modular curves (and hence, in the higher weight setting, of Heegner cycles
on the relevant Kuga—Sato varieties). When this Heegner hypothesis fails, one can still use Shimura
curves to provide a larger supply of modular parametrizations under a more relaxed assumption. In the
case of elliptic curves, for instance, Heegner points arising from Shimura curve parametrizations give
rise to algebraic points which could not be obtained by using modular curve parametrizations (see, e.g.,
[L1, Chapter 4]).

In the Shimura curve setting, the picture above has been successfully adapted in the weight 2 case.
Namely, Kolyvagin’s method has been generalized to Hilbert modular forms (of parallel weight 2) over
totally real fields by Nekovar [30], and X. Yuan, S.-W. Zhang and W. Zhang [38]] have proved a complete
Gross—Zagier formula on quaternionic Shimura curves over totally real fields, building on previous work
of S.-W. Zhang [40]. On the p-adic side, it is worth mentioning that Disegni [14] has recently proved a
p-adic Gross—Zagier formula in this setting relating the central derivative of the p-adic Rankin—Selberg
L-series associated with the modular form f and the relevant CM extension to the p-adic height of a
Heegner point on the abelian variety associated with f.

Next we describe the main result of this note. To do so, consider a newform f.. € S32%,(Io(N))
of weight 2r+2 > 4 and level I'j(N). Let p be an odd prime not dividing N - (2r)!, and let g be a
prime ideal dividing p in the number field ' generated by the Fourier coefficients of f.. The Galois
representation Vy,(f..) attached to f.. (a 2-dimensional Fj,-vector space) can be realized as a factor in
the middle étale cohomology of a (suitably compactified) Kuga—Sato variety over the modular curve



Xo(N) (see [33]]). Alternatively, we can also realize V,( f..) as a factor in the middle étale cohomology of
Kuga—Sato varieties over certain Shimura curves, following the approach of Besser [3] and Iovita—Spie
[L8]].

More precisely, let N = NTN~ be any factorization of N as a product of relatively prime integers
N7, N~ such that N is the square-free product of an even number of primes, and consider the Shimura
curve X attached to an Eichler order of level N™ in an indefinite quaternion algebra of discriminant
N~. The Jacquet—Langlands correspondence associates to f. a Hecke eigenform f on X, whose Galois
representation Vy,(f), isomorphic to V,( f.), arises as a factor in the middle étale cohomology of the r-th
Kuga—Sato variety 7" over the Shimura curve X (see Section [3.3|for details).

For a number field K, let CH ™! (27" /K) be the (r+ 1)-th Chow group of <" over K. The Abel-
Jacobi map induces a Hecke- and Galois-equivariant map

(bf’K : CHr+l(fQ{r/K)0 ®Fp — HI(K,Vp(f)),

where the subscript 0 indicates the subgroup of cycle classes which are homologically trivial, and on the
target we consider continuous Galois cohomology (cf. Section{.T)). In this note, we focus our attention
on the above map when K is an imaginary quadratic field satisfying the relaxed Heegner hypothesis
(Heeg) spelled out in Section Namely, we require that one can choose the factorization N = NTN~
as above so that every prime dividing N (resp. N™) splits (resp. is inert) in K.

In this situation, complex multiplication points on the Shimura curve X give rise to a system of
cycles in .o7" algebraic over ring class fields of K (cf. Section {.3), leading to a system of (Kolyvagin)
cohomology classes in H! (K, Vo(f)). The construction of such cycles resembles the construction in [32],
the difference being that here we must construct them on QM abelian surfaces. The bottom layer of this
system of algebraic cycles arises in the work of Iovita—Spiel3 [18], who obtain a p-adic Gross—Zagier
formula when p divides N, and Besser [5]], who shows that the r-th Griffiths group of .o#” has infinite
rank. Recently, Chida [9] has also considered an Euler system similar to the one studied in this paper
to prove that, under certain assumptions, the non-vanishing of the central value of the Rankin—Selberg
L-function associated with f and a ring class character implies the finiteness of the relevant Selmer group.

The image of the above map @ k is contained in the Selmer group Sel,(f,K) C H'(K,Vy(f)) (cf.
Section @), and the collection of algebraic cycles alluded to before gives us a cycle y € CH ™' (7" /K),
whose image yo = @k (y) € Sely(f,K) under ®¢ g lies in the (—€)-eigenspace under the action of
complex conjugation, where € stands for the sign in the functional equation for the L-series associated
with f. Further, it plays a central role in our main theorem:

Theorem 1.1. With notation as above, suppose that y is non-torsion. Then Im(® k) has rank 1 and
I, (f,K) is finite. More precisely, we have

(Im(®@/ ) =0 and (Im(®;x)) € =Fp-yo.

In the statement, III,(f,K) denotes the f-primary part of the Shafarevich-Tate group, defined as
the cokernel of the map @ x : CH™™! (7" /K)o ® F, — Sel,(f, K).

As we mentioned, our result fits into the framework of the conjectures by Beilinson, Bloch, Kato,
and Perrin-Riou. Combined with forthcoming work of Disegni on a p-adic Gross—Zagier formula in this
setting, we expect it to shed some light on these conjectures for higher weight modular forms, when the
classical Heegner hypothesis does not hold.

It is also worth mentioning that the work of Bertolini, Darmon and Prasana [4]], relating special values
of p-adic L-series associated to twists of modular forms to the image by the p-adic Abel-Jacobi map of
certain algebraic cycles arising in underlying motives, was adapted by Masdeu and Brooks [22| [7] to
the setting where the Heegner hypothesis is removed. In Masdeu’s work, the prime p divides the level
of the modular form and therefore one needs to deal with a bad reduction setting, whereas in Brooks’
work, p is a prime of good reduction and therefore the techniques are of a rather different nature. In this
framework, it would be interesting to relate special values of p-adic L-series to the images by the p-adic
Abel-Jacobi map of the cycles that we construct in this note.
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2 Shimura curves and QM abelian surfaces

We describe in this section the Shimura curves that will play a central role throughout this note, namely
Shimura curves associated with Eichler orders in indefinite rational quaternion algebras. We recall the
usual interpretation of such curves as moduli schemes for abelian surfaces with quaternionic multipli-
cation (also referred to as fake elliptic curves), and then focus on special points on such moduli spaces,
namely, abelian surfaces with quaternionic multiplication and complex multiplication.

2.1 General definitions

Fix a pair of relatively prime integers N*, N—, such that N~ is the square-free product of an even number
of primes, and set N = NN ™. Let B be a rational quaternion algebra of reduced discriminant N~ (hence,
indefinite), and fix a maximal order €3 in B and an Eichler order Z C Oz of level N™.
For every rational place v, we set
B,:=B 00) Qy,

and at each finite place ¢ we shall also write
ﬁ&g = OpQRy Ly, Ry =Ry Ly.

We shall fix at the outset an isomorphism ¥ : B — M (IR), which exists because B is indefinite, and
also an isomorphism By — M (Qy) for each prime ¢4 N~, identifying %, with the standard Eichler
order of level £*W) Write 7 := [[Z for the profinite completion of Z, and for any Z-algebra R put
R :=R®y 7. Thus, for example, @ stands for the ring of finite QQ-adeles.

Let 7+ = C — R be the (disjoint) union of the upper and lower complex half planes, which might be
identified with the set of R-algebra homomorphisms Hom(C,M;(R)), and consider the space of double
cosets

Xy = (@X\éx X ji”i) /B = (@X\éx X Hom((C,Mz(]R))> /B*. 1)

Here, #* acts naturally on the left on B by left multiplication, and B* acts on the right on both B*
(diagonally) and on 7+ by linear fractional transformations under our fixed isomorphism ... This
latter action corresponds to the action on Hom(C,M;(R)) by conjugation (again under ).

It follows from the work of Deligne and Shimura that X4, admits a model over Q, which further is the
coarse moduli scheme classifying abelian surfaces with quaternionic multiplication by Z. Let us recall
precisely these terms.

Definition 2.1. Let S be a Q-scheme. An abelian surface with quaternionic multiplication (QM, for
short) by Z is a pair (A, 1) consisting of an abelian scheme A/S of relative dimension 2 endowed with
an optimal embedding 1 : #Z — Endg(A), giving an action of Z on A.

Remark 2.2. In the definition above, if s is a geometric point of S, then the QM abelian surface A
corresponding to s is endowed with a unique principal polarization which is compatible with the QM
structure (see [23]]). Because of this reason, we will drop the polarization off in our discussion, although
the reader should keep in mind the existence of a unique polarization compatible with the QM structure.

Consider the moduli problem of classifying QM abelian surfaces, given by the moduli functor

F : Schemes/Q — Sets 2)



sending a Q-scheme S to the set .% (§) of isomorphism classes of abelian surfaces with QM by % over
S. Here, an isomorphism between two abelian surfaces with QM (A,1) and (A’;1’) is an isomorphism
v : A — A’ of the underlying abelian surfaces preserving the %Z-action on both A and A’, i.e. such that
voti(a)=1t(a)oyforall a € Z.

Theorem 2.3 ([34], [13]). The space X4 admits a model X = Xy+ n- /Q, which is the coarse moduli
scheme associated to the moduli problem corresponding to the functor %. Furthermore, the Shimura
curve X /Q is a smooth, projective and geometrically connected scheme over Q.

Remark 2.4. Alternatively, X4 is also the coarse moduli scheme classifying abelian surfaces with quater-
nionic multiplication by the maximal order 05 together with a level N -structure.

For our purposes, it is useful to introduce an auxiliary Shimura curve classifying QM abelian surfaces
with suitable extra structure in order to make the moduli problem fine.

Definition 2.5. Let S be a Q-scheme and let M > 3 be an integer prime to N. An abelian surface with
QM by Z and full level M-structure over S is a triple (A,1,V), where (A,1) is a pair as in Definition
and V: (Z/MRZ)s — AM| is an Z-equivariant isomorphism from the constant group scheme (% /M%)
to the group scheme of M-division points of A.

The corresponding moduli problem is now given by the moduli functor
Zwm : Schemes/Q — Sets 3)

sending a Q-scheme S to the set .%)/(S) of isomorphism classes of triples over S as in Definition
In this case, this moduli functor is represented by a fine moduli scheme over Q, which we will denote
xM = XJZ\‘//{*,N* /Q. Tt is also a smooth and projective curve over QQ, although it is not geometrically
connected. One can give an adelic description of X* in terms of double cosets as we did above for X.
By forgetting the extra level structure at M, there is a natural Galois covering of Shimura curves

XM X, (A1,V) — (A1),
whose Galois group is isomorphic to G(M) := GLy(Z/MZ)/+1, using that
(Z/MRE)* ~ (Og/MOB)* ~GLy(Z/MZ).

Since this second moduli problem is fine, there exists a universal family of abelian surfaces with QM
by Z and full level M-structure over X¥, corresponding to 1y» € Hom(X™ X") under the bijection
Fu(XM) «» Hom(XM XM). We shall refer to this family as the universal QM abelian surface over XM,
and we will denote it by

niod — XM,
Given a geometric point x : SpecL — X, the fibre .« := o/ x, SpecL is an abelian surface with QM
by # and full level M-structure defined over L, representing the isomorphism class corresponding to the
moduli of x.

Remark 2.6. Over the complex numbers, X“"(C) is identified with the compact Riemann surface I'\ Z,
where I'='y+ y- C SLy(R) is the image under 3. of the group of units of reduced norm 1 in the Eichler
order Z. Indeed, upon identifying .7 with SL,(R)/SO,(R) and noticing that % \B* /B* is trivial, one
can easily define from (I)) an analytic isomorphism from X'(C) to I'\.2#. Similarly, X™:#"(C) can be
identified with a finite union of compact Riemann surfaces of the form '\ 7.

Remark 2.7. We have reviewed above the usual moduli interpretation of Shimura curves in terms of QM
abelian surfaces. However, the category of abelian surfaces being equivalent to the category of stable
curves of genus 2, one could also regard the Shimura curve X as the coarse moduli space over QQ for
stable curves of genus 2 with QM by Z. Then one could consider the universal genus 2 curve with QM
over XM, say ¢ — XM,



2.2 QM abelian surfaces with complex multiplication

Suppose that (A,1) is an abelian surface over C with QM by Z, so that it defines a point P = [A,1] €
X(C). Recall that 1 : #Z — End(A) is an optimal embedding of rings, giving an action of % on A by
endomorphisms. It is well-known that in this situation either

(i) A is simple, and End’(A) := End(A) ®7Q = B, or
(ii) A is not simple, and End’(A) ~ M, (K) for some imaginary quadratic field K which embeds in B.

In the second case, A is said to have CM by K. It is well-known that if A has CM by K, i.e. End’(A) ~
M;(K), then A is isogenous to the square of an elliptic curve with CM by K (and conversely). However,
we are interested in the category of QM abelian surfaces up to isomorphism rather than up to isogeny,
thus this characterization is not sufficient for our goals.

In other terms, let Endy,(A) = End(A,1) C End(A) denote the subring of endomorphisms which
commute with the QM action, i.e.

End%(A) =End(A,1) :=={y€End(A) : yo1(ax) = 1(et) oy forall @ € Z}.

Then End(A, 1) is either Z or an order in an imaginary quadratic field K. These two cases correspond,
respectively, to (i) and (ii) above. If K is an imaginary quadratic field (splitting B) and End(A,1) ~ R,,
where R. C K denotes the order of conductor ¢ > 1 in K, then (A, 1) is said to have complex multiplication
(CM) by R, and P = [A, 1] is said to be a CM (or Heegner) point of conductor ¢c. We write CM(X,R,)
for the set of all such points.

There is a one-to-one correspondence between the set CM(X,R;) and the set of (#*-conjugacy
classes of) optimal embeddings of R, into %, given by associating to P = [A,1] € CM(X,R,.) the embed-
ding

@p:R.~End(A,1) — Endz(H'(A,Z)) ~ %,
normalized as in [20}, Definition 1.3.1].
Fix a CM point P = [A,1] = [A¢,1¢] € CM(X,R.), and assume that (¢,N) = 1. Then Z can be

regarded via @p as a locally free right R.-module of rank 2, hence % ~ R, & ea for some e € B and some
fractional R -ideal a. If A; = C%/A;, with A; = 1(Z)v, v = (1, 1)/, then we find that

A =1UZ)v = 1(ep(R))v D et(@p(a))v. S

Further, 1(¢p(K)) C C embeds diagonally in M, (C), because End(A,1) = R and 1(#) ® R = M(R),
hence
Az = 1(pp(Re))v & 1(@p(a))ev

and it follows that A is isomorphic to a product E x E, of elliptic curves with CM by R, where E(C) =
C/R. and E,(C) = C/a. The action of Z on E X E, induces the natural left action of Z on R, & ea.

Remark 2.8. In line with Remark [2.7] if C is a stable genus 2 curve with QM (meaning that its Jacobian
variety Jac(C) has an action of Z by endomorphisms), then C is said to have CM if the subring of endo-
morphisms of Jac(C) which commute with the QM action form an order in an imaginary quadratic field.
Then it is not hard to see that C is isomorphic to the union of two elliptic curves meeting transversally at
their identities, and Jac(C) is identified with their product.

2.3 Isogenies of QM abelian surfaces

As we already pointed out above, an isomorphism (A,1) — (A’,1’) between two QM abelian surfaces
is an isomorphism of the underlying varieties which preserves the quaternionic action. More generally,
the same notion applies for isogenies: if (A,1) and (A’;1’) are abelian surfaces with QM by %, then
an isogeny Y : A — A’ is an isogeny of OM abelian surfaces, or a QM-isogeny for short, if yo1(a) =



V(o) oy for all @ € Z. We write Homg(A,A”) for the ring of homomorphisms from A to A’ which
commute with the Z-action, so that non-zero elements in this ring correspond to QM-isogenies from A
to A’

Lemma 2.9. Let (A1) and (A';1") be two abelian surfaces with QM by %, and suppose that they are
OM-isogenous. Then

Homy(A,A") ®7Q ~End(A,1) ®7Q ~ End(A’,1") 7 Q.

Proof. Pick any QM-isogeny v : A" — A. Thanks to the existence of (unique) principal polarizations on
A and A’, compatible with the QM structure (cf. Remark , one might regard the dual isogeny of y as
a QM-isogeny WV : A — A/, giving rise to an inverse isogeny ¥~ : A — A’ in Hom(A,A") ®7 Q. Now
notice first that the rule ¢ — w~! o @ o ¥ establishes an isomorphism

End(A,1) ®7Q ~End(A’,1) 7 Q.

Secondly, @ — y o ¢ defines an injective morphism of Z-modules Homy(A,A’) — End(A,1). But
both of them are either of rank 1 (if A does not have CM, neither does A’) or of rank 2 (if A has CM
by some imaginary quadratic field, so does A”). Thus it follows that this injective morphism induces an
isomorphism between Homy(A,A”) ®7 Q and End(A, 1) ®7 Q. O

Corollary 2.10. Suppose that (A1) is a QM-abelian surface with CM by (some order in) K, and let
(A',1) be a second QM-abelian surface which is QM-isogenous to (A,1). Then (A’,1") also has CM by
(some order in) K, and in particular

Homy(A,A") @7 Q ~ K.

Proof. 1f (A,1) has CM by K, then End(A, 1) is an order in K, and therefore End(A,1) ®7 Q ~ K. Then
the statement follows directly from the previous lemma. O

2.4 The Néron-Severi group of a QM abelian surface with CM

Let P =[(A,1)] € CM(X,R.) C X(K.) be a CM point on X by R, represented by a QM abelian surface
(A,1) withEnd(A,1) = R, where R, denotes as before the order of conductor ¢ in the imaginary quadratic
field K.

We write as above A ~ E x E, for some fractional R.-ideal a. The Néron—Severi group NS(A) of the
abelian surface A is then identified with

NS(E X Eq) ~Z(E x 0) ®Z(0 X Eq) GHom(E,E,) ~ Z(E x 0) ® Z(0 X E,) ® a,
where in the first isomorphism an element Yy € Hom(E, E;;) corresponds to the class of the divisor
Zy:=Ty—(Ex0)—deg(y)(0xEy) CEXE;~A,

with I standing for the graph of ¥, and in the second isomorphism we use that Hom(E, E,) ~ a.
Complex conjugation acts through the non-trivial element 6 € Gal(K/Q) on a, and then defines a de-
composition a = a G a_, where a, (resp. a_) is the Z-submodule of a on which ¢ acts as multiplication
by +1 (resp. -1). Then
ar =Zay and a_ =Za_

for some elements a; € QNa and a_ € a C K, which we might regard either as elements in K or as
isogenies from E to E,. Notice that a_ is purely imaginary. Rescaling the element e € B appearing in
the decomposition of (@) by a suitable non-zero scalar in Q if necessary, we assume that (a_)> = —D,,

where R, = Z[\/—D,]. Therefore, we might rewrite a under this convention as

a=Za®7Z\/ —D., forsomeac Q.



This normalization depends on the choice of a square-root \/—D, of —D,, and therefore is uniquely
defined only up to sign. Observe also that since a is a fractional R.-ideal, we have R.a C a, which
implies in particular that in fact a € Z and a | D, hence a~'D, € Z.

The Néron—Severi group of A is then the (free) Z-module of rank 4 generated by (the classes of) the
cycles E x 0,0 X Eq, Z; and Z /—p. Furthermore, the cycle Z =5 is orthogonal to the rank 3 submodule
(E x0,0x Eq,Zy).

3 Modular forms and p-adic Galois representations

The main goal of this section is to explain how the p-adic Galois representation V ( f..) associated with a
newform f., € Sg(I'o(N)) can be realized in the middle étale cohomology of a suitable Kuga—Sato variety
over a Shimura curve, by following the approach of Besser [15] and Iovita—SpieB [[18]]. To do so, we first
need to recall the Jacquet—-Langlands correspondence and to introduce the Kuga—Sato varieties that will
be involved.

3.1 Modular forms and Jacquet-Langlands correspondence

Fix an integer N > 1, and any factorization N = N*N~ of N such that gcd(N*",N~) =1and N~ > 1
is the square-free product of an even number of primes. Associated to each of these factorizations, we
can consider the Shimura curve Xy+ y-/Q as above corresponding to an Eichler order Zy+ y- of level
N in the indefinite quaternion algebra B of discriminant N~. In this subsection we briefly recall the
Jacquet-Langlands correspondence between classical cuspidal forms of level I'y(N) and modular forms
on the Shimura curve Xy+ y-.

Let k =2r+2 > 2 be an even integer. In order to define modular forms of weight k£ with respect to
Zn+ -, identify the Lie algebra of left invariant differential operators on B := (B®g R)* ~ GL,(R)
with M, (C), and define the differential operators

R e

A (holomorphic) modular form of weight k with respect to Z is then a function
f: (B(X)Q AQ)X =B x GLQ(R) — C
satisfying the following properties:

i) forevery b € (B®gAq)™, the function GL,(R) — C defined by the rule x — f(xb) is of C*-class
and satisfies Weo f = (k/2) f, Xoo f = 0;

ii) for every y € B* and every u € Z* x R>°, f(uby) = f(b).

The C-vector space of all modular forms of weight k with respect to Zy+ - will be denoted by Sy (Xy+ n-).

Alternatively, by considering the congruence subgroup I'y+ - € SL>(R) and the identification of
Xyt y-(C) with the (compact) Riemann surface Iyy+ y-\7 as in Remark a modular form of weight
k with respect to Zy+ y- is the same as a holomorphic function f : 72 — C such that

f(yt) = (et +d)ff(r) forally=(:}) € Ty+ n-.

Under our assumption that N~ > 1, observe that no growth condition needs to be imposed at the
cusps, since the Riemann surface Iy+ -\ is already compact.

The Shimura curve Xy+ - comes equipped with a ring of Hecke correspondences, which can be
easily introduced by using the adelic description of Xy+ y- given above (cf. [3, Section 1.5]). Such



correspondences give rise to Hecke operators on the spaces of modular forms Si(Xy+ y-). Indeed, the
discrete double coset space @§+ N- \B*/ Q* might be written as a product of local double coset spaces

(Zn+ N- QL) \(B2Q)™/Q/, )

and this decomposition allows to define local correspondences, at each rational prime, that extend to
global correspondences on Xy+ y-.

For each prime £1 N, the space (9) is identified with PGL,(Z,)\PGL,(Qy), which in turn corresponds
to the Bruhat-Tits tree of PGL,(Qy). Thus there is a natural degree ¢+ 1 correspondence, sending each
vertex g € PGL,(Z,)\PGL2(Qy) to the formal sum of its £+ 1 neighbours, denoted by 7;. This extends
to a correspondence on Xy+ y- of degree £+ 1, still denoted by 7. At each prime ¢ | N™, (3)) is identified
instead with the set of chains of edges of length ¢ in the Bruhat-Tits tree of PGL,(Q,), if ¢* || NT.
There is a natural involution on this set, corresponding to reversing the orientation of the edges in the
Bruhat-Tits tree, and this extends again to an involution on Xy+ y-, that will be denoted by W,. One can
also define a correspondence U, for such primes; if ¢ divides exactly N*, for instance, then U, is the
degree g correspondence defined by sending an edge e in the Bruhat-Tits tree to the formal sum of the ¢
edges ¢’ # e having the same source as e. Finally, at primes g | N, the local space (3] consists only of
two elements and the only involution defined on such set, which extends to an involution on the Shimura
curve Xy+ y-, will be denoted also by W,.

The Hecke operators 7; for primes ¢ 1 N are referred to as the good Hecke operators, whereas the
operators U, are commonly named bad Hecke operators. The involutions W, are the so-called Atkin—
Lehner involutions, and form a group of automorphisms # =~ (Z/2Z)*™) of Xy« y-, where @(N) is
the number of prime factors of N. Both the good and the bad operators, as well as the Atkin—Lehner
involutions, act also as endomorphisms on the spaces Sy (Xy+ y-) of weight k modular forms. We denote
by Ty+ n- the Z-algebra generated by the good Hecke operators Ty together with the Atkin-Lehner
involutions W,,.

The Jacquet-Langlands correspondence establishes a Hecke-equivariant bijection between automor-
phic forms on GL, and its twisted forms. In our setting, this boils down to a correspondence between
classical modular forms and quaternionic modular forms as stated below.

Proposition 3.1 (Jacquet-Langlands). For each factorization N = NTN~ as above, there is a Ty+ y--
equivariant isomorphism (uniquely determined up to scaling)

JL: Sp(To(N)N )7 =5 S (X - )-

In particular, to each eigenform f € Sp(To(N))N)="" there corresponds a unique (up to scaling)
quaternionic form f8 = JL(f) € Sy(Xy+ n-) having the same Hecke eigenvalues as f for the good Hecke
operators Ty ({1 N) and the Atkin—Lehner involutions W,,.

Let F be a subfield of C, and write S;(T'o(N),F) C Sg(I'o(N)) for the subspace of modular forms
whose Fourier coefficients generate a subfield of F'. The isomorphism JL above is compatible with
Galois action, and hence Si(Xy+ y-,F) := JL(S(To(N), F)™ )="") must be regarded as the subspace
of weight k modular forms on Xy+ y- which are defined over F, although such modular forms have no
Fourier expansion. The Jacquet-Langlands correspondence then restricts to an isomorphism

JL: Si(To(N), F)N)=mew =5 8y (X -, F).

We can also reformulate the Jacquet—Langlands correspondence in the following way. Suppose that
Joo € Si(To(N))™Y is a normalized newform, which is an eigenform for the Hecke operators 7y, for /1 N,
and the Atkin—Lehner involutions W,, for g | N (here, W, stands for the W-operator corresponding to
the g-primary part Q = ¢° of N as in [1], which induces an involution on Si(I'o(N))). Then we have
Ty fw = ayfw for every £ 4 N and W, f.. = &, 1. fo for every g | N, where a; = a( f-) stands for the ¢-th
Fourier coefficient of f.. and &, r = *1 is the eigenvalue of the Atkin—Lehner involution acting on f..
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If val,(N) > 2, then we have a, = 0, whereas if val,(N) = 1 (in particular, for primes ¢ | N7), then
the eigenvalue g, . is related to the g-th Fourier coefficient by the identity a, = —¢&, 1 g" (recall that
according to our notations k = 2r + 2).

Let F be the number field generated by the Fourier coefficients a, = a,(f») of fw, which lie acually
in its ring of integers . Then the Jacquet—Langlands correspondence asserts that for each factorization
N = N*tN~ as above there exists a (unique) algebra homomorphism

Oon+ N Tyt y- — OF

such that ¢y+ y- (Ty) = a if £{ N and @y+ y- (W,) = &1 if g | N.

In particular, at primes ¢ | N~ (and also at primes ¢ dividing exactly N™) we recover the ¢-th Fourier
coefficient of f., as a; = —@n+ y- (W,)q". Also, notice that the eigenvalue wy,; := @y, (Wy) of the Fricke
involution Wy acting on f., coincides with wy+ y- := @y+ y- (Wy) (by a slight abuse of notation we write
Wy for both the Fricke involution acting on f,, and the one acting on f, namely the product of all the
involutions W, for primes g | N).

3.2 Kuga-Sato varieties

We fix from now on a factorization N = N*N~ as in the previous section, and denote by %Z = Zy+ n-
an Eichler order of level N* in the indefinite rational quaternion algebra of discriminant N~ and by
X = Xy+ y- the corresponding Shimura curve. Let 7 : &/ — XM be the universal abelian surface over
the Shimura curve X™ as in Section where M > 3 is an auxiliary integer prime to N. Thus ./ /XM
is a relative scheme of relative dimension 2 (and absolute dimension 3), and for each geometric point
x: SpecL — XM the fibre o7, := &/ x, SpecL is an abelian surface with QM by % and full level M-
structure defined over L, representing the isomorphism class corresponding to the point x.

Let r > 1 be an integer, and .&/" = &/ Xyu --- Xynu o/ be the r-th fibered product of <7 over XM.
We shall refer to <7" as the r-th Kuga—Sato variety over XM . It has relative dimension 2r over X", and
absolute dimension 2r + 1. A generic point in 27" might be represented as a tuple (x; Py, ..., P,), where x
is a point in X and the P; are points in the fibre 7.

Suppose that £ is a prime not dividing MN. Then we define the action of the Hecke operator 7y on the
Kuga—Sato variety .«7" as follows. Let X+ be the Shimura curve classifying triples (4,1,C[¢]), where
(A,1) is a QM abelian surface parametrized by X, further endowed with a subgroup C[¢] of A[{] which
is stable under the action of Z (via 1) and cyclic as %Z-module (A[¢] has £+ 1 such Z-submodules, all
of them of order ¢?). Notice that there is a natural forgetful morphism of Shimura curves XM-{ — XM
The fibre product .27 := o/ xyu X' is then the universal abelian surface over X*-{, equipped with a
subgroup scheme %’[¢] of order ¢2, which is also a module for the induced action of Z. Let 2 denote the
quotient of .27 by the subgroup scheme %’[¢], with level structure induced from .o7. Write also <7/ and
2" for the respective r-th fibered products over X™*. Then the first and third squares in the following
diagram are cartesian:

o 02 g

o’ JZ{r,f or "
XM XM,Z XM,E XM

By using this diagram, the Hecke operator 7, acting on .2#” can be defined then as the correspondence
T; = ¢{ o ¢2 © ¢3,. Such a correspondence induces an endomorphism, which we still denote by 77, on
the étale cohomology groups Hy (/" x Q, —).

3.3 p-adic Galois representations attached to modular forms

Let fo € Sk(I'0(N),Q) be a (normalized) newform of even weight k = 2r+2 (r > 1) and level N =
NTN™ as before. Let also f = JL(f.) € Si(X,Q) be the corresponding newform on X under the Hecke-
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equivariant isomorphism from Proposition Let F = Q({a,}) be the number field generated by the
Fourier coefficients a, = a,(fw) of fw, Which actually lie in its ring of integers Op.

Let p be a rational prime not dividing N. Associated with f., there is a free Or ®7z Z,-module
Voo = V(f.) of rank 2 equipped with a continuous Op-linear action of Gg = Gal(Q/Q). Indeed, the
Galois representation V., arises as a factor of the middle étale cohomology of the Kuga—Sato variety
obtained as the 2r-fold fibre product of (a suitable smooth compactification of) the universal elliptic
curve & (with full level N-structure) over the modular curve X (N) (cf. [33]). A similar construction is
available for f = JL(f.), by considering the universal abelian surface 7 : &7 — X as a replacement
for & — X(N). We sketch below this construction, which is based on previous work of Besser [5] and
follows the approach taken later in Iovita—Spiel3 [[18]].

The action of % on 27 induces an action of B* on Ri7.Q,, for ¢ > 1. Then one defines a p-adic
sheaf

L := () ker(b—n(b) : R*m.Q, — R*7,Q,),
beB

which is a 3-dimensional local system on X™. Then the non-degenerate pairing
(,): Ly ®Ly < R*71,Q, @ R’1.Q, = R*1.Q, 55 Q,(-2)
induces a Laplacian operator
A, : Sym'Ly — (Sym’2L,)(-2),

and L, C Sym’L; is defined as the kernel of A,.
The p-adic Gg-representation attached to the space Sy (X, Q) of weight k modular forms on X is then
by definition (cf. [[18, Definition 5.6])

H;t(XM X @7L27)G<M> = pG(M)Hét(XM X @7L2r)7 (6)

where we take G(M)-invariants by applying the projector

1
Pom) = IG(M)] geGZ(M)g € QG(M)],

regarded as a correspondence in Corry (7", /") (notice that there is an action of G(M) on L,,, compat-
ible with the action on X™). This makes H, (X™ x @, L,,)°™) independent of the choice of M, and one
further has

HY (XM x Q,Loy) M) o pip &2 Hy T (2" x Q,Qp) = pouny i (@ x Q,Qp),

where &, is a suitable projector in Corrym (27", o/") encoding the construction of L,,. Also, we may
remark that the Galois representation in (6) arises as the p-adic étale realization of a Chow motive .#5,
(see [18, Appendix 10.1]).

The construction sketched above can be adapted to work with Z,-coefficients, and one can even
consider cohomology with finite coefficients, provided that we assume that p does not divide N - (2r)!
and we choose the auxiliary level M so that p does not divide |G(M)| (hence the projector pg(y) is well-
defined in Z,[G(M)] and Z/p"Z|G(M)]). Write %5, for the sheaf constructed as L,, but with ring of
coefficients Z/p™Z, and let 25, := gne%,’m be the corresponding p-adic sheaf.

Lemma 3.2. With the previous notations, HL (XY x Q, %, ) is torsion free and

Helt(XM X QaZZr,m) = Hét(XM X @’zzr)/pm‘

11



Proof. First of all, the sheaf %5, = (%5,,) of Z,-modules is flat, and hence for every m > 1 the exact

sequence 0 — Z/p" 7 X 7./ p"7 — 7./ pZ — 0 induces when tensoring with .5, a short exact
sequence
0— ng,m—l — ng,m — ng,l — 0.

By passing to the induced long exact sequence in étale cohomology and using that H. (XM x Q, %) =

0 for i = 0,2 (cf. 18, Appendix 10]), one obtains a short exact sequence
0 — HL(XY x Q, Lom—1) — HLXM x Q, L) — HL(XM x Q, £5,1) — 0. (7

Secondly, let X*P" /QQ be the Shimura curve with full level M p"-structure above X, for each integer
n > 1. Then the natural forgetful morphism of Shimura curves XM7" — XM is a Galois cover with Galois
group G(p") = GLy(Z/p"7Z)/ + 1, and we write , : <7, — X™P" for the corresponding universal abelian
surface. By a slight abuse of notation, we still write .%3,,, for the p-adic sheaf on XMP" constructed
in the same way as for X™ but starting with R27rn7*Z/ p"7Z. Then for each pair of integers m,n > 1,
HL (XM x Q, L) is identified with HL (XMP" x Q, %5,.,)¢"), where the superscript G(p") means
that we take invariants by G(p"). Indeed, the Hochschild—Serre spectral sequence for Galois covers in
étale cohomology (cf. [24} 111.2.20]) gives an exact sequence

HI(G(p"),Hgt(XM”n X Q,Lorm)) — Hét(XM X Q,Larm) — Hét(XM”" % @aDng,m)G(pn) N

— HZ(G<pn)7H(e)t(XMpn X @732;’,1’”))7

and using now that HY (X™?" x Q, %4,,,) = 0 we obtain an isomorphism of Z/p™Z-modules
He (XM X Q, Larm) 2 He (XM % Qvgzr,m)G(pn).

Now the inclusion H (XM x Q, Lorm-1) = HL (XM x Q,%.m) from the exact sequence (7) gives
an isomorphism of Z/p™ ! Z-modules H., (X" x Q, % m—1) = HL (XM x Q, Lor.m)[p™!]. To see this,
first notice that for any pair of integers 1 < i < n, the stalk of .%,; at any geometric point x’ of X" P s
isomorphic to the stalk at the image of x' on X™. However, the first one admits a trivialization induced
from the trivialization of R? Ty« L/ P'7Z (using the level p"-structure on &y ). In particular, for n > m one
deduces that the inclusion

Hét(XMpn X ang/ﬂZr,mfl) — Hét(XMpn X @;$2r,m)

in the exact sequence analogous to for XMP" becomes the inclusion of the p”~!-torsion submodule
HL (XM < Q, L) [p" 1] in HL (XMP" x Q, L5rm)- By taking G(p")-invariants, the claimed assertion
follows.

We use this last observation to conclude that for all m > 1, HL (XM x Q, %) is a free Z/p™Z-
module of rank 1 = dimg, (H (X" x Q, %,.1)) (in particular, notice that 7 is independent on m). Indeed,
the statement is true for m = 1, since HL (X” x Q, %,.1) is a finite dimensional F,-vector space. By
induction, if we assume the statement true for m — 1 and set H = Hét (X M Q, Z5,m) then we look at the
short exact sequence

0— H[p"'| —H-—H/H]p" '] —0

given by equation (7). By the inductive hypothesis, the first term H[p"™ '] ~ HL (X" x Q, %am-1)
is a free Z/p™ 'Z-module of rank ¢, and the third term is identified with HL,(X™ x Q,%,.1). Hence
HL (XM x Q, %,.m) is necessarily a free Z/p™Z-module of rank .

Finally, the Lemma follows now directly by applying [24, Lemma V.1.11]. O

Under the running assumptions that p does not divide N - (2r)! and M is chosen such that p does not
divide |G(M)] either, set

J = pony (HY (XM x Q, 25,) (r+1)) = HY(X™ x Q, 2,) (r+ 1)°™).
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Let T = Ty+ - denote the Hecke algebra generated by the good operators 7; (¢ 1 N) and the Atkin—
Lehner involutions W, (¢ | N), which act on J by endomorphisms. Write I C T for the kernel of the ring
homomorphism ¢ : T — O associated with f, andlet V =V (f) := {x € J : [;x = 0} be the f-isotypical
component of J. Since f is a newform, there is a T[Gg|-equivariant projection J — V from J to the
f-isotypical component.

As in [18, Lemma 5.8], V = V(f) is isomorphic to V., = V(f..), both as free O ® Z,-modules of
rank 2 and as Gg-representations. In particular, [28, Proposition 3.1] applies verbatim for V =V (f). We
restate it here for the convenience of the reader and for later reference.

Proposition 3.3. The following statements hold.
i) V is a free O @ Z,-module of rank 2, equipped with a continuous OF-linear action of Gal(Q/Q).

ii) Thereis a Gal(Q/Q)-equivariant, skew-symmetric pairing [,]:V xV — Z,(1) such that [Ax,y] =
[x,Ay] forall x,y € V and A € O & Z,, which induces non-degenerate pairings

L]s:V/P'VXV/P'V — Wy, s>0.

iii) For each prime {1 Np, the characteristic polynomial of the (arithmetic) Frobenius automorphism
Fr(¢) acting on V@ Q is

det(1—xFr(0) | Vo Q) =1 — %x—l—fxz.

iv) For each prime q | N,
det(1 —xFr(q) | (V®Q);) =1——Lx,

r

with ag = 0 or —&, rq", where I = Gal(Q, /QY) is the inertia subgroup and €,; = ¢y+ y-(Wy) €
{£1} is the eigenvalue of the Atkin—Lehner involution W, acting on f.

Proposition [3.3]tells us that V is a higher weight analogue of the Tate module of an elliptic curve, in
which the Weil pairing is now replaced by the skew-symmetric pairing [,] from ii). On the other hand,
the isomorphism between V and V.. (both as O ® Zj,-modules and as Gg-representations) implies that
V ®Q is the p-adic realization of the motive My := M. over Q with coefficients in F associated with f..
(cf. [28] p. 103] and [33]). Propositionthen asserts that MJY =M;(—1) and

L(MY{,s) = L(few,s+7) = i apn " (8)
n=1

According to the functional equation satisfied by the L-series L( f.,s) (see [35, Theorem 3.66]), we see
that if A(s) := N*/2(27) *~"T(s+ r)L(M} ,s), then

A(s) =€eA(2—5)

with &€ = (—1)" w1 = (=1)"wy+ y-, where wy 1 = o1 (Wy) (resp. wy+ - = y+ - (Wy)) is the
eigenvalue of the Fricke involution Wy acting on f. (resp. f = JL(fw)). In the rest of this paper, we will
also write L(f,s) for the complex L-series in (8).

Remark 3.4. Working with the alternative moduli interpretation for the Shimura curve X proposed in
Remark 2.7} we could have considered the Kuga—Sato variety over X™ obtained as the 2r-th fibered self-
product €’ of the universal genus 2 curve € over X. The cohomologies of 4> and /" are closely
related, and one could realize V = V(f) as a factor in the middle étale cohomology of 2" similarly as
we did by using «/”. When dealing with CM (or Heegner) cycles as defined in the next section, we found
no advantage in taking this alternative approach (cf. Remark [2.8)), although we believe it could be useful
when dealing with diagonal cycles in products of Kuga—Sato varieties over Shimura curves along the
lines of [12]].
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4 Algebraic cycles and p-adic étale Abel-Jacobi map

In this section we will introduce and explore special algebraic cycles on the Kuga—Sato variety <7,
which will be referred to as CM (or Heegner) cycles as they lie above CM (or Heegner) points on the
Shimura curve X. Their definition resembles the well-known construction of CM cycles on Kuga—Sato
varieties above classical modular curves, since they are essentially obtained from the CM cycles in the
QM-abelian surfaces parametrized by CM points on the Shimura curve X (cf. Section[2)). The images
of these CM cycles under suitable p-adic étale Abel-Jacobi maps will give rise to a system of Galois
cohomology classes that will be the input for Kolyvagin’s method to bound the Selmer group, so let us
first recall how these Abel-Jacobi maps are defined.

4.1 p-adic étale Abel-Jacobi map

Let W be a smooth proper irreducible variety of dimension d defined over a field K, and let CH*(W /K)
be the Chow group of rational equivalence classes of codimension c (algebraic) cycles in W defined over
K. If W denotes the base change of W to a fixed algebraic closure K of K, the p-adic étale cycle class
map

CH'(W/K) — HX(W,Z,(c))

described in [[19] gives rise to a map
cl: CHY(W/K) — HX(W,Z,(c)).

Here, H, stands for continuous étale cohomology, and we adopt the usual convention for Tate twists: if
M is a Z,|Gg|-module and c is a non-negative integer, then M(c) = M ® x,, where x,, : Gg — Z,, is the
p-adic cyclotomic character.

A cycle whose class in CH(W /K) is in the kernel of cl is called null-homologous, and we write

CH®(W/K)g := ker(cl)

for the group of all such (classes of) cycles. The Hochschild—Serre spectral sequence (see [19]) relating
continuous étale cohomology with continuous Galois cohomology of Gx = Gal(K/K),

Hi(KvHét(Wa ZP (C))) = Hé?j(w7 ZP (C)),
gives rise to the so-called (c-th) p-adic étale Abel-Jacobi map on W over K
AJ, :CH (W/K)o — H'(K,HX ' (W,Z,)(c)).

For our purposes in this note we are interested in considering W = .&", the r-th Kuga—Sato variety
over XM, where k = 2r+ 2 is the weight of our starting cuspidal newform f.. of level N, and we still keep
our fixed factorization N = N*N~. Then the (r+ 1)-th p-adic Abel-Jacobi map for «7” over a field K of
characteristic zero takes the form

AJ, :CH™ (/" /K)o — H' (K, HY (/" xx K, Z,)(r+1)). )

Since the Abel-Jacobi map commutes with automorphisms of the underlying variety 27”, by applying
the projectors &, and pg(y) we see that AJ), induces a map

&, (CH ™ (/" /K)o ®2.Z,) — H'(K,J).

But now notice that &, H2 "2 (/" xx K, Z,)(r+1)) = 0 (see [18, Lemma 10.1]), or in other words, the
target of the cycle class map on CH ™! (7" /K) vanishes after applying &,,. Therefore,

SZr(CHH_l (»(Z{r/K)O Xz Zp) = (C"Zr(CHH—1 (ﬂr/K) Xz ZP)

14



and composing the last map with the projection ey : J — V onto the f-isotypical component we finally
obtain a map

@ CH (" /K) 032, 2 &,(CH (/" /K) ®22Z,) — H'(K,V).
Since AJ, commutes with correspondences and with the Galois action, it follows that the map ®
is both T-equivariant and (if K/Q is Galois) Gal(K /Q)-equivariant.
4.2 Conjectures by Beilinson, Bloch, Kato and Perrin-Riou.

The Beilinson conjectures predict a relation between the rank of the Chow group of homologically trivial
algebraic cycles on a smooth projective variety X of dimension 2i+ 1 over a number field K and the order
of vanishing of the L-function attached to its étale cohomology, expecting that

ords_i1 L(HAT'(X), 5) £ dimg CH™*!(X)o,

(see [2, Conjecture 5.9]). This conjecture can be refined by applying the projector e corresponding to the
motive associated to X to both sides of the equality to obtain the prediction that

ords_i11L(e HA'(X),5) = dimge CH™*! (X ).

Furthermore, letting M denote H2 ! (X), and letting Sel(K,e M) be the submodule of H'(K,e M) of
cohomology classes locally unramified everywhere outside a finite set S of primes and satisfying suitable
conditions for primes in S, Bloch and Kato predict that the Abel-Jacobi map

e CHM (X)o®Q, — Sel(K,e M)
is an isomorphism [6, Conjecture 5.3]. Hence, one expects that
9
ords—;1L(e M,s) = rank Sel(K,e M).

We outlined in the Introduction some of the contributions towards these conjectures in the setting
where the motive M is associated to an elliptic curve or a (twisted) higher even weight modular form and
a CM field satisfying the appropriate Heegner hypothesis. In our setting, one strives to prove that

Ords:r_q_]L(f@ K,S) ; rank Selg) (f? K)7

where Selg) (f,K) is defined in (I7). For r = 0 (i.e., when f., has weight 2), X. Yuan, S.-W. Zhang and
W. Zhang [38]] showed that

L/(f®K7 1) = <)’07)70>

up to an explicit non-zero constant, for an appropriate height pairing ( , ), and Disegni [14] obtained
a p-adic avatar of this result. However, even if one disposed of a formula such as the one by X. Yuan,
S.-W. Zhang and W. Zhang in higher weight, one would not be able to deduce the equality predicted by
Beilinson, Bloch and Kato, because ® x is not known to be injective. On the other hand, one could
tackle conjectures in the p-adic realm due to Perrin-Riou [10, Conjecture 2.7] of the form

L;(f@K,EK, 1) 2 (®rx(vo),Pri(y0))

where (x : Gal(K../K) — Q,, and (, ) is a suitable p-adic height pairing. Indeed, a p-adic Gross—Zagier
formula in higher even weight would combine with our result to validate an equality as above, along the
lines of Perrin-Riou’s conjecture for modular forms over Shimura curves, provided that the underlying
p-adic height pairing is non-degenerate. This is the subject of forthcoming work of Daniel Disegni.
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4.3 CM cycles

Now we construct the CM (or Heegner) cycles on the Kuga—Sato variety /" alluded to above, sitting
above CM points on X = Xy+ y-. To do so, we shall first recall the notion of CM points on the Shimura
curve X, so we will fix from now on an imaginary quadratic field K satisfying the Heegner hypothesis

(Heeg)  Every prime dividing N~ (resp. N ) is inert (resp. split) in K.

This assumption implies that K embeds into B. Consider then the natural map
B* x Hom(K,B) — X(C) = (@X\BX X Hom(C,Mg(R))) /B,

given by extending homomorphisms K — B to homomorphisms C — M, (RR). A pointx € X (C) is called
a CM point (or a Heegner point) by K if x = [b, g] for some pair (b,g) € B* x Hom(K,B). We denote by

CM(X,K) := {[b,g] € X(C) : (b,g) € B* x Hom(K,B)}

the set of all CM points on X by K. Let ¢ > 1 be an integer with gcd(N,c) = 1. A CM point x = [b, g| €
CM(X,K) is said to be of conductor ¢ > 1 if the embedding g : K — B is optimal with respect to R, and
Z, where R, denotes the order in K of conductor c. This optimality condition means that

g(K)Nb~'%b =g(R.),

so that no order strictly containing R. as suborder embeds into b~ '%b via g. Using that Eichler or-
ders in indefinite rational quaternion algebras have class number one, it is easy to show that the set
CM(X,K,c) C CM(X,K) of Heegner points of conductor c is in bijection with the set Emb(R., %) of
(%2 -conjugacy classes of) optimal embeddings of R, into Z. In particular, [CM(X,K,c)| = 2'h(R.),
where 7 denotes the number of primes dividing N and A(R,) is the class number of R,..

Shimura’s reciprocity law (cf. [13 Section 3.9], [25, Section I1.5.1], [26, Section 1.10]) asserts that
CM(X,K) C X(K%) and that the Galois action of Gal(K“’/K) on Heegner points is described via the
reciprocity map

reck : K* — Gal(K“’ /K)

from class field theory. More precisely, for every a € K* and every CM point [b, g] € CM(X,K), one has

reck (a)[b, g] = [&(a)b, gl

where g : KX — B* denotes the embedding induced by g. In particular, recall that for each ¢ > 1 the
reciprocity map induces an isomorphism

K*/RXK* ~Pic(R.) — Gal(K./K),
where K. denotes the ring class field of K of conductor ¢, hence it follows that
CM(X,K,c) C X(Ke).

Moreover, one can check that Gal(K./K) acts freely on the set of Heegner points of conductor ¢, so
that CM(X, K, c) has 2’ distinct Gal(K,/K)-orbits. Besides, the group # of Atkin-Lehner involutions
acts on CM(X, K, ¢) as well, and for each prime ¢ | N, the corresponding involution W, acts on CM points
by switching their local orientation at g. The Galois action, on the contrary, preserves the orientations,
so that the 2" distinct Gal(K, /K )-orbits are in one-to-one correspondene with the 2 possible orientations
(cf. [377, Chapter 7]).

From a moduli point of view, a CM point x € CM(X,K,c) C X(K;) of conductor ¢ corresponds to
the isomorphism class [A,1] of an abelian surface with QM by # having CM by the order R,; that is,
such that End(A, 1) ~ R.. We use this interpretation of CM points to construct certain algebraic cycles on
Kuga—Sato varieties above X, the desired CM cycles. To do so, we use the isomorphism A ~ E x E, from
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Section in order to define a cycle Z4 C A, which will eventually give rise to a cycle in «7". Recall
that in the previous isomorphism, E and E, are elliptic curves with CM by R,, such that E(C) = C/R,
and E4(C) = C/a. Here a is a fractional R -ideal.

We shall adopt the same conventions and normalizations as in Section Hence by choosing
a square root v/—D, € R, we can decompose a = Za ® Z+/—D, as a direct sum of its (+1)— and
(—1)—eigencomponents for complex multiplication (or equivalently, for the Gal(K/Q)-action), where
a € Z divides D.. As explained in Section[2.4] the Néron—Severi group of A is the free Z-module of rank
4 generated by the classes of the cycles

EXO, OXEa, Z, and Z\/TDC
We then define the CM cycle associated with A to be the cycle
ZA = Z\/fDC - A.

Notice that under our conventions, the cycle Z, is well-defined up to sign, since its sign changes when

v —D¢ is replaced by —/—D...

Remark 4.1. If A is a QM abelian surface, then NS(A)g := NS(A) ®z Q has a natural right B*-action.
If further A has CM as above, then one has a decomposition (as a right B*-module) NS(A)qg =~ ad’(B) @
Nrd, where ad’(B) denotes the representation of B* consisting of elements of trace zero on which B*
acts on the right by conjugation and Nrd denotes the one-dimensional representation of B* given by the
reduced norm (cf. [5] and [18, Lemma 8.1]). The one-dimensional subspace of NS (A)@ corresponding
to Nrd is usually refered to as its “CM part”, and is generated by (the class of) Z4.

Next we study how the cycles Z4 are related when A varies in a QM-isogeny class of abelian surfaces
with QM by % and CM by K. In other words, we want to relate the Heegner cycles constructed as above
when we vary x in CM(X,K).

First of all, we notice that the choice of the square root \/—D,. does not only fix the cycle Zy4,
but also the CM cycles Zy for every QM-abelian surface A’ which is QM-isogenous to A. Indeed, if
v : A — A’ is a QM-isogeny, then we fix the sign of Z4 by insisting that W, Zs = tZ, for some 7 > 0.
This condition does not depend on the isogeny y; to see this, by using that QM abelian surfaces admit
a unique principal polarization compatible with the QM structure, one is reduced to show that for every
¢ € Endg(A) there exists a constant t > 0 such that ¢.Z4 = tZ4. But the latter holds because ¢, acts
on NS(A) as multiplication by deg(¢). In other words, one only requires /—D. /+/—D, to be positive
under the canonical identification R, ® Q ~ R, ® Q.

Now fix a CM pointx’ = [A", 1] € CM(X, K, ¢’) of conductor ¢’ > 1, represented by some QM abelian
surface (A’,1") with End(A’,1") ~ R.. Similarly as for A, we now write A’ ~ E’ X Ej, where E'(C) =
C/Ry and Ey,(C) = C/b for some fractional R-ideal b. We write b = Zb @ Z+/—D,» following the same

conventions as those for a. Then the CM cycle associated with x’, or with A’, is the cycle Zy :=Z /Do

¢

corresponding to the isogeny
/=Dy € b ~Hom(E',Ey).

Choosing the square root /—D. € Ry so that «/—D. /+/—D, is positive, the precise relation between
the cycles Z4 and Z, under a given QM-isogeny A — A’ is the content of the next proposition.

Proposition 4.2. Let (A,1) and (A’',1") be as above, and let y : A — A’ be a QM-isogeny of abelian
surfaces with QM by % and CM by K. Then:

a) W.Zy = (deg(w))"/2(bD./aD)"?Zy.
b) w*Zy = (deg(y))"/*(aD. /bD.)"/*Zy.
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Proof. First notice that the degree of the isogeny /—D, : E — E, equals the index of v/—D.R, in a as
lattices. This index is precisely a~'D.. Similarly, the degree of /—D : E' — Ey is b~ 'D.. We see
therefore that the constant bD../aD, in the statement is precisely deg(v/—D,)/deg(y/—D). Similarly,
the ratio aD /bD,. in (b) coincides with deg(v/—D.)/deg(v/—D,).

Now consider the CM cycle Zy =" /=p; — (E x 0) —deg(v/—D,)(0 x Eq). A straightforward compu-
tation shows that W, Z, is orthogonal with respect to the intersection pairing to (E’ x 0,0 X Ey, Z), hence
it must lie in the Z-submodule of rank 1 in NS(A’) generated by the CM cycle Z,/. As a consequence,
V,.Z4 = qZ, for some constant g. Such a constant can be then obtained by computing the self-intersection
numbers Zy - Zy and (W, Z4) - (W.Z4) and using the identity (W.Zs) - (WiZa) = ¢*Zps - Zsr. We have

Zy-Zy = ~2deg(v/=Do) and  (y.Zy)- (y.Zs) = —2deg(v/=D;) deg(y),
hence we conclude that

_ (deg(y)deg(v=D)\'* 12 (0D
q‘( deg(v/ D7) ) = (deg(¥) (D)

and (a) follows. Part (b) can be obtained now from (a) by the projection formula. L]

Let now x € X(K%) C CM(X,K) be a CM point by K, and choose ¥ € g~ (x) any preimage of x
under the forgetful morphism ¢ : X¥ — X of Shimura curves. The fibre .% is a QM abelian surface
with End(<%,15) = R., for some positive integer c. Hence we have a well defined (up to sign) cycle
Z; € CH! (%)

The cycles Zz, for ¥ € g~ !(x), can be chosen in a compatible way with respect to the action of
G(M). Namely, every g € G(M) extends to an automorphism g : &/ — 7, and induces an isomorphism
g Fz — yx) forevery ¥ € g~ '(x). Then we may require that g, (Z;) = Zy(z) for every X € g '(x) and
every g € G(M).

On the other hand, if % denotes the group of Atkin-Lehner involutions acting on X, each w € #
extends canonically to an involution on X, which we still denote by the same symbol w, commuting
with the action of G(M). Similarly, also the group Gal(K./K) acts on XM /K, and in particular on
g~ '(CM(X,K,c)). The actions of both #" and Gal(K,./K) extend to the universal abelian surface .27,
and we may choose the cycles Z; so that

Wi(Ze) = Zywy 0:(Zs) = Zsz)

for every w € # and every 6 € Gal(K./K).

Continue to fix our CM point x € CM(X, K, ¢) and any lift # € ¢! (x). The inclusion iz : 77! (%) =
af; < <f of the fibre 77! (%) into the universal abelian surface .7 induces a map CH'(.2%) — CH?(.%/),
and hence we can consider the image of Z; in CH?(.27). More generally, the inclusion % : 7' (%) =
oL — /" of the fibre of 7, : /" — XM above ¥ into the r-th Kuga—Sato variety 7" over X", induces a
map

(i7). : CH' (&%) — CH'™™! ("),
and we let 25 := (i%)«(Z%) € CH"! (/" /K.) be the image of Z} = Z; x --- x Z;. Hence Z; is a cycle of
codimension r+ 1 in /" defined over K., the ring class field of conductor ¢ = ¢(x). Notice that for every

w € # and d € Gal(K,/K) the above compatibility conditions for the cycles Z; imply that

wi(25) = Zyw and  8.(Z%) = L5z

S The Euler system

We keep assuming the Heegner hypothesis (Heeg), so that for every integer n > 1 with gcd(NDg,n) =1
the set CM(X,K,n) of CM points of conductor n is non-empty. Under the maps ® g, induced by the
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relevant p-adic étale Abel-Jacobi maps, the CM cycles constructed in the previous section give rise to
a collection of cohomology classes enjoying the compatibility properties that turn them into an Euler
system of Kolyvagin type.

We shall restrict ourselves to square-free integers n > 1 such that gcd(pNDg,n) = 1 and whose
prime factors are all inert in K. Such primes will be referred to as Kolyvagin primes, although later we
will need to impose more precise restrictions. Fix an embedding g : K — B, optimal with respect to R
and &, where R = Rk stands for the ring of integers in K. Such an embedding defines a CM point
x(1)=[l,g] € CM(X,K, 1) of conductor 1 in X. For each prime ¢{ pNDx inert in K, choose an element
b(¢) € B} C B* satisfying ord(n(b(¢))) = 1, and if n = ¢ - - - £ is a product of pairwise distinct primes
{;1 pNDk inert in K, set b(n) := b(¢;) ---b(£;) € B*. Then x(n) := [b(n),g] € CM(X,K,n) is a CM point
of conductor n in X. This way, we have defined a collection of algebraic points x(n) € X(K,), indexed
by positive integers n as above.

For each x(n), we choose a preimage %(n) € g~ ! (x(n)) in X, and for #(n) we have defined a CM cy-
cle 2, := %, € CH™'(«/" /K,). We denote by y, € H'(K,,V) the image of 2, by the T[Gal(K, /K)]-
equivariant morphism

@,k CH " /K,) @7, — H'(K,,V).

Because of the averaging projector p¢ involved in the definition of ®y g , the cohomology class y, does
not depend on the choice of € g~ ! (x).

5.1 The Euler system relations

Letn =/, ---¥; be a square-free product of pairwise distinct primes as above, all of them inert in K and
not dividing pNDg. We may assume for simplicity that Rz = {£1}, which amounts to saying that K #
Q(v/—1),Q(+/-3) (otherwise, all the discussion applies almost without any change, with ux := |[Rg|/2
appearing in many of the computations). If we write G, := Gal(K, /K}), then G,, ~ [1¢» Ge, where each
Gy = Gal(K;/K;) is cyclic of order ¢+ 1. We fix once and for all a generator o; € Gy for each prime
¢ inert in K. By class field theory, if n = m¢ and A = (¢) is the only prime in K above ¢, then A splits
completely in K, /K, and each prime A,, in K, above A is totally ramified in K,, /K, so that A,, = (4,,)*1.

When n varies over positive integers as above, the cohomology classes y,, arising from CM cycles in
/" enjoy the following norm compatibility relations.

Proposition 5.1 (Global norm compatibilities). Let n = fm be a product of Kolyvagin primes. Then

Ty(ym) = cork,,. K, Yme) = aryme-

Proof. We know that 7; acts on V as multiplication by ay, thus it suffices to prove the first equality of the
statement. Suppose that y,, € H' (K, V) is the image under @ g, of a CM cycle Zem) = (i;(m))*(Zg(m)),
for some %(m) € X™(C) lying above a CM point x(m) € X (K,,) of conductor m. The divisor T;(%(m))
consists of £+ 1 points, lying above the ¢+ 1 points whose formal sum is 7y(x(m)). By compatibility of
the Hecke correspondence 7; acting on X, X™ and «7”, we have

Ty Zm) = ) Z.
% € Supp(Ty(¥(m)))

But using the norm relations for CM points on X (see [30, Proposition 4.8 (ii)]), the right hand side
equals
Y  Zemey= Y 0 Zm),
ocGal(Kyue/Km) ccGal(K,e/Kin)
where the last equality follows from the compatibility of the CM cycles under Galois action. Finally,
since @y ., is Hecke- and Galois-equivariant, the above relation implies 7y (y,,) = corg, k,, (Ym¢), as was
to be proved. O
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Proposition 5.2 (Local norm compatibilities). Let n = ¢m be a product of Kolyvagin primes. Let A, be a
prime dividing ¢ in K,,. Then

Yna, = Frob(ﬁ) (resKlm K, (ym_’,lm)) eH! (KAH,V).

Proof. Let x(m) and x(n) be the CM points on X corresponding to the classes y,, and y,, respectively, and
let A, be a QM-abelian surface with CM representing x(m). Then x(n) can be represented by A, = A,,/C,
where C C A, [¢] is a subgroup of order £2, cyclic as %-submodule, and A,, and A, are related by the
canonical isogeny A,, — A,,/C. Since ¢ is inert in K, the reductions of A,, and A, modulo A, and A,
respectively, are both products of two supersingular elliptic curves (recall that A,, is totally ramified in
K, /K, hence the residue fields of both K, at 4,, and K, at A, coincide, and are in fact isomorphic to the
finite field of ¢ elements). Then the isogeny A,, — A,,/C reduces to Frobenius on each factor and the
claim follows by the relations between CM cycles under isogeny in Proposition f.2] (the constants a and
b are forced to be equal, and ¢’ = ¢ ell). O

The cohomology classes y, also enjoy the following compatibility with respect to complex conjuga-
tion, which stems directly from the action of complex conjugation on the CM cycles.

Proposition 5.3. If p denotes complex conjugation, then

p(n) = —€0(ya)
for some o € Gal(K,,/K), where € denotes the sign in the functional equation of L(f,s).

Proof. Let Z, C < be the cycle associated to (a lift £ € XM of) the CM point x = x(n) of conductor 7.
Then p(Zx) = _Zp(x)-

Besides, it is well-known that p(x) = Wy(o(x)) for some o € Gal(K,/K), where Wy stands for
the Atkin—Lehner involution associated with N = NTN~ acting on X (see [37, p. 135]). By using the
compatibility of the CM cycles with the actions of Galois and %, and the fact that these actions commute,
it follows that

p(Z) = (=1)' Wy« (0.(Z0)) = (= 1) 0. (Wh +(Z22))

Finally, since ® g, is Hecke- and Galois-equivariant, we deduce that

p(Prk,(Z27) = (—1)wy+ y-0(Pr i, (22)),

which is equivalent to the relation we want, since € = (—1)" Twy+ y-. O

5.2 Kolyvagin cohomology classes

Recall that V' is a free O ® Z,-module of rank 2, where OF stands for the ring of integers in the number
field F generated by the Hecke eigenvalues a, = a,(f«). If 0, denotes the completion of JF at a prime
2 of F above p, then there is a canonical decomposition Oy ® Z, = &0, where the sum is over all such
primes @ | p. Fix once and for all a prime & | p of F. Then V,:=V Rorez, Op s a free Og-module of
rank 2, and there are natural localization morphisms

Hl(KmV) —>H1(Kn7V[O)7 Yn '—>yn,p-

From now on, we write Y :=V,®Q,,/Z, and Y, :=Y,s for every s > 1, hence ¥y = V,,/p*V, for s > 1.
We remark that, for the sake of simplicity, we did not consider these integral and mod p* representations
in the Introduction, and rather stayed at the level of F,-vector spaces. Indeed, the representation Vi, (f)
of the Introduction corresponds to the F,-vector space V, @4, Fy, =V, ®7, Q). For each s > 1, we have
a natural reduction map

red, : H' (K,, V) — H' (K,,, Yy)
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(and all such maps are compatible in the natural way when s varies), and we denote by L;/K the Galois
extension of K cut out by the representation Y. ) i
It follows directly from [28, Proposition 6.3] that YSGal(Q/ K — YSGal(Q/ ) for every square-free integer

n which is a product of primes as above, and further there exists an integer s; > 0, which does not depend

on s, such that YsGal(Q/ K) (hence also YsGal(Q/ K"), for all n) is killed by p’. We state below a direct

consequence of this (cf. [28, Corollary 6.4]), for later reference.

Corollary 5.4. There is an integer s| > 0, independent from s, such that both the kernel and cokernel of
the restriction map
resg, x, - H'(K1,Y;) — H'(K,,Y,)%"

are killed by p*'.

Next we want to construct G,-invariant classes in H! (K, Ys) starting from the localized classes y, .
To do so, we first need to restrict a bit more the indices n that will be admissible in our system of classes,
or rather on the primes that will be allowed as factors of n.

Definition 5.5. For each s > 1, we define X (s) to be the set of rational primes ¢ { 2pNDg such that
the conjugacy class Froby(K.L;/Q) of the arithmetic Frobenius automorphism Frob, in Gal(K.L,;/Q)
coincides with the conjugacy class Frob..(K.L;/Q) of complex conjugation. We then put, for every
k>1,

Li(s) = {1l : £; € X1 (s) pairwise distinct}.

Primes in X; (s) will be referred to as s-Kolyvagin primes, or just Kolyvagin primes.
The condition on the conjugacy classes of Frobenius and complex conjugation can be rephrased by

saying that Frob, and the complex conjugation Frob., have the same characteristic polynomial modulo

p’, that is,
P—l=0"— %x—i— 1 (mod p°),

This is equivalent to the assertion that

-D
<€K>:_1 and a/=/(+1=0 (mod p*).

In particular, notice that primes ¢ € X (s) are inert in K.
Let ¢ € X;(s) be a Kolyvagin prime, and recall that we denoted by o; a fixed generator of G, =
Gal(Ky/K1). Recall also Kolyvagin’s trace and derivative operators
IGel -1 G -1
Try= ) o}, D= ) ioj € Z[G(,
i=0 i=0

related by the identities
(Gg — I)Dg = |Gg’ —Try = /+1 — Try.

If n =40, ---{ € Z(s), then one also defines
D, =Dy, ---Dy, € Z[G,).

Proposition 5.6. The cohomology class Dyreds(yn ) € HY(K,,Y;) is Gy-invariant, i.e. Dyreds(yy )
belongs to H' (K, Y)%".

Proof. Let ¢ be a (Kolyvagin) prime dividing »n and set n = mf. Then we have
(60— 1)Duyn,p = Dn(£+1—=Trp)ynp = Du(l+ 1)yn o — acDmym, p»

where in the second equality we use res,, k, o corg, k,, = Try and Proposition Now since ¢ € X;(s)
we know that £+ 1 =a, =0 (mod p*), hence the statement follows. O
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By virtue of Corollary [5.4] this proposition implies that, possibly up to multiplying by p*' (recall that
s1 is independent of s), the derived classes Djred,(yn,p) € H!(K,,Y;) can be lifted to H'(K7,Y;). This
lifting is often referred to as “Kolyvagin’s corestriction”, and is reviewed in detail in [28], Section 7].

More precisely, continue to fix s > 0, put s’ = s+s; and require Kolyvagin primes to lie in X, (s) (so
thatay =/¢+1=0 (mod p*) for all primes ¢ dividing n). Multiplication by p*' induces a homomorphism
j Yy — Y. A system of cohomology classes

K,(n) € H'(K,Yy)

can be defined in the following way. For n = 1, just set x;(1) := corg, k(reds(y1,p)). Iff n="{1is a
Kolyvagin prime, then p*' Dyredy (yr, ) = resk, k, (z¢) for some class z, € H' (K1, Yy), and two choices of
z¢ differ by an element in the image of H' (K, Y;,) — H!(K,Y/), and hence in the kernel of j.. In view of
this, the class

1(0) := corg, x(j«(z¢)) € H' (K, Yy),

is well-defined and does not depend on the choice of zo. More generally, if n = /¢; - - - £} is a (square-free)
product of Kolyvagin primes, then p*' D,redy (yn ) = resg, ,(z,) for some z, € H!(K1,Yy). As before,
the class

i(n) := cork, k(j«(z2)) € H (K, Yy),

is well-defined.

5.3 Localization away from p

Having defined the cohomology classes k;(n), we end this section by describing their local behaviour at
places v of K not dividing p. Of special interest are the localizations at places above the prime factors
of n. We may start by fixing some notation. Let ¢ € X;(s) be a Kolyvagin prime dividing n, write
n =ml and let A be the (unique) prime of K above £. We fix a prime A, of K, above ¢, which uniquely
determines primes A,,, A; and A; of K, K; and K, respectively, all of them over ¢. Recall that A = (¢)
splits completely in the extension K;,/K, whereas A,, is totally ramified in K, /K, hence A,, = (A,)!.
At the level of completions, we have K, = K}, and K = Kj, = K}, and our choice of A, determines
also an isomorphism

Gal(KM/K,l) = Gal(K,ln/K,lm) ~ Gal(Kg/Kl) = <0'g>.

In particular, the choice of A, identifies the generator o, with an element of Gal(K},/K)). Such an
element can be lifted to a generator 7, of Gal(K} /K}") ~ yAS) (1), where K} is the maximal tamely ram-
ified extension of K and Z() = [144¢Z4- This lift is well defined modulo (£ + 1)2“) (1), and under the
canonical projection Z() (1) — I, it is sent to some primitive p*'-th root of unity, say Cry € 1, (K3).
Tame duality then yields (cf. [28, Proposition 8.1]) &,-linear canonical isomorphisms

0oy ¢ HL(Ky, Ye) — Yo (Kp), (10)

B/l,s’ :H' (Kur7YS’) i> Hom(»upS' (Kl)7YS' (K/l)) = YY’(Kl)ﬂ (11)
with B, ¢ being evaluation at the root of unity {; ¢, and a perfect pairing
(Vi HL(KYy) x HY(KS YY) — Z/p°Z, (12)

where YS’/ = Hom(Yy, [T ). Further, the isomorphism

Ore = Bry o0yt Hy(Ky, Yo) — H(K}" Yy) (13)
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interchanges cocycles with the same values on Frob(¢) and 7, (mod psl). After identifying Yy with its
dual Y via the pairing [,]y from Proposition the pairing (,),  satisfies the relation

@y My
Gy = o g (x), 009 ()] (14)
Finally, localizing the inflation-restriction sequence for K, /K] yields a canonical splitting
Hl (Kl ) Ys’) = Hlllr(Klays’) @ Hl ( ;Llry Ys’)-

Both factors in this splitting are isomorphic to Yy (K}, ), via the canonical & ,-linear isomorphisms «, ¢
and B, ¢, respectively.

On the other hand, complex conjugation p € Gal(K/Q) = Gal(K, /Qy) acts naturally on several
groups involved in our discussion. We denote by a superscript + the corresponding (+)-eigenspaces for
this action. Notice that

Mo (Ky) = 1,0 (Kp)™

by the assumptions on ¢, and each of the eigenspaces Yy (K )™ is a free Op/ psl—module of rank 1. Since
the local pairing (,); ¢ in (I2) is p-equivariant, it induces non-degenerate pairings

<’>7iL,S’ : Hlllr(Kfl’Ys/)i X Hl( EraYs’)i — Z/p* 7.
In contrast, the isomorphism ¢ ¢ is p-antiequivariant, and therefore it induces isomorphisms
Hlllr(l(l’YS')i = Hl( Er’Ys’):F.

The next proposition summarizes the relevant properties of the localizations of the Kolyvagin coho-
mology classes K;(n) at places of K outside of p.

Proposition 5.7. Let v be a non-archimedean place of K and n be a product of Kolyvagin primes.
i) ks(n) € H(K,Y,)%, where &, = (—1)" €.
ii) If v{ Nnp, then k(n), € HL(K,,Y;).

iii) There exists a constant sy such that p*H' (K,,V /p*V) for all places v | N of K and all s > 0. In
particular, if v | N then p*2x,(n), = 0.

v) Ifn=ml and A = ({) is the only prime of K above {, then

<<—1)renc;fs,— 0+ 1)> () = (W) (K (m)a),

where d = 1 if n is a product of two primes, and d = 0 otherwise. If both ({4 1) +a;)/p* are
units in Oy, then the above relation simplifies to

k(M2 = e, P 25 (6(m)2), e, € (Op/p")

Proof. The first assertion is a direct consequence of the action of p on CM cycles (and hence on the
classes y,) and the relation with Kolyvagin’s derivative operator, namely pD, = (—1)"D,p. Statement
ii) is clear since both K,,/K and y, are unramified at the place v, and iii) follows from [28, Lemma 10.1].
Finally, iv) is obtained by applying Nekovéi’s discussion on localization of Kolyvagin’s corestriction in
[28l Section 9] (see also [28l Proposition 10.2 (4)]). O

Corollary 5.8. If both ( + 1 a; divide p*** in Oy, then for all t € HY (K, Yy)
R — (0 (1) e, 0™ 0 (1) 0))]s,

where {) ¢ = Z_ff;/.
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6 The Selmer group

So far, we have seen that, possibly up to multiplying by p*2, the cohomology classes k;(n) are unramified
at every place of K not dividing np. Further, their localizations at the primes of K dividing » are subject
to the relations in Proposition iv).

Now if v is a place of K above p, then the Q,-vector space W :=V @ Q is equipped with a continuous
Gal(K,/K,)-action, and following Bloch and Kato it is customary to set

HL(K,, W) :=ker(H' (K,,W) — H' (K,, W @ Beis))
and

H!(K,,W) := ker(H'(K,,W) — H' (K,,W @ Br)),
where Bs and Bgr are Fontaine’s period rings. In order to deal with the representations V and Y, if
? € {£,g} we denote by H}(K,,,V) C H!(K,, V) the preimage of H}(K,, W) under the natural homomor-
phism H!(K,,V) — H!(K,,W), and by H}(K,,Y;) C H!(K,,Y;) the image of H}(K,, V) under the natural
reduction homomorphism H!(K,,V) — H!(K,,Y;).

As in [28, Lemma 11.1], the fact that V ® Q is crystalline implies that if v is a prime of K dividing p
and K'/K, is any finite extension, then H{ (K’,V) = H),(K’,V) and the Abel-Jacobi map over K’ factors
through HL(K’, V). In particular, since HL(K,,Y;) depends only on the action of the inertia subgroup of
Gal(K,/K,), for every square-free product of Kolyvagin primes n and any prime v of K above p it follows
that k;(n), € HL(K,,Y;) (because K, /K is unramified at v). This leads naturally to the definition of the
(p*-th) Selmer group:

Definition 6.1. The (p°-th) Selmer group Sel (f, K) C H'(K,Y;) is defined as
Sel (f, K):={xcH'(K,Y,) : x, e H. (K,,Y,) forall v{ Np and x, € H.(K,,Y,) for v| p}.

If v is a place of K not dividing N, then &/ has good reduction at v, and therefore we infer from
[28 Lemma 4.1] that H! (K,,V) consists only of unramified classes. Hence from the very definition of
Sel ( f,K) we see that the global Abel-Jacobi map from (9) factors through

CH™ (" [K)o® Op/p* Oy — Sel'S)(f,K). (15)
On the other hand, given arbitrary classes x,y € H! (K, Y;) the reciprocity law asserts that
Z(xwyv>v,s =0 in Z/pXZv
v

where the sum is over all the places in K. This is actually a finite sum, since (x,,y,), s vanishes for every
place v for which both x and y are unramified. If n is a product of Kolyvagin primes, then the cohomology
classes K;(n) are unramified at all places not dividing pn, possibly after multiplying by p*2, and we also
know that ky(n), € HL(K,,Y;) for every place v of K above p. But the finite part HL(K,, ;) is isotropic
inside H! (K, Y;) at all places v dividing p (see [6, Prop. 3.8]), hence the above reciprocity law implies
that

p” ) a,k(n)a)as =0 inZ/p'Z (16)

ln
for every x € Sel ( f,K), where for each Kolyvagin prime ¢ | n in the sum A denotes the unique prime
of K above /.
Finally, we denote

Selly) (f,K) :=limSel})) (. K). (17)

By considering the inductive limit of the Abel-Jacobi maps @D one obtains a map
®: CH™ (/" /K)o O — Sely )(f,K) CH'(K,V,).
Its cokernel is by definiton the g-primary part of the Shafarevich—Tate group,
11, := coker(®) = Sel's (f,K)/Im(P).
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7 Main result

Recall our initial setting, in which f., € S52V,(I'o(N)) is assumed to be a newform of weight 2r+2 > 4
and level I'o(N), and let p be an odd prime not dividing N - (2r)!. We write F for the number field
generated by the Fourier coefficients of f.., OF for its ring of integers, and fix a prime g of F above p.
Let N =NTN~ be a factorization such that gcd(N*,N~) =1 and N~ > 1 is the square-free product of
an even number of primes, and let K be an imaginary quadratic field satisfying the Heegner hypothesis
spelled out in (Heeg).

The Galois representation associated to f. can be realized as a factor in the middle étale cohomology
of the r-th Kuga—Sato variety .</” over the Shimura curve X = Xy+ 5-, by using the Jacquet-Langlands
correspondence to lift f., to a modular form f on X and following previous work of Besser and Iovita—
Spiess (cf. Section [3.3). We previously denoted this representation by V =V (f) ~ V(f.). It is a free
OF @ Z,-module of rank 2, and our choice of @ singles out a localization V.

We have seen that the Abel-Jacobi map induces a Hecke- and Galois-equivariant map

®: CH ! (/" /K)oy 6, — Sel's) (f,K) CH'(K,V,)
by localizing at & and projecting on the f-isotypical component. Defining

yo 1= corg, /k(V1,0),
the main result we prove in this note reads as follows:

Theorem 7.1. With notation as above, suppose that y is non-torsion. Then Im(®) ® Q has rank 1 and
- is finite. More precisely, we have

(Im(®)®Q)* =0 and (Im(P)®Q) = F,-yo.

As already commented, the proof of this result follows Kolyvagin’s method as generalized by Nekovar
in [28]. Indeed, once we have constructed the Euler system of CM cycles on the Kuga—Sato variety
«/" and have proved the compatibility properties that the associated system of Kolyvagin cohomology
classes satisfies, the proof is formally the same. In spite of this, we summarize below the argument for
the convenience of the reader.

Before entering into the proof, we shall make some global observations that complement our local
discussions in the previous section. Keep the same notation as before and write L = K(Yy ) for the Galois
extension of K trivializing Yy, s’ = s+s;. Letalso {y € u o+ (L) be a primitive p* -th root of unity. For
each Kolyvagin prime £ € X;(s), we might choose a place A, of L above ¢ such that {y maps to {3 ¢
under the embedding L < L), = K. Then we put ; := ({y)”"". Under this choice of A;, we identify
Yy(K)) ~Ys(Ly,) = Ys(L). Further, we consider the maps

a?LL,s : HI]Jr(LkLaYS) i> YY(LAL)¢ (PXL,S : Hlllr(LluYtY) i> H]( ErL?YY)

analogous to the maps o, , and ¢, , introduced in (I0) and (I3), respectively, for L,,. And by a slight
abuse of notation, we also write o,  for the composition

albs

H'(L,Y,) — H'(Ly,,Ys) — HL(Ly,,Ys) =5 Y(Ly) = Y4(L), (18)

where the first arrow is localization at A; and the second one is projection on the unramified part. The
composition of these maps is the evaluation at Frob(A;).
Consider the restriction map

res =resg . : H'(K,Y,) — H'(L,Y,) %) = Homgyyr ) (Gal(Q/L), Y (L))

The formula (14) relating the pairings (,), ; and [,], through the root of unity {; admits the following
global version.

25



Proposition 7.2. Given classes 1,0 € H'(K,Y;) such that 1,0, € H..(K),Y;), one has

(M,02, 5(0))a.s
g oy, (res()), oy, (res(6)];.

Now we are finally in a position to prove Theorem

Proof of Theorem[7.1] We keep the notation as above. In particular, s > 0 is a sufficiently large integer,

and s" = s+ s1. The Selmer group Se] ( LK) = hm Sel ( f,K) is finitely generated as a Z,-module,
and our goal is to bound it. We contlnue to denote L K (Y ).

Let T = res(Sel ( f,K)) C H'(L,Y;) be the image of the p*-th Selmer group under the restriction

map, and write also us(n) := res(ky(n)) € H!(L,Y;) for the image of the n-th Kolyvagin cohomology
class under restriction. The action of p on T defines two eigenspaces, T, and we will obtain our bound

for T (and hence eventually for Sel ( f,K)) by looking separately at 7¢ and T ¢.
Let Ly C L% denote the subﬁeld fixed by the annihilator of 7 under the evaluation pairing

T x Gal(L® /L) — Y(L),
and put G7 := Gal(Ly /L). Then one has an induced Gal(L/Q)-equivariant pairing
TxGr — Yi(L), (1,8) — 1(g),

with the action of the group Gal(L/Q) on T factoring through Gal(K/Q). In particular, this naturally in-
duces a Gal(L/Q)-equivariant map Gy — Hom(T,Y;(L)) and a p-equivariant map 7 — Homgyz/k) (G, Ys(L)),
both of them injective.
As in [28] Section 12] (specifically Proposition 12.2 therein), there exist integers a,b > 0 such that,
for all s large enough, the following assertions hold:

() p*H'(K(Yy)/K,Y;) =0;
(i1) Ly OK(YOO) - K(Ys’-i-u);

(iii) foreach g € G, there are infinitely many primes ¢ which are inert in K and such that Frob,,, x(A) =
g P’ | €+1+agand p* ot 04+ 1 +ay;

(iv) pPcoker(j: Gr — Hom(T,Y;)) = 0.

If x is an element in an abelian group A, let exp(x) be the smallest m > 0 such that p”’x = 0. In the
same fashion, exp(A) denotes the smallest m > 0 with p™A = 0. For instance, exp(k;(1)) = s — 5o and

exp(us(n)) > exp(xs(n)) —a.
Fix an element ¥, € Hom(7¢,Y¥) of maximal exponent, i.e. such that

exp(Ye) = exp(Hom(T%,YS)),
and notice that this exponent also equals exp(7¢). Also choose y_, € Hom(7 ~¢,Y;¢) such that

exp(Y-e(us(1))) = exp(us(1)) (= s5—50 —a).

If ¢ is a Kolyvagin prime and A, is a prime of L above £, recall the map oy, ; : H'(L,Y;) — Y;(L) from
(T8). Its restriction to each of the eigenspaces for the action of complex conjugation gives rise to maps
Oci 5t H!(L,Y,)* — Y,(L)*, and by a slight abuse of notation we still denote by Oci » the restrictions of
these maps to 7=. The map 0, s corresponds to evaluation at Frob(Az), thus one can find a Kolyvagin
prime £ such that p* | £+ 1+ay, p* * {0+ 1+ ay and afm = ply..

Now let t € T¢ be arbitrary. By virtue of the reciprocity law,

(ta, P K,()3)2s =0 inZ/p'Z, (19)
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and the choice of ¢ together with Corollary [5.8] then imply that

[al,s(tl)vpseraJrl”E,Sg al,s(”s(l)l)}s =1.

Now using that t € T, us(1) € T~¢, and the above relation between oci . and ., it follows that

[‘l’s (1), ps2+a+2b+l Up e, Y—e (us(l))]s =1

Since [,]; is non-degenerate, we infer that p*+s:+2¢+2b+1T€ — () and hence that
3a+2b+1
pso+sz+ a+2b+ (Sel};) (f,K))E =0.

Next we look at the eigenspace T €. As before, one can choose elements ¢ € Hom(T*,Y) such
that

exp(Qe (us(£))) = exp(us(¢))
and
exp(¢-e mod Opy_¢) = exp(Hom(T %Y%)/ Opy_¢) = exp(ker(y_¢)).
Notice that the choice of the prime ¢ implies that
exp(us(€)) = exp(K;(£)) —a = exp(K;(£)y) —a = exp(Ks(1)2) —2a =
> exp(pPw_e(us(1))) — 2a = exp(uy(1)) —2a — b > s — 5o — 3a — b.
As above, one can find a second Kolyvagin prime ¢ # ¢ such that p* | ¢/ 4+ 14agp, p* 4t 40/ + 1+ ayp
and afi 5= pP¢.. Fort € ker(y_¢) C T¢, the reciprocity law reads
Pt K (00) 2 ) a5+ P2t K (L0 ) 3 ) a5 = P2t K (L) 2 ) 0 s =0 in Z/ p*Z,

where the first term vanishes because of (19) and part iv) of Proposition This gets translated, thanks
to Proposition [7.2]into the identity

[ (t)vszﬂlﬂﬁaﬂué’.,sw e (us(0))]s = 1.

As a consequence, the kernel of w_, : T~¢ — Y, ¢ is killed by pfotsi+s2+dat3btl,

Finally, the assumption that yy is non-torsion in H' (K, V,,) implies the existence of an integer so > 0
such that, modulo torsion, yy is divisible by p* in H!(K,V,,) but not by p**!. For the class u,(1), this
means that u(1) = p*x+1 for some x, # in the image of ® with p*it = 0, as the torsion part of H! (K, V,,)
is killed by p*'. Thus for s large enough, the following relation holds:

exp(y_e(x)) = exp(x) > s —a.

Besides, the map y_, : T~¢ — Y, ¢ induces an exact sequence

ker(y_¢) T ¢ v Y, ¢

N

— = ,
* ﬁ[gt“—ﬁpx ﬁqufg(l‘)—FﬁpW—e(x)

in which the first term is killed by pfo*s1+52+4a+30+1 (because so is ker(W_¢)), and the last term is killed
by p“. From this one concludes that

(Sely) (£, K)) ™8/ (Gt + O )
is killed by pfotsits2+6a+3b+1 - Ag g tends to oo, one deduces that

peSelS) (£,K)/(Fp/ Op)y0) =0

0 —

for some e. Using that Im(®) is divisible in Selg’) (f,K), this identity proves our claim on Im(®),

and shows that for a sufficiently large s, (Il =)® = (Sel[((;) (f,K))? and (Selg) (f,K))"¢/(Opt + Opx)
surjects onto (III~)~%. Hence the theorem is proved. O
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